
A P R I L 2 0 1 0 V O L U M E 3 5 N U M B E R 2

T H E U S E N I X M A G A Z I N E

The Advanced Computing
Systems Association

OPINION Musings	 2
R i k Fa R Row

DIstrIbuteD HDFS	Scalability:	The	Limits	to	Growth	 6
systems ko n sta n t i n V. sh Vach ko

The	Barrelfish	Multikernel:	An	Interview		
with	Timothy	Roscoe	 17
R i k Fa R Row

sysaDmIN The	Business	Value	of	System		
Administration	 23
M a R k B u Rg ess a n d c a Ro ly n Rowl a n d

From	Tasks	to	Assurances:	Redefining		
System	Administration	 29
a lVa l . co u ch

FIle systems DFS:	A	File	System	for	Virtualized		
Flash	Storage	 37
wi l l i a M k . J o se ph s o n , l a R s a . B o n g o,
daV i d F ly n n , a n d k a i l i

Beyond	Blocks	and	Files	 48
Ja k e wi R es a n d a n d R e w wa R F i e l d

securIty Brute	Force	and	Ignorance	 51
e l i z a B e t h z wi ck y

cOlumNs Practical	Perl	Tools:	Let	Me	Help	You		
Get	Regular	 53
daV i d n . B l a n k- e d e l M a n

Pete’s	All	Things	Sun:		
Open	Source	and	Free	Deduplication	 58
pe t e R Ba e R g a lV i n

iVoyeur:	A	Question	of	Scale	 66
daV e J o se ph se n

/dev/random:	Less	Successful		
Network	Protocols	 70
Ro B e R t g . F e R R e l l

bOOk revIews Book	Reviews	 72
e l i z a B e t h z wi ck y wi t h B R a n d o n ch i n g

useNIx NOtes In	Memoriam:	Lewis	A.	Law,	1932–2010	 76
l o u k at z a n d pe t e R h . sa lu s

Calling	All	Bloggers	 77
a n n e d i ck i s o n

apr10covers.indd 1 3.10.10 2:48:54 PM

Upcoming Events

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events.

3rd USENIX WorkShop oN LargE-ScaLE
EXpLoItS aNd EmErgENt thrEatS (LEEt ’10)
Co-located with NSDI ’10

april 27, 2010, San JoSe, ca, USa
http://www.usenix.org/leet10

2010 INtErNEt NEtWork maNagEmENt
WorkShop/WorkShop oN rESEarch oN
ENtErprISE NEtWorkINg (INm/WrEN ’10)
Co-located with NSDI ’10

april 27, 2010, San JoSe, ca, USa
http://www.usenix.org/inmwren10

9th INtErNatIoNaL WorkShop oN pEEr-to-pEEr
SyStEmS (IptpS ’10)
Co-located with NSDI ’10

april 27, 2010, San JoSe, ca, USa
http://www.usenix.org/iptps10

7th USENIX SympoSIUm oN NEtWorkEd SyStEmS
dESIgN aNd ImpLEmENtatIoN (NSdI ’10)
Sponsored by USENIX in cooperation with ACM SIGCOMM and
ACM SIGOPS

april 28–30, 2010, San JoSe, ca, USa
http://www.usenix.org/nsdi10

2Nd USENIX WorkShop oN hot topIcS IN
paraLLELISm (hotpar ’10)
Sponsored by USENIX in cooperation with ACM SIGMETRICS,
ACM SIGSOFT, ACM SIGOPS, and ACM SIGARCH, and ACM
SIGPLAN

JUne 14–15, 2010, berkeley, ca, USa
http://www.usenix.org/hotpar10

USENIX FEdEratEd coNFErENcES WEEk
JUne 22–25, 2010, boSton, Ma, USa

2010 USENIX aNNUaL tEchNIcaL coNFErENcE
(USENIX atc ’10)

http://www.usenix.org/atc10

USENIX coNFErENcE oN WEb appLIcatIoN
dEvELopmENt (WEbappS ’10)

http://www.usenix.org/webapps10

3rd WorkShop oN oNLINE SocIaL NEtWorkS
(WoSN 2010)

http://www.usenix.org/wosn10

2Nd USENIX WorkShop oN hot topIcS IN
cLoUd compUtINg (hotcLoUd ’10)

http://www.usenix.org/hotcloud10

2Nd WorkShop oN hot topIcS IN StoragE aNd
FILE SyStEmS (hotStoragE ’10)

http://www.usenix.org/hotstorage10

2010 ELEctroNIc votINg tEchNoLogy
WorkShop/ WorkShop oN trUStWorthy
ELEctIoNS (Evt/WotE ’10)
Co-located with USENIX Security ’10

aUgUSt 9–10, 2010, waShington, Dc, USa
http://www.usenix.org/evtwote10

3rd WorkShop oN cybEr SEcUrIty
EXpErImENtatIoN aNd tESt (cSEt ’10)
Co-located with USENIX Security ’10

aUgUSt 9, 2010, waShington, Dc, USa
http://www.usenix.org/cset10
Submissions due: May 24, 2010

2010 WorkShop oN coLLaboratIvE mEthodS
For SEcUrIty aNd prIvacy (coLLSEc ’10)
Co-located with USENIX Security ’10 and sponsored by USENIX
and Deutsche Telekom

aUgUSt 10, 2010, waShington, Dc, USa
http://www.usenix.org/collsec10

1St USENIX WorkShop oN hEaLth SEcUrIty
aNd prIvacy (hEaLthSEc ’10)
Co-located with USENIX Security ’10

aUgUSt 10, 2010, waShington, Dc, USa
http://www.usenix.org/healthsec10

5th USENIX WorkShop oN hot topIcS IN
SEcUrIty (hotSEc ’10)
Co-located with USENIX Security ’10

aUgUSt 10, 2010, waShington, Dc, USa
http://www.usenix.org/hotsec10
Submissions due: May 3, 2010

19th USENIX SEcUrIty SympoSIUm
(USENIX SEcUrIty ’10)

aUgUSt 11–13, 2010, waShington, Dc, USa
http://www.usenix.org/sec10

apr10covers.indd 2 3.10.10 2:48:54 PM

; LO G I N : A prI L 201 0 A rTI CLE T ITLE 1

contents

Ed i to r
Rik Farrow
rik@usenix.org

M a n agin g Ed ito r
Jane-Ellen Long
jel@usenix.org

Co p y Ed i to r
Steve Gilmartin
proofshop@usenix.org

pro d u C t i o n
Casey Henderson
Jane-Ellen Long
Jennifer Peterson

t y pEsE t t Er
Star Type
startype@comcast.net

usEn i X a ss o Ci at i o n
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$125 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2010 USENIX Association

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designations
used by manufacturers and
sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowledges
all trademarks herein. Where
those designations appear in
this publication and USENIX
is aware of a trademark claim,
the designations have been
printed in caps or initial caps.

V O L . 3 5 , # 2 , A p r i L 2 0 1 0

OPINION Musings 2
r I k FA r rOw

DIstrIbuteD HDFS Scalability: The Limits to Growth 6
systems kO N sTA N T I N V. sh VACh kO

The Barrelfish Multikernel: An Interview
with Timothy Roscoe 17
r I k FA r rOw

sysaDmIN The Business Value of System
Administration 23
M A r k B u rG Ess A N d C A rO Ly N rOwL A N d

From Tasks to Assurances: Redefining
System Administration 29
A LVA L . CO u Ch

FIle systems DFS: A File System for Virtualized
Flash Storage 37
wI L L I A M k . J O sE ph s O N , L A r s A . B O N G O,
dAV I d F Ly N N , A N d k A I L I

Beyond Blocks and Files 48
JA k E wI r Es A N d A N d r E w wA r F I E L d

securIty Brute Force and Ignorance 51
E L I z A B E T h z wI Ck y

cOlumNs Practical Perl Tools: Let Me Help You
Get Regular 53
dAV I d N . B L A N k- E d E L M A N

Pete’s All Things Sun:
Open Source and Free Deduplication 58
pE T E r BA E r G A LV I N

iVoyeur: A Question of Scale 66
dAV E J O sE ph s E N

/dev/random: Less Successful
Network Protocols 70
rO B E r T G . F E r r E L L

bOOk revIews Book Reviews 72
E L I z A B E T h z wI Ck y wI T h B r A N d O N Ch I N G

useNIx NOtes In Memoriam: Lewis A. Law, 1932–2010 76
L O u k AT z A N d pE T E r h . sA Lu s

Calling All Bloggers 77
A N N E d I Ck I s O N

APRIL_2010_loginarticles.indd 1 3.10.10 10:01:22 AM

2 ; LO G I N : VO L . 35, N O. 2

R i k F a R R o w

musings
Rik is the Editor of ;login:.

rik@usenix.org

I ’ v e b e e n h av I n g a d I f f I c u lt t I m e
keeping my head out of the clouds. Not
that I’ve been flying, or even daydreaming
much. It’s just that some interesting clouds
popped into the foreground recently, and I
am finding it hard not to pay attention.

Intel announced its Single-chip Cloud Computer
[1] back on December 2, right about the time I was
working on my previous column. Unlike Intel’s
earlier Teraflops project [2], the SCC seemed like
something I had once dreamed about, as well as a
practical experiment that researchers might actu-
ally want to work with.

The Teraflops project was a proof-of-concept: 80
floating-point processors tiled on a chip. While this
was cool, it wasn’t particularly useful and seemed
more like a publicity stunt. But the Teraflops Chip
did prove to Intel that it was possible to put many
cores on a single chip and have them work.

The SCC also sounded like some PR at first, but
that is probably because it has the word “cloud”
in its name. It seems as though everything must
include “cloud” for marketing purposes, even AV
software [3], so ignoring yet another cloud an-
nouncement makes perfect sense. One of the OS
researchers I contacted about the SCC just blew it
off at first for that reason. Yet the SCC represents a
likely future design for manycore CPUs.

Distributed Systems

Using a network of processors goes back to the
dawn of computing. Even the tube-based IBM 709s
had channel I/O processors [4], programmable pro-
cessors subordinate to the main CPU that handled
I/O tasks. Using channel I/O makes a lot of sense,
as I/O is slow, and potentially a lot of work could
be done if the main CPU wasn’t waiting on I/O or,
worse, copying data between I/O and memory.

Channel I/O even appeared, briefly, in micropro-
cessor-based systems in the early ’80s. Morrow
Designs had a hard-disk controller that worked just
like a channel controller, complete with the ability
to execute programs stored in main memory and
copy data between memory and hard drives. At the
time, I thought that distributed processing would
take off (1984), but Morrow was far ahead of the
curve.

Distributed systems got popular with the develop-
ment of various clusters, starting as early as 1970,
and really taking off with the Parallel Virtual

APRIL_2010_loginarticles.indd 2 3.10.10 10:01:22 AM

; LO G I N : A prI L 201 0 MusI N Gs 3

Machine [5] software in the late ’80s and Beowulf clusters in the ’90s.
The ability to use groups of heterogeneous systems as if they were a single
supercomputer changed how scientific computing was done. These days,
Map Reduce and Hadoop are the most used systems for building large-scale
clusters, sometimes composed of thousands of systems networked together.

Not Quite a Cloud

Although Intel PR conflates the SCC with cloud computing, that’s just abus-
ing the current hot buzzword with their distributed computing design. The
SCC consists of 24 dual-core x86 CPUs, each core having its own level 2
cache. The 24 dual-core CPUs each has both memory and hardware dedi-
cated to message passing, with all the CPUs connected in a mesh network.
Memory controllers sit at the edges of this network, implying the ability to
have four independent memory transfers simultaneously.

Each dual-core CPU, or “tile” in Intel-speak, can run at a different frequency,
and groups of four tiles can be run at reduced voltage levels, giving the chip
a thermal envelope from 25 to 125 watts. Perhaps this is why Intel styles
this chip a “cloud,” since, like a cloud, its computing resources can be varied
on demand.

The SCC only vaguely resembles today’s clusters/clouds, which are com-
posed of networked but complete systems. So each member of a Hadoop
cluster, for example, has its own disk, memory, and network. In the SCC,
memory, disk, and network get shared among all the cores on the chip.

Even with four memory controllers, the use of the mesh network implies
that reading or writing to memory will involve the routers along the path
to the proper memory controller. And that suggests to me that a lot of the
issues with memory bandwidth contention will still exist in the SCC. OS
developers will have to take the latency, based on position in the mesh net-
work and the physical address of memory, into account when they design or
modify their operating systems to use the SCC.

But it is the message passing that most intrigues me. Details are vague,
but the message itself is not. Current multicore chips have cache-coherent
memory, meaning that they also include hardware that keeps track of cache
lines that are shared between cores. If data in one core’s copy of a cache line
changes, then all other copies of that cache line must be invalidated and
eventually updated with the current data. The cache-coherency mechanisms
share the memory bus, as well as interfering with memory accesses, and this
in itself is a limiting factor to how many cores can be used effectively in one
chip.

Intel has announced a six-core chip (Gulftown) that still uses cache-coherent
hardware, and the SCC has only been released in very limited quantities
to researchers. Although the size of these chips is similar, as is the total
transistor count—about 1.3 billion—the number of processors and how they
maintain memory consistency are very different. I believe the issue here is
software, as current AMD and Intel multicore chips are supported by a vari-
ety of operating systems.

Intel has demonstrated real systems running Linux on the SCC, so software
capable of using these systems does exist. But the SCC takes the concept of
multicore into the realm of manycore made with standard cores (Pentium-
light CPUs with no out-of-order execution capability) into reality. What are
lacking are operating systems and software that can take advantage of the
amount of potential parallelism in the SCC.

APRIL_2010_loginarticles.indd 3 3.10.10 10:01:22 AM

4 ; LO G I N : VO L . 35, N O. 2

Multikernels appear best posed as a new model for manycore operating
systems. Barrelfish [6] is the best example around today. It not only already
relies on message passing instead of cache coherency, but can also run on
heterogeneous hardware. Not that the SCC provides this, as it is all x86, but
if you imagine a system with intelligent NICs or cores dedicated to simple
instruction pipelines (like GPUs), then Barrelfish is well suited to do this.

There are other forms of mildly distributed systems popping up. The Apple
iPad uses its own CPU design. Based on an ARM processor, the A4 is a
System-on-Chip (SoC), which means it incorporates many of the functions
found in separate chips on motherboards in a single chip: the GPU, NIC, I/O
bus, and memory controller. SoC designs using the ARM have been around
for years, but it will be interesting to see just how well Apple’s A4, running
at 1GHz, will work in practice. That is, will the A4 be able to render Web
pages quickly enough for impatient users, while not sucking dry its battery
in a matter of a few hours?

Again, details about the A4 and its host, the iPad, are vague at this time,
but iPads should be in the hands of users by the time you read this. Then
we will see if the A4 is just another way Apple can lock in control, or if it is
really an innovative processor design that saves energy while appearing as
zippy as its more energy-intensive relatives, such as the Atom.

Lineup

We lead off this issue with another article about Hadoop. Konstantin Sh-
vachko, one of the developers of the Hadoop File System (HFS), discusses
the implications of having a single namespace server and how that might
limit performance in very large Hadoop installations. Along the way, you
will learn more about how the open source, distributed, cluster, but not
cloud, HFS works and what it is capable of in terms of performance.

Next, I had the opportunity of exchanging email with Timothy Roscoe. Ros-
coe is one of the participants in the development of Barrelfish, the world’s
first multikernel OS. Mothy was kind enough to correct the many mistaken
impressions I retained after reading the SOSP paper several times, and I
found myself more enthused than ever about the direction taken by the Bar-
relfish researchers.

We also have several sysadmin researchers sharing their views about the
future of sysadmin. Mark Burgess and Carolyn Rowland discuss the re-
sults of past LISA workshops on the Business Directions of IT Management
(BDIM). The authors offer advice for sysadmins on how they might better
align themselves with business goals and thus become a more integral part
of their organization.

Alva Couch takes issue with describing system administrators in terms of
the tasks they perform. Instead of tasks, Alva suggests using the notion
of social contracts, as sysadmins do more than manage a mail server, for
example. Sysadmins have tacitly agreed to provide a reliable mail service to
their customers, which is an agreement that goes beyond the mere task of a
configuring and maintaining a mail server.

We have two articles on file systems. The first, by William Josephson and
his co-authors, is based on their FAST ’10 paper about the Direct File System
for virtualized flash devices. Josephson explains that key features of current
file systems, the buffer cache and block allocation strategies, can actu-
ally hinder performance when used with a flash device that handles these
features at the device-driver level. This technique places intimate knowledge

APRIL_2010_loginarticles.indd 4 3.10.10 10:01:22 AM

; LO G I N : A prI L 201 0 MusI N Gs 5

about the flash device at a point in the stack where much more is known
about the way the device operates. You will also learn more about how cur-
rent flash drives (solid state drives) work and how flash devices that have
interfaces like hard drives compare with the product used in this research.

Jake Wires and Andrew Warfield give us their perspective on file systems.
Both Jake and Andy work with the Xen VMM, and this gives them a much
different way of looking at how file systems should ideally work. Current
VMMs hook into file systems at the block layer, and that obscures a lot of
information that would make storage for VMs much more efficient or allow
better methods of system updating.

Elizabeth Zwicky provides us with some advice about passwords. Using
yet another massive exposure of passwords as her starting point, Elizabeth
points out several strategies for the use of passwords, an old technology that
just won’t go away.

David Blank-Edelman expresses his admiration for regular expressions in
Perl. As is usual for David, he provides useful modules that make regular
expressions easier to use, something I would not have considered possible
until I read his column.

Peter Galvin exposes us to deduplication in ZFS. Peter explains that dedu-
plication is currently not supported by Sun/Oracle, but you can start using it
now with the latest OpenSolaris build. Peter also provides examples of what
deduplication does and does not do.

Dave Josephsen takes a look at how to get Nagios to scale further. The DNX
event broker distributes events to worker nodes, so they can execute plugins
and share load with the Nagios server. His second topic is the op5 Merlin
module, an event broker that can synchronize events in the database of your
choice, as well as perform load balancing and failover of Nagios.

Robert Ferrell examines network protocols that, while interesting to con-
sider, failed for various reasons.

We conclude with book reviews by Elizabeth Zwicky and Brandon Ching.

There are no summaries in this issue, as there were no conferences or work-
shops over the Christmas holidays, for some reason.

The cloud is more than marketing talk, but also much more specific than
marketers would have us believe. What I find much more interesting is
how distributed systems, from smart phones and tablets, through manycore
chips, right up to massive clusters, appear to be the future of computing.

refereNCeS

[1] Single Chip Cloud (SCC): http://www.theregister.co.uk/2009/12/02/
intel_scc/.

[2] Teraflop chip: http://techresearch.intel.com/articles/Tera-Scale/1449.htm.

[3] McAfee Cloud (really SaaS): http://www.mcafee.com/us/enterprise/
products/hosted_security/index.html.

[4] Channel I/O: http://en.wikipedia.org/wiki/Channel_I/O.

[5] Parallel Virtual Machine: http://www.csm.ornl.gov/pvm/pvm_home.html.

[6] Barrelfish: http://www.barrelfish.org/.

[7] Apple’s A4: http://www.pcworld.com/businesscenter/article/188146/
apple_inside_the_significance_of_the_ipads_a4_chip.html.

APRIL_2010_loginarticles.indd 5 3.10.10 10:01:22 AM

6 ; LO G I N : VO L . 35, N O. 2

k o n s ta n t i n V. s h V a c h k o

HDFS scalability: the
limits to growth

Konstantin V. Shvachko is a principal software
engineer at Yahoo!, where he develops HDFS. He
specializes in efficient data structures and algo-
rithms for large-scale distributed storage systems.
He discovered a new type of balanced trees, S-trees,
for optimal indexing of unstructured data, and he
was a primary developer of an S-tree-based Linux
file system, treeFS, a prototype of reiserFS. Konstan-
tin holds a Ph.D. in computer science from Moscow
State University, Russia. He is also a member of
the Project Management Committee for Apache
Hadoop.

shv@yahoo-inc.com

t h e h a d o o p d I s t r I b u t e d f I l e s y s -
tem (HDFS) is an open source system
 currently being used in situations where
massive amounts of data need to be pro-
cessed. Based on experience with the
largest deployment of HDFS, I provide an
analysis of how the amount of RAM of a
single namespace server correlates with
the storage capacity of Hadoop clusters,
outline the advantages of the single-node
namespace server architecture for linear
performance scaling, and establish practi-
cal limits of growth for this architecture.
This study may be applicable to issues with
other distributed file systems.

By software evolution standards Hadoop is a young
project. In 2005, inspired by two Google papers,
Doug Cutting and Mike Cafarella implemented the
core of Hadoop. Its wide acceptance and growth
started in 2006 when Yahoo! began investing in its
development and committed to use Hadoop as its
internal distributed platform. During the past sev-
eral years Hadoop installations have grown from
a handful of nodes to thousands. It is now used in
many organizations around the world.

In 2006, when the buzzword for storage was
Exabyte, the Hadoop group at Yahoo! formulated
long-term target requirements [7] for the Hadoop
Distributed File System and outlined a list of
projects intended to bring the requirements to life.
What was clear then has now become a reality: the
need for large distributed storage systems backed
by distributed computational frameworks like Ha-
doop MapReduce is imminent.

Today, when we are on the verge of the Zettabyte
Era, it is time to take a retrospective view of the
targets and analyze what has been achieved, how
aggressive our views on the evolution and needs of
the storage world have been, how the achievements
compare to competing systems, and what our lim-
its to growth may be.

The main four-dimensional scale requirement targets
for HDFS were formulated [7] as follows:

10PB capacity x 10,000 nodes x
100,000,000 files x 100,000 clients

The biggest Hadoop clusters [8, 5], such as the
one recently used at Yahoo! to set sorting records,
consist of 4000 nodes and have a total space capac-

APRIL_2010_loginarticles.indd 6 3.10.10 10:01:22 AM

; LO G I N : A prI L 201 0 h d Fs sC A L A B I L IT y: Th E L I M IT s TO G rOw Th 7

ity of 14PB each. Many production clusters run on 3000 nodes with 9PB
storage capacities.

Hadoop clusters have been observed handling more than 100 million objects
maintained by a single namespace server with a total capacity of 100 million
files.

Four thousand node clusters successfully ran jobs with a total of more than
14,000 tasks reading from or writing to HDFS simultaneously.

Table 1 compares the targets with the current achievements:

Target Deployed

Capacity 10PB 14PB

Nodes 10,000 4000

Clients 100,000 15,000

Files 100,000,000 60,000,000

T A b L e 1 : T A r g e T s f O r H D f s V s . A c T u A L Ly D e p L O y e D V A L u e s
A s O f 2 0 0 9

The bottom line is that we achieved the target in petabytes and got close to
the target in the number of files, but this is done with a smaller number of
nodes, and the need to support a workload close to 100,000 clients has not
yet materialized.

The question is now whether the goals are feasible with the current system
architecture. And the main concern is the single namespace server architec-
ture. This article studies scalability and performance limitations imposed on
HDFS by this architecture.

The methods developed in this work could be useful or applicable to other
distributed systems with similar architecture.

The study is based on experience with today’s largest deployments of Ha-
doop. The performance benchmarks were run on real clusters, and the stor-
age capacity estimates were verified by extrapolating measurements taken
from production systems.

HDfS at a Glance

Being a part of Hadoop core and serving as a storage layer for the Hadoop
MapReduce framework, HDFS is also a stand-alone distributed file system
like Lustre, GFS, PVFS, Panasas, GPFS, Ceph, and others. HDFS is opti-
mized for batch processing focusing on the overall system throughput rather
than individual operation latency.

As with most contemporary distributed file systems, HDFS is based on an
architecture with the namespace decoupled from the data. The namespace
forms the file system metadata, which is maintained by a dedicated server
called the name-node. The data itself resides on other servers called data-
nodes.

The file system data is accessed via HDFS clients, which first contact the
name-node for data location and then transfer data to (write) or from (read)
the specified data-nodes (see Figure 1).

The main motivation for decoupling the namespace from the data is the
scalability of the system. Metadata operations are usually fast, whereas data
transfers can last a long time. If a combined operation is passed through
a single server (as in NFS), the data transfer component dominates the

APRIL_2010_loginarticles.indd 7 3.10.10 10:01:23 AM

8 ; LO G I N : VO L . 35, N O. 2

response time of the server, making it a bottleneck in a highly distributed
environment.

In the decoupled architecture, fast metadata operations from multiple clients
are addressed to the (usually single) namespace server, and the data transfers
are distributed among the data servers utilizing the throughput of the whole
cluster.

The namespace consists of files and directories. Directories define the hier-
archical structure of the namespace. Files—the data containers—are divided
into large (128MB each) blocks.

The name-node’s metadata consist of the hierarchical namespace and a block
to data-node mapping, which determines physical block locations.

In order to keep the rate of metadata operations high, HDFS keeps the whole
namespace in RAM. The name-node persistently stores the namespace image
and its modification log (the journal) in external memory such as a local or a
remote hard drive.

The namespace image and the journal contain the HDFS file and directory
names and their attributes (modification and access times, permissions,
quotas), including block IDs for files, but not the locations of the blocks. The
locations are reported by the data-nodes via block reports during startup
and then periodically updated once an hour by default.

If the name-node fails, its latest state can be restored by reading the
namespace image and replaying the journal.

f i g u r e 1 : A n H D f s r e A D r e q u e s T s T A r T s w i T H T H e c L i e n T m A k -
i n g A r e q u e s T T O T H e n A m e - n O D e u s i n g A f i L e p A T H , g e T T i n g
p H y s i c A L b L O c k L O c A T i O n s , A n D T H e n A c c e s s i n g D A T A - n O D e s
f O r T H O s e b L O c k s .

Namespace Limitations

HDFS is built upon the single-node namespace server architecture.

Since the name-node is a single container of the file system metadata, it
naturally becomes a limiting factor for file system growth. In order to make
metadata operations fast, the name-node loads the whole namespace into its
memory, and therefore the size of the namespace is limited by the amount of
RAM available to the name-node.

Estimates show [12] that the name-node uses fewer than 200 bytes to store a
single metadata object (a file inode or a block). According to statistics on our
clusters, a file on average consists of 1.5 blocks, which means that it takes
600 bytes (1 file object + 2 block objects) to store an average file in name-

APRIL_2010_loginarticles.indd 8 3.10.10 10:01:23 AM

; LO G I N : A prI L 201 0 h d Fs sC A L A B I L IT y: Th E L I M IT s TO G rOw Th 9

node’s RAM. This estimate does not include transient data structures, which
the name-node creates for replicating or deleting blocks, etc., removing them
when finished.

CONCLusION 1

If

objSize■■ is the size of a metadata object,
λ■■ is the average file to block ratio, and
F■■ is the total number of files,

then the memory footprint of the namespace server will be at least

RAM ≥ F . 1 + λ     . objSize¬ ¬

Particularly, in order to store 100 million files (referencing 200 million
blocks) a name-node should have at least 60GB (108 . 600) of RAM. This
matches observations on deployed clusters.

replication

HDFS is designed to run on highly unreliable hardware. On Yahoo’s long-
running clusters we observe a node failure rate of 2–3 per 1000 nodes a day.
On new (recently out of the factory) nodes, the rate is three times higher.

In order to provide data reliability HDFS uses block replication. Initially,
each block is replicated by the client to three data-nodes. The block copies
are called replicas. A replication factor of three is the default system param-
eter, which can either be configured or specified per file at creation time.

Once the block is created, its replication is maintained by the system auto-
matically. The name-node detects failed data-nodes, or missing or corrupted
individual replicas, and restores their replication by directing the copying of
the remaining replicas to other nodes.

Replication is the simplest of known data-recovery techniques. Other tech-
niques, such as redundant block striping or erasure codes, are applicable
and have been used in other distributed file systems such as GPFS, PVFS,
Lustre, and Panasas [1, 3, 6, 10]. These approaches, although more space
efficient, also involve performance tradeoffs for data recovery. With strip-
ing, depending on the redundancy requirements, the system may need to
read two or more of the remaining data segments from the nodes it has been
striped to in order to reconstruct the missing one. Replication always needs
only one copy.

For HDFS, the most important advantage of the replication technique is that
it provides high availability of data in high demand. This is actively ex-
ploited by the MapReduce framework, as it increases replications of configu-
ration and job library files to avoid contention during the job startup, when
multiple tasks access the same files simultaneously.

Each block replica on a data-node is represented by a local (native file
system) file. The size of this file equals the actual length of the block and
does not require extra space to round it up to the maximum block size, as
traditional file systems do. Thus, if a block is half full it needs only half of
the space of the full block on the local drive. A slight overhead is added,
since HDFS also stores a second, smaller metadata file for each block replica,
which contains the checksums for the block data.

APRIL_2010_loginarticles.indd 9 3.10.10 10:01:23 AM

10 ; LO G I N : VO L . 35, N O. 2

Replication is important both from reliability and availability points of view,
and the default replication value of 3 seem to be reasonable in most cases for
large, busy clusters.

StoraGe CapaCity vS. NameSpaCe Size

With 100 million files each having an average of 1.5 blocks, we will have
200 million blocks in the file system. If the maximal block size is 128MB
and every block is replicated three times, then the total disk space required
to store these blocks is close to 60PB.

CONCLusION 2

If

blockSize■■ is the maximal block size,

r■■ is the average block replication,

λ■■ is the average file-to-block ratio, and

F■■ is the total number of files,

then the storage capacity (SC) referenced by the namespace will not
 exceed

SC ≤ F . λ . r . blockSize

Comparison of Conclusions 1 and 2 leads us to the following rule.

ruLE 1

As a rule of thumb, the correlation between the representation of the
metadata in RAM and physical storage space required to store data ref-
erenced by this namespace is:

1GB metadata ≈ 1PB physical storage

The rule should not be treated the same as, say, the Pythagorean Theorem,
because the correlation depends on cluster parameters, the block-to-file
ratio, and the block size, but it can be used as a practical estimate for config-
uring cluster resources.

CLuSter Size aND NoDe reSourCeS

Using Conclusion 2, we can estimate the number of data-nodes the cluster
should have in order to accommodate namespace of a certain size.

On Yahoo’s clusters, data-nodes are usually equipped with four disk drives
of size 0.75–1TB, and configured to use 2.5–3.5TB of that space per node.
The remaining space is allocated for MapReduce transient data, system logs,
and the OS.

If we assume that an average data-node capacity is 3TB, then we will need
on the order of 20,000 nodes to store 60PB of data. To be consistent with
the target requirement of 10,000 nodes, each data-node should be config-
ured with eight hard drives.

CONCLusION 3

In order to accommodate data referenced by a 100 million file
namespace, an HDFS cluster needs 10,000 nodes equipped with eight
1TB hard drives. The total storage capacity of such a cluster is 60PB.

APRIL_2010_loginarticles.indd 10 3.10.10 10:01:23 AM

; LO G I N : A prI L 201 0 h d Fs sC A L A B I L IT y: Th E L I M IT s TO G rOw Th 11

Note that these estimates are true under the assumption that the block-per-
file ratio of 1.5 and the block size remain the same. If the ratio or the block
size increases, a gigabyte of RAM will support more petabytes of physical
storage, and vice versa.

Sadly, based on practical observations, the block-to-file ratio tends to decrease
during the lifetime of a file system, meaning that the object count (and
therefore the memory footprint) of a single namespace server grows faster
than the physical data storage. That makes the object-count problem, which
becomes a file-count problem when λ → 1, the real bottleneck for cluster
 scalability.

bLoCk reportS, HeartbeatS

The name-node maintains a list of registered data-nodes and blocks belong-
ing to each data-node.

A data-node identifies block replicas in its possession to the name-node by
sending a block report. A block report contains block ID, length, and the gen-
eration stamp for each block replica.

The first block report is sent immediately after the data-node registration. It
reveals block locations, which are not maintained in the namespace image
or in the journal on the name-node. Subsequently, block reports are sent
periodically every hour by default and serve as a sanity check, providing
that the name-node has an up-to-date view of block replica distribution on
the cluster.

During normal operation, data-nodes periodically send heartbeats to the
name-node to indicate that the data-node is alive. The default heartbeat
interval is three seconds. If the name-node does not receive a heartbeat from
a data-node in 10 minutes, it pronounces the data-node dead and schedules
its blocks for replication on other nodes.

Heartbeats also carry information about total and used disk capacity and the
number of data transfers currently performed by the node, which plays an
important role in the name-node’s space and load-balancing decisions.

The communication on HDFS clusters is organized in such a way that the
name-node does not call data-nodes directly. It uses heartbeats to reply to
the data-nodes with important instructions. The instructions include com-
mands to:

Replicate blocks to other nodes■■

Remove local block replicas■■

Re-register or shut down the node■■

Send an urgent block report■■

These commands are important for maintaining the overall system integrity;
it is therefore imperative to keep heartbeats frequent even on big clusters.
The name-node is optimized to process thousands of heartbeats per second
without affecting other name-node operations.

tHe iNterNaL LoaD

The block reports and heartbeats form the internal load of the cluster. This
load mostly depends on the number of data-nodes. If the internal load is too
high, the cluster becomes dysfunctional, able to process only a few, if any,
external client operations such as 1s, read, or write.

APRIL_2010_loginarticles.indd 11 3.10.10 10:01:23 AM

12 ; LO G I N : VO L . 35, N O. 2

This section analyzes what percentage of the total processing power of the
name-node is dedicated to the internal load.

Let’s assume the cluster is built of 10,000 data-nodes having eight hard
drives with 6TB of effective storage capacity each. This is what it takes, as
we learned in previous sections, to conform to the targeted requirements.

As usual, our analysis is based on the assumption that the block-to-file ratio
is 1.5.

The ratio particularly means that every other block on a data-node is half full.
If we group data-node blocks into pairs having one full block and one half-full
block, then each pair will occupy approximately 200 MB ≈ 128 MB + 64 MB
on a hard drive. This gives us an estimate that a 6 TB (8 HD x 0.75 TB) node
will hold 60,000 blocks. This is the size of an average block report sent by a
data-node to the name-node.

The sending of block reports is randomized so that they do not come to
the name-node together or in large waves. Thus, the average number of block
reports the name-node receives is 10,000/hour, which is about three reports per
second.

The heartbeats are not explicitly randomized by the current implementa-
tion and, in theory, can hit the name-node together, although the likelihood
of this is very low. Nevertheless, let’s assume that the name-node should be
able to handle 10,000 heartbeats per second on a 10,000 node cluster.

In order to measure the name-node performance, I implemented a bench-
mark called NNThroughputBenchmark, which now is a standard part of the
HDFS code base.

NNThroughputBenchmark is a single-node benchmark, which starts a
name-node and runs a series of client threads on the same node. Each client
repetitively performs the same name-node operation by directly calling the
name-node method implementing this operation. Then the benchmark mea-
sures the number of operations performed by the name-node per second.

The reason for running clients locally rather than remotely from different
nodes is to avoid any communication overhead caused by RPC connections
and serialization, and thus reveal the upper bound of pure name-node per-
formance.

The following numbers were obtained by running NNThroughputBench-
mark on a node with two quad-core Xeon CPUs, 32GB RAM, and four 1TB
hard drives.

Table 2 summarizes the name-node throughput with respect to the two in-
ternal operations. Note that the block report throughput is measured in the
number of blocks processed by the name-node per second.

Throughput

Number of blocks processed in
block reports per second

639,713

Number of heartbeats per second 300,000

T A b L e 2 : b L O c k r e p O r T A n D H e A r T b e A T T H r O u g H p u T

We see that the name-node is able to process more than 10 reports per
second, each consisting of 60,000 blocks. As we need to process only three
reports per second, we may conclude that less than 30% of the name-node’s
total processing capacity will be used for handling block reports.

APRIL_2010_loginarticles.indd 12 3.10.10 10:01:23 AM

; LO G I N : A prI L 201 0 h d Fs sC A L A B I L IT y: Th E L I M IT s TO G rOw Th 13

The heartbeat load is 3.3%, so that the combined internal load of block
reports and heartbeats is still less than 30%.

CONCLusION 4

The internal load for block reports and heartbeat processing on a
10,000-node HDFS cluster with a total storage capacity of 60 PB will
consume 30% of the total name-node processing capacity.

Thus, the internal cluster load directly depends on the average block report
size and the number of the reports. The impact of heartbeats is negligible.

Another way to say this is that the internal load is proportional to the
number of nodes in the cluster and the average number of blocks on a node.
Thus, if a node had only 30,000 blocks, half of the estimated amount, then
the name-node would dedicate only 15% of its processing resources to the
internal load, because the nodes would send the same number of block re-
ports but the size of the block reports would be smaller by a half compared
to the original estimate.

Conversely, if the average number of blocks per node grows, then the in-
ternal load will grow proportionally. In particular, it means the decrease in
block-to-file ratio (more small files with the same file system size) increases
the internal load and therefore negatively affects the performance of the
system.

reaSoNabLe LoaD expeCtatioNS

The good news from the previous section is that the name-node can still
use 70% of its time to process external client requests. If all the clients started
sending arbitrary requests to the name-node with very high frequency, the
name-node most probably would have a hard time coping with the load
and would become unresponsive, potentially sending the whole cluster into
a tailspin, because internal load requests do not have priority over regular
client requests. But this can happen even on smaller clusters with extreme
load levels.

The goal of this section is to determine reasonable load expectations on a large
cluster (10,000 nodes, 60PB of data) and estimate whether the name-node
would be able to handle it.

Regular Hadoop clusters run MapReduce jobs. We first assume that all our
100,000 clients running different tasks provide read-only load on the HDFS
cluster. This is typical for the map stage of a job execution.

Usually a map task produces map output, which is written to a local hard
drive. Since MapReduce servers (task-trackers) share nodes with HDFS data-
nodes, map output inevitably competes with HDFS reads. This reduces the
HDFS read throughput, but also decreases the load on the name-node. Thus,
for the sake of this analysis we may assume that our tasks do not produce any
output, because otherwise the load on the name-node would be lower.

Typically, a map task reads one block of data. In our case, files consist of
1.5 blocks. Thus an average client reads a chunk of data of size 96MB (1.5
* 128MB/2) and we may assume that the size of a read operation per client is
96MB.

Figure 1 illustrates that client reads conceptually consist of two stages:

Get block locations from the name-node.1.

Pull data (block replica) from the nearest data-node.2.

APRIL_2010_loginarticles.indd 13 3.10.10 10:01:23 AM

14 ; LO G I N : VO L . 35, N O. 2

We will estimate how much time it takes for a client to retrieve a block rep-
lica and, based on that, derive how many “get block location” requests the
name-node should expect per second from 100,000 clients.

DFSIO was one of the first standard benchmarks for HDFS. The bench-
mark is a map-reduce job with multiple mappers and a single reducer. Each
mapper writes (reads) bytes to (from) a distinct file. Mappers within the job
either all write or all read, and each mapper transfers the same amount of
data. The mappers collect the I/O stats and pass them to the reducer. The
reducer averages them and summarizes the I/O throughput for the job. The
key measurement here is the byte transfer rate of an average mapper.

The following numbers were obtained on a 4000-node cluster [8] where the
name-node configuration is the same as in NNThroughputBenchmark and
data-nodes differ from the name-node only in that they have 8GB RAM.
The cluster consists of 100 racks with 1 gigabit Ethernet inside a rack and 4
gigabit uplink from rack.

Table 3 summarizes the average client read and write throughput provided
by DFSIO benchmark.

Throughput

Average read throughput 66 MB/s

Average write throughput 40 MB/s

T A b L e 3 : H D f s r e A D A n D w r i T e T H r O u g H p u T

We see that an average client will read 96MB in 1.45 seconds. According to
our assumptions, it will then go to the name-node to get block locations for
another chunk of data or a file. Thus, 100,000 clients will produce 68,750
get-block-location requests to the name-node per second.

Another series of throughput results [11] produced by NNThroughputBench-
mark (Table 4) measures the number of “open” (the same as “get block loca-
tion”) and “create” operations processed by the name-node per second:

Throughput

Get block locations 126,119 ops/s

Create new block 5,600 ops/s

T A b L e 4 : O p e n A n D c r e A T e T H r O u g H p u T

This shows that with the internal load at 30% the name-node will be able to
process more than 88,000 get-block-location operations, which is enough to
handle the read load of 68,750 ops/sec.

CONCLusION 5

A 10,000-node HDFS cluster with internal load at 30% will be able to
handle an expected read-only load produced by 100,000 HDFS clients.

The write performance looks less optimistic. For writes we consider a dif-
ferent distcp-like job load, which produces a lot of writes. As above, we
assume that an average write size per client is 96MB. According to Table 3,
an average client will write 96MB in 2.4 seconds. This provides an average
load of 41,667 create-block requests per second from 100,000 clients, and
this is way above 3,920 creates per second—70% of the possible process-
ing capacity of the name-node (see Table 4). Furthermore, this does not yet
take into account the 125,000 confirmations (three per block-create) sent
by data-nodes to the name-node for each successfully received block replica.

APRIL_2010_loginarticles.indd 14 3.10.10 10:01:23 AM

; LO G I N : A prI L 201 0 h d Fs sC A L A B I L IT y: Th E L I M IT s TO G rOw Th 15

Although these confirmations are not as heavy as create-blocks, this is still a
substantial additional load.

Even at 100% processing capacity dedicated to external tasks (no internal
load), the clients will not be able to run at “full speed” with writes. They
will experience substantial idle cycles waiting for replies from the name-
node.

CONCLusION 6

A reasonably expected write-only load produced by 100,000 HDFS cli-
ents on a 10,000-node HDFS cluster will exceed the throughput capac-
ity of a single name-node.

Distributed systems are designed with the expectation of linear perfor-
mance scaling: more workers should be able to produce a proportionately
larger amount of work. The estimates above (working the math backwards)
show that 10,000 clients can saturate the name-node for write-dominated
workloads. On a 10,000-node cluster this is only one client per node, while
current Hadoop clusters are set up to run up to four clients per node. This
makes the single name-node a bottleneck for linear performance scaling of
the entire cluster. There is no benefit in increasing the number of writers. A
smaller number of clients will be able to write the same amount of bytes in
the same time.

final Notes

We have seen that a 10,000 node HDFS cluster with a single name-node
is expected to handle well a workload of 100,000 readers, but even 10,000
writers can produce enough workload to saturate the name-node, making it
a bottleneck for linear scaling.

Such a large difference in performance is attributed to get block locations
(read workload) being a memory-only operation, while creates (write work-
load) require journaling, which is bounded by the local hard drive perfor-
mance.

There are ways to improve the single name-node performance, but any solu-
tion intended for single namespace server optimization lacks scalability.

Looking into the future, especially taking into account that the ratio of
small files tends to grow, the most promising solutions seem to be based on
distributing the namespace server itself both for workload balancing and for
reducing the single server memory footprint. There are just a few distributed
file systems that implement such an approach.

Ceph [9] has a cluster of namespace servers (MDS) and uses a dynamic sub-
tree partitioning algorithm in order to map the namespace tree to MDSes
evenly. [9] reports experiments with 128 MDS nodes in the entire cluster
consisting of 430 nodes. Per-MDS throughput drops 50% as the MDS cluster
grows to 128 nodes.

Google recently announced [4] that GFS [2] has evolved into a distributed
namespace server system. The new GFS can have hundreds of namespace
servers (masters) with 100 million files per master. Each file is split into
much smaller size than before (1 vs. 64 MB) blocks. The details of the de-
sign, the scalability, and performance facts are not yet known to the wider
community.

Lustre [3] has an implementation of clustered namespace on its roadmap
for the Lustre 2.2 release. The intent is to stripe a directory over multiple

APRIL_2010_loginarticles.indd 15 3.10.10 10:01:24 AM

16 ; LO G I N : VO L . 35, N O. 2

metadata servers (MDS), each of which contains a disjoint portion of the
namespace. A file is assigned to a particular MDS using a hash function on
the file name.

aCkNowLeDGmeNtS

I would like to thank Jakob Homan and Rik Farrow for their help with the
article.

refereNCeS

[1] P.H. Carns, W.B. Ligon III, R.B. Ross, and R. Thakur, “PVFS: A Parallel
File System for Linux Clusters,” Proceedings of the 4th Annual Linux Showcase
and Conference, 2000, pp. 317–327.

[2] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File System,” Pro-
ceedings of the ACM Symposium on Operating Systems Principles, Lake George,
NY, October 2003, pp. 29–43.

[3] Lustre: http://www.lustre.org.

[4] M.K. McKusick and S. Quinlan, “GFS: Evolution on Fast-
forward,” ACM Queue, vol. 7, no. 7, ACM, New York, NY. August 2009.

[5] O. O’Malley and A.C. Murthy, “Hadoop Sorts a Petabyte in 16.25 Hours
and a Terabyte in 62 Seconds,” Yahoo! Developer Network Blog, May 11,
2009: http://developer.yahoo.net/blogs/hadoop/2009/05/hadoop_sorts
_a_petabyte_in_162.html.

[6] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for Large
Computing Clusters,” Proceedings of FAST ’02: 1st Conference on File and Stor-
age Technologies (USENIX Association, 2002), pp. 231–244.

[7] K.V. Shvachko, “The Hadoop Distributed File System Requirements,” Ha-
doop Wiki, June 2006: http://wiki.apache.org/hadoop/DFS_requirements.

[8] K.V. Shvachko and A.C. Murthy, “Scaling Hadoop to 4000 Nodes at
Yahoo!,” Yahoo! Developer Network Blog, September 30, 2008: http://
developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop_to_4000
_nodes_a.html.

[9] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn, “Ceph: A Scal-
able, High-Performance Distributed File System,” Proceedings of OSDI ’06: 7th
Conference on Operating Systems Design and Implementation (USENIX Associa-
tion, 2006).

[10] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J.
Zelenka, and B. Zhou, “Scalable Performance of the Panasas Parallel File Sys-
tem,” Proceedings of FAST ’08: 6th Conference on File and Storage Technologies
(USENIX Association, 2008), pp. 17–33.

[11] “Compare Name-Node Performance When Journaling Is Performed
into Local Hard-Drives or NFS,” July 30, 2008: http://issues.apache.org/
jira/browse/HADOOP-3860.

[12] “Name-Node Memory Size Estimates and Optimization Proposal,”
August 6, 2007: https://issues.apache.org/jira/browse/HADOOP-1687.

APRIL_2010_loginarticles.indd 16 3.10.10 10:01:24 AM

; LO G I N : A prI L 201 0 Th E BA rrE LFI sh Mu LTI k E rN E L : A N I NTE rV I Ew wITh TI MOTh y rOsCO E 17

R i k F a R R o w

the Barrelfish multi-
kernel: an interview
with Timothy Roscoe
Timothy Roscoe is part of the ETH Zürich Computer
Science Department’s Systems Group. His main
research areas are operating systems, distributed
systems, and networking, with some critical theory
on the side.

troscoe@inf.ethz.ch

Rik Farrow is the Editor of ;login:.

rik@usenix.org

I n c r e a s I n g c p u p e r f o r m a n c e w I t h
faster clock speeds and ever more complex
hardware for pipelining and memory ac-
cess has hit the brick walls of power and
bandwidth. Multicore CPUs provide the way
forward but also present obstacles to using
existing operating systems design as they
scale upwards. Barrelfish represents an ex-
perimental operating system design where
early versions run faster than Linux on the
same hardware, with a design that should
scale well to systems with many cores and
even different CPU architectures.

Barrelfish explores the design of a multikernel
operating system, one designed to run non-shared
copies of key kernel data structures. Popular cur-
rent operating systems, such as Windows and
Linux, use a single, shared operating system image
even when running on multiple-core CPUs as well
as on motherboard designs with multiple CPUs.
These monolithic kernels rely on cache coherency
to protect shared data. Multikernels each have their
own copy of key data structures and use message
passing to maintain the correctness of each copy.

In their SOSP 2009 paper [1], Baumann et al.
describe their experiences in building and bench-
marking Barrelfish on a variety of Intel and AMD
systems ranging from four to 32 cores. When these
systems run Linux or Windows, they rely on cache
coherency mechanisms to maintain a single image
of the operating system. This is not the same thing
as locking, which is used to protect changes to data
elements which themselves consist of data struc-
tures, such as linked lists, that must be changed
atomically. In monolithic kernels, a change to a
data element must be visible to all CPUs, and this
consistency gets triggered when a CPU attempts
to read or write this data in its own cache. Cache
consistency mechanisms prevent the completion of
this read or write if the cache line is invalid, and
also mean that execution may be paused until the
operation is complete.

In a multikernel, each CPU core runs its own ker-
nel and maintains its own data structures. When a
kernel needs to make a change to a data structure
(e.g., memory page tables) that must be coordinated
with kernels running on other cores, it sends mes-
sages to the other kernels.

I asked Timothy Roscoe of the Systems Group at
ETH Zurich if he could answer a few questions

APRIL_2010_loginarticles.indd 17 3.10.10 10:01:24 AM

18 ; LO G I N : VO L . 35, N O. 2

about Barrelfish, working in a manner similar to Barrelfish, using asynchro-
nous messaging. Before I begin the interview, Mothy wanted me to point out
that the development of Barrelfish involves a very large team of people, and
he is just one person among many working on this very complex project.
You can learn more about this team by visiting the Barrelfish Web site,
http://www.barrelfish.org/.

Farrow: Barrelfish maintains separate kernel state, and this seems to me to
be one of the key differentiators from monolithic kernels.

Roscoe: Actually, this is not quite, but nearly, true: monolithic kernels
started with a single shared copy of kernel state, and to a limited extent they
have started to replicate or partition this state to reduce memory contention
on multiprocessors. Solaris is probably the most advanced version of this.
The model, however, remains one of a single image managing the whole ma-
chine, with the replication and/or partitioning of kernel state as an optimiza-
tion.

In a multikernel, this is the other way around. No kernel state at all is
shared between cores by default, and so consistency must be maintained
by explicitly sending messages between cores, as in a distributed system.
The model is one of replicated or partitioned data which is accessed the
same way as one would access replicas in a distributed system. In particu-
lar, depending on the consistency requirements, changing some OS state
may be a two-phase operation: a core requests a change and, at some point
in the future, gets confirmation back that every other core has agreed to it,
or, alternatively, that it conflicted with some other proposed change and so
didn’t happen.

In principle, we could share kernel data between cores in Barrelfish, and
this might be a good idea when the cores are closely coupled, such as when
they share an L2 or L3 cache or are actually threads on the same core. We
also intend to do this at some point, but the key idea is that the model is of
replicated data, with sharing as a transparent optimization. In traditional
kernels it’s the other way around.

Farrow: Barrelfish has a small CPU driver that runs with privilege, and a
larger monitor process that handles many of the tasks found in a monolithic
operating system. Barrelfish is not a microkernel, as microkernels share a
single operating system image, like much larger monolithic kernels. Barrel-
fish does seem to share some characteristics of microkernels, such as run-
ning device drivers as services, right?

Roscoe: You’re right that every core in Barrelfish runs its own CPU driver,
which shares no memory with any other core. Also, every core has its own
monitor process, which has authority (via capabilities) to perform a num-
ber of privileged operations. Most of the functionality you would expect to
find in a UNIX kernel is either in driver processes or servers (as you would
expect in a microkernel) or the distributed network of monitor processes.

Farrow: The SOSP paper talks about a system knowledge base (SKB) that
gets built at boot time using probes of ACPI tables, the PCI bus, CPUID
data, and measurement of message passing latency. Could you explain the
importance of the SKB in Barrelfish?

Roscoe: The SKB does two things. First, it represents as much knowledge as
possible about the hardware in a subset of first-order logic—it’s a Constraint
Logic Programming system at the moment. This, as you say, is populated
using resource discovery and online measurements. Second, because it’s
a reasoning engine, the OS and applications can query it by issuing con-
strained optimization queries.

APRIL_2010_loginarticles.indd 18 3.10.10 10:01:24 AM

; LO G I N : A prI L 201 0 Th E BA rrE LFI sh Mu LTI k E rN E L : A N I NTE rV I Ew wITh TI MOTh y rOsCO E 19

This is very different from Linux, Solaris, or Windows: traditional OSes
often make some information about hardware (such as NUMA zones) avail-
able, but they often over-abstract them, the format of the information is ad
hoc, and they provide no clean ways to reason about it (resulting in a lot of
non-portable complex heuristic code). The SKB is not a magic bullet, but it
drastically simplifies writing OS and application code that needs to under-
stand the machine, and it means that clients can use whatever abstractions
of the hardware are best for them, rather than what the OS designer thought
useful.

We currently build on ARM, x86_64, x86_32, and Beehive processors.
We’re currently also porting to Intel’s recently announced SCC (Single-chip
Cloud Computer), which is a somewhat unconventional variant of x86_32.

One interesting feature of Barrelfish is that you don’t really “port” the OS
to a different architecture; rather, you add support for an additional CPU
driver. Since CPU drivers and monitors only communicate via messages,
Barrelfish will in principle happily boot on a machine with a mixture of dif-
ferent processors.

Farrow: While reading the paper, I found myself getting confused when you
discussed how a thread or process gets scheduled. Could you explain how
this occurs in Barrelfish?

Roscoe: Well, here’s one way to explain this: Barrelfish has a somewhat
different view of a “process” from a monolithic OS, inasmuch as it has a con-
cept of a process at all. It’s probably better to think of Barrelfish as dealing
with “applications” and “dispatchers.”

Since an application should, in general, be able to run on multiple cores, and
Barrelfish views the machine as a distributed system, it follows that an ap-
plication also, at some level, is structured as a distributed system of discrete
components which run on different cores and communicate with each other
via messages.

Each of these “components,” the representative of the application on the
core, so to speak, is called a “dispatcher.” Unlike a UNIX process (or thread),
dispatchers don’t migrate—they are tied to cores. When they are desched-
uled by the CPU driver for the core, their context is saved (as in UNIX), but
when they are rescheduled, this is done by upcalling the dispatcher rather
than resuming the context. This is what Psyche and Scheduler Activations
did, to first approximation (and K42, which is what we took the term “dis-
patcher” from, and Nemesis, and a few other such systems).

Farrow: So how do you support a traditional, multi-threaded, shared-mem-
ory application like OpenMP, for example?

Roscoe: Well, first of all, each dispatcher has, in principle, its own virtual
address space, since each core has a different MMU. For a shared-memory
application, clearly these address spaces should be synchronized across the
dispatchers that form the application so that they all look the same, where-
upon the cache coherence hardware will do the rest of the work for us. We
can achieve this either by messages or by sharing page tables directly, but
in both cases some synchronization between dispatchers is always required
when mappings change.

As an application programmer, you don’t need to see this; the dispatcher li-
brary handles it. Incidentally, the dispatcher library also handles the applica-
tion’s page faults—another idea we borrowed from Nemesis and Exokernel.

Application threads are also managed by the dispatchers. As long as a
thread remains on a single core, it is scheduled and context-switched by the

APRIL_2010_loginarticles.indd 19 3.10.10 10:01:24 AM

20 ; LO G I N : VO L . 35, N O. 2

dispatcher on that core (which, incidentally, is a much nicer way to imple-
ment a user-level threads package than using signals over UNIX). Note that
the CPU driver doesn’t know anything about threads, it just upcalls the
dispatcher that handles these for the application, so lots of different thread
models are possible.

To migrate threads between cores (and hence between dispatchers), one dis-
patcher has to hand off the thread to another. Since the memory holding the
thread state is shared, this isn’t too difficult. It’s simply a question of making
sure that at most one dispatcher thinks it owns the thread control block at a
time. The dispatchers can either do this with spinlocks or by sending mes-
sages.

Farrow: Why should a multikernel work better than a monolithic kernel on
manycore systems? In your paper, you do show better performance than a
Linux kernel when running the same parallel tasks, but you also point out
that the current Barrelfish implementation is much simpler/less functional
than the current Linux kernel.

Roscoe: Our basic argument is to look at the trends in hardware and try to
guess (and/or influence) where things are going to be in 10 years.

The main difference between a multikernel like Barrelfish and a monolithic
OS like Linux, Windows, or Solaris is how it treats cache-coherent shared
memory. In monolithic kernels, it’s a basic foundation of how the system
works: the kernel is a shared-memory multi-threaded program. A multiker-
nel is designed to work without cache-coherence, or indeed without shared
memory at all, by using explicit messages instead.

There are four reasons why this might be important:

First, cache-coherent shared memory can be slower than messages, even on
machines today. Accessing and modifying a shared data structure involves
moving cache lines around the machine, and this takes hundreds of ma-
chine cycles per line. Alternatively, you could encode your operation (what
you want to be done to the data structure) in a compact form as a message,
and send it to the core that has the data in cache. If the message is much
smaller than the data you need to touch, and the message can be sent ef-
ficiently, this is going to be fast.

“Fast” might mean lower latency, but more important is that cores are gener-
ally stalled waiting for a cache line to arrive. If instead you send messages,
you can do useful work while waiting for the reply to come back. As a result,
the instruction throughput of the machine as a whole is much higher, and
the load on the system interconnect is much lower—there’s just less data
flying around.

Ironically, in Barrelfish on today’s hardware, we mostly use cache-coherent
shared memory to implement our message passing. It’s really the only mech-
anism you’ve got on an x86 multiprocessor, aside from inter-processor inter-
rupts, which are really expensive. Even so, we can send a 64-byte message
from one core to another with a cost of only two interconnect transactions
(a cache invalidate and a cache fill), which is still much more efficient than
modifying more than three or four cache lines of a shared data structure.

The second reason is that cache-coherent shared memory can be too hard to
program. This sounds counterintuitive—it exists in theory to make things
easier. It’s not about shared-memory threads vs. messages per se either,
which is an old debate that’s still running. The real problem is that hardware
is now changing too fast, faster than system software can keep up.

APRIL_2010_loginarticles.indd 20 3.10.10 10:01:24 AM

; LO G I N : A prI L 201 0 Th E BA rrE LFI sh Mu LTI k E rN E L : A N I NTE rV I Ew wITh TI MOTh y rOsCO E 21

It’s a bit tricky, but ultimately not too hard to write a correct parallel pro-
gram for a shared-memory multiprocessor, and an OS is to a large extent a
somewhat special case of this. What’s much harder, as the scientific comput-
ing folks will tell you, is to get good performance and scaling out of it. The
usual approach is to specialize and optimize the layout of data structures,
etc., to suit what you know about the hardware. It’s a skilled business, and
particularly skilled for OS kernel developers.

The problem is that as hardware gets increasingly diverse, as is happening
right now, you can’t do this for general mass-market machines, as they’re all
too different in performance characteristics. Worse, new architectures with
new performance tradeoffs are coming out all the time, and it’s taking longer
and longer for OS developers, whether in Microsoft or in the Linux com-
munity, to come out with optimizations like per-core locks or read-copy-
update—there’s simply too much OS refactoring involved every time.

With an OS built around inter-core message passing rather than shared
data structures, you at least have a much better separation between the
code responsible for OS correctness (the bit that initiates operations on the
replicated data) and that responsible for making it fast (picking the right
consistency algorithm, the per-core data layout, and the message passing
implementation). We’d like to think this makes the OS code more agile as
new hardware comes down the pipe.

The third reason is that cache-coherent shared memory doesn’t always help,
particularly when sharing data and code between very different processors.
We’re beginning to see machines with heterogeneous cores, and from the
roadmaps this looks set to continue. You’re going to want to optimize data
structures for particular architectures or cache systems, and a one-size-fits-
all shared format for the whole machine isn’t going to be very efficient. The
natural approach is to replicate the data where necessary, store it in a format
appropriate to each core where a replica resides, and keep the replicas in
sync using messages—essentially what we do in Barrelfish.

The fourth reason is that cache-coherent shared memory doesn’t always
exist. Even a high-end PC these days is an asymmetric, non-shared memory
multiprocessor: GPUs, programmable NICs, etc., are largely ignored by mod-
ern operating systems and are hidden behind device interfaces, firmware
blobs, or, at best, somewhat primitive access methods like CUDA.

We argue that it’s the job of the OS to manage all the processors on a ma-
chine, and Barrelfish is an OS designed to be able to do that, regardless of
how these programmable devices can communicate with each other or the
so-called “main” processors.

It’s not even clear that “main” CPUs will be cache-coherent in the future.
Research chips like the Intel SCC are not coherent, although they do have
interesting support for inter-core message passing. I’m not sure there’s any
consensus among the architects as to whether hardware cache-coherence
is going to remain worth the transistor budget, but there’s a good chance
it won’t, particularly if there is system software whose performance simply
doesn’t need it.

Barrelfish is first and foremost a feasibility study for this—knowing what we
now do about how to build distributed systems, message passing, program-
ming tools, knowledge representation and inference, etc., we can build an
OS for today’s and tomorrow’s hardware which is at least competitive with
current performance on a highly engineered traditional OS and which can
scale out more effectively and more easily in the future.

If a handful of researchers can do that, it sounds like a result.

APRIL_2010_loginarticles.indd 21 3.10.10 10:01:24 AM

22 ; LO G I N : VO L . 35, N O. 2

refereNCe

[1] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Re-
becca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh
Singhania, “The Multikernel: A New OS Architecture for Scalable Multicore
Systems,” Proceedings of the 22nd ACM Symposium on OS Principles, Big Sky,
MT, USA, October 2009: http://www.barrelfish.org/barrelfish_sosp09.pdf.

N.B.: The Barrelfish team also includes researchers Jan Rellermeyer, Rich-
ard Black, Orion Hodson, Ankush Gupta, Raffaele Sandrini, Dario Simone,
 Animesh Trivedi, Gustavo Alonso, and Tom Anderson.

APRIL_2010_loginarticles.indd 22 3.10.10 10:01:25 AM

; LO G I N : A prI L 201 0 Th E BusI N Ess VA Lu E O F sysTEM A dM I N I sTr ATI O N 23

M a R k B u R g e s s a n d
c a R o ly n R o w l a n d

the business value
of system
administration
Mark Burgess is professor of network and system
administration at Oslo University College, Norway.
He is the author of Cfengine, co-author of the Short
Topics Booklet A System Engineer’s Guide to Host
Configuration and Maintenance Using Cfengine,
and author of many books and research papers on
system administration.

Mark.Burgess@iu.hio.no

Carolyn Rowland is a supervisory system adminis-
trator working at the National Insitute of Standards
and Technology (NIST) in Gaithersburg, MD. She
bridges the chasm between sysadmins and business
on a daily basis.

carolyn@nist.gov

t h e s tat u s o f s y s t e m a d m I n I s t r a -
tors as experts is at stake as both technol-
ogy and businesses evolve. To evolve in
step, professionals need to become more
business aware. In this article we summa-
rize discussions on business alignment that
took place at the LISA BDIM (Business Driven
IT Management) workshops over the past
two years, and we try to place them in a
wider context. The outcome points to some
straightforward tips to improve sysadmin
business value.

The role of the traditional system administrator is
changing. It is being packaged, commoditized, and
standardized, just like the hardware and the soft-
ware it relies on. Even the name “system adminis-
trator” is being forgotten and replaced by a genera-
tion that doesn’t know its history. This should not
come as any surprise. It is the inevitable process of
evolution at work, forcing improvised origins into
mainstream commerce.

In many ways, the changes we see are aftershocks
from the arrival of the PC and Microsoft Windows,
where commercialization began the transformation,
starting with the basic tools. The currency of prog-
ress in the world of Windows is tied, of course, to
business goals: the PC was created for businesses.
By contrast, those who came to system administra-
tion from the research culture of mainframes and
UNIX had mastery of the system as their prize.
PCs, like minicomputers, ushered in standardized
programs and business recipes so that repeatable
simplicity could streamline success.

Today many basic tasks of system administra-
tion have been simplified by technologies such
as automated configuration management, Web
servers, content management systems, and pack-
age managers. Where does this leave the system
administrator as we understand the term? Today
the challenges of IT specialists include new issues
such as massive scale, service orientation, busi-
ness agility, and knowledge management, but the
system administrator of the future is going to have
to demonstrate new skills and lean business value
by steering systems on the fine line between agility
and stability.

business vs tech—entrenched and under fire

A traditional organization has layers, also known
as departments. Some do management, sales,

APRIL_2010_loginarticles.indd 23 3.10.10 10:01:25 AM

24 ; LO G I N : VO L . 35, N O. 2

business development, etc., and some do the technical work of the business
(whether that be IT services, carpentry, or brickwork). This separation of
concerns makes a lot of sense, as the skills and personality types needed
to perform sales and management are quite different from those needed for
technical work.

Who are these people? The business layers, which traditionally include man-
agement, deal with the raison d’etre of the company—where is the money
coming from, and what should the company really be about? There is a lot
of thinking and soul searching at this level, planning and brainstorming.
Technical levels are typically governed by the more predictable processes of
engineering and resource management.

Irksome perhaps (for dedicated IT staff), a business succeeds only if the
business departments are successful. The technical worker is a helper, and
sometimes an enabler, but technical work alone does not a business make.

In commerce, one needs an edge to succeed:

The perception of ■■ confidence
Rapid turnaround of ideas, or ■■ time to market
The ■■ unique (“business”) value of what is being sold.

Such concepts were basically absent from discussions on system
administration,before the BDIM workshops at LISA ’08 and ’09, but we
believe that to develop as a profession, system administrators must confront
the IT/Business divide.

Sysadmins Speak

The attendees of the BDIM LISA workshops had plenty to say about the IT/
Business barrier. We wanted to know how people in the field perceived the
relationship between IT and business. We began with some questions:

Do best practices exist? ■■

What metrics do we have for alignment? ■■

How does one define business processes? ■■

Where does research and development fit in? ■■

Does this apply only to e-commerce? ■■

What role is played by communications (phone, mail, etc.)? ■■

What does mission-critical mean? ■■

Not all of these questions were really answered satisfactorily, but the emer-
gent dialogues were a valuable source of insight into the Business/IT rela-
tionship at different workplaces. We heard the following issues repeatedly:

Better communication is needed between Business and IT. ■■

Sysadmins are often the last to hear about needs and changes for the busi-■■

ness. Advance warning of upcoming issues helps. Having something like a
five-year plan helps everyone to overcome a day-to-day regimen of putting
out fires.
Sysadmins should be trusted partners, not grumpy slaves offering expert ■■

advice. They need communication and people skills.
Upward visibility of sysadmins is needed—sysadmins need to document ■■

the impact of their work in relation to the business. One way is to charge
for services in an in-sourcing model.
Management should provide incentives to document and simplify process-■■

es to prevent development of “king of the hill” scenarios, crippling from
within.
Organizations need headroom to meet new challenges. Some departments ■■

are optimized to the point of rigidity, which makes an organization brittle.

APRIL_2010_loginarticles.indd 24 3.10.10 10:01:25 AM

; LO G I N : A prI L 201 0 Th E BusI N Ess VA Lu E O F sysTEM A dM I N I sTr ATI O N 25

We expand on some of these points below as we attempt to paint a broader
picture of the Business/IT relationship.

talk between experts

How do we achieve better communication between Business and IT? Why
are IT people often the last to hear about the need for change in the busi-
ness? Responsibility surely lies on both sides, but one answer is cultural.
Rather than working “heads down,” IT needs to take an active role in ana-
lyzing and advising Business. IT needs to be perceived as a “trusted partner”
by Business—increasing that perception of confidence and ensuring the
rapid turnaround of ideas alluded to above.

If Business learns that the IT department has valuable input, it will respond
by turning to them for advice. Strong communication and “people skills” are
important here. Sysadmins need to learn Business language and avoid IT
jargon, as well as talk much more about the impact of their work, the mission,
and the costs.

A milestone of success is when Business values the opinions of IT enough to
make them part of the management team. One way to formalize the rela-
tionship is the creation of a five-year plan for IT. This allows the IT depart-
ment to be involved at the problem-definition level. Ultimately, sysadmins
need to develop a relationship of trust with Business. A lack of trust means
lack of business credibility and low status for sysadmins. This lack of trust
will cost the business too, as it is unable to get the most from IT.

Visibility of the system administrators’ work is an important education for
Business. Documenting the impact of the work, not just the work itself,
shows Business measurable accomplishments from the IT layer. A blind way
to achieve this is simply to charge for services, using an in-sourcing model,
so that Business can see the actual costs of using specific technologies. Being
generous with, rather than protective of, expertise shows the return on
investment (ROI) from IT; such visibility is essential if IT personnel are not
to be replaced by a lowest-common-denominator workforce. External IT re-
quirements (SOX, HIPAA, FISMA, STIGs, etc.) can be confusing to Business,
and expertise is needed to communicate the impact and costs of compliance
on the business, plus obtain necessary budgetary support to implement it.

Simplicity vs. Complexity: any Color you Like so Long as it’s black

Business does not usually have the time or the wherewithal to comprehend
complex technicalities, so a simple environment intuitively seems preferable.
Often there is a perception that a simpler environment costs less to main-
tain: fewer hardware and software requirements, fewer IT staff, and fewer
skill sets for those IT staff.

For sysadmins, the mood can be to swim upstream. The latest technology
might be irresistible, but installing and configuring costs time. Coding pri-
vate software rather than buying a solution might seem cool, but is it costing
the business in the long run? When is it ethical to explore on company time?
Does the new item meet a business need? Did anyone ask for that capabil-
ity? What is the impact? Does it cost more to maintain as the infrastructure
becomes more complex or, alternatively, does it aid in compliance with
external requirements or close an IT security hole? What is the ROI?

Many organizations distrust change and variation. They expect heterogene-
ity to be a problem. A major issue is, therefore, comprehension: how can IT
explain to Business what the system will do; if it seems overly complicated

APRIL_2010_loginarticles.indd 25 3.10.10 10:01:25 AM

26 ; LO G I N : VO L . 35, N O. 2

to them? Doesn’t a complex system cost too much? IT must better under-
stand business needs in order to communicate the need for heterogeneity
to Business. That said, oversimplification is not a foreign concept in system
administration either.

At the earliest LISA conferences, in the 1980s, papers were being written
about how to make all machines in an organization identical in order to save
work. Thirty years later, it is still a prevalent strategy to create one or two
standard “images” and to force these on all machines in the organization to
avoid dealing with necessary variation. Cloud computing is even making a
business model out of selling people incomplete machines, blank slates, to
be configured individually. Alva Couch, Associate Professor at Tufts Univer-
sity, referred to system homogeneity as the “nuclear weapon” of predictability
in server management, implying that it is too heavy-handed an approach
to managing expectations. The counter-argument is that consistency has
advantages if there is no need for variation, because it reduces the amount
of IT knowledge required. It boils down to the difference between intended
or controlled variation and unintended (i.e., out of control) variation. A useful
middle ground between complete homogeneity and rampant heterogeneity is
to foster enclaves of uniformity. System administrators could turn complexity
vs. simplicity into a conversation with Business on the best way to support
the core mission of the organization.

Business can offer incentives to IT to simplify and document the infra-
structure. However, forcing a simplistic environment will cause problems
when homogeneity is imposed through lack of understanding (such as in a
research environment, where freedom to “play” brings long-term value). IT
needs to sell this to Business; it could cost more in immediate outlay but
serve Business better in the long run.

One way Business has sought to simplify their understanding of IT is
through the SLA. The term “SLA” (service level agreement) was originally
conceived as a legal agreement between service providers and service
consumers, documenting promised operational levels and repercussions
if service could not be delivered. Over time, the term has been used in an
increasingly casual way to talk about promised objectives. But a more fun-
damental question is: are we providing the right catalogue of services in the
first place?

Simplistic marketing promises like “five nines reliability,” i.e., 99.999%
uptime, attempt to push people’s fear buttons to spend money on verifica-
tion. Do such slogans make any rational connection with Business goals?
What is the cost of keeping such a promise? Would the Business rather be
happy with a promise of two nines at a tenth of the cost? To be able to make
a promise is a powerful confidence builder, but it has to be one that it can
afford to keep. Sysadmins need to bring rationality to this discussion on
behalf of Business.

Leaving room for Change

Business likes to think that it is the driver of change and everyone else is
dragging their feet. This is not the case. Usually both sides drag their feet.
Business leaders generally like the word “innovation” but sneer at words like
“research,” so there is a paradox to be faced—as noted above. People tend to
stick with what they know, even when it is harmful to them.

Agility in IT or in Business requires us to be able to face sudden challenges.
Reactive fire-fighting approaches to IT management hinder this. Creative
thinking requires “headroom” or “slack.” IT has to plan for this, and Busi-

APRIL_2010_loginarticles.indd 26 3.10.10 10:01:25 AM

; LO G I N : A prI L 201 0 Th E BusI N Ess VA Lu E O F sysTEM A dM I N I sTr ATI O N 27

ness has to fund it. Business commonly sees IT support as a tax on their or-
ganization. If one could create a lean-and-mean IT organization, then there
would be more cash to spend on main mission-specific objectives. However,
being bogged down with fire-fighting or optimized to the point of rigidity
makes an organization brittle, and breakages occur during sudden change.
Some organizations, fearful of allowing change, intentionally throw syrup
over their staff in the form of red tape and bureaucracy, which makes it hard
for them to be agile.

One way to improve agility is to modularize. Modularity of systems is uni-
versal lore today. We understand that building systems from “off the shelf”
standard parts has many advantages, including economies of scale and the
possibility of outsourcing. The service paradigm is part of this phenomenon,
and the culture has edged its way steadily into IT since the 1980s.

best practices—Do they exist?

Complexity and fragmentation of IT operations has motivated another kind
of standard over the past 25 years. Enter COBIT (Control Objectives for In-
formation and Related Technology) and ITIL (Information Technology Infra-
structure Library), which present themselves as “best practice” frameworks.
These de facto standards employ various levels of recommended practices
for IT governance and service delivery. Individuals can even get certified
in the ways of ITIL. Controversy surrounds the efficacy of ITIL, and critics
decry the added bureaucracy and lack of agility that come with a full ITIL
implementation. Moreover, the frameworks are unable to explain why they
deserve the accolade “best.” What is interesting is that, once again, their
very existence suggests a need, hence, something wanting in the industry. In
spite of their paucity of technical content, the frameworks exist to provide
Business with a simple language in which to define, describe, and manage
IT.

what Did you Do for business today?

When all is said and done, consider the question: What did you contribute to
the success of your business today? We’d wager that most system administra-
tors, junior or senior, would falter if asked this question, mumbling some-
thing about technologies and help tickets transacted, rather than business
impact. What about: What does your organization do? What is its primary goal?
Few organizations reflect on their own activities clearly, and it is easy to
oversimplify: universities do not just do teaching, Microsoft does not just do
software development. Organizations have diverse departmental activities,
all contributing to their day-to-day business.

Reflecting on goals is usually shoved into a “manager” tray. “That’s not my
job to think about!” Perhaps herein lies the root of a problem. Planting this
question could provoke an act of infectious cultural awareness.

Here is a very business-like thing to do: a Top Ten list of priorities. Prioriti-
zation is an economic imperative. Such lists ask us to make value judgments
and confront pressing issues. You can make your own.

Answer the question, “What does your business do?” Then ask, “How 1.
does IT fit into the big picture?”

Show leadership in Business/IT decision-making. Arrange regular meet-2.
ings between Business and IT; even appoint a permanent liaison who can
translate.

APRIL_2010_loginarticles.indd 27 3.10.10 10:01:25 AM

28 ; LO G I N : VO L . 35, N O. 2

Communicate effectively. IT should learn the language of Business; drop 3.
the jargon and speak in terms Business will understand.

IT should start thinking and talking about the impact of the work, rather 4.
than the details (think ROI). Find out how others assess IT’s efforts and
use that knowledge to increase visibility.

Understand the business in order to explain complexities (heterogeneity). 5.

Cache knowledge. Make procedures as simple as they can possibly be, 6.
so that you can scale them in a crisis without having to rely on expertise
always being present.

IT should know when to spend company time (i.e., money) researching 7.
new technology. What does it do for the business? What problem does it
solve? Be prepared to defend the time and effort.

Create buffers. Weak coupling of modular roles offers much-needed slack 8.
or headroom for the IT department.

Formulate changes and strategies in terms of promises (who, what, when, 9.
where, why) and make it your business to keep them.

Be open to personal as well as institutional change. 10.

Summary

Thinking about the interface between Business and IT, it is tempting to
place oneself in the trenches and to blame “middle management” from above
or below, some poor person who is responsible for oiling the gears. That is
merely avoiding the issue. The issue is, rather, the whole organization’s col-
lective role in its own management.

If we ask how to align Business and IT, it makes sense to find the common
ground. Sysadmins and engineers try to bring that predictability to users.
Business folk are trying to engineer predictable streams of revenue in a fickle
environment. Are these views compatible? Surely they are, with openness
and focus.

We have seen conference discussions that take hours arguing over sysadmin
self-image rather than biting the bullet of change and adapting. What will be
the professional shape of system administrators to come? They will have to
be increasingly in tune with their organization’s diverse goals. They will ask,
“What are the core promises of my organization, and what did I do to keep
these promises today?”

refereNCe

An extended version of this article is available at: http://www.iu.hio.no/
~mark/blog_busval.html.

aCkNowLeDGmeNt

This work is supported by the EC IST-EMANICS Network of Excellence
(#26854).

APRIL_2010_loginarticles.indd 28 3.10.10 10:01:25 AM

; LO G I N : A prI L 201 0 FrOM TA sk s TO A ssu r A N CEs : rE d E FI N I N G sysTEM A dM I N I sTr ATI O N 29

a lV a l . c o u c h

from tasks to assur-
ances: redefining
 system administration

Alva Couch is an associate professor of computer
science at Tufts University, where he and his stu-
dents study the theory and practice of network and
system administration. He served as program chair
of LISA ’02 and was a recipient of the 2003 SAGE
Outstanding Achievement Award for contributions
to the theory of system administration. He currently
serves as Secretary of the USENIX Board of Directors.

couch@cs.tufts.edu

a n a lt e r n at I v e c o n c e p t o f t h e j o b
of the system administrator leverages exist-
ing techniques of systems engineering and
provides a foundation for a more synergistic
relationship between system administrators
and users.

Historically, there has been much confusion about
what a “system administrator” is and does. One
great success of the past decade is that we managed
to define system administration in terms of the
tasks the typical system administrator performs.
This definition includes a taxonomy of system ad-
ministration tasks [1], as well as the Job Descriptions
for System Administrators booklet [2]. So far, these
have served well as a de facto definition of the pro-
fession of system administration. We have obtained
much leverage from this definition, including that
the profession of system administration is now
included as an option on the 2010 census.

But defining the profession in terms of tasks has a
dark side; it invites naive observers to assume—as
they do for plumbers and electricians—that our
tasks define our profession [3]. In fact, our actual
deliverables are much more abstract, includ-
ing availability, integrity, and security. These are
elements of the social contract between system
administrators and users. I propose that this social
contract, and not the tasks, is the real definition of
the profession. What we are is not “what we do”
but, rather, “what assurances we provide.” Tasks
support assurances, but are not the essence of the
profession.

This is probably obvious to the average system ad-
ministrator, but not at all obvious to management,
who still on average consider system administra-
tion to be a task-based profession. We are to some
extent “victims of our own success” in defining
the profession via tasks. While tasks are easy to
understand, social contracts are more abstract.
How can we even write down the contract? Is the
social contract defined in that ethereal thing called
“policy,” or something else? In the following, we
explore some approaches to documenting the oft
invisible and implicit social contract that is—
already—a central component of the profession of
system administration.

This article arose from teaching requirements
analysis to aspiring software engineers last fall.
The key principle of requirements analysis is to
separate “requirements” from “design,” in the sense
that what a system should do (“requirements”) is

APRIL_2010_loginarticles.indd 29 3.10.10 10:01:25 AM

30 ; LO G I N : VO L . 35, N O. 2

separate from how that is accomplished (“design”). Separating requirements
from design has many positive effects, including allowing the designer the freedom
to address requirements in creative ways. I asked myself, “Can these principles
be applied to system administration to obtain similar benefits?” I realized
that the prevalent definition of the profession in terms of tasks is actually
“design,” and that we seldom write down requirements in any other form.
This article is the result of that train of thought.

This article might be loosely considered the third in a series. In the first
article [4], I described the semantic wall between “high-level” and “low-
level” specifications of system configuration and concluded that a new way
of thinking is necessary to utilize “high-level” specifications. In the second
article [5], I challenged the popular definition of system administration
as managing system configuration, and redefined the profession as “clos-
ing open worlds,” i.e., creating zones of predictable system behavior in an
otherwise unpredictable world. In this article I take the next step, consid-
ering which worlds to close. This step comes with its own quandaries: the
user wants the administrator to close “every” world, and boundaries must
be drawn between what is “supported” and what is not. The decision as to
which worlds to close is a social contract between system administrator and
user.

from tasks to assurances

My first step is to drastically redefine the profession in a subtle but profound
way. System administrators do not “perform tasks” or “apply expertise” but,
rather, “provide assurances.” An assurance is a clear statement of intent to
address some user need. The set of assurances that a system administrator
provides are part of the social contract between administrator and users. In
very much the same way, while a plumber or electrician needs the prereq-
uisites of being able to plumb or wire your house, in actuality these profes-
sionals honor a social contract that includes requirements for quality and
reliability of the work they perform.

Converting between the old task-based definition and the new contract-
based definition can be tricky. Sometimes the conversion between tasks
and assurances is easy to make. For example, a system administrator is
often seen as “managing printing” (a task), while the real job is “assuring
that printing works” (a contractual obligation). Sometimes an assurance is
based upon ability to perform a hopefully very infrequent task: for example,
“recover from disasters” (a task) becomes “assure data integrity” (a contrac-
tual obligation). Some simply stated assurances are very difficult to map to
tasks, e.g., “provide high-availability file service” requires mastery of many
interrelated tasks.

tHe SoCiaL CoNtraCt

The social contract between administrator and user includes many facets.
The most obvious of these are “ethics” and “privacy” assurances, which are
now increasingly defined in writing as part of the job. But, at a deeper level,
the social contract includes the assurances that the system administrator
group makes about system behavior, as well as the priority of each assur-
ance. A high-priority assurance will be addressed before a lower-priority
assurance: if both the file server and a user application die at the same time,
for example, the file server obviously takes priority.

APRIL_2010_loginarticles.indd 30 3.10.10 10:01:25 AM

; LO G I N : A prI L 201 0 FrOM TA sk s TO A ssu r A N CEs : rE d E FI N I N G sysTEM A dM I N I sTr ATI O N 31

prioritieS

Priorities are almost never documented in practice, and I think they should
be! At one time or another, every system administrator gets into the situation
of having to assure too much and has to make difficult decisions. What if
a crucial program drops out of the user environment at the same time that
the file server becomes unreliable? Luckily, a good manager is often there
to defend decisions, but the priorities of assurances are often known far in
advance. Writing them down changes the job from a “management decision”
into “working from a pattern.”

fLexibiLity

As in systems engineering, the main reason for describing assurances rather
than tasks (“requirements” rather than “design”) is to give the system ad-
ministrator flexibility in providing those assurances. Assuring data integrity
is a rather complex obligation, involving techniques for backup, recovery,
and data security. The beauty of documenting assurances is that when some
heretofore unknown technology comes along (e.g., using unused disk space
as online backup), the assurance does not change, even though the tasks
that provide that assurance might change drastically.

reuSabiLity

Are assurances reusable? The good news is that the kinds of assurances a
system administrator makes do not vary much from site to site, that is, the
list of assurances is (somewhat) reusable and relatively high-level compared
to the task-based description of the job. Some of the most basic are pres-
ent everywhere, including assurances of ethical behavior and appropriate
safeguards for personal privacy. The taxonomy of assurances is really quite
simple compared to the taxonomy of tasks. The bad news is that the priori-
ties of various assurances differ greatly based upon the site. For example,
empowering the user to do self-directed work might be the highest-priority
assurance at an academic site and the lowest-priority assurance at a bank.

aSSuraNCeS are Not poLiCy

One might think that the definition of the job of system administrator arises
from that ethereal thing we call “policy.” It does not. “Policy” describes what
systems and users should do, not who assures them and what forms that
assurance takes. Many assurances that a system administrator makes are an
implicit part of policy; use of a service implies reliability of the service. The
transformation that turns policy into the social contract comes from asking,
“What assurances are required to implement policy?”

assurances and requirements

At the most basic level, assurances for system administration are a list of
system behaviors that should form a set of reasonable expectations on the
part of users. At a deeper level, assurances are driven by (and are a proper
superset of) user requirements: the things that users need in order to get
their work done. The skilled system administrator converts the list of user
requirements into a set of assurances by adding the implicit assurances of
security, integrity, stability, etc., just as an electrician does not ask a cus-
tomer whether to make outside wiring waterproof! At the next level, require-
ments become a set of service level objectives (SLOs) or even service level

APRIL_2010_loginarticles.indd 31 3.10.10 10:01:25 AM

32 ; LO G I N : VO L . 35, N O. 2

agreements (SLAs) defining response-time assurances: if and when things go
wrong, how long should it take to correct problems? For example, an expec-
tation is that “printing should work” and an SLO for that is that “a malfunc-
tioning printer should be repaired in one day or less.”

System administration is a rather unusual profession in that the actual
behavioral requirements often take second place to the techniques and prac-
tices by which behaviors are assured, and documentation of practices often
serves as the sole documentation of requirements. One obvious reason for
this is that documentation of practice is currently the only common language
we have for describing behavior! It is easy in this situation to confuse that
documentation with requirements and, when we do that, our practice be-
comes a parody of satisfying user needs rather than the real thing.

For example, consider the task of managing printing. The “tasks” include
doing various things that ostensibly keep printing working, including man-
aging the service, repairing printers, etc. Our documentation of managing
printing includes details on how to accomplish these tasks. But these tasks
by themselves cannot be converted easily into SLOs. The corresponding as-
surance, by contrast, is much simpler: “Everyone is able to print in a timely
fashion.” This is easily converted into an SLO.

We are very lucky that the task of describing behaviors and requirements
has been studied in great detail by others. In systems engineering and
software engineering practice, this practice is called “requirements analysis”
[6]. A “requirement” is something that the managed system should do, some
behavior it should exhibit. There are many ways to document requirements,
and there are several established techniques for accurately teasing require-
ments from user desires. One way to describe requirements is through
first documenting “use cases,” from which we then extract and describe a
“requirements model.”

uSe CaSeS

Our first step in establishing a language for describing behavior is the same
as in software or systems engineering. “Use cases” describe what the user
should be able to do: for example, “users should be able to send and receive
electronic mail.” Note that the use case does not specify how or why any
behavior should be assured, and is thus much simpler and broader than a
practice for assuring behavior.

Several issues arise immediately when we write down the use cases. First,
use cases are not definitive; they describe some things that should be pos-
sible, but not absolutely everything. To assure the use cases, we are left to
fill in the details of other things that should be possible. Use cases describe
mission-critical behavioral objectives but not peripheral objectives that users
might desire. For example, “checks should be printable” is included but
“personal greeting cards should be printable” is not. Use cases often include
SLOs for how quickly something should happen, which can even, in some
cases, become SLAs on how quickly something must happen. There is a big
difference, for example, between the use case statements “sales transactions
should be posted within two seconds” and “sales transactions must be posted
within two seconds.” Finally, use cases should not describe in any way how
objectives are to be assured.

APRIL_2010_loginarticles.indd 32 3.10.10 10:01:25 AM

; LO G I N : A prI L 201 0 FrOM TA sk s TO A ssu r A N CEs : rE d E FI N I N G sysTEM A dM I N I sTr ATI O N 33

reQuiremeNtS moDeLiNG

The next step is to abstract the use cases into patterns and concise represen-
tations. In software engineering, this phase is called “requirements analysis.”
Requirements analysis involves determining the classes of users and services
(from the use cases) and documenting the relationships between classes of
users (e.g., assignment-of-privilege classes to user classes and documenting
inheritance between kinds of user and privilege classes). This is commonly
referred to as a “modeling step,” and the process is called “requirements
modeling.”

One powerful tool in requirements modeling is to express capabilities in
terms of similarities between user roles, using object-oriented modeling.
For example, there might be two kinds of users, “doctors” and “nurses,”
with different privileges. It might be that “doctors” are allowed to do things
“nurses” cannot, but “doctors” can do anything “nurses” can do. Regardless
of the real-world relationships between doctors and nurses, the behavior of
the system in response to their queries is a simple inheritance relationship
between behavioral classes: “doctor” system behavior is a subclass of “nurse”
system behavior.

HomoGeNeity aND HeteroGeNeity

In system administration, the terms “homogeneity” and “heterogeneity”
usually refer to variation in the operating systems or hardware deployed at a
site; we say that a site with a mix of Windows and Linux is “heterogeneous,”
for example, while a Linux-only site is “homogeneous.” In requirements
analysis, however, it is the user classes and behaviors that are homogeneous
or heterogeneous, and not the managed systems! Users are “heterogeneous”
if there are many user classes with different privileges, and “homogeneous”
if all users have more or less the same privilege. Behavior is “heterogeneous”
if there are different behaviors for each user class and “homogeneous” if not.
These are properties of the mission and structure of the organization and
not of the hardware on everyone’s desks.

Like operating system heterogeneity, requirements heterogeneity costs more
to assure. Thus it is prudent to question whether heterogeneity that natu-
rally arises in requirements is necessary. For example, suppose that there is
a requirement that user George has access to software to which no one else
has access. This is going to be expensive, and one should ensure that this is
really a requirement before proceeding. I believe that in many cases, hetero-
geneity of requirements is no less expensive than if George had a different
operating system on his desktop machine.

ambiGuity

Once you have written down the explicit requirements, a pattern will
emerge that is not unique to system administration. What you do not write
down is as important as what you do. In any high-level description of
requirements there will be some necessary ambiguity. Whether the require-
ments are useful at all depends on how we handle this ambiguity.

Suppose, for example, that one requirement is that “George should be able
to compile files with gcc.” Alas, this just isn’t enough to describe precisely
what George should be able to do. It does not say which header files should
be present, or whether the kernel sources should be present to make kernel
headers available. There are a multitude of factors exterior to gcc that might

APRIL_2010_loginarticles.indd 33 3.10.10 10:01:25 AM

34 ; LO G I N : VO L . 35, N O. 2

affect whether George can compile his files with gcc. George’s real require-
ments are thus ambiguous, based upon your description.

Drift

Ambiguity is not nearly as bad in itself as in its social consequences. Anyone
who goes to the trouble of writing down requirements will quickly discover
that users are doing things that are outside the requirements—and getting
away with them. In a modern computing environment, there is a prevalent
idea that anything you are allowed to do is “supported” (or “assured”). But
things you just happen to be allowed to do that are not requirements may
go away at any time, due to policy changes, side effects of other changes, or
simple mistakes.

A few years ago, at the beginning of the anti-spam effort, Tufts’ Department
of Computer Science closed down all access to SMTP from outside Tufts
except for a few designated servers. The result was an outcry from students
who had been running their own SMTP servers inside our network. The
affected students claimed that our actions were costing them money by
prohibiting business communications to their computers. The students were
given a polite choice between relocating their business computing outside
the Tufts network, and facing disciplinary charges for operating private busi-
nesses inside the university network!

This is an extreme example of a more general phenomenon that makes it dif-
ficult to specify requirements. Requirements are not what one can manage to
do but, rather, what one should be able to do. They are not about what users
want but, instead, about what users need in order to accomplish useful work,
which is their end of the social contract.

refiNemeNt

Users are fairly good at describing their functional requirements, but less
able to voice their requirements for privacy, security, integrity, and avail-
ability. Thus, the system administrator must often augment the list of user
needs with implicit needs that users usually cannot voice. In requirements
analysis, we might call the derived requirements a “refinement” of the basic
user requirements.

Refinement is a matter of listing the requirements that are obvious to system
administrators but not to the user. A good refinement consists of new re-
quirements that are “obvious once written down.” If one is refining correctly,
the user’s response will be, “Of course I need that.”

baSeLiNiNG

One useful technique for the system administrator is to define behavioral
requirements in terms of a baseline set of behaviors. This is a set of behav-
iors everyone should have access to in order to get their work done. It is a
handy way of distinguishing between what users need (baseline behaviors)
and what users want (non-baseline behaviors).

For example, at Tufts we have placed a limit on what users can expect from
the support organization by establishing a “baseline configuration” for a
desktop computer. This configuration satisfies a set of requirements neces-
sary for interoperating with Tufts network services. But it has another social
function, which is to define and delimit the responsibility of the support
organization. Systems that fail to function according to the baseline will be

APRIL_2010_loginarticles.indd 34 3.10.10 10:01:25 AM

; LO G I N : A prI L 201 0 FrOM TA sk s TO A ssu r A N CEs : rE d E FI N I N G sysTEM A dM I N I sTr ATI O N 35

returned to a baseline state, but functions that users desire outside the base-
line are not supported.

The distinction between baseline and non-baseline behaviors can lead to
major cost savings. Some organizations have reported that deploying thin
clients that support only baseline functions (and, for example, prohibit
the installation of custom software) results in up to 50% savings in cost of
operations. Allowing users to install seemingly innocent software (e.g., MP3
players) can lead to substantially increased support costs.

As another example, in some system administration circles the words
“reasonable faculty member” are an oxymoron. My support staff and I have
an unusual social contract. I need high volatility of software configura-
tion, much higher than staff can provide. So the staff provides a baseline
configuration that I do not touch. I install my own software on top of this
baseline, being careful not to change anything in the baseline itself. If I need
a baseline change, I ask them to make it so that it becomes persistent. In this
way my systems are co-managed by myself and my staff in a nearly ideal
way, with staff doing what they do best and me doing what I do best. Their
side of the social contract is to provide reliability and recovery; my side is
not to make their job difficult. They have recovered from complete system
failure by building a new system to my baseline requirements, after which I
made the few customizations I needed and everything came back up. Thus
high synergy can be obtained from proper use of baselining as a basis for a
two-way social contract.

reQuiremeNtS aND DeSiGN

Another reason that we really need a requirements step in system adminis-
tration is that specifying requirements clearly leads to better “designs.” As in
software and systems engineering, in the design step we decide how to con-
figure systems to provide requirements. Design can best satisfy requirements
when those requirements are minimally constrained. For example, specify-
ing the hardware composition of a user’s workstation in the requirements
step is very limiting, especially if the specified machine proves incapable of
functions the user requires. It is better to have the option of satisfying re-
quirements by replacing a user’s workstation with another physical machine.

Effective design does not just satisfy requirements but also minimizes cost of
operations. For example, even if only George needs gcc, it might be easiest
to install it everywhere. This is a design decision, while the needs are a re-
quirements decision. This gives other users additional privileges “by design”
and not “according to requirements,” in order to reduce management cost
rather than to satisfy needs. There has been some controversy—especially in
defense circles—about providing any capabilities to users that they do not
need, but in the modern Linux environment, the homogeneity of a common
core of software is more or less assumed.

rethinking the profession

In summary, I have redefined the system administration process as provid-
ing a set of assurances, derived from a refined set of user requirements,
augmented with the requirements of our profession, and implemented via
baselining and proactive tracking of ambiguities and drift in requirements
and assurances. Why go to such trouble?

There are many reasons for documenting requirements. They clarify the ac-
tual job of system administrator. They leave one free to assure users of their

APRIL_2010_loginarticles.indd 35 3.10.10 10:01:25 AM

36 ; LO G I N : VO L . 35, N O. 2

requirements in the best possible ways. They protect the system administra-
tor from outrageous demands. They appropriately focus discussion upon
the mission of the enterprise. Using techniques from systems engineering,
they can be used to predict cost of management and suggest an appropriate
number of system administrators to hire.

One obvious reason that clear requirements are beneficial is that one can
measure objectively whether requirements are met. It has often been said
that the better a system administrator is doing, the less people know his or
her name. By defining tangible and realistic requirements, rather than broad
and sweeping impossibilities, we provide something that can be measured
and offer a fairer estimate of system administrator performance than the
alternative of remaining anonymous!

In a deep sense, our profession is about “closing open worlds,” i.e., creating
islands of predictability in which useful work can be accomplished, in an
otherwise unpredictable universe. Some islands that we create are due to
requirements; others are due to design considerations. Some islands of pre-
dictability rise up out of no clear intention on anyone’s part! Understanding
the landscape of predictability is the real job of the system administrator.

Caveat: That understanding does not solve the ongoing and significant prob-
lems system administrators have with public relations. A local discount store
I frequent has a large sign on the door: “Confusion is our most important
product.” At present, many users think that this sign describes their system
administrators! We need to get to the point where users understand instead
that “Peace of mind is our most important product” and that the assurances
we make are far more important and crucial than the services we provide.

This article is only a beginning at straightening out some long-term confu-
sion about the profession. We started by defining a taxonomy of tasks, We
now must face the harder problem of defining and managing a taxonomy
of assurances and expectations. Most important, we have to see “managing
systems” for what it is: beating a dead horse. When we can instead “manage
assurances,” the profession will truly be “at the next level.”

refereNCeS

[1] Rob Kolstad et al., “The System Administration Book of Knowledge”:
http://ace.delos.com/taxongate.

[2] Tina Darmohray, ed., Job Descriptions for System Administrators, Short
 Topics in System Administration 8, USENIX Association, 2001.

[3] Alva Couch, “Should the Root Prompt Require a Road Test?” ;login:,
vol. 32, no. 4, August 2007.

[4] Alva Couch, “From x=1 to (setf x 1): What Does Configuration Manage-
ment Mean?” ;login:, vol. 33, no. 1, February 2008.

[5] Alva Couch, “Configuration Management Phenomenology,” ;login:,
vol. 35, no. 1, February 2010.

[6] See, e.g., Roger Pressman, Software Engineering: A Practitioner’s Approach,
7th ed. (McGraw-Hill, 2010), chapters 5–7.

APRIL_2010_loginarticles.indd 36 3.10.10 10:01:26 AM

; LO G I N : A prI L 201 0 d Fs : A F I LE sysTEM FO r V I rTuA LIzE d FL A sh sTO r AG E 37

w i l l i a M k . J o s e p h s o n ,
l a R s a . B o n g o , d a V i d F ly n n ,
a n d k a i l i

DFS: a file system
for virtualized flash
storage
William Josephson is in the PhD program at Princ-
eton University, where he works with Kai Li. His
research interests include high-performance stor-
age and systems support for search in large-scale,
high-dimensional data sets.

wkj@CS.Princeton.EDU

Lars Ailo Bongo is a post-doctoral researcher at the
Lewis-Sigler Institute for Integrative Genomics at
Princeton University. He received his PhD at the
University of Tromsø.His research interests include
system support for bioinformatics applications.

lbongo@Princeton.EDU

As President and CTO of Fusion-io and one of the
company’s founders, David Flynn is the visionary
behind Fusion-io’s innovative technology. Mr. Flynn
is responsible for providing business-focused over-
sight of the company’s research and development
efforts, as well as driving the company’s short- and
long-term technological direction.

dflynn@FusionIO.COM

Kai Li is a Paul M. Wythes and Marcia R. Wythes
Professor in the computer science department of
Princeton University, with research interests in
operating systems, parallel and distributed systems,
storage systems, and analyzing and visualizing
large datasets. He co-founded Data Domain, Inc.,
which pioneered deduplication storage systems.

li@CS.Princeton.EDU

w h I l e f l a s h m e m o r y h a s t r a d I -
tionally been the province of embedded and
portable consumer devices, there has been
recent interest in using flash devices to run
primary file systems for laptops as well as
file servers. Compared with magnetic disk
drives, flash can substantially improve reli-
ability and random I/O performance while
reducing power consumption. However, file
systems originally designed for magnetic
disks are not optimal for flash memory. In
this article we examine a flash device used
as a disk replacement and how a file system
that delegates block allocation to the device
driver outperforms the ext3 [15] file system
when used with the same device.

Past research work has focused on building firm-
ware and software to support the traditional layers
of abstractions used in file systems. For example,
techniques such as the flash translation layer
(FTL) are typically implemented in a solid-state
disk controller that exports a traditional disk drive
abstraction [3, 5, 6, 12]. Systems software then
uses a traditional block storage interface to sup-
port file systems and database systems designed
and optimized for magnetic disk drives. Since flash
memory has very different performance character-
istics from magnetic disks (there is no seek or rota-
tion latency), we wanted to study and design new
abstraction layers, including a file system to exploit
the potential of next-generation NAND flash stor-
age devices.

We describe the design and implementation of the
Direct File System (DFS) and the virtualized flash
memory (storage) abstraction layer it uses for Fu-
sionIO’s ioDrive hardware. The virtualized storage
abstraction layer provides a very large, virtualized
block-addressed space, which can greatly simplify
the design of a file system while providing back-
ward compatibility with the traditional block stor-
age interface. Instead of pushing the FTL into disk
controllers, this layer combines virtualization with
intelligent translation and allocation strategies for
hiding the bulk erasure latencies and performing
wear leveling required by flash memory devices.

DFS is designed to take advantage of the virtual-
ized flash storage layer for simplicity and perfor-
mance. A traditional file system is known to be
complex and typically requires four or more years

APRIL_2010_loginarticles.indd 37 3.10.10 10:01:26 AM

38 ; LO G I N : VO L . 35, N O. 2

to become mature. The complexity is largely due to three factors: complex
storage block allocation strategies, sophisticated buffer cache designs, and
methods to make the file system crash-recoverable. DFS uses virtualized
storage directly as a true single-level store and leverages the virtual to physi-
cal block allocations in the virtualized flash storage layer to avoid explicit
file block allocations and reclamations. By doing so, DFS uses an extremely
simple metadata and data layout. As a result, DFS has a short data path to
flash memory and encourages users to access data directly instead of going
through a large and complex buffer cache. DFS also leverages the atomic
update feature of the virtualized flash storage layer to achieve crash recover-
ability.

We have implemented DFS for the FusionIO’s virtualized flash storage layer
and evaluated it with a suite of benchmarks [9]. We have shown that DFS
has two main advantages over the ext3 file system. First, our file system
implementation is about one-eighth the size of that of ext3, with similar
functionality. Second, DFS has much better performance than ext3, while
using the same memory and less CPU. Our micro-benchmark results show
that DFS can deliver 94,000 I/O operations per second (IOPS) for direct
reads and 71,000 IOPS direct writes with the virtualized flash storage layer
on FusionIO’s ioDrive. For direct access performance, DFS is consistently
better than ext3 on the same platform, sometimes by 20%. For buffered
access performance, DFS is also consistently better than ext3, sometimes by
over 149%. Our application benchmarks show that DFS outperforms ext3 by
7% to 250%, while requiring fewer CPU resources.

NaND flash

Flash memory is a type of electrically erasable solid-state memory that has
become the dominant technology for applications that require large amounts
of non-volatile solid-state storage. Flash memory consists of an array of indi-
vidual cells, each of which is constructed from a single floating-gate transis-
tor. Flash cells support three operations: read, write (or program), and erase.
In order to change the value stored in a flash cell it is necessary to perform
an erase before writing new data. Read and write operations typically take
tens of microseconds whereas the erase operation may take more than a mil-
lisecond.

The memory cells in a NAND flash device are arranged into pages which
vary in size from 512 bytes to as much as 16KB each. Read and write opera-
tions are page-oriented. NAND flash pages are further organized into erase
blocks; erase operations only apply to entire erase blocks, and any data that
is to be preserved must be copied. There are two main challenges in build-
ing storage systems using NAND flash. The first is that an erase operation
typically takes about one or two milliseconds. The second is that an erase
block may be erased successfully only a limited number of times.

APRIL_2010_loginarticles.indd 38 3.10.10 10:01:26 AM

; LO G I N : A prI L 201 0 d Fs : A F I LE sysTEM FO r V I rTuA LIzE d FL A sh sTO r AG E 39

our approach

f i g u r e 1 : f L A s H s T O r A g e A b s T r A c T i O n s

Figure 1 shows the architecture block diagrams for existing flash storage
systems and our proposed architecture. The traditional approach is to pack-
age flash memory as a solid-state disk (SSD) that exports a disk interface
such as SATA or SCSI. An advanced SSD implements the flash translation
layer in its controller and maintains a dynamic mapping from logical blocks
to physical flash pages to hide bulk erasure latencies and to perform wear
leveling. SSDs use the same electrical and software interfaces as magnetic
disk drives. The block storage layer above the disk interface supports tradi-
tional file systems, database systems, and other software. This approach has
the advantage of not disrupting the application-kernel or kernel-physical
storage interfaces. On the other hand, it has a relatively thick software stack
and makes it difficult for the software layers and hardware to take full ad-
vantage of the benefits of flash memory.

We advocate an architecture in which a greatly simplified file system is built
on top of a virtualized flash storage layer implemented by the cooperation of
the device driver and novel flash storage controller hardware. The controller
exposes direct access to flash memory chips to the virtualized flash storage
layer, which is implemented at the device driver level and can freely cooper-
ate with specific hardware support offered by the flash memory controller.
The virtualized flash storage layer implements a large virtual block-ad-
dressed space and maps it to physical flash pages. It handles multiple flash
devices and uses a log-structured allocation strategy to hide bulk erasure
latencies, perform wear leveling, and handle bad-page recovery.

The virtualized flash storage layer can still provide backward compatibility
to run existing file systems and database systems. Existing software can
benefit from the intelligence in the device driver and hardware. More impor-
tantly, flash devices are free to export a richer interface than that exposed by
disk-based interfaces.

Direct File System (DFS) is designed to utilize the functionality provided by
the virtualized flash storage layer. In addition to leveraging the support for
wear-leveling and for hiding the latency of bulk erasures, DFS uses the vir-
tualized flash storage layer to perform file block allocations and reclamations
and uses atomic flash page updates for crash recovery. Our main observa-
tion is that the separation of the file system from block allocations allows the
storage hardware and block management algorithms to evolve jointly and in-

APRIL_2010_loginarticles.indd 39 3.10.10 10:01:26 AM

40 ; LO G I N : VO L . 35, N O. 2

dependently from the file system and user-level applications. This approach
makes it easier for the block management algorithms to take advantage of
improvements in the underlying storage subsystem.

virtuaLizeD fLaSH StoraGe Layer

The virtual flash storage layer provides an abstraction that allows client
software such as file systems and database systems to take advantage of
flash memory devices while providing a backward-compatible block storage
interface. The primary novel feature of the virtualized flash storage layer is
the provision for a very large, virtual block-addressed space. There are three
reasons for this design. First, it provides client software with the flexibility
to directly access flash memory in a single-level store fashion across multiple
flash memory devices. Second, it hides the details of the mapping from vir-
tual to physical flash memory pages. Third, the flat virtual block-addressed
space provides clients with a familiar block interface.

The mapping from virtual blocks to physical flash memory pages deals
with several flash memory issues. Flash memory pages are dynamically
allocated and reclaimed to hide the latency of bulk erasures, to distribute
writes evenly to physical pages for wear-leveling, and to detect and recover
bad pages to achieve high reliability. Unlike a conventional flash translation
layer, the mapping supports a very large number of virtual pages—orders of
magnitude larger than the available physical flash memory pages.

The virtualized flash storage layer currently supports three operations: read,
write, and trim or deallocate. All operations are block-based operations, and
the block size in the current implementation is 512 bytes. The write opera-
tion triggers a dynamic mapping from a virtual to a physical page; thus,
there is no explicit allocation operation. The deallocate operation deallocates
a range of virtual addresses and notifies the garbage collector.

The current implementation of the virtualized flash storage layer is a
combination of a closed source Linux device driver and FusionIO’s ioDrive
special-purpose hardware. The ioDrive is a PCI Express card populated with
either 160GB or 320GB of SLC NAND flash memory. The software for the
virtualized flash storage layer is implemented as a device driver in the host
operating system and leverages hardware support from the ioDrive itself.

The ioDrive uses a novel partitioning of the virtualized flash storage layer
between the hardware and device driver to achieve high performance. The
overarching design philosophy is to separate the data and control paths
and to implement the control path in the device driver and the data path in
hardware. The data path on the ioDrive card contains numerous individual
flash memory packages arranged in parallel and connected to the host via
PCI Express. As a consequence, the device achieves highest throughput
with moderate parallelism in the I/O request stream. The use of PCI Express
rather than an existing storage interface such as SCSI or SATA simplifies the
partitioning of control and data paths between the hardware and the device
driver.

The device provides hardware support of checksum generation and check-
ing to allow for the detection and correction of errors in case of the failure of
individual flash chips. Metadata is stored on the device in terms of physical
addresses rather than virtual addresses in order to simplify the hardware
and allow greater throughput at lower economic cost. While individual flash
pages are relatively small (512 bytes), erase blocks are several megabytes in
size in order to amortize the cost of bulk erase operations.

APRIL_2010_loginarticles.indd 40 3.10.10 10:01:26 AM

; LO G I N : A prI L 201 0 d Fs : A F I LE sysTEM FO r V I rTuA LIzE d FL A sh sTO r AG E 41

The mapping between virtual and physical addresses is maintained by the
kernel device driver. The mapping between 64-bit virtual addresses and
physical addresses is maintained using a variation on B-trees in memory.
Each address points to a 512-byte flash memory page, allowing a virtual
address space of 273 bytes. Updates are made stable by recording them in
a log-structured fashion: the hardware interface is append-only. The device
driver is also responsible for reclaiming unused storage using a garbage col-
lection algorithm. Bulk erasure scheduling and wear-leveling algorithms for
flash endurance are integrated into the garbage collection component of the
device driver.

DfS

DFS is a full-fledged implementation of a UNIX file system that is designed
to take advantage of the virtualized flash storage layer. The implementation
runs as a loadable kernel module in the Linux 2.6 kernel. The DFS kernel
module implements the traditional UNIX file system APIs via the Linux VFS
layer. It supports the usual methods such as open, close, read, write, pread,
pwrite, lseek, and mmap. The Linux kernel requires basic memory-mapped
I/O support in order to execute binaries residing on DFS file systems.

LEVErAGING VIrTuALIzEd FLAsh sTOrAGE

We have configured the ioDrive to export a sparse 64-bit logical block ad-
dress space. Since each block contains 512 bytes, the logical address space
spans 273 bytes. DFS can then use this logical address space to map file
system objects to physical storage. DFS delegates I-node and file data block
allocations and deallocations to the virtualized flash storage layer.

DFS allocates virtual address space in contiguous “allocation chunks.” The
size of these chunks is configurable at file system initialization time but is
232 blocks, or 2TB, by default. User files and directories are partitioned into
two types: large and small. A large file occupies an entire chunk, whereas
multiple small files reside in a single chunk. When a small file grows to be-
come a large file, it is moved to a freshly allocated chunk. The size of these
allocation chunks and the maximum size of small files can be chosen in a
principled manner when the file system is initialized. There have been many
studies of file size distributions in different environments (e.g., Tanenbaum
et al. [13], Douceur and Bolosky [8]). By default, small files are those less
than 32KB.

f i g u r e 2 : D f s L O g i c A L b L O c k A D D r e s s m A p p i n g f O r L A r g e f i L e s .
O n Ly T H e w i D T H O f T H e f i L e b L O c k n u m b e r D i f f e r s f O r s m A L L
f i L e s .

APRIL_2010_loginarticles.indd 41 3.10.10 10:01:26 AM

42 ; LO G I N : VO L . 35, N O. 2

The current DFS implementation uses a 32-bit I-node number to identify in-
dividual files and directories and a 32-bit block offset into a file. This means
that DFS can support a total of up to 232 − 1 files and directories (since the
first I-node number is reserved for the system). The largest supported file
size is 2TB with 512-byte blocks, since the block offset is 32 bits. The I-node
itself stores the base virtual address for the logical extent containing the file
data. This base address together with the file offset identifies the virtual ad-
dress of a file block. Figure 2 depicts the mapping from file descriptor and
offset to logical block address in DFS.

The very simple mapping from file and offset to logical block address has
the added benefit of making it straightforward for DFS to combine multiple
small I/O requests to adjacent regions of a file into a single larger I/O. This
strategy can improve performance, because the flash device delivers higher
transfer rates with larger I/Os.

dFs LAyOuT ANd OBJECTs

As shown in Figure 3, there are three kinds of files in the DFS file system.
The first file is a system file which includes the boot block, superblock, and
all I-nodes. This file is a “large” file and occupies the first allocation chunk
at the beginning of the raw device. The boot block occupies the first few
blocks (sectors) of the raw device. A superblock immediately follows the
boot block. The remainder of the system file contains all I-nodes as an array
of block-aligned I-node data structures.

f i g u r e 3 : L A y O u T O f D f s s y s T e m A n D u s e r f i L e s i n V i r T u A L -
i z e D f L A s H s T O r A g e . T H e f i r s T 2 T b A r e u s e D f O r s y s T e m f i L e s .
T H e r e m A i n i n g 2 T b A L L O c A T i O n c H u n k s A r e f O r u s e r D A T A O r
D i r e c T O r y f i L e s . A L A r g e f i L e T A k e s T H e w H O L e c H u n k ; m u LT i p L e
s m A L L f i L e s A r e p A c k e D i n T O A s i n g L e c H u n k .

Each I-node is identified by a 32-bit unique identifier or I-node number.
Given the I-node number, the logical address of the I-node within the I-node
file can be computed directly. Each I-node data structure is stored in a single
512-byte flash block. Each I-node contains the I-number, base virtual ad-
dress of the corresponding file, mode, link count, file size, user and group
IDs, any special flags, a generation count, and access, change, birth, and
modification times with nanosecond resolution. These fields take a total of
72 bytes, leaving 440 bytes for additional attributes and future use. Since an
I-node fits in a single flash page, it will be updated atomically by the virtual-
ized flash storage layer.

The implementation of DFS uses a 32-bit block-addressed allocation chunk
to store the content of a regular file. Since a file is stored in a contiguous, flat
space, the address of each block offset can be simply computed by adding
the offset to the virtual base address of the space for the file. A block read
simply returns the content of the physical flash page mapped to the virtual
block. A write operation writes the block to the mapped physical flash page

APRIL_2010_loginarticles.indd 42 3.10.10 10:01:26 AM

; LO G I N : A prI L 201 0 d Fs : A F I LE sysTEM FO r V I rTuA LIzE d FL A sh sTO r AG E 43

directly. Since the virtualized flash storage layer triggers a mapping or re-
mapping on write, DFS does the write without performing an explicit block
allocation. Note that DFS allows holes in a file without using physical flash
pages, because of the dynamic mapping. When a file is deleted, the DFS will
issue a deallocation operation provided by the virtualized flash storage layer
to deallocate and unmap the virtual space of the entire file.

A DFS directory is mapped to flash storage in the same manner as ordinary
files. The only difference is its internal structure. A directory contains an
array of name, I-node number, and type triples. The current implementa-
tion is very similar to that found in FFS [11]. Updates to directories, includ-
ing operations such as rename, which touch multiple directories and the
on-flash I-node allocator, are made crash-recoverable through the use of a
write-ahead log. Although widely used and simple to implement, this ap-
proach does not scale well to large directories. The current version of the
virtualized flash storage layer does not export atomic multi-block updates.
We anticipate reimplementing directories using hashing and a sparse virtual
address space made crash recoverable with atomic updates.

dIrECT dATA ACCEssEs

DFS promotes direct data access. The current Linux implementation of DFS
allows the use of the buffer cache in order to support memory mapped I/O,
which is required for the exec system call. However, for many workloads
of interest, particularly databases, clients are expected to bypass the buffer
cache altogether. The current implementation of DFS provides direct access
via the direct I/O buffer cache bypass mechanism already present in the
Linux kernel. Using direct I/O, page-aligned reads and writes are converted
by the kernel directly into I/O requests to the block device driver.

There are two main rationales for this approach. First, traditional buffer
cache design has several drawbacks. The traditional buffer cache typi-
cally uses a large amount of memory. Buffer cache design is quite complex,
since it needs to deal with multiple clients, implement sophisticated cache
replacement policies to accommodate various access patterns of different
workloads, maintain consistency between the buffer cache and disk drives,
and support crash recovery. In addition, having a buffer cache imposes a
memory copy in the storage software stack.

Second, flash memory devices provide low-latency accesses, especially
for random reads. Since the virtualized flash storage layer can solve the
write latency problem, the main motivation for the buffer cache is largely
eliminated. Thus, applications can benefit from the DFS direct data access
approach by utilizing most of the main memory space typically used for the
buffer cache for a larger in-memory working set.

CrAsh rECOVEry

The virtualized flash storage layer implements the basic functionality of
crash recovery for the mapping from logical block addresses to physical flash
storage locations. DFS leverages this property to provide crash recovery.
Unlike traditional file systems that use non-volatile random access memory
(NVRAM) and their own logging implementation, DFS piggybacks on the
flash storage layer’s log.

Since flash memory is a form of NVRAM, DFS leverages the support from
the virtualized flash storage layer to achieve crash recoverability. When
a DFS file system object is extended, DFS passes the write request to the
virtualized flash storage layer, which then allocates a physical page of the

APRIL_2010_loginarticles.indd 43 3.10.10 10:01:26 AM

44 ; LO G I N : VO L . 35, N O. 2

flash device and logs the result internally. After a crash, the virtualized flash
storage layer runs recovery using the internal log. The consistency of the
contents of individual files is the responsibility of applications, but the on-
flash state of the file system is guaranteed to be consistent.

dIsCussION

The current DFS implementation has several limitations. The first is that it
does not yet support snapshots. The second is that we are currently imple-
menting support for atomic multi-block updates in the virtualized flash
storage layer. The log-structured, copy-on-write nature of the flash storage
layer makes it possible to export such an interface efficiently. In the interim,
DFS uses a straightforward extension of the traditional UFS/FFS directory
structure. The third is the limitation on the number and on the maximum
size of files.

evaluation

Application Description I/O Patterns

Quicksort A quicksort on a large dataset Mem-mapped I/O

N-gram A program for querying
n-gram data

Direct, random read

KNNImpute Processes bioinformatics
 microarray data

Mem-mapped I/O

VM Update Update of an OS on several
virtual machines

Sequential read & write

TPC-H Standard benchmark for
 decision support

Mostly sequential read

f i g u r e 4 : A p p L i c A T i O n s A n D T H e i r c H A r A c T e r i s T i c s

We are interested in answering two main questions:

How do the layers of abstraction perform? ■■

How does DFS compare with existing file systems? ■■

To answer the first question, we use a micro-benchmark to evaluate the
number of I/O operations per second (IOPS) and bandwidth delivered by
the virtualized flash storage layer and by the DFS layer. To answer the sec-
ond question, we compare DFS with ext3 by using a micro-benchmark and
an application suite. Ideally, we would compare with existing flash file sys-
tems as well; however, file systems such as YAFFS [10] and JFFS2 [16] are
designed to use raw NAND flash and are not compatible with the FusionIO
hardware.

Wall Time

Application Ext3 DFS Speedup

Quicksort 1268 822 1.54

N-gram (Zipf) 4718 1912 2.47

KNNImpute 303 248 1.22

VM Update 685 640 1.07

TPC-H 5059 4154 1.22

f i g u r e 5 : A p p L i c A T i O n b e n c H m A r k e x e c u T i O n T i m e
 i m p r O V e m e n T : b e s T O f D f s V s . b e s T O f e x T 3

APRIL_2010_loginarticles.indd 44 3.10.10 10:01:26 AM

; LO G I N : A prI L 201 0 d Fs : A F I LE sysTEM FO r V I rTuA LIzE d FL A sh sTO r AG E 45

All of our experiments were conducted on a desktop with an Intel quad core
processor running at 2.4GHz with a 4MB cache and 4GB DRAM. The host
operating system was a stock Fedora Core installation running the Linux
2.6.27.9 kernel. Both DFS and the virtualized flash storage layer imple-
mented by the FusionIO device driver were compiled as loadable kernel
modules.

We used a FusionIO ioDrive with 160GB of SLC NAND flash connected via
PCI-Express x4 [1]. The advertised read latency of the FusionIO device is
50µs. For a single reader, this translates to a theoretical maximum through-
put of 20,000 IOPS. Multiple readers can take advantage of the hardware
parallelism in the device to achieve much higher aggregate throughput. For
the sake of comparison, we also ran the micro-benchmarks on a 32GB Intel
X25-E SSD connected to a SATA II host bus adapter [2]. This device has an
advertised typical read latency of about 75µs.

We have evaluated our design and implementation with both a collection of
micro-benchmarks and an application benchmark suite. Figure 4 summa-
rizes the applications in the benchmark and their characteristic I/O request
patterns. Figure 5 shows the elapsed wall time for each of the applications
for both ext3 and DFS and the speedup, which varies from 1.07 to 2.47.

The quicksort application is a single-threaded sort of 715 million 24-byte
key-value pairs memory mapped from a single 16GB file that is four times
larger than main memory. Although quicksort exhibits good locality of refer-
ence, this benchmark program nonetheless stresses the memory-mapped I/O
subsystem.

The n-gram benchmark issues random queries against a single large hash
table index of the 5-grams in the Google n-gram corpus [7], which contains
a large set of n-grams and their appearance counts taken from a crawl of the
Web. The resulting index, which contains 26GB worth of small key-value
pairs for 5-grams alone, has proved valuable for a variety of computational
linguistics tasks. We present the results for a Zipf-distributed query distribu-
tion over the 5-grams.

The KNNImpute [14] benchmark program is a very popular bioinformatics
code for estimating missing values in data obtains from wet lab microar-
ray experiments. The program is a multi-threaded implementation using
memory-mapped I/O.

The virtual machine update benchmark consists of a full operating system
update of several VirtualBox instances running Ubuntu 8.04 hosted on a
single server. Since each virtual machine typically runs the same operating
system but has its own copy, operating system updates can pose a significant
performance problem in some environments, as each instance needs to apply
critical and periodic system software updates simultaneously. In our bench-
mark environment there were a total of 265 packages updated, containing
343MB of compressed data and about 38,000 distinct files.

The last benchmark program is the standard Transaction Processing Coun-
cil’s Benchmark H (TPC-H) [2]. We used the Ingres database to run the
benchmark at scale factor 5, which corresponds to about 5GB of raw input
data and 90GB for the data, indexes, and logs stored on flash once loaded
into the database.

Our results show that the virtualized flash storage layer delivers perfor-
mance close to the limits of the hardware, both in terms of IOPS and
bandwidth. Our results also show that DFS is much simpler than ext3 and
achieves better performance in both the micro- and application benchmarks
than ext3, often using less CPU power. Our paper includes the results of

APRIL_2010_loginarticles.indd 45 3.10.10 10:01:26 AM

46 ; LO G I N : VO L . 35, N O. 2

several additional benchmarks, including micro-benchmarks. These results
were excluded from this article due to space constraints.

Conclusion

This article presents the design, implementation, and evaluation of DFS and
describes FusionIO’s virtualized flash storage layer. We have demonstrated
that novel layers of abstraction specifically for flash memory can yield sub-
stantial benefits in software simplicity and system performance.

We have learned several things from the DFS design process. First, it is pos-
sible to implement DFS so that it is both simple and has short, direct-path
flash memory. Much of its simplicity comes from leveraging the virtualized
flash storage layer for large virtual storage space, block allocation and deal-
location, and atomic block updates.

Second, the simplicity of DFS translates into performance. Our micro-
benchmark results show that DFS can deliver 94,000 IOPS for random reads
and 71,000 IOPS random writes with the virtualized flash storage layer on
FusionIO’s ioDrive. The performance is close to the hardware limit.

Third, DFS is substantially faster than ext3. For direct access performance,
DFS is consistently faster than ext3 on the same platform, sometimes by
20%. For buffered access performance, DFS is also consistently faster than
ext3, and sometimes by over 149%. Our application benchmarks show that
DFS outperforms ext3 by 7% to 250% while requiring less CPU power.

We have also observed that the impact of the traditional buffer cache dimin-
ishes when using flash memory. When there are 32 threads, the sequential
read throughput of DFS is about twice that of direct random reads with DFS,
whereas ext3 achieves only a 28% improvement over direct random reads
with ext3.

refereNCeS

[1] FusionIO ioDrive specification sheet: http://www.fusionio.com/products/
iodrive/.

[2] Intel X25-E SATA solid-state drive: http://download.intel.com/design/
flash/nand/extreme/extreme-sata-ssd-datasheet.pdf.

[3] Understanding the Flash Translation Layer (FTL) Specification: Technical
report AP-684, Intel Corporation, December 1998.

[4]TPC Benchmark H Decision Support (Transaction Processing Perfor-
mance Council, 2008): http://www.tpc.org/tpch.

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse, and R.
Panigrahy, “Design Tradeoffs for SSD Performance,” Proceedings of the 2008
USENIX Annual Technical Conference (USENIX Association, 2008).

[6] A. Birrell, M. Isard, C. Thacker, and T. Wobber, “A Design for High-Per-
formance Flash Disks,” ACM Operating Systems Review, vol. 41, no. 2 (April
2007).

[7] T. Brants and A. Franz, Web 1T 5-gram Version 1, 2006.

[8] J.R. Douceur and W.J. Bolosky, “A Large Scale Study of File-System Con-
tents,” Proceedings of the 1999 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (1999).

APRIL_2010_loginarticles.indd 46 3.10.10 10:01:26 AM

; LO G I N : A prI L 201 0 d Fs : A F I LE sysTEM FO r V I rTuA LIzE d FL A sh sTO r AG E 47

[9] W. Josephson, L. Bongo, D. Flynn, and K. Li, “DFS: A File System for Vir-
tualized Flash Storage,” Proceedings of FAST ’10: 8th USENIX Conference on File
and Storage Technologies (USENIX Association, 2010), pp. 85–100.

[10] C. Manning, “YAFFS: The NAND-Specific Flash File System,”
 LinuxDevices.Org, September 2002.

[11] M.K. McKusick, W.N. Joy, S.J. Leffler, and R.S. Fabry, “A Fast File Sys-
tem for UNIX,” ACM Transactions on Computer Systems, vol. 2, no. 3, August
1984.

[12] A. Rajimwale, V. Prabhakaran, and J.D. Davis, “Block Management in
Solid State Devices,” unpublished technical report, January 2009.

[13] A.S. Tanenbaum, J.N. Herder, and H. Bos, “File Size Distribution in
UNIX Systems: Then and Now,” ACM SIGOPS Operating Systems Review,
vol. 40, no. 1 (January 2006), pp. 100–104.

[14] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastieevor, R.
Tibshirani, D. Botstein, and R.B. Altman, “Missing Value Estimation Meth-
ods for DNA Microarrays,” Bioinformatics, vol. 17, no. 6 (2001), pp. 520–525.

[15] S. Tweedie, “Ext3, Journaling Filesystem,” Ottowa Linux Symposium,
July 2000.

[16] D. Woodhouse, “JFFS: The Journalling Flash File System,” Ottowa Linux
Symposium, 2001.

APRIL_2010_loginarticles.indd 47 3.10.10 10:01:27 AM

48 ; LO G I N : VO L . 35, N O. 2

J a k e w i R e s a n d a n d R e w w a R F i e l d

beyond blocks and
files

Jake Wires received his M.S. in computer science
from the University of British Columbia. He cur-
rently works in the Datacenter and Cloud Division at
Citrix, where his focus is storage virtualization.

Jake.Wires@Citrix.com

Andrew Warfield is an assistant professor in the
Department of Computer Science at the University
of British Columbia.

andy@cs.ubc.ca

v I r t ua l m ac h I n es (vm s) c h a n g e h ow
file and storage systems need to work. Most
conventional file systems were designed
with the assumption that files would be ac-
cessed only through the operating system’s
file interface. This assumption seemed
innocuous when operating systems owned
their hardware, but virtual machines use
virtual disks owned by virtual machine
monitors (VMMs)—and now VMMs want
an interface to access VM files too. Pres-
ently, VMMs are mostly limited to operating
at the block layer, but in order to efficiently
provide features such as versioning and
deduplication they need to operate at the
file system layer. Moreover, the problem of
managing large numbers of VMs would be
greatly simplified if VMMs better under-
stood files. New file systems designed for
use in virtualized operating systems should
expose a file interface to VMMs and should
better express data dependencies so that
files can be safely manipulated from out-
side VMs.

As fans of virtualization may already well know,
too much convenience can be a burden. In an era
where the proliferation of real, expensive hardware
already frequently motivates “spring cleaning”
mass emails from IT departments, the emerging
ability of users to spawn virtual machines at their
pleasure can lead to managerial headaches. For
example, while a system administrator might be
quite pleased when she first discovers how easy
it is to create a thousand Windows XP VMs, her
spirits may falter a bit after she finds that each VM
must be customized with individual SIDs and AD
credentials if it is to be very useful on the corpo-
rate LAN. And she may grow downright frustrated
when, a few months after distributing all these
shiny new VMs, she finds that every one of them
needs to be upgraded—without disrupting any
changes users might have made.

Current technologies offer appealing solutions for
managing the storage consumed by VMs, but man-
aging the data produced by VMs is still very much
an open problem. In many ways, this is an issue
of perspective: the advent of VMMs challenges
the traditional view that a disk and its files belong

APRIL_2010_loginarticles.indd 48 3.10.10 10:01:27 AM

; LO G I N : A prI L 201 0 B E yO N d B LO Ck s A N d F I LEs 49

primarily to an operating system. The more popular VMs become, the more
important it will be to expose OS data to VMMs in meaningful ways.

The familiar debate between block and file-oriented interfaces is no less
germane to VMs than physical hardware, although virtualization may add a
few new twists. The block interface, as the argument goes, is sublime in its
simplicity: it is stateless, straightforward, and OS-agnostic. The file system
interface, on the other hand, is often more relevant: it defines much richer
storage abstractions and is better aligned with the way users typically reason
about their data. This relevance comes at a cost, though:

File systems are complex and often intricately entwined with other com-■■

ponents of the operating system, such as page caches and virtual memory
managers.
File systems must satisfy sophisticated consistency requirements along ■■

performance-critical data paths.
File systems tend to exhibit much greater variation across operating sys-■■

tems.

In general, it is easier for VMMs to interpose on guest VMs at the block layer
than at the file system layer. Essential features such as thin provisioning
and fast cloning are simple to implement behind the block interface, where
they can easily support legacy OSes. Additional features such as versioning
and deduplication can be implemented at the block layer as well, although
purists might offer arguments for moving these features into the file system.
There is very little benefit, for instance, in versioning things like Windows
page files and hibernation files—old versions of such files are, for all practi-
cal purposes, worthless—but when operating at the block level, it is very
difficult to avoid doing so. The upshot in this case is that with block-level
versioning, disk snapshots intended to preserve a few kilobytes of user data
may end up wasting gigabytes of disk space.

But putting matters of expediency aside, these block-level technologies share
a noteworthy characteristic: they all contribute to making a mess of the
otherwise simple block layer. While cloning a virtual disk is almost free,
merging diverged clones is nearly impossible. Copy-on-write disks provide
a quick path to versioning, but they introduce cumbersome dependency
chains. Deduplication can reclaim storage space, but it also effectively in-
validates disks for use with any tools that don’t understand the deduplicator
metadata. It may be tempting to ignore these issues when one’s main con-
cern is ticking feature check-boxes, but as systems begin to see extended use
in the real world, the growing accumulation of interdependent but divergent
virtual disks can pose unwieldy problems.

If block-level implementations suffer from such drawbacks, why don’t VMMs
start plugging into file systems? One major obstacle is that, irrespective of all
the hooks and probes and monitors we have thus far attached to VMs, file
systems have remained black boxes, and efforts to expose their interfaces to
the VMM seem to call for more of the pickax than the scalpel. Even if it is
feasible to teach VMMs about the on-disk layout of file systems, this alone
would not be enough to provide features such as versioning and deduplica-
tion, because of issues such as write ordering and cache consistency within
the VM. Interposing on VM file systems is a major effort that would require
OS-specific implementations, introduce considerable security risks, and
likely require a great deal of maintenance over time as VM file systems grow
and evolve.

Such challenges have led to the proposal of new storage abstractions such
as object-based disks and file/block hybrids like “flocks” (not your standard
mutex primitive—perhaps it’s inevitable that we’ll one day hear clamoring

APRIL_2010_loginarticles.indd 49 3.10.10 10:01:27 AM

50 ; LO G I N : VO L . 35, N O. 2

for the widespread adoption of “biles”). These abstractions offer some in-
triguing new properties. Imagine, for instance, that object-based storage had
been adopted 10 or 20 years ago: VMMs would be well positioned to provide
features like file-grained versioning and single-instance storage while still
hiding behind an arguably tractable, OS-agnostic interface.

But what, after all, is in a name? That which we call a file, by any other
name would be as complex. While most OS interfaces are designed to isolate
system resources, file systems (and particularly file system namespaces) are
peculiar in that they offer opportunities to introduce odd dependencies and
circumvent isolation. With a bit of hand waving we can relegate the prob-
lem of files to object-based disks, and in so doing we can even congratulate
ourselves a bit for better separating storage and namespace implementations,
but ultimately we’re left with containers of application-level information.
If VMMs were able to manipulate these containers they could provide new
features to a variety of OSes, but would we really be satisfied?

An especially prickly example here is VM upgrades. Administrators would
like the ability to push OS and application updates down onto VM images
without disturbing individual users’ data. If VMMs recognized file objects,
they could enforce read-only or copy-on-write policies for system-admin-
istered files, offering greater confidence that these files could be upgraded
safely. But it seems doubtful that policies could be derived which would offer
users the flexibility they demand while still guaranteeing that their personal
customizations would be completely impervious to disruption, direct or
otherwise, by system updates. In the end, no matter how transparent the
structure of persistent data becomes, there will always be some amount of
semantic information that will reside beyond the purview of administrators
and limit their ability to safely manipulate VM disk images.

But maybe there are things we can do to mitigate these problems. For start-
ers, the emerging presence of large VM deployments warrants a reevalua-
tion of what a file is and who it is for. Perhaps we should even look beyond
blocks and files to see if we can’t find better ways of structuring VM seman-
tics. Developing more effective methods of expressing data dependencies
and enforcing isolation in the storage stack should be a high priority. As
well, new standards of scalability are called for; just as current file systems
allow us to manage thousands of files, new storage environments should let
us manage thousands of file systems.

APRIL_2010_loginarticles.indd 50 3.10.10 10:01:27 AM

; LO G I N : A prI L 201 0 B ruTE FO rCE A N d I G N O r A N CE 51

e l i z a B e t h z w i c k y

brute force and
ignorance
Elizabeth has been involved with Internet security,
voluntarily or involuntarily, since the Morris worm
in 1989, but retains hope.

Zwicky@otoh.org

va r I o u s n o n - s e c u r I t y b l o g s I r e a d
have been busily urging people to choose
good passwords, partly because of the New
York Times [1] and its coverage of the stu-
pidity of 32 million passwords stolen from
Rock You. Now, I wouldn’t want to discour-
age you from choosing a good password.
In fact, I think it’s a good habit to get into.
Go long; stuff some punctuation into the
middle; have a good time!

But, honestly, it’s a strange thing to worry about
based on the RockYou data. The RockYou story
goes something like this: RockYou offers ser-
vices that connect a whole pile of different social
networking sites. They had an SQL injection bug.
This revealed the contents of not only their main
user database, but also the stored information they
used to connect to other sites on behalf of users—
including passwords for RockYou and other sites,
each and every one stored in the clear. RockYou’s
response to this was, to say the least, underwhelm-
ing, although under pressure they did inform users
that perhaps it might be a good idea for them to
change their passwords.

Meanwhile, Imperva, a security company, laid their
hands on RockYou’s stolen data, did some analysis
of the cleartext passwords, and sent out press re-
leases about the shockingly poor passwords people
have chosen, and the success brute force attacks
would have against them. This was followed by the
wave of admonishments I noted earlier, exhorting
people not to choose these terrible passwords.

And, indeed, the data suggest that the passwords
were terrible. “123456” was the most popular
password, and it was dauntingly popular, account-
ing for nearly 1% of the passwords. But, you know,
it doesn’t really matter how useful a brute force
attack would have been. Sure, with 683 attempts
per account (by Imperva’s calculations, which I
have no reason to doubt), you could have compro-
mised 10% of the accounts. But that’s a lot more
effort than it took the attackers to compromise all
the accounts, with a bonus helping of accounts on
other sites. The strength of people’s passwords at
RockYou was totally irrelevant, and the strength of
their third-party passwords was only relevant for
those people cunning enough not to hand them
over to RockYou.

But, you say, not every Web service is designed by
people who are better at fluffy kitten pictures than
securing passwords; some of them have already

APRIL_2010_loginarticles.indd 51 3.10.10 10:01:27 AM

52 ; LO G I N : VO L . 35, N O. 2

been broken into and now know something about security. Surely at those
sites, password strength is good for something other than saving you from
public ridicule that ought to have been directed at the people who set free
your password in the first place. Well, maybe. But probably not.

The economics of brute force attacks depend greatly on the environment.
Brute force is absolutely the way to go if you’re attacking a password you
have on disk and can fiddle with in the privacy of your own computer. But
if you have to try brute force across a wire against a public Web site, you are
pitting yourself directly against the site’s security. There are two possibili-
ties there. Perhaps the site won’t notice, but in that case, it’s run by clueless
goons, and there’s a good chance that the same effort could be invested into
attacks with much better payoffs; that was definitely a win for the attack-
ers at RockYou, and it’s neither the first nor the last site to have that sort of
experience.

And perhaps the site will notice, in which case it’s the black hats against the
white hats, locked in battle. It’s not a battle the white hats can ever win, but
they can effectively slow down brute force attacks a lot. Disabling an account
altogether is not their only option; they can delay login attempts, they can
selectively disable access from individual IP addresses or blocks or specific
browser types or cookies, they can insist that the password be changed,
they can try to verify that there’s a human making login attempts, they can
temporarily disable an account, they can send warnings to a contact ad-
dress, they can arbitrarily change the login process when there are multiple
attempts . . . the possibilities are endless.

Meanwhile, the black hats have several fronts where they can pit their
cleverness against much weaker opponents. For instance, instead of trying
to brute force passwords, they could try to phish for them; there, the white
hats are still fighting, but the immediate point of contact is the user, usually
a much easier target. Or, the black hats can go attack other Web sites. The
effort of breaking into RockYou not only yielded all the RockYou passwords,
it also turned up a pile of passwords to other sites, a pile much larger than
you could have gathered by attacking the other sites directly.

Brute force attacks against big Web services still exist, of course; attackers
are not, on the whole, any brighter than defenders, and old ineffective prac-
tices are still rampant on all sides. But on Web services, brute force attacks
aren’t a major threat, and the current stupidity of passwords isn’t enough to
skew the economics towards them. There is some level of password stupidity
at which brute force starts paying off, and it would be good not to get there,
but if you have to pick one lesson to learn from RockYou, it would be, “Don’t
give away your password.” Better yet, learn two lessons; the other one is,
“Use different passwords at different sites.”

Meanwhile, if you’re registering at a site you don’t much care about, and you
use reasonable passwords at the sites you do care about, why, you have my
permission to use “123456” as a password. That way, when the site hands it
over on a platter to the miscreants of the Internet, you won’t have compro-
mised a password you have some fondness for.

refereNCe

[1] Ashlee Vance, “If Your Password Is 123456, Just Make It HackMe”:
http://www.nytimes.com/2010/01/21/technology/21password.html.

APRIL_2010_loginarticles.indd 52 3.10.10 10:01:27 AM

; LO G I N : A prI L 201 0 pr AC TI C A L pE rL TO O L s : LE T M E h E Lp yO u G E T rEGu L A r 53

d a V i d n . B l a n k - e d e l M a n

practical Perl tools:
let me help you get
regular
David N. Blank-Edelman is the director of technology
at the Northeastern University College of Computer
and Information Science and the author of the
O’Reilly book Automating System Administration
with Perl (the second edition of the Otter book),
available at purveyors of fine dead trees every-
where. He has spent the past 24+ years as a system/
network administrator in large multi-platform envi-
ronments, including Brandeis University, Cambridge
Technology Group, and the MIT Media Laboratory.
He was the program chair of the LISA ’05 conference
and one of the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

d I f f e r e n t p e o p l e h av e v e r y d I f f e r -
ent opinions of Perl as a language, but I
think you might find a healthy majority who
agree on the value of the regular expression
engine it introduced. You probably get no
better vote of confidence in the language
world than to have a feature and sometimes
its syntax copied almost verbatim. Python,
Ruby, Java, .NET, the list goes on, all support
some version of Perl-ish regular expressions.
There’s even a C library called “PCRE—Perl
Compatible Regular Expressions,” found at
http://www.pcre.org/, which can bring that
power to your program. Perl 6 aims to intro-
duce further innovation on this front (see
http://perlcabal.org/syn/ for more details).

In the meantime, there are a number of ways to
make the existing support even more useful and
powerful. This column will show you a few Perl
regular expression–related modules in that vein.

regexp porn

If you want to get really serious about regular
expressions, and I’d like to suggest that you do
because they are often key to Perl programs, there’s
one book you need to read. Go buy Jeffrey Friedl’s
Mastering Regular Expressions. I’m not saying this
just to shill for a fellow O’Reilly author. The book’s
a little short on plot and character development,
but it is truly the best text on the subject. It will
improve your ability to write and understand regu-
lar expressions in a number of languages and tools
besides Perl (such as awk/grep).

Don’t write your own regular expressions

Regular readers of this column are familiar with
this shtick where I say something is the best thing
since split() bread in the first breath and then tell
you not to use it in the second, unless . . .

Here’s the latest one: don’t write your own regu-
lar expressions for common items. First check
to make sure it isn’t already included in the
Regexp::Common family of modules. Lots and lots
of effort by smart people (certainly smarter than
me) has gone into creating a collection of robust,
reusable regular expressions for a whole slew of
things. In just the Regexp::Common distribution it-
self, you can find regular expressions for matching:

APRIL_2010_loginarticles.indd 53 3.10.10 10:01:27 AM

54 ; LO G I N : VO L . 35, N O. 2

credit card numbers ■■

Social-Economical Numbers (e.g., social security numbers) ■■

URIs of all sorts ■■

strings with balanced delimiters ■■

lists ■■

IP addresses ■■

numbers ■■

profanity ■■

whitespace ■■

postal codes■■

Using Regexp::Common is pretty simple. First you load the module and
specify which subset of regular expressions you’d like to use:

use Regexp::Common qw /net/;

Regexp::Common will then populate a tied hash called %RE that will be
filled with the patterns you need. We can then use that hash in the regular
expression match of our choice, like so:

/^$RE{net}{IPv4}$/ and print “$_ is a dotted decimal IP address\n”;

The module uses further sub-hash syntax to select more specific options,
such as:

/^$RE{net}{IPv4}{oct}{-sep => ‘:’}$/ # matches colon-separated octal IP addresses

Many of the pattern sets take an option -keep, as in:

$contains_ipaddr =~ /$RE{net}{IPv4}{-keep}/;

The -keep option lets you capture all or parts of the match. In this last ex-
ample, $1 gets set to the full match and $2 through $5 store the components
of the match. For example, if $contains_ipaddr was the string ‘Your address
is 192.168.0.5’, $1 would contain 192.168.0.5, $2 would be 192, $3 would
be 168, and so on.

and it’s a tie

The following idea is either incredibly useful or it is just a parlor trick,
 depending on your specific needs. I say that so you’ll use it with caution.
Mutating the standard hash semantics always makes your scripts a little
harder to maintain, because it defies the usual expectations of the code
reader. But perhaps it will be worth it to you.

There exist two modules, Tie::RegexpHash and Tie::Hash::Regex, that bring
some regular expression magic to your hash data structures. The former
lets you write code to store a regular expression as the hash key instead of a
scalar. Here’s the example from the documentation:

use Tie::RegexpHash;

my %hash;

tie %hash, ‘Tie::RegexpHash’;

$hash{ qr/^5(\s+|-)?gal(\.|lons?)?/i } = ‘5-GAL’;

$hash{‘5 gal’}; # returns “5-GAL”
$hash{‘5GAL’}; # returns “5-GAL”
$hash{‘5 gallon’}; # also returns “5-GAL”

Tie::Hash::Regex takes this idea in a different direction. Instead of storing
the regular expression as the key, as we just saw, Tie::Hash::Regex first tries

APRIL_2010_loginarticles.indd 54 3.10.10 10:01:27 AM

; LO G I N : A prI L 201 0 pr AC TI C A L pE rL TO O L s : LE T M E h E Lp yO u G E T rEGu L A r 55

the usual exact match during a key lookup. If that fails, it then attempts a
regular expression match to find that key. From its documentation:

use Tie::Hash::Regex;
my %h;

tie %h, ‘Tie::Hash::Regex’;

$h{key} = ‘value’;
$h{key2} = ‘another value’;
$h{stuff} = ‘something else’;

print $h{key}; # prints ‘value’
print $h{2}; # prints ‘another value’
print $h{‘̂ s’}; # prints ‘something else’

muchos matching

There is a class of problems you are bound to run into at some point that
entails having to run a (potentially large) number of matches over the same
text. For example, if you need to find out if a mail message contains a cer-
tain set of keywords, you may find yourself initially writing code that looks
like this:

my @keywords = qw(urgent acute critical dire exigent pressing serious grave);

foreach my $keyword in (@keywords){
 do_something() if $text =~ /$keyword/;
}

If you have a large set of keywords or a large set of repetitions, this gets old/
inefficient very quickly, because you are spinning up the regexp engine and
forcing it to traipse through the same text over and over again. One standard
way to improve on this method is to use regular expression alternation and
do a single match on the text, as in:

my @keywords = qw(urgent acute critical dire exigent pressing serious grave);
quotemeta is used to neuter regexp chars in the keyword list
my $match = join ‘|’, map { quotemeta } @keywords;
do_something() if $text =~ /$match/;

This is far more efficient even (and especially) if the keyword list is very
large. But we can do better than this. The Text::Match::FastAlternatives mod-
ule is meant to handle exactly this case. It will analyze your list and create a
“matcher” which you can use on the text you are checking:

use Text::Match::FastAlternatives;
my @keywords = qw(urgent acute critical dire exigent pressing serious grave);
my $keymatch = Text::Match::FastAlternatives->new(@keywords);
do_something() if $keymatch->match($text);

People who follow the latest developments in Perl might say at this point,
“Wait! But what about the trie-based optimization improvements in 5.10?
Don’t they make the regexp alternative code we just saw fast too?” It is an
excellent question, albeit incomprehensible for those people who don’t follow
the latest developments in Perl. One of the cool things the Perl developers
added in the 5.10 release was some modifications to the regular expression
engine that would automatically handle alternation cases like this using a
more efficient internal representation. If you use 5.10 and above, you get
this speedup for free. Text::Match::FastAlternatives is actually faster than the
improved regular expression engine, so it is still potentially the best option

APRIL_2010_loginarticles.indd 55 3.10.10 10:01:27 AM

56 ; LO G I N : VO L . 35, N O. 2

for even 5.10+ users. See the Text::Match::FastAlternatives documentation
for more details.

But what if we’re dealing with something a little more complicated than a
list of keywords? What if, instead, we had a set of regular expressions we
needed to check against a piece of text? If you need something more in that
direction, you would be well served to look at the Regexp::Assemble module.
Its documentation says:

Regexp::Assemble takes an arbitrary number of regular expressions and
assembles them into a single regular expression (or RE) that matches all
that the individual REs match.

As a result, instead of having a large list of expressions to loop over, a tar-
get string only needs to be tested against one expression. This is interest-
ing when you have several thousand patterns to deal with. Serious effort
is made to produce the smallest pattern possible.

It is also possible to track the original patterns, so that you can determine
which, among the source patterns that form the assembled pattern, was
the one that caused the match to occur.

The example from the documentation looks like this:

use Regexp::Assemble;

my $ra = Regexp::Assemble->new;
$ra->add(‘ab+c’);
$ra->add(‘ab+-’);
$ra->add(‘a\w\d+’);
$ra->add(‘a\d+’);
print $ra->re; # prints a(?:\w?\d+|b+[-c])

Turning on pattern tracking (so you can figure out which regexp matched) is
a matter of adding a track => 1 option to the new() call above and using the
source() method. There is one fiddly bit related to pattern tracking and secu-
rity for people running versions of Perl earlier than 5.10, so be sure to read
the documentation before you start to use this feature. When you do consult
the docs, you’ll discover that the module has a fairly rich set of features. For
example, it can read the list of patterns to assemble directly from a file using
add_file(). It can also return the assembled pattern as a string so you can
store it for later use.

One last Regexp::Assemble tip to mention before moving on to our last
module of this column: Regexp::Assemble does a good job of creating “the
smallest pattern possible,” but another author has written an add-on module
called Regexp::Assemble::Compressed which purports to “assemble more
compressed regular expressions.” It is a subclass of Regexp::Assemble,
so you would use it in the same way as its parent module. I haven’t had
a chance to test it, but you might want to give it a look if smaller results
would be helpful.

Do it all at once

So far we’ve only talked about using regular expressions for matching pur-
poses. For the last module I’d like to mention, let’s consider the other main
use of regular expressions: substitution. One cool module you may not have
heard of is Regexp::Subst::Parallel, which claims to “safely perform multiple
substitutions in parallel.” Let’s take a simple example of how this could
be useful. Imagine we had to change the gender of the English words in a

APRIL_2010_loginarticles.indd 56 3.10.10 10:01:27 AM

; LO G I N : A prI L 201 0 pr AC TI C A L pE rL TO O L s : LE T M E h E Lp yO u G E T rEGu L A r 57

piece of text. If we wanted to do this by running a set of regular expressions
against the text, we’d quickly run into trouble if our code looked like this:

$text =~ s/ \bshe\b/he/;
$text =~ s/ \bhe\b/she/;
$text =~ s/ \bher\b/him/;
$text =~ s/ \bhim\b/her/;
$text =~ s/ \bfemale\b/male/;
$text =~ s/ \bmale\b/female/;

. . . and so on

Ordinarily we’d be forced to switch to a different parsing and transform
approach, but Regexp::Subst::Parallel lets us write code that will do the
intended substitutions:

use Regexp::Subst::Parallel;
my $text = subst($text,
 qr/ \bshe\b/ => ‘he’,
 qr/ \bhe\b/ => ‘she’,
 qr/ \bher\b/ => ‘him’,
 qr/ \bhim\b/ => ‘her’,
 qr/ \bfemale\b/ => ‘male’,
 qr/ \bmale\b/ => ‘female’,
);

Hopefully, after this set of tips you are feeling more regular already. Take
care, and I’ll see you next time.

APRIL_2010_loginarticles.indd 57 3.10.10 10:01:27 AM

58 ; LO G I N : VO L . 35, N O. 2

p e t e R B a e R g a lV i n

Pete’s all things Sun:
open source and free
deduplication

Peter Baer Galvin is the chief technologist for Corpo-
rate Technologies, a premier systems integrator and
VAR (www.cptech.com). Before that, Peter was the
systems manager for Brown University’s Computer
Science Department. He has written articles and
columns for many publications and is co-author of
the Operating Systems Concepts and Applied Operat-
ing Systems Concepts textbooks. As a consultant
and trainer, Peter teaches tutorials and gives talks
on security and system administration worldwide.
Peter blogs at http://www.galvin.info and twitters
as “PeterGalvin.”

pbg@cptech.com

I n t h e p r e v I o u s I s s u e o f ; LOGIN :
I concluded the column with a quick
 introduction to the new deduplication fea-
ture of OpenSolaris. In this issue of “Pete’s
All Things Sun” I dive deeper into the details
of how to gain access to that feature, how it
works, and how to use it.

overview

There is certainly a lot of industry-wide interest in
deduplication. Companies like Data Domain (now
purchased by EMC) were founded on the premise
that companies are willing to add complexity (e.g.,
appliances) in exchange for reducing the number
of blocks used to store their data. For instance,
deduplication seems to be a perfect addition to a
backup facility. Consider the power of a device that
can be a backup target: as it receives blocks of a
backup stream, it throws out blocks it has previ-
ously stored, replacing that block with a pointer to
the duplicate block.

A quick logic exercise of analyzing the types of
data that are being backed up should convince you
that there is quite a lot of duplication in general
(operating system images, binaries, and repeated
backups of the same user and application data)
and that there is quite a huge potential for savings
of disk space via deduplication. Virtual machine
images are very deduplicatable, for example, while
user and application files are less so. But even
when data is not intrinsically duplicated, from the
time it is created through its life-cycle there may
end up being many, many copies of it. Consider
that deduplication can be used as part of a business
continuance (disaster recovery) scenario, in which
the deduplicated on-disk backup is replicated to a
second site. Only sending a given block once can
be quite a savings in network bandwidth, as well as
the obvious savings of only needing enough storage
at the second site to hold one copy of each block.

It’s an established pattern in IT that a new feature
implemented first by a startup as part of a separate
product goes on to become a standard component
of other companies’ products. That pattern cer-
tainly seems true of Sun’s implementation of dedu-
plication as part of ZFS, included in an open source
and free OpenSolaris distribution. The announce-
ment of the integration of deduplication into ZFS
and details of the implementation are available in
a blog post by Jeff Bonwick, Sun’s lead engineer on
the project [1]. I would expect to see deduplication,

APRIL_2010_loginarticles.indd 58 3.10.10 10:01:27 AM

; LO G I N : A prI L 201 0 pE TE’s A LL Th I N Gs su N : O pE N s O u rCE A N d FrE E d E d u pLI C ATI O N 59

just like snapshots, thin provisioning, compression, replication, and myriad
other features, becoming a component of many storage devices. Thus, even
if you are not interested in ZFS deduplication, you may be interested in how
deduplication works and what problems it can solve.

How it works

Deduplication works by “thumb-printing,” in which an entity (either a file
or a block, typically) is checksummed, resulting in a hash value. Hashing
is very effective, providing in almost all cases a unique value for a unique
entity. If the values match, the entities are probably the same, and the new
entity is not stored; rather, a pointer is stored pointing to the already stored
matching entity.

The checksumming occurs at one of two possible times, depending on the
implementation. The checksum analysis is overhead, taking up CPU cycles
and I/O cycles as an inbound block is checksummed, and that result is
checked against the checksums of all other blocks currently stored. For that
reason and others, some implementations perform deduplication in post-
processing. That is, they store all entities on write request, and then later
compare the entities and remove duplicates. That is how NetApp dedupli-
cates on their filers.

Alternately, the deduplication can occur at the time of writing, which is how
Data Domain and ZFS deduplication works. This case takes a performance
penalty at write time, but does not use up as much space as the post-pro-
cessing method.

ZFS deduplication, as with other features of ZFS such as compression, only
works on data written after the specific feature is enabled. If a lot of data al-
ready exists in a ZFS pool, there is no native way to have that deduplicated.
Any new data will be deduplicated rather than written, but for the existing
data to be deduplicated, that data would need to be copied to another pool
(for example) or replicated to a ZFS file system with enabled deduplication.

In ZFS, once deduplication is enabled, the ZFS variable dedupratio shows
how much effect deduplication is having on data in a ZFS pool. ZFS has file
system checksumming enabled by default. Deduplication uses checksum-
ming too, and enables a “stronger” checksum for the file system when en-
abled. (,“Stronger” means less likely to have a hash collision. See Bonwick’s
blog for more details.) By default it uses sha256. As mentioned above, hash-
ing almost always results in matches only when the hashed entities exactly
match. But there is a long way between “almost” and “always.” Hashes can
have collisions in which hashes of two non-matching entities have the same
values. In those cases, there could be corruption as one entity is thrown out
and replaced by a pointer to the other entity, even though the entities are
not the same. See the discussion below about the ZFS deduplication “verify”
option for details on how to solve this problem within ZFS.

Getting to the right bits

Deduplication was integrated into OpenSolaris build 128. That takes a little
explanation. Solaris is Sun’s current commercial operating system. OpenSo-
laris has two flavors—the semiannual supportable release and the frequently
updated developer release. The current supportable release is called 2009.06
and is available for download [2]. Also at that location is the SXCE latest
build. That distribution is more like Solaris 10—a big ol’ DVD including
all the bits of all the packages. OpenSolaris is the acknowledged future of

APRIL_2010_loginarticles.indd 59 3.10.10 10:01:27 AM

60 ; LO G I N : VO L . 35, N O. 2

Solaris, including a new package manager (more like Linux) and a live-CD
image that can be booted for exploration and installed as the core release. To
that core more packages can be added via the package manager.

For this example I started by downloading the 2009.06 OpenSolaris distri-
bution. I then clicked on the desktop install icon to install OpenSolaris to
my hard drive (in this case inside VMware Fusion on Mac OS X, but it can
be installed anywhere good OSes can live). My system is now rebooted into
2009.06. The good news is that 2009.06 is a valid release to run for produc-
tion use. You can pay for support on it, and important security fixes and
patches are made available to those with a support contract. The bad news
is that deduplication is not available in that release. Rather, we need to point
my installation of OpenSolaris at a package repository that contains the
latest OpenSolaris developer release. Note that the developer release is not
supported, and performing these next steps on OpenSolaris 2009.06 makes
your system unsupported by Sun. But until an official OpenSolaris distribu-
tion ships that includes the deduplication code, this is the only way to get
ZFS deduplication.

host1$ pfexec pkg set-publisher -O http://pkg.opensolaris.org/dev
opensolaris.org
Refreshing catalog
Refreshing catalog 1/1 opensolaris.org
Caching catalogs ...

Now we tell OpenSolaris to update itself, creating a new boot environment
in which the current packages are replaced by any newer packages:

host1$ pfexec pkg image-update
Refreshing catalog
Refreshing catalog 1/1 opensolaris.org
Creating Plan . . .
DOWNLOAD PKGS FILES XFER (MB)
entire 0/690 0/21250 0.0/449.4
SUNW1394 1/690 1/21250 0.0/449.4
. . .

A clone of opensolaris-1 exists and has been updated and activated. On the
next boot the Boot Environment opensolaris-2 will be mounted on /. Reboot
when ready to switch to this updated BE. You should review the release notes
posted at [3] before rebooting.

A few hundred megabytes of downloads later, OpenSolaris adds a new grub
(on x86) boot entry as the default boot environment, pointing at the updated
version. A reboot to that new environment brings up the latest OpenSolaris
developer distribution, in this case build 129:

host1$ cat /etc/release
 OpenSolaris Development snv_129 X86
 Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
 Use is subject to license terms.
 Assembled 04 December 2009

At this point, ZFS deduplication is available in this system.

host1$ zfs get dedup rpool
NAME PROPERTY VALUE SOURCE
rpool dedup off default

APRIL_2010_loginarticles.indd 60 3.10.10 10:01:27 AM

; LO G I N : A prI L 201 0 pE TE’s A LL Th I N Gs su N : O pE N s O u rCE A N d FrE E d E d u pLI C ATI O N 61

testing Deduplication

Now that we have the deduplication bits of OpenSolaris, let’s try using them:

host1$ pfexec zfs set dedup=on rpool
cannot set property for ‘rpool’:
pool and or dataset must be upgraded to set this property or value

Hmm, the on-disk ZFS format is from the 2009.06 release. We need to up-
grade it to gain access to the deduplication feature.

host1$ zpool upgrade
This system is currently running ZFS pool version 22.

The following pools are out of date and can be upgraded. After being up-
graded, these pools will no longer be accessible by older software versions.
VER POOL
--- ------------
14 rpool

Use zpool upgrade -v for a list of available versions and their associated fea-
tures.

host1$ zpool upgrade -v
This system is currently running ZFS pool version 22.

The following versions are supported:
VER DESCRIPTION
--- --
 1 Initial ZFS version
 2 Ditto blocks (replicated metadata)
 3 Hot spares and double parity RAID-Z
 4 zpool history
 5 Compression using the gzip algorithm
 6 bootfs pool property
 7 Separate intent log devices
 8 Delegated administration
 9 refquota and refreservation properties
10 Cache devices
11 Improved scrub performance
12 Snapshot properties
13 snapused property
14 passthrough-x aclinherit
15 user/group space accounting
16 stmf property support
17 Triple-parity RAID-Z
18 Snapshot user holds
19 Log device removal
20 Compression using zle (zero-length encoding)
21 Deduplication
22 Received properties

For more information on a particular version, including supported releases, see
http://www.opensolaris.org/os/community/zfs/version/N, where N is the
version number.

host1$ pfexec zpool upgrade -a
This system is currently running ZFS pool version 22.

Successfully upgraded ‘rpool’

APRIL_2010_loginarticles.indd 61 3.10.10 10:01:27 AM

62 ; LO G I N : VO L . 35, N O. 2

Now we are ready to start using deduplication.

host1$ zfs get dedup rpool
NAME PROPERTY VALUE SOURCE
rpool dedup off default
host1$ pfexec zfs set dedup=on rpool
host1$ zfs get dedup rpool
NAME PROPERTY VALUE SOURCE
rpool dedup on local
host1$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 19.9G 10.7G 9.19G 53% 1.00x ONLINE -

To test out the space savings of deduplication, let’s start with a fresh zpool.
I added another virtual disk to my OpenSolaris virtual machine. Now let’s
make a pool, turn on deduplication, copy the same file there multiple times,
and observe the result:

host1$ pfexec zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 19.9G 10.8G 9.08G 54% 1.05x ONLINE -
host1$ pfexec zpool create test c7d1
host1$ zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 19.9G 10.8G 9.08G 54% 1.05x ONLINE -
test 19.9G 95.5K 19.9G 0% 1.00x ONLINE -
host1$ zfs get dedup test
NAME PROPERTY VALUE SOURCE
test dedup off default
host1$ pfexec zfs set dedup=on test
host1$ zfs get dedup test
NAME PROPERTY VALUE SOURCE
test dedup on local
host1$ df -kh /test
Filesystem Size Used Avail Use% Mounted on
test 20G 21K 20G 1% /test
host1$ ls -l /kernel/genunix
-rwxr-xr-x 1 root sys 3358912 2009-12-18 14:37 /kernel/genunix
host1$ pfexec cp /kernel/genunix /test/file1
host1$ pfexec cp /kernel/genunix /test/file2
host1$ pfexec cp /kernel/genunix /test/file3
host1$ pfexec cp /kernel/genunix /test/file4
host1$ pfexec cp /kernel/genunix /test/file5
host1$ df -kh /test
Filesystem Size Used Avail Use% Mounted on
test 20G 14M 20G 1% /test
host1$ zpool list test
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
test 19.9G 3.43M 19.9G 0% 4.00x ONLINE -

So, a file approximately 3MB in size and copied five times to a deduplicated
ZFS pool seemingly takes up 14MB but in reality only uses 3.43MB (this
space use must include the file, but also deduplication data structures and
other metadata).

Also, according to PSARC (architecture plan) 557, deduplication also applies
to replication, so in essence a deduplicated stream is used when replicating
data [4]. Let’s take a look. Fortunately, I have another (virtual) OpenSolaris
system to use as a target of the replication (which we will call host2):

APRIL_2010_loginarticles.indd 62 3.10.10 10:01:28 AM

; LO G I N : A prI L 201 0 pE TE’s A LL Th I N Gs su N : O pE N s O u rCE A N d FrE E d E d u pLI C ATI O N 63

host2$ pfexec zpool create test c7d1
host2$ pfexec zfs set dedup=on test
host2$ zfs list test
NAME USED AVAIL REFER MOUNTPOINT
test 73.5K 19.6G 21K /test

Now I take a snapshot on host1 (as that is the entity that can be replicated)
and send it to host2:

host1$ pfexec zfs snapshot test@dedup1
host1$ pfexec zfs send -D test@dedup1 | ssh host2 pfexec /usr/sbin/zfs
receive -v test/backup@dedup1
Password:
receiving full stream of test@dedup1 into test/backup@dedup1
received 3.30MB stream in 1 seconds (3.30MB/sec)

On the receiving end, we find:

host2$ zfs list test
NAME USED AVAIL REFER MOUNTPOINT
test 16.4M 19.6G 21K /test
host2$ zpool list test
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
test 19.9G 3.48M 19.9G 0% 5.00x ONLINE -

Sure enough, ~3MB were sent as part of the replication, and although the
receiving system thinks it has ~16MB of date, it only has ~3.4MB.

Unfortunately, the current zfs send -D functionality is only a subset of what
is really needed. With -D, within that send, a given block is only sent once
(and thus deduplicated). However, if additional duplicate blocks are writ-
ten, executing the same zfs send -D again would send the same set of blocks
again. There is no knowledge by ZFS of whether a block already exists at
the destination of the send. If there was such knowledge, then zfs send
would only transmit a given block once to a given target. In that case ZFS
could become an even better replacement for backup tape: a ZFS system in
production replicating to a ZFS system at a DR site, only sending blocks that
the DR site has not seen before. Hopefully, such functionality is in the ZFS
development pipeline.

Let’s try that final experiment. First I’ll create more copies of the file, then
create another snapshot and send it to host2:

host1$ pfexec cp /kernel/genunix /test/file6
host1$ pfexec cp /kernel/genunix /test/file7
host1$ pfexec cp /kernel/genunix /test/file8
host1$ pfexec cp /kernel/genunix /test/file9
host1$ df -kh /test
Filesystem Size Used Avail Use% Mounted on
test 20G 30M 20G 1% /test
host1$ zpool list test
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
test 19.9G 3.45M 19.9G 0% 9.00x ONLINE -
host1$ pfexec zfs snapshot test@dedup2
host1$ pfexec zfs send -D test@dedup2 | ssh host2 pfexec /usr/sbin/zfs
receive -v test/backup2@dedup2
Password:
receiving full stream of test@dedup2 into test/backup2@dedup2
received 3.34MB stream in 1 seconds (3.34MB/sec)

APRIL_2010_loginarticles.indd 63 3.10.10 10:01:28 AM

64 ; LO G I N : VO L . 35, N O. 2

Note that, even though host2 already had all the blocks it needed, one copy
of the file was sent again because the sending host has no knowledge of
what the receiving host already has stored. On the receiving side:

host2$ df -kh /test/backup
Filesystem Size Used Avail Use% Mounted on
test/backup 20G 17M 20G 1% /test/backup
host2$ df -kh /test/backup2
Filesystem Size Used Avail Use% Mounted on
test/backup2 20G 30M 20G 1% /test/backup2
host2$ zpool list test
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
test 19.9G 3.46M 19.9G 0% 14.00x ONLINE -

Even though host2 was sent the extraneous copy of the file, it discarded it,
leaving it to store only one copy of the file.

additional analysis

No hash algorithm is perfect, in that two blocks only have the same hash
if they are exactly the same. There is a very small chance that two blocks
could have matching hashes even if they are not identical. By default ZFS
trusts the hash values and will declare a block to be a duplicate if the hash
matches. To increase safety you can set ZFS to do a byte-by-byte comparison
of two blocks if the hashes match, to ensure that the blocks are identical
before declaring them to be duplicates.

$ pfexec zfs set dedup=verify rpool

Of course this will negatively affect performance, using more CPU time per
duplicate block.

On another performance note, the jury is still out on the performance im-
pact of deduplication in ZFS. Theoretically, the increased overhead of check-
ing for an existing matching hash whenever a block is about to be written
may be counterbalanced by the saved write I/Os when there is a duplicate
block that need not be written. But, in fact, it is too early to tell what the net
result will be.

Deduplication can cause a bit of confusion about exactly what is using how
much space. For example, the results of du can be grossly wrong if the data
in the directories has been well deduplicated. Only zpool list is dedupe-
aware at this point. df and even other ZFS commands are not aware of
deduplication and will not provide use information taking deduplication
into account.

Conclusion

As it stands, ZFS deduplication is a powerful new feature. Once integrated
into production-ready operating system releases and appliances, it could
provide a breakthrough in low-cost data reduction and management. I plan
to track that progress here, so stay tuned. For more details on the current
state of ZFS deduplication, including bugs, features, and performance, please
see the ZFS wiki [5].

tidbits

As of this writing, Oracle has just acquired Sun Microsystems. Likely this
will mean long-term changes with respect to which of Sun’s products come

APRIL_2010_loginarticles.indd 64 3.10.10 10:01:28 AM

; LO G I N : A prI L 201 0 pE TE’s A LL Th I N Gs su N : O pE N s O u rCE A N d FrE E d E d u pLI C ATI O N 65

to market and how Sun customers continue on as Oracle/Sun customers.
At first blush (and first announcement), however, there seem to be very few
changes for Sun customers. There were no massive layoff announcements
(as some analysts had predicted), and so far, very little change in product
direction. SPARC and x86 servers, storage arrays, Java, and Solaris all ap-
pear to have bright futures, as Oracle not only continues those products
but increases the R&D budgets for most of them. At least in the immediate
shadow of the merger, all seems to be well in Sun’s product portfolio and
direction. For more details on Sun under Oracle, including replays of the
Oracle presentations about the purchase, have a look at http://www.oracle
.com/us/sun/.

refereNCeS

[1] http://blogs.sun.com/bonwick/entry/zfs_dedup.

[2] http://www.opensolaris.com/get/index.jsp.

[3] http://opensolaris.org/os/project/indiana/resources/relnotes/200906/x86/.

[4] http://arc.opensolaris.org/caselog/PSARC/2009/557/20091013_lori.alt.

[5] http://hub.opensolaris.org/bin/view/Community+Group+zfs/dedup.

APRIL_2010_loginarticles.indd 65 3.10.10 10:01:28 AM

66 ; LO G I N : VO L . 35, N O. 2

d a V e J o s e p h s e n

iVoyeur: a question
of scale

Dave Josephsen is the author of Building a Moni-
toring Infrastructure with Nagios (Prentice Hall
PTR, 2007) and is senior systems engineer at DBG,
Inc., where he maintains a gaggle of geographi-
cally dispersed server farms. He won LISA ’04’s
Best Paper award for his co-authored work on
spam mitigation, and he donates his spare time to
the SourceMage GNU Linux Project.

dave-usenix@skeptech.org

“ m u s t I r e a l ly b e l e c t u r e d e v e r y
time I want to use the Internet?!” demands
my wife, looking at me over the lid of the
laptop. This strikes me as the sort of ques-
tion that warrants a politically savvy answer
but I, as usual, am at a loss.

“Sorry?” I reply.

“It’s always going on about how the local sysadmin
should be lecturing me and what great power I’m
being given. There’s a word for this, what is it? Oh
yes, annoying.”

Ah-hah. The rest I can guess; she picked up my
laptop wanting to get online and, finding it con-
figured for the office network, has opened a term
to run the script to reconfigure it for the home
network. Upon typing “sudo home eth0”, she was
presented with sudo’s “Are you sure you know
what you’re doing?” prompt. You’ve seen it, I’m
sure. It looks something like this:

We trust you have received the usual lecture
from the local System Administrator. It usually
boils down to these three things:
#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

Great responsibility indeed. On the right box and
in the wrong hands all manner of mischief might
ensue. Millions of stolen credit cards, mixed up
MRIs, disabled battleships, who knows? Sudo
doesn’t. Linux is a scalable beast if nothing else; we
might be running on a wristwatch, or we might be
running on . . . well, something really big, but, ei-
ther way, sudo cautions us with the same message.

Although no doubt annoying to the wives of the
world’s techno-curmudgeons, it is the mark of
great software that it scales beyond the architec-
ture it was intended to run on. There’s probably a
natural law inherent here; I can only imagine what
the spouses of typical VoIP systems engineers have
to endure. By this yardstick, however, some classes
of software that we sysadmins rely upon daily
fall surprisingly short. This being a monitoring
column, it shouldn’t be hard for the reader to guess
the general area on which my gaze is currently
falling.

Every monitoring system I’ve ever worked with,
from lofty Open View to humble Big Brother, has
scalability problems. So, at least in the context of
systems monitoring, I don’t think this is necessar-
ily endemic of bad design. Rather, my suspicion,
simply stated, is that monitoring 1,000 services is

APRIL_2010_loginarticles.indd 66 3.10.10 10:01:28 AM

; LO G I N : A prI L 201 0 I VOy Eu r : A Qu EsTI O N O F sC A LE 67

in fact an entirely different problem from monitoring 100,000 services. Like
the difference between crossing the Pacific by air and by orbit, the problems
are closely related, separated mostly by scale, and require drastically dif-
ferent design considerations. We shouldn’t be surprised to find the vehicle
designed to make both trips a bit unwieldy.

Even my beloved Nagios has well publicized [1] scalability issues on the
high end, but it has one thing going for it that other monitoring systems do
not: the Event Broker. Over the years, sysadmins have come up with some
pretty kludgy solutions to work around Nagios’s scalability problems, so in
this month’s article I’d like to share with you two (in my opinion) very el-
egant Event Broker–based solutions for scaling Nagios to very large environ-
ments.

DNx

If you attended LISA ’09’s Nagios Guru session, you met Kyle Martin and
Adam Augustine from The Church of Jesus Christ of Latter-day Saints, who
spoke in depth about Nagios and Unnoc. What I wish they had been there
to talk about, however, was their excellent Event Broker module “DNX” (Dis-
tributed Nagios eXecutor) [2].

As you probably already know, a normal Nagios server executes host and
service checks by scheduling the execution of small, single-purpose, locally
stored programs called plug-ins. These programs may be written in any
language and can do any sort of checking, as long as they return standard-
ized output back to the Nagios daemon to interpret. A DNX-enabled Nagios
server does pretty much the same thing, with the small exception that just
before Nagios executes the plug-in, the DNX event broker module wakes
up, and checks to see if any subordinate worker nodes have asked for jobs
to execute. If a worker node has asked for a job, the DNX module hands the
service check to the worker node instead.

Worker nodes are remote machines in the network that are not running
Nagios but have a copy of the Nagios plug-ins and are running the DNX
client. The client software is run from init and requests jobs from the central
Nagios host on a regular basis. They request and receive a job from the
central Nagios server using a network socket and then perform the task and
provide the input back to the Nagios server on a different socket.

If a worker node goes down, it, ipso facto, stops requesting jobs from the
Nagios server. If a worker node goes down after it’s been given a job and
before it returns the status of that job, the check will time out and Nagios
will reschedule it. If all the worker nodes go down, the DNX module will
not have any available worker nodes to hand jobs to, and Nagios will operate
as it normally does.

The Church reports running 2000 checks per minute with their DNX setup
(10,000 checks in a five-minute interval) [3], and they feel it could go much
higher. Steven Morrey reported to the Nagios-devel list that the Church’s
Nagios daemon spends two-thirds of its time reaping check results from
the results ring-buffer [4], which is promising news. A DNX-enabled Nagios
server is limited mainly by the speed of the reaper process.

DNX requires no modification to your existing configuration files beyond
the addition of a single line to your Nagios.cfg to load the module. No repli-
cation of configuration to the client nodes is required, as there would be to
configure passive checks. The clients need to know where the server is, the
server needs to know what clients are allowed to connect, and that’s about

APRIL_2010_loginarticles.indd 67 3.10.10 10:01:28 AM

68 ; LO G I N : VO L . 35, N O. 2

it; configuration is as easy as it gets for a Nagios box. Simple, efficient, and
elegant, DNX is such great design that it makes me want to buy those folks
beer . . . or whatever it is that’s analogous to beer in their universe.

op5 merlin

Merlin (Module for Endless Redundancy and Loadbalancing In Nagios) is,
by comparison, a fair bit more difficult to describe. This is because its goals
are—despite the name—appreciably loftier than redundancy and load bal-
ancing [5].

If you’ve read any of my previous articles about the Event Broker, then you
know the Broker allows you to hook into pretty much any aspect of
a running Nagios daemon by allowing your module to register for callbacks,
which trigger when an event happens. The expectation is that a
given module will register for the event types it is interested in, and do
something useful with the event callbacks it’s given. DNX, for example,
registers for the NEBCALLBACK_SERVICE_CHECK_DATA callback and uses
the NEBTYPE_SERVICECHECK_INITIATE event to preempt service check
execution and insert its own load-balancing framework.

Rather than registering for a particular callback and writing event handler
functions inside the module, Merlin registers for all callbacks and exports
them all to an external daemon to handle. The Merlin daemon gets events
from the Merlin module inside the Nagios daemon and either sends them to
other Merlin daemons on other systems or to a database of your choosing.
Events that come from other Merlin daemons can be injected back into a
running Nagios daemon via the Merlin Event Broker module.

So there are two very powerful things that Merlin makes possible. The first
is database synchronization (and a far better, more usable DB synchroniza-
tion than NDOUtils, in my opinion), which in turn enables all manner of
third-party UIs, add-ons, data export, and backup scenarios. The second,
and more topical for our current purposes, is load balancing, clustering, and
failover. With Merlin, it’s possible to update the state of one Nagios daemon
with events generated by another, remote Nagios daemon. In fact, the Merlin
developers describe Merlin as a “cross-host event transportation layer,” and
this is an accurate description. Indeed, given the extent to which Nagios
stores state data in memory, I find myself thinking of Merlin as a cluster
shared memory system reminiscent of the SGI Onyx.

The possibilities here are pretty interesting. DNX-like arrangements may be
created where “master” Nagios daemons send their checks to subservient
Nagios daemons for processing, peering clusters may be set up where two or
more Nagios daemons cooperate and update each other, or various permu-
tations of the two may be achieved. A single Nagios daemon, for example,
may be a peer to its peers, a master to its nodes, and a node to its masters,
all at the same time. More complex relationships are also possible whereby,
for example, a rollup server in Chicago might collect and display the state of
remotely administered daemons in India, Brazil, and Australia.

I’m not able to find any solid information on the practical upper limits of a
“Merlinized” Nagios cluster. The op5 folks seem to believe protocol overhead
to be the primary limiting factor. An interesting question (at least to me)
is whether DNX and Merlin could help each other scale. For example, one
could imagine a DNX cluster with multiple master nodes sharing the reaper
load via the Merlin protocol. Such an arrangement would minimize the over-
head wrought by the Merlin protocol as well as share the reaper load, while
at the same time helping to minimize the amount of configuration necessary,

APRIL_2010_loginarticles.indd 68 3.10.10 10:01:28 AM

; LO G I N : A prI L 201 0 I VOy Eu r : A Qu EsTI O N O F sC A LE 69

since DNX doesn’t require full Nagios installations for load balancing the
way Merlin does.

I’ve been really excited about both of these projects for a while now. They’re
both just the kind of great tools I envisioned when the Nagios Event Broker
interface was first implemented, and I look forward to the day that add-ons
like this are the norm.

I should get going—my wife just got her first Nagios pages about the Pepsi
supply falling below the warning threshold.

Take it easy.

refereNCeS

[1] Carson Gaspar’s invited talk at LISA ’07: “Deploying Nagios in a Large
Enterprise Environment”: http://www.usenix.org/media/events/lisa07/tech/
videos/gaspar.mp4.

[2] DNX Home: http://dnx.sourceforge.net/.

[3] About DNX: http://dnx.sourceforge.net/about.html.

[4] Nagios dev archives: http://archive.netbsd.se/?ml=nagios-devel&a
=2009-09&t=11599144.

[5] Merlin: http://www.op5.org/community/projects/merlin.

APRIL_2010_loginarticles.indd 69 3.10.10 10:01:28 AM

70 ; LO G I N : VO L . 35, N O. 2

R o B e R t g . F e R R e l l

/dev/random: less
successful network
protocols
Robert G. Ferrell is an information security geek
biding his time until that genius grant finally comes
through.

rgferrell@gmail.com

I s p e n t s o m e t I m e I n t h e ’9 0 s w o r k-
ing with the IETF, and during those heady
formative years of the public Internet there
were a number of ideas that, for one rea-
son or another, never truly made it into
the technology mainstream. We can only
speculate over a biscotti and scalding hot
chai latte whatever became of the sincere
but misguided proponents of these ill-fated
engineering marvels. My guess would be
the Senate Banking Committee.

Nippon Transport Protocol: A well-designed,
robust competitor for TCP/IP with one fatal draw-
back: instead of exchanging handshake packets
during connection negotiation, the nodes merely
bowed to one another. For reasons never fully elu-
cidated, the negotiation was considerably facilitated
by the presence of raw seafood and rice wine.

Tokin’ Ring Interface Protocol: An early entrant
in the LAN collision-avoidance arena, Tokin’ Ring
suffered from two basic issues: the nodes involved
often forgot which one of them was supposed to
be broadcasting, and the ones who did broad-
cast tended to send the same packet out multiple
times. Fragmentation and reassembly were mostly
randomized, which had rather deleterious effects
on information integrity. This topology was also
highly susceptible to a specific race condition
known as “The Munchies.”

SewNET: This protocol actually considerably
predates the digital era, but was formalized as an
emergency information sharing topology in the
event of widespread failure of the telecommu-
nications infrastructure due to natural disaster,
coordinated terrorist attack, or forgetting to pay the
phone bill again. It relies on the apparent quantum
phenomenon known colloquially as “gossip en-
tanglement,” whereby information provided to one
sewing/knitting circle (also works with most book
clubs) is simultaneously shared with all of them, no
matter how widely dispersed geographically.

Interurban Coordinated Ballistic Messaging: An
update to the messenger pigeon concept (see RFC
1149) using model rocketry. Bandwidth was rather
limited in the early days, but with the advent of
flash memory and other solid-state storage tech-
nologies this isn’t really an issue any longer. This
protocol is still decidedly connectionless, and
quite frankly makes UDP look like the epitome of

APRIL_2010_loginarticles.indd 70 3.10.10 10:01:28 AM

; LO G I N : A prI L 201 0 / d E V/ r A N d OM : LEss suCCEssFu L N E T wO rk prOTO CO L s 71

reliable communication, but the adrenalin factor is unsurpassed in the met-
ropolitan area networking arena.

Dynamic Hostess Control Protocol: Developed for use in Internet cafes,
this protocol provided a weighted hierarchical scheme for ensuring that
wait staff were evenly distributed among patrons, even during shift changes.
It had no provisions for authentication or data integrity, however, and the
inevitable competition among hungry/thirsty hackers that quickly ensued
hopelessly clogged the control channel with conflicting instructions. This
was the original denial of service attack. As a result, a related and salutary
technology, Tip Calculation Protocol, sadly never really matured.

Trivia Data Transfer Protocol: A protocol broadly employed by social
networking sites, designed especially for handling acronyms, abbreviations,
emoticons, and the abomination that is tweeting. Collectively, these fall
under the ASSKEY text standard.

NoTelnet: An experimental database protocol in use for a while by certain
segments of the hospitality industry and characterized by randomly assigned
last name fields hard coded with “Smith,” “Jones,” or, in the international
version, “Patel.” Eventually discarded at the request of the law enforcement
community. Elements of the technology were later incorporated into generat-
ing the “no-fly” list adopted by the TSA.

Internet Chaff Relay: The short-lived predecessor to Twitter; see TDTP.

NutBIOS: A file-sharing protocol developed for use in the conspiracy theory
community. Allows for user-generated handles such as NoLoneGunman,
FakedMoonLanding, and ClimateChangeIsALie. Not compatible with smart
cards.

Lightweight Dumb User Management Protocol: A simplified protocol in-
tended to automate certain system administration tasks and provide canned
responses to a wide variety of common requests from userland. Contains
preset functions for issuing new passwords, finding the power button,
restarting services killed by user error, and, most importantly, a randomized
list of interesting Web sites to distract users when they get a “Please Contact
Your System Administrator” error message.

Chaotic Resolution Addressing Protocol: A malicious protocol installed
on compromised routers and gateways that arbitrarily changes destination
addresses on incoming packets originating from machines with Webcams
and posts the resulting puzzled/angry/oblivious user videos to share sites.
Harbinger of the Antisocial Networking movement.

File transfer Incorporating Super Heterodyne Networks (FISHNet):
An eccentric attempt to use nearby AM radios for file sharing. Difficulties
encountered included the need to install tuning capacitors into modems
and susceptibility to electrical interference from vacuum cleaners, blenders,
and garbage disposals. Abandoned when it was realized that files with adult
content could be inadvertently intercepted by neighborhood children with
dental appliances.

Nethernet: A protocol employed by certain elements of the computer under-
ground, mostly for bragging about their latest lame Web defacements, asking
each other for keys to pirated software, and pretending to have read and
understood anything in The Anarchist Cookbook. Finally brought to its knees
by script kiddies whining, “Teach me to be a hacker!!!!”

IPSex: On sober reflection, this probably isn’t the proper forum for discuss-
ing this one. I’ll be happy to host a technical poster session and BoF round-
table during happy hour at the Lion and Rose next Friday.

APRIL_2010_loginarticles.indd 71 3.10.10 10:01:28 AM

72 ; LO G I N : VO L . 35, N O. 2

book reviews

e l i z a B e t h z w i c k y
w i t h B R a n d o n c h i n g

a pr actic al guide to linux :
 commands, editors, and shell
progr amming
Mark G. Sobell

Prentice Hall, 2010. 988 pp.
ISBN 978-0-13-136736-4

This book is ideal for somebody who’s bright,
motivated, and ready to go beyond the GUI
on Linux or OS X, particularly if they also
need to deal with those of us who are not
so much beyond the GUI as before the GUI.
I could quibble with a large number of its
choices, but mostly I’m arguing about matters
of taste, and about the inevitable compro-
mises that are made when you try to cram a
really large set of stuff with poorly defined
boundaries into a book, which has to start
somewhere, end somewhere else, and still be
possible to lift. If you’ve got people around
who can learn things from books and who
really need to be able to cope with the magi-
cal world of the UNIX command line and
twisty mazes of pipes as they were intended
to be, this is a great book to have around.

Here are some of the important choices the
author made: first, the book is as platform-
agnostic as possible. That means there are
fascinating platform-dependent features that
aren’t covered. If you want to know every bell
and whistle, you’ll need something specific
to your platform, and probably to some small
set of releases. I don’t see that as a big deal,
because I think the important things to start
with are the things that carry across plat-
forms.

Second, the book covers commands, not internals.
This is a hard line to draw, and in some cases I
think this is problematic. Without understanding
something about file systems, it’s hard to make any
sense of hard and soft links, or of holes in files.
The author does his best, but it’s often not exactly
correct, or it’s confusing. I’m not sure there’s any
winning this one, as many of the people who most
need to understand the internals think of them
as irrelevant or intimidating, and talking about
internals only worsens the problems with cross-
platform compatibility.

Third, the book covers programming, without
assuming any programming experience. I think
this is a valiant effort, but I’m dubious about how
well it’s going to serve most naive readers. If you
don’t understand if-then constructs, you’re going to
need more help than this book can offer, and you
probably ought to learn to program in something,
anything, before you dive into writing shell scripts.
On the other hand, there are some brave, even
foolhardy, souls out there (I may have been one of
them) who can actually use this sort of thing.

I would have chosen a different set of commands
to cover (personally, I’ve always found dc more
useful than sed, not that I’ve used either in years),
but that’s very much a question of taste. Even
more pettily, I twitch every time I see “TC shell.” I
don’t suppose there’s a solution a copy editor won’t
whine about, but “T C shell” would at least get
across the idea that it’s a kind of C shell.

But, as I said, this is all quibbling. Fundamentally,
it’s a strong book that goes a long way toward
bridging the gap between good old-fashioned
UNIX hackers and those whippersnappers who
only know Linux or Macintoshes.

inside c yber warfare
Jeffrey Carr

O’Reilly, 2010. 205 pp.
ISBN 978-0-596-80215-8

Here’s another book that faces some nasty chal-
lenges. In the case of cyber warfare, the problem is
that it is difficult to know anything with certainty,
and what you do know it is probably unethical to
talk about. For instance, if you know for certain
that our country is vulnerable to certain sorts of
attacks, how much can you say about that? What’s
the line between proving that you do know what
you’re talking about, and enabling idiots to cripple
vital national infrastructure? Note that any secu-
rity practitioner of a reasonable degree of expertise
knows at least one way to cripple vital national

APRIL_2010_loginarticles.indd 72 3.10.10 10:01:28 AM

; LO G I N : A prI L 201 0 B O O k rE V I Ews 73

infrastructure without unreasonable expen-
diture of resources, and most of them have
been known to hang out in groups chatting
about these things. But one must assume that
there are lots of ill-intentioned people out
there who don’t know how, and you wouldn’t
want to draw them a map.

Then there’s the question of just who is at-
tacking whom and why. It’s really not in the
best interest of any ill-intentioned party for
this to be clear. Who’s in it for the money?
Who’s in it for politics? Who’s linked to a
government? Nobody wants you to know
this. If you’re in it for the money, it’s to your
advantage to make people think you have
political goals and government sponsorship.
If you’re in it for the politics, you prob-
ably want to hide among the garden-variety
criminals. If you’re a government sponsor-
ing attacks, you really don’t want anybody to
know. And if you’ve found out for certain?
Well, how much would you like to annoy
some political terrorists, organized crime,
and a hostile government or two? Plus, quite
likely, all the people trying to foil them? That’s
a lot of people with the knowledge and abil-
ity to use various kinds of unpleasant force
against you, so you don’t have a lot of incen-
tive to go telling people what you know.

On the plus side, spies are kind of fascinat-
ing, and attacks against networks are an
immediate threat to almost everybody, so
there’s a lot of potential interest in a book
about cyber warfare. Unfortunately, this book
doesn’t manage to make the most of that po-
tential. It does manage to make a convincing
case that cyber warfare exists, mostly in the
form of collusion between governments and
non-governmental entities, and that the laws
of war allow nations to do stuff about it. But
it’s not a fun ride, for both editorial reasons
and technical ones.

The book is patched together from a number
of sources (the author might more reason-
ably be described as a contributing editor,
since whole chapters are written by other
people). The seams show, often badly, in the
form of differing tone, style, and background
assumptions, and in the lack of an overarch-
ing structure to the book. Worse yet, there
are straightforward editorial errors, such as
content repeated between chapters appar-
ently unintentionally.

There are also some significant technical flaws. It
is not fair to say that anti-virus solutions are always
based on signature detection; there are heuristic-
based solutions available now, which work by
looking at behavior rather than signatures, and that
hardly begins to scratch the surface of what’s pos-
sible, particularly in secured environments. Simi-
larly, complaining that Microsoft Word’s binary
format is bad because you can’t detect hostile con-
tent by human visual inspection is just silly. Trust
me, it could say “VIRUS HERE” in the source, and
nobody would notice.

Personally, I think there are important lessons here
for various people I know who are worried about
controlling corporate environments against gov-
ernment-sponsored spying. First, even in military
environments, people are terrible about informa-
tion security. That is, people who have been made
to sit in small rooms while people with guns tell
them about the vital need for secrecy still discuss
their jobs on Facebook. You might as well give up
on getting your employees to keep their employer
a secret. (Particularly if you give your employees
things to wear in public with your logo on them.)

Second, governments do a lot of their cyber at-
tacks via third, fourth, and fifth parties, who are
the same sometimes-smart sometimes-not crew
who bring you spam. You can stop worrying about
whether or not you’re being attacked by a govern-
ment, because you’re never going to know. On the
other hand, there’s also no point just deciding you
can’t defend against a government, because most
of the time, they’re not going to be any brighter or
better resourced than the usual range of attackers.

All of this is in the book, but this is my inter-
pretation, which doesn’t particularly relate to the
author’s. To the extent that the book has a clear
audience, it’s aimed at government, rather than
business.

introducing statistics :
a gr aphic guide
Eileen Magnello and Borin Van Loon

Totem Books, 2009. 174 pp.
ISBN 978-184831056-8

Another entry into the list of “statistics through
pictures” books. Head First Statistics is still my
favorite for practical statistics, but this is a fun tour
of statistics, concentrating on history but picking
up the numbers on the way past. The illustrations
are both practical and amusing, the examples are
mostly drawn from real data, and it covers the im-
portant common statistical flaws. It’s a whirlwind

APRIL_2010_loginarticles.indd 73 3.10.10 10:01:28 AM

74 ; LO G I N : VO L . 35, N O. 2

tour rather than an in-depth introduction,
and it covers a lot of territory, so it’s easy
to scan quickly without absorbing. If you’re
looking for something non-threatening that
gives you a sense of the historical back-
ground, this is a fun choice, but you’ll need
more help to actually run the numbers.

hard facts, dangerous half-
truths & total nonsense :
profiting from evidence-based
management
Jeffrey Pfeffer and Robert I. Sutton

Harvard Business School Press, 2006. 264 pp.
ISBN 978-1-59139-862-2

This is quite possibly the geekiest business
book ever, because its main thesis is that you
ought to actually care about data when decid-
ing how to do management. Interestingly, the
net result of paying attention to data is that
you prefer a management style that involves
being nice (for some definition of nice). It’s
hard to avoid the desire to be intolerably
snide about some of this, since it is over-
whelmingly pleasant to be able to say, “Actu-
ally, people have done studies, and behaving
like a reasonable human being? It’s not just a
good idea! It’s what actually works!”

Get this book if you have the nagging feeling
that there is something horribly wrong with
your management culture, particularly if
what’s bothering you is an insatiable desire
for apparently pointless change, or a rigid
adherence to the idea that one must reward
the top performers and get rid of the bottom
ones, always, in every group no matter how
small and how talented. It will not neces-
sarily enable you to change your company,
but at least you will no longer feel alone, or
believe that this is your problem. There are
people in suits with degrees in management
who feel just like you and are at least as
angry about it, only they have more research
and a publisher.

web design for developers :
a progr ammer’s guide to
design tools and techniques
Brian P. Hogan

Pragmatic Bookshelf, 2009. 311 pp.
ISBN 978-1934356135

re v Iewed by b r a n d o n ch In g

Few people outside of Web development under-
stand the difference between a Web designer and
a Web developer. This distinction, while subtle in
conversation, is considerable in application. Web
developers like myself generally do not do design
very well. We know what looks good, but we won’t
always be able to make an application as pretty as
someone with an eye for art and a heart for design.

Enter Brian Hogan and Web Design for Developers.
Unlike general Web design and CSS books, Web
Design for Developers takes a look at approaching
design through the eyes of a programmer. This
isn’t a CSS handbook or a high-in-the-sky artsy
design guide; it is a no-nonsense guide to the basic
principles and techniques that make for visually
appealing Web applications.

The author’s writing is very approachable and to
the point, yet full of enough content and whim to
keep it interesting. Under the guise of redesigning
a recipe-sharing application, the author guides you
through the process of beautifying an existing site
as opposed to designing one from scratch. The text
is full of references to Web sites, design guides, and
helpful utilities, such as color tools, which will aid
any aspiring artistic programmer.

The book has four sections: The Basics of Design,
Adding Graphics, Building the Site, and Prepar-
ing for Launch. The Basics of Design covers the
fundamentals of requirements gathering and design
planning. The first two chapters deal with client
communication procedures and the basics of idea
generation and requirements gathering. While not
intended to be all-inclusive or in-depth, the cover-
age should be sufficient for most developers. Re-
member, this book is geared towards professional
developers who are assumed to already have at
least a rudimentary grasp of how to tease require-
ments from clients.

The remaining two chapters of this section quickly
get to the heart of what most artistically chal-
lenged developers are after: style, and I don’t mean
CSS. Hogan presents two fluid and fundamental
chapters on colors and fonts. He breaks down basic
artistic design principles such as color schemes,
color mood, font types, and font selection. While
not terribly interesting, colors and fonts are the

APRIL_2010_loginarticles.indd 74 3.10.10 10:01:29 AM

; LO G I N : A prI L 201 0 B O O k rE V I Ews 75

meat and potatoes of good Web design, and
Hogan does a good job of conveying what
you need to know about both.

Weighing in at a light 40 pages, Adding
Graphics is a short and to-the-point intro-
duction to using Photoshop to generate the
logo and mock-up for the site. This is not
the place to learn Photoshop techniques for
the Web, but that is not the intention of this
section. Rather, Hogan provides formatting
and layout principles of mock-ups while also
introducing the Photoshop tools and tech-
niques (such as layering and masks) that you
will need to reproduce them.

The third section, Building the Site, is where
we finally break into the code! Now, given
that this book is dedicated to professional
developers, I’m not entirely sure why there
is an entire chapter dedicated to HTML tags
and compliance. These are things that the
book’s target audience should already be
intimately familiar with. However, the next
few chapters in this section are quite handy,
in that they deal with asset creation from the
mock-up generated earlier in the book, the
integration of CSS to define the layout, CSS/

browser compatibility issues, and even a chapter on
printer-friendly tweaks.

The final section, Preparing for Launch, is a
hodgepodge of topics that any designer or devel-
oper needs to be aware of. Topics include a more
in-depth analysis of browser compatibility, search
engine optimization, accessibility and usability,
mobile device support, testing and performance,
and even a brief chapter on favicon creation. The
chapters on mobile content and browser compat-
ibility are good, but the chapter on accessibility
and usability is exceptional, covering issues such as
color blindness and hearing and motor impairment
and telling you what you need to do about them.

Overall, Web Design for Developers is a bookshelf-
worthy buy. While the title suggests professional
developers as the target audience, I would venture
to say that it would be more useful to novice and
intermediate-level developers, as a significant por-
tion of the book covers material that most profes-
sional developers would already know. However,
the principles of design, general designer tips,
layout and mock-up techniques, color and font
selection, and the accessibility and usability sec-
tions are definite jewels that artistically challenged
developers should at least take a look at.

APRIL_2010_loginarticles.indd 75 3.10.10 10:01:29 AM

USENIX
notes

76 ; LO G I N : VO L . 35, N O. 2

us e n ix m e m b e r b e n e f iT s

Members of the USENIX Association
 receive the following benefits:

free subscrIp tIon to ;login:, the Associa-
tion’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns
on such topics as security, Perl, net-
works, and operating systems, book
reviews, and summaries of sessions
at USENIX conferences.

access to ; lo gIn : online from October
1997 to this month:
www.usenix.org/publications/login/.

dIscounts on registration fees for all
 USENIX conferences.

specIal dIscounts on a variety of prod-
ucts, books, software, and periodi-
cals: www.usenix.org/membership/
specialdisc.html.

the rIght to vote on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

for more Infor m atIon regarding mem-
bership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

u s e n i x b OA r D O f D i r ec TO r s

Communicate directly with the
 USENIX Board of Directors by
writing to board@usenix.org.

Presiden t

Clem Cole, Intel
clem@usenix.org

V i ce Presiden t

Margo Seltzer, Harvard School of
Engineering and Applied Sciences
margo@usenix.org

secre ta ry

Alva Couch, Tufts University
alva@usenix.org

tre a surer

Brian Noble, University of Michigan
brian@usenix.org

direc tor s

Matt Blaze, University of Pennsylvania
matt@usenix.org

Gerald Carter,
Samba.org/Likewise Software
jerry@usenix.org

Rémy Evard, Novartis
remy@usenix.org

Niels Provos, Google
niels@usenix.org

e xecutiVe direc tor

Ellie Young,
ellie@usenix.org

i n m e mO r i A m :
Le wi s A . L Aw, 1 932 –2 01 0

Lou Katz, Founding President, USENIX
Association, and Peter H. Salus, former
Executive Director, USENIX Association

It was with great sadness that we heard of
the death of Lew Law, who served as the
first Secretary of the USENIX Association.
When the first organizational meeting
was held, at Columbia University in May
1978, Lew was selected as a representative
of universities, as was Mel Ferenz. Mars
Gralia was selected to represent govern-
ment labs, and Peter Weiner came from a
commercial UNIX site. Lou Katz was the
fifth wheel, selected to give the organiz-
ing board an odd number of (equally odd)
people. Lew was elected chairman of this
organizational committee.

Ultimately, Mel was made Treasurer of the
nascent organization, Lew received the
role of Secretary, and Lou Katz was elected
President. In his role as Secretary, Lew was
an amazing asset. His meeting minutes
were not merely simple recitals of those
present and of votes on motions. Rather,
they summarized in a very readable form
the discussions that had taken place, so
that readers could see not only what deci-
sions had been taken but what consider-
ations had led to the decisions.

The committee of which Lew was voted
the chairman had “the purpose of propos-
ing a set of bylaws for an organization of
users of UNIX* installations. . . . The name
of the committee shall be the USENIX**
committee.” The name USENIX was
coined by Lew’s wife, Margaret.

Lew died on Sunday, February 14, 2010,
after a long struggle with Alzheimer’s
disease. He was 77. Born June 18, 1932,
in Rubery, England, he attended Kings
Norton Grammer School in Birmingham
and graduated from Birmingham Uni-
versity with a B.S. in Physics in 1953
and from Northeastern University with a
Master’s degree in Electrical Engineering in
1972. Prior to Lew’s position as Assistant
and then Associate Director at the Harvard
University Science Center, he was the head
of the Electronics Group at the Harvard/
MIT Cambridge Electron Accelerator. He
started the computer group at the Science
Center in 1975; when he finally retired,

APRIL_2010_loginarticles.indd 76 3.10.10 10:01:29 AM

; LO G I N : A prI L 201 0 usE N IX N OTEs 77

he was Director of Computer Services
for the Faculty of Arts and Sciences. He
and Margaret had been married for 52
years.

Lew had a wicked sense of humor. In
the paragraph above, his footnotes to
the asterisks read:

* UNIX is a trademark of Bell Laborato-
ries, Inc.

** USENIX is not a trademark of Bell
Laboratories, Inc.

After frustrations with AT&T lawyers
about the UNIX manuals, Lew had
announced in ;login:, 30 April 1976,
that he was “willing to undertake the
task of duplicating and distributing the
manuals for UNIX . . . The ‘UNIX PRO-
GRAMMER’S MANUAL’ Sixth Edition
dated May 1975 will be reproduced in
its entirety.” Two years later, in March

1978, Lew announced the availability
of the PWB [Programmer’s Workbench]
manuals in four volumes (at $26.50!).

Lew served on the USENIX Board of
Directors until 1986, and he was active
at meetings for another decade.

I (Lou Katz) have always consid-
ered Lew to be the rock upon which
USENIX was built. I could always rely
upon him to give clear and useful ad-
vice and not get entangled in the idio-
syncrasies, personalities, or irrationali-
ties of the players, and many times he
helped me to get past/through/around
ridiculous, annoying, or infuriating
situations. I last saw Lew at a USENIX
conference years ago, when his memory
problems were weighing him down but
hadn’t yet knocked him out.

We miss him.

c A LLi n g A LL b LO gg e r s

Anne Dickison, Marketing Director,
USENIX

USENIX is looking for experienced
bloggers to contribute to the official
USENIX blog. Everyone, from univer-
sity students to blogging professionals,
is encouraged to apply.

We’re looking for bloggers with experi-
ence in technical writing. We espe-
cially welcome those with expertise
in system administration, software
engineering, security, virtualization,
green IT, file and storage systems, Web
development, or cloud computing.

All participants will receive a discount
on one conference of their choice, as
well as the opportunity to post a bio
link on the USENIX blog team bio
page. Build your portfolio and help
spread the word about the latest devel-
opments in systems computing.

To apply, please send usenixbloggers@
usenix.org a technical writing sample
and a brief statement telling us why
you would like to be a part of the
USENIX blogging team and two topic
areas you would like to cover.

thanks to uSeNix and SaGe Corporate Supporters
uSeNix patrons
Facebook
Google
Microsoft Research

uSeNix benefactors
Hewlett-Packard
IBM
Infosys
Linux Journal
Linux Pro Magazine
NetApp
VMware

uSeNix & SaGe partners
Ajava Systems, Inc.
BigFix
DigiCert® SSL Certification
FOTO SEARCH Stock Footage and
Stock Photography
Splunk
SpringSource
Xssist Group Pte. Ltd
Zenoss

uSeNix partners
Cambridge Computer Services, Inc.
GroundWork Open Source Solutions
Xirrus

SaGe partner
MSB Associates

APRIL_2010_loginarticles.indd 77 3.10.10 10:01:29 AM

APRIL_2010_loginarticles.indd 78 3.10.10 10:01:29 AM

If You Use Linux, You Should Be
Reading LINUX JOURNAL

�� In-depth information
providing a full 360-
degree look at featured
topics relating to Linux

�� Tools, tips and tricks you
will use today as well as
relevant information for
the future

�� Advice and inspiration for
getting the most out of
your Linux system

�� Instructional how-tos will
save you time and money

Get Linux Journal delivered
to your door monthly for
1 year for only $29.50!
Plus, you will receive a free
gift with your subscription.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE
Offer valid in US only. Newsstand price per issue is $5.99 USD; Canada/Mexico
annual price is $39.50 USD; International annual price is $69.50. Free gift valued
at $5.99. Prepaid in US funds. First issue will arrive in 4-6 weeks. Sign up for,
renew, or manage your subscription on-line, www.linuxjournal.com/subscribe.

SAVE
62%

™

IfYouUseLinux_FP:Layout 1 2/18/10 9:39 AM Page 1

APRIL_2010_loginarticles.indd 79 3.10.10 10:01:29 AM

BLOGS ARTICLES COLUMNS CASE STUDIES MULTIMEDIA RSSINTERVIEWS

Written by software engineers for

software engineers, acmqueue

provides a critical perspective on

current and emerging information

technologies.

acmqueue features:

� Free access to the entire acmqueue archive

� Dozens of blogs from the field’s top innovators

� Interviews with leading practitioners

� Audio, video, and online programming contests

� Unlocked articles from ACM’s digital library

acmqueue is guided and written by widely known industry experts. Its

distinguished editorial board ensures that acmqueue’s content dives

deep into the technical challenges and critical questions that software

engineers should be thinking about.

acmqueue: ACM’s website for practicing software engineers

Visit today!
http://queue.acm.org/

acmqueue_ad.qxp:acmqueue 3/1/10 10:55 AM Page 1

APRIL_2010_loginarticles.indd 80 3.10.10 10:01:30 AM

Project3 1/3/08 12:03 PM Page 1

apr10covers.indd 3 3.10.10 2:48:55 PM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

June 22–25, 2010 • Boston, MA
http://www.usenix.org/events/#june10

USENIX Federated Conferences Week

 http://www.usenix.org/facebook http://twitter.com/usenix Stay connected...

USENIX Federated Conferences Week will feature:
 • USENIX ATC ’10: 2010 USENIX Annual Technical Conference
 • WebApps ’10: USENIX Conference on Web Application Development
 • WOSN 2010: 3rd Workshop on Online Social Networks
 • HotCloud ’10: 2nd USENIX Workshop on Hot Topics in Cloud Computing
 • HotStorage ’10: 2nd Workshop on Hot Topics in Storage and File Systems
 • And more!

apr10covers.indd 4 3.10.10 2:48:56 PM

