
A P R I L 2 0 0 9 V O L U M E 3 4 N U M B E R 2

T H E U S E N I X M A G A Z I N E

The Advanced Computing
Systems Association

OPINION Musings	 2
R i k Fa R Row

The	Cloud	Minders	 5
M a R k B u Rg ess

OPeratINg Tapping	into	Parallelism	with			
SyStemS Transactional	Memory	 12

a R Rv i n d h sh R i R a M a n , sa n d h ya
dwa R k a da s , a n d M i ch a e l l . s cot t

Difference	Engine	 24
d iwa k e R g u p ta , sa n gM i n l e e , M i ch a e l
v R a B l e , st e Fa n savag e , a l e x c . sn o e R e n ,
g eo Rg e va Rg h ese , g eo F F R e y M . vo e l k e R ,
a n d a M i n va h dat

PrOgrammINg Leveraging	Legacy	Code	for	Web	Browsers	 32
J o h n d o u ceu R , J e R eMy e l s o n , J o n h owe l l ,
a n d Jaco B R . l o Rch , wi t h R i k Fa R Row

Python	3:	The	Good,	the	Bad,	and	the	Ugly	 40
dav i d B e a z l e y

Hardware The	Basics	of	Power	 54
tutOrIal Ru d i va n d Ru n e n

COlumNS Practical	Perl	Tools:	Polymourphously		
Versioned	 64
dav i d n . B l a n k- e d e l M a n

Pete’s	All	Things	Sun	(PATS):	The	Sun		
Virtualization	Guide	 69
pe t e R Ba e R g a lv i n

iVoyeur:	Top	5	2008	 74
dav e J o se ph se n

/dev/random	 79
Ro B e R t g . F e R R e l l

bOOk revIewS Book	Reviews	 81
e l i z a B e t h z wi ck y e t a l .

uSeNIx NOteS Tribute	to	Jay	Lepreau,	1952–2008	 87
e l l i e yo u n g

CONfereNCeS Report	on	the	8th	USENIX	Symposium	on		
Operating	Systems	Design	and		
Implementation	(OSDI	’08)	 89

Report	on	the	Workshop	on	Supporting		
Diversity	in	Systems	Research		
(Diversity	’08)	 108

Report	on	the	Workshop	on	Power	Aware		
Computing	and	Systems	(HotPower	’08)	 110

Report	on	the	First	Workshop	on		
I/O	Virtualization	(WIOV	’08)	 114

Apr09Covers.indd 1 3/9/09 11:09:40 AM

Join us in San Diego, June 14–19, 2009, for the 2009 USENIX Annual Technical
Conference. USENIX Annual Tech has always been the place to present ground-
breaking research and cutting-edge practices in a wide variety of technologies
and environments. USENIX ’09 will be no exception.

USENIX ’09 will feature:
An extensive Training Program, covering crucial topics and led by highly •
respected instructors
Technical Sessions, featuring the Refereed Papers Track, Invited Talks, and a Poster/Demo Session•
Workshop on Cloud Computing•
And more!•

Join the community of programmers, developers, and systems professionals in sharing solutions and
fresh ideas.

Register by Monday, June 1, and save! http://www.usenix.org/usenix09/loa

REGISTER WITH
PRIORITY CODE

ATCLOG09
AND SAVE $100!

2009 USENIX ANNUAL
TECHNICAL CONFERENCE

June 14–19, 2009 • SAN DIEGO, CA

Apr09Covers.indd 2 3/9/09 11:09:42 AM

; LO G I N : A pr I L 20 0 9 A rTI CLE T ITLE 1

contents

Ed i to r
Rik Farrow
rik@usenix.org

M a n agi n g Ed i to r
Jane-Ellen Long
jel@usenix.org

Co p y Ed i to r
David Couzens
proofshop@usenix.org

pro d u C t i o n
Casey Henderson
Jane-Ellen Long
Michele Nelson
Jennifer Peterson

t y pEsE t t Er
Star Type
startype@comcast.net

usEn i X a ss o Ci at i o n
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$125 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2009 USENIX Association

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designations
used by manufacturers and
sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowledges
all trademarks herein. Where
those designations appear in
this publication and USENIX
is aware of a trademark claim,
the designations have been
printed in caps or initial caps.

V O L . 3 4 , # 2 , A p r i L 2 0 0 9

OPINION Musings 2
r I k FA r rOw

The Cloud Minders 5
M A r k B u rG E ss

OPeratINg Tapping into Parallelism with
SyStemS Transactional Memory 12

A r rv I N d h sh r I r A M A N , sA N d h yA
dwA r k A dA s , A N d M I Ch A E L L . s COT T

Difference Engine 24
d IwA k E r G u p TA , sA N GM I N L E E , M I Ch A E L
v r A B L E , sT E FA N sAvAG E , A L E x C . sN O E r E N ,
G EO rG E vA rG h EsE , G EO F F r E y M . vO E L k E r ,
A N d A M I N vA h dAT

PrOgrammINg Leveraging Legacy Code for Web Browsers 32
J O h N d O u CEu r , J E r EMy E L s O N , J O N h OwE L L ,
A N d JACO B r . LO rCh , wI T h r I k FA r rOw

Python 3: The Good, the Bad, and the Ugly 40
dAv I d B E A z L E y

Hardware The Basics of Power 54
tutOrIal ru d I vA N d ru N E N

COlumNS Practical Perl Tools: Polymourphously
Versioned 64
dAv I d N . B L A N k- E d E L M A N

Pete’s All Things Sun (PATS): The Sun
Virtualization Guide 69
pE T E r BA E r G A Lv I N

iVoyeur: Top 5 2008 74
dAv E J O sE ph s E N

/dev/random 79
rO B E r T G . F E r r E L L

bOOk revIewS Book Reviews 81
E L I z A B E T h z wI Ck y E T A L .

uSeNIx NOteS Tribute to Jay Lepreau, 1952–2008 87
E L L I E yO u N G

CONfereNCeS Report on the 8th USENIX Symposium on
Operating Systems Design and
Implementation (OSDI ’08) 89

Report on the Workshop on Supporting
Diversity in Systems Research
(Diversity ’08) 108

Report on the Workshop on Power Aware
Computing and Systems (HotPower ’08) 110

Report on the First Workshop on
I/O Virtualization (WIOV ’08) 114

Login_articlesAPRIL09_final.indd 1 3/9/09 10:39:46 AM

2 ; LO G I N : vO L . 3 4, N O. 2

R i k F a R R o w

musings
Rik is the Editor of ;login:.

rik@usenix.org

W h e r e W a s I ? O h y e a h , I n s a n D I e g O
again, but this time for OSDI. OSDI and
SOSP are the two big operating system
conferences in the US, and I’ve particularly
enjoyed being able to attend OSDI. I sat in
the second row during all sessions, listening
intently. In this issue, I’ve worked with the
authors for two OSDI papers to share some
of what I learned, and I asked researchers at
the University of Rochester to write a survey
article about transactional memory (TM).

You may not have heard of TM (unless you are old
enough to remember Transcendental Meditation),
but TM may become very important in both hard-
ware and programming languages in the near fu-
ture. As Dave Patterson said during his keynote at
USENIX Annual Tech in 2008, multicore is here.
Multicore processors have not just arrived, they are
the clear path forward in increasing processor per-
formance, and TM looks like a good way to make
parallel programming techniques accessible to peo-
ple besides database and systems programmers.

Locks

Mutual exclusion (mutex) locks have been the tech-
nique of choice for protecting critical sections of
code. You may recall past ;login: articles about re-
moving the “big lock” from Linux or FreeBSD ker-
nels. The big lock refers to having one lock that
insures that only one thread can be running within
the locked code at a time. Having one big lock is
inefficient, as it blocks parallel execution of key
kernel code.

Over time, system programmers refined locking by
replacing one big lock with fine-grained locks—
locks that protect much smaller code segments.
Programmers have to work carefully, because hav-
ing multiple locks can result in code that deadlocks
when one locked section requires access to a mutex
for another already locked resource, which in turn
requires access to the first locked section.

TM replaces locking with transactions, where the
results of an operation are either committed atomi-
cally (all at once) or aborted. Within a processor’s
ABI there are precious few atomic operations, as
these play havoc with instruction pipelines. These
operations are useful for implementing mutexes,
but not for handling transactions that will span the
much larger blocks of code found in critical sec-
tions of locked code.

Login_articlesAPRIL09_final.indd 2 3/9/09 10:39:46 AM

In Shriraman et al. you will learn of the various techniques in hardware, in
software, and in mixed approaches to support TM. Hardware approaches are
faster but inflexible and limited in scope. Software approaches are painfully
slow, as they must emulate hardware features, and that also adds consider-
ably to the amount of memory involved in a transaction.

As I was reading this article, I found myself wanting to reread Hennesey and
Patterson [1] about caches and cache coherence. If you don’t have access to
this book, Wikipedia has a very decent entry on caches [2]. Many TM ap-
proaches rely on tags added to caches for their operation, and the tags them-
selves are related to cache coherency.

Recall that only registers can access data within a single processor clock
cycle. Level 1 (L1) caches provide more memory than registers, but access-
ing the data requires multiple clock cycles. As the caches become larger (L2
and L3 caches), the number of clock cycles increases because of the hard-
ware involved in determining whether a particular cache contains valid data
for the desired memory address.

In single-threaded programs and programs that do not explicitly share
memory, coherency issues do not arise. Only one thread has access to each
memory location. But in multi-threaded programs and programs that share
memory, the caches associated with a core, such as L1 cache, will contain
data that needs to be consistent with the data found in the rest of the mem-
ory system. Cache coherency systems handle this by tagging each cache
block with status, such as exclusive, shared, modified, and invalid. Processor-
level hardware then manages coherency between the different caches by up-
dating an invalided cache block when it is accessed, for example.

Shriraman et al.’s favored solution involves extending coherency mecha-
nisms to support flexible TM. I like this article, as it is a thorough survey of
the approaches to TM, as well as a clear statement of the issues, such as how
TM can be an easier mechanism for programmers to use that avoids dead-
lock and approaches the performance of fine-grained locks.

Although parallel programming is largely the domain of systems, databases,
and some gaming programmers, the wider use of multicore processors sug-
gests that more programmers who require high performance will be looking
to add parallelism to their code. TM appears to be a workable approach to
writing efficient and easy-to-debug parallel code.

Memory and Syscalls

The next two articles don’t go as deeply into the use of processor features.
Gupta et al. consider the use of sharing portions of pages of memory as well
as compressing memory. VMware ESX can share identical pages of mem-
ory, something that occurs as much as 40% of the time when homogeneous
guests are running within VMs. By extending sharing to partial pages and
by compressing rarely used pages, Difference Engine can save much more
memory, allowing more VMs to run on the same system with an increase in
throughput.

Xax, described in “Leveraging Legacy Code for Web Browsers,” relies on the
system call interface for isolating a process. The system call interface is the
gateway linking kernel services such as file system access, allocating mem-
ory, and communications with the network. Only the operating system has
access to these hardware-mediated services, so it is possible to isolate a pro-
cess effectively by interposing on system calls. During the paper presenta-
tion, I found myself wondering about this, but further reflection and a few

; LO G I N : A pr I L 20 0 9 MusI N Gs 3

Login_articlesAPRIL09_final.indd 3 3/9/09 10:39:47 AM

4 ; LO G I N : vO L . 3 4, N O. 2

words with the paper’s presenter, Jon Howell, helped me recall that the sys-
tem call mechanism is inviolable because of hardware features—not just the
trap instruction, but also memory management.

Dave Beazley gets into the nitty-gritty of Python 3. I had heard Guido van
Rossum talk about this new version of Python back in the summer of 2007,
and even then he was talking about how older Python programs will not run
unmodified under the new version. Dave explains, with examples, some of
the reasons for the departure from backward compatibility while also show-
ing exactly what pitfalls await those who venture unprepared into the new
version.

Rudi van Drunen begins a series of articles on hardware, starting with the
basics of electricity. If you find yourself wondering just how much voltage
will drop along a run of 12-gauge wire or what exactly is meant by three-
phase power, you will want to read this article. A must-read for anyone de-
signing or overseeing machine rooms or even just racks of systems.

To go back to the beginning of this issue, immediately following these
 Musings, Mark Burgess expresses his misgivings (putting it mildly) about
the “new” rage, cloud computing. Perhaps I should be writing “a new buzz-
word,” as the cloud really isn’t all the new, nor particularly shiny white,
 either.

We also have the usual array of columns, and I am not going to attempt to
introduce them this issue. There are many more book reviews than usual
this time around, including reviews of several programming books.

Finally, we have the reports on OSDI and some co-located workshops.

When it is time to write this column, I often go back and read past columns
to get myself into the “write” mood (pun intended). I noticed how often I
have written about operating systems and security (or lack thereof), won-
dering what a secure yet usable operating system might look like. As you
will have noticed, we still don’t have secure systems, and that goal appears
as elusive as ever. But we do have steps that may lead us to more flexible
systems that will include some steps toward better security, such as the iso-
lation mechanism seen in Xax, as well as clever hacks, such as Difference
Engine and forward-thinking designs, such as FlexTM. I find that I like
computer systems research as much as ever, and I am proud to be part of the
community that does this work.

referenceS

[1] J.L. Hennesey and D.A. Patterson, Computer Architecture, Fourth Edition
(San Francisco: Morgan Kaufman, 2006), Section 4.2.

[2] http://en.wikipedia.org/wiki/CPU_cache.

Login_articlesAPRIL09_final.indd 4 3/9/09 10:39:47 AM

; LO G I N : A rpI L 20 0 9 Th E CLO u d M I N d E r s 5

M a R k B u R g e s s

the cloud minders
Mark Burgess is professor of network and system
administration at Oslo University College, Norway.
He is the author of Cfengine, co-author of the SAGE
Short Topics Booklet A System Engineer’s Guide to
Host Configuration and Maintenance Using Cfengine,
and author of many books and research papers on
system administration.

Mark.Burgess@iu.hio.no

e v e r y t h I n g O l D I s n e W a g a I n . s O
goes the famous adage, and never more
so than in computing.

Distributed computing has conjured many mirages
on its broad horizons over the years: from distrib-
uted computing environments to fully distributed
operating systems, service oriented architecture,
the grid, and now, lately, Cloud Computing. Should
we be impressed? As a researcher and technologist,
I am not. As a consumer, there is more to be said,
but first let’s look at the technology.

Each time one of these new manifestations of
“wishful innovation” comes up at a conference I
attend, I wince a little and wonder whether it will
be worth committing to memory before the next
one takes over. With so few ideas in IT manage-
ment and so much palpable desperation to come
up with something innovative in both research and
industry, even the research community seems to
have become blindly complacent about these magi-
cal phrases and may even see them as a godsend to
fund one more round of paper recycling. But per-
haps I do protest too much: We are all stuck in the
same mess, cheered on by broken funding politics
and commercial exuberance; after all, this is no
more than a sign that information technology has
truly entered the marketplace. And there is some-
thing to be said for the hype that provokes us into
thinking about the upsides and downsides of com-
puting economics, especially given current events
in money markets.

This column is a comment on what is currently
being called Cloud Computing. Normally, I would
not bat much of an eyelid to anything so plainly
construed, but on this occasion the name Cloud
Computing itself is only a distraction. Of greater
importance is what is being offered: the idea that
computing as a rentable service is preferable to
owning your own—and this in itself warrants
some remarks.

The name Cloud Computing seems appropriate for
something so vaporous, in which people see the
shapes they want to. What is it really? Last year it
seemed as insubstantial as a wisp of cirrus, often
mentioned in connection with Web 2.0. Is it a web?
Is it a cloud? No, it’s really a kind of utility comput-
ing, and the Web is just its presumed application of
choice.

Sale of online computing resources is not new, of
course. It has been going on for some time, from
shared tenancy computing in the 1960s [1], to
email accounts with Hotmail, and then Gmail,
Yahoo!, etc. Then came the rise of social network-

Login_articlesAPRIL09_final.indd 5 3/9/09 10:39:47 AM

6 ; LO G I N : vO L . 3 4, N O. 2

ing sites such as Facebook, online photography, and YouTube. The list goes
on. At several junctures, there were briefly held notions of Application Ser-
vice Providers (ASPs) changing the face of computing by running all of our
software for us in centralized factories on the Internet, freeing ordinary com-
panies from the burdens of coping with ever-changing technology. How-
ever, this only ever met with limited success. It still exists in a few forms,
and indeed it has now brought on the idea of Cloud Computing, but it did
not eradicate the stand-alone PC in favor of lighter, smaller “thin clients” as
originally suggested, and this alone should be an omen to prevent us crying
Hallelujah!

The Web-related hype has been snowballing into a silly idea: that not only
will all computational resources be consolidated into mass production
sweatshops of on-demand servers, but that the current flora of technolo-
gies would all be collapsed into a single kind of technological packag-
ing—namely, that ever halting darling of ad hoc innovation, Web services.
Supposedly, all of our applications might one day be provided by giant pro-
viders like Amazon, Google, and Sun, all willing to sell us storage or unlim-
ited mileage accounts for such things as email, and all via the browser.

Where will our data be then? They will be all “out there,” as Captain Kirk
might have said expansively with a twinkle in his eye, in the unknown folds
of the global Internet, in no known location—just in “cyberspace.” Hmmm.

The idea is of course inevitable, just as everything else about the globaliza-
tion of the economy has been inevitable. But what is disturbing is the lack of
thought in presenting this as “The Big Step Forward.” It makes me think of
the alacrity with which people threw themselves into the economic bubbles
of the past decade. I suggest that “Cloud Computing” is far from “The Future
of Distributed Computing,” powering us on to the next generation, but likely
only a footnote to a broader view of global services that will find a moderate
market share in the commercial future of IT systems alongside a variety of
other models. Why? Because of risk.

What Is cloud computing?

You might imagine from the sheer size of its Wikipedia entry that Cloud
Computing was really something quite innovative and special. It is of course
no different from any other kind of computing; it offers no new functions
and no special features, and it is not necessarily any cheaper to provide on
an hourly basis than any previous model for computing service, despite what
is often claimed. In fact, on balance, it might even result in more carbon
emissions, given the kinds of customers who are likely to use it. It certainly
does nothing to improve the security of users, who still need a PC and a
Web browser to access it, with all of those attendant flaws. It exists chiefly
for convenience to a certain segment of the market for computer services.

Price and ease are the main driving forces for the online services being of-
fered—large amounts of “cheap” storage, “cheap” applications to replace ex-
isting commercial ones, etc. For startups and hobbyists who have neither the
expertise nor the resources to run their own servers, the idea of rentable vir-
tual computers is an amazing convenience. Suddenly resources are available
without searching for rackspace, network providers, or hosting companies,
and without any investment in infrastructure. Fantastic!

But this could be misleading. We’ll look at the economics of this in a min-
ute, but for now consider why someone would want to use a cloud service
rather than running software on a PC as everyone has done in the past.

Login_articlesAPRIL09_final.indd 6 3/9/09 10:39:47 AM

; LO G I N : A pr I L 20 0 9 Th E CLO u d M I N d E r s 7

Let us imagine two computer users, Alice and Bob (as they are often crypto-
graphically named), who want to send email to one another, or perhaps sim-
ply use an application such as a spreadsheet. Alice, having practiced in front
of her looking glass, is an expert computer user and owns her own Custom
Classic Computer, complete with air-brushed bodywork and a V8 proces-
sor and custom grown software built from spare parts she finds on the Net.
Every day she tunes the engine a little to maximize performance or even
just for enjoyment, and there are few problems that a little amateur tweaking
cannot fix.

Bob, by way of contrast, is just floating along, going with the flow. His heart
is not really in the mechanics of computing, but he enjoys a comfortable
ride through the spreadsheets and word processors from time to time when
he needs them—his needs vary so he doesn’t want to tie himself to just one
thing. His attitude is that he “just wants it to work” and he is willing to pay
a rental company to fix this computing for him because it is cheaper than
owning his own. That way he knows he will always have the latest and it
will be pumped up with the latest hot air and checked by experts. So he
normally rents a cheap service from MegaHertz or CloudAvis and they even
throw in a built-in MP3 system and air conditioning for the servers (at the
data center, naturally) for their frequent flyers.

Bob can never get the kind of souped-up custom experience that Alice en-
joys from her personal computer system, but he wants neither the hassle of
her infatuation nor the responsibility of owning a depreciating pile of capi-
tal expenditure. Alice, for her part, would be mortally offended by the mere
suggestion that she should plump for anything as degradingly generic as
a cloud service. She saves a bundle by doing it herself; after all, how hard
could it be to add a hard disk, remember to do a backup, or install a new
program—things that would make Bob shudder?

You get the idea. Cloud computing is much like the idea of car rental, ski
rental, or any other kind of pay-as-you-go service. A kind of online Inter-
net cafe for application services. You will pay more than you strictly need to
get something quite generic, possibly with selectable levels of service quality
(basic, super, or ultra) or one of a limited number of special-needs solutions
(hatchback, van, or snowboard). It would be cheaper on an hour-by-hour
basis to have your own, but you haven’t; moreover, you don’t have to pay for
the thing, store it, and maintain it when you don’t need it, so in the end it
could be a lot cheaper for the occasional fair-weather user. When we com-
pare this to renting a car, it is not so mysterious.

So cloud computing is about providing computing service (a lot of the hard-
ware and all of the software) as a commodity without the need for a large
and risky personal investment. The cloud provider will take that risk and
investment, which of course is a lower risk if you know you will have suf-
ficient customers—and in the case of the chief providers today, you actually
know they can use the machines for their primary business if no one is buy-
ing the cloud service, so they are not losing anything. Some authors have
likened this to making information technology run like water from a tap or
flow like electricity from a wall socket, but, as we shall see, this analogy is
not the right one. In fact it is more like a bank account with a credit card,
with all of the risks that entails.

Why Is cloud computing not Like electricity?

The argument for cloud computing is an economic one. The argument is not
that it is cheaper for everyone, only that it is a service that some will find

Login_articlesAPRIL09_final.indd 7 3/9/09 10:39:47 AM

8 ; LO G I N : vO L . 3 4, N O. 2

useful and that can be cheaply provided by some giants who do it as a kind
of sideline, using their spare capacity to subsidize the sale. Cloud computing
is not going to replace other forms of computing any more than car rentals
have taken over the transport sector, because the model does not fit every-
one’s needs, but it could be quite useful to occasional computer users. Cer-
tainly the idea that companies might want to set up their own “local cloud”
to make effective use of resource virtualization seems faintly ridiculous—
you mean set up their own computer infrastructure, the way they’ve been
doing for . . . how many years?

The real issues lurking for inexperienced consumers are the risks.

True, the cloud companies bear the risk of initial investment and they carry
the cost of maintenance. But what shall we make of the subsidies they pro-
vide? If this is a sideline propped up by the cloud providers’ core business
model, then we should look rather carefully at whether that model is rock-
solid and is likely to survive. Worse, cloud services are not like electricity or
car rentals, because those services are “disposable” transactions. You con-
sume these services once and then they are gone; nothing is stored or saved
for the future. If they go under one day, you might be inconvenienced but
you will not lose any savings. The economics are also easy to understand.
There is a big pool of resources that can be shared by a lot of customers.
With many customers a single provider can own an efficient fleet of cars or
a flexible farm of servers and pay for them with a profit because there is al-
ways a sufficiency of customers coming back for more.

A bank is a more comparable service. Banks aspire to make money flow like
electricity when needed, but with an important difference: Clients own their
savings. A bank provides various services (perhaps for a fee, though these
are mostly gone in Scandinavia) and they do it for the privilege of having
your money for their use while you don’t want it back. As long as there are
many customers with enough money, the pool allows the bank to smooth
over the inequities of individuals’ financial details. The bank even pays you
a nominal interest rate to cover the depreciation of the money due to infla-
tion. There is no reason why people could not stuff money into mattresses or
have their own private vault for storing money, but banks are successful be-
cause they provide certain conveniences. The key difference between banks
and car rental is that banks provide safekeeping for something that matters
to you: your money. But this is a risk we are usually willing to take. After all,
banks don’t go under, now do they? If you are in the black, the risk is yours.
If you are in the red, the risk is theirs. For them, this evens out, but for you
it doesn’t, as thousands of pensioners and savers around the world learned
over the past decade.

The key to pooling and sharing resources is that the fee for occasional use
does not necessarily have to directly cover the actual cost of making the ser-
vice available, as long as there are enough individuals to balance the incom-
ing payments somehow. Alternatively, the whole thing can be subsidized by
external funding. This makes the rental look cheap and stable to casual indi-
viduals. However, if the supply of money ever starts to get too low to smooth
over the inequities, the transactions will grind to a halt, confidence in the
model can be lost, and people will take their money elsewhere, causing a
collapse. The model goes into a “recession” and the ones who remain could
lose everything.

Cloud computing is much like a bank, because it will contain people’s per-
sonal data and valuables. But for how long? If one of these services should
suddenly stop working, that data would all be gone forever and you would
never be able to rescue it, because it would still be “out there,” lost in space.

Login_articlesAPRIL09_final.indd 8 3/9/09 10:39:47 AM

; LO G I N : A pr I L 20 0 9 Th E CLO u d M I N d E r s 9

The risk lies in the stability of the collective. If it does not attract enough
individuals to maintain its services, or if it grows too many to service and
maintain, or if there is not enough money to smooth over the imbalances in
the pricing, then confidence in the system can be lost and it can collapse,
meaning that all of its users will potentially lose everything stored there.
Now, this doesn’t matter for electricity or car rentals; you use them and then
they are gone anyway. But with a bank you do care. And there is no central
bank to bail out cloud computing.

The Stability of the commons

No one seriously looks at Amazon or Google and thinks that these compa-
nies, the very knights of modern marketing savviness, will go under—but
take care. Cloud companies do not have cloud computing as their primary
business, at least for the moment, so they can effectively subsidize these col-
lectives, making them seem artificially cheap. What happens when too many
providers enter the market and prices rise? This could also cause a mass ex-
odus from the providers.

Unlikely? No one expected the present banking crisis to emerge, either. All
the funds were guaranteed by someone, weren’t they? Unfortunately, when
you are playing with margins there is not always an outside source that can
come to the rescue in a sudden shortage market fluctuation. The problem
with all stochastic systems (systems with fluctuations) is that there is pretty
much always a freak wave out there that can wreak mass destruction in the
system, one against which it simply doesn’t pay to try to protect oneself, be-
cause it is so unlikely.

There is actually precedent for this kind of precipitated collapse of a col-
lective commons in the Internet world already. The Internet has its own
exchanges for trading spare capacity and pooling its resources (i.e., the In-
ternet Exchanges). There major and minor network providers can trade their
capacity either for money or, more often, for “Brownie points” or goodwill.
Indeed, studies of these exchanges show that exchange agreements are based
more on visibility than on material profit [2]. This means that the larger pro-
viders often do more than their fair share of giving away their spare capacity,
and on occasion this has led to a major provider withdrawing from the ex-
change, leading to a crisis for the others, forcing them to pay real money for
those Brownie points. This happened in Norway only a few years ago, plac-
ing confidence in the system in jeopardy [3].

But even if the possibility of collapse seems small, there are several causes
for concern in cloud computing. One is security and privacy (who can see
my data, and how do I verify the claim?); another is the question of geogra-
phy. How about backup? If you need to have a backup for your data locally,
then you either need some local infrastructure or you have to diversify your
data investment over multiple providers that are not likely to go away all at
the same time. What if there is a take-over? Will one copy go away? Will you
know the physical location of the data and avoid the next big earthquake or
flood?

What are the terms and conditions for the services? Does the (remote) pro-
vider retain the right to mine your data for marketing buzzwords? Will it be
forced to reveal your private data to someone else under duress? Will it ade-
quately destroy sensitive data when you ask it to, including all of the backup
copies? Will its backups be properly secured? What about geography? Where
precisely is your data stored? Is the data illegal in the country of storage?
Will you always be able to access it? Is there political (or tectonic) stability in

Login_articlesAPRIL09_final.indd 9 3/9/09 10:39:47 AM

10 ; LO G I N : vO L . 3 4, N O. 2

the location of the data? The potential problem is that there is practically no
way to assess these risks. It’s all just “out there.”

For these reasons, cloud computing is not going to be for everyone. The Al-
ices of the world are never going to find Wonderland in outsourcing. They
live off the ability to customize nonstandard systems, and they have a heavy
weapon against it: competence. Competence and technology actually make it
cheap for individuals to manage their own concerns. There is no single rec-
ipe for solving the problem of scale, as we have discovered in our research
into systems in Oslo. Centralization is but one approach to resource man-
agement [4].

Self-reliance: The counterpoint of cloud computing

There is another weapon in the computing arsenal that could play a role. It
has come increasingly to the fore of late. It began in the 1990s with artificial
immune systems or computer immunology, and today it is often called “self-
healing” technology. By contrast with cloud computing, which is mainly a
brute-force cost reduction, self-healing is a set of more subtle technologies.
The idea is (as with smart modern cars) to get experts to program the re-
quirements and safe working conditions for computer systems in advance
and then equip the units with smart technology that allows them to main-
tain this condition for the greatest possible time, ultimately eliminating the
need for human intervention until an unexpected decision has to be made.
Automation is a technology that can level the playing field again, removing
some of the benefits of cloud convenience.

Whereas brute-force cost-cutting would try to make everything absolutely
identical in order to keep down costs, the self-healing configuration ap-
proach actually tries to improve the technology itself to make a more effec-
tive system manage itself cheaply. Futurist Alvin Toffler wrote about this
phenomenon in manufacturing at the end of the 1960s and concluded, “As
technology becomes more sophisticated, the cost of introducing variations
declines.”

The differentiating self-healing technologies such as Cfengine, and to some
extent IBM’s autonomic initiative and HP’s work in the area, are taking a dif-
ferent path to the idea of the cloud (and the Cloud Minders too can benefit
from it), namely, bringing computer expert systems back to support com-
plexity cheaply rather than offering only vanilla and strawberry flavored ser-
vices to potential buyers (i.e., any color as long as it’s black).

Self-healing, then, could be the thorn in the side of naive cloud comput-
ing, making resource flexibility easy at home. Do Hertz and Avis outsource
cars to specialist companies, or do companies buy their own car pools? Of
course both models exist, just as “cloud computing” is likely to coexist with
in-house expertise, enabled with powerful self-healing systems in the years
to come. Consolidation did not capture the market and change the world
before, so why should it now? Pretty much every development in personal
technology, starting with the motor car, has been about the opposite of pool-
ing resources: mobile phones, microwave ovens, PDAs, Blackberries, iPods
are all about personal enablement, making oneself independent of ties.

Consolidation is a strategy for the non-resource-wealthy that pokes its head
up and dives down again like the Loch Ness Monster, at reasonably regu-
lar intervals in computing. When a resource becomes scarce, it encourages
pooling of those resources through consolidation. Sometimes it was the need
for processor capacity, sometimes it was memory, sometimes fast communi-
cation. The scarce resource today is competence, specifically in the areas of

Login_articlesAPRIL09_final.indd 10 3/9/09 10:39:47 AM

; LO G I N : A pr I L 20 0 9 Th E CLO u d M I N d E r s 11

management and maintenance, but self-healing will take away much of the
need for this too.

The technological phenomenon is the growth of computer virtualization for
effective resource management. This is a healthy reality check, as power re-
quirements force us to reconsider vulgar excesses. The role of the Internet
will only come into play if resources can be moved dynamically around the
globe to optimize time zones and traffic burst in a dynamic and secure fash-
ion. That would be a true technology to propel us into the stratosphere.

Unlike some, I am not bowled over by cloud computing, any more than I
was impressed by grid services or any other special packaging for distrib-
uted computing. Yes, of course there are arguments for it. It has its place
where expertise is lacking or temporary, throw-away resources are required
on short notice, but this is not a fundamental shift, only a commercial op-
portunity, and it does not free users from their responsibilities for think-
ing about backup and security. More convincing are the benefits of renting
software as a service: paying a smaller regular fee for continuous updates, in
which we keep our own data privately and safely. This is a model for nearly
all regular computer users.

Marketing is a powerful force that is sometimes genuinely creative. I only
wish that as much effort could be expended in educating competent spe-
cialists to solve the technical challenges of resource management as is put
into the manufacturing of media hype to merely suggest overcoming them.
Brute-force mediocrity is almost a standard for computing today, even in re-
search. Personally, I am holding out for the next level: self-healing comput-
ers, with self-scaling automation, that can be deployed anywhere, not just
in vast datacenters. This has nothing to do with the Web or the Internet but
has everything to do with intelligent configuration.

As Droxine, the lovely daughter of the Cloud Minder, said in the memorable
Star Trek story, “I shall go to the mines; I no longer wish to be limited to the
clouds” [5].

acknoWLedgMenTS

I would like to acknowledge helpful discussions and input from Khanan
Grauer, Rik Farrow, and Helge Skrivervik. None of them necessarily shares
any of the opinions expressed here.

referenceS

[1] For example, http://en.wikipedia.org/wiki/Automatic_Data_Processing.

[2] W.B. Norton, “The Art of Peering: The Peering Playbook,” Equinix.com,
2001.

[3] For example, http://www.nettavisen.no/it/article1245673.ece and http://
www.dagbladet.no/kultur/2007/06/20/504054.html. (Search Google for
“Oslo telenor trekker seg internet exchange” for references in Norwegian.)

[4] For example, see research at http://research.iu.hio.no/promises.php.

[5] Paramount Pictures, Star Trek (Original Series 3), “The Cloud Minders.”

Login_articlesAPRIL09_final.indd 11 3/9/09 10:39:47 AM

12 ; LO G I N : vO L . 3 4, N O. 2

a R R v i n d h s h R i R a M a n ,
s a n d h ya d w a R k a d a s , a n d
M i c h a e l l . s c o t t

tapping into
parallel ism with
transactional memory
Arrvindh Shriraman is a graduate student in
computer science at the University of Rochester.
Arrvindh received his B.E. from the University of
Madras, India, and his M.S. from the University of
Rochester. His research interests include multipro-
cessor system design, hardware-software interface,
and parallel programming models.

ashriram@cs.rochester.edu

Sandhya Dwarkadas is a professor of computer
science and of electrical and computer engineering
at the University of Rochester. Her research lies at
the interface of hardware and software with a par-
ticular focus on concurrency, resulting in numerous
publications that cross areas within systems. She
is currently an associate editor for IEEE Computer
Architecture Letters (and has been an associate edi-
tor for IEEE Transactions on Parallel and Distributed
Systems).

sandhya@cs.rochester.edu

Michael Scott is a professor and past Chair of the
Computer Science Department at the University of
Rochester. He is an ACM Fellow, a recipient of the
Dijkstra Prize in Distributed Computing, and author
of the textbook Programming Language Pragmat-
ics (3d edition, Morgan Kaufmann, 2009). He was
recently Program Chair of TRANSACT ’07 and of
PPoPP ’08.

scott@cs.rochester.edu

M u lt I c O r e s y s t e M s p r O M I s e t O
deliver increasing performance only if
programmers make thread-level paral-
lelism visible in software. Unfortunately,
multithreaded programs are difficult to
write, largely because of the complexity
of synchronization. Transactional memory
(TM) aims to hide this complexity by raising
the level of abstraction. Several software,
hardware, and hybrid implementations
of TM have been proposed and evalu-
ated, and hardware support has begun to
appear in commercial processors. In this
article we provide an overview of TM from
a systems perspective, with a focus on
implementations that leverage hardware
support. We describe the principal hard-
ware alternatives, discuss performance and
implementation tradeoffs, and argue that
a classic “policy-in-software, mechanism-in-
hardware” strategy can combine excellent
performance with the flexibility to accom-
modate different system goals and work-
load characteristics.

For more than 40 years, Moore’s Law has packed
twice as many transistors on a chip every 18
months. Between 1974 and 2004, hardware ven-
dors used those extra transistors to equip their pro-
cessors with ever-deeper pipelines, multi-way issue,
aggressive branch prediction, and out-of-order exe-
cution, all of which served to harvest more instruc-
tion-level parallelism (ILP). Because the transistors
were smaller, vendors were also able to dramati-
cally increase the clock rate. All of that ended
about four years ago, when microarchitects ran out
of independent things to do while waiting for data
from memory, and when the heat generated by
faster clocks reached the limits of fan-based cool-
ing. Future performance improvements must now
come from multicore processors, which depend on
explicit, thread-level parallelism. Four-core chips
are common today, and if programmers can figure
out how to use them, vendors will deliver hun-
dreds of cores within a decade. The implications
for software are profound: Historically only the
most talented programmers have been able to write
good parallel code; now everyone must do it.

Login_articlesAPRIL09_final.indd 12 3/9/09 10:39:47 AM

; LO G I N : A pr I L 20 0 9 TA ppI N G I NTO pA r A LLE LI sM wITh Tr A N sAC TI O N A L M EMO ry 13

Sadly, parallel programming is hard. Historically it has been limited mainly
to servers, with “embarrassingly parallel” workloads, and to high-end sci-
entific applications, with enormous data sets and enormous budgets. Even
given a good division of labor among threads (something that’s often diffi-
cult to find), mainstream applications are plagued by the need to synchro-
nize access to shared state. For this, programmers have traditionally relied
on mutual exclusion locks, but these suffer from a host of problems, includ-
ing the lack of composability (one can’t nest two lock-based operations in-
side a new critical section without introducing the possibility of deadlock)
and the tension between concurrency and clarity: Coarse-grain lock-based
algorithms are relatively easy to understand (grab the One Big Lock, do
what needs doing, and release it) but they preclude any significant parallel
speedup; fine-grained lock-based algorithms allow independent operations
to proceed in parallel, but they are notoriously difficult to design, debug,
maintain, and understand.

Transactional Memory (TM) aims to simplify synchronization by raising the
level of abstraction. As in the database world, the programmer or compiler
simply marks a block of code as “atomic”; the underlying system then prom-
ises to execute the block in an “all-or-nothing” manner isolated from similar
blocks (transactions) in other threads. The implementation is typically based
on speculation: It guesses that transactions will be independent and executes
them in parallel, but watches their memory accesses just in case. If a conflict
arises (two concurrent transactions access the same location, and at least one
of them tries to write it), the implementation aborts one of the contenders,
rolls back its execution, and restarts it at a later time. In some cases it may
suffice to delay one of the contending transactions, but this does not work if,
for example, each transaction tries to write something that the other has al-
ready read.

TM can be implemented in hardware, in software, or in some combination
of the two. Software-only implementations have the advantage of running on
legacy machines, but it is widely acknowledged that performance competi-
tive with fine-grain locks will require hardware support. This article aims
to describe what the hardware might look like and what its impacts might
be on system software. We begin with a bit more detail on the TM program-
ming model and a quick introduction to software TM. We then describe sev-
eral ways in which brief, small-footprint transactions can be implemented
entirely in hardware. Extension to transactions that overflow hardware
tables or must survive a context switch are considered next. Finally, we
describe our approach to hardware-accelerated software-controlled transac-
tions, in which we carefully separate policy (in software) from mechanism
(in hardware).

Transactional Memory in a nutshell

Although TM systems vary in how they handle various subtle semantic is-
sues, all are based on the notion of serializability: Regardless of implementa-
tion, transactions appear to execute in some global serial order. Writes by
transaction A must never become visible to other transactions until A com-
mits, at which time all of its writes must be visible. Moreover, writes by
other transactions must never become visible to A partway through its own
execution, even if A is doomed to abort (for otherwise A might perform
some logically impossible operation with externally visible effects). Some TM
systems relax the latter requirement by sandboxing A so that any erroneous
operations it may perform do no harm to the rest of the program.

Login_articlesAPRIL09_final.indd 13 3/9/09 10:39:47 AM

14 ; LO G I N : vO L . 3 4, N O. 2

The principal motivation for TM is to simplify the parallel programming
model. In some cases (e.g., if transactions are used in lieu of coarse-grain
locks), it may also lead to performance improvements. An example appears
in Fig. 1: If X ≠ Y, it is likely that the critical sections of Threads 1 and 2 can
execute safely in parallel. Because locks are a low-level mechanism, they pre-
clude such execution. TM, however, allows it. If we replace the lock...unlock
pairs with atomic{...} blocks, the typical TM implementation will execute the
two transactions concurrently, aborting and retrying one of the transactions
only if they actually conflict.

Thread 1 Thread 2
lock(hash_tab.mutex) lock(hash_tab.mutex)
 var = hash_tab.lookup(X); var = hash_tab.lookup(Y);
 if(!var) if(!var)
 hash_tab.insert(X); hash_tab.insert(Y);
unlock(hash_tab.mutex) unlock(hash_tab.mutex)

F i g u r e 1 : L O s s O F p A r A L L e L i s m A s A r e s u Lt O F L O c k s [1 3]

IMpLeMenTaTIon

Any TM implementation based on speculation must perform at least three
tasks: It must (1) detect and resolve conflicts between transactions execut-
ing in parallel; (2) keep track of both old and new versions of data that are
modified speculatively; and (3) ensure that running transactions never per-
form erroneous, externally visible actions as a result of an inconsistent view
of memory.

Conflict resolution may be eager or lazy. An eager system detects and re-
solves conflicts as soon as a pair of transactions have performed (or are
about to perform) operations that preclude committing them both. A lazy
system delays conflict resolution (and possibly detection as well) until one
of the transactions is ready to commit. The losing transaction L may abort
immediately or, if it is only about to perform its conflicting operation (and
hasn’t done so yet), it can wait for the winning transaction W to either abort
(in which case L can proceed) or commit (in which case L may be able to
occur after W in logical order).

Lazy conflict resolution exposes more concurrency by permitting both
transactions in a pair of concurrent R-W conflicting transactions to commit
so long as the reader commits (serializes) before the writer. Lazy conflict res-
olution also helps in ensuring that the conflict winner is likely to commit: If
we defer to a transaction that is ready to commit, it will generally do so, and
the system will make forward progress. Eager conflict resolution avoids in-
vesting effort in a transaction L that is doomed to abort, but it may waste the
work performed so far if it aborts L in favor of W and W subsequently fails
to commit owing to conflict with some third transaction T. Recent work [17,
22] suggests that eager management is inherently more performance-brittle
and livelock-prone than lazy management. The performance of eager sys-
tems can be highly dependent on the choice of contention management (arbi-
tration) policy used to pick winners and losers, and the right choice can be
application-dependent.

Version management typically employs either direct update, in which specula-
tive values are written to shared data immediately and are undone on abort,
or deferred update, in which speculative values are written to a log and re-
done (written to shared data) on commit. Direct update may be somewhat
cheaper if—as we hope—transactions commit more often than they abort.

Login_articlesAPRIL09_final.indd 14 3/9/09 10:39:48 AM

; LO G I N : A pr I L 20 0 9 TA ppI N G I NTO pA r A LLE LI sM wITh Tr A N sAC TI O N A L M EMO ry 15

Systems that perform lazy conflict resolution, however, must generally use
deferred update, to enable parallel execution of (i.e., speculation by) conflict-
ing writers.

a brIef Look aT SofTWare TM

To track conflicts in the absence of special hardware, a software TM (STM)
system must augment a program with instructions that read and write some
sort of metadata. If program data are read more often than written (as is
often the case), it is generally undesirable for readers to modify metadata,
since that tends to introduce performance-sapping cache misses. As a result,
readers are invisible to writers in most STM systems and bear full responsi-
bility for detecting conflicts with writers. This task is commonly rolled into
the problem of validation—ensuring that the data read so far are mutually
consistent.

State-of-the-art STM systems perform validation on every nonredundant
read. The supporting metadata varies greatly: In some systems, a reader in-
spects a modification timestamp or writer (owner) id associated with the
location it is reading. In other systems, the reader inspects a list of Bloom
filters that capture the write sets of recently committed transactions [21]. In
the former case, metadata may be located in object headers or in a hash table
indexed by virtual address.

Figure 2 shows the overhead of an STM system patterned after TL2 [5],
running the STAMP benchmark suite [12]. This overhead is embedded in
every thread, cannot be amortized with parallelism, and in fact tends to
increase with processor count, owing to contention for metadata access.
Here, versioning adds 2%–150% to program run time, while conflict detec-
tion and validation add 10%–290%. Static analysis may, in some cases, be
able to eliminate significant amounts of redundant or unnecessary valida-
tion, logging, and memory fence overhead. Still, it seems reasonable to ex-
pect slowdowns on the order of factors of 2–3 in STM-based code, relative to
well-tuned locks, reducing the potential for their adoption in practice.

F i g u r e 2 : e x e c u t i O n t i m e b r e A k d O w n F O r s i n g L e - t h r e A d
r u n s O F A t L 2 - L i k e s t m s y s t e m O n A p p L i c A t i O n s F r O m s t A m p,
u n i n s t r u m e n t e d c O d e r u n t i m e = 1

Login_articlesAPRIL09_final.indd 15 3/9/09 10:39:48 AM

16 ; LO G I N : vO L . 3 4, N O. 2

Hardware for Small Transactions

On modern processors, locks and other synchronization mechanisms tend
to be implemented using compare-and-swap (CAS) or load-linked/store-
conditional (LL/SC) instructions. Both of these options provide the ability
to read a single memory word, compute a new value, and update the word,
atomically. Transactional memory was originally conceived as a way to ex-
tend this capability to multiple locations.

HerLIHy and MoSS

The term “transactional memory” was coined by Herlihy and Moss in 1993
[9]. In their proposal (“H&M TM”), a small “transactional cache” holds spec-
ulatively accessed locations, including both old and new values of locations
that have been written. Conflicts between transactions appear as an attempt
to invalidate a speculatively accessed line within the normal coherence pro-
tocol and cause the requesting transaction to abort. A transaction commits
if it reaches the end of its execution while still in possession of all specula-
tively accessed locations. A transaction will always abort if it accesses more
locations than will fit in the special cache, or if its thread loses the processor
as a result of preemption or other interrupts.

okLaHoMa updaTe

In modern terminology, H&M TM called for eager conflict resolution. A
contemporaneous proposal by Stone et al. [23] envisioned lazy resolution,
with a conflict detection and resolution protocol based on two-phase com-
mit. Dubbed the “Oklahoma Update” (after the Rogers and Hammerstein
song “All er Nuthin’ ”), the proposal included a novel solution to the doomed
transaction problem: As part of the commit protocol, an Oklahoma Update
system would immediately restart any aborted competing transactions by
branching back to a previously saved address. By contrast, H&M TM re-
quired that a transaction explicitly poll its status (to see if it was doomed)
prior to performing any operation that might not be safe in the wake of in-
consistent reads.

aMd aSf

Recently, researchers at AMD have proposed a multiword atomic update
mechanism as an extension to the x86-64 instruction set [6]. Their Ad-
vanced Synchronization Facility (ASF), although not a part of any current
processor roadmap, has been specified in considerable detail. As H&M TM
does, it uses eager conflict resolution, but with a different contention man-
agement strategy: Whereas H&M TM resolves conflicts in favor of the trans-
action that accessed the conflicting location first, ASF resolves it in favor of
the one that accessed it last. This “requester wins” strategy fits more easily
into standard invalidation-based cache coherence protocols, but it may be
somewhat more prone to livelock. As Oklahoma Update does, ASF includes
a provision for immediate abort.

Sun rock

Sun’s next-generation UltraSPARC processor, expected to ship in 2009 [7],
includes a thread-level speculation (TLS) mechanism that can be used to
implement transactional memory. As do H&M TM and ASF, Rock [24] uses
eager conflict management; as does ASF, it resolves conflicts in favor of the

Login_articlesAPRIL09_final.indd 16 3/9/09 10:39:48 AM

; LO G I N : A pr I L 20 0 9 TA ppI N G I NTO pA r A LLE LI sM wITh Tr A N sAC TI O N A L M EMO ry 17

requester. As do Oklahoma Update and ASF, it provides immediate abort. In
a significant advance over these systems, however, it implements true pro-
cessor checkpointing: On abort, all processor registers revert to the values
they held when the transaction began. Moreover, all memory accesses within
the transaction (not just those identified by special load and store instruc-
tions) are considered speculative.

STanford Tcc

Although still limited (in its original form) to small transactions, the Trans-
actional Coherence and Consistency (TCC) proposal of Hammond et al.
[8] represented a major break with traditional concepts of memory access
and communication. Whereas traditional threads (and processors) interact
via individual loads and stores, TCC expresses all interaction in terms of
transactions.

Like the multi-location commits of Oklahoma Update, TCC transactions
are lazy. Individual writes within the transaction are delayed (buffered) and
propagated to the rest of the system in bulk at commit time. Commit-time
conflict detection and resolution employ either a central hardware arbiter or
a distributed two-phase protocol. As in Rock, doomed transactions suffer an
immediate abort and roll back to a processor checkpoint.

dIScuSSIon

A common feature of the systems described in this section is the careful le-
veraging of existing hardware mechanisms. Eager systems (H&M TM, ASF,
and Rock) leverage existing coherence protocol actions to detect transaction
conflicts. In all five systems, hardware avoids most of the overhead of both
conflict detection and versioning. At the same time, transactions in all five
can abort simply because they access too much data (overflowing hardware
resources) or take too long to execute (suffering a context switch). Also, al-
though the systems differ in both the eagerness of conflict detection and
resolution and the choice of winning transaction, in all cases these policy
choices are embedded in the hardware; they cannot be changed in response
to programmer preference or workload characteristics.

unbounded Transactions

Small transactions are not sufficient if TM becomes a generic programming
construct that can interact with other system modules (e.g., file systems and
middleware) that have much more state than the typical critical section.
It also seems unreasonable to expect programmers to choose transaction
boundaries based on hardware resources. What is needed are low-overhead
“unbounded” transactions that hide hardware resource limits and per-
sist across system events (e.g., context switches, system calls, and device
 interrupts).

To support unbounded transactions, a TM system must virtualize both con-
flict detection and versioning. In both cases, the obvious strategy is to mimic
STM and move transactional state from hardware to a metadata structure in
virtual memory. Concrete realizations of this strategy vary in hardware com-
plexity, degree of software intervention, and flexibility of conflict detection
and contention management policy. In this section, we focus on implemen-
tation tradeoffs, dividing our attention between hardware-centric and hy-
brid hardware-software schemes. Later, we will turn to hardware-accelerated

Login_articlesAPRIL09_final.indd 17 3/9/09 10:39:48 AM

18 ; LO G I N : vO L . 3 4, N O. 2

schemes that are fundamentally controlled by software, thereby affording
policy freedom.

HardWare-cenTrIc SySTeMS

Several systems have extended simple hardware TM (HTM) systems with
hardware controllers that iterate through data structures housed in vir-
tual memory. For example, the first unbounded HTM proposal, UTM [1],
called for both an in-memory log of transactional writes and an in-memory
descriptor for every fixed-size block of program data (to hold read-write
permission bits). The descriptors (metadata) constituted an unbounded ex-
tension of the access tracking structures found in bounded (small-transac-
tion) HTM. The log constituted an unbounded extension of bounded HTM
versioning. Although located in virtual memory, both structures were to be
maintained by a hardware controller active on every transactional read and
write.

Subsequent unbounded HTM proposals have typically employed a two-level
strategy in which a hardware controller implements small transactions in the
same way as bounded HTM, but invokes firmware (or low-level software)
handlers when space or time resources are exhausted. VTM [14], for exam-
ple, uses deferred update and buffers speculative writes in the L1 cache as
long as they fit. If a speculative line must be evicted owing to limited capac-
ity or associativity, firmware (microcode) moves the line and its metadata to
a data structure in virtual memory and maintains both a count of such lines
and summary metadata (counting Bloom filters) for all evicted lines. On a
context switch, a handler iterates through the entire cache and moves all
speculative lines to this data structure. Subsequent accesses (when the count
is nonzero) trigger firmware handlers that perform lookup operations of the
in-memory data structures and summary metadata in order to detect con-
flicts (or fetch prior updates within the same transaction). Unfortunately, the
cost of lookups is nontrivial.

Bloom-filter–based access-set tracking has also been used in direct-update
systems. In LogTM-SE [25], a hardware controller buffers old values in an
undo log residing in virtual memory, while speculative values update the
original locations (which requires eager conflict resolution in order to avoid
atomicity violations). Bloom filters are easy to implement in hardware and
can be small enough to virtualize (save and restore) easily. Their drawback is
imprecision. Although erroneous indications of conflict are not a correctness
issue (since in the worst case, transactions can still execute one at a time),
they may lead to lower performance [3].

Hardware-centric systems such as VTM and LogTM-SE hide most of the
complexity of virtualization from the system programmer, resulting in a
relatively simple run-time system. This simplicity, however, gives rise to se-
mantic rigidity. Special instructions are needed, for example, to “leak” infor-
mation from aborted transactions (e.g., for performance analysis). Similarly,
policies that have first-order effects on performance (e.g., conflict resolution
time, contention management policy) are fixed at system design time.

HybrId approacHeS

Hardware-centric approaches to unbounded TM demand significant invest-
ment from hardware vendors. Hybrid TM systems [4, 10] reduce this in-
vestment by adopting a two-level strategy in which the second level is in
software. They begin with a “best-effort” implementation of bounded HTM;
that is, they attempt to execute transactions in hardware, but the attempt

Login_articlesAPRIL09_final.indd 18 3/9/09 10:39:48 AM

; LO G I N : A pr I L 20 0 9 TA ppI N G I NTO pA r A LLE LI sM wITh Tr A N sAC TI O N A L M EMO ry 19

can simply fail owing to implementation limitations. Software is then ex-
pected to pick up the pieces and ensure that all transactions are supported.
The key idea is to generate two code sequences for transactions: an STM-
compatible version that can run on stock processors and a second version
that invokes the best-effort HTM. To ensure high performance, the STM is
deployed only when HTM fails. The challenge is to ensure that HTM and
STM transactions interoperate correctly. This is achieved by instrumenting
the HTM transactions so that every memory operation also checks for con-
current, conflicting STM transactions. If one exists, then the HTM transac-
tion fails, since it lacks the ability to perform conflict resolution with respect
to the STM transaction.

Although hybrid systems keep the hardware simple, the instrumentation for
interoperability may add significant overhead to HTM transactions. More
ambitious hybrid systems [2] may improve performance by implementing
conflict detection entirely in hardware (using extra bits associated with main
memory), while performing versioning in software. As did hardware-centric
unbounded TM, hybrid TM suffers from policy inflexibility inherited from
the all-hardware case, and from significant overhead whenever overflow oc-
curs.

Hardware-accelerated Software-controlled Transactions

Experimental evidence suggests that although eager conflict management
may avoid wasted work, lazy systems may exploit more parallelism, avoid
performance pathologies, and eliminate the need for sophisticated (and po-
tentially costly) contention management [11, 17, 22]. Intermediate strategies
(e.g., mixed conflict management, which resolves write-write conflicts ea-
gerly and read-write conflicts lazily) may also be desirable for certain appli-
cations. Unfortunately, the hardware-centric and hybrid TM systems that we
have discussed so far embed the choice of both conflict resolution time and
contention management policy in silicon.

Hardware-accelerated but software-controlled TM systems [15, 16, 20] strive
to leave such policy decisions under software control, while using hardware
mechanisms to accelerate both bounded and unbounded transactions. This
strategy allows the choice of policy to be tuned to the current workload. It
also allows the TM system to reflect system-level concerns such as thread
priority. As in the designs covered earlier, existing hardware mechanisms
must be carefully leveraged to avoid potential impact on common-case non-
transactional code.

The key insight that enables policy flexibility is that information gathering
and decision making can be decoupled. In particular, data versioning, access
tracking, and conflict detection can be supported as decoupled/separable
mechanisms that do not embed policy. Conflict resolution time and conten-
tion management policy can then be decided dynamically by the application
or TM runtime system.

decoupLed verSIonIng

To support lazy conflict resolution, we proposed a deferred-update version-
ing mechanism we call Programmable Data Isolation (PDI) [15]. PDI allows
selective use of processor-private caches as a buffer for speculative writes or
for reading/caching the current version of locations being speculatively writ-
ten remotely. PDI lines are tracked by augmenting the coherence protocol
with a pair of additional states. Data associated with speculative writes is
not propagated to the rest of the system, allowing multiple transactions to

Login_articlesAPRIL09_final.indd 19 3/9/09 10:39:49 AM

20 ; LO G I N : vO L . 3 4, N O. 2

speculatively read or write the same location. However, coherence actions
are propagated, allowing remote caches to track the information necessary to
return them to a coherent state, without resolving the detected conflict im-
mediately.

To support cache overflow of speculative state, a hardware-based overflow
table (akin to a software-managed translation lookaside buffer) is added
to the miss path of the L1 cache. Replacement of a speculatively modified
cache line results in it being written back to a different (software-specified)
region of the process’s virtual memory space. A miss in the overflow table
results in a trap to software, which can then set up the necessary mapping.
In other words, software controls where and how the speculative modifica-
tions are maintained while hardware performs the common case (in the crit-
ical path) operation of copying data into and out of the cache.

decoupLed confLIcT deTecTIon and reSoLuTIon

Access tracking can be performed in hardware by adding extra bits in the
private cache to indicate a speculatively modified copy. However, this track-
ing is bounded by the size of the cache. Alternative forms of tracking for an
unbounded amount of metadata include Bloom-filter signatures [3] and ECC
bits in memory [2]. Our hardware [16] provides one set of Bloom filters on
each processor to represent the read and write sets of the running thread
and another to summarize the speculative read and write sets of all cur-
rently preempted threads. These signatures and, in some cases, the PDI state
bits are checked on coherence protocol transitions in order to detect con-
flicts among concurrently executing transactions.

To decouple conflict detection from resolution time, we provide conflict sum-
mary tables (CSTs) that record the occurrence of conflicts without necessarily
forcing immediate resolution. More specifically, CSTs indicate the transac-
tions that conflict, rather than the locations on which they conflict. This in-
formation concisely captures what a TM system needs to know in order to
resolve conflicts at some potentially future time. Software can choose when
to examine the tables and can use whatever other information it desires (e.g.,
priorities) to drive its resolution policy.

When a transaction commits, its speculative state is made visible to the rest
of the system. To avoid the doomed transaction problem without software
polling or sandboxing, conflicting transactions must be alerted and aborted
immediately. We enable such aborts with a mechanism known as alert-on-
update (AOU). This mechanism adds one extra bit, set under software con-
trol, to each tag in the cache. When the cache controller detects a remote
write of a line whose bit is set, it notifies the local processor, effecting an
immediate branch to a previously registered handler. This mechanism can
be very lightweight, since the handler invocation is entirely at the user level.
By ensuring immediate aborts, AOU avoids the need for validation, thereby
eliminating a large fraction of the cost for the metadata checks shown in
Figure 2. By choosing what (data, metadata, or transaction status word) and
when (at access or commit time) cache lines are tagged as AOU, software can
choose between object-based and block-based granularity and among eager,
mixed, and lazy conflict resolution.

Using AOU, PDI, signatures, and CSTs, we have developed a series of soft-
ware-controlled, hardware-accelerated TM systems. RTM-Lite [15, 20] uses
AOU alone for validation and conflict detection in a software TM framework
(RSTM [18]). RTM-Lite is able to achieve up to a 5x speedup over RSTM on a
single thread. RTM [15] uses both AOU and PDI to eliminate validation and

Login_articlesAPRIL09_final.indd 20 3/9/09 10:39:49 AM

; LO G I N : A pr I L 20 0 9 TA ppI N G I NTO pA r A LLE LI sM wITh Tr A N sAC TI O N A L M EMO ry 21

versioning/copy overhead for transactions that fit in the cache. RTM is able
to achieve up to an 8.7x speedup over RSTM. At the same time, it achieves
only 35%–50% of the single-thread throughput of coarse-grain locks. The
remaining overhead is due to software metadata updates and to the indi-
rection needed for compatibility with transactions that fall back to software
after overflowing the cache space available to PDI.

FlexTM [16] uses all four mechanisms to achieve flexible policy control
without the need for software-managed metadata. The resulting single-
thread performance is close to that of coarse-grain locks, demonstrating that
eliminating per-access software overheads is essential to realizing the full
potential of TM. Scalability is also improved relative to RTM-Lite and RTM.
In contrast to other systems supporting lazy conflict resolution (e.g., TCC),
FlexTM avoids the need for commit-time conflict detection: A processor’s
CSTs, which are purely local structures, identify the transactions with which
the running transaction conflicts. Software can easily iterate through those
transactions, aborting each. Experimental results [15–17, 22] confirm the
ability to improve throughput by tailoring conflict resolution time and con-
tention management policy based on application access patterns and over-
all system goals. The decoupled nature of the various hardware mechanisms
also allows them to be used for a variety of non–TM-related tasks, including
debugging, security, fast locks, and active messages.

conclusion

The goal of Transactional Memory is to simplify synchronization in shared-
memory parallel programs. Pure software approaches to implementing TM
systems suffer from performance limitations. In this article, we presented
an overview of emerging hardware support for TM that enhances perfor-
mance, but with some limitations. The technology is still in its infancy, and
widespread adoption will depend on the ability to support a wide spectrum
of application behaviors and system requirements. Enforcing a single policy
choice at design time precludes this flexibility. Hence, we advocate hardware
acceleration of TM systems that leave policy in software. We described a set
of mutually independent (decoupled) hardware mechanisms consistent with
this approach and presented a series of systems that use this hardware to
eliminate successive sources of software TM overhead. Decoupling facilitates
incremental development by hardware vendors and leads to mechanisms
useful not only for TM, but for various other purposes as well [15, 16, 19].

Several challenges remain. We need developers to integrate TM with existing
systems, introduce new language constructs, and develop the necessary tool-
chains. We also need to support composability and allow existing libraries
to coexist with TM. Finally, we need to resolve a variety of challenging se-
mantic issues, through a combination of formalization and experience with
realistic applications. We hope this article will help to foster that process by
stimulating broader interest in the promise of transactional memory.

acknoWLedgMenTS

This work was supported in part by NSF Grant Nos. CCF-0702505, CNS-
0411127, CNS-0615139, CNS-0834451, and CNS-0509270 and by NIH
Grant Nos. 5 R21 GM079259-02 and 1 R21 HG004648-01.

Login_articlesAPRIL09_final.indd 21 3/9/09 10:39:49 AM

22 ; LO G I N : vO L . 3 4, N O. 2

referenceS

[1] C.S. Ananian, K. Asanovic, B.C. Kuszmaul, C.E. Leiserson, and S. Lie,
“Unbounded Transactional Memory,” Proc. of the 11th Int’l Symp. on High Per-
formance Computer Architecture, San Francisco, CA, Feb. 2005.

[2] L. Baugh, N. Neelakantan, and C. Zilles, “Using Hardware Memory Pro-
tection to Build a High-Performance, Strongly Atomic Hybrid Transactional
Memory,” Proc. of the 35th Int’l Symp. on Computer Architecture, Beijing, China,
June 2008.

[3] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas, “Bulk Disambiguation of
Speculative Threads in Multiprocessors,” Proc. of the 33rd Int’l Symp. on Com-
puter Architecture, Boston, MA, June 2006.

[4] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum, “Hybrid Transactional Memory,” Proc. of the 12th Int’l Conf. on Archi-
tectural Support for Programming Languages and Operating Systems, San Jose,
CA, Oct. 2006.

[5] D. Dice, O. Shalev, and N. Shavit, “Transactional Locking II,” Proc. of the
20th Int’l Symp. on Distributed Computing, Stockholm, Sweden, Sept. 2006.

[6] S. Diestelhorst and M. Hohmuth, “Hardware Acceleration for Lock-Free
Data Structures and Software-Transactional Memory,” presented at Work-
shop on Exploiting Parallelism with Transactional Memory and Other Hard-
ware Assisted Methods (EPHAM), Boston, MA, Apr. 2008 (in conjunction
with CGO).

[7] A. Gonsalves, “Sun Delays Rock Processor by a Year,” EE Times, 7 Feb.
2008: http://www.eetimes.com/rss/showArticle.jhtml?articleID=206106243.

[8] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M. Prabhu,
H. Wijaya, C. Kozyrakis, and K. Olukotun, “Transactional Memory Coher-
ence and Consistency,” Proc. of the 31st Int’l Symp. on Computer Architecture,
Munich, Germany, June 2004.

[9] M. Herlihy and J.E. Moss, “Transactional Memory: Architectural Support
for Lock-Free Data Structures,” Proc. of the 20th Int. Symp. on Computer Archi-
tecture, San Diego, CA, May 1993. Expanded version available as CRL 92/07,
DEC Cambridge Research Laboratory, Dec. 1992.

[10] S. Kumar, M. Chu, C.J. Hughes, P. Kundu, and A. Nguyen, “Hybrid
Transactional Memory,” Proc. of the 11th ACM Symp. on Principles and Practice
of Parallel Programming, New York, March 2006.

[11] V.J. Marathe, W.N. Scherer III, and M.L. Scott, “Adaptive Software
Transactional Memory,” Proc. of the 19th Int’l Symp. on Distributed Computing,
Cracow, Poland, Sept. 2005.

[12] C.C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stan-
ford Transactional Applications for Multi-Processing,” Proc. of the 2007 IEEE
Int’l Symp. on Workload Characterization, Seattle, WA, Sept. 2008.

[13] R. Rajwar and J. R. Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution,” Proc. of the 34th Int’l Symp. on
Microarchitecture, Austin, TX, Dec. 2001.

[14] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing Transactional Mem-
ory,” Proc. of the 32nd Int’l Symp. on Computer Architecture, Madison, WI, June
2005.

[15] A. Shriraman, M.F. Spear, H. Hossain, S. Dwarkadas, and M.L. Scott,
“An Integrated Hardware-Software Approach to Flexible Transactional Mem-
ory,” Proc. of the 34th Int’l Symp. on Computer Architecture, San Diego, CA, June

Login_articlesAPRIL09_final.indd 22 3/9/09 10:39:49 AM

; LO G I N : A pr I L 20 0 9 TA ppI N G I NTO pA r A LLE LI sM wITh Tr A N sAC TI O N A L M EMO ry 23

2007. Earlier but expanded version available as TR 910, Dept. of Computer
Science, Univ. of Rochester, Dec. 2006.

[16] A. Shriraman, S. Dwarkadas, and M.L. Scott, “Flexible Decoupled
Transactional Memory Support,” Proc. of the 25th Int’l Symp. on Computer Ar-
chitecture, Beijing, China, June 2008. Earlier version available as TR 925,
Dept. of Computer Science, Univ. of Rochester, Nov. 2007.

[17] A. Shriraman and S. Dwarkadas, TR 939, Dept. of Computer Science,
Univ. of Rochester, Sept. 2008.

[18] M.F. Spear, V.J. Marathe, W.N. Scherer III, and M.L. Scott, “Conflict De-
tection and Validation Strategies for Software Transactional Memory,” Proc. of
the 20th Int’l Symp. on Distributed Computing, Stockholm, Sweden, Sept. 2006.

[19] M.F. Spear, A. Shriraman, H. Hossain, S. Dwarkadas, and M.L. Scott,
“Alert-on-Update: A Communication Aid for Shared Memory Multiproces-
sors” (poster paper), Proc. of the 12th ACM Symp. on Principles and Practice of
Parallel Programming, San Jose, CA, Mar. 2007.

[20] M.F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and M.L.
Scott, “Nonblocking Transactions without Indirection Using Alert-on-
Update,” Proc. of the 19th Annual ACM Symp. on Parallelism in Algorithms and
Architectures, San Diego, CA, June 2007.

[21] M.F. Spear, M.M. Michael, and C. von Praun, “RingSTM: Scalable
Transactions with a Single Atomic Instruction,” Proc. of the 20th Annual ACM
Symp. on Parallelism in Algorithms and Architectures, Munich, Germany, June
2008.

[22] M.F. Spear, L. Dalessandro, V.J. Marathe, and M.L. Scott, “Fair Conten-
tion Management for Software Transactional Memory,” Proc. of the 14th ACM
Symp. on Principles and Practice of Parallel Programming, Raleigh, NC, Feb.
2009.

[23] J. M. Stone, H.S. Stone, P. Heidelberger, and J. Turek, “Multiple Reser-
vations and the Oklahoma Update,” IEEE Parallel and Distributed Technology,
1(4):58–71, Nov. 1993.

[24] M. Tremblay and S. Chaudhry, “A Third-Generation 65 nm 16-Core
32-Thread Plus 32-Scout-Thread CMT,” Proc. of the Int’l Solid State Circuits
Conf., San Francisco, CA, Feb. 2008.

[25] L. Yen, J. Bobba, M.R. Marty, K.E. Moore, H. Valos, M.D. Hill, M.M.
Swift, and D.A. Wood, “LogTM-SE: Decoupling Hardware Transactional
Memory from Caches,” Proc. of the 13th Int’l Symp. on High Performance Com-
puter Architecture, Phoenix, AZ, Feb. 2007.

Login_articlesAPRIL09_final.indd 23 3/9/09 10:39:49 AM

24 ; LO G I N : vO L . 3 4, N O. 2

d i w a k e R g u p ta , s a n g M i n l e e , M i c h a e l
v R a B l e , s t e F a n s a v a g e , a l e x c .
s n o e R e n , g e o R g e v a R g h e s e , g e o F F R e y
M . v o e l k e R , a n d a M i n v a h d at

Difference Engine
Diwaker Gupta’s Ph.D research focused on virtual-
ization, network emulation, and large-scale system
testing. He is also interested in cloud computing
and Web applications. He is currently employed at
Aster Data Systems.

diwaker@asterdata.com

Sangmin Lee is a Ph.D student in the Department
of Computer Sciences at the University of Texas,
Austin. His research interests include distributed
computing and operating systems.

sangmin@cs.utexas.edu

Michael Vrable is pursuing a Ph.D. in computer sci-
ence at the University of California, San Diego, and
is advised by professors Stefan Savage and Geoffrey
Voelker. He received an M.S. from UCSD and a B.S.
from Harvey Mudd College.

mvrable@cs.ucsd.edu

Stefan Savage is an associate professor of computer
science at the University of California, San Diego.
He has a B.S. in history and reminds his colleagues
of this fact any time the technical issues get too
complicated.

savage@cs.ucsd.edu

Alex C. Snoeren is an associate professor in the
Computer Science and Engineering Department at
the University of California, San Diego. His research
interests include operating systems, distributed
computing, and mobile and wide-area networking.

snoeren@cs.ucsd.edu

George Varghese is a professor of computer science
at the University of California, San Diego. Several
algorithms he has helped develop have found their
way into commercial systems including Linux
(timing wheels), the Cisco GSR (DRR), and Microsoft
Windows (IP lookups).

varghese@cs.ucsd.edu

Geoffrey M. Voelker is an associate professor of
computer science and engineering at the Univer-
sity of California, San Diego. He works in computer
systems and networking.

voelker@cs.ucsd.edu

Amin Vahdat is a professor at the University of Cali-
fornia, San Diego. His research focuses broadly on
computer systems, including distributed systems,
networks, and operating systems.

vahdat@cs.ucsd.edu

v I r t u a l I z at I O n t e c h n O l O g y h a s
improved dramatically over the past decade
and has now become pervasive within the
service-delivery industry. Virtual machines
are particularly attractive for server con-
solidation. Their strong resource and fault-
isolation guarantees allow multiplexing of
hardware among individual services, each
configured with a custom operating sys-
tem. Although physical CPUs are frequently
amenable to multiplexing, main memory
is not. Thus, memory is often the primary
bottleneck to increasing the degree of mul-
tiplexing in enterprise and data center set-
tings. Difference Engine [1] enables virtual
machine (VM) monitors to allocate more
machine memory for VMs than is present
in the system, by using aggressive memory
sharing techniques. As with VMware ESX
server, Difference Engine shares identical
memory pages. In addition, Difference En-
gine also shares pages with only partial con-
tent overlap and compresses infrequently
used pages, enabling it to further improve
memory savings by up to a factor of 2.5
compared to identical page sharing alone in
VMware ESX server.

With main memory as a consolidation bottleneck,
researchers and commercial VM software vendors
have developed techniques to decrease the memory
requirements for virtual machines. The VMware
ESX server implements content-based page shar-
ing, in which virtual pages in different VMs have
identical content and therefore can share the same
machine page copy-on-write. Identical page shar-
ing has been shown to reduce the memory foot-
print of multiple, homogeneous virtual machines
by 10%–40% [2]. We found, however, that the ben-
efits of identical page sharing decline rapidly when
more heterogeneous guest VMs are used.

The premise of this work is that there are signifi-
cant additional benefits from sharing at a sub-
page granularity (i.e., there are many pages that
are nearly identical). We show that it is possible
to efficiently find such similar pages and to co-
alesce them into a much smaller memory footprint.
Among the set of similar pages, we are able to store
most as patches relative to a single baseline page.

Login_articlesAPRIL09_final.indd 24 3/9/09 10:39:49 AM

; LO G I N : A pr I L 20 0 9 d I FFE rE N CE E N G I N E 25

We also compress those pages that are unlikely to be accessed in the near
future. In both patching and compression, Difference Engine relies on find-
ing pages that are less frequently used to offset the cost of recovering these
pages. To support these techniques, we added a swapping service so that
even when memory has been oversubscribed (by allocating more memory
than exists), all VM guests will have access to the memory their OS was con-
figured to use by leveraging disk as secondary storage.

Difference Engine provides these benefits without negatively impacting ap-
plication performance: in our experiments across a variety of workloads,
Difference Engine imposes less than 7% execution time overhead. In return,
we further show that Difference Engine can take advantage of the improved
memory efficiency to increase aggregate system performance by utilizing
the free memory to create additional virtual machines in support of a tar-
get workload. Thus, for a prototypical Internet service workload, Difference
Engine is able to use the additional memory to increase maximum request
throughput by nearly 40%.

architecture

Difference Engine uses three distinct mechanisms that work together to
realize the benefits of memory sharing, as shown in Figure 1. In this ex-
ample, two VMs have allocated five pages total, each initially backed by dis-
tinct pages in machine memory (Figure 1a). For brevity, we only show how
the mapping from guest physical memory to machine memory changes;
the guest virtual to guest physical mapping remains unaffected. First, for
identical pages across the VMs, we store a single copy and create refer-
ences that point to the original. In Figure 1b, one page in VM-2 is identi-
cal to one in VM-1. For pages that are similar but not identical, we store a

1a. Initial State 1b. Page Sharing

F i g u r e 1 : t h e i n i t i A L s t A t e A n d
t h e t h r e e d i F F e r e n t m e m O r y
c O n s e r V A t i O n t e c h n i q u e s
e m p L O y e d b y d i F F e r e n c e e n g i n e :
p A g e s h A r i n g , p A g e p A t c h i n g , A n d
c O m p r e s s i O n . i n t h i s e x A m p L e , F i V e
p h y s i c A L p A g e s A r e s t O r e d i n L e s s
t h A n t h r e e m A c h i n e m e m O r y p A g e s
F O r A s A V i n g s O F r O u g h Ly 5 0 % .

1c. Page Patching 1d. Page Compression

Login_articlesAPRIL09_final.indd 25 3/9/09 10:39:50 AM

26 ; LO G I N : vO L . 3 4, N O. 2

patch against a reference page and discard the redundant copy. In Figure 1c,
the second page of VM-2 is stored as a patch to the second page of VM-1.
Finally, for pages that are unique and infrequently accessed, we compress
them in memory to save space. In Figure 1d, the remaining private page in
VM-1 is compressed. The actual machine memory footprint is now less than
three pages, down from five pages originally.

In all three cases, efficiency concerns require us to select candidate pages
that are unlikely to be accessed in the near future. We employ a global clock
that scans memory in the background, identifying pages that have not been
recently used. In addition, reference pages for sharing or patching must be
found quickly without introducing performance overhead. Difference Engine
uses full-page hashes and hash-based fingerprints to identify good candi-
dates. Finally, we implement a demand paging mechanism that supplements
main memory by writing VM pages to disk to support overcommitment, al-
lowing the total memory required for all VMs to temporarily exceed the ma-
chine memory capacity.

page Sharing

Difference Engine’s implementation of content-based page sharing is simi-
lar to those in earlier systems. We walk through memory looking for identi-
cal pages. As we scan memory, we hash each page and index it based on its
hash value. Identical pages hash to the same value and a collision indicates
that a potential matching page has been found. We perform a byte-by-byte
comparison to ensure that the pages are indeed identical before sharing
them.

Upon identifying target pages for sharing, we reclaim one of the pages and
update the virtual memory to point at the shared copy. Both mappings are
marked read-only, so that writes to a shared page cause a page fault that
will be trapped by the virtual machine monitor (VMM). The VMM returns
a private copy of the shared page to the faulting VM and updates the virtual
memory mappings appropriately. If no VM refers to a shared page, the VMM
reclaims it and returns it to the free memory pool.

patching

Traditionally, the goal of page sharing has been to eliminate redundant cop-
ies of identical pages. Difference Engine considers further reducing the
memory required to store similar pages by constructing patches that repre-
sent a page as the difference relative to a reference page.

One of the principal complications with subpage sharing is identifying can-
didate reference pages. Difference Engine uses a parametrized scheme to
identify similar pages based upon the hashes of several 64-byte portions of
each page. In particular, HashSimilarityDetector(k,s) hashes the contents of
(k × s) 64-byte blocks at randomly chosen locations on the page and then
groups these hashes together into k groups of s hashes each. We use each
group as an index into a hash table.

Higher values of s capture local similarity, whereas higher k values incorpo-
rate global similarity. Hence, HashSimilarityDetector(1,1) will choose one
block on a page and index that block; pages are considered similar if that
block of data matches. HashSimilarityDetector(1,2) combines the hashes
from two different locations in the page into one index of length two. Hash-
SimilarityDetector(2,1) instead indexes each page twice: once based on the
contents of a first block, and again based on the contents of a second block.

Login_articlesAPRIL09_final.indd 26 3/9/09 10:39:50 AM

; LO G I N : A pr I L 20 0 9 d I FFE rE N CE E N G I N E 27

Pages that match at least one of the two blocks are chosen as candidates.
Through experimentation, we discovered that HashSimilarityDetector(2,1)
with one candidate does surprisingly well. There is a substantial gain from
hashing two distinct blocks in the page separately, but little additional gain
by hashing more blocks.

Difference Engine indexes a page by hashing 64-byte blocks at two fixed
locations in the page (chosen at random) and uses each hash value as a sepa-
rate index to store the page in the hash table. To find a candidate similar
page, the system computes hashes at the same two locations, looks up those
hash table entries, and calculates the page patch to determine memory sav-
ings if it finds a match for either of the indexed blocks.

Our current implementation uses 18-bit hashes to keep the hash table small
to cope with the limited size of the Xen heap. In general, though, larger
hashes might be used for improved savings and fewer collisions. Our analy-
sis suggests, however, that the benefits from increasing the hash size are
modest.

compression

Finally, for pages that are not significantly similar to other pages in mem-
ory, we consider compressing them to reduce the memory footprint. Com-
pression is useful only if the compression ratio is reasonably high and, like
patching, if selected pages are accessed infrequently. Otherwise, the over-
head of compression/decompression will outweigh the benefits. We identify
candidate pages for compression using a global clock algorithm (see “Clock,”
below), assuming that pages that have not been recently accessed are un-
likely to be accessed in the near future.

Difference Engine supports multiple compression algorithms, currently
LZO and WKdm as described in Wilson et al. [3]; we invalidate compressed
pages in the VM and save them in a dynamically allocated storage area in
machine memory. When a VM accesses a compressed page, Difference En-
gine decompresses the page and returns it to the VM uncompressed. It re-
mains there until it is again considered for compression.

paging Machine Memory

Although Difference Engine will deliver some (typically high) level of mem-
ory savings, in the worst case all VMs might actually require all of their al-
located memory. Setting aside sufficient physical memory to account for this
prevents Difference Engine from using the memory to create additional VMs.
Not doing so, however, may result in temporarily overshooting the physical
memory capacity of the machine and causing a system crash. We therefore
require a demand-paging mechanism to supplement main memory by writ-
ing pages out to disk in such cases.

A good candidate page for swapping out should not be accessed in the near
future—the same requirement as compressed/patched pages. In fact, Differ-
ence Engine also considers compressed and patched pages as candidates for
swapping out. Once the contents of the page are written to disk, the page
can be reclaimed. When a VM accesses a swapped-out page, Difference En-
gine fetches it from disk and copies the contents into a newly allocated page
that is mapped appropriately in the VM’s memory.

Since disk I/O is involved, swapping in/out is an expensive operation. Fur-
ther, a swapped page is unavailable for sharing or as a reference page for
patching. Therefore, swapping should be an infrequent operation. Difference

Login_articlesAPRIL09_final.indd 27 3/9/09 10:39:50 AM

28 ; LO G I N : vO L . 3 4, N O. 2

Engine implements the core mechanisms for paging and leaves policy deci-
sions, such as when and how much to swap, to user-level tools.

Implementation

We have implemented Difference Engine in the Xen 3.0.4 VMM in roughly
14,500 lines of code. An additional 20,000 lines come from ports of existing
patching and compression algorithms (Xdelta, LZO, WKdm) to run inside
Xen.

Xen and other platforms that support fully virtualized guests use a mecha-
nism called “shadow page tables” to manage guest OS memory [2]. The guest
OS has its own copy of the page table that it manages, believing that they
are the hardware page tables, though in reality they are just a map from the
guest’s virtual memory to its notion of physical memory (V2P map). In addi-
tion, Xen maintains a map from the guest’s notion of physical memory to the
machine memory (P2M map). The shadow page table is a cache of the results
of composing the V2P map with the P2M map, mapping guest virtual mem-
ory directly to machine memory.

Difference Engine relies on manipulating P2M maps and the shadow page
tables to interpose on page accesses. For simplicity, we do not consider any
pages mapped by Domain-0 (the privileged, control domain in Xen), which,
among other things, avoids the potential for circular page faults.

clock

Difference Engine implements a not-recently-used (NRU) policy [4] to se-
lect candidate pages for sharing, patching, compression, and swapping out.
On each invocation, the clock scans a portion of machine memory, checking
and clearing the referenced (R) and modified (M) bits on pages. Thus, pages
with the R or the M bit set must have been referenced or modified since the
last scan. We ensure that successive scans of memory are separated by at
least four seconds in the current implementation, to give domains a chance
to set the R/M bits on frequently accessed pages. In the presence of multiple
VMs, the clock scans a small portion of each VM’s memory in turn for fair-
ness. The external API exported by the clock is simple: Return a list of pages
(of some maximum size) that have not been accessed in some time.

In OSes running on bare metal, the R/M bits on page-table entries are typi-
cally updated by the processor. Xen structures the P2M map exactly like the
page tables used by the hardware. However, since the processor does not
actually use the P2M map as a page table, the R/M bits are not updated au-
tomatically. We modify Xen’s shadow page table code to set these bits when
creating readable or writable page mappings. Unlike conventional operat-
ing systems, where there may be multiple sets of page tables that refer to the
same set of pages, in Xen there is only one P2M map per domain. Hence,
each guest page corresponds unambiguously to one P2M entry and one set
of R/M bits.

real-World applications

We now present the performance of Difference Engine on a variety of
workloads. We seek to answer two questions. First, how effective are the
memory-saving mechanisms at reducing memory usage for real-world appli-
cations? Second, what is the impact of those memory-sharing mechanisms
on system performance? Since the degree of possible sharing depends on

Login_articlesAPRIL09_final.indd 28 3/9/09 10:39:50 AM

; LO G I N : A pr I L 20 0 9 d I FFE rE N CE E N G I N E 29

the software configuration, we consider several different cases of application
mixes.

To put our numbers in perspective, we conduct head-to-head comparisons
with VMware ESX Server for three different workload mixes. We run ESX
Server 3.0.1 build 32039 on a Dell PowerEdge 1950 system. Note that even
though this system has two 2.3-GHz Intel Xeon processors, our VMware
license limits our usage to a single CPU. We therefore restrict Xen (hence,
Difference Engine) to use a single CPU for fairness. We also ensure that the
OS images used with ESX match those used with Xen, especially the file
system and disk layout. Note that we are only concerned with the effective-
ness of the memory sharing mechanism, not in comparing the application
performance across the two hypervisors. Further, we configure ESX to use
its most aggressive page sharing settings, in which it scans 10,000 pages/sec-
ond (compared to its default of 200); we configure Difference Engine simi-
larly.

F i g u r e 2 : F O u r i d e n t i c A L V m s e x e c u t e d b e n c h . F O r s u c h
h O m O g e n e O u s w O r k L O A d s , b O t h d i F F e r e n c e e n g i n e A n d e s x
e V e n t u A L Ly y i e L d s i m i L A r s A V i n g s , b u t d e e x t r A c t s m O r e
s A V i n g s w h i L e t h e b e n c h m A r k i s i n p r O g r e s s .

In our first set of benchmarks, we test the base scenario where all VMs on
a machine run the same OS and applications. This scenario is common in
cluster-based systems where several services are replicated to provide fault
tolerance or load balancing. Our expectation is that significant memory sav-
ings are available and that most of the savings will come from page sharing.
The graphs shown in Figures 2–4 break out the contributions in Difference
Engine by page compression (the least), patching, and page sharing (the
most) against page sharing in ESX Server.

We set up four 512-MB virtual machines running Debian 3.1. Each VM ex-
ecutes dbench for 10 minutes followed by a stabilization period of 20 min-
utes. Figure 2 shows the amount of memory saved as a function of time.
First, note that eventually both ESX and Difference Engine reclaim roughly
the same amount of memory (with the graph for ESX plateauing beyond
1,200 seconds). However, while dbench is executing, Difference Engine de-
livers approximately 1.5 times the memory savings achieved by ESX. As be-
fore, the bulk of Difference Engine savings comes from page sharing for the
homogeneous workload case.

We used two different sets of guests VMs for testing heterogeneous performance.

MIXED-1: Windows XP SP1 hosting RUBiS; Debian 3.1 compiling the ■■

Linux kernel; Slackware 10.2 compiling Vim 7.0 followed by a run of the
lmbench benchmark.

Login_articlesAPRIL09_final.indd 29 3/9/09 10:39:51 AM

30 ; LO G I N : vO L . 3 4, N O. 2

MIXED-2: Windows XP SP1 running Apache 2.2.8 hosting approximately ■■

32,000 static Web pages crawled from Wikipedia, with httperf running
on a separate machine requesting these pages; Debian 3.1 running the
SysBench database benchmark using 10 threads to issue 100,000 requests;
Slackware 10.2 running dbench with 10 clients for six minutes followed by
a run of the IOZone benchmark.

Figures 3 and 4 show the memory savings as a function of time for the two
heterogeneous workloads, MIXED-1 and MIXED-2. We make the following
observations. First, in steady state, Difference Engine delivers a factor of 1.6
to 2.5 more memory savings than ESX. For instance, for the MIXED-2 work-
load, Difference Engine could host the three VMs allocated 512 MB of physi-
cal memory each in approximately 760 MB of machine memory; ESX would
require roughly 1100 MB of machine memory. The remaining, significant,
savings come from patching and compression. And these savings come at a
small cost. The baseline configuration is regular Xen without Difference En-
gine. In all cases, performance overhead of Difference Engine is within 7%
of the baseline. For the same workload, we find that performance under ESX
with aggressive page sharing is also within 5% of the ESX baseline with no
page sharing.

F i g u r e 3 : m e m O r y s A V i n g s F O r m i x e d - 1 .
d i F F e r e n c e e n g i n e s A V e s u p t O 4 5 % m O r e
m e m O r y t h A n e s x .

F i g u r e 4 : m e m O r y s A V i n g s F O r m i x e d - 2 .
d i F F e r e n c e e n g i n e s A V e s A L m O s t t w i c e A s
m u c h m e m O r y A s e s x .

Login_articlesAPRIL09_final.indd 30 3/9/09 10:39:52 AM

; LO G I N : A pr I L 20 0 9 d I FFE rE N CE E N G I N E 31

conclusion

One of the primary bottlenecks to higher degrees of virtual machine multi-
plexing is main memory. Earlier work shows that substantial memory sav-
ings are available from harvesting identical pages across virtual machines
when running homogeneous workloads. The premise of this work is that
there are significant additional memory savings available from locating and
patching similar pages and in-memory page compression. We present the
design and evaluation of Difference Engine to demonstrate the potential
memory savings available from leveraging a combination of whole page shar-
ing, page patching, and compression. We discuss our experience addressing
a number of technical challenges, including algorithms to quickly identify
candidate pages for patching, demand paging to support oversubscription of
total assigned physical memory, and a clock mechanism to identify appro-
priate target machine pages for sharing, patching, compression, and paging.
Our performance evaluation shows that Difference Engine delivers an addi-
tional factor of 1.6 to 2.5 more memory savings than VMware ESX Server for
a variety of workloads, with minimal performance overhead. Difference En-
gine mechanisms might also be used to improve single OS memory manage-
ment; we leave such exploration to future work.

acknoWLedgMenTS

We would like to particularly thank Rik Farrow for crafting a condensed
draft of this article from our conference paper. In the course of the project,
we also received invaluable assistance from a number of people at VMware.
We would like to thank Carl Waldspurger, Jennifer Anderson, and Hemant
Gaidhani, and the Performance Benchmark group for feedback and discus-
sions on the performance of ESX server. Also, special thanks are owed to
Kiran Tati for assisting with ESX setup and monitoring and to Emil Sit for
providing insightful feedback on the paper. Finally, we would like to thank
Michael Mitzenmacher for his assistance with min-wise hashing, our shep-
herd Fred Douglis for his insightful feedback and support, and the anon-
ymous OSDI ’08 reviewers for their valuable comments. This work was
supported in part by NSF CSR-PDOS Grant No. CNS-0615392, the UCSD
Center for Networked Systems (CNS), and UC Discovery Grant 07-10237.
Vrable was supported in part by an NSF Graduate Research Fellowship.

referenceS

[1] D. Gupta, S. Lee, M. Vrable, S. Savage, A.C. Snoeren, G. Varghese, G.M.
Voelker, and A. Vahdat, “Difference Engine: Harnessing Memory Redun-
dancy in Virtual Machines,” Proceedings of OSDI ’08: http://www.usenix.org/
events/osdi08/tech/full_papers/gupta/gupta_html/.

[2] C.A. Waldspurger, “Memory Resource Management in VMware ESX
Server,” Proceedings of OSDI ’02: http://www.usenix.org/publications/library/
proceedings/osdi02/tech/waldspurger.html.

[3] P.R. Wilson, S.F. Kaplan, and Y. Smaragdakis, “The Case for Compressed
Caching in Virtual Memory Systems,” Proceedings of the 1999 USENIX Annual
Technical Conference: http://www.usenix.org/publications/library/proceedings/
usenix99/full_papers/wilson/wilson_html/.

[4] A.S. Tanenbaum, Modern Operating Systems (Englewood Cliffs, NJ: Pren-
tice Hall, 2007).

Login_articlesAPRIL09_final.indd 31 3/9/09 10:39:52 AM

32 ; LO G I N : vO L . 3 4, N O. 2

J o h n d o u c e u R , J e R e M y e l s o n ,
J o n h o w e l l , a n d J a c o B R . l o R c h , w i t h
R i k F a R R o w

leveraging legacy
code for Web
browsers
John Douceur manages the Distributed Systems
Research Group in the Redmond lab of Microsoft Re-
search. His interests are designing algorithms, data
structures, and protocols for distributed systems.

johndo@microsoft.com

Jeremy Elson has worked in sensor networks,
distributed systems, and occasional hare-brained
schemes. He also enjoys flying and likes bicycling
to work.

jelson@microsoft.com

Jon Howell works at the intersection of security and
scalability in distributed systems. His recent proj-
ects focus on the convergence of utility computing
and Web-delivered applications.

howell@microsoft.com

Jacob Lorch is a Researcher in the Systems and Net-
working group at Microsoft Research. His research
interests include distributed systems, online games,
Web security, and energy management.

lorch@microsoft.com

W e b b r O W s e r s h av e b e c O M e a D e
facto user interface for many online applica-
tions. But because browser applications are
typically written in specialized Web lan-
guages, the vast quantity of existing tools,
libraries, and applications are unavailable
to Web developers. Xax provides a secure
execution container that can run legacy
code written in arbitrary languages. With
a small porting effort, legacy applications
can be turned into Xax applications, which
execute natively but independently of the
underlying OS.

Modern Web applications are driving toward the
power of fully functional desktop applications such
as email clients (e.g., Gmail, Hotmail, Outlook
Web Access) and productivity apps (e.g., Google
Docs). Web applications offer two significant ad-
vantages over desktop apps: security—in that the
user’s system is protected from buggy or malicious
applications—and OS independence. Both of these
properties are normally provided by a virtual ex-
ecution environment that implements a type-safe
language, such as JavaScript, Flash, or Silverlight.
However, this mechanism inherently prohibits the
use of non-type-safe legacy code. Since the vast
majority of extant desktop applications and librar-
ies are not written in a type-safe language, the
enormous base of legacy code is currently unavail-
able to the developers of Web applications.

In a paper published at OSDI ’08 [1], the authors
demonstrated running the GhostScript PDF viewer,
the eSpeak speech synthesizer, a Python inter-
preter, and an OpenGL demo that renders 3D ani-
mation. In total, it took roughly two person-weeks
of effort to port 3.3 million lines of code to use the
simple Xax interface. This existing code was writ-
ten in several languages and produced with various
tool chains, and it runs in multiple browsers on
multiple operating systems.

Xax provides native-code-level performance in a
secure and OS-independent manner. Xax relies on
four mechanisms:

The picoprocess, a native-code execution abstrac-■■

tion that is secured via hardware memory isola-
tion and a very narrow system-call interface, akin
to a streamlined hardware virtual machine
The Platform Abstraction Layer (PAL), which ■■

provides an OS-independent Application Binary
Interface (ABI) to Xax picoprocesses

Login_articlesAPRIL09_final.indd 32 3/9/09 10:39:52 AM

; LO G I N : A pr I L 20 0 9 LE v E r AG I N G LEG AC y CO d E FO r wE B B rOwsE r s 33

Hooks to existing browser mechanisms to provide applications with system ■■

services, such as network communication, user interface, and local storage,
that respect browser security policies via the Xax Monitor
Lightweight modifications to existing tool chains and code bases, for retar-■■

geting legacy code to the Xax picoprocess environment

picoprocess

Most operating systems rely on hardware memory protection mechanisms
to isolate processes from one another. Process isolation prevents one pro-
cess from interfering with another process by reading or writing its program
code or data. But process-level isolation provides insufficient protection for
running downloaded code within a browser, as the browser itself is a pro-
cess owned by the user.

Browsers do run downloaded code, such as JavaScript, Java, and Silverlight,
but these are type-safe languages. These languages are interpreted within
the browser that enforces a security policy, for example, the Same Origin
Policy and limited access to filesystems. Legacy code expects to have com-
plete access to a system via the system call API, and thus it cannot be lim-
ited by the browser.

Xax introduces the abstraction of the picoprocess. A picoprocess can be
thought of as a stripped-down virtual machine without emulated physi-
cal devices, MMU, or CPU kernel mode. Alternatively, a picoprocess can be
thought of as a highly restricted OS process that is prevented from making
kernel calls. In either view, a picoprocess is a single hardware-memory-iso-
lated address space with strictly user-mode CPU execution and a very nar-
row interface to the world outside the picoprocess, as illustrated in Figure 1.

F i g u r e 1 : t h e p i c O p r O c e s s g e t s i s O L A t e d w h e n t h e b O O t b L O c k
A r r A n g e s t O i n t e r c e p t F u t u r e s y s t e m c A L L s

The Xax Monitor is a user-mode process that creates, isolates, and manages
each picoprocess and that provides the functionality of xaxcalls. The Xax
Monitor launches the picoprocess, which runs as a user-level OS process,
thus leveraging the hardware memory isolation that the OS already enforces
on its processes. Before creating a new picoprocess, the Xax Monitor first
allocates a region of shared memory, which will serve as a communication
conduit between the picoprocess and the Monitor. Then the picoprocess is
created as a child process of the Xax Monitor process.

This child process begins by executing an OS-specific boot block, which
performs three steps. First, it maps the shared memory region into the child
process’s address space, thereby completing the communication conduit.

Login_articlesAPRIL09_final.indd 33 3/9/09 10:39:52 AM

34 ; LO G I N : vO L . 3 4, N O. 2

Second, it makes an OS-specific kernel call that permanently revokes the
child process’s ability to make subsequent kernel calls, thereby completing
the isolation. Third, it passes execution to the OS-specific PAL, which in
turn loads and passes execution to the Xax application.

The boot block is part of the TCB (Trusted Computing Base), even though it
executes inside the child process. The boot block uses kernel mechanisms
to control access to system calls. The Linux version uses the ptrace() sys-
tem call, so that all subsequent system calls get trapped and passed to the
Xax Monitor. If the Xax Monitor fails (exits), the picoprocess’s system calls
will no longer be trapped, a weakness in this present Linux implementation.
Using ptrace() also hurts performance, as ptrace() was designed for debug-
ging, with the kernel notifying the monitoring process when a system call is
made and after the system call completes, but before results get passed back
to the monitored process.

The Windows version makes a kernel call to establish an interposition on all
subsequent syscalls via our XaxDrv driver. Because every Windows thread
has its own pointer to a table of system call handlers, XaxDrv is able to iso-
late a picoprocess by replacing the handler table for that process’s thread.
The replacement table converts every user-mode syscall into an inter-process
call (IPC) to the user-space Xax Monitor.

platform abstraction Layer

The Platform Abstraction Layer (PAL) translates the OS-independent ABI
into the OS-specific xaxcalls of the Xax Monitor. The PAL is included with
the OS-specific Xax implementation; everything above the ABI is native code
delivered from an origin server. The PAL runs inside the Xax picoprocess, so
its code is not trusted. Isolation is provided by the xaxcall interface (dashed
border in Figure 1); the PAL merely provides ABI consistency across host op-
erating systems (wiggly line in Figure 1).

For memory allocation and deallocation, the ABI provides two calls. The first:

void *xabi_alloc(void *start, long len);

maps len zero-filled bytes of picoprocess memory, starting at start if speci-
fied, and returns the address. Then:

int xabi_free(void *start);

frees the memory region beginning at start, which must be an address re-
turned from xabi_alloc. It returns 0 for success or -1 for error.

As described in the next section, the picoprocess appears to the browser as a
Web server, and communication is typically over HTTP. When the browser
opens a connection to the picoprocess, this connection can be received by
using this call:

int xabi_accept();

This returns a channel identifier, analogous to a UNIX file descriptor or a
Windows handle, connected to an incoming connection from the browser. It
returns -1 if no incoming connection is ready.

The picoprocess can also initiate connection to the origin server that pro-
vided the picoprocess application. To initiate a connection to the home
server, the picoprocess uses the call:

int xabi_open_url(const char *method, const char *url);

This returns a channel identifier connected to the given URL, according to
the specified method, which may be “get,” “put,” or “connect.” It requests

Login_articlesAPRIL09_final.indd 34 3/9/09 10:39:52 AM

; LO G I N : A pr I L 20 0 9 LE v E r AG I N G LEG AC y CO d E FO r wE B B rOwsE r s 35

that the Xax Monitor fetch and cache the URL according to the Same Origin
Policy (SOP) rules for the domain that provided the Xax picoprocess.

The operations that can be performed on an open channel are read, write,
poll, and close. The read and write operations:

int xabi_read(int chnl, char *buf, int len);
int xabi_write(int chnl, char *buf, int len);

transfer data on an open channel and return the number of bytes transferred
(0 if the channel is not ready, -1 if the channel is closed or failed). The poll
operation:

int xabi_poll(xabi_poll_fd *pfds, int npfds, bool block);

indicates the ready status of a set of channels by updating events. If the
value of block is true, it does not return until at least one requested event is
ready, thereby allowing the picoprocess to yield the processor. It returns the
number of events ready but does not return 0 if the value of block is true.
Finally, the close operation:

int xabi_close(int chnl);

closes an open channel. It returns 0 for success or -1 for error.

During picoprocess boot, the loader needs to know the URL from which to
fetch the application image. Xax uses a general loader that reads the appli-
cation URL from the query parameters of the URL that launched the pico-
process. The following PAL call, which is normally used only by the loader,
provides access to these parameters:

const char **xabi_args();

It returns a pointer to a NULL-terminated list of pointers to arguments spec-
ified at instantiation. (Note that there is no corresponding xaxcall; the pa-
rameters are written into the PAL during picoprocess initialization.)

Lastly, the ABI provides a call to exit the picoprocess when it is finished:

void xabi_exit();

Although the PAL runs inside the picoprocess, it is not part of the applica-
tion. More pointedly, it is not delivered with the OS-independent application
code. Instead, the appropriate OS-specific PAL remains resident on the client
machine, along with the Xax Monitor and the Web browser, whose imple-
mentations are also OS-specific. When a Xax application is delivered to the
client, the app and the PAL are loaded into the picoprocess and linked via
a simple dynamic-linking mechanism: The ABI defines a table of function
pointers and the calling convention for the functions.

A library called libxax exports a set of symbols (xabi_read, xabi_open_url,
etc.) that obey the function linkage convention of the developer’s tool chain.
This shim converts each of these calls to the corresponding ABI call in the
PAL. The shim thus provides a standard API to Xax applications.

The Xax Monitor

The Xax Monitor has the job of providing the services indicated by the xax-
call interface. Some of these services are straightforward for the Xax Monitor
to perform directly, such as memory allocation/deallocation, access to URL
query parameters, and picoprocess exit. The Xax Monitor also provides a
communication path to the browser, via which the Xax picoprocess appears
as a Web server. This communication path enables the Xax application to
use read and write calls to serve HTTP to the browser. From the browser’s

Login_articlesAPRIL09_final.indd 35 3/9/09 10:39:52 AM

36 ; LO G I N : vO L . 3 4, N O. 2

perspective, these HTTP responses appear to come from the remote ori-
gin server that supplied the Xax app. It is clear that this approach is secure,
since the Xax application is unable to do anything that the origin server
could not have done by serving content directly over the Internet. The cur-
rent Xax Monitor provides this browser interface by acting as a client-side
proxy server.

Using the picoprocess-to-browser communication path, the Xax applica-
tion can employ JavaScript code in the browser to perform functions on its
behalf, such as user interface operations, DOM manipulation, and access to
browser cookies. The evaluated applications employ a common design pat-
tern: The Xax app sends an HTML page to the browser, and this page con-
tains JavaScript stubs that translate messages from the picoprocess into
JavaScript function invocations.

Lightweight code Modification

Porting legacy applications took surprisingly little effort. This is surprising
because the legacy code was written to run atop an operating system, so it
was not obvious that the OS-specific code could be eliminated or replaced
without crippling the applications. As an example, a quick test using graph-
viz and a Python interpreter found that this application made 2725 syscalls
(39 unique). Porting this code to Xax would seem to require an enormous
emulation of OS functionality. However, using lightweight modifications, it
was possible to port this code, about a million lines, in just a few days.

Although the particular modifications required are application-dependent,
they follow a design pattern that covers five common aspects: disabling irrel-
evant dependencies, restricting application interface usage, applying failure-
oblivious computing techniques, internally emulating syscall functionality,
and, when ultimately necessary, providing syscall functionality via xaxcalls.

The first step is to use compiler flags to disable dependencies on irrelevant
components. Not all libraries and code components are necessary for use
within the Web-application framework, and removing them reduces the
download size of the Web app and also reduces the total amount of code
that needs to be ported. For Python/graphviz, by disabling components such
as pango and pthreads, 699 syscalls (16 unique) were eliminated.

The second step is to restrict the interfaces that the application uses. For
instance, an app might handle I/O either via named files or via stdin/std-
out, and the latter may require less support from the system. Restricting
the interface is achieved in various ways, such as by setting command-line
arguments or environment variables. For Python/graphviz, an entry-point
parameter that changes the output method from “xlib” to “svg” was used,
eliminating 367 syscalls (21 unique).

The third step is to identify which of the application’s remaining system calls
can be handled trivially. In some cases, it is adequate to return error codes
indicating failure, in a manner similar to failure-oblivious computing [2]. For
Python/graphviz, it was sufficient to simply reject 125 syscalls (11 unique:
getuid32, rt_sigaction, fstat64, rt_sigprocmask, ioctl, uname, gettimeofday,
connect, time, fcntl64, and socket).

The fourth step is to emulate syscall functionality within the syscall interpo-
sition layer (see Figure 1). For instance, Python/graphviz reads Python li-
brary files from a file system at runtime. The authors packaged these library
files as a tarball and emulated a subset of filesystem calls using libtar to ac-
cess the libraries. The tarball is read-only, which is all Python/graphviz re-

Login_articlesAPRIL09_final.indd 36 3/9/09 10:39:53 AM

; LO G I N : A pr I L 20 0 9 LE v E r AG I N G LEG AC y CO d E FO r wE B B rOwsE r s 37

quires. For some of the other ported applications, the authors also provided
read/write access to temporary files by creating a RAM disk in the interposi-
tion layer. Code in the interposition layer looks at the file path to determine
whether to direct calls to the tarball, to the RAM disk, or to somewhere else,
such as a file downloaded from the origin server. For Python/graphviz, they
used internal emulation to satisfy 1409 syscalls (14 unique), 943 of which
fail obliviously.

The fifth and final step is to provide real backing functionality for the re-
maining system calls via the Xax ABI. For Python/graphviz, most of the re-
maining syscalls are for user input and display output, which get routed
to the UI in the browser. The authors provided this functionality for the
remaining 137 syscalls (11 unique: setsockopt, listen, accept, bind, read,
write, brk, close, mmap2, old_mmap, and munmap).

The first three steps are application-specific, but for the final two steps,
much of the syscall support developed for one app can be readily reused for
other apps. The internally emulated tar-based file system was written to sup-
port eSpeak and later reused to support Python. Similarly, the backing func-
tionality for the mmap functions and networking functions (listen, accept,
bind . . .) are used by all of the example applications.

For any given application, once the needed modifications are understood,
the changes become mechanical. Thus, it is fairly straightforward for a devel-
oper to maintain both a desktop version and a Xax version of an app, using
a configure flag to specify the build target. This is already a common prac-
tice for a variety of applications that compile against Linux, BSD, and Win32
syscall interfaces.

performance

To evaluate performance, microbenchmarks and macrobenchmarks were
run to measure CPU- and I/O-bound performance. All measurements were
done on a 2.8-GHz Intel Pentium 4.

Xax’s use of native CPU execution, adopted to achieve legacy support, also
leads to native CPU performance. The first microbenchmark [Table 1, col-
umn (a)] computed the SHA-1 hash of H.G. Wells’s The War of the Worlds.
Xax performs comparably to the Linux native host. The Windows native
binary was compiled with a different compiler (Visual Studio versus gcc),
likely producing the improved performance of the Windows native cases
over Xax.

Environment Tool Computation Syscall Allocation

SHA-1 close 16 MB

(a) (b) (c)

Linux native gcc 5,930,000 430 27,120

Linux Xax gcc 5,970,000 69,400 202,600

XP native VS 4,540,000 1,126 31,390

XP Xax gcc 6,170,000 16,880 235,300

Vista native VS 4,580,000 1,316 40,900

Vista Xax gcc 6,490,000 59,900 612,000

t A b L e 1 : m i c r O b e n c h m A r k s i n u n i t s O F m A c h i n e c y c L e s ,
1 / (2 . 8 x 1 0 9) s e c ; m A x [(s i g m A) / (m u)] = 6 . 6 %

Login_articlesAPRIL09_final.indd 37 3/9/09 10:39:53 AM

38 ; LO G I N : vO L . 3 4, N O. 2

The benefits of native execution allowed the authors to accept overheads as-
sociated with hardware context switching. However, the simple noninvasive
user-level implementations lead to quite high overheads. Table 1, column
(b) reports the cost of a null xaxcall compared with a null native system call
(close(-1)). Table 1, column (c) reports the cost of allocating an empty 16-MB
memory region. The Xax overhead runs 7–161x.

Limitations and future Work

For related work, we refer you to Section 7 of the OSDI paper [1]. In terms
of security, the authors argue that Xax is secure by its small TCB. However,
a production implementation deserves a rigorous inspection to ensure both
that the kernel syscall dispatch path for a picoprocess is indeed closed and
that no other kernel paths, such as exception handling or memory manage-
ment, are exploitable by a malicious picoprocess. The authors suggest ex-
ploring alternative implementations that exclude more host OS code from
the TCB, such as a Mac OS implementation that uses Mach processes or a
VM-like implementation that completely replaces the processor trap dispatch
table for the duration of execution of a picoprocess.

Rich Web applications, Xax or otherwise, will require browser support (such
as remote differential compression) for efficiently handling large programs,
and support for offline functionality. Because Xax applications access re-
sources via the browser, any browser enhancements that deliver these fea-
tures are automatically inherited by the Xax environment.

Integrating Xax with the browser using a proxy is expedient, but for sev-
eral reasons it would be better to directly integrate with the browser. First,
Xax currently rewrites the namespace of the origin server; this is an abuse
of protocol. Instead, the browser should provide an explicit <embed> object
with which a page can construct and name a picoprocess for further refer-
ence. Second, the proxy is unaware of when the browser has navigated away
from a page, and when it is thus safe to terminate and reclaim a picoprocess.
Third, the proxy cannot operate on https connections. For these reasons, the
authors plan to integrate Xax directly into popular browsers.

Other issues include supporting conventional threading models, using a
more mainstream C library such as glibc (here dietlibc was used), and using
relocatable code (since Xax uses statically linked code).

conclusions

Xax is a browser plug-in model that enables developers to adapt legacy code
for use in rich Web applications, while maintaining security, performance,
and OS independence.

Xax’s security comes from its use of the picoprocess minimalist isolation ■■

boundary and browser-based services; Xax’s TCB is orders of magnitude
smaller than alternative approaches.
Xax’s OS independence comes from its use of picoprocesses and its plat-■■

form abstraction layer; Xax applications can be compiled on any toolchain
and run on any OS host.
Xax’s performance derives from native code execution in picoprocesses.■■

Xax’s legacy support comes from lightweight code modification.■■

Over decades of software development in non-type-safe languages, vast
amounts of design, implementation, and testing effort have gone into pro-
ducing powerful legacy applications. By enabling developers to leverage this

Login_articlesAPRIL09_final.indd 38 3/9/09 10:39:53 AM

; LO G I N : A pr I L 20 0 9 LE v E r AG I N G LEG AC y CO d E FO r wE B B rOwsE r s 39

prior effort into a Web application deployment and execution model, we an-
ticipate that Xax may change the landscape of Web applications.

referenceS

[1] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch,
“Leveraging Legacy Code to Deploy Desktop Applications on the Web”:
http://www.usenix.org/events/osdi08/tech/full_papers/douceur/douceur
_html/index.html.

[2] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, T. Leu,
and W.S. Beebee, Jr., “Enhancing Server Availability and Security through
Failure-Oblivious Computing”: http://www.usenix.org/events/osdi04/tech/
rinard.html.

Login_articlesAPRIL09_final.indd 39 3/9/09 10:39:53 AM

40 ; LO G I N : vO L . 3 4, N O. 2

d a v i d B e a z l e y

Python 3:
the good, the bad,
and the ugly
David Beazley is an open source software developer
and the author of Python Essential Reference (4th
edition, Addison-Wesley, 2009). He lives in Chicago,
where he also teaches Python courses.

dave@dabeaz.com

I n l at e 2 0 0 8 , a n D W I t h M u c h f a n -
fare, Python 3.0 was released into the wild.
Although there have been ongoing releases
of Python in the past, Python 3 is notable in
that it intentionally breaks backwards com-
patibility with all previous versions. If you
use Python, you have undoubtedly heard
that Python 3 even breaks the lowly print
statement—rendering the most simple
“Hello World” program incompatible. And
there are many more changes, with some
key differences that no conversion program
can deal with. In this article I give you a
taste of what’s changed, outline where
those changes are important, and provide
you with guidance on whether you want or
need to move to Python 3 soon.

By the time you’re reading this, numerous articles
covering all of the new features of Python 3 will
have appeared. It is not my intent to simply rehash
all of that material here. In fact, if you’re interested
in an exhaustive coverage of changes, you should
consult “What’s New in Python 3?” [1]. Rather, I’m
hoping to go a little deeper and to explain why Py-
thon has been changed in the way it has, the im-
plications for end users, and why you should care
about it. This article is not meant to be a Python
tutorial; a basic knowledge of Python program-
ming is assumed.

python’s c programming roots

The lack of type declarations and curly braces
aside, C is one of the foremost influences on Py-
thon’s basic design, including the fundamental op-
erators, identifiers, and keywords. The interpreter
is written in C and even the special names such
as _ _init_ _, _ _str_ _, and _ _dict_ _ are inspired
by a similar convention in the C preprocessor (for
example, preprocessor macros such as _ _FILE_ _
and _ _LINE_ _). The influence of C is no acci-
dent—Python was originally envisioned as a high-
level language for writing system administration
tools. The goal was to have a high-level language
that was easy to use and that sat somewhere be-
tween C programming and the shell.

Although Python has evolved greatly since its early
days, a number of C-like features have remained
in the language and libraries. For example, the in-
teger math operators are taken straight from C—
even truncating division just like C:

Login_articlesAPRIL09_final.indd 40 3/9/09 10:39:53 AM

>>> 7/4
1
>>>

Python’s string formatting is modeled after the C printf() class of functions.
For example:

>>> print “%10s %10d %10.2f” % (‘ACME’,100,123.45)
 ACME 100 123.45
>>>

File I/O in Python is byte-oriented and really just a thin layer over the C
stdio functionality:

>>> f = open(“data.txt”,”r”)
>>> data = f.read(100)
>>> f.tell()
100L
>>> f.seek(500)
>>>

In addition, many of Python’s oldest library modules provide direct access to
low-level system functions that you would commonly use in C systems pro-
grams. For example, the os module provides almost all of the POSIX func-
tions and other libraries provide low-level access to sockets, signals, fcntl,
terminal I/O, memory mapped files, and so forth.

These aspects of Python have made it an extremely useful tool for writing
all sorts of system-oriented tools and utilities, the purpose for which it was
originally created and the way in which it is still used by a lot of system pro-
grammers and sysadmins. However, Python’s C-like behavior has not been
without its fair share of problems. For example, the truncation of integer di-
vision is a widely acknowledged source of unintended mathematical errors
and the use of byte-oriented file I/O is a frequent source of confusion when
working with Unicode in Internet applications.

python 3: breaking free of Its past

One of the most noticeable changes in Python 3 is a major shift away from
its original roots in C and UNIX programming. Although the interpreter is
still written in C, Python 3 fixes a variety of subtle design problems associ-
ated with its original implementation. For example, in Python 3, integer di-
vision now yields a floating point number:

>>> 7/4
1.75
>>>

A number of fundamental statements in the language have been changed
into library functions. For example, print and exec are now just ordinary
function calls. Thus, the familiar “Hello World” program becomes this:

print(“Hello World”)

Python 3 fully embraces Unicode text, a change that affects almost every
part of the language and library. For instance, all text strings are now Uni-
code, as is Python source code. When you open files in text mode, Unicode
is always assumed—even if you don’t specify anything in the way of a spe-
cific encoding (with UTF-8 being the usual default). I’ll discuss the implica-
tions of this change a little later—it’s not as seamless as one might imagine.

; LO G I N : A pr I L 20 0 9 py Th O N 3 : Th E GO O d, Th E BA d, A N d Th E uG Ly 41

Login_articlesAPRIL09_final.indd 41 3/9/09 10:39:53 AM

42 ; LO G I N : vO L . 3 4, N O. 2

Borrowing from Java, Python 3 takes a completely different approach to file
I/O. Although you still open files using the familiar open() function, the
kind of “file” object that you get back is now part of a layered I/O stack. For
example:

>>> f = open(“foo”)
>>> f
<io.TextIOWrapper object at 0x383950>
>>>

So, what is this TextIOWrapper? It’s a class that wraps a file of type Buff-
eredReader, which in turns wraps a file of type FileIO. Yes, Python 3 has a
full assortment of various I/O classes for raw I/O, buffered I/O, and text de-
coding that get hooked together in various configurations. Although it’s not
a carbon copy of what you find in Java, it has a similar flavor.

Borrowing from the .NET framework, Python 3 adopts a completely differ-
ent approach to string formatting based on composite format strings. For ex-
ample, here is the preferred way to format a string in Python 3:

print(“{0:10} {1:10d} {2:10.2f}”.format(name,shares,price))

For now, the old printf-style string formatting is still supported, but its fu-
ture is in some doubt.

Although there are a variety of other more minor changes, experienced Py-
thon programmers coming into Python 3 may find the transition to be
rather jarring. Although the core language feels about the same, the pro-
gramming environment is very different from what you have used in the
past. Instead of being grounded in C, Python 3 adopts many of its ideas
from more modern programming languages.

python’s evolution Into a framework Language

If you’re a current user of Python, you might have read the last section and
wondered what the Python developers must be thinking. Breaking all back-
wards compatibility just to turn print into a function and make all string
and I/O handling into a big Unicode playground seems like a rather ex-
treme step to take, especially given that Python already has a rather useful
print statement and fully capable support for Unicode. As it turns out, these
changes aren’t the main story of what Python 3 is all about. Let’s review a bit
of history.

Since its early days, Python has increasingly been used as a language for
creating complex application frameworks and programming environments.
Early adopters noticed that almost every aspect of the interpreter was ex-
posed and that the language could be molded into a programming environ-
ment that was custom-tailored for specific application domains. Example
frameworks include Web programming, scientific computing, image pro-
cessing, and animation. The only problem was that even though Python
was “good enough” to be used in this way, many of the tricks employed by
framework builders pushed the language in directions that were never antic-
ipated in its original design. In fact, there were a lot of subtle quirks, limita-
tions, and inconsistencies. Not only that, there were completely new features
that framework builders wanted—often inspired by features of other pro-
gramming languages. So, as Python has evolved, it has gradually acquired a
new personality.

Almost all of this development has occurred in plain sight, with new fea-
tures progressively added with each release of the interpreter. Although

Login_articlesAPRIL09_final.indd 42 3/9/09 10:39:53 AM

; LO G I N : A pr I L 20 0 9 py Th O N 3 : Th E GO O d, Th E BA d, A N d Th E uG Ly 43

many users have chosen to ignore this work, it all takes center stage in Py-
thon 3. In fact, the most significant aspect of Python 3 is that it sheds a huge
number of deprecated features and programming idioms in order to lay the
groundwork for a whole new class of advanced programming techniques.
Simply stated, there are things that can be done in Python 3 that are not at
all possible in previous versions. In the next few sections, I go into more de-
tail about this.

python Metaprogramming

Python has always had two basic elements for organizing programs: func-
tions and classes. A function is a sequence of statements that operate on
some passed arguments and return a result. For example:

def factorial(n):
 result = 1
 while n > 1:
 result *= n
 n -= 1
 return result

A class is a collection of functions called methods that operate on objects
known as instances. Here is a sample class definition:

class Rectangle(object):
 def __init__(self,width,height):
 self.width = width
 self.height = height
 def area(self):
 return self.height*self.width
 def perimeter(self):
 return 2*self.height + 2*self.width

Most users of Python are familiar with the idea of using functions and classes
to carry out various programming tasks. For example:

>>> print factorial(6)
720
>>> r = Rectangle(4,5)
>>> r.area()
20
>>> r.perimeter()
18
>>>

However, an often overlooked feature is that function and class definitions
have first-class status. That is, when you define a function, you are creating
a “function object” that can be passed around and manipulated just like a
normal piece of data. Likewise, when you define a class, you are creating a
“type object.” The fact that functions and classes can be manipulated means
that it is possible to write programs that carry out processing on their own
internal structure. That is, you can write code that operates on function and
class objects just as easily as you can write code that manipulates numbers
or strings. Programming like this is known as metaprogramming.

MeTaprograMMIng WITH decoraTorS

A common metaprogramming example is the problem of creating various
forms of function wrappers. This is typically done by writing a function that

Login_articlesAPRIL09_final.indd 43 3/9/09 10:39:53 AM

44 ; LO G I N : vO L . 3 4, N O. 2

accepts another function as input and that dynamically creates a completely
new function that wraps an extra layer of logic around it. For example, this
function wraps another function with a debugging layer:

def debugged(func):
 def call(*args,**kwargs):
 print(“Calling %s” % func.__name__)
 result = func(*args,**kwargs)
 print(“%s returning %r” % (func.__name__, result))
 return result
 return call

To use this utility function, you typically apply it to an existing function and
use the result as its replacement. An example will help illustrate:

>>> def add(x,y):
... return x+y
...
>>> add(3,4)
7
>>> add = debugged(add)
>>> add(3,4)
Calling add
add returning 7
7
>>>

This wrapping process became so common in frameworks, that Python 2.4
introduced a new syntax for it known as a decorator. For example, if you want
to define a function with an extra wrapper added to it, you can write this:

@debugged
def add(x,y):
 return x+y

The special syntax @name placed before a function or method definition
specifies the name of a function that will process the function object created
by the function definition that follows. The value returned by the decorator
function takes the place of the original definition.

There are many possible uses of decorators, but one of their more interesting
qualities is that they allow function definitions to be manipulated at the time
they are defined. If you put extra logic into the wrapping process, you can
have programs selectively turn features on or off, much in the way that a C
programmer might use the preprocessor. For example, consider this slightly
modified version of the debugged() function:

import os
def debugged(func):
 # If not in debugging mode, return func unmodified
 if os.environ.get(‘DEBUG’,’FALSE’) != ‘TRUE’:
 return func

 # Put a debugging wrapper around func
 def call(*args,**kwargs):
 print(“Calling %s” % func.__name__)
 result = func(*args,**kwargs)
 print(“%s returning %r” % (func.__name__, result))
 return result
 return call

In this modified version, the debugged() function looks at the setting of an
environment variable and uses that to determine whether or not to put a de-

Login_articlesAPRIL09_final.indd 44 3/9/09 10:39:53 AM

; LO G I N : A pr I L 20 0 9 py Th O N 3 : Th E GO O d, Th E BA d, A N d Th E uG Ly 45

bugging wrapper around a function. If debugging is turned off, the function
is simply left alone. In that case, the use of a decorator has no effect and the
program runs at full speed with no extra overhead (except for the one-time
call to debugged() when decorated functions are defined).

Python 3 takes the idea of function decoration to a whole new level of so-
phistication. Let’s look at an example:

def positive(x):
 “must be positive”
 return x > 0

def negative(x):
 “must be negative”
 return x < 0

def foo(a:positive, b:negative) -> positive:
 return a - b

The first two functions, negative () and positive (), are just simple function
definitions that check an input value x to see if it satisfies a condition and
return a Boolean result. However, something very different must be going on
in the definition of foo () that follows.

The syntax of foo () involves a new feature of Python 3 known as a function
annotation. A function annotation is a mechanism for associating arbitrary
values with the arguments and return of a function definition. If you look
carefully at this code, you might get the impression that the positive and
negative annotations to foo () are carrying out some kind of magic—maybe
calling those functions to enforce some kind of contract or assertion. How-
ever, you are wrong. In fact, these annotations do absolutely nothing! foo ()
is just like any other Python function:

>>> foo(3,-2)
5
>>> foo(-5,2)
-7
>>>

Python 3 doesn’t do anything with annotations other than store them in a
dictionary. Here is how to view it:

>>> foo.__annotations__
{‘a’: <function positive at 0x384468>,
 ‘b’: <function negative at 0x3844b0>,
 ‘return’: <function positive at 0x384468> }
>>>

The interpretation and use of these annotations are left entirely unspecified.
However, their real power comes into play when you mix them with decora-
tors. For example, here is a decorator that looks at the annotations and cre-
ates a wrapper function where they turn into assertions:

def ensure(func):
 # Extract annotation data
 return_check = func.__annotations__.get(‘return’,None)
 arg_checks = [(name,func.__annotations__.get(name))
 for name in func.__code__.co_varnames]

 # Create a wrapper that checks argument values and the return
 # result using the functions specified in annotations

 def assert_call(*args,**kwargs):
 for (name,check),value in zip(arg_checks,args):

Login_articlesAPRIL09_final.indd 45 3/9/09 10:39:53 AM

46 ; LO G I N : vO L . 3 4, N O. 2

 if check: assert check(value), “%s %s” % (name, check.__doc__)
 for name,check in arg_checks[len(args):]:
 if check: assert check(kwargs[name]), “%s %s” % (name, check.__
doc__)
 result = func(*args,**kwargs)
 assert return_check(result), “return %s” % return_check.__doc__
 return result

 return assert_call

This code will undoubtedly require some study, but here is how it is used in
a program:

@ensure
def foo(a:positive, b:negative) -> positive:
 return a - b

Here is an example of what happens if you violate any of the conditions
when calling the decorated function:

>>> foo(3,-2)
5
>>> foo(-5,2)
Traceback (most recent call last):
 File “”, line 1, in
 File “meta.py”, line 19, in call
 def assert_call(*args,**kwargs):
AssertionError: a must be positive
>>>

It’s really important to stress that everything in this example is user-defined.
Annotations can be used in any manner whatsoever—the behavior is left up
to the application. In this example, we built our own support for a kind of
“contract” programming where conditions can be optionally placed on func-
tion inputs. However, other possible applications might include type check-
ing, performance optimization, data serialization, documentation, and more.

MeTacLaSSeS

The other major tool for metaprogramming is Python’s support for meta-
classes. When a class definition is encountered, the body of the class state-
ment (all of the methods) populates a dictionary that later becomes part of
the class object that is created. A metaclass allows programmers to insert
their own custom processing into the last step of the low-level class creation
process. The following example illustrates the mechanics of the “metaclass
hook.” You start by defining a so-called metaclass that inherits from type
and implements a special method _ _new_ _():

class mymeta(type):
 def __new__(cls,name,bases,dict):
 print(“Creating class :”, name)
 print(“Base classes :”, bases)
 print(“Class body :”, dict)
 # Create the actual class object
 return type.__new__(cls,name,bases,dict)

Next, when defining new classes, you can add a special “metaclass” specifier
like this:

class Rectangle(object,metaclass=mymeta):
 def __init__(self,width,height):

Login_articlesAPRIL09_final.indd 46 3/9/09 10:39:53 AM

; LO G I N : A pr I L 20 0 9 py Th O N 3 : Th E GO O d, Th E BA d, A N d Th E uG Ly 47

 self.width = width
 self.height = height
 def area(self):
 return self.height*self.width
 def perimeter(self):
 return 2*self.height + 2*self.width

If you try this code, you will see the _new_ _() method of the metaclass
execute once when the Rectangle class is defined. The arguments to this
method contain all of the information about the class including the name,
base classes, and dictionary of methods. I would strongly suggest trying this
code to get a sense for what happens.

At this point, you might be asking yourself, “How would I use a feature like
this?” The main power of a metaclass is that it can be used to manipulate the
entire contents of class body in clever ways. For example, suppose that you
collectively wanted to put a debugging wrapper around every single method
of a class. Instead of manually decorating every single method, you could
define a metaclass to do it like this:

class debugmeta(type):
 def __new__(cls,name,bases,dict):
 if os.environ.get(‘DEBUG’,’FALSE’) == ‘TRUE’:
 # Find all callable class members and put a
 # debugging wrapper around them.
 for key,member in dict.items():
 if hasattr(member,’__call__’):
 dict[key] = debugged(member)
 return type.__new__(cls,name,bases,dict)

class Rectangle(object,metaclass=debugmeta):
 ...

In this case, the metaclass iterates through the entire class dictionary and re-
writes its contents (wrapping all of the function calls with an extra layer).

Metaclasses have actually been part of Python since version 2.2. However,
Python 3 expands their capabilities in an entirely new direction. In past
versions, a metaclass could only be used to process a class definition after
the entire class body had been executed. In other words, the entire body
of the class would first execute and then the metaclass processing code
would run to look at the resulting dictionary. Python 3 adds the ability to
carry out processing before any part of the class body is processed and to
incrementally perform work as each method is defined. Here is an example
that shows some new metaclass features of Python 3 by detecting duplicate
method names in a class definition:

A special dictionary that detects duplicates
class dupdict(dict):
 def __setitem__(self,name,value):
 if name in self:
 raise TypeError(“%s already defined” % name)
 return dict.__setitem__(self,name,value)

A metaclass that detects duplicates
class dupmeta(type):
 @classmethod
 def __prepare__(cls,name,bases):
 return dupdict()

Login_articlesAPRIL09_final.indd 47 3/9/09 10:39:54 AM

48 ; LO G I N : vO L . 3 4, N O. 2

In this example, the _ _prepare_ _() method of the metaclass is a special
method that runs at the very beginning of the class definition. As input it
receives the name of the class being defined and a tuple of base classes. It
returns the dictionary object that will be used to store members of the class
body. If you return a custom dictionary, you can capture each member of a
class as it is defined. For example, the dupdict class redefines item assign-
ment so that, if any duplicate is defined, an exception is immediately raised.
To see this metaclass in action, try it with this code:

class Rectangle(metaclass=dupmeta):
 def __init__(self,width,height):
 self.width = self.width
 self.height = self.height
 def area(self):
 return self.width*self.height
 # This repeated method name will be rejected (a bug)
 def area(self):
 return 2*(self.width+self.height)

Finally, just to push all of these ideas a little bit further, Python 3 allows
class definitions to be decorated. For example:

@foo
class Bar:
 statements

This syntax is shorthand for the following code:

class Bar:
 statements

Bar = foo(Bar)

So, just like functions, it is possible to use decorators to put wrappers
around classes. Some possible use cases include applications related to dis-
tributed computing and components. For example, decorators could be used
to create proxies, set up RPC servers, register classes with name mappers,
and so forth.

Head eXpLoSIon

If you read the last few sections and feel as though your brain is going to
explode, then your understanding is probably correct. (Just for the record,
metaclasses are also known as Python’s “killer joke”—in reference to a
Monty Python sketch that obviously can’t be repeated here.) However, these
new metaprogramming features are what really sets Python 3 apart from its
predecessors, because these are the new parts of the language that can’t be
emulated in previous versions. They are also the parts of Python 3 that pave
the way to entirely new types of framework development.

python 3: The good

On the whole, the best feature of Python 3 is that the entire language is
more logically consistent, entirely customizable, and filled with advanced
features that provide an almost mind-boggling amount of power to frame-
work builders. There are fewer corner cases in the language design and a lot
of warty features from past versions have been removed. For example, there
are no “old-style” classes, string exceptions, or features that have plagued
Python developers since its very beginning, but which could not be removed
because of backwards compatibility concerns.

Login_articlesAPRIL09_final.indd 48 3/9/09 10:39:54 AM

; LO G I N : A pr I L 20 0 9 py Th O N 3 : Th E GO O d, Th E BA d, A N d Th E uG Ly 49

There are also a variety of new language features that are simply nice to use.
For example, if you have used features such as list comprehensions, you
know that they are a very powerful way to process data. Python 3 builds
upon this and adds support for set and dictionary comprehensions. For ex-
ample, here is an example of converting all keys of a dictionary to lowercase:

>>> data = { ‘NAME’ : ‘Dave’, ‘EMAIL’:’dave@dabeaz.com’ }
>>> data = {k.lower():v for k,v in data.items}
>>> data
{‘name’: ‘Dave’, ‘email’: ‘dave@dabeaz.com’}
>>>

Major parts of the standard library—especially those related to network pro-
gramming—have been reorganized and cleaned up. For instance, instead
of a half-dozen scattered modules related to the HTTP protocol, all of that
functionality has been collected into an HTTP package.

The bottom line is that, as a programming language, Python 3 is very clean,
very consistent, and very powerful.

python 3: The bad

The obvious downside to Python 3 is that it is not backwards compatible
with prior versions. Even if you are aware of basic incompatibilities such as
the print statement, this is only the tip of the iceberg. As a general rule, it
is not possible to write any kind of significant program that simultaneously
works in Python 2 and Python 3 without limiting your use of various lan-
guage features and using a rather contorted programming style.

In addition to this, there are no magic directives, special library imports,
environment variables, or command-line switches that will make Python
3 run older code or allow Python 2 to run Python 3 code. Thus, it’s really
important to stress that you must treat Python 3 as a completely different
language, not as the next step in a gradual line of upgrades from previous
versions.

The backwards incompatibility of Python 3 presents a major dilemma for
users of third-party packages. Unless a third-party package has been ex-
plicitly ported to Python 3, it won’t work. Moreover, many of the more sig-
nificant packages have dependencies on other Python packages themselves.
Ironically, it is the large frameworks (the kind of code for which Python 3 is
best suited) that face the most daunting task of upgrading. As of this writ-
ing, some of the more popular frameworks aren’t even compatible with Py-
thon 2.5—a release that has been out for several years. Needless to say,
they’re not going to work with Python 3.

Python 3 includes a tool called 2to3 that aims to assist in Python 2 to Py-
thon 3 code migration. However, it is not a silver bullet nor is it a tool that
one should use lightly. In a nutshell, 2to3 will identify places in your pro-
gram that might need to be fixed. For example, if you run it on a “hello
world” program, you’ll get this output:

bash-3.2$ 2to3 hello.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: ws_comma
--- hello.py (original)
+++ hello.py (refactored)
@@ -1,1 +1,1 @@
-print “hello world”

Login_articlesAPRIL09_final.indd 49 3/9/09 10:39:54 AM

50 ; LO G I N : vO L . 3 4, N O. 2

+print(“hello world”)
RefactoringTool: Files that need to be modified:
RefactoringTool: hello.py
bash-3.2$

By default, 2to3 only identifies code that needs to be fixed. As an option,
it can also rewrite your source code. However, that must be approached
with some caution. 2to3 might try to fix things that don’t actually need to
be fixed, it might break code that used to work, and it might fix things in a
way that you don’t like. Before using 2to3, it is highly advisable to first cre-
ate a thorough set of unit tests so that you can verify that your program still
works after it has been patched.

python 3: The ugly

By far the ugliest part of Python 3 is its revised handling of Unicode and the
new I/O stack. Let’s talk about the I/O stack first.

In adopting a layered approach to I/O, the entire I/O system has been re-
implemented from the ground up. Unfortunately, the resulting performance
is so bad as to render Python 3 unusable for I/O-intensive applications. For
example, consider this simple I/O loop that reads a text file line by line:

for line in open(“somefile.txt”):
 pass

This is a common programming pattern that Python 3 executes more than
40 times slower than Python 2.6! You might think that this overhead is
due to Unicode decoding, but you would be wrong—if you open the file
in binary mode, the performance is even worse! Numerous other problems
plague the I/O stack, including excessive buffer copying and other resource
utilization problems. To say that the new I/O stack is “not ready for prime
time” is an understatement.

To be fair, the major issue with the I/O stack is that it is still a prototype.
Large parts of it are written in Python itself, so it’s no surprise that it’s slow.
As of this writing, there is an effort to rewrite major parts of it in C , which
can only help its performance. However, it is unlikely that this effort will
ever match the performance of buffered I/O from the C standard library
(the basis of I/O in previous Python versions). Of course, I would love to be
proven wrong.

The other problematic feature of Python 3 is its revised handling of Uni-
code. I say this at some risk of committing blasphemy—the fact that Python
3 treats all text strings as Unicode is billed as one of its most important fea-
tures. However, this change now means that Unicode pervades every part of
the interpreter and its standard libraries. This includes such mundane things
as command-line options, environment variables, filenames, and low-level
system calls. It also means that the intrinsic complexity of Unicode handling
is now forced on all users regardless of whether or not they actually need to
use it.

To be sure, Unicode is a critically important aspect of modern applications.
However, by implicitly treating all text as Unicode, Python 3 introduces a
whole new class of unusual programming issues not seen in previous Py-
thon versions. Most of these problems stem from what remains a fairly loose
notion of any sort of standardized Unicode encoding in many systems. Thus,
there is now a potential mismatch between low-level system interfaces and
the Python interpreter.

Login_articlesAPRIL09_final.indd 50 3/9/09 10:39:54 AM

; LO G I N : A pr I L 20 0 9 py Th O N 3 : Th E GO O d, Th E BA d, A N d Th E uG Ly 51

To give an example of the minefield awaiting Python 3 users, let’s look at a
simple example involving the file system on a Linux system. Take a look at
this directory listing:

% ls -b
image.png jalape\361o.txt readme.txt
%

In this directory, there is a filename Jalepe\361o.txt with an extended Latin
character, “ñ,” embedded in it. Admittedly, that’s not the most common kind
of filename one encounters on a day-to-day basis, but Linux allowed such a
filename to be created, so it must be assumed to be technically valid.

Past versions of Python have no trouble dealing with such files, but let’s take
a look at what happens in Python 3. First, you will notice that there is no
apparent way to open the file:

>>> f = open(“jalape\361o.txt”)
Traceback (most recent call last):
IOError: [Errno 2] No such file or directory: ‘jalapeño.txt’
>>>

Not only that, the file doesn’t show up in directory listings or with file glob-
bing operations—so now we have a file that’s invisible! Let’s hope that this
program isn’t doing anything critical such as making a backup.

>>> os.listdir(“.”)
[‘image.png’, ‘readme.txt’]
>>> glob.glob(“*.txt”)
[‘readme.txt’]
>>>

Let’s try passing the filename into a Python 3.0 program as a command-line
argument:

% python3.0 *.txt
Could not convert argument 2 to string
%

Here the interpreter won’t run at all—end of story.

The source of these problems is the fact that the filename is not properly en-
coded as UTF-8 (the usual default assumed by Python). Since the name can’t
be decoded, the interpreter either silently rejects it or refuses to run at all.
There are some settings that can be made to change the encoding rules for
certain parts of the interpreter. For example, you can use sys.setfilesys-
temencoding () to change the default encoding used for names on the file
system. However, this can only be used after a program starts and does not
solve the problem of passing command-line options.

Python 3 doesn’t abandon byte-strings entirely. Reading data with binary
file modes [e.g., open(filename,”rb”)] produces data as byte-strings. There
is also a special syntax for writing out byte-string literals. For example:

s = b’Hello World’ # String of 8-bit characters

It’s subtle, but supplying byte-strings is one workaround for dealing with
funny file names in our example. For example:

>>> f = open(b’jalape\361o.txt’)
>>> os.listdir(b’.’)
[b’jalape\xf1o’, b’image.png’, b’readme.txt’]
>>>

Login_articlesAPRIL09_final.indd 51 3/9/09 10:39:54 AM

52 ; LO G I N : vO L . 3 4, N O. 2

Unlike past versions of Python, byte-strings and Unicode strings are strictly
separated from each other. Attempts to mix them in any way now produce
an exception:

>>> s = b’Hello’
>>> t = “World”
>>> s+t Traceback (most recent call last):
 File “”, line 1, in
TypeError: can’t concat bytes to str
>>>

This behavior addresses a problematic aspect of Python 2 where Unicode
strings and byte-strings could just be mixed together by implicitly promoting
the byte-string to Unicode (something that sometimes led to all sorts of bi-
zarre programming errors and I/O issues). It should be noted that the fact that
string types can’t be mixed is one of the most likely things to break programs
migrated from Python 2. Sadly, it’s also one feature that the 2to3 tool can’t de-
tect or correct. (Now would be a good time to start writing unit tests.)

System programmers might be inclined to use byte-strings in order to avoid
any perceived overhead associated with Unicode text. However, if you try
to do this, you will find that these new byte-strings do not work at all like
byte-strings in prior Python versions. For example, the indexing operator
now returns byte values as integers:

>>> s[2]
108
>>>

If you print a byte-string, the output always includes quotes and the leading
b prefix—rendering the print() statement utterly useless for output except
for debugging. For example:

>>> print(s)
b’Hello’
>>>

If you write a byte-string to any of the standard I/O streams, it fails:

>>> sys.stdout.write(s)
Traceback (most recent call last):
 File “”, line 1, in
 File “/tmp/lib/python3.0/io.py”, line 1484, in write
 s.__class__.__name__)
TypeError: can’t write bytes to text stream
>>>

You also can’t perform any kind of meaningful formatting with byte-strings:

>>> b’Your age is %d’ % 42
Traceback (most recent call last):
 File “”, line 1, in
TypeError: unsupported operand type(s) for %: ‘bytes’ and ‘int’
>>>

Common sorts of string operations on bytes often produce very cryptic error
messages:

>>> ‘Hell’ in s
Traceback (most recent call last):
 File “”, line 1, in
TypeError: Type str doesn’t support the buffer API
>>>

Login_articlesAPRIL09_final.indd 52 3/9/09 10:39:54 AM

; LO G I N : A pr I L 20 0 9 py Th O N 3 : Th E GO O d, Th E BA d, A N d Th E uG Ly 53

This does work if you remember that you’re working with byte-strings:

>>> b’Hell’ in s
True
>>>

The bottom line is that Unicode is something that you will be forced to em-
brace in Python 3 migration. Although Python 3 corrects a variety of prob-
lematic aspects of Unicode from past versions, it introduces an entirely new
set of problems to worry about, especially if you are writing programs that
need to work with byte-oriented data. It may just be the case that there is no
good way to entirely handle the complexity of Unicode—you’ll just have to
choose a Python version based on the nature of the problems you’re willing
to live with.

conclusions

At this point, Python 3 can really only be considered to be an initial proto-
type. It would be a mistake to start using it as a production-ready replace-
ment for Python 2 or to install it as an “upgrade” to a Python 2 installation
(especially since no Python 2 code is likely to work with it).

The embrace of Python 3 is also by no means a foregone conclusion in the
Python community. To be sure, there are some very interesting features of
Python 3, but Python 2 is already quite capable, providing every feature of
Python 3 except for some of its advanced features related to metaprogram-
ming. It is highly debatable whether programmers are going to upgrade
based solely on features such as Unicode handling—something that Python
already supports quite well despite some regrettable design warts.

The lack of third-party modules for Python 3 also presents a major chal-
lenge. Most users will probably view Python 3 as nothing more than a curi-
osity until the most popular modules and frameworks make the migration.
Of course this raises the question of whether or not the developers of these
frameworks see a Python 3 migration as a worthwhile effort.

It will be interesting to see what programmers do with some of the more ad-
vanced aspects of Python 3. Many of the metaprogramming features such as
annotations present interesting new opportunities. However, I have to admit
that I sometimes wonder whether these features have made Python 3 too
clever for its own good. Only time will tell.

general advice

For now, the best advice is to simply sit back and watch what happens with
Python 3—at the very least it will be an interesting case study in software
engineering. New versions of Python 2 continue to be released and there are
no immediate plans to abandon support for that branch. Should you decide
to install Python 3, it can be done side-by-side with an existing Python 2
installation. Unless you instruct the installation process explicitly, Python 3
will not be installed as the default.

referenceS

[1] What’s New in Python 3?: http://docs.python.org/dev/3.0/
whatsnew/3.0.html.

Login_articlesAPRIL09_final.indd 53 3/9/09 10:39:54 AM

54 ; LO G I N : vO L . 3 4, N O. 2

R u d i v a n d R u n e n

the basics of power
Rudi van Drunen is a senior UNIX systems consul-
tant with Competa IT B.V. in the Netherlands. He
also has his own consulting company, Xlexit Tech-
nology, doing low-level hardware-oriented jobs.

rudi-usenix@xlexit.com

W e O f t e n ta l k a b O u t s y s t e M s f r O M
a “in front of the (working) screen” or a
“software” perspective. Behind all this there
is a complex hardware architecture that
makes things work. This is your machine:
the machine room, the network, and all.
Everything has to do with electronics and
electrical signals. In this article I will discuss
the background of some of the electronics,
introducing the basics of power and how
to work with it, so that you will be able to
understand the issues and calculations that
are the basis of delivering the electrical
power that makes your system work.

There are some basic things that drive the electrons
through your machine. I will be explaining Ohm’s
law, the power law, and some aspects that will
show you how to lay out your power grid.

power Law

Any piece of equipment connected to a power
source will cause a current to flow. The current
will then have the device perform its actions (and
produce heat). To calculate the current that will
be flowing through the machine (or light bulb) we
divide the power rating (in watts) by the voltage
(in volts) to which the system is connected. An ex-
ample here is if you take a 100-watt light bulb and
connect this light bulb to the wall power voltage of
115 volts, the resulting current will be 100/115 =
0.87 amperes.

This equation can be written as follows:

I = P/U

or, after performing some algebra,

U = P/I or P = UI

where

P is the power (in units of watts [W])

U is the voltage (in units of volts [V])

I is the current (in units of amperes [A])

Note the use of U for the voltage here; this is com-
monly used to distinguish between the voltage at a
certain point and the unit of voltage (volts, V). In
the literature the symbol V is also used for both the
voltage and the unit volts, which can be confusing.

Login_articlesAPRIL09_final.indd 54 3/9/09 10:39:54 AM

; LO G I N : A pr I L 20 0 9 Th E BA sI Cs O F p OwE r 55

ohm’s Law

To have current flow, the device you are connecting to a voltage source has
to pose some resistance to the electrons that want to flow from one terminal
to the other terminal. The more resistance the device has, the less current
will be flowing through the device.

We calculate resistance using Ohm’s law, which can be written as

R = U/I

or

U = IR

or

I = U/R

where

R is the resistance (in units of ohms [Greek capital omega, Ω])

U is the voltage (in units of volts [V])

I is the current (in units of amperes [A])

We can calculate the resistance of the light bulb just discussed by dividing
the voltage (115 V) by the current flowing (0.87 A). This results in a resis-
tance of 132 Ω.

Note that for a light bulb the calculated resistance is the resistance in the
“on” or hot state. The “off” resistance can be very different.

Combining Ohm’s law and the power law, we can calculate the power that
a resistor as a load to a voltage source will convert into heat (or a motor will
convert into both heat and mechanical power):

P = U(U/R) = U2/R

which can be rewritten using Ohm’s law to

P = I(RI) = I2R

This might also be applicable to a power cable. We all know that if you use
a too thin (too low a rating) power cable for heavy equipment, the cable will
get hot and eventually catch fire on the points where the resistance is the
highest (most likely at the points where the plug connects to the wire). If we
take a standard power cable (12 gauge), it will have a resistance of 2.0 Ω per
1000 ft. If you connect a 800-W piece of equipment to it (a strand of 500
ft of extension wire, totaling 1000 ft of conductor), this cable will dissipate
more than 300 W of heat. (The resistance of wire can be found at http://
www.powerstream.com/Wire_Size.htm and seen in Table 1.)

Rating Type ohms/1000 ft ft/ohm

12 AWG stranded 1.65 606

14 AWG stranded 2.62 381

16 AWG stranded 4.17 239

12 AWG Solid 1.59 629

14 AWG Solid 2.52 396

16 AWG Solid 4.02 249

t A b L e 1 : r e s i s t A n c e r A t i n g s F O r c O m m O n g A u g e s O F w i r e

Login_articlesAPRIL09_final.indd 55 3/9/09 10:39:54 AM

56 ; LO G I N : vO L . 3 4, N O. 2

We first calculate the resistance of the device: 800 W/115 V = 6.9 Ω. We
then add the power cable resistance to it, for a total of 8.9 Ω. Now we cal-
culate the current flowing through the complete system: 115 V/8.9 Ω = 12.9
A. So both through the device and the cord, we see a current of 12.9 A.
With these values we can both calculate the power dissipated in the power
cord and the voltage that drops over the power cord. A schematic drawing is
shown in Figure 1. The power equals (12.9)2 × 2.0 = 333 W and the voltage
drop is 12.9 × 2.0 = 25.8 V. Now as we connect to the mains of 115 V and
we have a total voltage drop of 25.8 V (12.9 V per conductor) over the power
cable, so only 115 − 25.8 = 89.2 V remains for the device.

F i g u r e 1 : t h e V O Lt A g e d r O p w h e n u s i n g 5 0 0 F t O F 1 2 g A u g e
e x t e n s i O n c O r d w i t h 1 1 5 V w i L L b e 2 5 . 8 V, L e A V i n g O n Ly 8 9 V
F O r t h e d e V i c e .

This calculation shows that it is important to have the correct rating of the
power cable, to ensure that as much power as possible flows to the device
where it does the work and to minimize the losses in the power cabling
(which is just wasted heat).

Signals

Previously we assumed that the voltage applied to the resistor (or light bulb)
was constant. However, the mains voltage in the United States varies be-
tween 162.15 V and –162.15 V. Figure 2 shows the sine wave for this alter-
nating current (AC) voltage. A number of parameters can be derived. We
have the top (maximum) value of the voltage (162.15 V), the average (over a
integer number of periods) voltage (0 V), and the root mean square (RMS)
voltage (which is the rated voltage of the mains, i.e., the effective voltage).
For a sine wave the maximum voltage is √2 times the RMS voltage. If the
curve is not a sine wave the factor is different. The ratio between the peak
(max) value of a signal and the RMS value of this signal is called the crest
factor. A direct current (DC) voltage has a crest factor of 1, and a pure sine
wave 1.41 (√2).

To do power calculations as described previously, we use the RMS value.

We can determine the period and frequency. The frequency is defined as
1/period. With a 16-ms period, the frequency equals 60 hertz [Hz].

A signal can have both AC and DC components. The mains voltage has no
DC component, but, as we see later, we can have an AC voltage biased by a
DC voltage, as shown in Figure 3. The average of this signal (over an integer
number of periods) is not 0, of course, and the RMS value equals the origi-
nal RMS value (without bias) plus the bias voltage.

Login_articlesAPRIL09_final.indd 56 3/9/09 10:39:55 AM

; LO G I N : A pr I L 20 0 9 Th E BA sI Cs O F p OwE r 57

F i g u r e 2 : A c V O Lt A g e s h O w i n g m A x i m u m A n d m i n i m u m V A L u e s
A L O n g w i t h t h e r m s V A L u e , p e r i O d , A n d F r e q u e n c y

F i g u r e 3 : A n A c V O Lt A g e w i t h A d c c O m p O n e n t

components

In electronics we distinguish passive components (resistors, capacitors, and
inductors) from active components (diodes, transistors, or more complex
semiconductors). The active components can take actions, such as prevent-
ing current from flowing in one direction, or switching current on or off,
whereas passive components cannot. In this article we introduce the three
basic passive components. Figure 4 shows the corresponding schematic
symbols.

F i g u r e 4 : t h e t h r e e b A s i c p A s s i V e c O m p O n e n t s

reSISTor

Earlier, I silently introduced the resistor as a component. A resistor is often
a small component found in almost all electronic circuits, which reduces the

0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175

-150

-100

-50

50

100

150

Average = 0

RMS=115 V

Max = 162 V

 Period = 16.6 ms
Frequency = 60 Hz

Time (s)

Voltage (V)

0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175

-240

-160

-80

80

160

240

Time (s)

Voltage (V)

DC level = 60 V

Average = 60 V

RMS = 175 V

Max = 222 V

AC Component

DC Component

Resistor Capacitor Inductor
(Coil)

Login_articlesAPRIL09_final.indd 57 3/9/09 10:39:55 AM

58 ; LO G I N : vO L . 3 4, N O. 2

flow of electrons. You can compare it to a obstruction in a garden hose. The
water (electrical current) cannot flow freely, and a pressure difference (volt-
age) builds up over this obstruction. Also the power cord acts as an obstruc-
tion. The unit of resistance is the ohm (denoted by the Greek letter omega,
Ω).

capacITor

A capacitor can hold electrical charge. Capacitors are generally very small
when used in a circuit or take on (very) large forms in power systems as de-
scribed later. If a current flows to a capacitor, it fills it with electrical charge
over time and a voltage builds up over it. Compare this with a bucket that is
being filled by the garden hose. The unit of capacitance is the farad (denoted
by F).

InducTor

The inductor is a basic coil. It acts about the same as a capacitor, but instead
of an electrical field it builds a magnetic field inside the core, as a result of
an applied voltage. An applied voltage causes a current to flow and this is
used to build up the magnetic field; after the field is in place, current will
flow through the inductor. Inductors are often used together with capacitors
to filter signals or generate oscillating signals. We use the unit henry (H) for
the inductance.

complex power

All of what I have discussed so far in power calculations is true if we have a
perfect resistor as a load (e.g., a heating element or a lamp), but the calcula-
tions get more complicated when we have more complex loads. A piece of
electronics has not only resistors but also capacitors and inductors. We can
describe the behavior of a capacitor and an inductor by the following ex-
pressions: For an inductor,

U = −L(dI/dt)

and for a capacitor,

U = C ∫Idt

where

L is the value of the inductor (in henries)

C is the value of the capacitor (in farads)

So, if we connect a circuit containing reactive components (capacitors and
inductors) to an AC voltage source, some time will be needed to build up en-
ergy in capacitors, for example, so the result will be a time difference (phase
difference) between the applied voltage waveform and the resulting current
waveform. The stored energy [in electric fields (capacitor) or magnetic fields
(inductor)] cannot result in “work” and flows back into the applied source.
The factor between the current able to do actual work and the current that
is used to build up charge (blind current) and not to perform work is called
the power factor (Pf).

Real (pure) resistive loads (heaters, lamps, etc.) have a power factor of 1, and
the voltage and current are in phase. But if we observe motors, for example,
[containing coils (inductors)] we see that the power factor is below 1. In gen-
eral:

Login_articlesAPRIL09_final.indd 58 3/9/09 10:39:55 AM

; LO G I N : A pr I L 20 0 9 Th E BA sI Cs O F p OwE r 59

Pf = P/S

where

P is the real power (in watts)
S is the apparent power (in volt-amperes)

We define the power factor as the cosine of the angle (phi) between the volt-
age and current [Pf = cos(phi)]. I need to explain the angle here. I define a
full wave as 360 degrees, or 2π radians; hence we can relate a time period to
an angle. Figure 5 shows the waveforms of the voltage, current, and power
and their relationship over time: if phi = [1.8 ms (phi)]/[16.6 ms (full wave)]
× 360 degrees = 39 degrees, the power factor Pf = cos(39 degrees) = 0.77.

F i g u r e 5 : r e L A t i O n s h i p A m O n g V O Lt A g e , c u r r e n t, A n d p O w e r
O V e r t i m e

If you have a load of 10 kW and the power factor is 1.0, your power supply
has to supply 10 kW of power to the system. However, if the power factor is
0.6, the supply system in place needs to be set up for transport of 10/0.6 =
16.6 kW. The power company wants you to have your power factor as close
to 1.0 as possible, so (as they bill you only for the power that actually does
do work) they can design their systems and bill you for the power properly.
Mostly in your contract with a power company it states that you (your data-
center) should have a power factor of 0.8 or better. The UPS that you proba-
bly have installed in your datacenter is specified in volt-amperes (VA), which
is the total (apparent) power you need.

To get your power factor in shape (which generally means Pf > 0.8) you might
have devices that contain capacitors and/or inductors installed to cancel out
(part of) the effects of the loads you have. Mostly they consist of some mea-
suring circuitry to measure the phase angle between the voltage and resulting
current and a system to add capacity or induction to the system.

The power factor of most modern computer equipment (with switched mode
power supplies) is close to 1, but other equipment used in the datacenter
(for, say, cooling or ventilation) involving large motors can change the power
factor dramatically.

Multiphase Systems

Generally, the power company delivers your power in three phases. The wire
that enters your building (not residential) contains three or four conductors,
each (of the three) carrying a single phase of 120 V power. A common re-
turn line can be provided. The 120 V is measured against this common re-
turn line. The sinusoidal voltage on each of the three phases is shifted 120
degrees.

0 0.0025 0.005 0.0075 0.01 0.0125

-160

-80

80

160

Time (s)

Voltage (V)

Voltage CurrentPower

phi

Login_articlesAPRIL09_final.indd 59 3/9/09 10:39:55 AM

60 ; LO G I N : vO L . 3 4, N O. 2

The voltage between the phases equals √3 × 120 = 208 volts.

Using three phases is a more efficient way of transporting and using electri-
cal power. A motor can more easily be driven by a magnetic field that rotates
by itself. This can be accomplished by using three or more coils in the static
part of the motor that are connected to the different phases. As the different
coils are driven 120 degrees apart electrically, the magnetic field will rotate
accordingly and drive the motor. Large motors (larger than 5 kW) are only
available in three-phase versions. Using three-phase systems for large loads
can be up to 75% more efficient than single-phase systems.

You can use each individual phase to act as a single-phase supply and con-
nect part of your racks to that by using a step-down transformer (converting
208 to 120 V, as often the “common return” line is not available). The power
company will request that you distribute your load evenly over the different
phases. Some three-phase UPS devices will do that for you.

In a residential environment a number of buildings are connected to one
phase, using a converter transformer often found on the pole, yielding an
evenly distributed load.

F i g u r e 6 : d i F F e r e n t w A y s O F u s i n g t h r e e - p h A s e p O w e r i n
m O t O r s

There are two different wiring schemes for three-phase systems, called star
and delta (triangle) configurations (see Fig. 6). These configurations are the
layout of how the coils in a motor are connected to the phases of a three-
phase system. The star configuration is used to start the motor and deliver
high torque; after that some smart electronics switch over to delta mode
when running. As the different phases (coils in the static part of the motor)
are driven with a time lag (see Fig. 7) the magnetic field inside the motor
rotates, causing the rotor to rotate. You will see this in large UPS systems,
flywheels, and air-conditioning systems comprising large motors. Most “nor-
mal” computing systems will connect to one phase. However, large ma-
chines and disk cabinets will eventually use three-phase input and often use
the three phases to feed three power supplies.

F i g u r e 7 : t h r e e - p h A s e p O w e r V O Lt A g e g r A p h

0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175

-500

-250

250

500

Time (s)

Voltage (V)

Phase R Phase S Phase T

R-Phase

S-Phase
T-Phase

R-Phase

S-PhaseT-Phase

N

Login_articlesAPRIL09_final.indd 60 3/9/09 10:39:55 AM

; LO G I N : A pr I L 20 0 9 Th E BA sI Cs O F p OwE r 61

grounding

Each system (computer, rack, etc.) should have an adequate connection to
the ground wire. Exceptions to this rule are some double-insulated con-
sumer devices, which we will discuss later. The ground wire (often a green/
yellow striped wire) is connected to an electrode that is physically driven
into the earth. The ground connection prevents the physically exposed con-
ducting parts of a device from getting exposed to dangerous potentials in
case of a failure of the insulation. A special kind of circuit breaker will sig-
nal such a fault (by comparing the current in the power line with that in the
return line and noting any difference) and switch off the power. This is com-
monly called a Ground Fault Interrupter (GFI).

Also, the connection to ground prevents the buildup of static electricity (e.g.,
from air friction from the fans inside a cabinet). I will discuss this in a later
article in which we evaluate static electricity and the issues concerned with
it.

A common issue is the use of so-called transzorbs (overvoltage protect-
ing devices) in power supplies. These devices make a short circuit from the
mains line to the grounding pin when a power surge occurs, thereby pro-
tecting the device from getting fried. These devices can go bad (which often
happens when they have already done their job once) and leak just a little of
the mains voltage to the ground and the metal chassis. They then will act as
a capacitor and have a noninfinite resistance to AC voltage.

If this is the case (and you might have an improper connection to earth)
your metal case will carry (part of) the mains voltage. This is particularly
dangerous if you touch both the case and, for example, a central heating
pipe (which is supposed to be grounded), or if you connect this system to
another system that is properly grounded.

So, in short, make sure all equipment is securely grounded, including the
racks. Be very careful to have the ground connection itself done properly.

Ground also refers to a reference level against which all voltages are mea-
sured. In a computer system we have the ground level, which represents the
0-V rail on the power supply, and the mains ground, which is connected to
the chassis. They may or may not be tied together. (If not, we refer to this as
a system with a “floating ground.”) Sometimes there is an AC coupling (ca-
pacitor) between the circuit ground and mains ground to get rid of high-fre-
quency noise on the power line.

Adequately insulated equipment, such as some consumer equipment, is al-
lowed by the regulatory body not to have ground connections. Often this
equipment does not have a metal case or metal knobs.

ground LoopS

Ground loops occur when the ground (0-V rail) potential of one device is
not the same as the ground potential of the connecting device. Because of
the resistance in one of the ground leads and the current flowing through
it, the 0-V rail in device A will not have the same potential as the 0-V rail
of device B. Figure 8 (next page) shows the voltages in time at two points in
the circuit. Device A “sees” a different voltage compared to device B.

Login_articlesAPRIL09_final.indd 61 3/9/09 10:39:56 AM

62 ; LO G I N : vO L . 3 4, N O. 2

F i g u r e 8 : p r i n c i p L e O F A g r O u n d L O O p

Figure 9 shows the circuit diagram, where the output voltage is not the same
as U2 (as you would expect) but is the addition of U2 and the voltage gener-
ated through the ground current Uground:

Uout = U2 − Uground = U2 − U1[Rground/(Rground + R1)]

= U2 − (I1 × Rground)

Often, as the bias voltage is a result of the mains (ground) connection cur-
rent, the bias voltage will be a sinusoidal waveform with the mains fre-
quency. This is the “hum” you can encounter when connecting two
mains-powered devices to each other (such as a computer and an audio am-
plifier). In a video system we can see this as bars scrolling vertically over the
screen.

F i g u r e 9 : s c h e m A t i c d i A g r A m O F A g r O u n d L O O p

To prevent ground loops, there should be one point at which a complete sys-
tem is connected to ground, so we end up with a star topology. In practice
that means that you should plug all parts of a system into the same outlet
(keeping in mind that you do not want to overload the outlet or power cord).

Another source of hum, to be explained in a later article, is that from the
bias signal as a result of the magnetic and electric field around a conductor
that carries a current. When you run a power cable along an audio cable,
the electromagnetic radiation coming from the current flowing through the
power cable can induce a voltage in the low-signal (audio) cable. Therefore
audio and other small signal-carrying cables are often shielded [i.e., have a
metal shield that is connected to (signal) ground surrounding the conduc-
tors].

conclusion

In this article I have described the way to calculate power requirements,
how to lay out power cabling, and the various other issues that become im-
portant when scaling up from a couple of boxes to a datacenter. Using this

Device A Device B

0 V0.1 VI

0.1V

R1

Rground

U1 U2

Uout

IGround

Device A Device B

Login_articlesAPRIL09_final.indd 62 3/9/09 10:39:56 AM

; LO G I N : A pr I L 20 0 9 Th E BA sI Cs O F p OwE r 63

knowledge, you can understand why it is important not only to build a nice
software design or a systems design but also to take into account the way
you connect these together and have the electrons flow through them. This
is the first of a series of articles in which I will give some background on
systems hardware, with the purpose of bringing you some more insight into
what is happening behind the faceplate of your system, with the ultimate
goal of helping you troubleshoot some of the hardware problems that you
may encounter.

Thanks to uSenIX and Sage corporate Supporters
uSenIX patron
Microsoft Research

uSenIX benefactors
Google

Hewlett-Packard

Infosys

Linux Pro Magazine

NetApp

Sun Microsystems

VMware

uSenIX & Sage partners
Ajava Systems, Inc.

DigiCert® SSL
Certification

FOTO SEARCH Stock
Footage and Stock
Photography

Hyperic Systems
Monitoring

Splunk

Zenoss

uSenIX partners
Cambridge Computer
Services, Inc.

GroundWork Open Source
Solutions

Xirrus

Sage partner
MSB Associates

Login_articlesAPRIL09_final.indd 63 3/9/09 10:39:57 AM

64 ; LO G I N : vO L . 3 4, N O. 2

d a v i d n . B l a n k - e d e l M a n

practical Perl tools:
polymorphously
versioned
David N. Blank-Edelman is the Director of Tech-
nology at the Northeastern University College of
Computer and Information Science and the author
of the O’Reilly book Perl for System Administration
(with a second edition due out very soon). He has
spent the past 24+ years as a system/network ad-
ministrator in large multi-platform environments,
including Brandeis University, Cambridge Technol-
ogy Group, and the MIT Media Laboratory. He was
the program chair of the LISA ’05 conference and
one of the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

t O D ay W e ’ r e g O I n g t O ta l k a b O u t
how Perl can improve life in the land of the
version control system (VCS). I think you
would be hard pressed to find anyone doing
a serious amount of programming these
days who doesn’t use a VCS of some sort.
But for those of you who are new to the biz,
let me spend a paragraph or two bringing
you up to speed.

The basic idea behind any VCS is that there is
value in tracking all copies of the data, even and
especially the intermediate copies, that make up
some project. By tracking I mean “recording who
worked on what piece of data, when, and what pre-
cisely they did.” If this can be done well, it does
wonders toward coordinating work being done by
a number of people working on the same project so
that the end result is congruent.

On top of this, two immensely helpful side effects
emerge:

You can determine who did what to something 1.
and when (especially crucial for debugging).
You can revert to a previous working version 2.
when a new version causes something to break or
recover when something was deleted in error.

The obvious thing for you to do is to keep all of the
Perl code you write under some sort of version con-
trol system, but that’s not what we’re going to talk
about in this column. If that was the only message
of this column, I could simply say “do it” and then
let you get back to flossing the cat or whatever you
had planned to do today. Instead, we’re going to
look at how to use Perl to automate and augment
several VCS packages. The particular VCS packages
we’re going to use in this column are those I’m most
familiar with: RCS, Subversion, and Git. I’m going
to assume you already have a little familiarity with
them when I write about them in this column.

Note: This selection is not meant as a slight to any
of the other interesting VCS packages, of which
there are many (see http://en.wikipedia.org/wiki/
Comparison_of_revision_control_software for a
comparison). Rabid users of Mercurial, Bazaar,
DARCS, Monotone, etc., are more than welcome to
write me to let me know how much I’m suffering
on a daily basis by not using their favorite system.
(I’m always looking for new cool tools.) I’d also be
remiss if I didn’t mention the one Perl-based VCS,
SVK (http://svk.bestpractical.com/view/HomePage).
I have not used it, but it looks as though it has
some very impressive distributed VCS features.

Login_articlesAPRIL09_final.indd 64 3/9/09 10:39:57 AM

; LO G I N : A pr I L 20 0 9 pr AC TI C A L pE rL TO O L s : p O LyMO rph O usLy v E r sI O N E d 65

automating the revision control System (rcS)

If you have only used the newer VCS packages, the notion of using RCS
might seem a bit anachronistic. This may be like using a cotton gin for sys-
tem administration but I assure you that RCS still has its place. Unlike the
other systems we’re going to look at, it has a few properties that come in
handy in the right situations:

RCS is lightweight and fairly portable (there are RCS ports for most operat-1.
ing systems).
RCS is 2. file-based (unlike SVN, which is directory-based, and git, which is
content-based). This works in your favor if you just need to keep a file or
two under version control.
RCS largely assumes strict locking will be used. Sometimes it makes no 3.
sense to have two people be able to work on the same file at once and have
their changes merged in the end. System configuration files are one such
example where there’s good reason to serialize access.
Files under RCS almost always live right in the same place they are ar-4.
chived versus some nebulous and nonspecific “working directory.” (/etc/
services has to be in /etc; it does you no good if it lives just in a working
directory somewhere else on the system.)

RCS is a good place to start our Perl discussion because it offers a simple exam-
ple of the basic modus operandi we’re going to see for each of these systems. To
work with RCS from Perl, you use a Perl module called (surprise) Rcs.

First we load the module and let it know where it should expect to find the
RCS binaries installed on your system. Most of the VCS modules are actually
wrappers around your existing VCS binaries. Although that may be a little
wasteful in terms of resources (e.g., Perl has to spin up some other program),
this is more than made up for by the portability it provides. The module
author does not have to maintain glue code to some C library that could
change each time a new version is released or distribute libraries with the
module that will also stale quickly.

Here’s the start of all of our RCS code:

use Rcs;

Rcs->bindir(‘/usr/bin’);

Once we’ve got that set up, we ask for a new Rcs object through which we’ll
perform all of our Rcs operations. To do anything we first have to tell the
object just what file we’re going to manipulate:

my $rcs = Rcs->new;
$rcs->file(‘/etc/services’);

At this point we can start issuing Rcs commands using object methods
named after the commands. Let’s say we wanted to check a file out for use,
modify it, and then check it back in again. That code would look like this:

$rcs->co(‘-l’); # check it out locked

do something to the file
...

$rcs->ci(‘-u’, # check it back in, but leave unlocked version in situ
 ‘-m’
 . ‘Modified by ‘
 . (getpwuid($<))[6] . ‘ (‘
 . (getpwuid($<))[0] . ‘) on ‘
 . scalar localtime);

Login_articlesAPRIL09_final.indd 65 3/9/09 10:39:57 AM

66 ; LO G I N : vO L . 3 4, N O. 2

The last line of this code is in some ways the most interesting. For version
control to be really useful, it is important to provide some sort of informa-
tion each time a change is written back to its archive. At the bare minimum,
I recommend making sure you log who made the change and when. Here’s
what the log messages might look like if you used this code:

revision 1.5
date: 2009/05/19 23:34:16; author: dnb; state: Exp; lines: +1 -1
Modified by David N. Blank-Edelman (dnb) on Tue May 19 19:34:16 2009

revision 1.4
date: 2009/05/19 23:34:05; author: eviltwin; state: Exp; lines: +1 -1
Modified by Divad Knalb-Namlede (eviltwin) on Tue May 19 19:34:05 2009

revision 1.3
date: 2009/05/19 23:33:35; author: dnb; state: Exp; lines: +20 -0
Modified by David N. Blank-Edelman (dnb) on Tue May 19 19:33:16 2009

Eagle-eyed readers might note that the VCS itself should be recording the
user and date automatically. That’s true, except (a) sometimes your code
runs as another user (e.g., root) and you want the uid and not the effective
uid logged, and (b) the VCS records the time it hit the archive, but more
interesting is probably the time the change was made. If your code takes a
while before it gets to the part where it performs the VCS operation, the time
information you care about might not get recorded.

This is the very basics for RCS use. The Rcs module also has methods such
as revisions()/dates() to provide the list of revisions of a file and rcsdiff()
to return the difference between two revisions. With methods like this you
could imagine writing code that would analyze an RCS archive and provide
information about how a file has changed over time. If you ever wanted to
be able to search for a string found any time in a file’s history, it would be
fairly easy to write code to do that, thanks to this module.

automating Subversion (Svn)

There are a few modules that allow you to operate on Subversion repositories
in a similar fashion to the one we just saw (i.e., using an external program
to automate operations versus calling the SVN libraries directly). The two I’d
recommend you consider using are SVN::Agent and SVN::Class. I’m going
to show you one example from each because they both have their strengths.
SVN::Agent is the simpler of the two:

use SVN::Agent;

SVN::Agent looks for the svn binaries in your path
$ENV{PATH} = ‘/path/to/svnbins’ . ‘:’ . $ENV{PATH};

this assumes we’ve already got a working dir with files in it,
if not, we could use the checkout() method
my $svn = SVN::Agent->load({ path => ‘/path/to/working_dir’ });

$svn->update; # update working dir with latest info in repos

print “These are the files that are modified:\n”;
print join(“\n”,@{$svn->modified});

$svn->add(‘services’)’; # add the file services to the changes list

$svn->prepare_changes;

$svn->commit(‘Files checked in by’

Login_articlesAPRIL09_final.indd 66 3/9/09 10:39:57 AM

; LO G I N : A pr I L 20 0 9 pr AC TI C A L pE rL TO O L s : p O LyMO rph O usLy v E r sI O N E d 67

 . (getpwuid($<))[6] . ‘ (‘
 . (getpwuid($<))[0] . ‘) on ‘
 . scalar localtime);

Most of that code should be fairly straightforward. The one line that is less
than obvious is the call to prepare_changes. SVN::Agent keeps separate lists
of the modified, added, deleted, etc., files in the working directory. When we
said $svn->add(‘services’) we added the services file to the added list. To
give you the flexibility to choose which items should be committed to the
repository, SVN::Agent keeps a separate changes list of files and dirs to be
committed. This list starts out empty. The prepare_changes method copies
the other lists (added, modified, etc.) in the change list so that the commit()
method can do its stuff.

The second SVN module, SVN::Class, is interesting because it is essentially
an extension of the excellent Path::Class module. Path::Class is a worthy re-
placement for the venerable File::Spec module. I’m sure we’ll see it again in
later columns, but, briefly, it provides an OS-independent, object-oriented
way to work with file/directory names and filesystem paths. SVN::Class ex-
tends it by adding on the same sort of methods you’d expect in an SVN
module [e.g., add(), commit(), delete()]. If you are using Path::Class in your
programming, this will lend a consistent feel to your programs. Here’s a very
simple example:

use SVN::Class;

my $svnfile = svn_file(‘services’);

$svnfile->svn(‘/usr/bin/svn’); # explicitly set location of svn command

$svnfile->add;

... perform some operation on that file, perhaps using the Path::Class
open() method

my $revision = $svnfile->commit(‘File checked in by’
 . (getpwuid($<))[6] . ‘ (‘
 . (getpwuid($<))[0] . ‘) on ‘
 . scalar localtime);

die “Unable to commit file ‘services’:” . $svnfile->errstr
 unless $revision;

SVN::Path does not have the same sort of interface to collectively commit()
items as SVN::Agent, which may or may not be a plus in your eyes. It could
be argued that an interface that forces you to actively call a commit() object
for every file or directory makes for clearer code (versus using some backend
data structure). However, SVN::Class does have some methods for querying
the objects it uses (e.g., repository information, author of a file). I’d recom-
mend picking the module that suits your style and the particular task.

automating git

For the last peek at automating a VCS from Perl we’re going to look at Git,
the wunderkind that has been storming the open source world. In fact, Perl
development itself is now conducted using Git (and for a fun geek story, read
about the transition at http://use.perl.org/articles/08/12/22/0830205.shtml).

Driving Git from Perl via Git::Wrapper is as simple as using it from the com-
mand line. You start in a similar fashion as the other wrappers we’ve seen:

Login_articlesAPRIL09_final.indd 67 3/9/09 10:39:57 AM

68 ; LO G I N : vO L . 3 4, N O. 2

use Git::Wrapper;

my $git = Git::Wrapper->new(‘/path/to/your/repos’);

From this point on the $git object offers methods with the exact same name
of each of the standard Git commands. If you look at the code of the module
itself, you’ll see that it has virtually no internal knowledge of how Git works.
This means you have to understand Git’s commands and semantics really
well, because you’ll get virtually no help from the module. That’s a plus if
you think Git does things perfectly and the module should get out of the
way, but a minus if you were hoping for some (syntactic) sugar-coated meth-
ods to make your life easier.

Probably the best way to learn this module is to first get a good handle on
Git itself from either the official doc [1] or a good book such as Pragmatic
Version Control Using Git [2].

automate all (Many) of Them

If you spotted a certain commonality among these modules (or perhaps rep-
etition in my description of them), you are not alone. Max Kanat-Alexander
decided to see if he could take a lesson from DBI and create VCI, the generic
Version Control Interface. Just like DBI, where Tim Bunce created one in-
terface for performing the operations generic to any number of databases,
VCI tries to provide a similar framework for the various VCI packages. The
distribution ships with submodules to provide support for Bazaar, Cvs, Git,
Mercurial, and Subversion. The documentation is full of warnings about the
alpha nature of the effort, but it is worth your consideration, especially if
you have to switch between VCS packages on a regular basis.

vcS augmentation

To end this column I want to briefly mention that Perl can be useful not
only for automating VCS packages but also for augmenting them. Leaving
aside SVK, the most extreme example (it builds upon parts of Subversion to
make it into a whole new beast), there are a number of excellent modules
and scripts that make working with these packages easier. Here are just a
few to get you started:

SVN::Access makes maintaining the Subversion repository access control ■■

file easy. This is handy if you programmatically provision SVN repositories.
SVN::Mirror can help keep a local repository in sync with a remote one.■■

App::SVN::Bisect provides a command-line tool to make bisecting a reposi-■■

tory (searching for a particular change by splitting the commits in half, and
then in half again, and then in half again) easy.
App::Rgit executes a command on every ■■ Git repository found in a directory
tree.
Github::Import allows for easy importing of a project into the Git commu-■■

nity repository hub github.com.

If you haven’t thought of using Perl with your favorite VCS package before,
hopefully this column has given you some ideas on how to head in that di-
rection. Take care, and I’ll see you next time.

referenceS

[1] http://git-scm.com/.

[2] T. Swicegood, Pragmatic Version Control Using Git (Pragmatic Bookshelf,
2008).

Login_articlesAPRIL09_final.indd 68 3/9/09 10:39:57 AM

; LO G I N : A pr I L 20 0 9 pE TE’s A LL Th I N Gs su N : Th E su N v I rTuA LIz ATI O N Gu I d E 69

p e t e R B a e R g a lv i n

Pete’s all things
Sun: the Sun
virtualization guide
Peter Baer Galvin is the Chief Technologist for Cor-
porate Technologies, a premier systems integrator
and VAR (www.cptech.com). Before that, Peter was
the systems manager for Brown University’s Com-
puter Science Department. He has written articles
and columns for many publications and is coauthor
of the Operating Systems Concepts and Applied Op-
erating Systems Concepts textbooks. As a consultant
and trainer, Peter teaches tutorials and gives talks
on security and system administration worldwide.
Peter blogs at http://www.galvin.info and twitters
as “PeterGalvin.”

pbg@cptech.com

b a c k I n t h e D ay (s ay, f O u r y e a r s
ago) there was only one choice available
for a system administrator wanting to run
multiple environments within a single
Sun server—domains. Domains provide a
valuable solution to some problems, but
they leave many other needs unaddressed.
Fast-forward to today, and there are literally
five main virtualization options (and doz-
ens more if you count all of the x86 virtual
machine technologies). These technologies
vary in features, functionality, maturity,
performance overhead, and supported hard-
ware. This month in PATS, I’ll provide a brief
overview of the main choices and a chart
that can be used in deciding which virtual-
ization solution to bring to bear given a set
of criteria.

virtualization options

The reason for the great increase in Sun virtual-
ization options—which for the purposes of this
column includes technologies both from Sun and
from other providers—are multifold. Sun now has
SPARC and x86 systems, for example. Each has its
own virtualization choices. And as technology ad-
vances and servers increase in capacity, there is a
natural need for implementation of features that
help administrators best utilize those systems.
Sometimes maximum utilization can be had by
running one big application, but more and more
frequently many, many applications can run com-
fortably within a system’s resources. This situation
will increasingly occur over time as more and more
cores and threads fit into smaller and smaller sys-
tems.

Sometimes resource management can allow those
multiple applications to play well together within
a system, but in other situations more segregation
between applications is needed. With that segre-
gation, be it virtual machines or similar function-
ality such as zones, comes a new set of abilities
for system administrators. Consider that VMware
ESX software allows the movement of processes
between systems without interrupting the pro-
cesses or their users. The use of these technologies
can totally revolutionize how computing facilities
are designed, implemented, and managed. Disas-
ter recovery (DR), resource use, load balancing,
availability, and flexibility can all benefit from vir-

Login_articlesAPRIL09_final.indd 69 3/9/09 10:39:57 AM

70 ; LO G I N : vO L . 3 4, N O. 2

tualization technologies. They are clearly worth using, but which should be
used, and when?

overview

A previous article in ;login: provided details on many of the technologies [1].
To complete the picture, here is a brief overview of all of the options.

Dynamic System Domains [2] (or just “Domains”) have existed for years in
Sun Enterprise servers. They started as a method by which a larger server
(such as an E10K) could be sliced into multiple, electronically isolated vir-
tual systems. Each domain has its own operating system installation, and
even a hardware fault in one domain typically does not affect any other do-
mains. More recent Enterprise servers increase the ease with which domains
can be dynamically reconfigured, in that CPU, memory, and I/O resources
can be moved between them as needed. Typically this is done infrequently,
to handle a temporary load or to change the system from interactive-oriented
to batch-oriented (for example, between a daytime shift and an evening set
of jobs).

Logical Domains [3] (LDoms) are the baby brother of Domains. They seg-
regate a “coolthreads” (a.k.a. CMT or Niagara) system into virtual systems.
Because these systems are motherboard-based, there is less fault isolation
than on Enterprise servers. Some resources may be moved between LDoms,
and “warm” migration is supported between systems. In this scenario, the
two systems coordinate to move an LDom from the source to the destina-
tion, and the LDom is automatically suspended on the source system and
resumed on the destination.

Zones/Containers [4] are a secure application environment, rather than a
virtual machine implementation. There is one Solaris kernel running, and
within that many, many zones can contain applications that run indepen-
dently of other zones and can be resource-managed to a very fine degree.
Fair-share scheduling can assure that each zone receives a “fair” amount of
CPU, for example, while memory and CPU caps can limit the exact amount
of each of those resources a zone can use.

xVM Server [5] is based on the Xen virtualization software project. It is a
separate, open source product from Sun, in which Solaris is used as the soft-
ware that creates and manages virtual machines. This is similar to the way
ESX is the manager of virtual machines in a VMware environment.

VMware [6] and the like are virtual machine managers in which multiple
operating systems, running multiple applications, can coexist within the
same hardware.

The guide

Choosing the right virtualization technology can be complicated and de-
pends on many factors. Additionally, many of the available Sun virtualiza-
tion technologies can coexist, adding functionality but also complexity. How
is a system administrator to choose? Table 1 was designed to help guide
such a decision. In this chart are summaries of all the major attributes of the
technologies, including functionality and limitations. Use this as your initial
guide, and then read the Explanation section to sort out the details.

Login_articlesAPRIL09_final.indd 70 3/9/09 10:39:57 AM

; LO G I N : A pr I L 20 0 9 pE TE’s A LL Th I N Gs su N : Th E su N v I rTuA LIz ATI O N Gu I d E 71

explanation

This column includes enterprise virtualization features, not desktop options.
For desktops there are also many choices, including the new kid on the
block, VirtualBox. It is now owned by Sun, open source, and feature-rich.
It’s available at http://www.virtualbox.org/.

Standard install tools include install from DVD, Solaris Jumpstart, or Flash
Archive and other network installation tools. Each of these has functions
and limits that need to be planned for. For example, Flash Archive can only
capture and build like-architecture systems (e.g., you can’t capture a SPARC
system and build an x86 system from that image).

Feature

Dynamic
System
Domains LDoms

Zones /
Containers xVM Server VMware ESX

Available on USPARC Niagara I and II SPARC and x86 X86 X86

OS ≥Solaris 8 S10 S10 xVM Server
host, Win-
dows, Linux,
Solaris, and
other guests

VMware ESX
host, Win-
dows, Linux,
Solaris, and
other guests

Separate kernels/
packages/patches?

Yes Yes No Yes Yes

Fault isolation Most Some Less Some Some

ISV support None needed None needed Needed Some needed Some needed

Moveable between
servers

Only via SAN
boot, downtime

Yes, via warm
migration

Yes, via
attach/detach,
downtime

Yes, live Yes, via
Vmotion, live

Resource
management

Limited, at
single CPU
granularity

Yes, at
single-thread
granularity

Yes, at
subthread
granularity,
very flexible

Yes, very
flexible

Yes, very
flexible

P to V effort Using standard
install tools

Using standard
install tools

Solaris 8
Containers,
Solaris 9
Containers,
otherwise
standard system
tools

Physical to
virtual tools
included

Physical to
virtual tools
included

Efficiency Higher Higher Higher Lower Lower

Speed to produce
another instance

Slow (standard
tools)

Slow (standard
tools)

Fastest (cloning) Fast (copying) Fast (copying)

Other Features Snapshots
for version
control

Maturity Mature Young Middle-aged Youngest Middle-aged

Cost Free Free Free Free/$ $$

t A b L e 1 : c O m p A r i s O n O F t h e s e r V e r V i r t u A L i z A t i O n t e c h n O L O g i e s A V A i L A b L e w i t h s O L A r i s 1 0

Login_articlesAPRIL09_final.indd 71 3/9/09 10:39:57 AM

72 ; LO G I N : vO L . 3 4, N O. 2

There are several important limits with respect to Domains. For example,
the system must be preconfigured to allow domains to change dynamically.

LDoms are limited to only the “coolthreads” CMT servers from Sun. For
warm migration, the LDom’s boot disk must be stored on an NFS server or
SAN (and SAN functionality was limited at the time of this writing).

Some applications are not supported with Zones, so it is important to check
the vendor support matrix for every application.

“Solaris 8 Containers” and “Solaris 9 Containers” are a commercial offering
from Sun allowing physical to virtual (P to V) transfer of existing S8 or S9
(SPARC) systems into containers within S10 (SPARC).

DTrace may be used within Zones, but it may not probe kernel resources.
Only the “global zone” (Solaris, not within a Zone) may do that. Further,
DTrace can only go so far when used in conjunction with other operating
systems. With xVM server, DTrace will be usable within the host but likely
not provide any value looking within the guests (unless they are Solaris too).

xVM Server has not yet shipped (at the time of this writing) so the expected
features may or may not be included or work as expected.

Each of these technologies has features to manage the resources used by the
guests. Those technologies vary wildly in their abilities, ease of use, and ease
of monitoring. Generally, domains are the least granular and zones are the
most granular. If you have specific resource management needs, then a thor-
ough read of the documents and an on-line search for best practices are your
next steps.

The creation of a new “clone” virtual machine from an existing virtual ma-
chine is a very useful feature. Although some tricks can be played to speed
up the process, I only address the feature set included with the virtualiza-
tion technology when describing how quickly a clone can be made. For ex-
ample, if SAN or NAS boot is used for Domains or LDoms, the SAN or NAS
capabilities can be used to quickly clone new instances.

Certainly, the efficiency of all of these solutions will vary depending on
many aspects of the deployment. However, I assert that the closer to the raw
hardware the applications are, the faster they will be. For example, there is
essentially no difference in the path that the application code takes when
run within a Domain or on a Sun server without virtualization. Similarly,
Zones are very efficient because only one kernel is running. Hundreds of
zones can run within one system. Of course, with VMware and ESX Server,
if there is only one kind of guest operating system running then the system
likewise can be highly efficient. As with all performance analysis, consider
the details of your specific deployment to determine how efficient one virtu-
alization technology would be compared to the others.

More so with virtualization than many other technologies, the details, fea-
tures, and functionality are changing all the time. I plan to make this article
available on-line and keep the chart up-to-date, so if you are interested in
updates keep an eye on my blog at http://www.galvin.info.

conclusion

The many virtualization choices on Sun platforms vary in all degrees. Fun-
damentally, each has pros and cons, as well as uses and abuses. This guide
should help sort through all of those aspects to help you determine the best
choice(s) given your environment and needs. Aside from the features, be
sure not to lose track of the complexity added with each of these technolo-

Login_articlesAPRIL09_final.indd 72 3/9/09 10:39:58 AM

; LO G I N : A pr I L 20 0 9 pE TE’s A LL Th I N Gs su N : Th E su N v I rTuA LIz ATI O N Gu I d E 73

gies. Management, monitoring, debugging, and performance analysis and
tuning are all major aspects of a virtualized environment. That is where
tools such as VMware Virtual Center and the new Sun xVM Ops Center can
ease the burden and control virtual machine sprawl. Consider the tools to
manage the environment as well as the environment itself.

random Tidbits

Sun LDoms 1.1 shipped in January and added new features (as described in
this column).

Also, if you have any interest in using OpenSolaris, check out the recently
published book The OpenSolaris Bible [7].

There is a new Sun blueprint that goes into great detail on configuring Sun
7000 storage for running Oracle databases [8].

referenceS

[1] http://www.usenix.org/publications/login/2008-10/openpdfs/hu.pdf.

[2] http://docs.sun.com/source/819-3601-14/Domains.html.

[3] http://www.sun.com/servers/coolthreads/ldoms/index.jsp.

[4] http://en.wikipedia.org/wiki/Solaris_Containers.

[5] http://xvmserver.org/.

[6] http://www.vmware.com/.

[7] N.A. Solter, J. Jelinek, and D. Miner, The OpenSolaris Bible (New York:
Wiley, 2009).

[8] http://wikis.sun.com/display/BluePrints/Configuring+Sun+Storage+7000
+Systems+for+Oracle+Databases.

Login_articlesAPRIL09_final.indd 73 3/9/09 10:39:58 AM

74 ; LO G I N : vO L . 3 4, N O. 2

d a v e J o s e p h s e n

iVoyeur: top 5 2008
David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and is Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ’04’s Best Paper
award for his co-authored work on spam mitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

h av e y O u e v e r b e e n s O b u s y t h at
the phrase “I’ve been busy” rings hollow and
cliche in your ears? In the past year, desper-
ate to position ourselves to scale at the pace
our tiny company is growing, my cohort and
I have ripped out, redesigned, and replaced
our entire production infrastructure. Our
routers went from IOS to JunOS to BSD, and
our balancers from Alteons to Mod_proxy_
balancer to balancer clusters using Carp
to those using ClusterIP. Static routes over
IPSEC VPNs have been replaced with OSPF
routes over SSL VPNs. We fought through
PCI certifications, designed IP and DNS
standards, and implemented BGP-based
datacenter fail-over systems. Anyway . . . I’ve
been busy.

So busy, in fact, that for the first time since I dis-
covered USENIX, I didn’t make it to a single con-
ference this year, USENIX or otherwise. January
finds me shell-shocked, wondering where the time
went, and curious as to what great work I missed
out on in 2008. Fed up with being in the dark,
I immediately declared a paper-reading weekend
and set about going through conference proceed-
ings to see what went on outside the cave I’ve been
trapped in. I wasn’t disappointed; as usual, the pa-
pers track of the various USENIX Cons in 2008
put me to shame. I might as well be a janitor. Been
busy? Well, if you’ve been missing out on some
great work, let me help you out with this list of my
top 5 favorite monitoring-related papers of 2008.

We’ll start with number 5, a paper called “Error
Log Processing for Accurate Failure Prediction” [1].
This paper is from the new USENIX workshop on
the analysis of system logs. With apologies to the
authors of this paper whose intent was to explore
failure prediction, this paper caught my atten-
tion because of the several clever log preprocessing
techniques they used on free-form system logs to
make them more machine-readable. These included
removing data such as numbers from the logs,
using Levenshtein distance to categorize and group
similar individual events, and making use of a
technique called tupling to identify multiple event
entries that correspond to the same actual error.
The log preparation sections in the preamble of this
paper are of immediate practical use to folks who
have a lot of logs and are looking for some quick
ways to get a handle on them.

Login_articlesAPRIL09_final.indd 74 3/9/09 10:39:58 AM

; LO G I N : A pr I L 20 0 9 I vOy Eu r : TO p 5 20 0 8 75

Speaking of logs, number 4, a tool paper called “Picviz: Finding a Needle in
a Haystack” [2], applies a visualization technique called parallel coordinate
plots to system logs. If you’ve read Greg Conti’s excellent book Security Data
Visualization, then you’ve seen parallel coordinate plots used to great effect to
plot port scans. These graphs take any number of variables and assign them
columns in the vertical plane. A single element of data made up of those
variables is then represented as a line in the horizontal plane. Figure 1 is an
example parallel coordinate plot of SSH logins shamelessly stolen from the
Picviz Web site.

F i g u r e 1 : t h i s p A r A L L e L c O O r d i n A t e p L O t m A k e s i t e A s y t O s p O t
“ s u s p i c i O u s ” s s h c O n n e c t i O n s t h A t O r i g i n A t e F r O m m u Lt i p L e
s O u r c e s b u t u s e t h e s A m e u s e r i d .

The Picviz paper has a lot of elements that I like in a good paper. They’ve
identified and solved a problem for me; catching odd stuff going on in a
large amount of log data is difficult, and Picviz makes it easier. Behind the
paper is a GPL’d tool that I can get my hands on and play with right now.
Too often, promising work never goes very far for lack of an available imple-
mentation. And, speaking of implementation, I really like Picviz’s design,
which mimics that of GraphViz. The authors have created a mark-up lan-
guage for drawing parallel coordinate plots, which means I can write glue
code to connect it to existing parsers and monitoring apps.

They didn’t stop at providing a framework; they used their own mark-up
language to write a GUI for lighter-weight, interactive, or real-time use. I’d
use Picviz over something like Conti’s Rumint [3] when I want something
less purpose-specific and more flexible. I can graph whatever I want with
Picviz whether my data originated from log files, PCAP dumps, or NetFlow
logs. I can use it to bolt parallel coordinate plots onto existing dashboards,
and it works equally well as a forensics or real-time IDS tool. Good work.

The writers of my third favorite monitoring-related paper in 2008 had a fas-
cinating problem, that of being ignored. It seems that botnet attacks against
Web applications have increasingly abandoned the traditional brute-force
scanning mechanisms in favor of clever Google searches. This is bad news
for folks trying to write honeypots, since unless your honeypot gets indexed
in a way that piques the interest of the attacker, no traffic will arrive at your
honeypot. So the problem becomes getting a single machine to respond to

Time Auth type Source Login

Login_articlesAPRIL09_final.indd 75 3/9/09 10:39:58 AM

76 ; LO G I N : vO L . 3 4, N O. 2

search robots in a way that makes it attractive to whatever the botnets hap-
pen to be into that week.

Their rather ingenious solution, described in “To Catch a Predator: A Natural
Language Approach for Eliciting Malicious Payloads” [4], was to use natural
language processing techniques to generate dynamic responses to the in-
dexing services based on real host interactions. The methodology they used
to glean their training data was clever, as is their solution to a rather sticky
problem. And although this work is probably not immediately useful to
those of us outside botnet research, I think their methodology could really
blow the roof off the honeynet, tar pit, and protocol misdirection scene. It
seems like the kind of technique that would find unexpected practical appli-
cation all over the place. Good work.

Number 2 on the list is a paper called “CloudAV: N-Version Antivirus in the
Network Cloud” [5]. I’ve long been flummoxed by the concept of multi-ver-
sion programming. I’ve read several papers arguing about the reliability it
adds or doesn’t and whether its core assumption of statistical independence
is borne out or not. I have a pretty good mental picture of how it’s sup-
posed to work, but I’ve never been able to come up with a problem domain
into which it seems to fit. The concept is, given some problem, you write N
different software solutions and compare the results. Folks argue whether
it’s actually possible to come up with N independent ways to solve a single
problem (in other words, there’s an assumption the N solutions can be statis-
tically independently derived, and this doesn’t hold water). Folks also argue
whether solving a problem N times gives you a better solution or not, or they
wonder why you would want to do that work.

Well this paper solidified my thinking: malware detection is a great prob-
lem domain for multi-version programming. It’s a problem, in fact, for which
most of us have used N-version programming without ever realizing it.
Every moderate-sized to large company I’ve ever worked for has used at least
two different anti-virus programs from competing vendors, usually at least
one at the mail gateway and another on the desktop. That viruses sometimes
hit the desktop that aren’t caught by the MX might suggest that competing
anti-virus software is independent enough in practice to work, or maybe not.
Perhaps the viruses hit the desktops from a different vector, or maybe there
was a temporal problem with updates. In practice, it doesn’t really matter.
Having some heterogeneity there always seemed like a good idea.

I’ll be honest: I hate the entire realm of malware detection. I’ve always put
a large space between myself and those unfortunate enough to be tasked
with managing the corporate/campus/whatever AV system. That software
has been a buggy, intrusive, ill-thought-out nightmare for years. CloudAV,
however, if the implementation does what the paper says it does, has single-
handedly made AV not suck anymore (or at least reduced the suck factor by
several orders of magnitude). They’ve taken the multi-version programming
concept to the extreme, implementing ten anti-virus engines and two behav-
ioral detection engines on a central Xen host running a VM for each engine.
They then install lightweight clients on each host that trap file-creation sys-
tem calls, blocking them while sending the new file to a broker in front of
the scan engines. The broker, before sending the file back for scanning, re-
cords metadata about the file in a database and checks it against hashsums
of already scanned files, preserving network bandwidth and creating a gold
mine of forensic data.

The client can run in three modes: transparently allowing all user actions
while sending files to the scan server; blocking user actions and warning
the user if a suspicious file is encountered; or blocking user actions and ulti-

Login_articlesAPRIL09_final.indd 76 3/9/09 10:39:58 AM

; LO G I N : A pr I L 20 0 9 I vOy Eu r : TO p 5 20 0 8 77

mately preventing them regardless of what the end user thinks. I’m not clear
on how policy is enforced in the system (e.g., what prevents end users from
killing the client locally, a question I expect was asked in the session), but
IMO whatever problems it has are certainly more than made up for in what
it delivers.

Right off the bat it provides a model the malware hasn’t accounted for, so it
goes a long way toward limiting the malware’s ability to detect and attack
the AV system itself. It eliminates the need to maintain definitions on end-
user systems, as well as eliminating pretty much every other virus-software
integration problem that so plagues the desktops of the heathen solitaire
proletariat. It completely insulates you from management decisions regard-
ing AV vendor licensing; you’ll never have to rip out McAfee on 1000 work-
stations to install Sophos instead, for example. And as a bonus it gives you a
powerful forensics tool. Have a data sensitivity standard? CloudAV can tell
you every host that touched a given file and in what context. Crazy good
work. The only two problems it has are that I can’t download it now, and I
can’t buy it now.

Finally, my number 1 pick in 2008 is “Sysman: A Virtual File System for
Managing Clusters” [6], although a more accurate title might be “Sysman, a
Virtual File System for Managing Whatever You Have Plugged into the Wall.”
First off, I should warn you that I’m a bit of a sucker for filesystem inter-
faces. You might have guessed this if you’ve read my recent NagFS articles. I
know XML is all the rage, and configuration management doesn’t equate to
remote control, but nothing beats /proc when it comes to management sim-
plicity and leveraging existing skills. OpsWare understood this when they
created its Global Shell (GS) before the company was purchased by HP. Long
have I wished for an OpsWare GS that I could afford. We’ve even discussed
rolling it ourselves several times in FUSE. The one year I don’t get to go to
LISA, along comes Sysman to scratch that itch. I really wish I had been at
this session—I have a lot of questions.

Curiously, the Sysman authors don’t seem to have heard of OpsWare Global
Shell, but no matter, they appear to have gotten it right the first time. Sys-
man creates a filesystem containing directories that represent devices on the
network. These devices can be detected and set up automatically and their
features automatically become subdirectories inside Sysman. Upon detecting
Linux servers, for example, Sysman will create a subdirectory representing
the server and subdirectories inside the server directory corresponding to
the server’s proc and sys directories. Reading from /sysman/10.10.1.111/proc/
cpuinfo will return the contents of the cpuinfo file in the proc directory on
server 10.10.1.111. A “commands” file provides access to remote command
execution: write to a server’s commands file to send it a command and then
read from its commands file to glean the last command’s output.

Filesystem interfaces are great because you can bring all of your existing
scripting skills to bear, and existing tools gain enormous amounts of power.
Imagine how easy Nagios Event Handlers are to write given a Sysman file-
system, for example. Have a down Apache daemon? Just do:

echo ‘/etc/init.d/apache restart’ > /sysman/apachehost/commands

There are considerations, of course, including security and stability, but
you get my drift. If CloudAV has the potential to actually get me interested
in reining in the malware problem, then Sysman has the potential to com-
pletely turn my world on its ear. A filesystem interface to my entire data-
center? Are you kidding me? It would be the most enabling thing to happen
to me since I learned regular expressions. Simple, powerful, elegant: great

Login_articlesAPRIL09_final.indd 77 3/9/09 10:39:58 AM

78 ; LO G I N : vO L . 3 4, N O. 2

work. Now, where can I get it? There’s an eight-year-old version on Source-
Forge that I doubt is very functional. What gives, guys? Been busy?

referenceS

[1] F. Salfner and S. Tschirpke, “Error Log Processing for Accurate Failure
Prediction,” WASL ’08: http://www.usenix.org/events/wasl08/tech/full
_papers/salfner/salfner_html.

[2] S. Tricaud, “Picviz: Finding a Needle in a Haystack,” WASL ’08: http://
www.usenix.org/events/wasl08/tech/full_papers/tricaud/tricaud_html.

[3] Rumint, open source network and security visualization tool: http://
www.rumint.org/.

[4] S. Small, J. Mason, F. Monrose, N. Provos, and A. Stubblefield, “To Catch
a Predator: A Natural Language Approach for Eliciting Malicious Payloads,”
Security ’08, http://www.usenix.org/events/sec08/tech/full_papers/small/
small_html/index.html. [Editor’s note: The authors of this paper also wrote a
related article that appears in the December 2008 issue of ;login:.]

[5] J. Oberheide, E. Cooke, and F. Janhanian, “CloudAV: N-Version Antivirus
in the Network Cloud,” Security ’08: http://www.usenix.org/events/sec08/
tech/full_papers/oberheide/oberheide_html/index.html.

[6] M. Banikazemi, D. Daly, and B. Abali, “Sysman: A Virtual File System
for Managing Clusters,” LISA ’08: http://www.usenix.org/events/lisa08/tech/
full_papers/banikazemi/banikazemi_html/index.html.

Login_articlesAPRIL09_final.indd 78 3/9/09 10:39:58 AM

; LO G I N : A pr I L 20 0 9 / d E v/ r A N d OM 79

R o B e R t g . F e R R e l l

/dev/random
Robert G. Ferrell is an information security geek
biding his time until that genius grant finally comes
through.

rgferrell@gmail.com

I s u p p O s e I ’ l l a lW ay s r e g a r D l a r r y
Wall as the enlightened soul who finally
coaxed my primal programming urge to
the fore. Oh, I’d played around with Cobol,
Snobol, C, Pascal, Natural, and a few other
languages in an idle fashion, the way one
might toy with an Elvis-shaped bowtie
pasta noodle during a boring testimonial
dinner, but I made no commitment to any
of them. We both knew it was merely a case
of ships passing in the night and nothing
lasting would come of it.

I can no longer recall exactly when or where I first
encountered Perl. I was using it extensively for
CGI scripting by early 1996, so it must have been
at least a couple of years prior to that. I was a cor-
porate Webmaster back in the Paleozoic Era of the
Web (1994), just after the release of Mosaic. In
those days content was still mostly text, Gopher/
WAIS was the only real way to search the Web,
and the CGI standard hadn’t yet been developed.
Men were real men, women were real women, and
both of us had to trudge for miles uphill both ways
through blinding snowstorms to get to the coffee
machine every morning. Oh, and our TV remotes
only had five or six buttons.

As far as I can remember, the siren song that cap-
tivated me where Perl was concerned was that
being interpreted rather than compiled meant in-
stant feedback, especially when using the debug
command-line option. Prior to that I’d been accus-
tomed to the routine of header files, libraries, and
hoping against hope that I’d made the proper ablu-
tions to the compiler gods in order to experience
the fruits of my coding labors. Now when I made
a careless mistake (notice I said “when,” not “if”) I
found out about it immediately and with a reason-
able hope of tracing the problem to its source be-
fore my next birthday.

Add to that the fact that I actually understood the
syntax of Perl on a level not experienced with any
previous language and you can probably see why
Larry’s brainchild was almost on the level of spiri-
tual revelation for me. My mental syntax and Perl’s
are similar to begin with (snickering allowed only
in designated snickering areas, owing to the poten-
tial negative health effects of secondhand mirth),
so I didn’t have to do a lot of translation of thought
patterns into formal semantics. This certainly sped
things up for me and made troubleshooting pro-
gramming errors less painful. One curious side ef-

Login_articlesAPRIL09_final.indd 79 3/9/09 10:39:58 AM

80 ; LO G I N : vO L . 3 4, N O. 2

fect was that I began to dream in Perl. This is symbolism that would have
driven Sigmund Freud quite sane.

My Perl code is not what you would term “elegant,” unless you employ that
same adjective to describe frozen microwave cuisine. It works—most of the
time—and that’s about all I feel comfortable asking of myself. I have bought
a significantly large fraction of the books ever written about Perl, such as The
Perl Cookbook, Object Oriented Perl, Perl for Toasters, and so on, but I never
seem to get much out of them. Oh, I might get on a kick and turn out more
professional-looking code with fancy-schmancy stuff like comments for a
while, but eventually I slide back into my established habits. You can’t teach
an old primate new hacks.

Like this CPAN thing. I never really got the hang of using modules. In the
time it took me to figure out exactly what each one did and the syntax for
using it in my own scripts, I could usually thrash out an equivalent, if less
sophisticated, method myself. I guess part of my reluctance to jump on the
module bandwagon was due to the fact that the keyboard I had on the AVi-
iON box where I did most of my coding in the early days of CPAN had a
very sticky shift key. That meant that, while the semicolon worked fine, I
had a heck of a time getting a colon out of it. To call most module methods
you had to type two of those in a row and that was just more trouble than it
was usually worth to me. By the time I got around to obtaining a new key-
board (which wasn’t until we went from DG/UX to Solaris 2.5.1), the colon
aversion was deeply ingrained.

I realize, of course, that my computer (via its keyboard) was in effect pro-
gramming me. I, for one, welcome our new dopant-laden silicon overlords
and wish them better luck in maintaining control over their servants than
I’ve ever had. Turn about is, after all, fair play.

Now that I’m past fifty the colon has taken on another, more insidious as-
pect. Somewhere in middle age a man’s organs just seem to revolt en masse,
leaving him with a paunch, a mortgage, all the vigor of a store-window man-
nequin, and kids whose idea of a summer job is taking out the household
trash once a week at fifty bucks a pop.

Perl in many ways was the centerpiece of my golden years as a system ad-
ministrator. I was never a hotshot module jockey, as I’ve hopefully made
clear, but I could whip out a one- or two-hundred-line Perl script to solve
some pressing sysadmin issue in nothing flat. Last time I looked (which
was admittedly about ten years ago), a dozen or so of my scripts were still
floating around at Sun’s BigAdmin site. I sent them those scripts, and they
shipped me a Sun ballpoint pen. Seemed like a reasonable exchange. At least
the pen is still useful.

Login_articlesAPRIL09_final.indd 80 3/9/09 10:39:58 AM

book reviews
e l i z a B e t h z w i c k y, w i t h M o R t e n
w e R n e R F o R s B R i n g , t R o n d h a s l e
a M u n d s e n , s tå l e a s k e R o d
J o h a n s e n , B R a n d o n c h i n g , J a s o n
d u s e k , a n d s a M F. s t o v e R

Idesign pat terns expl ained : a new per-
spec tive on objec t- oriented design

Alan Shalloway and James R. Trott

Addison-Wesley, 2005. 418 pages.
ISBN 0-321-24714-0

Here’s a telling fact: to write the review of this
book, I had to make my husband give it back to
me, because I suggested it when he needed to solve
a problem, and he had squirreled it away so he
could read more of it. He did lend it back to me for
the duration of the review, but not without regret.

I learned my object-oriented programming on the
street, and my patterns mostly by tripping over
them, so I’ve been looking for a good book explain-
ing what patterns really, properly are, and how real
programmers use them. This is a lucid, practical
explanation of patterns and how you can use them
to design programs.

It works through a bunch of basic patterns, moti-
vating the use of the pattern by presenting a prob-
lem that is well solved by the pattern. It discusses
issues in integrating pattern-based designing with
other systems and provides an outline of how
you can figure out what patterns to use and how
to string them together, starting from a customer
specification, and including suggestions on iden-
tifying what the customer left out of the specifica-
tion.

This is a good starter book on patterns, offering a
refreshingly concrete take on a very abstract sub-
ject. It will make the most sense to somebody with
programming and program maintenance experi-
ence, and it helps to know something about Agile/
XP practices as well (at least, you should be aware
that they exist). If you don’t have a basic familiar-
ity with patterns and the pattern literature, start at

; LO G I N : A pr I L 20 0 9 B O O k rE v I Ews 81

the beginning. There’s no reason one might believe
otherwise, but my poor husband got thrown in at
page 300-odd, and while he did figure out that it
was in fact the answer he was looking for, he had
some trouble with the references to “the Gang of
Four,” which he associated with politics (not Chi-
nese politics, either, so my attempts to disambigu-
ate merely dragged us in irrelevant directions).
Starting at the beginning would have clarified this
as a shorthand for the authors of the seminal book
on patterns in programming.

Ibe yond barbie & mortal kombat : new
perspec tives on gender and gaming

Yasmin B. Kafai, Carrie Heeter, Jill Denner, and Jennifer
Y. Sun

MIT Press, 2008. 350 pages.
ISBN 978-0-262-11319-9

If you’re interested in gender issues in comput-
ing, this is a nicely nuanced collection. The issues
for games are slightly different from the issues for
other kinds of computing, but not massively so.
Mostly, they’re just more visible. The book also
points out that gaming is explicitly linked to entry
into other computing fields, particularly IT. (To
play a networked game, you’ve got to get the com-
puter on the network.)

This book explores several themes dear to my
heart. For instance, appealing to women doesn’t
mean adding pink bows, and doing it well may
give you a product that’s more appealing to every-
body. Women are, after all, not a different species.
The social pressures that restrict women’s access to
computers are not all overt; they include subtle and
unsubtle differences in where people can go when.
Often it’s not obvious to men that a situation may
be unsafe or socially unacceptable for women and
that “lack of interest” reflects an effective lack of
access.

Iprocessing : a progr amming handbook
for visual designers and artists

Casey Reas and Ben Fry

MIT Press, 2008. 698 pages.
ISBN 978-0-262-18262-1

I love processing; I’ve said it before, and no doubt
I’ll say it again. I already reviewed (and loved) Ben
Fry’s Visualizing Data, which includes a basic in-
troduction to processing suitable for people who’re
comfortable programming in something or other.
This book is aimed, as it says, at people who know
more about pictures than about programs. Part of
what it does is proselytize for the joy of making art
with programs, and it assumes the reader knows
nothing about programming. (Seriously, nothing.

Login_articlesAPRIL09_final.indd 81 3/9/09 10:39:59 AM

82 ; LO G I N : vO L . 3 4, N O. 2

Like, variables and loops are explained from the
ground up.)

From there, it gets to complicated programs, and
on the way it throws in handy tips I learned the
hard way (such as the fact that sine and cosine
functions are endlessly useful to give smooth varia-
tion). It covers the basics of programming, but the
artistic bent is visible in any number of ways. The
clearest are the sections about computer artworks,
which are luscious, but the topics covered are also
different from the ones you might expect. Anybody
could figure out there’d be more about color han-
dling, but if you haven’t thought about computer-
based art a lot, you might be surprised to note the
early and extensive handling of sources of random-
ness and noise.

This is a good introduction to a good language for
visual artists. It may also provide a good window
into the world of art programming for program-
mers, although anybody with a basic knowledge of
any object-oriented programming language is going
to find themselves skipping a lot. For people who
already do art programming, it may be worth it for
the inspiration and the coverage of extensions, but
if you’re at all confident with programming, you’d
do just fine with the Web site.

Idavid pogue’s digital photogr aphy :
the missing manual

David Pogue

O’Reilly, 2009. 284 pages.
ISBN 978-0-596-15403-5

I recently bought a new camera, and my husband
asked if he should read the manual. I said that was
a terrible idea, as I had barely survived the expe-
rience, and I have a lot more background than he
does. But he wanted something that would help
him understand more camera geekery. Normally,
for somebody who doesn’t know anything about
cameras and wants to take better pictures, I recom-
mend Nick Kelsh’s books—How to Photograph Your
Life is a good all-purpose choice. And he’s read it,
but he wants more: something with more techni-
cal details, but still reasonable for somebody who
never can remember what an f-stop is and whether
you want to increase or decrease exposure when
you’re trying to take a picture of something white.

As I had hoped, David Pogue’s Digital Photography
is the right choice here. It’s a beginner’s book, for
sure, but it talks about both technique and what
buttons to push. It puts everything in the context
of photos you might want and how to get them, so
you don’t have to try to understand f-stops with-
out first deciding that you care about how much of

your picture is blurry and what’s in focus. It gives
a swift picture of the whole camera-buying and
-using process, starting from selecting a camera,
continuing through using it, dealing with the pic-
tures, editing them, and showing them off.

That’s a lot to cover in 284 pages, but he does a
good job of hitting the high points, for the most
part. When there’s no right answer to a dilemma,
he’s willing to say so. Should you delete photos on
the camera or after downloading? It depends; do
you have space left? Is looking at them in glorious
detail going to help you decide between them or
merely depress you?

I disagree with him on some points, of course; I
used to love lens-cap tethers, but they disappointed
me too often, either by failing suddenly or by let-
ting a lens cap or tether dangle into my photo. The
front cap I just leave the way it comes. But I have
to modify the back cap with a dot of contrasting
paint, because one of my lenses is terribly finicky
about alignment.

This is a good introduction to digital cameras to
people who are not intimidated by technology but
don’t know the nuts and bolts of photography. It’s
not going to satisfy a serious film photographer
looking to switch to digital, and it’s not going to
give you much geek cred. It is going to help the av-
erage person take better photographs.

Ilearning nagios 3.0

Wojciech Kocjan

Packt Publishing, 2008. 301 pages.
ISBN 978-1-847195-18-0

re v IeWeD by MO rten Wern er f O r sb rIn g ,
trO n D h a sl e a Mun Dsen , a n D stå l e
a skerO D J O h a nsen

The University of Oslo has been using Nagios as
the primary monitoring tool for UNIX servers and
their services for two years. We switched to version
3.0 only some months after its release. We moni-
tor about 750 hosts and, in Nagios terms, approxi-
mately 11k services, in a diverse and heterogeneous
academic installation with ~60k users. We have
spent much time tuning and adapting Nagios to
our needs, and we know some of its strengths and
weaknesses, although we do not use or know in
detail all of its features.

This book aims to be a general guide to Nagios as
well as to the new features in version 3.0. Our im-
pression is quite good. The focus is said to be on
giving a good introduction to system administra-
tors who are new to Nagios and want to learn more
about it in general. In our opinion, the author does
indeed provide a good overview of Nagios as an ad-

Login_articlesAPRIL09_final.indd 82 3/9/09 10:39:59 AM

; LO G I N : A pr I L 20 0 9 b O O k re v I e ws 83

ministration tool and offers a good start for people
who are curious about trying it out.

The book does not venture into all of the chal-
lenges we have faced with Nagios, so people who
are looking for more hardcore information might
need to look deeper in Nagios’s own documenta-
tion or on the various mailing lists.

That being said, in its 11 chapters the book covers
basically all the steps necessary to get a more-than-
basic Nagios rig up and running. Everything from
installation to using more complex but essential
features such as NRPE and NSCA is covered. In be-
tween you’ll find explanations on what monitoring
really is all about and the role of Nagios, as well as
configuration and explanations on how to monitor
specific typical things (e.g., email, processes, how
ports answer).

There is also a focus on scalability and tuning, with
good examples of “best practice.” We also like the
fact that the book mentions using Nagios in larger
environments—for example, discussing the chal-
lenges of handling SSH checks. We agree that, for
many, NRPE will be a better choice, but you have
to pay attention to its security issues.

What do we miss? Considering the title, the book
does its job. We would have liked more info on
tuning the GUI, but many use it less than we do,
and there are projects to improve it.

There are also several other things the book does
not include, but it feels unfair to expect too much
detail from a book targeted at beginning Nagios
users.

What did we learn? We had several “wakeups,”
where we got reminded about things we want to
look into—for instance, features we haven’t started
using yet. In this sense we think this book could
be a useful read for many people who use this
great software already. The book also covers many
of the new features in version 3.0, which are very
useful for those who are already into Nagios to be
aware of.

Regarding the features of Nagios we don’t use, we
naturally cannot evaluate the content. This in-
cludes: monitoring Windows; extensive use of de-
pendencies; adaptive monitoring; and running
multiple Nagios servers.

This book is a good read for all system administra-
tors who want to learn more about Nagios or want
to start using it. Although some large installations
may require more configuration and adaptation
than this book goes into, it does cover all the im-
portant topics to get you up and running, and then
some.

Iweb 2 .0 : a str ategy guide

Amy Shuen

O’Reilly Media, 2008. 266 pages.
ISBN 978-0596529963

Re v iewed by b R a n d o n Ch in g

Some say that imitation is the sincerest form of
flattery. If that is indeed the case, then Amy Shuen
has written an informative guideline for all of us
to flatter the likes of Google, Flickr, Amazon, and
Facebook. In Web 2.0: A Strategy Guide, Shuen ana-
lyzes the Web 2.0 movement by deconstructing the
strategies used by successful Web companies large
and small; then she explains the how and why of
their success through Web 2.0 principles.

Shuen details, in six chapters of highly informative
analysis, how companies can adopt Web 2.0 ideas
to enhance profitability and expand their busi-
nesses. Shuen does this through a detailed analy-
sis of many successful Web 2.0 companies and
many of the strategies they used to add value and
profitability to the services they offer. According
to Shuen, the strategies of primary importance to
Web 2.0 businesses are to build on collective user
value, activate network effects, work through social
networks, dynamically syndicate competence, and
recombine innovations.

Shuen begins by analyzing the collective user value
concept by scrutinizing the strategies of Flickr and
Netflix. The user value concept is the idea that
users, not the companies themselves, are the main
contributors of value. By allowing users to add,
share, organize, and promote their own content,
businesses need only provide a context through
which users can interact. Although this may sound
easy, balancing user demands while ensuring prof-
its and adding value to services is, as Shuen points
out, difficult to attain.

Building upon the collective user value concept
is the network effect. “Positive network effects in-
crease the value of a good or service as more peo-
ple use or adopt it” (p. 41). In this chapter, Shuen
breaks down how Google’s pay-per-click keyword
advertising has used a variety of positive network
effects to generate sustainable profitability ($8 bil-
lion per quarter, p. 44). With coverage of five dif-
ferent types of positive network effects, Shuen
provides a solid overview of ways your business
can capitalize on this core Web 2.0 principle.

Perhaps one of the most visible Web 2.0 strategies
is that of social networking. Chapter three delves
into the understanding of this effect and covers
topics such as Malcolm Gladwell’s tipping point
theory, the Rogers adoption curve, and the Bass

Login_articlesAPRIL09_final.indd 83 3/11/09 12:00:09 PM

84 ; LO G I N : vO L . 3 4, N O. 2

diffusion curve. These more theoretical explana-
tions for social networking effects Shuen follows by
an analysis of the rise in membership, participa-
tion, and success of Facebook and LinkedIn.

Every business has a set of core competencies.
Chapter four analyzes IBM, SalesForce.com, and
Amazon, showing how each company used their
core competencies in dynamic ways to expand
service offerings and increase profits. In the case
of Amazon, the decision to open up their online
book-selling service to third-party sellers in 2001
resulted in additional billions of dollars in sales.
Later, capitalizing on their experience of running
a large, multi-million-user system, Amazon began
offering back-office competencies through Web ser-
vices such as the Simple Storage Service (S3) and
the Elastic Compute Cloud (EC2).

Finally, Shuen covers the recombining innovation
aspect of the Web 2.0 movement by addressing
how businesses can expand upon existing ser-
vices utilizing different modes of innovation in-
cluding democratized, crowd-sourcing, ecosystem,
platform, and recombinant innovation. The most
prominent example Shuen addresses here is that
of Apple’s iPod and iTunes application capitaliz-
ing on platform innovation through iPod assembly,
creative software, accessories, and user-provided
music data.

The final chapter is a short how-to consisting of
five steps on how to incorporate Web 2.0 strate-
gies into your business. Essentially a summary of
the previous five chapters, it also provides general
business ideas and strategies on getting started
with your newly acquired Web 2.0 knowledge.
Weighing in at only 15 pages, this chapter won’t
give you all your answers, but it does give you a
good push in the right direction.

Shuen’s book is an exceptional analysis of many
processes and strategies used by successful Web
2.0 companies. Each chapter ends with a valuable
series of strategic and tactical questions that can
be asked by business owners and executives which
directly relate the principles in the chapter to Web
and IT-based organizations.

Web 2.0: A Strategy Guide should be considered re-
quired reading for business executives and stu-
dents, entrepreneurs, and information technology
investors. Although approachable, the book does
contain a good amount of business and economic
principles and terminology that may leave some
just skimming a few pages here and there. Yet,
overall this was a very good, and relatively con-
cise, source of valuable information on the busi-

ness strategies and principles of successful Web 2.0
businesses.

Ireal world haskell

Bryan O’Sullivan, John Goerzen, and Don Stewart

O’Reilly, 2008. 710 pages.
ISBN 978-0-596-51498-3

re v IeWeD by Ja sO n Dusek

Haskell has long lacked a book with both up-to-
date worked examples and an overview of language
fundamentals. Real World Haskell introduces pure
functional programming with the Haskell language
and covers a wide array of libraries that are in ac-
tive use.

Most programmers coming to Haskell will find
their greatest difficulty lies in learning purely func-
tional programming and type inference. These two
features allow a rich combination of optimization,
code verification, and script-like brevity. Real World
Haskell is veined with explanatory material, high-
lighting the utility of Haskell’s novel features; for
example, Chapter 25, on profiling and optimiza-
tion, illustrates how functional purity and static
types allow for a remarkable speedup without dam-
age to clarity or code size.

At first, many common idioms appear impossible
or nonsensical in the functional setting. Among
them are error handling with exceptions, pointer
arithmetic, and multithreaded programming with
shared values. Nothing could be further from the
truth, and Real World Haskell does an excellent
job of clarifying both how these idioms fit in with
purely functional programming and how they are
executed in practice in Haskell.

Material in the text runs the gamut from intro-
ductory to practical to sophisticated. The first four
chapters are devoted to introducing the language
and pure functional programming; remaining
chapters are divided between the case studies—
syslog, sockets, databases, parsing /etc/passwd—
and discussion of functional programming idioms.
The famed science of monadology is made ap-
proachable without dumbing down.

Type inference, pattern matching, and the Haskell
type checker are powerful aids to static verifica-
tion. These unfamiliar tools are demonstrated
throughout the text with appropriate comparison
to idioms in other languages.

Some figures and footnotes are notably in error;
this is generally obvious (e.g., a footnote labeled “a”
but referenced by an asterisk). Most of the errors I
encountered have found their way onto the errata

Login_articlesAPRIL09_final.indd 84 3/9/09 10:39:59 AM

; LO G I N : A pr I L 20 0 9 B O O k rE v I Ews 85

page (at http://oreilly.com/catalog/9780596514983/
errata/). There are some places where the text re-
peats itself (e.g., on page 574). These mistakes in
presentation are a small blemish on fine material.

In referencing online documentation and API
search tools, the book upholds the standard of all
O’Reilly books. Real World Haskell is itself available
online, at http://book.realworldhaskell.org/. The site
supports per-paragraph comments and has been
collecting notes since January of 2008.

Ialgorithms in a nutshell

George T. Heineman, Gary Pollice, and Stanley Selkow

O’Reilly, 2008. 362 pages.
ISBN 978-0-596-51624-6

re v IeWeD by Ja sO n Dusek

Algorithms in a Nutshell offers an informal, compact
reference to basic algorithms for sorting, searching,
and graph traversal as well as more specialized ma-
terial for computational geometry, pathfinding, and
network flow.

The text touches upon a number of programming
languages but the vast majority of examples are in
Java, C, or C++. A chapter tends to use all one or
another: the reader is assumed (not unreasonably)
to have a reading knowledge of all three.

Deliberately light on math, the text’s presenta-
tion is inspired by Christopher Alexander’s A Pat-
tern Language, which is introduced in the chapter
“Patterns & Domains.” After a short visit with the
philosophers, this chapter introduces the finest or-
ganizational aspect of this text: the algorithm trad-
ing cards, short fact sheets with well-thought-out
iconography to allow you, at a glance, to assess an
algorithm’s performance, operating principles, and
relation to fundamental data structures. In addi-
tion to the trading cards, the book offers plentiful
source code, pseudo-code, and diagrammatic ex-
planations of the algorithms.

In keeping with the practical emphasis of the text,
the authors generally benchmark the algorithm
under study on two or three computer systems in
addition to presenting its “big O” characteristics.

A few small printing errors detract from the text.
On page 137, there is either an error or there is
an airline with service from one’s desktop to one’s
router.

Algorithms in a Nutshell is readable and informative;
it is both an excellent refresher and a fine introduc-
tion to a number of important algorithms.

Ios x exploits and defense

Kevin Finisterre, Larry H., David Harley, and
Gary Porteous

Syngress, 2008. 400 pages.
ISBN 978-1-59749-254-6

re v IeWeD by sa M f. stOv er

I walked away from this book with a burning ques-
tion in my mind: Just who exactly is the target au-
dience? In my opinion, if you are a reverse engineer
who can walk though the stack but need screen-
shots to help you install KisMAC on a Mac and you
are interested in a lot of OS 9 historical facts, this
is the book for you. Instead of a book for newbies
and veterans alike, this book feels unbalanced in
its content.

The first chapter starts out with an incredibly brief
description of the boot processes for OS 9 and OS
X. The rest of the chapter discusses forensic tool-
kits designed for the Mac, which is really just a
bunch of GUIs wrapped around *NIX utilities
we’ve all been using for years. Chapter 2 then goes
into an incredible amount of detail (e.g., discussing
memory register contents) of several bugs in OS 9,
early versions of OS X, and even Windows running
via Cross Over/WINE. Very deep stuff.

Chapter 3 then takes a look at Mac-focused mal-
ware since the beginning of time. There is a lot of
background and historical information; in fact the
chapter contains more OS 9 information than I
ever knew existed. Chapter 4 outlines the different
tools, both past and present, to detect malware on
the Mac platform. Again, there’s lots of historical
info, but maybe more than you would find interest-
ing—definitely more than I found interesting.

Chapter 5, “Mac OS X for Pen Testers,” was the
chapter I was honestly looking forward to but was
ultimately disappointed in. If you need help install-
ing the Developer Tools, X11, CPAN, Wireshark,
and nmap, then read this chapter. If you can figure
that stuff out on your own, don’t bother. The same
goes for the next chapter, which addresses war-
driving and wireless pen testing by walking you
through installing and using KisMAC.

Chapter 7, “Security and OS X,” is very reminis-
cent of Chapter 2 in that you get a very in-depth
description of buffer overflows, library injection,
and address space layout randomization. I thought
this chapter was the highlight of the book: The in-
formation is current, valid, and interesting, and the
explanations were solid.

The final chapter, on encryption implementations,
starts with an overview of encryption in OS 9, then
follows changes and additions in OS X such as File-

Login_articlesAPRIL09_final.indd 85 3/9/09 10:39:59 AM

86	 ; LO G I N : 	VO L . 	3 4, 	N O. 	2

Vault, SSHD, WEP, and WPA. Not a bad chapter, if
you are interested in learning the evolution of en-
cryption in the Mac world.

Overall, I’d have to say that this book was a bit of a
disappointment. I really liked Chapter 7, and even
Chapter 2 held my interest, but beyond that, I felt
as though I was being inundated with either OS 9

information I don’t care about or installation in-
structions for open source tools. If you really want
to learn about pen testing, on a Mac or otherwise,
I’d recommend the Penetration Tester’s Open Source
Toolkit. If you are interested in learning more about
your Mac, I’d recommend OS X for Hackers. But
that’s just me.

Login_articlesAPRIL09_final.indd 86 3.11.09 12:47:37 PM

; LO G I N : A pr I L 20 0 9 usE N Ix N OTEs 87

USENIX
notes

us e n ix m e m b e r b e n e F it s

Members of the USENIX Association
 receive the following benefits:

free subscrIp tIOn to ;login:, the Associa-
tion’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns
on such topics as security, Perl, net-
works, and operating systems, book
reviews, and summaries of sessions
at USENIX conferences.

access tO ; lO gIn : online from October
1997 to this month:
www.usenix.org/publications/login/.

DIscOunts on registration fees for all
 USENIX conferences.

DIscOunts on the purchase of proceed-
ings from USENIX conferences.

specIal DIscOunts on a variety of prod-
ucts, books, software, and periodi-
cals: www.usenix.org/membership/
specialdisc.html.

the rIght tO vOte on matters affecting
the Association, its bylaws, and
election of its directors and officers.

fOr MOre InfOr M atIOn on membership
or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

us e n ix b OA r d O F d i r ec tO r s

Communicate directly with the
 USENIX Board of Directors by
writing to board@usenix.org.

President

Clem Cole, Intel
clem@usenix.org

Vice President

Margo Seltzer, Harvard University
margo@usenix.org

secre ta ry

Alva Couch, Tufts University
alva@usenix.org

tre a surer

Brian Noble, University of Michigan
brian@usenix.org

direc tor s

Matt Blaze, University of Pennsylvania
matt@usenix.org

Gerald Carter,
Samba.org/Likewise Software
jerry@usenix.org

Rémy Evard, Novartis
remy@usenix.org

Niels Provos, Google
niels@usenix.org

e xecutiVe direc tor

Ellie Young,
ellie@usenix.org

tr i b ute tO JAy Le pr e Au, 1 952 –2 0 0 8

Ellie Young, USENIX Executive Director

As many of you may
know, Jay Lepreau,
Research Professor and
Director of the Flux
Research Group in the
School of Computing at
the University of Utah,
died last September,

following complications of his battle
with cancer. Jay was a valued supporter
of USENIX for over 25 years, presenting
numerous papers and introducing genera-
tions of students to USENIX.

As program chair of the USENIX 1984
Technical Conference, Jay instituted the
USENIX tradition of providing published
proceedings for the attendees.

One of Jay’s most enduring contributions
was to conceive and found the USENIX
Symposium on Operating Systems Design
and Implementation (OSDI).

To commemorate Jay’s contribution
to USENIX and to computer science,
USENIX inaugurated the Jay Lepreau Best
Paper Award at the eighth OSDI. A tribute
for Jay and the presentation of the first
awards were held on Monday, December
8, 2008, at OSDI ’08. Watch the video or
listen to the MP3 of the tribute:

http://www.usenix.org/media/events/
osdi08/tech/videos/lepreau_320x240.mp4

http://www.usenix.org/media/events/
osdi08/tech/mp3s/Inauguration.mp3

Login_articlesAPRIL09_final.indd 87 3/9/09 10:39:59 AM

88 ; LO G I N : vO L . 3 4, N O. 2

Writing is not easy for most of
us. Having your writing rejected,
for any reason, is no fun at all.
The way to get your articles pub-
lished in ;login:, with the least ef-
fort on your part and on the part
of the staff of ;login:, is to submit
a proposal to login@usenix.org.

propoSaLS

In the world of publishing, writ-
ing a proposal is nothing new.
If you plan on writing a book,
you need to write one chapter, a
proposed table of contents, and
the proposal itself and send the
package to a book publisher.
Writing the entire book first
is asking for rejection, unless
you are a well-known, popular
writer.

;login: proposals are not like
paper submission abstracts. We
are not asking you to write a
draft of the article as the pro-
posal, but instead to describe the
article you wish to write. There
are some elements that you will
want to include in any proposal:

n What’s the topic of the ar-
ticle?

n What type of article is it
(case study, tutorial, edi-
torial, mini-paper, etc.)?

n Who is the intended au-
dience (syadmins, pro-
grammers, security
wonks, network admins,
etc.)?

n Why does this article
need to be read?

n What, if any, non-text
elements (illustrations,

code, diagrams, etc.) will
be included?

n What is the approximate
length of the article?

Start out by answering each of
those six questions. In answering
the question about length, bear
in mind that a page in ;login: is
about 600 words. It is unusual
for us to publish a one-page ar-
ticle or one over eight pages in
length, but it can happen, and
it will, if your article deserves
it. We suggest, however, that
you try to keep your article be-
tween two and five pages, as this
matches the attention span of
many people.

The answer to the question about
why the article needs to be read
is the place to wax enthusias-
tic. We do not want marketing,
but your most eloquent explana-
tion of why this article is impor-
tant to the readership of ;login:,
which is also the membership of
USENIX.

unaccepTabLe arTIcLeS

;login: will not publish certain ar-
ticles. These include but are not
limited to:

n Previously published ar-
ticles. A piece that
has appeared on your
own Web server but not
been posted to USENET
or slashdot is not consid-
ered to have been pub-
lished.

n Marketing pieces of any
type. We don’t accept
articles about products.
“Marketing” does not in-
clude being enthusiastic
about a new tool or soft-
ware that you can down-
load for free, and you are
encouraged to write case
studies of hardware or
software that you helped

install and configure, as
long as you are not af-
filiated with or paid by
the company you are
writing about.

n Personal attacks

forMaT

Please send us text/plain for-
matted documents for the pro-
posal. Send proposals to login@
usenix.org.

deadLIneS

For our publishing deadlines,
including the time you can ex-
pect to be asked to read proofs
of your article, see the online
schedule at http://www.usenix
.org/publications/login/sched
.html.

copyrIgHT

You own the copyright to your
work and grant USENIX per-
mission to publish it in ;login:
and on the Web. USENIX owns
the copyright on the collection
that is each issue of ;login:. You
have control over who may re-
print your text; financial ne-
gotiations are a private matter
between you and any reprinter.

focuS ISSueS

In the past, there has been only
one focus issue per year, the
 December Security edition. In
the future, each issue may have
one or more suggested focuses,
tied either to events that will
happen soon after ;login: has
been delivered or events that
are summarized in that edition.

writing for
;login:

Login_articlesAPRIL09_final.indd 88 3/9/09 10:40:00 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 89

OSDI ’08: 8th USENIX Symposium on Operating
Systems Design and Implementation

San Diego, CA
December 8–10, 2008

The Jay Lepreau Award for Best Paper was instituted at
OSDI ’08 (see p. 87). Three awards were presented.

cloud computing

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

n	 DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language
Yuan Yu, Michael Isard, Dennis Fetterly, and Mihai Budiu,
Microsoft Research Silicon Valley; Úlfar Erlingsson, Reykjavík
University, Iceland, and Microsoft Research Silicon Valley;
Pradeep Kumar Gunda and Jon Currey, Microsoft Research
Silicon Valley

Winner of Jay Lepreau Award for one Best Paper

Yuan Yu explained that DryadLINQ comprises Micro-
soft’s cluster computing framework (Dryad) and the .NET
Language INtegrated Query system (LINQ). Together,
these tools allow programmers to write in their famil-
iar .NET languages, with integrated SQL queries. In
the compilation process, DryadLINQ can produce an
executable appropriate for a single core, a multi-core, or
a cluster of machines. The tool chain is incorporated into
Visual Studio as well, allowing programmers to work in a
familiar IDE. The result is an environment for concurrent
programming that transparently works in the much more
difficult field of distributed programming. In summary,
Yuan described the work as a “modest step” toward using
the cluster as one would use a single computer.

As an example, Yuan showed how a simple task (count-
ing word frequency in a set of documents) could be
expressed with the system. The LINQ expression “select
many” is used to transform the set of documents into a
set of words, then “group” is used to collate the words
into groups. Finally, the count can be computed for each
word. At each step, the use of LINQ’s relational algebra
ensures that the task will parallelize well, while Dryad
provides benefits such as data location transparency.

A recurring element of both the presentation and the
question-and-answer period was comparing Dryad-
LINQ to MapReduce, as is used by Google. Yuan offered
Dryad as a more generalized framework for concur-
rent programming, showing how MapReduce could be
implemented with three operations. He also posited that
DryadLINQ provided a clear separation between the ex-
ecution engine and the programming model, whereas in
his view MapReduce conflates the properties of the two.
This places unnecessary restrictions on both the execu-
tion engine and the programming model.

Yuan explained that the project was released internally
and is being used in several projects. He described sev-

conference reports

thANks tO Our summArIzers

8th USENIX Symposium on Operating
Systems Design and Implementation
(OSDI ’08) .89
Periklis Akritidis
Chris Frost
Roxana Geambasu
Olga Irzak
Ann Kilzer
Vivek Lakshmanan
Dutch Meyer
Daniel Peek
Kyle Spaans

Workshop on Supporting Diversity in Systems
Research (Diversity ’08)108
Ann Kilzer

Workshop on Power Aware Computing and
Systems (HotPower ’08) 110
Alva L. Couch
Kishore Kumar

First Workshop on I/O Virtualization (WIOV
’08) . . 114
Mike Foss
Asim Kadav
Jeff Shafer

reportsAPRIL_09_final.indd 89 3/9/09 10:42:08 AM

90 ; LO G I N : VO L . 3 4, N O. 2

eral lessons drawn from the effort, praising deep language
integration, easy parallelism, and an integrated cross-plat-
form environment. In describing future work, he proposed
exploring the types of programs that could be created with
this approach, asked how he could better generalize the pro-
gramming model, and called for languages providing strong
static typing in the datacenter.

Audience interest was strong for the paper, and session
chair Marvin Theimer was forced to cut off discussion to
keep the session on schedule. Eric Eide of the University
of Utah began by asking what opportunities programmers
have to control the compilation of their programs, for ex-
ample optimizing for failure tolerance versus performance.
In reply Yuan explained that some of these optimizations
would need to be handed to the execution engine as a
policy but that the problem has not yet been tackled directly
by the compiler. Brad Chen from Google wanted to know
whether the programming model facilitated good intuitive
assumptions about performance from programmers. Simi-
larly, Armando Fox wondered whether data mining and/or
machine learning could give performance estimates. Yuan
explained that they were still learning about the system
and that people are actively working on understanding the
performance characteristics. Modeling performance with
machine learning is ongoing work. Yuan was also asked
about support for continuous querying, and he thought that
this would be an interesting area for future work.

n	 Everest: Scaling Down Peak Loads Through I/O
Off-Loading
Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh
Elnikety, and Antony Rowstron, Microsoft Research Cambridge,
United Kingdom

Dushyanth Narayanan presented Everest, which uses I/O
offloading to mitigate peak load conditions on storage
servers. This work follows his paper at FAST earlier in the
year, in which Dushyanth applied a similar mechanism to
the problem of power consumption. He began by show-
ing a trace of a production Exchange server; despite over-
provisioning, an observed I/O load was shown to increases
the server’s response time twentyfold. At the same time,
this load increase was not correlated with the workload on
other disks. This key observation provides hope that spare
resources on these other hosts can be utilized to lessen the
burden on storage systems.

Everest operates within a client/server model. Any machine
that needs protection against peak loads runs an Everest
client, while a set of other machines operate Everest stores.
In practice Everest clients may also be stores. Under normal
operation, requests to an Everest client merely pass through
to the local storage without modification. If the client
detects that a peak load condition may be occurring (ac-
cording to some threshold), it begins write offloading. This
means preserving disk I/O bandwidth by issuing writes to
Everest stores across the network interface. Once the peak
subsides, the client stops offloading and begins reclaiming
previously offloaded writes. Naturally, this solution targets

temporary peaks in load; it will not provide long-term relief
to a cluster that is fundamentally under-provisioned.

To minimize the burden of additional writes to the client’s
disk, the destination of offloaded writes is not written to
local storage. Everest store nodes instead track the source
of writes along with the data, written to a circular log. In
recovering from a failure, clients query relevant stores to
find all outstanding writes. Everest also includes features
beyond this basic operation, such as offloading to multiple
stores and load balancing, although these features were not
discussed in depth.

Questions addressed a variety of motivational and techni-
cal details. Jonathon Duerig of the University of Utah gently
challenged the assumption that there is no correlation be-
tween peak loads and asked whether there was a metric for
how much correlation the system could endure. Dushyanth
had not performed this analysis yet and was not aware of a
synthetic workload that would allow experimenters to vary
peak load correlation. Preston Crow of EMC asked whether
disk caches could be grown to provide the same effect, but
Dushyanth replied that the size of the observed peaks was
in the gigabyte range—simply too large for a reasonably
sized cache. Finally, Armando Fox of UC Berkeley won-
dered whether new failure modes were being introduced by
spreading data across many volumes. Dushyanth thought
that N-way replication, already present in Everest, was likely
necessary to ensure that the system could tolerate failures in
N – 1 Everest stores.

n	 Improving MapReduce Performance in Heterogeneous
Environments
Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy
Katz, and Ion Stoica, University of California, Berkeley

Matei Zaharia discussed the MapReduce programming
model and the improvements his team at Berkeley has
brought to Hadoop’s implementation and algorithm. Their
principal findings were based on the observation that
performance heterogeneity breaks task-scheduling assump-
tions. Such heterogeneity is not hard to find in practice; for
example, utility computing services don’t generally provide
strong performance isolation guarantees.

In the process of analyzing Hadoop, Matei used Amazon’s
EC2 service as an academic testbed, a direction he vigor-
ously encouraged others to follow. In their experiments,
they were able to operate at a convincingly large scale, yet
with relatively low cost.

Backup selection in Hadoop occurs as nodes used for
primary tasks become free. In that case, primary tasks that
have not made sufficient progress will be replicated onto
free nodes. The study found four principal problems with
backups in Hadoop. First, too many backups will thrash
network bandwidth and other shared resources. Second,
the wrong tasks can be selected for backup. Third, backups
can be directed to slow nodes, which is suboptimal. Fourth,
if tasks are started at nonuniform times, scheduling deci-
sions can be made incorrectly. In an example, Matei showed

reportsAPRIL_09_final.indd 90 3/9/09 10:42:08 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 91

how 80% of the tasks for an operation could be selected
for backup, with the majority of these tasks losing to the
originals.

To fix these problems, a LATE scheduler was contributed to
the Hadoop project (available at http://hadoop.apache.org/
core/). The new scheduler estimates the completion time
for each task and selects only slow-running tasks that are
believed to complete late. It also caps the number of backup
tasks and places backups on fast nodes. In the evaluation
it was shown that this new scheduler offered a 58% perfor-
mance improvement, on average.

Brad Chen of Google asked how tasks of variable length
would be scheduled. In their work, Matei and his team had
assumed that tasks were of roughly constant length. This
is justified in that Hadoop itself attempts to maintain this
invariant. To tackle this problem, Matei believed that one
would probably need to prioritize according to task size;
however, this problem has yet to be addressed. Marvin
Theimer of Amazon also asked whether the authors had
any advice for utility computing providers. The presenter
encouraged more visibility into machine status, network
topology, and rack locations.

os architecture

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

n	 Corey: An Operating System for Many Cores
Silas Boyd-Wickizer, Massachusetts Institute of Technology;
Haibo Chen, Rong Chen, and Yandong Mao, Fudan University;
Frans Kaashoek, Robert Morris, and Aleksey Pesterev, Massa-
chusetts Institute of Technology; Lex Stein and Ming Wu, Micro-
soft Research Asia; Yuehua Dai, Xi’an Jiaotong University; Yang
Zhang, Massachusetts Institute of Technology; Zheng Zhang,
Microsoft Research Asia

Silas Boyd-Wickizer presented a new operating system
interface as part of ongoing work on the Corey operating
system. The work is premised on the observation that for
application performance to scale with an increasing number
of processing units, the time spent accessing kernel data
structures must be made parallelizable. In current practice,
synchronizing access to such data must be done conser-
vatively. Although kernel subsystems can sometimes be
redesigned to avoid or eliminate this locking, the process is
time consuming for programmers. Such an approach, Silas
argued, forces developers into a continuously incremental
evolution of the kernel. As an alternative, Corey seeks to re-
move unnecessary sharing by letting applications explicitly
declare when they intend kernel state to be shared.

Corey provides three new interfaces for creating kernel data
structures: shares, address ranges, and kernel cores. How-
ever, only the first two were discussed in the presentation,
each with an example. To demonstrate the use of shares,
Silas showed how different file descriptors opened by dif-
ferent processes could result in poor performance scaling.
Some access to the global file descriptor table was shown to

be clearly contentious, with an order of magnitude decrease
in performance. However, much of the synchronization
around this table is clearly unnecessary, since processes
may be using unrelated file descriptors. Corey’s support for
shares allows an application to explicitly define a private
file descriptor to avoid the unnecessary locking. To demon-
strate address ranges, Silas showed how shared memory can
result in contention, even when processes are not actively
writing into the shared memory space. The solution was to
build a private memory space but to map in shared memory
when explicitly requested by the application. This allows
updates to private memory to occur without contention.
Both examples were demonstrated with microbenchmarks.
During the question-and-answer session Silas conceded that
the workloads used in the system’s evaluation targeted only
the observed contention behavior, not the overall perfor-
mance. He believed that overall performance would increase
relatively with more cores and would likely be visible on a
32-core system.

The question-and-answer session was very active, and
Silas’s jovial nature drew appreciation from the audience on
several occasions. Marvin Theimer of Amazon wondered
whether any degree of public/private locking would prove to
be scalable in a many-core architecture. He pointed out that
successful grid and cluster architectures eschewed locking
entirely, in favor of message passing. Silas pointed to the
potential for nonglobal sharing in Corey as a possible means
of scaling into a large number of cores. Alex Snoeren of
UCSD pointed out that the architecture extracted the basic
elements of NUMA and asked whether partitioning into
sharing groups might be done automatically. Although this
had been considered and may be a part of future work at
MIT, Silas stressed that sharing explicitly could be a desir-
able quality to programmers.

n	 CuriOS: Improving Reliability through Operating System
Structure
Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy
H. Campbell, University of Illinois at Urbana-Champaign

Francis David addressed issues of system failure in his pre-
sentation on CuriOS. The system attempts to make use of
restart-based recovery to deal with errors and uses a novel
separation of client state to ensure that service restart does
not result in additional failures.

Francis began by showing how faults in Minix 3, L4,
Chorus, and Eros could each result in lingering failures
even after a successful service restart. The problem is that a
service stores state on behalf of its clients. When the service
fails, its state is restarted along with the service, which puts
clients in an inconsistent state. More broadly, the authors
identified four requirements for transparent restart: address
transparency, suspension of the client for recovery, and
persistence and isolation of client state.

To provide these properties, Server State Regions (SSRs)
were introduced. Each SSR represents the current state of

reportsAPRIL_09_final.indd 91 3/9/09 10:42:09 AM

92 ; LO G I N : VO L . 3 4, N O. 2

a client and exists in an isolated address space. When a re-
quest is received by a server, the SSR is temporarily mapped
into the server’s address space and is correspondingly un-
mapped for the response. In the event of a fault, the server
will only have access to the process it was directly servicing.
On recovery, the client data can be checked for consistency.
To test the techniques, a working timer and network service
were created. These were validated with fault injection on
an embedded platform. Faults, in this case, are memory
aborts or bit flips that result in a system crash. With SSRs,
CuriOS was able to recover from more than 87% of these
failures and was usually able to restart the failed service.
Francis evaluated the system with microbenchmarks, show-
ing that the overhead consisted mainly of flushing the TLB
and was therefore similar to a context switch.

Francis then fielded questions from the audience. Emin Gün
Sirer from Cornell took a moment to disagree with an ear-
lier claim that type safety would fix many faults in system
operation, effectively strengthening the motivation for the
work. He then asked whether the fault detection relied on
a component detecting its own fault. When Francis replied
that the fault detection had been ported from the existing
code base, Gün asked whether fault detection needed to be
protected in general. To this, Francis agreed and pointed to
techniques for checking in-line, but he made it clear that
their focus was exclusively on recovery, not detection. Fran-
cis was also asked about developing user-mode recovery
services and recovering from faults in the SRR management
service itself. Both were identified as areas for future work.
He also clarified a few additional points from his presenta-
tion before session chair Remzi Arpaci-Dusseau was forced
to cut off the discussion in the interests of time.

n	 Redline: First Class Support for Interactivity in Commodity
Operating Systems
Ting Yang, Tongping Liu, and Emery D. Berger, University of
Massachusetts Amherst; Scott F. Kaplan, Amherst College; J.
Eliot B. Moss, University of Massachusetts Amherst

Ting Yang presented Redline, an operating system that
provides first-class support for interactive applications. The
commonly used schedulers in popular operating systems
strive for a state of fairness. This ideal is one in which
each process shares resources equally at fine granularity.
The best-known alternative to this is real-time scheduling,
in which processes receive dedicated resources to ensure
timely responses. Interactive applications sit between these
two ideals. They may often be idle for long periods of time
followed by bursts of activity, as driven by an external
event. Arguably, this can be a more important metric than
fairness, since it is capable of capturing the user’s percep-
tion of responsiveness.

To illustrate the challenge of scheduling for interactive ap-
plications Ting showed how simultaneous video playback
and kernel compilation results in jumpy and unresponsive

video playback. The problem is one of resource manage-
ment. For example, both applications rely on getting data
from disk, but the queues and caches in the storage stack
are not necessarily fair.

The goal of Redline is to maintain responsiveness in ap-
plications that need it. It operates by coordinating resource
management to devices as well as CPU and memory. Users
identify interactive applications and reserve the desired
CPU, memory, and IO priority. In the case of memory man-
agement, interactive applications are vulnerable to LRU evic-
tion because they scan memory less frequently. Worse, as
their working set shrinks, they fault more frequently, mak-
ing the problem a potentially degenerative case. To correct
this, Redline preserves working set size by protecting the
pages of interactive applications for 30 minutes. If the sys-
tem has insufficient memory for this assurance, processes
will be degraded to best effort. At the same time, memory
access by best-effort applications are “speed-bumped” to
keep them from touching memory too frequently.

To evaluate Redline, Ting showed the result of video play-
back under the pressure of a fork bomb, a malloc bomb,
and an IO intensive workload. In each, Redline was shown
to outperform Linux (measured in frames per second) by a
significant margin.

Ashvin Goel, from the University of Toronto, noted that the
resource specification is described differently for each type
of resource and wondered why a more unified approach
wasn’t used. Ting acknowledged that uniformity is desirable
but explained that this approach was difficult in practice.
They ultimately found that different descriptions were ap-
propriate for each resource. To simplify the specifications,
default rules and inference take some of the burden off the
user. Ting also addressed concerns of starvation, stating
that it might be necessary given that the goal was to provide
isolation for interactive applications.

monitoring

Summarized by Olga Irzak (oirzak@cs.utoronto.ca)

n	 Network Imprecision: A New Consistency Metric for
 Scalable Monitoring
Navendu Jain, Microsoft Research; Prince Mahajan and Dmitry
Kit, University of Texas at Austin; Praveen Yalagandula, HP
Labs; Mike Dahlin and Yin Zhang, University of Texas at Austin

Navendu Jain began by pointing out the importance of
monitoring large-scale distributed systems. A motivating
example showed that best effort is not always sufficient.
For an application monitoring PlanetLab, half of the nodes’
reports deviated by more than 30% from the true value, and
20% of the nodes by more than 65%. These inaccuracies are
due to slow nodes, slow paths, and system reconfiguration.
Hence, a central challenge in monitoring large-scale systems

reportsAPRIL_09_final.indd 92 3/9/09 10:42:09 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 93

is safeguarding accuracy despite node and network failures.
Network imprecision exposes the state of the network so
that applications can decide whether or not to trust the ac-
curacy of the result. Current techniques used for scalability
in monitoring systems are aggregation, arithmetic filtering,
and temporal batching. However, during network or node
failure, these techniques can cause failure amplification,
silent failure, and blockage of many updates even for a short
disruption. As a result, the authors suggest accepting that
the system is unreliable and quantify system stability using
the “Network Imprecision” metric.

Instability manifests itself in either missed/delayed up-
dates or double-counted updates. To quantify the former, a
lower bound on the number of nodes whose recent inputs
are guaranteed to be in the result (Nreachable) versus the
number of total nodes in the system (Nall) is reported. The
Ndupmetric is an upper bound on the number of nodes that
are double-counted. Together, these metrics are useful to
expose the impact of disruptions on monitoring accuracy.
Network imprecision is application-independent, inexpen-
sive, and flexible. Applications can set a policy to improve
accuracy by applying the right techniques, such as filtering
inconsistent results or performing redundant or on-demand
reaggregation. Filtering with network imprecision results in
80% of the reports having less than 15% error, in contrast
to best effort, in which there is 65% error. Network impreci-
sion is simple to implement but difficult to implement ef-
ficiently. Using DHT trees, which form a butterfly network,
intermediate results can be reused across different trees.
This reduces the load from O(Nd) to O(dlogN) messages per
node.

Discussion began with an observation and a challenge.
Observation: Presented was a very nice subset of what DB
people call observation quality—add metrics that are avail-
able where things such as freshness come into account.
This gives more metrics to make decisions with. Challenge:
Wouldn’t it be nice if I could ask a monitoring system for
a particular level of accuracy or network imprecision or
whatever, and could you construct me a system that gives
me that level of accuracy? The approach has been to sepa-
rate the measurement mechanism from the policy that sets
the accuracy bounds. Applications can accept results with a
given accuracy bound and throw away others. But you can’t
guarantee an accuracy bound because of the CAP problem.
Since the problem is closely related to aggregation tech-
niques from sensor networks, the next questioner wondered
whether looking at order- and duplicate-insensitive aggrega-
tion functions would be in order. These are complementary
because in principle these try to minimize the impact of
disruptions on accuracy, whereas network imprecision ex-
poses disruptions. The SM techniques provide a policy that
can be applied in this framework.

n	 Lightweight, High-Resolution Monitoring for Troubleshoot-
ing Production Systems
Sapan Bhatia, Princeton University; Abhishek Kumar, Google
Inc.; Marc E. Fiuczynski and Larry Peterson, Princeton Univer-
sity

Sapan Bhatia made the observation that there will always
be bugs in production systems despite analysis and testing
frameworks. The problem is aggravated as system complex-
ity increases. There are easy and hard bugs in systems.
Easy bugs come with an exact description and are easy
to reproduce. Hard bugs are hard to characterize, hard
to reproduce, hard to trace to a root cause, spatially am-
biguous, temporally removed from root cause, and can be
intermittent and unpredictable. The authors experienced
many hard bugs in their dealings with PlanetLab, such as
intermittent kernel crashes with an out-of-memory bug,
unusual ping latencies, and a kernel crash every 1–7 days
(or not). A medical analogy is that easy problems are single,
localized injuries such as a broken foot, whereas a hard one
might be a vague sense of malaise. To facilitate handling
such bugs, the authors present Chopstix. Chopstix moni-
tors low-level events (vital signs) such as scheduling, I/O,
system calls, memory allocation, and cache misses. It then
captures abnormal deviations in the system’s behavior;
these are referred to as symptoms. As logging all events
is too expensive, sampling is used. Uniform sampling is
biased toward high-frequency events. Instead, Chopstix
uses frequency-dependent sampling from the measurement
community, which uses a sketch—an approximation of the
frequency distribution of a set of events. On an event trig-
ger, one extracts a signature of the event, hashes it, and up-
dates the sketch. If a sampling decision is made, one collects
the sample and performs logging. Collecting the sample is
heavyweight but is more efficient because of the principle of
locality. At the end of every data-collecting epoch (60 s in
Chopstix), the collected data is transferred to user space and
stored as a series of summaries. This results in a rich, fine-
grained data set for an overhead of 1% CPU utilization and
around 50 MB per day of disk consumption on each node.

The Chopstix GUI was also presented. The GUI polls events
from different nodes for the requested vital signs. These are
displayed on a graph that can be drilled into to see more
detail. The GUI allows the use of intuition for certain bugs
(e.g., high CPU usage means a busy loop). Alternatively,
use of a library of diagnosis rules to detect less obvious
conditions such as low process CPU utilization with high
scheduling delay and high CPU utilization per system likely
means a kernel bottleneck. An example of using Chopstix
to solve an elusive PlanetLab bug was then presented. The
observed behavior was that some nodes would freeze every
few days (or not), there was no info on console, the SSH
session would stall prior to hangs, and vmstat reported high
IO utilization. Chopstix showed abnormal blocking and I/O
vital signs from the journaling daemon, which turned out
not to be responsible for the freezes. It also showed spikes

reportsAPRIL_09_final.indd 93 3/9/09 10:42:09 AM

94 ; LO G I N : VO L . 3 4, N O. 2

in the scheduling delay coincident with spikes in kernel
CPU utilization, which pointed to the critical bug in a
loop in the scheduler. They evaluated performance over-
head using the lmbench microbenchmark. The slowdown
is between 0% and 2.6% for getpid. Kernel compile and
Apache macrobenchmarks showed almost no overhead in
the benchmarks.

The probability of an error is a function of the distribution
of counters in a sketch. By varying the size of the sketch,
the probability of error is between 0.0001% and 0.00001%.
Future work includes automating bug detection by data-
mining Chopstix data and combining NetFlow and Chop-
stix data to diagnose network-wide behavior.

The first questioner asked whether Bhatia could compare
work with DCPI from SOSP 1997. They were also monitor-
ing with 1.2% overhead. Bhatia replied that they had a sim-
pler notion of sampling. Their work is similar to oprofile,
which this beats. Another person wondered about diagnosis
rules. Is it possible (looking into the future) to capture
the thinking of a systems guru looking at this output by
data-mining? There are various knowledge-base systems
that analyze code for bugs, but they are imperfect, so you
really need human expertise to analyze rich data. Someone
else pointed out that this is useful for the developer who is
a kernel hacker and knows the system inside out, but how
could it be extended to abstract the vital signs to a higher
level and give signals of more abstract health, so that a
system could say, “I’m sick, I need to see a doctor”? A lot of
intelligence could be coded into rules, and the rule database
could grow over time (comparable with WebMD), allowing
diagnosis by less experienced people. How scalable can this
be made if you want hundreds or thousands of metrics?
Bhatia said that they haven’t carried out these experiments.
The <1% utilization is between 0.1% and 1%, so there
should be more room to squeeze in other metrics. Finally,
someone pointed out an issue: In the 1970s and 1980s
medical diagnosis with AI was prevalent, but there was an
explosion after 20 or so rules, so there was a move to other
systems such as Bayesian filtering. One of the reviewers was
excited about rule-based systems and wanted it cited, but it
was hard to find. Maybe that should tell us something.

n	 Automating Network Application Dependency Discovery:
Experiences, Limitations, and New Solutions
Xu Chen, University of Michigan; Ming Zhang, Microsoft Re-
search; Z. Morley Mao, University of Michigan; Paramvir Bahl,
Microsoft Research

Xu Chen highlighted the fact that enterprise networks sup-
port various business-critical applications such as VoIP and
email. In a large network, there are usually thousands of ap-
plications running simultaneously, thousands of people are
doing IT support, and lots of money is spent thereon. Net-
work management is complicated since applications are very
complicated and distributed across multiple components
(e.g., MS Office Communicator, a VoIP/messenger app, uses
DNS, Kerberos, VoIP, Director, and many back-end servers

such as file and SQL). Extracting dependency information is
hard. Applications are heterogeneous, in terms of function-
ality and deployment. The knowledge of these dependencies
is distributed across layers and locations. Also, applications
continuously evolve, adding new services periodically and
reconfiguring/consolidating others. Currently, when there
is a service outage, human knowledge and understanding
of the system and its dependencies is used to troubleshoot
the problem. This is expensive, error-prone, and difficult to
keep up-to-date. This provides the motivation for automati-
cally discovering dependencies for network applications.

This work introduces a new technique to discover service
dependencies based on delay distributions, identifies the
limitations of dependency discovery based on temporal
analysis, and evaluates the technique on five dominant ap-
plications in the Microsoft enterprise. The goal is to design a
generic solution for various applications using nonintrusive
packet sniffing and TCP/IP header parsing. The proposed
system, called Orion, identifies the time delay between de-
pendent services, which reflects the typical processing and
network delay. Orion identifies service based on IP address,
port, and protocol. To make this scalable, ephemeral ports
are ignored. Another problem is that dependencies exist be-
tween application messages. To address this Orion analyzes
only TCP/IP headers and aggregates packets into flows. This
reduces bias introduced by long flows and reduces the num-
ber of pairs. Orion needs a fair number of samples to infer
dependencies. That can be overcome by aggregating across
clients, servers and ports.

Orion was deployed in an MS enterprise network. It focused
on extracting dependencies from MS Exchange, Office
Communicator, Source Depot (such as CVS), Distributed
File System, and intranet sites. Orion has no false nega-
tives and a smaller footprint than previous work. As we see
more flows, the false positives increase, but false negatives
decrease. True positives eventually converge to the correct
value. Orion’s drawback is that it requires training, isn’t ap-
plicable to P2P applications, and may miss certain kinds of
interactions (e.g., periodic ones). It may include false posi-
tives. Lessons learned are that temporal analysis is limited,
as it has no app-specific knowledge. Regardless, false posi-
tive can be reduced to a manageable level.

Why did filtering induce a small peak in the delay distri-
bution in the rightmost bins? Chen said that this was an
artifact of the filtering, but it doesn’t affect the result. It may
need more sophisticated FFT. Someone else pointed out
that in a datacenter, you may have services dependent on
services and so on, so a client action may go through lots
of servers indirectly, so is the resolution enough to identify
this without deep packet inspection? Chen said you could
definitely do deep packet inspection, but temporal analysis
can be made usable.

Finally, someone asked, given the prevalence of virtu-
alization technology, services could be migrated among

reportsAPRIL_09_final.indd 94 3/9/09 10:42:09 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 95

machines, so does the technique take that into account?
Service migration is a potential application of this informa-
tion, allowing dependent servers to migrate together.

work-in-progress reports (wips)

Summarized by Daniel Peek (dpeek@eecs.umich.edu)

n	 Multikernel: An Architecture for Scalable Multi-core Oper-
ating Systems
Simon Peter, Adrian Schupbach, Akhilesh Singhania, Andrew
Baumann, and Timothy Roscoe, ETH Zurich; Paul Barham and
Rebecca Isaacs, Microsoft Research, Cambridge

Locking and shared data limit scalability, so we should treat
multiple cores in a computer as if they are on a network and
use distributed systems ideas to get them to work together.
These include partitioning, replication, and agreement pro-
tocols. For more information see www.barrelfish.org.

n	 Transcendent Memory: Re-inventing Physical Memory
Management in a Virtualized Environment
Dan Magenheimer, Chris Mason, David McCracken, and Kurt
Hackel, Oracle Corporation

Efficient memory utilization in the presence of virtual
machines (VMs) was addressed. As an improvement on
ballooning techniques, idle memory held by VMs can be
reclaimed. VMs can access the resulting pool of memory
through paravirtualized APIs.

n	 Towards Less Downtime of Commodity Operating Systems:
Reboots with Virtualization Technology
Hiroshi Yamada and Kenji Kono, Keio University

This project explores the use of virtual machines to improve
the speed of reboots caused by patching. To patch a system,
first a VM clone of the currently running system is created.
The clone is patched and rebooted. Then, the clone replaces
the currently running system. This avoids disruption of the
currently running system until the clone system is patched
and rebooted.

n	 TeXen: Virtualization for HTM-aware Guest OSes
Christopher Rossbach, UT Austin

TeXen is the first virtual machine monitor to use hardware
transactional memory to virtualize HTM-aware OSes. This
combination has difficulties, such as preserving the guaran-
tees provided by HTM hardware, and opportunities, such
as moving the complexity of input and output out of the
kernel.

n	 SnowFlock: Cloning VMs in the Cloud
H. Andres Lagar-Cavilla, University of Toronto

VMs in cloud computing need to be improved. They can
take minutes to start up and require application-specific
state to be transferred to them. Instead, we should be able
to use a fork-like interface to quickly create many stateful
VMs.

n	 CPU Scheduling for Flexible Differentiated Services in
Cloud Computing
Gunho Leo, UC Berkeley; Byung-Gon Chun, Intel Research
Berkeley; Randy H. Katz, UC Berkeley

No summary available.

n	 Toward Differentiated Services for Data Centers
Tung Nguyen, Anthony Cutway, and Weisong Shi, Wayne State
University

Because application demands differ, developers should be
able to choose VMs with varying properties, such as the
number of replicas and network topology. Instead of of-
fering generic VMs, cloud computing providers can offer
several kinds of VMs, each with varying properties.

n	 TCP Incast Throughput Collapse in Internet Datacenters
Yanpei Chen, Junda Liu, Bin Dai, Rean Griffith, Randy H. Katz,
and Scott Shenker, University of California, Berkeley

In a situation with N clients connected to a server through
a switch, application throughput drops dramatically when
all of the clients attempt to communicate simultaneously.
This work explores the interaction of this communication
pattern and TCP and proposes changes to TCP to improve
this situation. Although simply adding more buffer space on
the switch would mitigate this problem, the underlying TCP
issues should really be solved by a fix to TCP.

n	 Gridmix: A Tool for Hadoop Performance Benchmarking
Runping Qi, Owen O’Malley, Chris Douglas, Eric Baldeschwieler,
Mac Yang, and Arun C. Murthy, Yahoo! Inc.

Gridmix is a set of Hadoop benchmarks that addresses the
needs of several audiences, including Hadoop developers,
application developers, and cluster builders.

n	 CrystalBall: Predicting and Preventing Inconsistencies in
Deployed Distributed Systems
Masyam Yabandeh, Niola Knezevic, Dejan Kostic, and Victor
Kuncak, EPFL

Many errors in distributed systems are a result of violations
of safety properties. To avoid these situations, members of
a distributed system can gather snapshots of neighboring
participants and do state space exploration to understand
the results of actions and steer execution away from incon-
sistent states.

n	 Coscheduling of I/O and Computation in Active Storage
Clusters
Saba Sehrish, Grant Mackey, and Jun Wang, University of Cen-
tral Florida

This work deals with Hadoop map tasks that work with
several data objects that may not be co-located. The authors
are making a scheduler for map tasks that takes into ac-
count the performance difference between local and remote
I/O operations.

reportsAPRIL_09_final.indd 95 3/9/09 10:42:09 AM

96 ; LO G I N : VO L . 3 4, N O. 2

n	 Honor: A Serializing On-Disk Writeback Buffer
Rick Spillane, Chaitanya Yalamanchili, Sachin Gaikwad, Manju-
nath Chinni, and Erez Zadok, Stony Brook University

Random writes are becoming a larger component of many
I/O workloads, but for performance reasons sequential
writes are preferable. This project redirects writes to a sepa-
rate disk, called the sorting disk, to sequentially log writes.
These logged writes can later be applied to a general file
system.

n	 Zeno: Eventually Consistent Byzantine Fault Tolerance
Atul Singh, MPI-SWS/Rice University; Pedro Fonseca, MPI-SWS;
Petr Kuznetsov, TU-Berlin/T-Labs; Rodrigo Rodrigues, MPI-
SWS; Petros Maniatis, Intel Research Berkeley

Storage backends generally favor availability over con-
sistency. This project proposes an eventually consistent
byzantine-fault-tolerance algorithm to improve consistency
in such storage systems.

n	 Scalable Fault Tolerance through Byzantine Locking
James Hendricks and Gregory R. Ganger, Carnegie Mellon
University; Michael K. Reiter, University of North Carolina at
Chapel Hill

To improve throughput and latency of byzantine-fault-tolerant
systems, this project allows clients to use a byzantine-fault-
tolerance algorithm to acquire a byzantine lock on a part of
the system state and specify the order of operations.

n	 Fault Tolerance for Free
Taylor L. Riche and Allen Clement, The University of Texas at
Austin

Multicore machines are now widely available; the difficulty
is in programming fault tolerance for these systems. This
project takes programs that are already constructed in a
language that maps applications to multicore machines and
reuses those interfaces to provide redundant execution for
fault tolerance.

n	 Writing Device Drivers Considered Harmful
Leonid Ryzhyk and Ihor Kuz, University of New South Wales

The information needed to make device drivers is in the
specification of the OS interface and the device interface.
This work automatically creates drivers by composing state
machines representing both specifications.

n	 CitySense: An Urban-Scale Open Wireless Sensor Testbed
Ian Rose, Matthew Tierney, Geoffrey Mainland, Rohan Murty,
and Matt Welsh, Harvard University

This project aims to build a 100-node city-wide sensor
network testbed aimed at public health studies, security,
and novel distributed applications. Researchers can get an
account to run experiments. See www.citysense.net for
further details.

n	 WiFi-Reports: Improving Wireless Network Selection with
Collaboration
Jeffrey Pang and Srinivasan Seshan, Carnegie Mellon University;
Ben Greenstein, Intel Research Seattle; Michael Kaminsky, Intel
Research Pittsburgh; Damon McCoy, University of Colorado

WiFi-Reports aggregates user-contributed information about
the quality of pay-to-access wireless access points. Chal-
lenges include privacy, fraud, and estimation of packet loss
regimes with distributed measurements.

n	 S3: Securing Sensitive Stuff
Sachin Katti and Andrey Ermolinskiy, University of California,
Berkeley; Martin Casado, Stanford University; Scott Shenker,
University of California, Berkeley; Hari Balakrishnan, Massa-
chusetts Institute of Technology

This project aims to prevent high-bandwidth data theft by
external attackers by enforcing policies at data egress points
such as the network and USB keys. A network of hypervi-
sors is used to track information flow at the word level. This
uses hardware support for virtualization and speculation for
performance.

n	 Communities as a First-class Abstraction for Information
Sharing
Alan Mislove, MPI-SWS/Rice University; James Stewart, Krishna
Gummadi, and Peter Druschel, MPI-SWS

A community is a densely connected subgraph of users in
an online service (e.g., Facebook, MySpace). These com-
munities can be leveraged to infer trust, control access to
communities, and discover more relevant search results.

file systems

Summarized by Vivek Lakshmanan (vivekl@cs.toronto.edu)

n	 SQCK: A Declarative File System Checker
Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau, University of Wiscon-
sin, Madison

Since filesystem corruption can lead to data loss, it is im-
portant to keep filesystems consistent at all times. None-
theless, filesystems continue to be corrupted. Although
techniques such as journaling have proved to be effective
against the most common cause for filesystem inconsis-
tency, system failure during metadata updates—it is not
sufficient to repair filesystem corruption. Offline filesystem
consistency checkers such as fsck are therefore seen as the
last line of defense against data loss. However, commodity
filesystem consistency checkers (e.g., e2fsck for ext2) can
themselves corrupt the file system. The authors suggest that
the implementation complexity of consistency checks—
normally written in C—is a major contributor to the limited
reliability of such tools. SQCK improves filesystem reliabil-
ity by providing a SQL-based declarative language to filesys-
tem developers to succinctly define consistency checks and
repairs. The result is the ability to encode the functionality
of 16 KLOC from e2fsck in 150 SQL queries.

reportsAPRIL_09_final.indd 96 3/9/09 10:42:09 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 97

Type-aware fault injection was used to expose a number of
flaws in e2fsck. For instance, corrupting an inode’s indirect
pointer to point to the superblock results in an unmount-
able filesystem when processed by e2fsck. In addition,
 e2fsck does not take advantage of all the information avail-
able to it during repairs, making consistent but incorrect
repairs. SQCK decouples specification of consistency checks
and repair policies from the interpretation of filesystem
structure, making it easy to specify intent. SQCK takes an
FS image and loads all of its metadata into database tables.
The specified SQL queries are run on these tables and any
modifications are then serialized back to the filesystem
image. Several examples of existing fsck checks and their
equivalent in SQCK to illustrate the improvement were
presented. When specifying filesystem repairs declaratively
in SQL is not possible, a library of SQL queries can be
composed together through bits of C code to produce the
desired effect.

The current prototype uses a MySQL database that holds
the tables in a RAM disk. The 150 queries representing
e2fsck were implemented in 1100 lines of SQL. It is also
easy to add new checks or repairs. Through the use of some
performance optimizations, the runtime overhead on their
current prototype was brought within 50% of the existing
e2fsck.

A questioner asked about the size of the RAM disk for
e2fsck. Gunawi explained that the database only concerns
itself with metadata. For a half-full 1-TB filesystem, roughly
500 MB of storage is required for metadata. Another at-
tendee wondered whether the comparison of the number of
lines of code between e2fsck and SQCK took the complexity
of the scanner-loader that interprets the filesystem image.
Gunawi said that e2fsck includes 14 KLOC of scanning
code, which was ignored in the comparison. When asked
whether reordering SQL statements can affect correctness,
the presenter said that an automated reordering of the SQL
statements has not been implemented, but he found that
ensuring the ordering manually was easier in SQCK. An
attendee wondered whether flushing back to disk could
introduce errors. Gunawi said that e2fsck itself does not
atomically repair the filesystem; thus a crash during e2fsck
could cause another inconsistent state. However, imple-
menting transactional updates in SQCK would be simpler,
although the current implementation does not have such
support. The final issue raised was whether it wouldn’t be
easier to specify what the filesystem should look like than
to specify checks. Gunawi explained that this was indeed
the original intent and led them to explore developing their
own declarative language. However, they found that SQL
was a close fit and already had traction in the technical
community.

n	 Transactional Flash
Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou,
Microsoft Research, Silicon Valley

Solid state disks (SSDs) are a significant departure from tra-
ditional magnetic disks. Currently, these disks have adopted
the existing thin interface with which existing magnetic
disks comply. Although this allows backward compatibility,
Vijayan states that this choice represents a lost opportunity
in proliferating new abstractions to truly take advantage of
this shift in storage technology. TxFlash is a new abstrac-
tion that allows SSDs to provide transactional semantics.
TxFlash proposes transactional support in SSDs, reduc-
ing file system complexity while providing performance
improvements. The existing logic in SSDs to handle write-
leveling and cleaning makes them particularly well suited
for transactional support.

A commit protocol is essential to provide transactional se-
mantics. The traditional log-based commit protocol is heav-
ily used for its relative simplicity: A separate log is main-
tained where data is written, following which an explicit
commit record is written. Once committed, write-back can
occur asynchronously. This adds a space overhead for the
explicit commit record, as well as a performance penalty
owing to the strict ordering required between the data and
commit records. These can have a significant impact on
workloads that require short and frequent transactions.
TxFlash’s new WriteAtomic and Abort abstractions could
eliminate these problems. The WriteAtomic abstraction can
inform the TxFlash device what pages need to be updated
atomically. The TxFlash device links pages committed
within the same transaction to form a closed loop, which
can then be written in parallel. A commit is said to be suc-
cessful if the updates cause a cycle. However, broken cycles
are not a sufficient condition for detecting aborted transac-
tions. To solve this ambiguity, the Simple Cyclic Commit
(SCC) protocol is proposed by the authors. It ensures that
if a version of a page exists, any previous version of the
same page on disk must be committed, and if a transaction
aborts, the affected pages and their references are erased
before a newer version is retried.

TxFlash was evaluated through a simulator as well as an
emulator implemented as a pseudo block device. The au-
thors also implemented a modified version of the ext3 file
system, TxExt3, which exercises the WriteAtomic interface.
This approach allowed the authors to strip out roughly 50%
of the ext3’s journaling implementation. Benchmarks sug-
gest that TxFlash improves performance by roughly 65%
for IO-bound workloads, particularly for those with small
transactions, while having a negligible impact on perfor-
mance for large transactions.

An audience member asked what deployment scenarios the
authors envisioned that would proliferate the use of ab-
stractions like those proposed in TxFlash. Vijayan said that
reduced complexity of the software stack makes TxFlash
particularly interesting for embedded devices and special-

reportsAPRIL_09_final.indd 97 3/9/09 10:42:09 AM

98 ; LO G I N : VO L . 3 4, N O. 2

ized operating systems such as those in game consoles. An-
other attendee asked whether there was a way to implement
transactions on existing interfaces. How about exposing a
fuller view of flash including metadata to software? Vijayan
believes that it is not sufficient to expose the metadata. One
would either have to export all the functionality to the soft-
ware or implement it in the disk. The latter seems preferable
to hide the complexity from software.

n	 Avoiding File System Micromanagement with Range Writes
Ashok Anand and Sayandeep Sen, University of Wisconsin,
Madison; Andrew Krioukov, University of California, Berkeley;
Florentina Popovici, Google; Aditya Akella, Andrea Arpaci-

Dusseau, Remzi Arpaci-Dusseau, and Suman Banerjee, Univer-
sity of Wisconsin, Madison

The modern disk interface is represented by a linear address
space; this aids usability but limits the opportunity for the
software stack to make performance improvements. File
systems try to improve disk I/O by ensuring spatial locality
of related blocks; however, the interface only allows them
a low-level command to write a block to a specific logical
address—a classic example of micromanagement. The infor-
mation gap between the file system and the disk results in
I/O operations incurring unnecessary positioning overhead.
This work proposes a new interface where the file system
can specify a range of candidate blocks to the disk and al-
lows it to choose the most appropriate block.

The interface allows the file system to specify a list of ranges
to the disk, which, in return, specifies the result of the
request as well as the chosen target block for the write re-
quest. One possible problem is that file systems might spec-
ify multiple write requests that have overlapping ranges. If
the disk selects a block from the overlapping range, then it
must make sure it masks it out of the range that it considers
for the subsequent write request. This additional metadata
must eventually be cleared. An ideal opportunity to do so is
during write barriers.

This change in interface would require the in-disk scheduler
to consider all options from among the list of ranges passed
to it by the OS but select only one. A simple modification is
the expand-and-cancel (ECS) approach. It expands a range
write into a number of write requests. Once a candidate
is selected, all other ranges are canceled from the request
queue. This, however, is computationally expensive, since
extensive queue reshuffling may be required. The authors
present an alternative called Hierarchical Range Scheduling
(HRS) in their paper.

Integration into existing file systems also poses a challenge.
For instance, file systems try to improve sequentiality of
writes. However, with range writes, related blocks could
be spread farther apart. Moreover, there are complications
because the file system is informed of the chosen destina-
tion later than normal. However, the presenter suggested
that these were not significant impediments to using range
writes, at least for a subset of block types. Simulation runs

of range writes on write-heavy workloads such as Post-
mark and untar showed that the performance improved by
16%–35%.

An audience member wondered whether it was sufficient
to create a faster write cache without modifying the filesys-
tem, disk, and interface to improve write performance. The
presenter replied that existing disks could benefit from their
approach. Moreover, cooperative storage between the cache
device and the backing store was also possible. Another au-
dience member commented that if a high-speed write cache
(e.g., a flash drive) was used, it is likely that the backing
disks would be slow and inexpensive; therefore cooperation
between the cache and backing disks through range writes
might not be possible. Lastly, a few people wondered how
range-writes would handle overwrites and if this approach
wouldn’t result in greater fragmentation. The presenter sug-
gested that read and rewrite performance might suffer from
fragmentation. He mentioned that they had not sufficiently
evaluated this and that it was an area for future work.

progr a mming l anguage techniques

Summarized by Vivek Lakshmanan (vivekl@cs.toronto.edu)

n	 Binary Translation Using Peephole Superoptimizers
Sorav Bansal and Alex Aiken, Stanford University

Sorav Bansal explained that binary translators are used
to run applications compiled for one ISA (Instruction
Set Architecture) on another. Major challenges in binary
translation are performance, ISA coverage, retargetability,
and compatibility with the OS. This work explores using
superoptimization to address the first three of these chal-
lenges associated with binary translators. Superoptimization
is an approach in which the code generator does a brute-
force search for optimal code. The peephole superoptimi-
zation approach presented here utilizes three modules: a
harvester, which extracts canonicalized target instruction
sequences from a set of training programs; an enumerator,
which enumerates all possible instructions up to a certain
length, which are checked for equivalence against the target
sequences produced by the harvester; and, finally, a rule
generator, which creates a mapping of target sequences to
their equivalent optimal translations.

Using peephole superoptimization for binary translation
complicates matters. First a register mapping is required
between the source and destination architectures before
equivalence can be verified. The register mapping may
need to be changed from one code point to another and
the choice of the register mapping can have a direct impact
on the quality of translation. The authors used dynamic
programming to attempt to reach a near-optimal solution.
Their mapping accounts for translations spanning multiple
instructions and simultaneously performs instruction selec-
tion and register mapping.

reportsAPRIL_09_final.indd 98 3/9/09 10:42:09 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 99

A static user-level translator from ELF 32-bit PPC/Linux to
ELF 32-bit x86/Linux binaries was implemented. The pro-
totype was evaluated using microbenchmarks and SPECINT
2000 against natively compiled equivalents, as well as other
binary translators such as Rosetta and QEMU. The mini-
mum performance of the prototype was 61% of native, but it
exceeded native on three microbenchmarks. It is up to 12%
faster than Rosetta and 1.3 to 4 times better than QEMU.
Note, however, that both Rosetta and QEMU are dynamic
translators, so the cost of translation is embedded in their
runtimes while their current prototype is static.

One attendee asked about the pattern-matching algorithm
used and whether optimizing this would improve perfor-
mance. The response was that the current implementa-
tion used a very simple approach and a pattern-matching
algorithm could help. There were questions raised about
whether the translator could work on multithreaded appli-
cations and whether the use of synchronization constructs
was tested. The presenter didn’t know of any reason why
their approach wouldn’t work for multithreaded applica-
tions. Correctness on synchronization constructs had not
been tested. Another asked how well their approach would
translate to a dynamic translator. Sorav explained that the
choice of a static translator was for simplicity. However,
he wasn’t aware of any reason why the approach couldn’t
work in a dynamic setting. The final query concerned how
well the equivalence test handled aliased instructions. Soral
claimed that the Boolean filter used by the satisfiability
solver was resilient to aliasing. Details of this can be seen in
their previous publication in ASPLOS.

n	 R2: An Application-Level Kernel for Record and Replay
Zhenyu Guo, Microsoft Research Asia; Xi Wang, Tsinghua Uni-
versity; Jian Tang and Xuezheng Liu, Microsoft Research Asia;
Zhilei Xu, Tsinghua University; Ming Wu, Microsoft Research
Asia; M. Frans Kaashoek, MIT CSAIL; Zheng Zhang, Microsoft
Research Asia

Zhenyu Guo described R2 as a record and replay tool for
debugging. Some bugs are hard to reproduce by simply
reexecuting the program, whereas others make it hard to
do comprehensive analysis without significant perturbation
to the system at runtime. Previous approaches have used
virtual machines to replay the application and the OS, but
this is difficult to deploy. Other attempts that use a library-
based approach do not support multithreading or asynchro-
nous I/O. Instead, R2 allows developers to determine the
interface at which record and replay will occur and tries to
address these shortcomings.

Selecting a replayable set of functions with the goal of
capturing nondeterminism requires the developer to make
a cut through the call graph. Calls to functions above the
cut are replayed but functions below the cut are not. R2
also establishes an additional isolation environment: The
items above the call graph cut are termed to be in replay
space, whereas the R2 library and the rest of the system are
in system space. Since it is possible to choose cuts poorly,

the authors propose two rules developers can follow: Rule
1 (isolation)—all instances of unrecorded reads and writes
to a variable should be either all below or all above the
interface; Rule 2 (nondeterminism)—any nondeterminism
should be below the interposed interface.

A major challenge is to keep a deterministic memory foot-
print between record and replay. It is important to get the
same memory addresses in both record and replay to ensure
that different control flow isn’t followed. R2 uses separate
memory allocators for system and replay space. Allocation
in replay space will get similar addresses, whereas alloca-
tions in system space are hidden from the application and
don’t need to get a deterministic address. Another issue is
ensuring deterministic execution order in multithreaded
applications. It is important to make sure that the ordering
of execution of multithreaded applications is not changed
between the original and replayed runs. To do this, R2 cap-
tures happens-before relationships through causality events
that have designated annotations.

There are three categories of annotations in R2: data
transfer, execution order, and optimization. The authors
have annotated large parts of the Win32 API, in addition
to all of MPI and SQLite APIs. R2 has been used to debug
several large applications with moderate annotation effort.
A recording overhead of 9% was measured on ApacheBench
when run on a standard Apache Web server configuration.

One audience member asked whether there were plans for
any static checking or automatic verification for choosing
the interface cut to prevent developers from making mis-
takes. The presenter stated that cutting at library bound-
aries was a good rule of thumb. However, work on using
compiler techniques to select this boundary is planned.
Another attendee wondered whether the tool could be used
in production for more complex workloads, since the over-
head for microbenchmarks is helped by caching. The pre-
senter claimed that they saw 10%–20% overhead for larger
benchmarks. He also said that one problem with larger
applications is that the log may become unmanageable; as
a result, a form of checkpointing is being considered. A
query regarding R2’s ability to cope with data races was
posed. The presenter admitted that R2 would not be able to
handle such issues currently. Finally, an audience member
asked whether developers had to reannotate new versions of
libraries. The presenter said that API-level annotation was
sufficient.

n	 KLEE: Unassisted and Automatic Generation of High-
 Coverage Tests for Complex Systems Programs
Cristian Cadar, Daniel Dunbar, and Dawson Engler, Stanford
University

Winner of Jay Lepreau Award for one Best Paper

Cristian Cadar began by saying that systems program-
ming is notorious for its complex dependencies, convoluted
control flow, and liberal unsafe pointer operations. The
ever-present threat of malicious users does not make mat-

reportsAPRIL_09_final.indd 99 3/9/09 10:42:10 AM

100 ; LO G I N : VO L . 3 4, N O. 2

ters easier. Testing such complex code is not trivial. Certain
bugs are only tripped in obscure edge conditions, which
may be missed even when comprehensive test cases are
available. KLEE is designed to check such complex systems
code. KLEE is a fully automatic symbolic execution tool that
explores a large number of paths in a program and auto-
matically generates test cases.

KLEE runs C programs on unconstrained symbolic input.
As the program runs, constraints on the symbolic values
are generated; these are then fed to a constraint solver that
generates test cases. Though this seems conceptually simple,
there are a few major challenges KLEE overcomes. First,
most programs have an exponential number of execution
paths they may take. As a result, smart search heuristics
are essential. KLEE uses either random path selection or
coverage-optimized search at any given point (chosen in
round-robin fashion): The former prevents starvation of cer-
tain paths, whereas the latter tries to choose the path closest
to an uncovered instruction. The second challenge relates
to constraint solving. Since KLEE needs to invoke a con-
straint solver at every branch, the costs can easily become
prohibitive. As a result, KLEE tries to eliminate irrelevant
constraints before sending them to the constraint solver.
In addition, results from the constraint solver for previous
branches are cached and reused where possible. Finally,
when a program being executed by KLEE reads from the
environment (filesystem, network, etc.), all possible values
for the operation should be ideally available for KLEE to
explore. Similarly, when the program writes to the environ-
ment, subsequent reads should reflect that write. To handle
this in the case of symbolic input to a system call, KLEE
provides the ability to redirect environmental accesses to
models that generate the necessary constraints based on the
semantics of the system call invoked.

KLEE was run on each of the 89 standalone applications,
combining to form Coreutils for 1 hour. The test cases
generated were then run on the unmodified tools under a
replay driver that recreates the environment for the tests to
proceed. Overall, KLEE’s tests produced high line coverage,
with an overall average of 84%. In comparison, manual test-
ing achieves an average of 68% coverage. KLEE was able to
find 10 unique crash bugs in Coreutils, each accompanied
by commands that could reproduce crashes. It has been run
on hundreds of applications as well as Minix and HiStar,
and it has found 56 serious bugs in total.

An audience member wondered how KLEE would work
against large systems such as database servers. The pre-
senter replied that their previous work used symbolic file
systems. Something similar could be done for databases.
Another question involved the location of the bottleneck for
KLEE when scaling the complexity of the checked system.
The authors believe the number of states is a major prob-
lem. KLEE uses COW to minimize memory footprint. An
audience member noticed that bullet-proof code could be a
problem (last-minute checks in the code that return incor-

rect values but don’t let the program crash). The presenter
believed that the assert framework could be of help in such
situations. in response to a question about the path lengths
for some of the 56 bugs found, Cristian explained that
the depth varied, but in some cases hundreds of branches
needed to be hit. Another audience member asked whether
they had attempted to use some of the tools from the related
work to see if they could catch any of the bugs as well. Cris-
tian replied that since many of the tools were not available
or not comparable to their approach, they did not perform
a comparison. The last question was regarding the name
KLEE and what it meant. Cristian credited Daniel Dunbar
with the name and believed that perhaps it was a Dutch
word, a theory swiftly put to rest by a Dutch member of the
audience.

securit y

Summarized by Periklis Akritidis (pa280@cl.cam.ac.uk)

n	 Hardware Enforcement of Application Security Policies
Using Tagged Memory
Nickolai Zeldovich, Massachusetts Institute of Technology; Hari
Kannan, Michael Dalton, and Christos Kozyrakis, Stanford
University

Hari Kannan started by observing that traditional operating
systems’ lack of good security abstractions forces applica-
tions to build and manage their own security mechanisms.
This bloats the TCB and makes it hard to eliminate bugs.
But recent work has shown that application policies can
be expressed in terms of information flow restrictions and
enforced in an OS kernel, and this work explored how
hardware support can further facilitate this.

Unfortunately, current hardware mechanisms are too
coarse-grained to protect individual kernel data structure
fields, so Hari proposed using tagged memory, where each
physical memory word maps to a tag and tags map to access
permissions. A trusted monitor below the OS is responsible
for mapping labels expressing application security policies
to tags that are enforced by the hardware, so less software
needs to be trusted and some level of security is maintained
even with a compromised OS.

Hari presented LoStar, a prototype system based on HiStar
OS and a tagged memory hardware architecture called Loki.
He discussed the operation and implementation of LoStar,
including optimizations such as a multi-granular tag storage
scheme to reduce memory overhead and a permission cache
within the processor. The prototype had a 19% logic over-
head (which would be much less for a modern CPU), had
negligible performance overhead, and reduced the (already
small) TCB of HiStar by a factor of 2. Hari concluded his
presentation with pointers to the Loki port to a Xilinx XUP
that costs $300 for academics and $1500 for industry, add-
ing that the full RTL and the ported HiStar distribution are
available.

reportsAPRIL_09_final.indd 100 3/9/09 10:42:10 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 101

A member of the audience asked Hari to contrast Loki with
Mondrian memory protection, which also offers fine granu-
larity. In particular, could LoStar be implemented on top of
Mondrian memory protection or is there some fundamental
functional difference? Hari acknowledged that Loki builds
on Mondrian memory protection but argued that Loki
provides more functionality and that the whole system is a
carefully designed ecosystem. LoStar extends application se-
curity policies all the way to the hardware, and Loki keeps
the MMU outside the TCB. Mondrian memory protection,
in contrast, only extends traditional access control to offer
word granularity and, furthermore, depends on the correct-
ness of the MMU. Finally, in response to another question,
he clarified that a dedicated garbage collection domain
described in his presentation does not have unconditional
access to kernel objects.

n	 Device Driver Safety through a Reference Validation
Mechanism
Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gün Sirer,
and Fred B. Schneider, Cornell University

Patrick Reynolds argued that device drivers should not be
trusted, because they have a high fault rate and are written
by third parties. These issues, in combination with running
in the kernel and having hardware privileges, can lead to
Trojan horses, insider attacks, and faults that take down
the system. He said that Cornell University is building a
new operating system, the Nexus, that is based on a trusted
microkernel that leverages trusted hardware to enable trust-
worthy applications. Nexus aims for a small and auditable
TCB, but device drivers presented a great challenge because
they are so untrustworthy and keep changing.

Nexus moves drivers to user space as a first step to prevent
direct attacks on the kernel, but devices can also compro-
mise the kernel integrity in many ways, such as overwhelm-
ing the kernel with interrupts or using direct memory
access. Nexus addresses this by placing a filter between the
driver and the device. This filter is written once for each
device, is small to audit, and, given proper specifications,
can defend against broader attacks.

Direct hardware operations in drivers ported to Nexus are
replaced with Nexus system calls and the sequence of op-
erations is constrained using a specification language built
around state machines. Illegal transitions kill the driver and
invoke a trusted reset routine that is part of the specifica-
tion. Several mechanisms, including IO ports, MMIO, inter-
rupts, and DMA, are captured in the specification language.
Finally, drivers are not trusted with disabling interrupts.
Instead the driver can defer its own interrupts and pause
execution of its own threads. This was sufficient in prac-
tice and has the advantage of lowering interrupt latency for
other unrelated drivers.

Five drivers were ported for evaluating the system. The
metrics used for the evaluation were complexity-measured
by driver and specification size and performance-measured

by throughput and latency and by robustness to random
and targeted attacks. About 1% of the lines of code changed
in each driver, and the specifications were between 100
and 150 lines of code—an order of magnitude smaller than
the drivers themselves. The network throughput at 1 Gbps
for user-space drivers degraded slightly for sending small
packets, but no penalty was measured for sending large
packets or receiving packets. The interrupt latency degraded
significantly (from 5 to 50 microseconds), but that did not
affect usability in day-to-day use. The CPU overhead for
a benchmark streaming video at 1 Mbps increased from
1% to 2%. Finally, the resistance to attacks was evaluated
by probabilistically modifying driver operations as well as
using a malicious driver suite. Having the drivers in user
space only caught direct reads/writes, but the security poli-
cies blocked all further attacks. Patrick concluded that the
system is efficient, general, and robust against attacks.

A member of the audience objected to the use of throughput
as a metric for the evaluation and highlighted that CPU load
was roughly doubled. Another member wondered how this
system would affect more demanding devices using Firewire
or USB2.0. Patrick replied that latency and correctness were
not affected for USB1.1 and USB 2.0 high-speed drives,
although with USB 2.0 the CPU overhead is significant,
as USB 2.0 drivers require many context switches. Patrick
specifically clarified that they have not observed dropped
frames with their USB disk experiments, but they have not
tried Firewire. Somebody asked who would write the speci-
fications. Patrick suggested that the device driver manufac-
turers or a trusted third party could write these, but it is an
orthogonal problem. Asked whether performance was the
reason for having the reference monitor inside the kernel,
Patrick argued that it has to be part of the TCB, so it might
as well be in the kernel, but he believes that the overhead
of having it in user space would be small. Someone else
observed that the specification can be extracted either from
the driver’s normal behavior or from the device’s specifica-
tion. Patrick said that they looked at both and considered
it a shortcut to allow only observed behavior, but he agreed
that for implementing a security policy normal behavior is
more interesting than the device’s full capabilities.

People were intrigued by the possibility of permanent dam-
age to the hardware and solicited realistic examples. Patrick
described a driver asking a device to overclock itself and
turn off its fans or overwrite flash memory, rendering the
device unbootable. Having observed that a generic USB
policy was used for USB drivers, somebody asked for a com-
parison with the Windows driver model that also allows
user-space drivers. Patrick acknowledged that they are very
similar but argued that Windows allows only user-space de-
vices that do not perform direct IO, whereas Nexus extends
this to all kinds of devices. Asked whether an IOMMU
would be useful for doing lazy trapping and batching things
up, much as shadow page tables are used, Patrick observed

reportsAPRIL_09_final.indd 101 3/9/09 10:42:10 AM

102 ; LO G I N : VO L . 3 4, N O. 2

that many memory accesses are individual commands that
cannot be batched like that.

The final question was about similar description languages
such as Devil IDL and Sing\#, the Singularity driver con-
straint language. Patrick said that they drew inspiration
from the languages but did not reuse them or reuse any of
the specifications that were written for them. He further
argued that Devil was intended for the construction of
drivers rather than constraining them, and helater added
that Sing\# applies only to properties that can be checked
statically.

n	 Digging for Data Structures
Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King,
University of Illinois at Urbana-Champaign

Anthony Cozzie summarized the state of the art in the anti-
virus industry and the challenges faced by signature check-
ers against code obfuscation. He argued that all programs
use data structures and targeting these could defeat code
obfuscation. To this end, he presented Laika, a system that
can detect programs based on their data structures.

Laika works by classifying words in memory into types
such as heap pointers, zero, integers, or ASCII strings,
and from these it tries to find objects in memory and their
classes. Importantly, in addition to field types, it can clas-
sify objects by considering what other objects their fields
point to.

Anthony presented an evaluation of Laika’s accuracy using
seven test programs that averaged 4000 objects and 50
classes: Laika detected object classes with 75%–85% accu-
racy. It was straightforward to turn Laika into an anti-virus
program by checking how many structures a tested program
shares with a known malware sample. They tried this with
three botnets, which Laika classified with 100% accuracy,
whereas ClamAV, an anti-virus program, had about 80%
accuracy. Anthony observed that virus detection is an arms
race, and he discussed some possible attacks on the sys-
tem and countermeasures. Obfuscating reads and writes
would not help the virus, as it would result in no visible
data structures, which is suspicious on its own. A compiler
attack could shuffle the order of fields, but that would pre-
serve sufficient information to recover the classes. A mim-
icry attack could use structures from a legitimate program,
such as Firefox, but a successor to Laika could try to detect
unused fields, or it could detect the mismatch between the
program (not Firefox) and its data structures (Firefox). The
approach does not work for very simple programs, but mal-
ware with some functionality would expose some structure.
Finally, being a dynamic approach, it is computationally
expensive.

Stefan Savage highlighted the challenges of getting a con-
sistent memory snapshot, with malware being careful not
to expose completely at once, or waiting until a particular
time of day. Anthony said that they just run the malware for
five minutes and that was sufficient, but he acknowledged

the problem. Another attendee observed that the attacker
code might try to detect whether it is in a sandbox or a
VM, to which Anthony replied that the approach relies on a
working sandbox. Another point raised involved the whole
class of nonmalicious applications such as DRM that use
obfuscation. Anthony argued that although they could not
be classified by Laika, they could be signed, thus solving
this problem.

Another attendee asked whether they have tried running
Laika on programs written in other languages or using
more exotic compilers. Anthony said that the results would
depend on the language. For example, it would not work
with LISP, where everything is a list, but with some other
high-level languages such as Java, the classes are readily
available. Somebody observed that many programs share
data structures because of libraries and runtime environ-
ments, such as the C library and the JVM, and wondered
how the technique would deal with such programs. An-
thony argued that the approach can still separate such
programs. Somebody proposed to break Laika by encrypt-
ing data structures on the heap and decrypting them on
the stack before use, but Anthony classified this as another
case of an encrypted memory attack where no structure
would be visible and used a graphic analogy of cutting one’s
fingers to avoid matching a fingerprint scan, reiterating that
lack of structure is suspicious by itself. Finally, somebody
was concerned with having to run Laika for five minutes
and wondered whether matching against several candidate
viruses would take five minutes per virus signature, but
Anthony clarified that one run of the scanned program and
a snapshot are sufficient for checking multiple signatures.

dealing with concurrenc y bugs

Summarized by Chris Frost (frost@cs.ucla.edu)

n	 Finding and Reproducing Heisenbugs in Concurrent Programs
Madanlal Musuvathi, Shaz Qadeer, and Thomas Ball, Microsoft
Research; Gerard Basler, ETH Zurich; Piramanayagam Arumuga
Nainar, University of Wisconsin, Madison; Iulian Neamtiu, Uni-
versity of California, Riverside

Madanlal Musuvathi presented their work on making it
easier to find concurrency bugs. Concurrent applications
are infamously difficult to debug: Executions are highly
nondeterministic, rare thread interleavings can trigger bugs,
and slight program changes can radically change execution
interleavings. For these reasons, concurrency bugs can cost
significant developer time to find and reproduce. Madanlal
et al.’s user-mode scheduler, CHESS, controls and explores
nondeterminism to trigger concurrency bug magnitudes
more quickly than through stress testing.

Madanlal showed the utility of CHESS through a well-
received concurrency bug demo. He first ran a bank account
application test suite hundreds of times; no execution trig-
gered a concurrency bug. Importantly, over the hundreds
of runs only two unique execution paths happened to be

reportsAPRIL_09_final.indd 102 3/9/09 10:42:10 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 103

explored. He then ran the test suite in CHESS; the bug was
triggered on the fourth run. Each run in CHESS explored a
unique execution path.

The high-level goals of CHESS are to find only real errors
and to allow all errors to be found. This latter suite goal is
difficult because of the state explosion that results from all
the sources of nondeterminism; practically, Madanlal et al.
wanted CHESS to be able to beat stress checking.

CHESS is a user-mode scheduler; it explores execution
paths in a test (1) to trigger test suite asserts and (2) for
CHESS to detect deadlocks and livelocks. CHESS inserts
scheduler calls at potential semantic preemption points.
Several techniques are used to reduce the number of these
scheduler calls to help minimize state explosion; some of
these techniques can be adjusted to trade off speed with
coverage. CHESS has found bugs in Microsoft’s Concur-
rency Coordination Runtime, IE, and Windows Explorer,
among others. It is available for Win32 and .NET now and
will be available later for the NT kernel. They also plan to
ship it as an add-on with Visual Studio. Finally, Madanlal
made a plea for abstraction designers: Specify and minimize
exposed nondeterminism.

One person asked whether CHESS controls random number
generators and time. Madanlal responded that CHESS
guarantees reproducibility for random number generation,
timeouts, and the time of day, but it will not find errors that
only show up on particular return values (i.e., it captures
but does not explore the nondeterminism). CHESS leaves
file and network inputs to the test suite.

n	 Gadara: Dynamic Deadlock Avoidance for Multithreaded
Programs
Yin Wang, University of Michigan and Hewlett-Packard Labora-
tories; Terence Kelly, Hewlett-Packard Laboratories; Manjunath
Kudlur, Stéphane Lafortune, and Scott Mahlke, University of
Michigan

Yin Wang presented Gadara, a principled system that prov-
ably ensures that a multithreaded C program is deadlock-
free, while requiring only a modest runtime overhead (e.g.,
11% for OpenLDAP). Gadara avoids circular-mutex-wait
deadlocks by postponing lock acquisitions, using a program
binary instrumented with control logic automatically de-
rived from the source program using discrete control theory.
Gadara transforms a C program into a control flow graph,
then into a Petri net (a discrete control theory model used to
describe lock availability, lock operations, basic blocks, and
threads), from which Gadara derives control logic that it
adds to the original source. The control logic observes and
controls thread interactions. Most lock operation sites can
be ruled safe and thus need not be instrumented.

Yin et al. evaluated Gadara for the OpenLDAP server, BIND,
and a PUBSUB benchmark. Gadara can require source func-
tion and lock annotations; the OpenLDAP server was mostly
annotated in one hour (with 28 of 1,800 functions being
ambiguous). Gadara found four possible sources of dead-

lock: two new, one known, and one false positive (result-
ing from Gadara not using data flow analysis). The known
bug was fixed in the OpenLDAP repository, but it was later
reintroduced, and then fixed again through a code redesign.
With Gadara’s runtime instrumentation no fix is neces-
sary, avoiding this frequent deadlock bug fix difficulty. This
makes Gadara useful for rapid development, corner cases in
mature code, and end-user bug fixes.

One person asked why one would use Gadara’s instrumen-
tation instead of fixing the bug. Yin responded that devel-
opers are not always available, that fixes can be difficult to
design, and that Gadara can generate false positives, neces-
sitating code study to determine whether the bug is real.
Another person asked why adding a simple lock around the
instrumentation points is insufficient; this solution works
in some cases, but not all (e.g., the five dining philosophers
problem). In response to why the PUBSUB experiment used
only two cores. Yin answered that they found, in the BIND
experiments, that 2- and 16-core experiments had similar
overheads. For both PUBSUB and BIND, only workloads
that saturated the CPU showed any performance overhead.

n	 Deadlock Immunity: Enabling Systems to Defend Against
Deadlocks
Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George
Candea, École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland

George Candea presented the Dimmunix deadlock avoid-
ance system. When a system deadlocks, Dimmunix remem-
bers the control flow that has brought the program into the
current state and, through lock operation instrumentation,
prevents the program from reentering that state in future
program runs. George had fun describing their work in
terms of antibodies (Dimmunix signatures) for pathogens
(deadlock bugs): You get sick from the first infection, but
you are immune from then on.

When a program deadlocks, Dimmunix saves the values for
each frame in the deadlocked threads’ call stacks. After the
program is then restarted, if a lock operation is performed
with the same callstacks Dimmunix changes the lock opera-
tion ordering to avoid the deadlock. Dimmunix is imple-
mented for C/C++, as a modified POSIX thread library, and
for Java, by rewriting Java bytecode. The talk and the paper
detail the performance challenges they faced and overcame.
Dimmunix avoids inducing thread starvation when reorder-
ing a program’s lock operations using Dimmunix’s deadlock
avoidance algorithm with yield edges.

George sees Dimmunix as complementary to existing
deadlock reduction techniques. For example, although a
browser may have no deadlocks itself, a third-party plug-in
may introduce deadlocks. An end user can use Dimmunix
to avoid these, without source code access and without
understanding the program’s internals. George stated that
Dimmunix has four important properties: (1) Someone must
experience the first deadlock occurrence; (2) Dimmunix

reportsAPRIL_09_final.indd 103 3/9/09 10:42:10 AM

104 ; LO G I N : VO L . 3 4, N O. 2

cannot affect deadlock-free programs; (3) Dimmunix cannot
induce nontiming execution differences; and (4) Dimmunix
must be aware of all synchronization mechanisms.

They evaluated Dimmunix by reproducing user-reported
deadlock bugs for a number of large systems, including
MySQL, SQLite, and Limewire, among others. For each
reproducible deadlock they were able to induce deadlock,
when not using Dimmunix, one hundred times in a row.
With Dimmunix, each bug was triggered only the first of
the hundred runs.

One person asked about extending Dimmunix to provide
the stack traces to the programmer for debugging; George
said one of his students is working on this for very large
programs. Another asked what happens when Dimmunix
misbehaves, for example, preventing a valid path from ex-
ecuting. George responded that Dimmunix protects against
this using an upper bound on yielding. Another person
asked whether Dimmunix could be generalized to segmen-
tation faults or other symptoms; George said that another
student is looking at applying their techniques to resource
leaks.

poster session

Part 1 summarized by Kyle Spaans
(kspaans@student.math.uwaterloo.ca)

n	 Automatic Storage Management for Personal Devices with
PodBase
Ansley Post, Rice University/MPI-SWS; Petr Kuznetsov, Juan
Navarro, and Peter Druschel, MPI-SWS

Users don’t like having to do work. PodBase is a system that
tries to avoid involving the users in any way with their files.
It is a system for synchronizing and replicating user data on
personal devices, under the covers, for durability and avail-
ability. For example, it can use the freely available storage
on the various devices in a user’s household to back up files
in case the original is lost.

n	 Entropy: A Consolidation Manager for Clusters
Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, and Gilles
Muller, Ecole des Mines de Nantes; Julia Lawall, DIKU

Hermenier described Entropy, a system to optimize con-
figuration in cluster environments for VMs. It packs and
migrates VMs to reduce overhead and make best use of
resources. For example, it can reduce the number of migra-
tions needed, take advantage of parallelism, and minimize
the number of nodes required.

n	 Writing Device Drivers Considered Harmful
Leonid Ryzhyk and Ihor Kuz, NICTA, University of New South
Wales

Ryshyk said that device drivers are hard to write correctly
and can compromise an entire system. This research aims to
automate the process by taking a formal device driver speci-

fication along with the OS API and composing them into a
driver program. The only effort necessary is to translate the
device specification into a formalized finite-state machine.
Ideally, this could be generated from the VHDL code of the
device itself. To avoid state explosion in more complex driv-
ers, symbolic interpretation is used.

n	 NOVA OS Virtualization Architecture
Udo Steinberg and Bernhard Kauer, TU Dresden

A very small microhypervisor that can run legacy OSes,
NOVA, focuses on being the small trusted base (~30 KLOC)
that runs in privileged mode on the hardware. It runs the
maximum possible number of services in user space, monitors
included, so that compromises cannot spread among VMs.

n	 CrystalBall: Predicting and Preventing Inconsistencies in
Deployed Distributed Systems
Maysam Yabandeh, Nikola Knezevic, Dejan Kostic , and Viktor
Kuncak, EPFL

CrystalBall makes it easier to find errors in distributed sys-
tems and increases their resilience. It will predict inconsis-
tencies in live systems and then steer execution to avoid the
predicted errors. It’s a form of model checking and allows
live distributed debugging with low overhead.

n	 Operating System Transactions
Donald E. Porter, Indrajit Roy, and Emmett Witchel, The Univer-
sity of Texas at Austin

Secure sandboxing is hard. Sandboxed systems can still be
vulnerable to timing attacks. OST’s approach is to atomicize
and isolate access to system calls using a simple API to give
more transactional behavior. It is implemented with lazy
version management and eager conflict resolution.

n	 The Network Early Warning System: Crowd Sourcing Net-
work Anomaly Detection
David Choffnes and Fabian E. Bustamante, Northwestern Uni-
versity

NEWS uses distributed clients to detect anomalies in
network performance and can be useful as another tool in
a network administrator’s toolbox. As usual, it is a tradeoff
between coverage and overhead, but network overhead is
kept minimal by taking advantage of the fact that most P2P
applications already implicitly monitor the network anyway.
NEWS is implemented as a Vuze (BitTorrent client) plug-in,
with a central reporting Web interface useful for adminis-
trators.

Part 2 summarized by Kathryn McBride
(katymcbride@yahoo.com)

n	 File System Virtual Appliances: Third-party File System
Implementations without the Pain
Michael Abd-El-Malek, Matthew Wachs, James Cipar, Elie Kre-
vat, and Gregory R. Ganger, Carnegie Mellon University; Garth
A. Gibson, Carnegie Mellon University/Panasas, Inc.; Michael K.
Reiterz, University of North Carolina at Chapel Hill

No summary available.

reportsAPRIL_09_final.indd 104 3/9/09 10:42:10 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 105

n	 The Barrelfish Multikernel Operating System
Andrew Baumanny, Simon Peter, Jan Rellermeyer, Adrian Schüp-
bach, Akhilesh Singhania, and Timothy Roscoe, ETH Zurich;
Paul Barham and Rebecca Isaacs, Microsoft Research, Cambridge

Barrelfish is a new operating system that is being built from
scratch. Barrelfish uses a rapidly growing number of cores,
which leads to a scalability challenge. Barrelfish gives the
user the ability to manage and exploit heterogeneous hard-
ware and run a dynamic set of general-purpose applications
all at the same time. The researchers at ETH Zurich and
Microsoft Research, Cambridge, are exploring how to struc-
ture an operating system for future multi- and many-core
systems with Barrelfish.

n	 Dumbo: Realistically Simulating MapReduce for Perfor-
mance Analysis
Guanying Wang and Ali R. Butt, Virginia Tech; Prashant Pandey
and Karan Gupta, IBM Almaden Research

Dumbo provides a good model for capturing complex
MapReduce interactions and predicts the performance of
test clusters. Dumbo aids in designing emerging clusters
for supporting MapReduce. Dumbo takes metadata, job
descriptions, and cluster topology to the ns-2 server, where
it is traced.

n	 Aggressive Server Consolidation through Pageable Virtual
Machines
Anton Burtsev, Mike Hibler, and Jay Lepreau, University of Utah

No summary available.

n	 Scalable Fault Tolerance through Byzantine Locking
James Hendricks and Gregory R. Ganger, Carnegie Mellon
University; Michael K. Reiter, University of North Carolina at
Chapel Hill

No summary available.

n	 Eyo: An Application-Oriented Personal Data Synchronizer
Jacob Strauss and Chris Lesniewski-Laas, MIT; Bryan Ford,
MPI-SWS; Robert Morris and Frans Kaashoek, MIT

Eyo was developed out of the interference challenges on
handheld devices. All types of media are produced and
consumed everywhere on laptops, phones, and MP3 players.
Eyo is used to transfer files seamlessly to the right place at
all times. Central servers can limit usability. There is cur-
rently no offline client synchronization. Partial replicas have
vast differences in storage capacity (e.g., a phone versus a
laptop). There are also bandwidth limitations. Eyo is an
attempt to synchronize personal data using an application-
orientated approach.

n	 ProtoGENI: A Network for Next-Generation Internet
Research
Robert Ricci, Jay Lepreau, Leigh Stoller, Mike Hibler, and David
Johnson, University of Utah

No summary available.

Part 3 summarized by John McCullough
(jmccullo@cs.ucsd.edu)

n	 NetQuery: A Universal Channel for Reasoning about Net-
work Properties
Alan Shieh, Oliver Kennedy, and Emin Gün Sirer, Cornell Uni-
versity

Information about networks and their endpoints is scarce. If
a service wanted to restrict access to protected networks or
if a client wanted to connect to an ISP with better provision-
ing or DDoS protection, they would be hard pressed to find
the information on their own. NetQuery uses tuplespaces
to store such useful information. The tuplespace abstraction
provides for filtering and modification triggers, enabling the
rapid dissemination of reputable network information.

n	 Trapper Keeper: Using Virtualization to Add Type-
Awareness to File Systems
Daniel Peek and Jason Flinn, University of Michigan

Collecting file metadata requires intimate knowledge of
the file formats. It is straightforward to read metadata from
common file formats with well-known parsers. However,
there are thousands of obscure file formats that don’t have
readily accessible parsers; it is impractical to program pars-
ers for all of them. Trapper Keeper leverages the parsers in
applications by loading the files and extracting the informa-
tion from the accessibility metadata in the GUI. Manipu-
lating a GUI for each individual file in the file system is
problematic. However, using virtualization, the application
can be trapped and snapshotted when it is about to open a
file. Thus, the snapshot can be invoked with a file of inter-
est. Trapper Keeper can then use this technique to extract
metadata from all of the files in your file system.

n	 Gridmix: A Tool for Hadoop Performance Benchmarking
Runping Qi, Owen O’Malley, Chris Douglas, Eric Baldeschwieler,
Mac Yang, and Arun C. Murthy, Yahoo! Inc.

As Hadoop is developed, it is important to have a set of ap-
plications that exercise the code base. Gridmix is an open
set of applications useful for benchmarking, performance
engineering, regression testing, cluster validation, and con-
figuration evaluation. The current application set has been
critical in the recent performance enhancements in Hadoop.
Gridmix is publicly available in the Hadoop source reposi-
tory.

n	 Performance Evaluation of an Updatable Authenticated
Dictionary for P2P
Arthur Walton and Eric Freudenthal, University of Texas at El
Paso

An authenticated dictionary provides key-value pairs that
are certified by an authority. Such a dictionary could be
used to maintain blacklists for DHT membership on end-
user machines. Fern is a scalable dictionary built on Chard
that uses a tree to hierarchically distribute the potentially
rapidly changing data such that the data is cacheable. The
values can be validated by tracing a path to the root author-

reportsAPRIL_09_final.indd 105 3/9/09 10:42:11 AM

106 ; LO G I N : VO L . 3 4, N O. 2

ity. Because the validation step has latency proportional to
the height of the tree, it is desirable to keep the tree as short
as possible. This work explores how the branching factor
of the tree can reduce the height and how per-node load is
affected as a result.

n	 Miser: A Workload Decomposition Based Disk Scheduler
Lanyue Lu and Peter Varman, Rice University

Ensuring high-level quality of service for all disk requests
necessitates a significant degree of overprovisioning. How-
ever, the portion of the requests that necessitate this over-
provisioning can be less than 1% of a financial transaction
workload. Relaxing the low-latency QoS requirements for
a fraction of the requests greatly reduces the provision-
ing requirements. The differentiated service is provided by
multiple queues. The priority requests are serviced from one
queue and the other requests are serviced in a best-effort
manner using the slack of the priority queue.

various good things

Summarized by Ann Kilzer (akilzer@gmail.com)

n	 Difference Engine: Harnessing Memory Redundancy in
Virtual Machines
Diwaker Gupta, University of California, San Diego; Sangmin
Lee, University of Texas at Austin; Michael Vrable, Stefan
 Savage, Alex C. Snoeren, George Varghese, Geoffrey M. Voelker,
and Amin Vahdat, University of California, San Diego

Winner of Jay Lepreau Award for one Best Paper

Amin Vahdat presented Difference Engine, which was
awarded Jay Lepreau Best Paper. The motivation for the
work is the increasing trend toward server virtualization
in the data center to support consolidation and, ultimately,
cost reduction. Some hurdles to consolidation include mem-
ory limits on virtual machines and bursty CPU utilization.
The work is based on two concepts: first, memory-saving
opportunities extend beyond full-page sharing and, second,
page faults to memory cost less than page faults to disk.

Contributions of the Difference Engine include compre-
hensive memory management for Xen, efficient memory
management policies, and detailed performance evaluation.
Difference Engine finds opportunities for memory savings
through identical page sharing, page patching, and com-
pression of pages unlikely to be accessed in the near future.
Three challenges here are (1) choosing appropriate pages for
sharing, patching, and compression, (2) identifying similar
pages, and (3) memory overcommitment. To combat the
first challenge, the system uses a global clock to see which
pages have been recently modified or accessed. For the sec-
ond, Difference Engine operates by keeping two hash tables,
one for sharing and one for similarity. On identical hashes
into the sharing table, Difference Engine verifies byte-by-
byte equality before enabling page sharing. To identify
similar pages with low overhead, the system hashes over
subpage chunks. To deal with memory overcommitment,
the system implements demand paging in the VMM.

The Difference Engine is built on top of Xen 3.0.4, and the
source code is publicly available at http://resolute.ucsd.edu/
hg/difference-engine. For evaluation, the authors used mi-
cro-benchmarks of the cost of individual operations. They
measure memory savings and performance over 10-minute
intervals after stabilization on homogenous and heteroge-
neous workloads. The results show a memory savings of up
to 90% in homogenous workloads, gained primarily from
page sharing. Heterogeneous workloads saw a memory sav-
ings of up to 65%. Performance overhead was less than 7%
compared to the baseline with no Difference Engine.

One audience member inquired whether the complexity
of compression outweighed the 5% benefit. Vahdat noted
that compression was run after page sharing and patch-
ing and has limited complexity. Switching the order of
memory saving techniques could contribute greater savings
to compression. Another audience member asked about the
size of the reserve of free pages kept to resolve page faults.
Although Difference Engine’s current implementation uses
a fixed number, Vahdat noted that it would be straightfor-
ward to make this value a percentage. There was a follow-up
question regarding server node paging. Vahdat explained
that some amount of paging occurred during startup, but
there was very little paging during the performance evalu-
ations. One questioner asked about the benefits of only
using demand paging in the hypervisor and identical page
sharing, to which Vahdat answered that memory could be
reduced by an additional factor of 1.6 to 2.6 when addition-
ally employing patching and compression for heterogeneous
workloads.

[See p. 24 for an article on Difference Engine by the authors
of this paper.—Ed.]

n	 Quanto: Tracking Energy in Networked Embedded Systems
Rodrigo Fonseca, University of California, Berkeley, and Yahoo!
Research; Prabal Dutta, University of California, Berkeley; Philip
Levis, Stanford University; Ion Stoica, University of California,
Berkeley

Prabal Dutta presented Quanto, a system for tracking en-
ergy in sensor networks, where it is the defining constraint.
Sensor nodes (“motes”) spend most of their time sleeping
and often run on limited energy supplies, such as AA bat-
teries. These nodes consume energy in very short bursts
and they display orders of magnitude difference in current
draw between active and sleep states. Three basic challenges
in energy tracking include metering energy usage, breaking
down energy usage by device, and tracking causally con-
nected activities both within a node and across the network.

To measure energy usage, Quanto uses the iCount energy
meter. To break down energy usage, device drivers are
instrumented to expose power states, and Quanto uses
this information, along with knowledge of the aggregate
system energy usage, to estimate power breakdowns by
device using regression. For activity tracking, Quanto labels
executions, and these labels are propagated throughout the

reportsAPRIL_09_final.indd 106 3/9/09 10:42:11 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 107

system and its device drivers, and even onto other motes.
The labels help identify the origin and execution path as
belonging to a particular activity.

Quanto is built on top of TinyOS, and it only needs 12
bytes per activity or energy sample. In their RAM-based
logger, Quanto keeps a buffer of 800 samples. The authors
evaluate Quanto regression by testing 48 seconds of the
Blink application and comparing the results with ground
truth obtained using an oscilloscope. The results show that,
although Quanto takes a large portion of active CPU time
(71%), the denominator is very small, since actual CPU ac-
tive time is 0.12%, and most of the time the sensor is sleep-
ing. Additionally, Quanto is able to monitor itself.

Quanto is very useful for measuring energy use and CPU
time for sensor network applications. Dutta provided a
monitoring example where Quanto was used to evaluate the
cost of false alarms in low-power listening. Additionally, the
application Bounce, which plays ping-pong with network
packets, demonstrates Quanto’s ability to track an activ-
ity propagating from node to node. Some ideas for future
work include scaling Quanto from initial tests with just two
nodes to a large-scale testbed of 1000 nodes, examining the
energy cost of various network protocols, and developing
systems for energy management.

After the presentation, an audience member observed that
Blink and Bounce were simple applications and asked how
Quanto scaled to larger programs. Dutta noted that the full
profile logging generated quite a bit of data, even for these
small programs, and complex problems were difficult to
measure in the current version of Quanto, but that these
issues had been addressed in subsequent work. Another
person asked about analyzing energy online rather than
offline. Dutta suggested keeping counters instead of profile
data and calculating periodic regressions to allow online
usage of Quanto. Noting the challenge of getting device
drivers to model device state, one audience member asked
Dutta what sorts of hardware modifications would be useful
to directly extract state information. Dutta replied that it
would be great to get power state information directly from
the hardware, but this might be infeasible in some complex
subsystems (e.g., hard disks).

n	 Leveraging Legacy Code to Deploy Desktop Applications
on the Web
John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch,
Microsoft Research

Jon Howell presented Xax, a system for running legacy code
securely within Web browsers. He began by observing the
popularity of Web 2.0 applications, which allow location
independence, OS independence, and isolation to browser
windows. Howell also observed that decades of knowledge
and hard work remained in legacy C/C++ code. It would be
nice to still use this code, but rewriting it or maintaining
multiple code bases is often a significant obstacle. Running
the code on a remote server is not a viable solution, because

it would take too long. Running the code in a client is not
OS independent and presents security concerns.

Xax solves the problem of running legacy code on a client
by creating a Xax container. The container, called the “pico-
process,” is an OS process, which provides MMU isolation,
and the system call interface is filtered through a Xax moni-
tor. Services are provided through the browser. Additionally,
Xax has a platform abstraction layer to allow OS inde-
pendence. It requires light code modification. Benefits of
Xax include native CPU performance, legacy support, and
security via isolation.

To show that Xax will work, the authors built many demos.
Howell demonstrated a clock, an openGL example, and
an implementation of Ghostscript. The “lightweight code
modification” involved changes such as removing static
dependencies, rejecting unnecessary system calls, and mak-
ing I/O operate through the browser. The authors evaluated
Xax by using it to support 21 libraries and 3.7 million lines
of code. In conclusion, Howell summarized Xax as a secure,
fast, and portable interface for running legacy code in a
Web browser.

The first question regarded limitations on Xax. Howell said
that the openGL example was limited because it relied on
compressed PNGs for display. If Xax could get a low-level
interface to the browser, it could contain its own render-
ing engine. Howell noted that Xax just needed the right
low-level interface to provide greater functionality. Another
audience member asked about the 3.7 million lines of code,
and how much of it was actually being run by Xax. How-
ell noted that most of this code was being used, and that
“shims” (parts specific to the X server or OS) were cut out.

One person asked about security and limiting resource
usage. Howell noted that resource constraints would be easy
to add to Xax. Another attendee asked about performance
and the amount of data transferred over the Web. He also
inquired whether dial-up users would be able to run Xax.
Howell noted that they didn’t worry about these issues
when building the first version of Xax, because Web cach-
ing and other software engineering tools could be added
later to make Xax more efficient.

[See p. 32 for an article on Xax by the authors of this paper.]

wide-area distributed systems

Summarized by Roxana Geambasu
(roxana@cs.washington.edu)

n	 FlightPath: Obedience vs. Choice in Cooperative Services
Harry C. Li and Allen Clement, University of Texas at Austin;
Mirco Marchetti, University of Modena and Reggio Emilia;
Manos Kapritsos, Luke Robison, Lorenzo Alvisi, and Mike Dah-
lin, University of Texas at Austin

Harry Li presented FlightPath, a peer-to-peer system for
media streaming applications that is able to maintain low

reportsAPRIL_09_final.indd 107 3/9/09 10:42:11 AM

108 ; LO G I N : VO L . 3 4, N O. 2

jitter in spite of Byzantine or selfish peers. This work is
motivated by the observation that most of today’s coop-
erative systems lack rigorously defined incentives, which
leaves room for exploits and free-riders. The author made
reference to their previous work, which used Nash equilib-
ria from gaming theory to provide provable incentives for
rational users not to deviate from the protocol. That work,
as well as other related works, however, sacrificed flexibility
and performance for correctness. In this work, Harry and
his co-authors aimed at approximating Nash equilibria to
achieve both formal incentives and efficiency.

More specifically, they propose an epsilon-Nash equilibrium
scheme, in which rational peers may only gain a limited
advantage (< an epsilon) from deviating from the protocol.
This provides nodes with some freedom in choosing peers,
which in turn allows them to steer away from overloaded
peers and avoid departed peers. The author stressed that
it is this flexibility that enables some of the properties of
FlightPath: churn resilience, byzantine and rational peer
tolerance, and high-quality streaming.

A member of the audience asked about FlightPath’s resil-
ience to collusion attacks. The author answered that they
had considered collusion for all of the results reported for
malicious attacks. Another member of the audience pointed
out that a previous study had shown that most free-riders
accounted for little bandwidth in a collaborative system. He
wondered to what degree eliminating those small-resource
free-riders would improve overall performance in a real col-
laborative system.

n	 Mencius: Building Efficient Replicated State Machines for
WANs
Yanhua Mao, University of California, San Diego; Flavio P.
 Junqueira, Yahoo! Research Barcelona; Keith Marzullo, Univer-
sity of California, San Diego

Yanhua Mao presented a Paxos-based replication proto-
col specifically designed for WAN operation. The author
envisions this protocol to be useful in cross-datacenter
geographical replication. The author explained why cur-
rent Paxos protocols (Paxos and Fast Paxos) perform poorly
on WANs. On one hand, Paxos maintains a single leader
and thus achieves poor latency for operations issued at
nonleader replicas. On the other hand, Fast Paxos achieves
good latency by allowing all replicas to behave as leaders,
but it suffers from collisions, which lead to poor throughput.

The proposed system, Mencius, aims to take the best of
both worlds. Very briefly, their approach consists of two
mechanisms: rotating leader and simple consensus. The for-
mer allows the leader function to be assumed by the servers
in a round-robin fashion, which means equal latencies and
high throughput. The latter mechanism allows servers with
low client load to skip their turn in Paxos rounds efficiently.

The authors evaluated the system by comparing Mencius’s
throughput and latency against Paxos’s. A member of the
audience asked the speaker to clarify a discrepancy in one

of the graphs, which showed Mencius’s throughput degrade
gracefully after a crash, whereas Paxos’s throughput was at
an all-time low value before and after recovery. The author
responded that this effect was due to Mencius’s ability to
use all of the servers’ bandwidth, whereas Paxos was bottle-
necked by the single leader’s bandwidth.

Workshop on Supporting Diversity in Systems
Research (Diversity ’08)

December 7, 2008
San Diego, CA

Summarized by Ann Kilzer (akilzer@cs.utexas.edu)

n	 Succeeding in Grad School and Beyond
Alexandra (Sasha) Fedorova, Simon Fraser University; Claris
Castillo, IBM Research; James Mickens, Microsoft Research;
Hakim Weatherspoon, Cornell University

Alexandra Fedorova advised students to work towards an
ideal CV, looking at CVs of recently hired professors for
ideas. A good CV has publications in top conferences or
journals, and quality and impact outweigh quantity. Fedo-
rova also encouraged students to imagine the final product
of research and to write as much of the paper as possible
before building anything. Writing helps thinking, and this
approach helps researchers develop methodology, review
background material, and find gaps in their approach. Her
final advice was to be ready for adjustment—research can
be risky and may not turn out the way one intends.

Hakim Weatherspoon explained that his path had been
filled with sharp turns, playing football as an undergrad,
getting married in graduate school, and raising children. A
postdoctorate inspired him to pursue an academic career.
Hakim noted that being in graduate school is very differ-
ent from being an undergrad. Grades matter less, but one is
expected to become an expert in his or her field and learn
from a variety of sources. He emphasized the importance of
collaborations, noting this could be a challenge for under-
represented students. Hakim observed that “everyone has
an agenda.” Finally, he told students to “own their own
career”—we are each responsible for our own success.

The section ended with James Mickens’ presentation, in
which he stressed that students should not fear adversarial
growth—a lot can be learned from bad reviews. He en-
couraged students to network at conferences and not just
associate with underrepresented colleagues. Networking can
help lead to internships, teaching, or collaborative research.
Regarding the thesis, Mickens noted that grad school was
about producing science, and that students shouldn’t let the
thesis trip them up. Mickens ended with an assortment of
random systems advice, which included learning a scripting
language, not fearing math, looking for interesting problems
outside of computer science, and interning in industry.

In the Q&A session, a student observed that international
students have different views on authority and asked how
to reconcile this when working with an advisor. Hakim

reportsAPRIL_09_final.indd 108 3/9/09 10:42:11 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 109

recalled his own experience with his advisor, who told him
that he could not graduate until Hakim confronted him as
an equal and voiced his disagreement. Every advisor has his
own agenda and wants students to further that; however,
students must also consider what is best for their career.
Hakim stressed compromise in the advisor-student rela-
tionship, noting that the student should learn to act as a col-
league. Finally, he warned students not to focus too much
on being a member of a minority, because that can lead to
mistakes.

n	 Technical Talks
Andrea Arpaci-Dusseau, University of Wisconsin—Madison;
Helen Wang, Microsoft Research

Andrea Arpaci-Dusseau explained her work on gray box
systems, semantically smart disks, and IRON filesystems.
She advised students to keep their eyes open for new ob-
servations and unique approaches. What is good research?
According to Arpaci-Dusseau, research addresses problems
general to many systems. Good research begins when one
initially doesn’t have the terminology to describe what one
is thinking about.

Helen Wang presented her work on Web browser security.
Wang showed the evolution leading to browsers as a multi-
principal OS. Her research seeks to create a better security
model, with multi-principal protection and communication
abstractions in the browser. As for future research, Wang
seeks to build a browser as an OS, enable browser support
for robust Web service building, analyze Web service secu-
rity, and investigate usability and security with the mobile
Web.

n	 Career Paths in Systems Research
Bianca Schroeder, University of Toronto; Ramón Cáceres, AT&T
Labs—Research; Jeanna Matthews, Clarkson University and
VMware

Bianca Schroeder contrasted work in academia and re-
search labs. Academic responsibilities include working with
graduate students, teaching classes, applying for grants,
and traveling to give talks. There is lots of freedom in the
research, as well as variety in daily activities. Professors
work closely with students, acting as teachers and men-
tors. Typical requirements of industry researchers include
working with co-workers and interns. The research often
has less freedom, as there is a focus on products. Industry
researchers don’t have to write grants but must sell their
ideas internally.

How should one decide which route to take? Schroeder sug-
gested trying out internships, teaching, and writing grants
during one’s graduate career. She advised improving one’s
name recognition by giving talks, attending conferences, or
doing internships. Advisors can help set up talks at other
schools. Schroeder ended with advice about selling oneself,
noting the importance of strong writing and speaking skills.

Ramón Cáceres shared his challenges with self-doubt,
noting that it is important to seek advice and support. He

found strength in things he was certain about. He found
satisfaction in developing or redesigning things that real
people could use. Regarding diversity, Cáceres stressed that
one’s differences add value to the field. Diversity isn’t just
about fairness, but also about providing perspective from
underrepresented user communities. Cáceres also con-
trasted work for research labs and startups. In research labs,
one has the freedom to pursue multiple areas of interest. In
startups, research is more likely to affect actual products.
He ended by advising students to have confidence, learn
from criticism and move on, and seek second opinions.

Jeanna Matthews described the challenges of working at a
small university. As a graduate student at Berkeley, she grew
accustomed to working in a large team. She taught briefly
at Cornell and recalled working with well-prepared Ph.D.
students, teaching one course per semester, working with
other systems professors, and having access to teaching and
administrative support. Matthews contrasted this with her
current position at Clarkson University. Now she teaches
two courses per semester and works with undergraduates.
She has found it useful to “build a pipeline” so that every
student learns and teaches other students. Matthews spends
a lot of time mentoring and teaching, which leaves less time
for research. She finds her work at Clarkson very rewarding,
and she advises anyone who enjoys teaching and work-
ing closely with students to consider a position at a small
university.

n	 Making the Best of an Internship in Systems
Lin Tan, University of Illinois at Urbana-Champaign; Dilma Da
Silva, IBM Research

Lin Tan, who interned at IBM Watson and Microsoft Re-
search, recommended finding internships by using advisors’
connections, asking colleagues for advice, visiting career
fairs, and searching online. Before the internship, Tan ad-
vised asking for a reading list. Because internships are fairly
short, it’s a good idea to talk with one’s mentor ahead of
time. Tan also emphasized setting expectations and working
toward goals.

Dilma De Silva described benefits of internships, including
honing skills, gathering information for one’s thesis, and
broadening one’s research experience. For successful inter-
views, do homework, be able to discuss general ideas as well
as specifics, and develop an “elevator speech” to summarize
one’s research. De Silva also emphasized interviewing the
interviewer by asking questions about the position. Some-
times internship decisions have nothing to do with perfor-
mance; rather, the internship may simply be the wrong fit.
All interviews should be viewed as practice.

At the internship, students should track their progress,
understand expectations, and find a mentor outside their
group. Internships are short, so it’s important to make
plans and adjust them as necessary. Finally, De Silva noted
that it’s better to seek internships from different companies
rather than returning to the same position in the future.

reportsAPRIL_09_final.indd 109 3/9/09 10:42:11 AM

110 ; LO G I N : VO L . 3 4, N O. 2

In the Q&A session, a commenter asked whether software
development or research internships are better. De Silva
noted the importance of asking lots of questions during the
interview. Both experiences can be valuable, but it’s impor-
tant to be sure the internship is what you want.

open discussion

Life as a System Researcher: Challenges and Opportunities

De Silva shared her experiences at the 2008 Grace Hopper
Conference, including a panel discussion on the “imposter
syndrome”: underestimating oneself, doubting one’s quali-
fications, or believing that everyone else is working harder
and faster. The panelists listed tips for overcoming self-
doubt. It’s important to believe in oneself and to remember
past successes rather than dwelling on failures. They ad-
vised speaking up, finding support, and faking confidence
when necessary. Most importantly, we are responsible for
making ourselves feel like impostors—we create our own
experience.

An open discussion followed,. Fedorova posed a question on
the work-life balance in graduate school. One commenter
shared her experience of raising a child while in gradu-
ate school: “How do you manage? You just do. . . . When
it comes down to it there are some basic things in life you
can’t put aside.” Other participants shared stories of rais-
ing children while in graduate school. Regarding personal
relationships, one commenter noted the bursty nature of
research and the importance of letting friends and family
know about work schedules.

Workshop on Power Aware Computing and
Systems (HotPower ’08)

December 7, 2008
San Diego, CA

Summarized by Alva L. Couch (alva@usenix.org) and
Kishore Kumar (kishoreguptaos@gmail.com)

HotPower ’08 depicts a very different approach to comput-
ing from that to which the average USENIX member may be
accustomed. In a power-centric view of computing, units of
measurement are translated into units representing power
requirements. “Execution times” are converted into their
corresponding power requirements, measured in watts.
“Execution cycles” are converted into their corresponding
energy requirements, measured in nano-joules. Power is (of
course) energy over time: One joule is one watt/second. This
energy-aware view of computing—while quite enlighten-
ing—takes some getting used to.

The goal of energy-aware computing is not just to make
algorithms run as fast as possible, but also to minimize
energy requirements for computation, by treating energy as
a constrained resource like memory or disk. From a power/
energy point of view, a computing system (or ensemble of
systems) is “energy proportional” if the amount of energy

consumed by the system is proportional to the amount of
computational work completed by the system. True energy
proportionality is impossible because of the baseline energy
cost of keeping systems running even when idle, but one
can come close to energy proportionality by powering up
servers and/or subsystems only when needed and keeping
them powered down (or, perhaps, running at a slower speed
or power level) otherwise.

One thing that makes energy-aware computing challenging
is that there is a straightforward inverse relationship be-
tween energy requirements and execution time, which often
requires making a time/energy tradeoff. It is acceptable for
some tasks to take longer times so that they can in turn
require very little energy to accomplish (e.g., in embedded
sensor systems that harvest power from RFID readers). In
other cases, for time-critical tasks it is appropriate to bal-
ance task completion delay against energy requirements.

Similarly (but perhaps less obviously), there is also an
inverse relationship between energy requirements and reli-
ability. Reliability is usually implemented through hardware
redundancy, and redundancy means in turn more power
consumption. This redundancy can take subtle forms, such
as whether a disk is powered up or its data and changes are
cached in volatile memory instead.

HotPower is a gathering point for a diverse community of
many kinds of researchers, ranging from software experts
concentrating on algorithms for reducing power consump-
tion to hardware designers and testers studying the effects
of hardware design choices. This community has in a very
short time developed its own acronyms and specialized lan-
guage which can be difficult for a newcomer to grasp. For
example, DVFS stands for Dynamic Voltage/Frequency Scal-
ing, which represents the ability to run a CPU or subsystem
at several different speeds and/or voltages with varying
power requirements. Required background for understand-
ing the papers includes the functional relationships among
computing, power consumption, and cooling, as well as the
basics of energy transfer including, for example, the rela-
tionship between the energy in a capacitor and the observed
voltage difference between its contacts. [Editor’s note: Rudi
van Drunen’s article in this issue discusses power in electri-
cal terms.]

scheduling and control

n	 Memory-aware Scheduling for Energy Efficiency on Multi-
core Processors
Andreas Merkel and Frank Bellosa, University of Karlsruhe

Andreas Merkel and Frank Bellosa presented an energy-effi-
cient co-scheduling algorithm to avoid memory contention
problems in multi-core systems. Memory access power re-
quirements depend upon processor architecture, including
whether a set of processor cores shares one L2 cache. One
approach to avoiding contention is to schedule tasks with

reportsAPRIL_09_final.indd 110 3/9/09 10:42:11 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 111

different characteristics (memory-bound and CPU-bound)
on each core. Another approach, called “sorted scheduling,”
is to reorder program blocks for processes so that only one
memory-intensive block is scheduled at a time. Scheduling
algorithms were tested by comparing their performance to
DVFS with SPEC CPU2006 on Linux. DVFS performed bet-
ter only for memory-bound tasks.

n	 Delivering Energy Proportionality with Non Energy-
 Proportional Systems—Optimizing the Ensemble
Niraj Tolia, Zhikui Wang, Manish Marwah, Cullen Bash,
Parthasarathy Ranganathan, and Xiaoyun Zhu, HP Labs,
Palo Alto

Niraj Tolia et al. showed that it is possible to use optimized
techniques to approximate energy-proportional behavior at
ensemble level. An “ensemble” is a logical collection of serv-
ers and could range from a rack-mount enclosure of blades
to an entire datacenter. One can approach energy propor-
tionality by using a virtual machine migration controller
that powers machines up or down, in addition to dynam-
ic voltage and frequency scaling in response to demand
changes. A power- and workload-aware cooling controller
optimizes the efficiency of cooling equipment such as server
fans. A case study examines the balance between server
power and cooling power and compares several energy-sav-
ing approaches, including no DVFS, DVFS alone, and DVFS
with simulated annealing for service consolidation. The last
approach shows significant improvement over the former
two, with some counterintuitive results, including that the
cooling effect from a fan is not a linear function of power
input to the fan; for optimal efficiency, one must run the fan
at about 30% of its peak load.

modeling

n	 A Comparison of High-Level Full-System Power Models
Suzanne Rivoire, Sonoma State University; Parthasarathy
 Ranganathan, Hewlett-Packard Labs; Christos Kozyrakis,
 Stanford University

Suzanne et al. used a common infrastructure to evalu-
ate high-level full-system power models for a wide range
of workloads and machines. The machines (8-core Xeon
server, a mobile file server, etc.) that they used span three
different processor families: Xeon, Itanium, and Turion.
Several models were compared, including a linear model
based on CPU utilization, a linear model based on CPU
and disk utilization, and a power-law model based on CPU
utilization. To evaluate the models, they used SPEC CPU,
SPEC JBB, and also memory-stress and IO-intensive bench-
marks. The results of these tests illustrate tradeoffs between
simplicity and accuracy, as well as the limitations of each
type of model. Performance-counter-based power models
give more accurate results compared with other types of
power models, though these are processor-specific and thus
nonportable. Counterintuitively, using a parameter in a

model that is not utilized (e.g., disk in a memory-intensive
application) leads to overprediction and error.

n	 Run-time Energy Consumption Estimation Based on Work-
load in Server Systems
Adam Lewis, Soumik Ghosh, and N.-F. Tzeng, University of
Louisiana

Adam Lewis et al. showed statistical methods to develop
system-wide energy models for servers. They developed a
linear regression model based on DC current utilization, L2
cache misses, disk transactions, and ambient and die (CPU)
temperatures. When evaluated with the SPEC CPU2006
benchmark programs, their model exhibited prediction er-
rors between 2% and 3.5%. This technique shows promise,
but the audience questioned whether this would apply as
accurately to uncontrolled, real-world loads. Results suggest
that additional performance data—beyond the performance
counters that are provided by a typical processor—are
needed to get a more accurate prediction of system-wide
energy consumption.

power in embedded

n	 Getting Things Done on Computational RFIDs with
Energy-Aware Checkpointing and Voltage-Aware
Scheduling
Benjamin Ransford, Shane Clark, Mastooreh Salajegheh, and
Kevin Fu, University of Massachusetts Amherst

A computational RFID unit (CRFID) is a computational unit
with no battery that utilizes power harvesting from RFID
readers to accomplish computational tasks. CRFIDs utilize
extremely low-power hardware, such as the Intel WISP,
which consumes 600 micro-amperes when active and 1.5
micro-amperes when sleeping. Units such as the WISP
can accomplish useful work in multiple steps—as power
becomes available—by dynamic checkpointing and restore.
The checkpointing strategy assumes a linear relationship
between input voltage and available power, such as that
from a capacitor used as a power storage device. A volt-
age detector senses remaining power and checkpoints the
processor’s current state to flash memory when the power
available drops below a given threshold. This strategy has
promise in several application domains, including medical
electronics, sensor networks, and security.

n	 The True Cost of Accurate Time
Thomas Schmid, Zainul Charbiwala, Jonathan Friedman, and
Mani B. Srivastava, University of California, Los Angeles; Young
H. Cho, University of Southern California

Maintaining a highly accurate concept of wall clock time
for otherwise autonomous wireless nodes has a high power
cost. To reduce that cost, a hybrid architecture is proposed
in which a relatively higher-power but highly accurate crys-
tal clock circuit is paired with a low-power, low-frequency
oscillator on a single chip. The more accurate clock sleeps
much of the time and is polled to reset a less accurate LFO

reportsAPRIL_09_final.indd 111 3/9/09 10:42:12 AM

112 ; LO G I N : VO L . 3 4, N O. 2

clock when needed. The result is a low-power clock chip
in a 68-pin configuration that has about 125,000 gates,
consumes 20 microwatts on average, and has a 1.2-volt core
voltage.

power in net works

n	 Greening the Switch
Ganesh Ananthanarayanan and Randy H. Katz, University of
California, Berkeley

Network switches are often provisioned for peak loads,
but this is not power-efficient. To reduce power require-
ments, one can selectively power-down idle switch ports,
utilize a separate “shadow port” to accept traffic from a set
of powered-down ports, or utilize a “lightweight switch”
as a slower, low-power alternative to a fast, higher-power-
consumption main switch. If a port is powered down, one
loses incoming traffic and queues outgoing traffic on the
port. A “shadow port” can receive data from other powered-
down ports. A shadow port can reduce but not eliminate
data loss, because it can only receive one packet at a time
from a group of ports. By contrast, a “lightweight alternative
switch” replaces the regular switch and allows it to be com-
pletely powered down during nonpeak times. The authors
compare these two strategies through trace-driven simula-
tion of the results of the strategy on seven days of network
traces from a Fortune 500 company. Lightweight alternative
switches turn out to be the most cost-effective of these two
strategies, saving, according to the simulation, up to 32% of
power.

n	 Hot Data Centers vs. Cool Peers
Sergiu Nedevschi and Sylvia Ratnasamy, Intel Research; Jitendra
Padhye, Microsoft Research

Should a service be provided in a datacenter or as a peer-
to-peer application? This paper analyzes the power require-
ments of peer-to-peer versus centralized service provision-
ing in a novel way, by considering the “baseline cost” of the
existing systems before the service is added. If one is going
to be running underutilized desktop computers anyway,
then the added power and cooling requirements from a
peer-to-peer application are shown to be cost-effective. The
assumptions of the paper were quite controversial to the
audience, however; for example, why are the underutilized
desktops still powered up when there is nothing to do?

posters

n	 Analysis of Dynamic Voltage Scaling for System Level
Energy Management
Gaurav Dhiman, University of California, San Diego; Kishore
Kumar Pusukuri, University of California, Riverside; Tajana
Rosing, University of California, San Diego

Dynamic Voltage/Frequency Scaling (DVFS) is commonly
used to save power by lowering the clock rate of a processor
at nonpeak periods. DVFS does better at saving power than

putting any idle CPU into its lowest-power operating state,
but it might not save as much power as shutting down an
idle processor and putting memory into self-refresh mode.
This perhaps counterintuitive result is predicted by trace-
driven simulation.

n	 Energy Aware Consolidation for Cloud Computing
Shekhar Srikantaiah, Pennsylvania State University; Aman
Kansal and Feng Zhao, Microsoft Research

Energy-aware consolidation is the process of migrating
applications and/or services to a small number of physical
servers to allow excess servers to be shut down. Simulations
demonstrate that packing applications into servers at higher
than 50% cumulative CPU load is actually less energy-
efficient than keeping the effective load below 50% of peak,
due to wasted energy from server thrashing. Similarly,
co-locating services so that disk utilization exceeds 70% of
peak load leads to energy loss.

n	 Energy-Aware High Performance Computing with Graphic
Processing Units
Mahsan Rofouei, Thanos Stathopoulos, Sebi Ryffel, William Kai-
ser, and Majid Sarrafzadeh, University of California, Los Angeles

Low-power energy-aware processing (LEAP) can be applied
to code running inside a graphics processor on the video
board of a desktop computer. Power savings for CPU-bound
applications (e.g., convolution) can be as high as 80%, as
demonstrated via trace-driven simulation.

n	 Augmenting RAID with an SSD for Energy Relief
Hyo J. Lee, Hongik University; Kyu H. Lee, Purdue University;
Sam H. Noh, Hongik University

A solid-state disk (SSD) can be used as a read/write cache
for a log-structured filesystem on a RAID disk array. The
read-write flash cache is flushed when 90% full. Simula-
tions of this architecture predict power savings of 14% at
peak load and 10% at low load.

n	 Workload Decomposition for Power Efficient Storage Systems
Lanyue Lu and Peter Varman, Rice University

The traditional definition of “quality of service” (QoS) de-
fines thresholds for response time that cannot be exceeded
without penalty. By redefining QoS in statistical terms, one
can reduce power requirements for service provision by
50% to 70%. The new definition of QoS allows response
times for some percentage of requests to exceed each QoS
threshold. Power savings arising from this change are esti-
mated via trace-driven simulation.

n	 CoolIT: Coordinating Facility and IT Management for
 Efficient Datacenters
Ripal Nathuji, Ankit Somani, Karsten Schwan, and Yogendra
Joshi, Georgia Institute of Technology

CoolIt is a temperature-aware virtual architecture. A sens-
ing subsystem monitors activity of the virtual architecture,
while a cooling control subsystem solves a linear program
to optimally control cooling fans. This approach is imple-

reportsAPRIL_09_final.indd 112 3/9/09 10:42:12 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 113

mented for Xen in an “ambient intelligent load manager”
(AILM).

power in stor age

n	 On the Impact of Disk Scrubbing on Energy Savings
Guanying Wang and Ali R. Butt, Virginia Polytechnic Institute
and State University; Chris Gniady, University of Arizona

Guanying et al. proposed a new metric called the “energy-
reliability product (ERP)” to capture the combined perfor-
mance of energy saving and reliability improving ap-
proaches of disks. This metric is a product of energy savings
(by spinning down the disk) and reliability improvement in
terms of “mean time to data loss.” The authors used trace-
driven simulations of enterprise applications, such as the
Mozilla Web browser, and studied the effects of disk scrub-
bing and energy management on these applications. Finally,
through this study, they showed that ERP can help to iden-
tify efficient ways to distribute disk idle time for energy and
reliability management.

n	 Empirical Analysis on Energy Efficiency of Flash-based
SSDs
Euiseong Seo, Seon Yeong Park, and Bhuvan Urgaonkar, Pennsyl-
vania State University

Euiseong et al. analyzed the power consumption pattern of
solid-state disk drives (SSDs) with a microbenchmark (using
the “DIO tool” workload generator) to show the characteris-
tics for read and write operations at the device level, as well
as a macro-benchmark “filebench” to measure real-world
behavior of the device. The authors measured differences in
terms of power consumption between SSDs and hard-disk
drives (HDDs) and also common characteristics shared by
SSDs. One audience member asked about the role of logical
block lookup tables in improving the reliability of SSDs (by
minimizing erasures), and how that affects power require-
ments. In particular, if a traditional filesystem is written to a
SSD, the superblock is not especially vulnerable, because it
is logically moved each time it is updated.

challenges panel

Moderator: Feng Zhao, Microsoft Research
Panelists: James Hamilton, Microsoft Research; Randy Katz, Uni-
versity of California, Berkeley; Jeffrey Mogul, Hewlett-Packard
Labs

James Hamilton (Microsoft) began his presentation with the
question, “Where does power go and what to do about it?”
Power losses are easier to track than cooling. Seven watts
of each server watt are lost from translation inefficiency.
Cooling systems employ a large number of conversions: a
“catastrophically bad design.” About 33% of cooling power
cost is due to mechanical losses. Pushing air 50 feet is cata-
strophically bad. A secondary problem is evaporative water
loss from cooling systems, estimated at 360,000 gallons
of water a day for a site. Several creative approaches to the

problem include “air-side economization” (open the win-
dow!) and cooperative expendable micro-slice servers, with
four times the work per watt of current servers.

Randy Katz (Berkeley) asked, instead, “What if the energy
grid were designed like the Internet?” Current energy grid
technology is a remnant of the machine age, and expertise
in power distribution has largely disappeared from aca-
demia. As a fresh approach, we can apply principles of the
Internet to energy. First, we push intelligence to the edges
and concentrate on lower-cost incremental deployment.
Enhanced reliability and resilience arise from the same
sources as Internet reliability and resilience. The result is
the “LoCal-ized datacenter” that is based upon DC distribu-
tion rather than AC and contains battery backups (or other
forms of power storage) in each rack. This allows flexible
use of any kind of power with minimal conversion loss,
including stored energy and solar power.

Jeff Mogul (HP) encouraged us to “look between the street
lamps” for the next generation of power Ph.D. thesis topics.
The street lamps include component power, control theory,
and moving work around. These areas are well-explored.
There are many topics that fall “between the street lamps,”
including tradeoffs between reliability and power use,
matching customer needs to theoretical solutions, and mak-
ing it easier to write energy-aware programs. Key challenges
to understanding include the boundaries between areas, as
well as energy inputs beyond the computer’s power sup-
ply, including the energy cost of building and disposing of
computing hardware.

A spirited discussion ensued in which there were many
contributors.

A key principle is “Do nothing well.” In other words, stop
trying to optimize the effect of every joule going into our
hardware; instead, look for median approaches to the prob-
lem.

One possible approach is detouring work: Instead of paying
for peak energy load, store energy from nonpeak times.
However, it remains very difficult to store energy. Innova-
tive approaches include energy harvesting and even com-
pressed-air storage.

Building more power plants to satisfy datacenter demand is
not the only way to deal with increasing power demand. We
don’t know yet how to produce an application-independent
layer that does that, and programmers may have difficulties
with the resulting level of abstraction.

Another challenge is that of sharing data for mutual benefit.
Data privacy is a major problem, but if someone could
define what an interesting power trace might be, smaller
players could contribute. Alternatively, using open-source
applications such as Hadoop allows one to collect power
data for one’s own application.

There is also a seeming contradiction in the way people and
lawmakers react to cooling strategies. If one puts heat into a

reportsAPRIL_09_final.indd 113 3/9/09 10:42:12 AM

114 ; LO G I N : VO L . 3 4, N O. 2

river, environmentalists are concerned. If one puts heat into
the air instead, no one seems to care.

Another potential savings strategy is to reevaluate how
datacenters are cooled. We may not want to cool the whole
datacenter to 62 degrees. We may want to cool everything
to 89 degrees. But then there’s no margin for error. In rais-
ing the total machine room temperature, we would be oper-
ating “nearer to the edge of the hardware function envelope”
and any failure of cooling might lead to massive failures of
hardware.

The recent rise of cloud computing poses its own power
challenges. If everybody outsources storage to Amazon and
everyone gets a surge of traffic (e.g., the day after Thanks-
giving), do our computer systems have a credit meltdown?
What if the whole “ecosystem” undergoes the same set of
unforeseen changes?

First Workshop on I/O Virtualization (WIOV ’08)
San Diego, CA
December 10–11, 2008

i /o architecture

Summarized by Mike Foss (mikefoss@rice.edu)

n	 Towards Virtual Passthrough I/O on Commodity Devices
Lei Xia, Jack Lange, and Peter Dinda, Northwestern University

Lei Xia delivered the first presentation of the workshop,
explaining how one might use a model-based approach to
allow virtual passthrough I/O on commodity devices. The
current approaches to allow high-performance I/O in guest
operating systems are limited. In one approach, the virtual
machine provides full emulation of the device in order to
multiplex it to each guest operating system; however, this
requires significant overhead in the VM. To reduce the per-
formance penalty, a guest might bypass the virtual machine
altogether in direct-assignment I/O. However, this approach
is less secure, since a guest could affect the memory of other
guests or the VM itself. Some devices are multiplexed in the
hardware and allow each guest to directly access the device
while preserving security, but this feature is not available
on commodity I/O devices, nor do these devices currently
allow migration of guests.

Xia introduced virtual passthrough I/O (VPIO), which al-
lows a guest to have direct access to the hardware for most
operations and also allows a guest to migrate. VPIO as-
sumes that there is a simple model of the device that can
determine (1) whether a device is reusable, (2) whether a
DMA is about to be initiated, and (3) what device requests
are needed to update the model. VPIO also assumes that
the device can be context-switched, that is, that the device
can deterministically save or restore the state pertaining to
a guest operating system. For the best performance, the goal
of VPIO is to have most guest/device interactions complete
without an exit into the VM.

Under VPIO, each access to the device must go through a
Device Modeling Monitor (DMM). The purpose of DMM is
twofold: (1) It saves enough state about the guest and the
device that a guest could migrate to a new VM, and (2)
it ensures that the VMM enforces proper security. It also
keeps track of a hooked I/O list, which is a set of I/O ports
that require VM intervention if accessed by a guest. Un-
hooked I/O ports may be used by the guest directly. The
device is multiplexed by performing a context switch on the
device (restoring the guest-specific state into the device).
Currently, if the DMM disallows the guest to continue with
an operation (e.g., in the case of a DMA to an address out
of bounds), the DMM delivers a machine-check exception
to the guest. If the device issues an interrupt, it may not
be clear to which guest to forward the interrupt, as in the
case of receiving a packet on a NIC. Currently, Xia’s team is
working on finding a general solution to this problem.

Xia’s team did implement a model of an NE2000 network
card and had it running under QEMU. The model was
under 1000 lines of code, and only a small fraction of
I/Os (about 1 in 30) needed VM intervention. The remain-
ing challenges for this project include the following: moving
more of the model into the guest in order to reduce the
cost of a vm_exit; handling incoming device input, such as
interrupts without a clear destination guest; and obtaining a
device model from hardware manufacturers.

n	 Live Migration of Direct-Access Devices
Asim Kadav and Michael M. Swift, University of Wisconsin—
Madison

Asim Kadav presented the second paper of WIOV, explain-
ing how to migrate direct-access I/O devices from one vir-
tual machine to another. While direct, or passthrough, I/O
offers near-native performance for a guest OS, it inhibits mi-
gration, because the VM does not know the complete state
of the device. Furthermore, the device on the destination
machine may be different from that on the source machine.
Asim proposed to use a shadow driver in the guest OS in
order to facilitate migrating guests that take advantage of
passthrough I/O.

The challenge of the shadow driver is to simultaneously
offer both low constant overhead and short downtime dur-
ing migration. The shadow driver listens to communication
between the kernel and the device driver via taps. In its
passive mode, the shadow driver keeps track of the state
of the driver. It intercepts calls by the driver, tracks shared
objects, and logs any state-changing operations.

During migration, or active mode, the shadow driver is
responsible for making sure that migration occurs without
the need to modify the existing device driver or hardware.
First, the shadow driver unloads the old device driver and
monitors any kernel requests during the period where there
is no driver. Next, it finds and loads the new driver into the
appropriate state.

reportsAPRIL_09_final.indd 114 3/9/09 10:42:12 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 115

Asim’s team modified Xen and Linux in order to implement
a prototype shadow driver. The shadow driver implements
taps by substituting functions in the kernel/driver interface
with wrapper functions. These wrappers were generated
by a script that would accommodate any network device.
Asim showed that the shadow driver method worked and
only cost a percentage point of both extra CPU overhead
and network throughput during passive mode. Migration
to a new virtual machine took four seconds, but most of
the time was spent in the initialization code of the network
driver. Asim also showed that migration between heteroge-
neous NICs was possible by enabling the lowest common
denominator of features between the participating NICs.
No device driver or hardware modifications were needed in
order to use the shadow driver.

n	 Scalable I/O—A Well-Architected Way to Do Scalable,
Secure and Virtualized I/O
Julian Satran, Leah Shalev, Muli Ben-Yehuda, and Zorik
 Machulsky, IBM Haifa Research Lab

Muli Ben-Yehuda presented the final paper of the first ses-
sion of WIOV, a position paper on how I/O should be scaled
for any system. The current device driver model presents a
unique problem in the OS for several reasons. First, com-
munication with the hardware consists of only register
transfer and DMA operations. Furthermore, each driver
is vendor-specific and must be maintained by the vendor.
They are often the source of bugs in the OS. These problems
are pronounced in virtualized systems. Muli proposed to
virtualize the entire I/O subsystem rather than each driver
or device, in order to enhance the scalability and security of
I/O in virtual machines.

The scalable I/O architecture consists of device controllers,
I/O consumers, and host gateways. A device controller (DC)
is responsible for communicating directly with the device. It
implements I/O services and can serve many I/O consumers
simultaneously. It also protects devices from unauthorized
access. An I/O consumer is any process on the host that
wishes to access the device. The I/O consumer accesses
the proper DC by first sending the request through a host
gateway. The host gateway (HG) is in charge of granting
protected I/O mechanisms to all the I/O consumers on the
host. It can be thought of as an elaborate DMA engine that
provides a DMA to virtual memory. The HG and DC are
connected by shared memory or any I/O interconnect in
general, which is completely abstracted away from the I/O
consumer.

Protected DMA (PDMA) is the mechanism by which the HG
and DC communicate. The HG generates a memory creden-
tial whenever an I/O consumer wishes to use the DC. This
credential is later validated by the HG whenever the DC
accesses the consumer’s memory.

The scalable I/O protocol grants several benefits over cur-
rent I/O mechanisms. I/O consumers may submit I/O pro-

grams to the DC, which gives a high-level I/O interface to
consumers. Furthermore, the I/O subsystem is now isolated
from the rest of the operating system, which may improve
performance and robustness. A programmable I/O interface
also allows for enhanced flexibility and scalability.

Another benefit of scalable I/O is that memory pinning be-
comes unnecessary. Memory pinning is expensive and puts
an error-prone burden on the programmer. In scalable I/O,
devices ignore pinning and assume that the memory is al-
ways present. In the unlikely case that the desired memory
is not present, the device takes an I/O page fault, and the
DC and HG communicate in order to resolve the page fault.

stor age virtualization

Summarized by Asim Kadav (kadav@cs.wisc.edu)

n	 Block Mason
Dutch T. Meyer and Brendan Cully, University of British Colum-
bia; Jake Wires, Citrix, Inc.; Norman C. Hutchinson, University
of British Columbia; Andrew Warfield, University of British
Columbia and Citrix, Inc.

Block Mason by Dutch Meyer addresses the problem of
developing agile storage systems for virtualization by
proposing a high-level declarative language to manage
blocks. Dutch began by describing the file system interface
as basically a block interface but with accessibility issues
in practice, as the kernel hides it. However, in virtualized
interfaces the block layer becomes more important since
shared storage can leverage significant functionality from
the block layer. At block level one can add many features
such as compression, encryption, deduplication, or even
advanced gray box techniques. The key idea of this talk
is to provide a user-level framework for building reusable
modules at the block level that one can connect to perform
more complex tasks. Block Mason helps developers build
fine-grained modules and assemble and reconfigure them to
build high-level declarative verifiable block manipulation.
The implementation of Block Mason was done in Xen using
the blktap interface. In user mode, a new scheduler, parser,
and driver API were implemented. There were also some
minimal updates to blkback.

Dutch further detailed the implementation, discussing the
basic building blocks (elements/modules) and connectors
(ports/edges). An element example would be as simple as re-
cording I/O requests. Any details of elements can be added
to configuration files. The connectors are the ports, identi-
fied by names. Block Mason also supports live reconfigura-
tion of the modules built by draining outstanding requests
and initializes new ones as they arrive. The architectural
support implemented includes message passing and depen-
dency tracking.

As an example of a service using these various constituents,
Dutch suggested migrating storage from a local disk to an-
other storage device. The two subservices that are using the

reportsAPRIL_09_final.indd 115 3/9/09 10:42:12 AM

116 ; LO G I N : VO L . 3 4, N O. 2

Block Mason interface in this example are I/O handling and
background copying, implemented using low-level Block
Mason constituents. More complex modules such as cloud-
backed disks were also described briefly. Block Mason can
be also used to perform other tasks such as correctiveness
verification. Block Mason will be integrated into the new
blktap2 interface in Xen. Future work will include develop-
ing declarative languages to perform block tasks.

Dan Magenheimer from Oracle commented on how power-
ful Block Mason is and inquired about the things that can
be done with Block Mason. Dutch answered that, using
Block Mason, one can build simple features and aggrega-
tion of simple features such as disk encryption. Himanshu
from Microsoft asked about synchronization issues with
Block Mason. Dutch explained synch issues with the copy
example. In response to a question about whether synchro-
nous write would work properly, Dutch explained that only
one port is used to perform I/O in his example. Another
questioner asked about block failures and their handling by
Block Mason. Dutch replied that one can trap failures and
perform recovery actions and explained it in his disk copy
example. Muli Ben-Yehuda posited that this may be similar
to using pipes, but Dutch said that pipes would give the
same expressiveness but coarse-grained modules.

n	 Experiences with Content Addressable Storage and Virtual
Disks
Anthony Liguori, IBM Linux Technology Center; Eric Van
 Hensbergen, IBM Research

Eric Van Hensbergen gave a talk on his research on how to
reduce redundancy in virtual disk images using content ad-
dressable storage. The motivation here is that virtualization
causes lot of image duplication with many common files,
libraries, etc. In a cloud scenario, the problem is even more
severe, with many thousands of disk images on the server.
The first part of his talk consisted of analyzing the existing
duplication at file and block levels. The results had filtered
out duplicates due to hard links and sorted the results to
obtain self- and cross-similarity separately. Eric showed
considerable overlap in terms of the same blocks in various
Linux distributions for their 32/64-bit versions. There are
also similar overlaps in different distributions of the same
operating system (Linux) and in different versions of the
same distribution. All results show considerable overlap in
the binaries that can be exploited. Even in analyzing dif-
ferent images created from different install options, there
is a large degree of overlap (duplication). These results are
also the same for Windows (factoring out swap/hibernation
files). Analyzing the deduplication efficiency, the results
show a slightly higher efficiency for 8k blocks, but this is
primarily due to error associated with partial blocks and
the discounting of zero-filled blocks. A disk-based scan was
able to identify approximately 93% of the duplicate data.

The second part of the talk compared existing solutions
and their solution. The common existing solution is to use

Copy-On-Write (COW) disks. The problem with the COW
approach is that there is a drift to higher disk usage with
application of the same updates to different disks. This is
because, as the same updates are applied to similar images,
since updates are applied one after another the images get
out of sync. Eric’s solution is to use a an existing Content
Addressable Storage (CAS) system (Venti) as a live backing
store and use a filesystem interface on top of it to present
to virtual disks. The hypervisor was modified to use these
virtual disks. Further, Eric gave some background on CAS
and then described some related work including Foundation
(CAS to archive VM for backup), Mirage (file-based CAS),
and Internet Suspend Resume (CAS to access personal
computing environments across a network by using virtual-
ization and shared storage). He also cited a work from Data
Domain in which a filesystem-based approach is used to
leverage dedupulication in backups.

In terms of implementation, Eric reused an existing block-
based CAS, vbackup in Plan 9. QEMU/KVM ran the vir-
tual machines and provided a hook via vdiskfs that uses
vbackup as the underlying store.

The evaluation consisted of measuring block utilization
before and after same updates on two similar disk images.
There was also an additional micro-benchmark using the
dd command. The results show better results with CAS and
compressed CAS than those with COW. The performance,
however, takes a hit and the boot time to bring up the
system using CAS is much higher. In terms of the micro-
benchmark, CAS performs much worse, running at 11
Mbps compared to 160 Mbps (without CAS) in raw mode.
To summarize the evaluation, the space efficiency is great
but performance is bad, since Venti is single-threaded and
synchronous and also was configured with a small cache for
these experiments. Their future work includes reworking
CAS for live performance, experimenting with flash disks
for index storage, and building in support for replication
and redundancy.

A questioner asked about the case of dirty blocks and Eric
replied that he was using a write buffer to avoid using them
for CAS; however, dirty blocks can be used as a single large
cache for all virtual machines. Another person from the au-
dience pointed out a related work from CMU about finding
similarities using encryption system. When asked whether
this was even the right approach to the problem, Eric said
he didn’t know, but it was easy to implement and took only
two weeks. Jake Oshins from Microsoft wondered whether
it would be advantageous for the file system to know what
blocks are being deleted. Eric said it would definitely help
and pointed out a related work that addresses this.

n	 Paravirtualized Paging
Dan Magenheimer, Chris Mason, Dave McCracken, and Kurt
Hackel, Oracle Corporation

Dan’s talk covered a new type of cache, called hcache,
aimed at resolving memory issues in virtualization. Mem-

reportsAPRIL_09_final.indd 116 3/9/09 10:42:12 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 117

ory is cheap but, currently, memory systems are running
unutilized and are being wasted. Most recent work on
virtualization has concentrated on efficient CPU and I/O
utilization, but little work has been directed toward memory
utilization. Described in the talk was a proposed approach
to resolving memory issues in virtualization by allocating a
separate pool in the virtual machine’s memory space, called
transcendental memory. Dan then focused on the basics of
physical memory concepts in a single machine and virtual-
ization servers and discussed the common memory issues
there. In a single machine with a single operating system,
the memory is basically a huge page cache that is never
optimized, and a lot of idle memory in page cache is simply
wasted. This is because the operating system has no way of
determining which areas of page cache are being utilized
and which are not. The pages are moved out of page cache
using a page cache replacement algorithm (PRFA); even
PRFA cannot determine the correct working set of page
cache, resulting in many false-negative page evictions, mak-
ing the matter worse.

The situation is no different in virtualization servers, where
the physical memory is still used inefficiently. Memory al-
locations to guest virtual machines are either by static par-
titioning of memory or by dynamic partitioning of memory.
Neither of them is helpful. Static partitioning has problems
such as fragmentation of memory and memory holes result-
ing from machine migration. There is also almost no load
balancing of memory by the hypervisor in static partition-
ing. The second method, dynamic partitioning (also known
as ballooning), uses a balloon driver in the guest virtual
machines. Ballooning tunnels pages across balloon drivers
to transfer memory from one virtual machine to another
to perform load balancing. This scheme also has many
issues, since OS/virtual machines rarely voluntarily give
up memory and always demand more memory. There are
further difficulties in determining which virtual machine is
the neediest here. Also, ballooning is not instantaneous for
large or fast changes in balloon size.

The solution here aims to answer unanswered questions
such as how to reclaim I/O without increasing disk I/O.
Also, the problems of ballooning and memory just men-
tioned can be alleviated by using the solution described.
The solution provided is to reclaim all idle memory into
a pool called the transcendental memory pool. All guests
access memory via the hypervisor using transcendental
APIs, which cause memory operations that are synchro-
nous, page-oriented, and copy based. This memory pool is
subdivided into four subpools: private ephemeral, private
persistent, shared ephemeral, and shared persistent. The
private ephemeral memory is labeled as “hcache.” The false
evictions now fall into hcache and have a low cost now.
Also, any memory in hcache can be thrown away quickly,
resulting in faster memory allocations to virtual machines
so that operations such as ballooning can be done quickly.
Dan also pointed out that very minimal changes are needed

to implement this solution. He further described hswap,
which is a persistent, private cache that works like a pseudo
swap device. It helps to balloon fast, as ops from pool are
faster and there is no thrashing as memory is allocated from
the pool. He further pointed out that shared ephemeral/
persistent pools can act as shared memory for inter-VM
communication; this is a part of future work.

Transcendental memory can also be used in a single OS, be-
cause API is clean, as a useful abstraction (NUMA memory,
hot-swappable memory, or SSDs). It can also be used as a
cache for network file systems. In conclusion, transcenden-
tal memory is a new way to manage memory for single op-
erating system and virtualization servers and reduces many
of the existing memory issues.

To the question of whether one needs contiguous memory
for transcendental memory, Dan replied that the tran-
scendental memory solution works even with fragmented
memory.

device virtualization

Summarized by Jeff Shafer (shafer@rice.edu)

n	 GPU Virtualization on VMware’s Hosted I/O Architecture
Micah Dowty and Jeremy Sugerman, VMware, Inc.

Micah Dowty presented a paper on how to virtualize a GPU.
In this talk he introduced a taxonomy of GPU virtualization
strategies and discussed specifics of VMware’s virtual GPU.

A GPU can provide significant computation resources, and
both desktop and server virtualized environments seek to
take advantage of these resources. Virtualizing a GPU poses
many different challenges, however. There are multiple
competing APIs available, and these APIs are complicated
with hundreds of different entry points. In addition, the
APIs and GPUs are programmable. Every GPU driver is also
a compiler, and each API includes a language specification.
Hardware GPUs are all different, covering a wide range
of architectures that are often closely guarded secrets that
change frequently between product revisions. Finally, the
hardware state of the GPU chip and associated memory is
large, covering gigabytes of data in a highly device-specific
format including in-progress DMAs and computation.

There are several potential options to virtualize a GPU, as
presented in the taxonomy. These strategies include captur-
ing application API calls at a high level and proxying them
to another domain for execution (API remoting), providing
a virtual GPU for each guest with which the native software
stack communicates (device emulation), and various pass-
through architectures to tunnel GPU commands down to
the actual hardware. Each technique has various tradeoffs in
terms of performance and isolation.

The VMware virtual GPU uses a combination of techniques,
most notably device emulation and API remoting, to provide
accelerated GPU support in a virtualized environment on

reportsAPRIL_09_final.indd 117 3/9/09 10:42:12 AM

118 ; LO G I N : VO L . 3 4, N O. 2

top of any physical GPU. With this architecture, interactive
graphics applications can now be run at a usable perfor-
mance level, whereas it was not possible to run them in a
virtualized environment before. Future work will focus on
new pass-through techniques as well as the development of
virtualization-aware GPU benchmarks that stress, not the
raw GPU hardware performance, but, rather, the API-level
paths that are at issue in a virtualized system.

One audience member asked about the challenges involved
in migrating virtual machines across different GPUs. Dowty
replied that migration requires reading all the state from the
GPU and memory, but this is not always possible consider-
ing that some state is generated by the graphics card itself
and is not always accessible to the driver or API. GPU ven-
dors have a lot of flexibility in implementing new technolo-
gies (such as SR-IOV) to make virtualization and migration
simpler and more complete.

n	 Taming Heterogeneous NIC Capabilities for I/O
 Virtualization
Jose Renato Santos, Yoshio Turner, and Jayaram Mudigonda,
Hewlett-Packard Laboratories

Jose Renato Santos from HP Labs presented a paper on a
network I/O virtualization (IOV) management system that
can translate high-level goals into low-level configuration
options. In addition, methods for efficient guest-to-guest
packet switching were discussed.

In recent years, different vendors have provided many
mechanisms for I/O virtualization, such as software vir-
tualization, multi-queue NICs, and SR-IOV multifunction
NICs. In the process, however, they have created significant
challenges for managing networks of heterogeneous devices,
each with different hardware and software approaches to
virtualization. Configuration becomes more complex and
fragile with increasing diversity in IOV mechanisms. What
is needed is a higher-level abstraction for I/O configura-
tion, where users specify logical networks and a mapping of
virtual interfaces to logical networks, and then the system
selects and configures the appropriate mechanism.

This configuration can be done statically or dynamically.
Although a static system may be simpler, consider a case
where there are more guests than hardware NIC contexts
available to support them. Then a dynamic management
system that looks at current workload levels may be needed
for optimal assignment. In addition to a new configuration
mechanism, a spectrum of methods for efficient intranode
guest-to-guest packet switching were also discussed, includ-
ing switching in software, on the NIC, or in external net-
work devices. All these techniques have tradeoffs in terms
of CPU, I/O bandwidth, link bandwidth, and memory use,
and this must be considered by the high-level management
tool depending on constraints input by the user.

One audience member asked how frequently the system can
change its configuration based on these high-level policy
guidelines. Jose answered that this is an open question, but

certainly not on every packet. There are several concerns in-
volving maintaining packet ordering and minimizing setup/
teardown overheads.

n	 Standardized but Flexible I/O for Self-Virtualizing Devices
Joshua LeVasseur, Ramu Panayappan, Espen Skoglund, Christo
du Toit, Leon Lynch, and Alex Ward, Netronome Systems;
Dulloor Rao, Georgia Institute of Technology; Rolf Neugebauer
and Derek McAuley, Netronome Systems

Rolf Neugebauer spoke about some of the limitations of the
SR-IOV standard for virtualizing complex network devices
and proposed a new approach, software configurable virtual
functions, to provide increased flexibility for virtualization.

In today’s networking environment, multi-queue NICs are
an emerging standard, and some include hardware support
for virtualization. Hypervisors allow assignment of PCI
device functions to virtual machines by virtualizing the PCI
configuration space. Moreover, modern chipsets include I/O
MMUs to provide DMA isolation and address translation.
The SR-IOV (Single Root I/O Virtualization) standard ties
these three trends together and allows endpoints such as
network cards to be enumerated as PCI virtual functions.
Because this is performed in hardware through the device
configuration space, however, the SR-IOV has limits to its
flexibility.

The new Software Configurable Virtual Functions (SCVF)
is proposed for highly programmable network devices such
as the Netronome NFP3200. SCVF is built on the same
base PCI Express technologies and provides isolated access
to virtual functions using IOMMUs. Rather than using the
hardware-based configuration space and device support to
provide virtualization, however, it performs device enu-
meration by host OS software. In SCVF, the PCI configu-
ration space is not used to enumerate virtual functions.
Rather, SCVF simply presents a PCI device to the host OS.
The OS loads a card driver for the physical device function.
This driver acts as a privileged control driver and imple-
ments a virtual PCI bus on which SCVFs are enumerated
as full PCI devices. The operating system recognizes the
virtual PCI bus, and then everything “just works.” When
implemented in Linux, the kernel loads the physical func-
tion control driver just as for other devices, and no changes
were required to Linux or Xen. The existing software stack
is used for hot-plugging, device discovery, and PCI device
assignment.

An audience member asked how, after an interrupt is
generated, it is routed and virtualized. Rolf answered that
the host sets up a list of MSI interrupts via the card driver,
which emulates MSI, and then relies on the hypervisor to
route those interrupts to CPU cores normally. Thus there
are two levels of PCI virtualization: their driver, and then
the Xen back-end/front-end interrupt virtualization.

reportsAPRIL_09_final.indd 118 3/9/09 10:42:13 AM

; LO G I N : A pr I L 20 0 9 cO N fe re N ce re p O rt s 119

n	 SR-IOV Networking in Xen: Architecture, Design and
Implementation
Yaozu Dong, Zhao Yu, and Greg Rose, Intel Corporation

Greg Rose presented a paper on the SR-IOV specification
and its application to network devices to provide direct I/O
in a virtualized environment.

SR-IOV (Single Root I/O Virtualization and Sharing) is a
PCI-SIG standard released in September 2007 for sharing
device resources on virtualization-capable hypervisors or
kernels. It specifies how a single physical function (PF) de-
vice should share and distribute its resources to many vir-
tual functions (VFs). It is not networking-specific but, when
properly employed in a network device, should provide the
full native I/O bandwidth to a virtualized guest operating
system and improve scalability over emulation/paravirtual-
ization as more virtual machines are added.

Greg presented a network architecture that includes the
SR-IOV NIC, Xen hypervisor, and individual guest do-
mains. Domain 0 runs the physical function device driver
and accesses the physical functions of the NIC, while each
guest domain runs a virtual function device driver and ac-
cesses a virtual function of the NIC. The physical function

device driver is responsible for controlling all of the virtual
function capabilities and providing configuration services.
It maintains administrative control of all the Tx/RX queues,
and thus it has ultimate responsibility for device security.
The virtual function device driver, in contrast, is similar
to a normal NIC driver. It serves as an I/O engine in the
virtual machine to “pump packets” to the NIC and depends
on the physical function driver for most configuration and
notification of events.

The presentation concluded with a demo of a functional
SR-IOV NIC running in the lab and a discussion of future
work. Areas that need further effort include handling a
physical function driver reset (such as one caused by a
power state transition), because that reset also affects all
the virtual function drivers that depend on it. In addi-
tion, network-specific management tools are needed to set
parameters such as replication, loopback, MAC addresses,
and more. One audience member asked where the packets
go when two virtual machines on the same host are com-
municating. Greg replied that the packets are going down to
a layer-2 switch fabric in the physical NIC and then going
back up to the other guest. Domain0 never sees the intra-
VM packets.

reportsAPRIL_09_final.indd 119 3/9/09 10:42:13 AM

USENIX: ThE AdvANcEd compUTINg SySTEmS ASSocIATIoN
TEchNIcAl SESSIoNS ANd TrAININg progrAm INformATIoN ANd how To rEgISTEr ArE AvAIlAblE oNlINE ANd from ThE USENIX offIcE:

http://www.usenix.org/events | Email: conference@usenix.org | Tel: +1.510.528.8649 | Fax: +1.510.548.5738

Upcoming Conferences

8Th INTErNATIoNAl workShop oN pEEr-To-pEEr
SySTEmS (IpTpS ’09)
Co-located with NSDI ’09

April 21, 2009, Boston, MA, UsA
http://www.usenix.org/iptps09

2Nd USENIX workShop oN lArgE-ScAlE
EXploITS ANd EmErgENT ThrEATS (lEET ’09)
Co-located with NSDI ’09

April 21, 2009, Boston, MA, UsA
http://www.usenix.org/leet09

6Th USENIX SympoSIUm oN NETworkEd SySTEmS
dESIgN ANd ImplEmENTATIoN (NSdI ’09)
Sponsored by USENIX in cooperation with ACM SIGCOMM
and ACM SIGOPS

April 22–24, 2009, Boston, MA, UsA
http://www.usenix.org/nsdi09

12Th workShop oN hoT TopIcS IN opErATINg
SySTEmS (hoToS XII)
Sponsored by USENIX in cooperation with the IEEE Technical
Committee on Operating Systems (TCOS)

MAy 18–20, 2009, Monte Verità, switzerlAnd
http://www.usenix.org/hotos09

2009 USENIX ANNUAl TEchNIcAl coNfErENcE
JUne 14–19, 2009, sAn diego, CA, UsA
http://www.usenix.org/usenix09

2Nd workShop oN cybEr SEcUrITy
EXpErImENTATIoN ANd TEST (cSET ’09)
Co-located with USENIX Security ’09

AUgUst 10, 2009, MontreAl, CAnAdA
http://www.usenix.org/cset09
Paper submissions due: May 15, 2009

3rd USENIX workShop oN offENSIvE
TEchNologIES (wooT ’09)
Co-located with USENIX Security ’09

AUgUst 10, 2009, MontreAl, CAnAdA
http://www.usenix.org/woot09
Paper submissions due: May 26, 2009

2009 ElEcTroNIc voTINg TEchNology
workShop/workShop oN TrUSTworThy
ElEcTIoNS (EvT/woTE ’09)
Co-located with USENIX Security ’09

AUgUst 10–11, 2009, MontreAl, CAnAdA
http://www.usenix.org/evtwote09
Paper submissions due: April 17, 2009

4Th USENIX workShop oN hoT TopIcS IN
SEcUrITy (hoTSEc ’09)
Co-located with USENIX Security ’09

AUgUst 11, 2009, MontreAl, CAnAdA
http://www.usenix.org/hotsec09
Paper submissions due: May 4, 2009

18Th USENIX SEcUrITy SympoSIUm
AUgUst 12–14, 2009, MontreAl, CAnAdA
http://www.usenix.org/sec09

22Nd Acm SympoSIUm oN opErATINg SySTEmS
prINcIplES (SoSp ’09)
Sponsored by ACM SIGOPS in cooperation with USENIX

oCtoBer 11–14, 2009, Big sKy, Mt, UsA
http://www.sigops.org/sosp/sosp09/

23rd lArgE INSTAllATIoN SySTEm AdmINISTrATIoN
coNfErENcE (lISA ’09)
Sponsored by USENIX and SAGE

noVeMBer 1–6, 2009, BAltiMore, Md, UsA
http://www.usenix.org/lisa09
Submissions due: April 30, 2009

Acm/IfIp/USENIX 10Th INTErNATIoNAl
mIddlEwArE coNfErENcE

noV. 30–deC. 4, UrBAnA ChAMpAign, il
http://middleware2009.cs.uiuc.edu/

reportsAPRIL_09_final.indd 120 3/9/09 10:42:13 AM

C

M

Y

CM

MY

CY

CMY

K

Setlabs Ad Final.pdf 3/5/2009 4:08:20 PM

Apr09Covers.indd 3 3/9/09 11:09:42 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

23RD LARGE INSTALLATION
SYSTEM ADMINISTRATION
CONFERENCE
November 1–6, 2009, Baltimore, MD

Save the Date!

Join us in Baltimore, MD, November 1–6, 2009, for the most in-depth, practical system
 administration training available.

The goal of this conference is to provide attendees with the practical information they need
to succeed in their jobs. Information is arranged in a “learn it today—use it tomorrow” format.

The 6-day event offers:

http://www.usenix.org/lisa09/loa

Training•

Invited talks•

Refereed papers•

 Work-in-Progress Reports (WiPs)•
and posters

Workshops•

 Plus that all-important, face-to-face•
time with experts in the community

Apr09Covers.indd 4 3/9/09 11:09:47 AM

