
The Advanced Computing Systems Association

O P I N I O N Musings
R I K FA R ROW

OpenSolaris: The Model
TO M H AY N E S

P R O G R A M M I N G Code Testing and Its Role in Teaching
B R I A N K E R N I G H A N

Modular System Programming in MINIX 3
J O R R IT N . H E R D E R , H E R B E RT B O S, B E N G R A S,
P H I L I P H OM B U R G , A N D A N D R E W S. TA N E N BAU M

Some Types of Memory Are More Equal Than Others
D I O M E D I S S P I N E L L I S

Simple Software Flow Analysis Using GNU Cflow
C H AO S G O LU B ITS K Y

Why You Should Use Ruby
LU K E K A N I E S

S Y S A D M I N Unwanted HTTP:Who Has the Time?
DAV I D M A LO N E

Auditing Superuser Usage
R A N D O L P H L A N G L EY

C O L U M N S Practical Perl Tools: Programming, Ho Hum
DAV I D B L A N K- E D E L M A N

VoIP Watch
H E I S O N C H A K

/dev/random
RO B E RT G . F E R R E L L

S T A N D A R D S USENIX Standards Activities
N I C H O L A S M . STO U G HTO N

B O O K R E V I E W S Book Reviews
E L I Z A B E TH Z W I C K Y, W ITH SA M STOV E R
A N D R I K FA R ROW

U S E N I X N O T E S Letter to the Editor
TE D D O LOT TA

Fund to Establish the John Lions Chair

C O N F E R E N C E S LISA ’05: The 19th Large Installation System
Administration Conference
WORLDS ’05: Second Workshop on Real,
Large Distributed Systems
FAST ’05: 4th USENIX Conference
on File and Storage Technologies

T H E U S E N I X M A G A Z I N E

A P R I L 2 0 0 6 V O L U M E 3 1 N U M B E R 2

For a complete list of all USENIX & USENIX co-sponsored events,
see http://www.usenix.org/events

2ND STEPS TO REDUCING UNWANTED TRAFFIC ON
THE INTERNET WORKSHOP (SRUTI ’06)

JULY 6–7, 2006, SAN JOSE, CA, USA
http://www.usenix.org/sruti06
Paper submissions due: April 20, 2006

2006 LINUX KERNEL DEVELOPERS SUMMIT
JULY 16–18, 2006, OTTAWA, ONTARIO, CANADA

http://www.usenix.org/kernel06

15TH USENIX SECURITY SYMPOSIUM
(SECURITY ’06)

JULY 31–AUGUST 4, 2006, VANCOUVER, B.C., CANADA

http://www.usenix.org/sec06

2006 USENIX/ACCURATE ELECTRONIC
VOTING TECHNOLOGY WORKSHOP (EVT ’06)

AUGUST 1, 2006, VANCOUVER, B.C., CANADA

http://www.usenix.org/evt06
Paper submissions due: April 3, 2006

7TH SYMPOSIUM ON OPERATING SYSTEMS DESIGN
AND IMPLEMENTATION
Sponsored by USENIX, in cooperation with ACM SIGOPS

NOVEMBER 6–8, 2006, SEATTLE, WA, USA
http://www.usenix.org/osdi06
Paper submissions due: April 24, 2006

SECOND WORKSHOP ON HOT TOPICS IN SYSTEM
DEPENDABILITY (HOTDEP ’06)

NOVEMBER 8, 2006, SEATTLE, WA, USA
http://www.usenix.org/hotdep06
Paper submissions due: July 15, 2006

20TH LARGE INSTALLATION SYSTEM
ADMINISTRATION CONFERENCE (LISA ’06)

DECEMBER 3–8, 2006, WASHINGTON, D.C., USA
http://www.usenix.org/lisa06
Paper submissions due: May 23, 2006

3RD SYMPOSIUM ON NETWORKED SYSTEMS
DESIGN AND IMPLEMENTATION (NSDI ’06)
Sponsored by USENIX, in cooperation with ACM SIGCOMM
and ACM SIGOPS

MAY 8–10, 2006, SAN JOSE, CA, USA
http://www.usenix.org/nsdi06

5TH SYSTEM ADMINISTRATION AND NETWORK
ENGINEERING CONFERENCE (SANE 2006)
Organized by Stichting SANE and co-sponsored by Stichting
NLnet, USENIX, and SURFnet

MAY 15–19, 2006, DELFT, THE NETHERLANDS

http://www.sane.nl/sane2006

2006 USENIX ANNUAL TECHNICAL
CONFERENCE (USENIX ’06)

MAY 30–JUNE 3, 2006, BOSTON, MA, USA
http://www.usenix.org/usenix06

FIRST WORKSHOP ON HOT TOPICS IN
AUTONOMIC COMPUTING (HOTAC ’06)
Sponsored by IEEE Computer Society and USENIX

JUNE 13, 2006, DUBLIN, IRELAND

http://www.aqualab.cs.northwestern.edu/HotACI/

SECOND INTERNATIONAL CONFERENCE ON VIRTUAL
EXECUTION ENVIRONMENTS (VEE ’06)
Sponsored by ACM SIGPLAN in cooperation with USENIX

JUNE 14–16, 2006, OTTAWA, ONTARIO, CANADA

http://www.veeconference.org/vee06

4TH INTERNATIONAL CONFERENCE ON MOBILE
SYSTEMS, APPLICATIONS, AND SERVICES
(MOBISYS 2006)
Jointly sponsored by ACM SIGMOBILE and USENIX, in
cooperation with ACM SIGOPS

JUNE 19–22, 2006, UPPSALA, SWEDEN

http://www.sigmobile.org/mobisys/2006

Upcoming Events

contents

OPINION
2 Musings

R I K FA R ROW

5 OpenSolaris: The Model
TOM H AY N E S

PROGRAMMING
9 Code Testing and Its Role in Teaching

B R I A N K E R N I G H A N

19 Modular System Programming in MINIX 3
J O R R IT N . H E R D E R , H E R B E RT B O S, B E N G R A S,
P H I L I P H OM B U RG , A N D A N D R E W S TA N E N BAU M

29 Some Types of Memory Are More Equal
Than Others
D I OM E D I S S P I N E L L I S

37 Simple Software Flow Analysis Using GNU Cflow
C H AO S G O LU B ITS K Y

42 Why You Should Use Ruby
LU K E K A N I E S

SYSADMIN
49 Unwanted HTTP:Who Has the Time?

DAV I D M A LO N E

56 Auditing Superuser Usage
R A N D O L P H L A N G L EY

COLUMNS
60 Practical Perl Tools: Programming, Ho Hum

DAV I D B L A N K- E D E L M A N

66 VoIP Watch
H E I S O N C H A K

70 /dev/random
RO B E RT G . F E R R E L L

STANDARDS
72 USENIX Standards Activities

N I C H O L A S M . STO U G HTO N

BOOK REVIEWS
76 Book Reviews

E L I Z A B E TH Z W I C K Y, W ITH SA M STOV E R
A N D R I K FA R ROW

USENIX NOTES
80 Letter to the Editor

TE D D O LOT TA

80 Fund to Establish the John Lions Chair
in Operating Systems at the
University of New South Wales

CONFERENCE REPORTS
81 LISA ’05: The 19th Large Installation System

Administration Conference
99 WORLDS ’05: Second Workshop on Real,

Large Distributed Systems
103 FAST ’05: 4th USENIX Conference on

File and Storage Technologies

V O L . 3 1 , # 2 , A P R I L 2 0 0 6

E D I TO R
Rik Farrow
rik@usenix.org

M A N AG I N G E D I TO R
Jane-Ellen Long
jel@usenix.org

CO P Y E D I TO R
Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N
Lisa Camp de Avalos
Casey Henderson

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street,
Suite 215, Berkeley,
California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official
magazine of the
USENIX Association.

;login: (ISSN 1044-6397) is
published bi-monthly by the
USENIX Association, 2560
Ninth Street, Suite 215,
Berkeley, CA 94710.

$85 of each member’s annual
dues is for an annual sub-
scription to ;login:. Subscrip-
tions for nonmembers are
$115 per year.

Periodicals postage paid at
Berkeley, CA, and additional
offices.

POSTMASTER: Send address
changes to ;login:,
USENIX Association,
2560 Ninth Street,
Suite 215, Berkeley,
CA 94710.

©2006 USENIX Association.

USENIX is a registered trade-
mark of the USENIX Associa-
tion. Many of the designa-
tions used by manufacturers
and sellers to distinguish their
products are claimed as trade-
marks. USENIX acknowl-
edges all trademarks herein.
Where those designations
appear in this publication and
USENIX is aware of a trade-
mark claim, the designations
have been printed in caps or
initial caps.

2 ; L O G I N : V O L . 3 1 , N O . 2

R I K F A R R O W

musings
rik@spirit.com

P R O G R A M M I N G I S A N A R T . W H E N
different people attempt to accomplish the
same tasks, their programs will generally
be quite different. And when examined
carefully, some programs will stand out as
beautiful code, while others could quite
easily be described as ugly.

I learned programming in college, working in the
painful paradigm of punchcards and mainframes.
A single typo meant waiting hours, or even until
the next day, to see the results of the correction.
While I believe that using punchcards encour-
gaged a certain discipline, in coding and in exact-
ness, it did nothing to instill in me a real under-
standing of how to write beautiful programs. I
could, and did, write robust, functioning code,
but it certainly lacked the elegance that I could
sometimes discern in other people’s code.

Inelegant code, however, has effects that go
beyond aesthetics. I once was tasked with writing
a text formatter, with requirements similar to the
ones found in Kernighan and Plauger’s Software
Tools. I didn’t know of that book at the time
(1979), but plowed in with vigor. When finished,
I had written a program that worked correctly,
taking marked-up text, formatting it, and produc-
ing a table of contents, all on a computer that
used two 8-inch floppy disks for file storage.
Compiling the 16-page program took about 15
minutes, and using the finished program, written
in PL/Z (Zilog’s version of PL/I) took a long time
too.

After I left that company, I found out that my
replacement had been given the same task, but
used BASIC instead. His version of the code ran
three times faster because BASIC had much better
string handling routines than PL/Z. I knew my
code would be inefficient in places, and had I
rewritten those places in assembler, my code
would (likely) have been as fast. But I sure was
embarrassed.

Looking Deeper

Today’s computers make the computers I learned
on look like electro-mechanical calculators.
The mainframe I used in college filled a room,
required massive cooling, and actually used other
computers for its input and output (reading
punchcards, writing them to tape, and printing).
The noise of the cooling fans was incredible, but
so were the blinking lights, and the computers ran

slowly enough that you could actually watch patterns emerge in the
display of memory address accesses. With systems like these, every
instruction counted.

When we write programs today, we can easily be misled into believing that
elegance and efficiency don’t matter. Instead, our fast computers can fool
us into thinking that everything is running fine. Problems often don’t
emerge until a program goes into production and fails under real loads, or
turns out to include a security flaw that converts code into a back door.

For this issue, I sought out programmers who were willing to write about
their art. I was fortunate that Brian Kernighan was willing to share his
experience in teaching advanced programming. Brian’s article explains how
he uses testing to maintain AWK and uses that same testing in his classes. I
found myself wondering if I would have been a better programmer had I
learned the testing discipline that Brian instills in his students today.

David Blank-Edelman’s Perl column also begins by discussing testing in
Perl. Various Perl modules provide a framework that can be properly (or
poorly) used to aid in building packages that can be tested before
installation.

Diomidis Spinellis has written about the effects of the many levels of per-
formance found in modern computer memory. The amount of memory
available to run programs at full speed on modern processors is tiny, and
each additional level offers lower performance. Diomidis explains how the
different levels function, provides hints for improving performance in criti-
cal areas, and concludes with an analysis of price/performance of memory
that is sure to arouse some discussion.

You will also discover other programming-focused articles. Chaos
Golubitsky writes about cflow, a tool she used when analyzing the security
of IMAP servers in her LISA ’05 paper. Luke Kanies explains why he chose
Ruby for his implementation of Puppet. If you have heard about Ruby and
are wondering if you should learn it, you should read Luke’s article.

Nick Stoughton reports on his work on several standards committees,
work that has real impact upon both programming and open source. If you
care about these issues, you need to read Nick’s report.

Fond Dreams

While I have been busy ranting about the need for new operating system
design, Andrew Tanenbaum and his students have been busy writing
MINIX 3. I don’t know how many times I have written about the need for
a small kernel that can be trusted and running services without privileges,
in their own protected memory domains, but MINIX 3 actually does this.

Andy wrote MINIX as a tool for teaching operating systems back when
the next best thing was UNIX, an operating system that was growing far
beyond an easy-to-understand size and was encumbered by copyrights and
AT&T lawyers. While we now have open source operating systems, such as
Linux and the BSDs, they too have grown in size and complexity over the
years. MINIX 3 manages the feat of being a next-generation operating sys-
tem with an actually comprehensible size. The kernel is only 4000 LoC
(almost equally split between C and assembly), and the process manage-
ment server is 3600 lines of C. The file containing the implementation of
execve() is 594 LoC in MINIX 3 (servers/pm/exec.c) and 1496 LoC in
Linux (2.6.10/fs/exec.c).

; LO G I N : A P R I L 2 0 0 6 M U S I N G S 3

By “next-generation,” I mean that MINIX is a microkernel in design and
philosophy. Only the kernel runs as privileged, and all other services,
including process management, file systems, networking, and all device
drivers, run in their own private address spaces. Just moving device drivers
out of the kernel and into their own address spaces means that they can
crash without crashing the kernel. It also means that system code, includ-
ing device drivers, can be tested without rebooting, and failed drivers (or
servers) can be restarted.

While MINIX 3 is not going to replace your desktop today, it is already a
good candidate for embedded systems where robustness, reliability, and a
small memory footprint are crucial. Perhaps your cell phone will be run-
ning MINIX 3 some day.

What, No Security?

For a change, there is no Security section in this issue of ;login:. There are
two Sysadmin articles, with David Malone writing a detective story about a
mysterious flood of HTTP requests and Randolph Langley telling us about
software he has created to provide better logging for sudo.

We have two new columns this month. Heison Chak will be writing about
VoIP, providing background in this column for later articles that will help
system administrators charged with supporting (and implementing) VoIP
in their networks. Robert Ferrell has taken charge of the humor depart-
ment, entertaining us with /dev/random.

The summaries of LISA ’05, WORLDS ’05, and FAST ’05 appear in the
back. You might wonder why summaries from December don’t appear until
April, but if you look at the publishing schedule of ;login:, you can see that
none of these conferences finished before the articles for the February
issue were due. I have, of course, read all of these summaries more than
once, and I encourage you to see what is being presented in conferences
you don’t attend.

Finally, we have an Opinion piece from Tom Haynes. Tom writes that he
got so excited about OpenSolaris that he just had to do something about it.
And he did.

4 ; L O G I N : V O L . 3 1 , N O . 2

; LO G I N : A P R I L 2 0 0 6 O P E N S O L A R I S : TH E M O D E L 5

T O M H A Y N E S

OpenSolaris:
the model
Tom Haynes is an NFS developer for Sun Micro-
systems, Inc., and is interested in the cost differences
between open source and commercial offerings. He
is exploring those costs by using OpenSolaris to
design a NAS appliance.

tdh@sun.com

I F E E L L I K E T H E N E W C H A I R M A N O F
the hair loss club—I liked the product so
much I went out and bought the company.
Only I didn’t buy the company, I simply
joined it. The company I am talking about is
Sun Microsystems, Inc., and the product is
OpenSolaris. The premise is simple: Sun
opens up its source vault and sucks more
users into its web. Sun has a long develop-
ment cycle between releases, and interest-
ed parties could always download the
Solaris Express bits to play with new fea-
tures. When I was at Network Appliance,
Inc., we would do interoperability testing of
NFSv4 based on the beta program. We saw
the exact same binaries that any other cus-
tomer of Sun could download. This binary
availability was very crucial to the success-
ful cross-deployment of a new protocol.
After the release of Solaris 10, Sun decided
to release the source code to the majority
of the code base at the same time that
the binaries, the release called Nevada,
were made available. The parts not made
available under the CDDL, or Common
Development and Distribution License,
were those sections that were already
entangled under prior copyrights.

You can go to http://www.opensolaris.org to
see what all the excitement is all about. There
are already multiple distributors: for example,
SchilliX (http://schillix.berlios.de) or Nexenta
(http://www.gnusolaris.org)—think of these as
early-day Debian or Slackware. There are develop-
ment efforts underway to extend technology
already found in Solaris 10, e.g., the BrandZ effort
to extend zones (see “Solaris 10 Containers,” by
Peter Baer Galvin, in the October 2005 issue of
;login:) to non-native operating systems—first up
is Linux. And of course there is the recent release
of ZFS in the Nevada Build 27 (or b27, as it is
commonly called). ZFS is a radical new file sys-
tem which has been under development at Sun for
the last five years.

The two major draws of OpenSolaris are the com-
mitment to quality and the early access to cutting-
edge technology. It is easy to argue that GNU,

Linux, and the *BSD efforts all provide the bleeding edge of technology.
But the real cost can be in the quality of the built-in supportability of soft-
ware installed at client sites. Note that I do not mean in the quality of open
source products but, rather, in the quality of the support infrastructure in a
data center.

A common scenario I have seen is a large data center with a heavy commit-
ment to Linux-based compute servers running a very old kernel, say, a base
RedHat 7.3 system with a 2.4.9 kernel. Either the company decided to roll
that version out because it was the newest when they upgraded from a 2.2-
based kernel, or they bought support from a third party. Regardless of how
the decision was made, a further complication is that either a modification
was made to the kernel source (the best case is that it was patched up), or
the customer’s application is dependent on that particular Linux kernel.
And, finally, the company no longer has any support for the kernel—per-
haps the contract ran out, or someone in management thought that free
software was, well, free, and no budget was allocated for maintenance.

I know that if you contact Trond Myklebust, the Linux NFS client main-
tainer, for support, he will try to help you—no matter if you are a first-year
student pounding away on an old hand-me-down laptop or the CIO of a
company with a 5,000-node application farm. Depending on the problem,
that student might get more help; the maintainer is a volunteer and priori-
tizes his time accordingly. If you stumble on a major bug he believes will
impact the majority of Linux installations, he is going to give you atten-
tion. But if you have an interoperability problem with another vendor’s
product, one he may not have access to, then he is going to give you a fish-
ing rod and teach you how to fish.

This approach is the QA model employed by most open source developers.
They simply do not have the time, funds, equipment, or desire to test
everything under the sun. So, instead, they provide new features in
branches for the brave. These adventurers get bleeding-edge technology
and the satisfaction of being able to contribute by finding bugs.

Sun plans to make money from OpenSolaris by being a service provider,
and the biggest differentiations are quality and support. Sun already has
infrastructure (personnel, equipment, tests) to do interoperability testing.
The internal developers still have the same commitment to delivering bug-
free software. They also have an organization dedicated to analyzing cus-
tomer-found issues and providing fixes to customers.

Clearly, the interesting questions about Sun and OpenSolaris are concerns
over how Sun and the open software model will interact. For example, if
Sun is selling service and that same first-year student finds an issue in
SchilliX, what level of support will he get? Or say he not only finds the
bug, he fixes it and now wants the fix put back into the Solaris code. How
can Sun juggle that need versus the need of the CIO paying an annual sup-
port contract for her enterprise data center?

The trick for Sun is that the CIO is going through professional services and
the student is going through volunteer services. At the end of the day, they
might get help from the same individual, but that depends on the commit-
ment of the developer to the open source movement. Sun has asked its
employees to help out with OpenSolaris, but it has not mandated that they
do so—it is freedom of choice. And there are not only Sun employees help-
ing out on the project.

Any individual asking for help on the OpenSolaris discussion forums,
including that CIO, can expect the same level of support. It might just be

6 ; L O G I N : V O L . 3 1 , N O . 2

more like that fishing rod analogy than some people are wanting and the
response time might be in days instead of minutes. And that CIO might
even find the student responding.

The other question I posed was how an individual outside of Sun gets fixes
put back into the tree. In one approach, the individual or distributor main-
tains their own source base and does not even try to give back to the com-
munity. This model is akin to the way many startups in Silicon Valley oper-
ate—they take a FreeBSD release and tack on their IP. Perhaps they feed
back general bugs (or even contribute scaled-down versions of their prod-
uct), but they normally integrate from changes made at the source.

The second approach is for the outside individual to find a sponsor within
Sun to champion their change. The sponsor arranges for a bug to be filed,
code to be reviewed, and the fix put back into Solaris. Interestingly, the
“outside individual” might be a Sun employee. For example, although I
work in the NFS team, at night I might want to work on porting
OpenSolaris to the UltraSPARC 1 platform. I might get it working and then
look for a sponsor—perhaps in the kernel team.

The example also shows that by opening up its source, Sun has to make
commitments which seem to run counter to its planning process. The
UltraSPARC 1 was supported well into the late releases of Solaris Express
for Solaris 10. But as a business, Sun decided to retire support for the sys-
tem—the EOL was actually for the 32-bit SPARC kernel, but as there were
outstanding issues with the UltraSPARC I chips in 64-bit mode, it was
retired as well. As an individual, I could decide to backport OpenSolaris to
this platform.

Sun has also pledged that it will provide ethical support to their employees
who want to contribute to OpenSolaris. While Sun does employ full-time
workers to develop OpenSolaris, for the most part such development is
completely voluntary. At other companies, I’ve had to sign an NDA which
precluded me from contributing to open source projects that could provide
an advantage to competitors. At times, I was asked by the Linux NFS client
maintainer to please not even look at that source code. He didn’t want to
risk contaminating it, under a new licensing model being considered by
Linus Torvalds.

But I feel free to contribute to OpenSolaris, not only in NFS but in other
modules. I know that if I want a break from my day job, I can still con-
tribute, even if indirectly, to my company. I even know that if I do resur-
rect the UltraSPARC 1, I am likely to make someone smile in appreciation
of the effort.

If I pull off those rose-colored glasses you might think I am wearing, I can
see that Sun has taken a large risk. This plan could easily backfire on the
company. Consider, for example, ZFS, the new file system. Sun has made it
available in source form before it shipped in a commercial product. Instead
of joining Sun, I could have gathered some venture capital and started
shipping low-end NAS boxes in direct competition. My contribution would
have been the business plan, not the cool technology. Also, if Sun is filing
any patents on ZFS, it has to do so much earlier than normal (i.e., the
technology has been publicly introduced).

Sun is betting the farm on differentiating its product offerings, not through
the technology but, rather, through the support and service it can provide
once that product is installed at a customer site. One nightmare they will
have to contend with is that a customer may no longer be running a Sun
kit and may not have bought an AMD-based Ultra 20. Instead, they may

; LO G I N : A P R I L 2 0 0 6 O P E N S O L A R I S : TH E M O D E L 7

have taken their Linux farm with a hodgepodge of x86-based systems and
loaded up either a stock Nevada b30 or SchilliX 0.4.

When Sun controlled the allowable hardware, it effectively was managing
the service it needed to provide, though admittedly it has always been pos-
sible to add third-party hardware even to their proprietary systems. They
have also been shipping the x86 version of Solaris for quite some time. But
for a long time, the x86 product looked unsupported. I saw a couple of
trade articles announcing the end of the product.

By opening up the vault and committing heavily to the x86 line, they have
exposed themselves to the same nightmare of device driver management
that other vendors and open source distributions have had to handle.

Sun already has a support model for someone running a Nevada b30 sys-
tem—they accept bug reports and you can find employees interacting on
the OpenSolaris discussions. With an OpenSolaris distribution, support
will probably be the same except for a support contract that entails the
migration of the boxes to the latest and greatest Solaris. If the concern is
the availability of a certain new feature, Sun does backport some technolo-
gy from Nevada into Solaris 10.

The neat thing about OpenSolaris is that anyone can contribute. Besides
testing new technologies, you can see how a commercial product is built.
The scripts used to build OpenSolaris are the same ones used to build
Nevada, the next commercial release of Solaris. You can also dig into differ-
ent releases of the source code to try to get an idea of how the underlying
technology is changing. A key point to remember is that you are in essence
viewing a beta release candidate—from build to build you might find a
unique bug. And if you do, make sure to file it!

8 ; L O G I N : V O L . 3 1 , N O . 2

; LO G I N : A P R I L 2 0 0 6 CO D E TE STI N G A N D ITS RO L E I N TE AC H I N G 9

B R I A N K E R N I G H A N

code testing and
its role in teaching
Brian Kernighan was in the Computing Science
Research Center at Bell Labs and now teaches in
the CS department at Princeton, where he also
writes programs and occasional books. The latter
are better than the former, and certainly need less
maintenance.

bwk@cs.princeton.edu

F O R T H E P A S T S I X O R S E V E N Y E A R S
I have been teaching a course called
“Advanced Programming Techniques” [7] to
(mostly) sophomore and junior computer
science majors. The course covers an eclec-
tic mix of languages, tools, and techniques,
with regular coding assignments and final
group projects.

Dijkstra famously remarked that “Program testing
can be quite effective for showing the presence of
bugs, but is hopelessly inadequate for showing
their absence.” Nevertheless, programmers who
think about testing are more likely to write cor-
rect code in the first place. Thus I try to encour-
age the students to do intensive testing of their
code, both in one-week assignments in the first
half of the semester and as part of their eight-
week projects.

My personal interest in testing comes from main-
taining a widely used version of AWK for the past
25 years. In an attempt to keep the program
working, and to maintain my sanity as bugs are
fixed and the language slowly evolves, I have cre-
ated somewhat over 1000 tests, which can be run
automatically by a single command. Whenever I
make a change or fix a bug, the tests are run. Over
the years this has caught most careless mistakes—
once fixed, things tend to stay fixed and new code
rarely breaks old code.

The approach is a good way to think about testing
small programs, and many of the techniques scale
up to larger programs. Furthermore, the topic is
good for teaching about other aspects of program-
ming, such as tools, specialized languages, script-
ing, performance, portability, standards, documen-
tation—you name it, it’s there somewhere. So I
find myself using this material in class in a variety
of ways, I think to the benefit of the students. And
when I describe it to friends who work in the real
world, they nod approvingly, since they want to
hire people who can write programs that work
and who understand something of how to pro-
duce software that others will use.

This report from the trenches focuses mainly on
testing, with some digressions on topics that have
led to useful class lessons. I am ignoring other
important issues, such as formal methods both for
writing correct programs and for validating them
after the fact. These are often of great value, but I
am reminded of Don Knuth’s apposite comment,
“Beware of bugs in the above code; I have only
proved it correct, not tried it.”

A Bit of History

Al Aho, Peter Weinberger, and I created AWK in 1977 [1]; around 1981 I
became the de facto owner and maintainer of the source code, a position
I still hold. The language is so small and simple that it remains a widely
used tool for data manipulation and analysis and for basic scripting,
though there are now many other scripting languages to choose from.
There are multiple implementations, of which GNU’s GAWK is the most
widely used, and there is a POSIX standard.

The language itself is small, and our implementation [6] reflects that. The
first version was about 3000 lines of C, Yacc, and Lex; today, it is about
6200 lines of C and Yacc, Lex having been dropped for reasons to be dis-
cussed later. The code is highly portable; it compiles without #ifdefs and
without change on most UNIX and Linux systems and on Windows and
Mac OS X. The language itself is stable; although there is always pressure
to add features, the purveyors of various implementations have taken a
hard line against most expansion. This limits the scope of AWK’s applica-
tion but simplifies life for everyone.

Test Cases

Because both language and implementation are small, the program is self-
contained, and there are multiple implementations, AWK is a good target
for thorough testing.

This section describes general classes of test cases. In the early days we
collected and invented test cases in an ad hoc way, but gradually we
became more systematic. Nevertheless, there is definitely a random flavor
to many of the tests. In total, there are nearly 7000 lines of tests, in more
than 350 files—there are more lines of tests than of source code. This
emphasis on testing is typical of software with stringent reliability require-
ments, which might well have 10 times as much test as code, but it is way
beyond what one encounters in a class. Merely citing the scale of testing
wakes up a class; it may help convince them that I am serious when I ask
them to include tests with their assignments.

One major test category probes language features in isolation: numeric and
string expressions, field splitting, input and output, built-in variables and
functions, control flow constructs, and so on. There are also a lot of repre-
sentative small programs, such as the very short programs in the first two
chapters of the AWK book. For example, the first test,

{ print }

prints each input line and thus copies input to output.

AWK was originally meant for programs like this, only a line or two long,
often composed at the command-line prompt. We were surprised when
people began creating larger programs, since some aspects of the imple-
mentation didn’t scale, and large AWK programs are prone to bugs. But
bigger complete programs like the chem preprocessor [5] make it possible
to test features working together rather than in isolation, so there are a
number of tests of this kind.

Some aspects of AWK are themselves almost complete languages—for
instance, regular expressions, substitution with sub and gsub, and expres-
sion evaluation. These can be tested by language-based approaches, as we
will see below.

10 ; L O G I N : V O L . 3 1 , N O . 2

There are about 20 tests that exercise the most fundamental AWK actions:
input, field splitting, loops, regular expressions, etc., on large inputs.
The runtimes for old and new versions of the program are compared;
although real performance tuning is notoriously difficult, this provides
a rough check that no performance bug is inadvertently introduced.

Each time a bug is found, a new set of tests is created. These are tests that
should have been present; if they had been, they would have exposed the
bug. In general such tests are small, since they are derived from the small-
est programs that triggered the bug.

New tests are also added for new features or behaviors. AWK does not
change much, but features are added or revised occasionally. Each of these
is accompanied by a set of tests that attempt to verify that the feature
works properly. For example, the ability to set variables on the command
line was added and then refined as part of the POSIX standardization
process; there are now about 20 tests that exercise this single feature.

One of the most fruitful places to look for errors is at “boundary condi-
tions.” Instances include creating fields past the last one on an input line,
trying to set nominally read-only variables like NR or NF, and so on. There
is also a group of stress tests: very large strings, very long lines, huge num-
bers of fields, and the like are all places where implementations might
break. In theory, there are no fixed size limits on anything of significance,
so such tests attempt to verify proper behavior when operating outside
normal ranges.

One useful technique is to move the boundaries closer, by setting internal
program limits to small values. For example, the initial size of the hash
table for associative arrays is one element; in this way all arrays are forced
to grow multiple times, thus exercising that part of the code. This same
approach is used for all growable structures, and it has been helpful in
finding problems; indeed, it just recently exposed a memory allocation fail-
ure on Linux that does not appear on Solaris.

One productive boundary condition test involved trying all AWK “pro-
grams” consisting of a single ASCII character, such as

awk @ (illegal) single-character program

Some of these are legal (letter, digit, comment, semicolon) and possibly
even meaningful (non-zero digit), but most are not. This exercise uncov-
ered two bugs in the lexical analyzer, a story to which we will return later.

Every command-line option is tested, and there are also tests that provoke
each error message except for those that “can’t happen.”

I have tried to create enough coverage tests that every statement of the
program will be executed at least once. (Coverage is measured with gcov,
which works with gcc.) This ideal is hard to achieve; the current set of
tests leaves about 240 lines uncovered, although about half of those are
impossible conditions or fatal error messages that report on running out of
memory.

I found one bug with coverage measurements while preparing this paper—
the nonstandard and undocumented option -safe that prevents AWK from
writing files and running processes was only partly implemented.

For all tests, the basic organization is to generate the correct answer some-
how—from some other version of AWK, by some other program, by copy-
ing it from some data source—then run the new version of AWK to pro-
duce its version of the answer, and then compare them. If the answers

; LO G I N : A P R I L 2 0 0 6 CO D E TE STI N G A N D ITS RO L E I N TE AC H I N G 11

differ, an error is reported. So each of the examples, such as { print } above,
is in a separate file and is tested by a shell loop like this:

for i
do

echo “$i:”
awk -f $i test.data >foo1 # old awk
a.out -f $i test.data >foo2 # new awk
if cmp -s foo1 foo2
then true
else echo “BAD: test $i failed”

fi
done

If all goes well, this prints just the file names. If something goes wrong,
however, there will be lines with the name of the offending file and the
string BAD that can be grepped for. There is even a bell character in the
actual implementation so errors also make a noise. If some careless change
breaks everything (not unheard of), running the tests causes continuous
beeping.

Test Data

The other side of the coin is the data used as input to test cases. Most test
data is straightforward: orderly realistic data such as real users use. Exam-
ples include the “countries” file from Chapter 2 of [1]; the password file
from a UNIX system; the output of commands such as who or ls -l; or big
text files such as the Bible, dictionaries, stock price listings, and Web logs.

Boundary-condition data is another category; this includes null inputs,
empty files, empty fields, files without newlines at the end or anywhere,
files with CRLF or CR only, etc.

High-volume input—big files, big strings, huge fields, huge numbers of
fields—all stress a program. Generating such inputs by a program is easi-
est, but sometimes they are better generated internally, as in this example
that creates million-character strings in an attempt to break sprintf:

echo 4000004 >foo1
awk ‘
BEGIN {

x1 = sprintf(“%1000000s\n”, “hello”)
x2 = sprintf(“%-1000000s\n”, “world”)
x3 = sprintf(“%1000000.1000000s\n”, “goodbye”)
x4 = sprintf(“%-1000000.1000000s\n”, “everyone”)
print length(x1 x2 x3 x4)

}’ >foo2
cmp -s foo1 foo2 || echo ‘BAD: T.overflow huge sprintf’

(The very first bug in my record of bug fixes, in 1987, says that a long
string in printf causes a core dump.) Again, the error message identifies the
test file and the specific test within it.

Random input, usually generated by program, provides yet another kind of
stress data. A small AWK program generates files with lots of lines contain-
ing random numbers of fields of random contents; these can be used for a
variety of tests. Illegal input is also worth investigating. A standard exam-
ple is binary data, since AWK expects everything to be text; for example,
AWK survives these two tests:

12 ; L O G I N : V O L . 3 1 , N O . 2

awk -f awk “program” is raw binary
awk ‘{print}’ awk input data is raw binary

by producing a syntax error as expected for the first and by quietly stop-
ping after some early null byte in the input for the second. The program
generally seems robust against this kind of assault, though it is rash to
claim anything specific.

Test Mechanization

We want to automate testing as much as possible: let the machine do the
work. There are separate shell scripts for different types of tests, all run
from a single master script. In class, I describe the idea of running a lot of
tests, then type the command and talk through what is happening as the
test output scrolls by, a process that today takes two or three minutes
depending on the system. If nothing else, the students come away with a
sense of the number of tests and their nature.

Regression tests compare the output of the new version of the program to
the output of the old version on the same data. Comparing independent
implementations is similar to regression testing, except that we are com-
paring the output of two independent versions of the program. For AWK,
this is easy, since there are several others, notably GAWK.

Independent computation of the right answer is another valuable ap-
proach. A shell script writes the correct answer to a file, runs the test,
compares the results, and prints a message in case of error, as in the big-
string example above. As another illustration, this is one of the tests for
I/O redirection:

awk ‘NR%2 == 1 { print >>“foo” }
NR%2 == 0 { print >“foo” }’ /etc/passwd

cmp -s foo /etc/passwd || echo ‘BAD: T.redir (print > and >>“foo”)’

This prints alternate input lines with the “>” and “>>” output operators;
the result at the end should be that the input file has been copied to the
output.

Although this kind of test is the most useful, since it is the most portable
and least dependent on other things, it is among the hardest to create.

Notice that these examples use shell scripts or a scripting language like
AWK itself to control tests, and they rely on I/O redirection and UNIX
tools such as echo, grep, diff, cmp, sort, wc. This teaches something about
UNIX itself, as well as reminding students of the value of small tools for
mechanizing tasks that might otherwise be done by hand.

Specialized Languages

The most interesting kind of test is the use of specialized languages to gen-
erate test cases and assess their results. A program can convert a compact
specification into a set of tests, each with its own data and correct answer,
and run them. Regular expressions and substitution commands are tested
this way. For regular expressions, an AWK program (naturally) converts a
sequence of lines like this:

; LO G I N : A P R I L 2 0 0 6 CO D E TE STI N G A N D ITS RO L E I N TE AC H I N G 13

^a.$ ~ ax
aa

!~ xa
aaa
axy
““

into a sequence of test cases, each invoking AWK to run the test and evalu-
ate the answer. In effect, this is a simple language for regular expression
tests:

^a.$ ~ ax the pattern ^a.$ matches ax
aa and matches aa

!~ xa but does not match xa
aaa and does not match aaa
axy and does not match axy
““ and does not match the empty string

A similar language describes tests for the sub and gsub commands. A third
language describes input and output relations for expressions. The test
expression is the rest of the line after the word “try,” followed by inputs
and correct outputs one per line; again, an AWK program generates and
runs the tests.

try { print ($1 == 1) ? “yes” : “no” }
1 “yes
1.0 “yes
1E0 “yes
0.1E1 “yes
10E-1 “yes
01 “yes
10 “no
10E-2 “no

There are about 300 regular expression tests, 130 substitution tests, and
100 expression tests in these three little languages; more are easily added.
These languages demonstrate the value of specialized notations, and show
how one can profitably separate data from control flow. In effect, we are
doing table-driven testing.

Of course, this assumes that there is a version of AWK sufficiently trusted
to create these tests; fortunately, that is so basic that problems would be
caught before it got this far. Alternatively, they could be written in another
language.

Another group of tests performs consistency checks. For example, to test
that NR properly gives the number of input records after all input has been
read:

{ i++ } # add 1 for each input line
END { if (i != NR) print “BAD: inconsistent NR” }

Splitting an input line into fields should produce NF fields:

{ if (split($0, x) != NF)
print “BAD: wrong field count, line “, NR

}

Deleting all elements of an array should leave no elements in the array:

BEGIN {
for (i = 0; i < 100000; i++) x[i] = i
for (i in x) delete x[i]

14 ; L O G I N : V O L . 3 1 , N O . 2

n = 0
for (i in x) n++
if (n != 0)

print “BAD: delete count “ n “ should be 0”
}

Checking consistency is analogous to the use of assertions or pre- and
post-conditions in programming.

Advice

This section summarizes some of the lessons learned. Most of these are
obvious and every working programmer knows them, but students may
not have been exposed to them yet. Further advice may be found in
Chapter 6 of The Practice of Programming [3].

Mechanize. This is the most important lesson. The more automated your
testing process, the more likely that you will run it routinely and often.
And the more that tests and test data are generated automatically from
compact specifications, the easier it will be to extend them. For AWK, the
single command REGRESS runs all the tests. It produces several hundred
lines of output, but most consist just of file names that are printed as tests
progress. Having this large and easy-to-run set of tests has saved me from
much embarrassment. It’s all too easy to think that a change is benign
when, in fact, something has been broken. The test suite catches such
problems with high probability.

Watching test results scroll by obviously doesn’t work for large suites or
ones that run for a long time, so one would definitely modify this to auto-
mate reporting of errors if scaling up.

Make test output self-identifying. You have to know what tests ran and
especially which ones caused error messages, core dumps, etc.

Make sure you can reproduce a test that fails. Reset random number gen-
erators and files and anything else that might preserve state from one test
to the next. Each test should start with a clean slate.

Add a test for each bug. Better tests originally should have caught the bug.
At least this should prevent you from having to find this bug again.

Add tests for each new feature or change. A good time to figure out
whether a new feature or change works correctly is while it’s fresh; pre-
sumably there was some testing anyway, so make sure it’s preserved.

Never throw away a test. A corollary to the previous point.

Make sure that your tester reports progress. Too much output is bad, but
there has to be some. The AWK tests report the name of each file that is
being tested; if something seems to be taking too long, this gives a clue
about where the problem is.

Watch out for things that break. Make the test framework robust against
the many things that can go wrong: infinite loops, tests that prompt for
user input then wait forever for a response, tests that print spurious out-
put, and tests that don’t really distinguish success from failure.

Make your tests portable. Tests should run on more than one system; oth-
erwise, it’s too easy to miss errors in both your tests and your programs.
Shell commands, built-ins (or not) like echo, search paths for commands,
and the like are all potentially different on different machines; just because
something works one place is no guarantee that it will work elsewhere. I

; LO G I N : A P R I L 2 0 0 6 CO D E TE STI N G A N D ITS RO L E I N TE AC H I N G 15

eventually wrote my own echo command, since the shell built-ins and
local versions were so variable.

A few years ago I moved the tests to Solaris from the SGI Irix system,
where they had lived happily for more than a decade. This was an embar-
rassing debacle, since lots of things failed. For instance, the tests used grep
-s to look for a pattern without producing any output; the -s option means
“silent,” i.e., status only. But that was true in 7th Edition UNIX, not on
other systems, where it often means “don’t complain about missing files.”
The -q of Linux means “quiet,” but it’s illegal on Solaris. printf on some sys-
tems prints -0 for some values of zero. And so on. It was a mess, and
although the situation is now better, it’s still not perfect.

A current instance of this problem arises from the utter incompatibility of
the time command on different UNIX systems. It might be in /bin or in
/usr/bin or be a shell built-in (in some shells), and its output format will
vary accordingly. And if it’s a built-in its output can’t be redirected! It’s
tough to find a path through this thicket; I eventually wrote my own
version of time.

It has also been harder than anticipated to use GAWK as a reference imple-
mentation; although the AWK language is ostensibly standardized, there
are enough dark corners—for instance, when does a change in a field-
splitting string take effect?—that at least some tests just produce different
answers. The current test suite marks those as acceptable differences, but
this is not a good long-term solution.

Check your tests and scaffolding often. It’s easy to get into a rut and
assume that your tests are working because they produce the expected
(i.e., mostly empty) output. Go back from time to time and take a fresh
look—paths to programs and data may have changed underfoot and you
could be testing the wrong things. For instance, a few years ago, my “big”
data set somehow mutated into a tiny one. Machines have sped up to the
extent that I recently increased the “big” data by another order of
magnitude.

Keep records. I maintain a FIXES file that describes every change to the
code since the AWK book was published in 1988; this is analogous to
Knuth’s “The Errors of TEX” [4], though far less complete. For example,
this excerpt reveals a classic error in the C lexer:

Jul 31, 2003: fixed, thanks to andrey chernov and ruslan ermilov, a
bug in lex.c that mis-handled the character 255 in input. (it was
being compared to EOF with a signed comparison.)

As hinted at above, the C lexer has been a source of more than one prob-
lem:

Feb 10, 2001: fixed an appalling bug in gettok: any sequence of dig-
its, +, -, E, e, and period were accepted as a valid number if it started
with a period. this would never have happened with the lex version.

And one more, just to show how bugs can hide for very long periods
indeed:

Nov 22, 2003: fixed a bug in regular expressions that dates (so help
me) from 1977; it’s been there from the beginning. an anchored
longest match that was longer than the number of states triggered a
failure to initialize the machine properly. many thanks to moinak
ghosh for not only finding this one but for providing a fix, in some of
the most mysterious code known to man.

16 ; L O G I N : V O L . 3 1 , N O . 2

Teaching

I’ve mentioned several places where a discussion of testing is a natural part
of some other class topic; here are a handful of others.

One early assignment asks the students to program some variant of the
compact regular expression code in Chapter 9 of The Practice of
Programming [3]. As part of the assignment, they are required to create a
number of tests in a format similar to the specialized language shown
above and to write a program to exercise their code using their tests.
Naturally, I combine all their tests with my own. It’s sobering to see how
often programs work well with their author’s tests but not with tests writ-
ten by others; I continue to experiment with assignments that explore this
idea. (It’s also sobering to see how often the purported tests are in fact not
correct, which is another important lesson.)

I’ve also tried this assignment with unit tests—self-contained function calls
in a special driver routine—instead of a little language. The results have
been much less successful for checking individual programs, and it’s harder
to combine tests from a group of sources. For this application, the lan-
guage approach seems better.

Another assignment asks the students to write a Base64 encoder and
decoder from the one-page description in RFC 2045. This is a good exam-
ple of writing code to a standard, and since there are reference (binary)
implementations like OpenSSH, it’s possible to mix and match implemen-
tations, all controlled by a shell script, to verify interoperability. I also ask
students to write a program to generate a collection of nasty tests, which
forces them to think about boundary conditions. (It’s a good idea to write a
program anyway, since it’s easier to create arbitrary binary inputs by pro-
gram than with a text editor. A surprising number of student programs
don’t handle non-ASCII inputs properly, and this potential error has to be
tested for.)

Yet another assignment gives students a taste of a frequent real-world expe-
rience: having to make a small change in a big unfamiliar program without
breaking anything. The task is to download AWK from the Web site, then
add a couple of small features, like a repeat-until loop or a new built-in
function. This is easily done by grepping through the source looking for
affected places, then adding new code by pattern-matching old code.
Naturally, they also have to provide some self-contained tests that check
their implementations, and I can run my own tests to ensure that nothing
else was affected.

Two years ago, an especially diligent student ran some GAWK tests against
the AWK he had built, and encountered an infinite loop in parsing a pro-
gram, caused by a bug in my lexer. In 1997 I had replaced the ancient Lex
lexical analyzer with handcrafted C code in an effort to increase portability.
As might have been predicted, this instead decreased reliability; most of
the bugs of the past few years have been in this C code.

In any case, I eventually found the bug but by then it was time for the next
class. So I assigned the new class the task of finding and fixing the bug
(with some generous hints), and also asked them to find the shortest test
case that would display it. Most students fixed the bug, and several came
up with tests only two characters long (shorter than I had found) that trig-
gered the infinite loop. Unfortunately, since that bug fix is now published,
I can no longer use the assignment. Fortunately, the -safe bug described
above should work well in its place.

; LO G I N : A P R I L 2 0 0 6 CO D E TE STI N G A N D ITS RO L E I N TE AC H I N G 17

Conclusions

For working programmers, there’s no need to belabor the importance of
testing. But I have been pleased to see how much testing can be included
in a programming course—not as an add-on lecture but as an integral part
of a wide variety of other topics—and how many useful lessons can be
drawn from it.

It’s hard work to test a program, and there are often so many other pres-
sures on one’s time and energy that thorough testing can slide to the back
burner. But in my experience, once some initial effort has gone into creat-
ing tests and, more important, a way to run them automatically, the incre-
mental effort is small and the payoff very large. This has been especially
true for AWK, a language that has lived on far beyond anything the
authors would have believed when they wrote it nearly 30 years ago.

Acknowledgments

I am deeply indebted to Arnold Robbins and Nelson Beebe for nearly two
decades of invaluable help. Arnold, the maintainer of GAWK, has provided
code, bug fixes, test cases, advice, cautionary warnings, encouragement,
and inspiration. Nelson has provided thoughtful comments and a signifi-
cant number of test cases; his meticulous attention to portability issues is
without peer. My version of AWK is much the better for their contribu-
tions. I am also grateful to many others who have contributed bug reports
and code. They are too numerous to list here but are cited in the FIXES file
distributed with the source. Jon Bentley’s essays on scaffolding and little
languages [2] have influenced my thinking on testing and many other top-
ics. My thanks also to Jon, Gerard Holzmann, and David Weiss for most
helpful comments on drafts of this paper.

R E F E R E N C E S

[1] Al Aho, Brian Kernighan, and Peter Weinberger, The AWK Programming
Language, Addison-Wesley, 1988.

[2] Jon Bentley, Programming Pearls, Addison-Wesley, 2000.

[3] Brian Kernighan and Rob Pike, The Practice of Programming, Addison-
Wesley, 1998.

[4] Donald E. Knuth, “The Errors of TEX,” Software—Practice and Experi-
ence, vol. 19, no. 7, July 1989, pp. 607–685.

[5] Jon Bentley, Lynn Jelinski, and Brian Kernighan, “CHEM—A Program
for Phototypesetting Chemical Structure Diagrams,” Computers and Chem-
istry, vol. 11, no. 4, 1987, pp. 281–297.

[6] Source code for AWK is available at http://cm.bell-labs.com/cm/cs
/awkbook.

[7] The Web site for COS 333 is http://www.cs.princeton.edu/courses/
archive/spring06/cos333.

18 ; L O G I N : V O L . 3 1 , N O . 2

J O R R I T N . H E R D E R , H E R B E R T B O S ,
B E N G R A S , P H I L I P H O M B U R G ,
A N D A N D R E W S . T A N E N B A U M

modular system
programming in
MINIX 3
Jorrit Herder holds a M.Sc. degree in computer sci-
ence from the Vrije Universiteit in Amsterdam and is
currently a Ph.D. student there. His research focuses
on operating system reliability and security, and he
is closely involved in the design and implementation
of MINIX 3.

jnherder@cs.vu.nl

Herbert Bos obtained his M.Sc. from the University
of Twente in the Netherlands and his Ph.D. from the
Cambridge University Computer Laboratory. He is
currently an assistant professor at the Vrije
Universiteit Amsterdam, with a keen research inter-
est in operating systems, high-speed networks, and
security.

herbertb@cs.vu.nl

Ben Gras has a M.Sc. in computer science from the
Vrije Universiteit in Amsterdam and has previously
worked as a sysadmin and a programmer. He is now
employed by the VU in the Computer Systems
Section as a programmer working on the MINIX 3
project.

bjgras@cs.vu.nl

Philip Homburg received a Ph.D. from the Vrije
Universiteit in the field of wide-area distributed sys-
tems. Before joining this project, he experimented
with virtual memory, networking, and X Windows in
Minix-vmd and worked on advanced file systems in
the Logical Disk project.

philip@cs.vu.nl

Andrew S. Tanenbaum is a professor of computer
science at the Vrije Universiteit in Amsterdam. He
has written 16 books and 125 papers and is a Fellow
of the ACM and a Fellow of the IEEE. He firmly
believes that we need to radically change the struc-
ture of operating systems to make them more reli-
able and secure and that MINIX 3 is a small step in
this direction.

ast@cs.vu.nl

W H E N T H E F I R S T M O D E R N O P E R AT -
ing systems were being developed in the
early 1960s, the designers were so worried
about performance that these systems
were written in assembly language, even
though high-level languages such as FOR-
TRAN, MAD, and Algol were well estab-
lished. Reliability and security were not
even on the radar. Times have changed and
we now need to reexamine the need for
reliability in operating systems.

If you ask ordinary computer users what they like
least about their current operating system, few
people will mention speed. Instead, it will
probably be a neck-and-neck race among mind-
numbing complexity, lack of reliability, and securi-
ty in a broad sense (viruses, worms, etc.). We
believe that many of these problems can be traced
back to design decisions made 40 or 50 years ago.
In particular, the early designers’ goal of putting
speed above all else led to monolithic designs
with the entire operating system running as a sin-
gle binary program in kernel mode. When the
maximum memory available to the operating
system was only 32K words, as was the case with
MIT’s first timesharing system, CTSS, multi-
million-line operating systems were not possible
and the complexity was manageable.

As memories got larger, so did the operating sys-
tems, until we got to the current situation of
operating systems with hundreds of functions
interacting in such complex patterns that nobody
really understands how they work anymore.
While Windows XP, with 5 million LoC (Lines of
Code) in the kernel, is the worst offender in this
regard, Linux, with 3 million LoC, is rapidly
heading down the same path. We think this path
leads to a dead end.

Various studies have shown the number of bugs in
programs to be in the range 1–20 bugs per 1000
LoC [1]. Furthermore, operating systems tend to
be trickier than application programs, and device
drivers have an order of magnitude more bugs per
thousand LoC than the rest of the operating sys-
tem [2, 3]. Given millions of lines of poorly
understood code interacting in unconstrained
ways within a single address space, it is not
surprising that we have reliability and security
problems.

; LO G I N : A P R I L 2 0 0 6 M O D U L A R SYSTE M P RO G R A M M I N G I N M I N I X 3 19

Operating System Reliability

In our view, the only way to improve operating system reliability is to get
rid of the model of the operating system as one gigantic program running
in kernel mode, with every line of code capable of compromising or bring-
ing down the system. Nearly all the operating system functionality, and
especially all the device drivers, have to be moved to user-mode processes,
leaving only a tiny microkernel running in kernel mode. Moving the entire
operating system to a single user-mode process as in L4Linux [4] makes
rebooting the operating system after a crash faster, but does not address
the fundamental problem of every line of code being critical. What is
required is splitting the core of the operating system functionality—includ-
ing the file system, process management, and graphics—into multiple
processes, putting each device driver in a separate process, and very tightly
controlling what each component can do. Only with such an architecture
do we have a chance to improve system reliability.

The reasons that such a modular, multiserver design is better than a mono-
lithic one are threefold. First, by moving most of the code from kernel
mode to user mode, we are not reducing the number of bugs but we are
reducing the power of each bug to cause damage. Bugs in user-mode
processes have much less opportunity to trash critical kernel data struc-
tures and cannot touch hardware devices they have no business touching.
The crash of a user-mode process is rarely fatal, whereas a crash of the ker-
nel always is. By moving most of the code out of the kernel, we are moving
most of the bugs out as well.

Second, by breaking the operating system into many processes, each in its
own address space, we greatly restrict the propagation of faults. A bug in
the audio driver may turn the sound off, but it cannot wipe out the file
system by accident. In a monolithic system, in contrast, bugs in any func-
tion can destroy code and data structures in unrelated and much more crit-
ical functions.

Third, by constructing the system as a collection of user-mode processes,
the functionality of each module can be clearly determined, making the
entire system much easier to understand and simpler to implement. In
addition, the operating system’s maintainability will improve, because the
modules can be maintained independently from each other, as long as
interfaces and shared data structures are respected.

While this article does not focus on security directly, it is important to
mention that operating system reliability and security are closely related.
Security has usually been designed with the model of the multi-user sys-
tem in mind, not a single-user system where that user will run hostile
code. However, many security problems are caused by malicious code
injected by viruses and worms exploiting bugs such as buffer overruns. By
moving most of the code out of the kernel, exploits of operating system
components are rendered far less powerful. Overwriting the audio driver’s
stack may allow the intruder to cause the computer to make weird noises,
but it does not compromise system security, since the audio driver does
not have superuser privileges. Thus, while we will not discuss security
much hereafter, our design has great potential to improve security as well.

The observation that microkernels are good for reliability is not new. In the
1980s and 1990s numerous microkernels were constructed, including L4
[5], Mach [6], V [7], Chorus [8], and Amoeba [9]. None of these succeed-
ed in displacing monolithic operating systems with microkernel-based
ones, but we have learned a lot since then and the time is right to try

20 ; L O G I N : V O L . 3 1 , N O . 2

again. Even Microsoft understands this. The next version of Windows
(Vista) will feature many user-mode drivers, and Microsoft’s Singularity
research project is also based on a microkernel.

The MINIX 3 Architecture

To test out our ideas, we have constructed a POSIX-conformant prototype
system. As a base for the prototype, we used the MINIX operating system
due to its very small size and long history. MINIX is a free microkernel-
based operating system that comes with complete source code, mostly
written in C. The initial version was written by one of the authors (AST)
in 1987, and has been studied by many tens of thousands of students at
hundreds of universities for a period of 19 years; over the past 10 years
there have been almost no bug reports concerning the kernel, presumably
due to its small size.

We started with MINIX 2 and then modified it very heavily, moving the
drivers out of the kernel and much more, but we decided to keep the name
and call the new system MINIX 3. It is based on a microkernel now con-
taining under 4000 LoC, with numerous user-mode servers and drivers
that together constitute the operating system, as illustrated in Figure 1.
Despite this unconventional structure, to the user the system appears to be
just another UNIX variant. It runs two C compilers (ACK and gcc), as well
as many popular utilities—Emacs, vi, Perl, Python, Telnet, FTP, and 300
others. Recently, X Windows has also been ported to it. MINIX 3 is avail-
able at http://www.minix3.org with all the source code under the BSD
license.

F I G . 1 . S K E T C H O F T H E L A Y E R E D A R C H I T E C T U R E O F M I N I X 3

All applications, servers, and drivers run as isolated, user-mode processes. A
tiny, trusted kernel is the only part that runs in kernel mode. The layering is a
logical one, as all user processes are treated equally by the kernel.

Briefly, the microkernel handles hardware interrupts, low-level memory
management, process scheduling, and interprocess communication. The
latter is accomplished by primitives that allow processes to send fixed-
length messages to other processes they are authorized to send to. Most
communication is synchronous, with a sender or receiver blocking if the
other party is not ready. Sending a message takes about 500 nsec on a
2.2GHz Athlon. Although a system call usually takes two messages (a
request and a reply), even 10,000 system calls/sec would use only 1% of
the CPU, so message-passing overhead hardly affects performance at all. In

; LO G I N : A P R I L 2 0 0 6 M O D U L A R SYSTE M P RO G R A M M I N G I N M I N I X 3 21

addition, there is a nonblocking event notification mechanism. Pending
notifications are stored in a compact bitmap that is statically declared as
part of the process table. This message-passing scheme eliminates all ker-
nel buffer management and kernel buffer overruns, as well as many dead-
locks.

The next level up contains the device drivers, one per major device. Each
driver is a user process protected by the MMU the same way ordinary user
processes are protected. They are special only in the sense that they are
allowed to make a small number of kernel calls to obtain kernel services.
Typical kernel calls are writing a set of values to hardware I/O ports or
requesting that data be copied to or from a user process. A bitmap in the
kernel’s process table controls which calls each driver (and server) can
make. Also, the kernel knows which I/O ports the driver is allowed to use,
and copying is possible only with explicit permission.

The operating system interface is formed by a set of servers. The main ones
are the file server, the process manager, and the reincarnation server. User
processes make POSIX system calls by sending a message to one of these
servers, which then carries out the call. The reincarnation server is espe-
cially interesting, since it is the parent process of all the servers and driv-
ers. It is different from init, which is the root of ordinary user processes, as
it manages and guards the operating system. If a server or driver crashes or
otherwise exits, it becomes a zombie until the reincarnation server collects
it, at which time the reincarnation server looks in its tables to determine
what to do. The usual action is to create a new driver or server and to
inform the other processes that it is doing so.

Finally, we have the ordinary user processes, which have the ability to send
fixed-length messages to some of the servers requesting service, but basi-
cally have no other power. While message passing is used under the hood,
the system libraries offer the normal POSIX API to the programmer.

Living with Programming Restrictions

Having explained why microkernels are needed and how MINIX 3 is struc-
tured, it is now time to get to the heart of this article: the MINIX 3 pro-
gramming model and its implications. We will point out some of the prop-
erties, strengths, and weaknesses of the programming model in the text
below, but before we start, it is useful to recall that, historically, restricting
what programmers can do has often led to more reliable code. Let us con-
sider several examples.

First, when the first MMUs appeared, user programs were forced to make
system calls to perform I/O, rather than just start I/O devices themselves.
Of course, some of them complained that making kernel calls was slower
than talking to the I/O devices directly (and they were right), but a con-
sensus eventually emerged saying that this restriction on what a program-
mer could do was worth the small performance penalty, since bugs in user
code could no longer crash the computer.

Second, when E.W. Dijkstra wrote his now-famous letter “Goto Statement
Considered Harmful” [10], a massive hue and cry was raised by many pro-
grammers who felt their style of writing spaghetti-like code was being
threatened. Despite these initial objections, the idea caught on, and pro-
grammers learned to write well-structured programs.

22 ; L O G I N : V O L . 3 1 , N O . 2

Third, when object-oriented programming was introduced, many program-
mers balked at the idea, since they could no longer count on reading or
tweaking data structures internal to other objects, a previously common
practice in the name of efficiency. For example, when Java was introduced
to C programmers, many of them saw it as a straitjacket, since they could
no longer freely manipulate pointers. Nevertheless, object-oriented pro-
gramming is now common and has led to better-quality code.

The MINIX 3 Restrictions

In a similar vein, the MINIX 3 programming model is also more restrictive
for operating system developers than what came before it, but we believe
these restrictions will ultimately lead to a more reliable system. For the
time being, MINIX 3 is written in C, but gradually rewriting some of the
modules in a type-safe language, such as Cyclone, might be possible some-
day. Let us start our overview of the model by looking at some of these
restrictions.

Restricted kernel access. The MINIX 3 kernel exports various kernel calls
to support the user-mode servers and drivers of the operating system. Each
driver and server has a bitmap in the process table that restricts which of
the kernel calls it may use. This protection is quite fine-grained, so, for
example, a device driver may have permission to perform I/O or make
copies to and from user processes, but not to shut down the system, create
new processes, or (re)set restriction policies.

Memory protection. In the multiserver design of MINIX 3, all servers and
drivers of the operating system run as isolated user-mode processes. Each is
encapsulated in a private address space that is protected by the MMU hard-
ware. An illegal access attempt to another process’s memory raises an MMU
exception and causes the offender to be killed by the process manager. Of
course, the file system and device drivers need to interact with user processes
to perform I/O, but this is done using safe virtual copies mediated by the ker-
nel. A copy to another process is possible only when permission is explicitly
given by that process or a trusted process such as the file system. This
design takes away the trust from drivers and prevents memory corruption.

Restricted I/O port access. Each driver has a limited range of I/O ports
that it may access. Since user processes do not have I/O privileges, the ker-
nel has to mediate and can check whether the I/O request is permitted.
The allowed port ranges are set when a driver is started. For ISA devices
this is done with the help of configuration files; for PCI devices the port
ranges are automatically determined by the PCI bus server. The valid port
ranges for each driver are stored in the driver’s process table entry in the
kernel. This protection ensures that a printer driver cannot accidentally
write garbage to the disk, because any attempt to write to the disk’s I/O
ports will result in a failed kernel call. Servers and ordinary user processes
have no access to any I/O ports.

Restricted interprocess communication. Processes may not send messages
to arbitrary processes. Again, the kernel keeps track of who may send to
whom, and violations are prevented. The allowed IPC primitives and desti-
nations are set by the reincarnation server when a new system process is
started. For example, a driver may be allowed to communicate with just
the file server and no other process. This feature eliminates some bugs
where a process tries to send a message to another process that is not
expecting it.

; LO G I N : A P R I L 2 0 0 6 M O D U L A R SYSTE M P RO G R A M M I N G I N M I N I X 3 23

Operating System Development in User Space

Now let us look at some other aspects of the MINIX 3 programming
model. While there are some restrictions, as pointed out above, we believe
that programming in a multiserver operating system environment has
many benefits and may lead to higher productivity and better code quality.

Short development cycle. The huge difference between a monolithic and
a multiserver operating system immediately becomes clear when looking
at the development cycle of operating system components. System pro-
gramming on a monolithic system generally involves editing, compiling,
rebuilding the kernel, and rebooting to test the new component. A subse-
quent crash will require another reboot, and tedious, low-level debugging
usually follows, frequently without even a core dump. In contrast, the
development cycle on a multiserver system like MINIX 3 is much shorter.
Typically, the steps are limited to editing, compiling, testing, and debug-
ging. We will elaborate on these steps below.

Normal programming model. Because drivers and servers are just ordinary
user processes, they can use any libraries that are needed. In some cases,
even POSIX system calls can be used. The ability to do these things can be
contrasted with the more rigid environment available to programmers writ-
ing code for monolithic kernels. In essence, working in user mode makes
programming easier.

No system downtime. The required reboots for a monolithic operating
system effectively kick off all users, meaning that a separate development
system is to be preferred. In MINIX 3, no reboots are required to test new
components, so other users are not affected. Furthermore, bugs or other
problems are isolated in the new components and cannot affect the entire
system, because the new component is run as an independent process in a
restricted execution environment. Problems thus cannot propagate as in a
monolithic system.

Easy debugging. Debugging a device driver in a monolithic kernel is a real
challenge. Often the system just halts and the programmer does not have a
clue what went wrong. Using a simulator or emulator usually is of no use
because typically the device being driven is something new and not sup-
ported by the simulator or emulator. In contrast, in the MINIX 3 model, a
device driver is just a user process, so if it crashes, it leaves behind a core
dump that can be inspected using all the normal debugging tools. In addi-
tion, the output of all printf() statements in drivers and servers automatical-
ly goes to a log server, which writes it to a file. After a failed run with the
new driver, the programmer can examine the log to see what the driver
was doing just before it died.

Low barrier to entry. Because writing drivers and servers is much easier
than in conventional systems, researchers and others can try out new ones
easily. Ease of experimentation can advance the field by allowing people
with good ideas but little experience in kernel programming to try out
their ideas and build prototypes they would not be able to construct with
monolithic kernels. Although the hardest part of writing a new device
driver may be understanding the actual hardware, other operating system
components can be easy to realize. For example, the case study at the end
of this article illustrates how semaphore functionality can be added to
MINIX 3.

High productivity. Because operating system development in user space is
easier, the programmer can get the job done faster. Also, since no lengthy

24 ; L O G I N : V O L . 3 1 , N O . 2

system build is needed once the bug has been removed, time is saved.
Finally, since the system need not be rebooted after a driver crash, as soon
as the programmer has inspected the core dump and the log and has
updated the code, it is possible to test the new driver without a reboot.
With a monolithic kernel, two reboots are often needed: one to restart the
system after the crash and one to boot the newly built kernel.

Good accountability. When a driver or server crashes, it is completely
obvious which one it is (because its parent, the reincarnation server,
knows which process exited). As a consequence, it is much easier than in
monolithic systems to pin down whose fault the crash was and possibly
who is legally liable for the damage done. Holding the producers of com-
mercial software liable for their errors, in precisely the same way as the
producers of tires, medicines, and other products are held accountable,
may improve software quality.

Great flexibility. Our modular model offers great flexibility and makes sys-
tem administration much easier. Since operating system modules are just
processes, it is relatively easy to replace one. It becomes easier to configure
the operating system by mixing and matching modules. Furthermore, if a
device driver needs to be patched, this can usually be done on the fly,
without loss of service or downtime. Module substitution is much harder
in monolithic kernels and often requires a reboot. Finally, maintenance
also becomes easier, because all modules are small, independent, and well
understood.

Case Study: Message-Driven Programming in MINIX 3

We will now evaluate the MINIX 3 programming model aided by a little
case study that shows how semaphore functionality can be added to
MINIX 3. Although this is easier than implementing a new file server or
device driver, it illustrates some important aspects of MINIX 3.

Semaphores are positive integers, equal to or greater than zero, and sup-
port two operations, UP and DOWN, to synchronize multiple processes try-
ing to access a shared resource. A DOWN operation on semaphore S decre-
ments S unless S is zero, in which case it blocks the caller until some other
process increments S through an UP operation. Such functionality is typi-
cally part of the kernel in a monolithic system, but can be realized as a
separate user-space server in MINIX 3.

The structure of the MINIX 3 semaphore server is shown in Fig. 2. After
initialization, the server enters a main loop that continues forever. In each
iteration the server blocks and waits until a request message arrives. Once
a message has been received, the server inspects the request. If the type is
known, the associated handler function is called to process the request,
and the result is returned unless the caller must be blocked. Illegal request
types directly result in an erroneous reply.

As mentioned above, ordinary user processes in MINIX 3 are restricted to
synchronous message passing. A request will block the caller until the
response has arrived. We will use this to our advantage when constructing
the semaphore server. For UP operations, the server simply increments the
semaphore and directly sends a reply to let the caller continue. For DOWN
operations, in contrast, the reply is withheld until the semaphore can be
decremented, effectively blocking the caller until it is properly synchro-
nized. The semaphore has an associated (FIFO) queue of processes to keep
track of processes that are blocked. After an UP operation, the queue is
checked to see whether a waiting process can be unblocked.

; LO G I N : A P R I L 2 0 0 6 M O D U L A R SYSTE M P RO G R A M M I N G I N M I N I X 3 25

void semaphore_server() {
message m;
int result;
/* Initialize the semaphore server. */
initialize();
/* Main loop of server. Get work and process it. */
while(TRUE) {

/* Block and wait until a request message arrives. */
ipc_receive(&m);

/* Caller is now blocked. Dispatch based on message type. */
switch(m.m_type) {

case UP: result = do_up(&m); break;
case DOWN: result = do_down(&m); break;
default: result = EINVAL;

}
/* Send the reply, unless the caller must be blocked. */
if (result != EDONTREPLY) {

m.m_type = result;
ipc_reply(m.m_source, &m);

}
}

}

F I G . 2 . T H E M A I N L O O P O F A S E R V E R I M P L E M E N T I N G
O N E S E M A P H O R E , S

All servers and drivers have a similar main loop. The function initialize() is called
once before entering the main loop, but is not shown here. The handler functions
do_up() and do_down() are given in Fig. 3.

With the structure of the semaphore server in place, we need to arrange
that user processes can communicate with it. Once the server has been
started it is ready to serve requests. In principle, the programmer can
construct request messages and send them to the new server using
ipc_request(), but such details usually are conveniently hidden in the sys-
tem libraries, along with the other POSIX functions. Typically, new library
calls sem_up() and sem_down() would be added to libc to handle these
calls. Although this case study covers a very simplified semaphore server, it
can easily be extended to conform to the POSIX semaphore specification,
handle multiple semaphores, etc.

The modular structure of MINIX 3 helps to speed up the development of
the semaphore server in several ways. First, it can be implemented inde-
pendently from the rest of the operating system, just like ordinary user
applications. When it is finished, it can be compiled as a stand-alone
application and be dynamically started to become part of the operating sys-
tem. It is not necessary to build a new kernel or to reboot the system,
which prevents downtime, other users from being kicked off, disruption of
Web, mail, and FTP servers, etc. When the server is started, its privileges
are restricted according to the principle of least authority, so that testing
and debugging of the new semaphore server can be done without affecting
the rest of the system. Once it is ready, the startup scripts can be config-
ured to load the semaphore server automatically during operating system
initialization.

26 ; L O G I N : V O L . 3 1 , N O . 2

int do_down(message *m_ptr) {

/* Resource available. Decrement semaphore and reply. */
if (s > 0) {

s = s – 1; /* take a resource */
return(OK); /* let the caller continue */

}
/* Resource taken. Enqueue and block the caller. */
enqueue(m_ptr->m_source); /* add process to queue */
return(EDONTREPLY); /* do not reply in order to block the caller */

}

int do_up(message *m_ptr) {
message m; /* place to construct reply message */

/* Add resource, and return OK to let caller continue. */
s = s + 1; /* add a resource */

/* Check if there are processes blocked on the semaphore. */
if (queue_size() > 0) { /* are any processes blocked? */

m.m_type = OK;
m.m_source = dequeue(); /* remove process from queue */
s = s – 1; /* process takes a resource */
ipc_reply(m.m_source, m); /* reply to unblock the process */

}
return(OK); /* let the caller continue */

}

F I G . 3 . up A N D down O P E R A T I O N S
O F T H E S E M A P H O R E S E R V E R

The functions enqueue(), dequeue(), and queue_size() do list management and
are not shown.

Conclusion

MINIX 3 is a new, fully modular operating system designed to be highly
reliable. Like other innovations, our quest for reliability imposes certain
restrictions upon the execution environment, but the multiserver environ-
ment of MINIX 3 makes life much easier for the OS programmer. The
development cycle is shorter, system downtime is no longer required, the
programming interface is more POSIX-like, and testing and debugging
become easier. Programmer productivity is likely to increase, and code
quality might improve because of better accountability. The system admin-
istrator also benefits, since MINIX 3 improves configurability and main-
tainability of the operating system. Finally, we have illustrated the mes-
sage-driven programming model of MINIX 3 with the construction of a
simple semaphore server and discussed how its development benefits from
the modularity of MINIX 3. Interested readers can download MINIX 3
(including all the source code) from http://www.minix3.org. Over 50,000
people have already downloaded it; try it yourself.

R E F E R E N C E S

[1] T.J. Ostrand and E.J. Weyuker, “The Distribution of Faults in a Large
Industrial Software System,” Proceedings of the SIGSOFT International
Symposium on Software Testing and Analysis, ACM, 2002, pp. 55–64.

; LO G I N : A P R I L 2 0 0 6 M O D U L A R SYSTE M P RO G R A M M I N G I N M I N I X 3 27

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An Empirical
Study of Operating System Errors,” Proceedings of the 18th ACM Symposium
on Operating System Principles, 2001, pp. 73–88.

[3] M.M. Swift, M. Annamalai, B.N. Bershad, and H.M. Levy, “Recovering
Device Drivers,” Proceedings of the 6th Symposium on Operating System
Design and Implementation, 2004, pp. 1–15.

[4] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter, “The
Performance of µ-Kernel–Based Systems,” Proceedings of the 16th
Symposium on Operating System Principles, 1997, pp. 66–77.

[5] J. Liedtke, “On µ-Kernel Construction,” Proceedings of the 15th ACM
Symposium on Operating System Principles, 1995, pp. 237–250.

[6] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young,
“Mach: A New Kernel Foundation for UNIX Development,” Proceedings of
the USENIX 1986 Summer Conference, 1986, pp. 93–112.

[7] D.R. Cheriton, “The V Kernel: A Software Base for Distributed
Systems,” IEEE Software, vol. 1, no. 2, 1984, pp. 19–42.

[8] A. Bricker, M. Gien, M. Guillemont, J. Lipkis, D. Orr, and M. Rozier,
“A New Look at Microkernel–Based UNIX Operating Systems: Lessons in
Performance and Compatibility,” Proceedings of the EurOpen Spring 1991
Conference, 1991, pp. 13–32.

[9] S. Mullender, G. Van Rossum, A.S. Tanenbaum, R. Van Renesse, and
H. Van Staveren, “Amoeba: A Distributed Operating System for the 1990s,”
IEEE Computer Magazine, vol. 23, no. 5, 1990, pp. 44–54.

[10] E.W. Dijkstra, “Goto Statement Considered Harmful,” Communications
of the ACM, vol. 11, no. 3, 1968, pp. 147–148.

28 ; L O G I N : V O L . 3 1 , N O . 2

Please take a minute to complete this month’s

;login: Survey
to help us meet your needs

;login: is the benefit you, the members of USENIX, have rated most

highly. Please help us make this magazine even better.

Every issue of ;login: online now offers a brief survey, for you to

provide feedback on the articles in ;login: . Have ideas about

authors we should—or shouldn’t—include, or topics you’d like to

see covered? Let us know. See

http://www.usenix.org/publications/login/2006-04/

or go directly to the survey at

https://db.usenix.org/cgi-bin/loginpolls/april06login/survey.cgi

D I O M I D I S S P I N E L L I S

some types of
memory are more
equal than others
Diomidis Spinellis is an associate professor in the
Department of Management Science and
Technology at the Athens University of Economics
and Business, a FreeBSD committer, and a four-times
winner of the International Obfuscated C Code
Contest.

dds@aueb.gr

Parts of this article are excerpted from
Diomidis Spinellis’s Code Quality: The
Open Source Perspective, Addison Wesley,
2006. The last section was inspired by the
book’s Exercise 5–8.

I F W E W A N T T O M A K E I N T E L L I G E N T
decisions regarding the performance of our
systems, we must understand how the vari-
ous types of memory we find in them work
together to provide us with the illusion of a
huge and blindingly fast memory store. For
example, a program’s space requirements
often affect its execution speed. This hap-
pens because a computer system’s memory
is a complex amalgam of various memory
technologies, each with different cost, size,
and performance characteristics. Making
our program’s working set small enough to
get a front seat on a processor’s level 1
cache may provide us with a very notice-
able boost in its execution speed. Along the
same lines, in today’s networked comput-
ing environments and distributed applica-
tions, lower size requirements translate
into lower bandwidth requirements and,
therefore, swifter program loading and
operation. Finally, a program’s service
capacity is often constrained by the space
requirements of its data set.

Due to a number of engineering decisions involv-
ing complicated tradeoffs, modern computers
sport numerous different memory systems layered
on top of each other. (As a general rule, whenever
you see “complicated tradeoffs,” read “cost.”) At
any time, our data will be stored in one (or more)
of these many layers, and the way a program’s
code is organized may take advantage of the stor-
age system’s organization or be penalized by it.
Some of the layers we will talk about are related
to caching. In this article we describe them from
the viewpoint of storage organization.

Let us summarize how data storage is organized
on a modern computer. Figure 1, below, illustrates
the hierarchy formed by different storage tech-
nologies. Elements near the top represent scarce
resources: fast but expensive. As we move toward
the bottom the elements represent abundant
resources: cheap but slow. The fastest way to have
a processor process a data element is for the ele-
ment to be in a register (or an instruction). The
register is encoded as part of the CPU instruction
and is immediately available to it. However, this
advantage means that processors offer only a

; LO G I N : A P R I L 2 0 0 6 S OM E T Y P E S O F M E M O RY A R E M O R E E Q UA L TH A N OTH E R S 29

F I G U R E 1 . A M O D E R N C O M P U T E R ’ S S T O R A G E H I E R A R C H Y

small fixed number of registers (eight, for example, on the ia-32; 128 on
Sun’s SPARC architecture.) See how a data processing instruction (such as
add) is encoded on the arm architecture:

Rn is the source register and Rd the destination. Each register is encoded
using four bits, limiting the number of registers that can be represented
on this architecture to 16. Registers are used for storing local variables,
temporary values, function arguments, and return values. Nowadays, they
are allocated to their various uses by the compiler, which uses extremely
sophisticated algorithms for optimizing performance at a local and global
level. In older programs you may find this allocation specified by the pro-
grammers, based on their intuition of which values should be placed in a
register; here is a typical example from the Korn shell source code:

struct tbl *
global(n)

register const char *n;
{

register struct block *l = e->loc;
register struct tbl *vp;

register int c;
unsigned h;
bool_t array;
int val;

This strategy might have been beneficial when compilers had to fit in 64KB
of memory and could not afford to do anything clever with register alloca-
tion; modern compilers simply ignore the register keyword.

Main Memory and Its Caches

The next four layers of our hierarchy (from the level 1 cache up to the
main memory) involve the specification of data through a memory address.
This (typically 16, 32, or 64-bit) address is often encoded on a word sepa-
rate from the instruction (it can also be specified through a register) and
thus may involve an additional instruction fetch. Worse, it involves inter-
facing with dynamic RAMs, the storage technology used for a computer’s
main memory, which is simply not keeping pace with the speed increases
of modern processors. Fetching an instruction or data element from main
memory can have the processor wait for a time equivalent to that of the
execution of hundreds of instructions. To minimize this penalty, modern
processors include facilities for storing temporary copies of frequently used
data on faster, more versatile, more easily accessible, and, of course, more
expensive memory: a cache. For a number of reasons a memory cache is

30 ; L O G I N : V O L . 3 1 , N O . 2

typically organized as a set of blocks (typically 8–128 bytes long) contain-
ing the contents of consecutive memory addresses. Keep this fact in mind;
we’ll come back to it later on.

The level 1 cache is typically part of the processor’s die. It is often split into
an area used for storing instructions and one used for storing data, because
the two have different access patterns. To minimize the cache’s impact on
the die size (and therefore on the processor’s production yield1 and its
cost), this cache is kept relatively small. For example, the Sun Micro
SPARC I featured a 4KB instruction and a 2KB data cache; moving upward,
the Intel 3.2GHz Pentium 4 processor features a 1MB cache.

Because of the inherent size limitations of the on-chip cache, a level 2 cache
is sometimes implemented through a separate memory chip and control
logic, either packaged with the processor or located near the processor.
This can be a lot larger: it used to be 64KB on early 486 PC motherboards;
an Intel 3.2GHz Xeon processor comes with 2MB. Finally, computer manu-
facturers are increasingly introducing in their designs a level 3 cache, which
either involves different speed versus cost tradeoffs or is used for keeping a
coherent copy of data in multiprocessor designs.

How do these levels of the memory hierarchy relate to our code and its
properties? By reducing a program’s memory consumption and increasing
its locality of reference, we can often speed up its performance. All of us
have witnessed the pathological case where increased memory consump-
tion coupled with a lack of locality of reference leads to a dramatic per-
formance drop due to thrashing. In the following paragraphs we will
examine the winning side of the coin, where appropriate design and imple-
mentation decisions can lead to time performance increases.

Memory savings can translate into speed increases when the corresponding
data set is made to fit into a more efficient part of a memory hierarchy. In
an ideal world, all of our computer’s memory would consist of the high-
speed memory chips used in its cache. (This ideal world actually exists,
and it is called a government-funded supercomputer.) We can, however,
also pretend to live in the ideal world, by being frugal in the amount of
memory our application requires. If that amount is small enough to fit into
the level 2 (or, even better, the level 1) cache, then we will notice an (often
dramatic) speed increase. Here is an actual code comment detailing this
fact:

// Be aware that time will be affected by the buffer fitting/not
// fitting in the cache (ie, if default_total*sizeof(T) bytes
// fit in the cache).

Cases where the effort of fitting an application into a cache can be a worth-
while exercise typically involve tight, performance-critical, code. For
example, a JVM implementation that could fit in its entirety into a proces-
sor’s level 1 instruction cache would enjoy substantial performance benefits
over one that couldn’t.

There are, however, many cases where our program’s data or instructions
could never fit the processor’s cache. In such cases, improving a program’s
locality of reference can result in speed increases, as data elements are
more likely to be found in a cache. Improved locality of reference can
occur both at the microscopic level (e.g., two structure elements being
only 8 bytes apart) and at the macroscopic level (e.g., the entire working
set for a calculation fitting in a 256KB level 1 cache). Both can increase a
program’s speed, but for different reasons.

; LO G I N : A P R I L 2 0 0 6 S OM E T Y P E S O F M E M O RY A R E M O R E E Q UA L TH A N OTH E R S 31

1. A larger processor die means there is a higher
chance for an impurity to result in a malfunctioning
chip, thus lowering the production’s yield.

Related data elements that are very close together in memory have an
increased chance of appearing together in a cache block, one of them caus-
ing the other to be prefetched. Earlier on, we mentioned that caches organ-
ize their elements in blocks associated with consecutive memory addresses.
This organization can result in increased memory access efficiency, as the
second related element is fetched from the slow main memory as a side
effect of filling the corresponding cache block. For this reason some style
guides (such as the following excerpt from the FreeBSD documentation)
recommend placing structure members together ordered by use.

* When declaring variables in structures, declare them sorted
* by use, then by size, and then by alphabetical order. The
* first category normally doesn’t apply, but there are
* exceptions. Each one gets its own line.

(The exceptions referred to above are probably performance-critical sec-
tions of code, sensitive to the phenomenon we described.)

In other cases, a calculation may use a small percentage of a program’s
data. When that working set is concentrated in a way that allows it all to
fit into a cache at the same time, the calculations will all run at the speed
of the cache and not at that of the much slower main memory. Here is a
comment from the NetBSD TCP processing code describing the rationale
behind a design to improve the data’s locality of reference:

* (2) Allocate syn_cache structures in pages (or some other
* large chunk). This would probably be desirable for
* maintaining locality of reference anyway.

Locality of reference can also be important for code; here is another related
comment from the X Window System VGA server code:

* Reordered code for register starved CPU’s (Intel x86) plus
* it achieves better locality of code for other processors.

Disk Cache and Banked Memory

Moving down our memory hierarchy, before reaching the disk-based file
storage we encounter two strange beasts: the disk cache and banked mem-
ory. The disk cache is a classic case of space over time optimization, and
the banked memory is . . . embarrassing. Accessing data stored in either of
the two involves approximately the same processing overhead, and for this
reason they appear together in our table. Nevertheless, their purpose and
operation are completely different, so we’ll examine each one in turn.

The disk cache is an area of the main memory reserved for storing tempo-
rary copies of disk contents. Accessing data on disk-based storage is at
least an order of magnitude slower than accessing main memory. Note that
this figure represents a best (and relatively rare) case: sustained serial I/O
to or from a disk device. Any random-access operation involving a head
seek and a disk rotation is a lot slower; a six-orders-of-magnitude differ-
ence between disk and memory access time (12ms over 2ns) should not
surprise you. To overcome this burden, an operating system aggressively
keeps copies of the disk contents in an area of the main memory it reserves
for this purpose. Any subsequent read or write operations involving the
same contents (remember the locality-of-reference principle) can then be
satisfied by reading or writing the corresponding memory blocks. Of
course, the main memory differs from the disk in that its contents get lost
when power is lost; therefore, periodically (e.g., every 30 seconds on some
UNIX systems) the cache contents are written to disk.

32 ; L O G I N : V O L . 3 1 , N O . 2

Furthermore, for some types of data (such as elements of a database trans-
action log, or a file system’s directory contents—the so-called directory
metadata) the 30-second flush interval can be unacceptably high; such data
is often scheduled to be written to disk in a synchronous manner or
through a time-ordered journal. Keep in mind here that some file systems,
either by default (the Linux ext2fs) or through an option (the FreeBSD FFS
with soft updates enabled), will write directory metadata to disk in an
asynchronous manner. This affects what will happen when the system
powers down in an anomalous fashion, due to a power failure or a crash.
In some implementations, after a reboot the file system’s state may not be
consistent with the order of the operations that were performed on it
before the crash.

Nevertheless, the performance impact of the disk cache is big enough to
make a difference between a usable system and one that almost grinds to a
halt. For this reason, many modern operating systems will use all their free
memory as a disk cache.

As we mentioned, banked memory is an embarrassment; we would not be
discussing it at all but for the fact that the same embarrassment keeps
recurring (in different forms) every couple of years. Recall that with a vari-
able N bits wide we can address 2N different elements. Consider the task of
estimating the number of elements we might need to address (the size of
our address space) over the lifetime of our processor’s architecture. If we
allocate more bits to a variable (say, a machine’s address register) than
those we would need to address our data, we end up wasting valuable
resources. On the other hand, if we underestimate the number of elements
we might need to address, we will find ourselves in a tight corner.

Intel Address Addressing Stopgap measure
architecture bits limit

8080 16 64KB IA-16 segment registers

IA-16 20 1MB XMS (Extended Memory
Specification); LIM EMS
(Lotus/Intel/Microsoft
Expanded Memory
Specification)

IA-32 32 4GB PAE (Physical Address
Extensions); AWE (Address
Windowing Extensions)

T A B L E 1 . S U C C E S S I V E A D D R E S S S P A C E L I M I T A T I O N S
A N D T H E I R I N T E R I M S O L U T I O N S

In Table 1 you can see three generations of address space limitations en-
countered within the domain of Intel architectures, and a description of
the corresponding solutions. Note that the table refers only to an architec-
ture’s address space; we could draw similar tables for other variables, such
as those used for addressing physical bytes, bytes in a file, bytes on a disk,
and machines on the Internet. The technologies associated with the table’s
first two rows are fortunately no longer relevant. One would think that we
would have known by now to avoid repeating those mistakes, but this is,
sadly, untrue.

As of this writing, some programs and applications are facing the 4GB limit
of the 32-bit address space. There are systems, such as database servers
and busy Web application servers, that can benefit from having at their dis-
posal more than 4GB of physical memory. New members of the IA-32
architecture have hardware that can address more than 4GB of physical

; LO G I N : A P R I L 2 0 0 6 S OM E T Y P E S O F M E M O RY A R E M O R E E Q UA L TH A N OTH E R S 33

memory. This feature comes under the name Physical Address Extensions
(PAE). Nowadays we don’t need segment registers or BIOS calls to extend
the accessible memory range, because the processor’s paging hardware
already contains a physical-to-virtual address translation feature. All that is
needed is for the address translation tables to be extended to address more
than 4GB. Nevertheless, this processor feature still does not mean that an
application can transparently access more than 4GB of memory. At best,
the operating system can allocate different applications in a physical memo-
ry area larger than 4GB by appropriately manipulating their corresponding
virtual memory translation tables. Also, the operating system can provide
an API so that an application can request different parts of the physical
memory to be mapped into its virtual memory space—again, a stopgap
measure, which involves the overhead of operating system calls. An exam-
ple of such an API is the Address Windowing Extensions (AWE) available
on the Microsoft Windows system.

Swap Area and File-Based Disk Storage

The next level down in our memory storage hierarchy moves us away from
the relatively fast main memory into the domain governed by the (in com-
parison) abysmally slow and clunky mechanical elements of electromag-
netic storage devices (hard disks). The first element we encounter here is
the operating system’s swap area containing the memory pages it has tem-
porarily stored on the disk, in order to free the main memory for more
pressing needs. Also here might be pages of code that have not yet been
executed and will be paged in on demand. At the same level in terms of
performance, but more complicated to access in terms of the API, is the
file-based disk storage. Both areas have typically orders-of-magnitude larg-
er capacity than the system’s main memory. Keep in mind, however, that
on many operating systems the amount of available swap space or the
amount of heap space a process can allocate is fixed by the system admin-
istrator and cannot grow above the specified limit without manual admin-
istrative intervention. On many UNIX systems the available swap space is
determined by the size of the device or file specified in the swapon call and
the corresponding command; on Windows systems, the administrator can
place a hard limit on the maximum size of the paging file. It is therefore
unwise not to check the return value of a malloc memory allocation call
against the possibility of memory exhaustion. The code in the following
code excerpt could well crash when run on a system low on memory:

TMPOUTNAME = (char *) malloc (tmpname_len);
strcpy (TMPOUTNAME, tmpdir);

The importance of the file-based disk storage in relationship to a program’s
space performance is that disk space tends to be a lot larger than a system’s
main memory. Therefore, uncaching (Bentley’s term) is a strategy that can
save main memory by storing data into secondary storage. If the data is
persistent and rarely used, or does not exhibit a significant locality of refer-
ence in the program’s operation, then the program’s speed may not be
affected; in some cases by removing the caching overhead it may even be
improved. In other cases, when main memory gets tight, this approach
may be the only affordable one. As an example, the UNIX sort implementa-
tions will only sort a certain amount of data in-core. When the file to be
sorted exceeds that amount, the program will work by splitting its work
into parts sized according to the maximum amount it can sort. It will sort
each part in memory and write the result to a temporary disk file. Finally,
it will merge sort the temporary files, producing the end result. As another

34 ; L O G I N : V O L . 3 1 , N O . 2

example, the nvi editor will use a backing file to store the data correspon-
ding to the edited file. This makes it possible to edit arbitrarily large files,
limited only by the size of the available temporary disk space.

The Lineup

(Author pauses to don his flame retardant suit.) To give you a feeling of
how different memory types compare in practice, I’ve calculated some
numbers for a fairly typical configuration, based on some currently best-
selling middle-range components: an AMD Athlon XP 3000+ processor, a
256MB PC2700 DDR memory module, and a 250GB 7200 RPM Maxtor
hard drive. The results appear in Table 2. I obtained the component prices
from TigerDirect.com on January 19, 2006. I calculated the cost of the
cache memory by multiplying the processor’s price by the die area occu-
pied by the corresponding cache divided by the total size of the processor
die (I measured the sizes on a die photograph). The worst-case latency col-
umn lists the time it would take to fetch a byte under the worst possible
scenario: for example, a single byte from the same bank and following a
write for the DDR RAM, with a maximum seek, rotational latency, and
controller overhead for the hard drive. On the other hand, the sustained
throughout column lists numbers where the devices operate close to ideal
conditions for pumping out bytes as fast as possible: eight bytes delivered
at double the bus speed for the DDR RAM; the maximum sustained outer
diameter data rate for the hard drive. In all cases, the ratio between band-
width implied by the worst-case latency and the sustained bandwidth is at
least one order of magnitude, and it is this difference that allows our
machines to deliver the performance we expect. In particular, the ratio is
27 for the level 1 cache, 56 for the level 2 cache, 76 for the DDR RAM, and
1.8 million for the hard drive. Note that as we move away from the proces-
sor there are more tricks we can play to increase the bandwidth, and we
can get away with more factors that increase the latency.

The byte cost for each different kind of memory varies by three orders of
magnitude: with one dollar we can buy KBs of cache memory, MBs of DDR
RAM, and GBs of disk space. However, as one would expect, cheaper
memory has a higher latency and a lower throughput. Things get more
interesting when we examine the productivity of various memory types.
Productivity is typically measured as output per unit of input; in our case,
I calculated it as read operations per second and $ cost for one byte. As
you can see, if we look at the best-case scenarios (the device operating at
its maximum bandwidth), the hard drive’s bytes are the most productive.
In the worst case (latency-based) scenarios the productivity performance of
the disk is abysmal, and this is why disks are nowadays furnished with
abundant amounts of cache memory (8MB in our case). The most produc-
tive device in the worst-case latency-based measurements is the DDR RAM.
These results are what we would expect from an engineering point of view:
the hard disk, which is a workhorse used for storing large amounts of data
with the minimum cost, should offer the best overall productivity under

; LO G I N : A P R I L 2 0 0 6 S OM E T Y P E S O F M E M O RY A R E M O R E E Q UA L TH A N OTH E R S 35

Nominal Worst case Sustained Productivity
Component size latency throughput $1 buys (Bytes read / s / $)

(MB/s) Worst case Best case
L1 D cache 64KB 1.4ns 19022 10.7KB 7.91·1012 2.19·1014

L2 cache 512KB 9.7ns 5519 12.8KB 1.35·1012 7.61·1013

DDR RAM 256MB 28.5ns 2541 9.48MB 3.48·1014 2.65·1016

Hard drive 250GB 25.6ms 67 2.91GB 1.22·1011 2.17·1017

T A B L E 2 . P E R F O R M A N C E A N D C O S T O F V A R I O U S M E M O R Y T Y P E S

ideal (best-case) conditions, while the DDR RAM, which is used for satisfy-
ing a system’s general-purpose storage requirements, should offer the best
overall productivity even under worst-case conditions. Also note the low
productivity of the level 1 and level 2 caches. This factor easily explains
why processor caches are relatively small: they work admirably, but they
are expensive for the work they do.

What can we, as programmers and system administrators, learn from these
numbers? Modeling the memory performance of modern systems is any-
thing but trivial. As a programmer, try to keep the amount of memory
you use low and increase the locality of reference so as to take advantage
of the available caches and bandwidth-enhancing mechanisms. As a system
administrator, try to understand your users’ memory requirements in terms
of the hierarchy we saw before making purchasing decisions; depending on
workload, you may want to trade processor speed for memory capacity or
bandwidth, or the opposite. Finally, always measure carefully before you
think about optimizing. And next time you send a program whizzing
through your computer’s memory devices, spare a second to marvel at the
sophisticated technical and economic ecosystem these devices form.

36 ; L O G I N : V O L . 3 1 , N O . 2

15–19 May 2006
Aula Congresscentre, Delft, The Netherlands

5th System Administration and Network Engineering Conference

www.sane.nl/sane2006
A conference organized by Stichting SANE,

co-sponsored by Stichting NLnet, USENIX, SURFnet, and NLUUG

The 5th System Administration and Network Engineering Conference will offer three days of training followed
by a two-day conference program, filled with the latest developments in system administration, network
engineering, security, open source software, and practical approaches to your problems and puzzles. You will
also have the opportunity to meet other system administrators and network professionals and chat with
peers who share your concerns and interests.

; LO G I N : A P R I L 2 0 0 6 S I M P L E S O F T WA R E F LOW A N A LYS I S U S I N G G N U C F LOW 37

C H A O S G O L U B I T S K Y

simple software
flow analysis
using GNU cflow
Chaos Golubitsky is a software security analyst. She
has a BA from Swarthmore College, a background in
UNIX system administration, and an MS in informa-
tion security.

chaos@glassonion.org

A C A L L G R A P H I S A T E X T - B A S E D O R
graphical diagram showing which func-
tions inside a code base invoke which other
functions. Accurate call graphs aid many
debugging and software analysis tasks. For
example, when viewing a code base for the
first time, an examiner can tell from a call
graph whether the code structure is flat or
modular, and which functions are the
busiest. Later in analysis, a call graph can
be used to answer specific questions, such
as which other functions within the code
invoke a specific function of interest.

GNU cflow is a new tool which can be used to
quickly and easily generate flexible and accurate
text-based call graphs of C programs. In this arti-
cle I will introduce cflow, with an eye towards
describing how it can be used to easily create
accurate call graphs.

History and Motivation

The cflow tool was initially developed in the
1990s, and the older version is referred to as
POSIX cflow. I first encountered POSIX cflow
while performing a vulnerability analysis of open
source software [1], for which I needed a simple
source of data about reachable functions within a
code base. The POSIX specification for the cflow
tool [2] requires that the tool be capable of
generating forward and reverse flow graphs up to
a specified depth, and that the user be able to
specify classes of symbols, such as static functions
or typedefs, which should be printed or omitted.
The POSIX tool provides this relatively limited
functionality, and is no longer being actively
maintained.

The cflow project was restarted last year due to
interest in a simple tool which could generate call
graphs, and the first alpha release of GNU cflow
[3] occurred in April 2005. The GNU version of
the tool is significantly more flexible than the
POSIX specification requires, and is being actively
maintained and improved.

Basic Functionality

In its simplest use, cflow is called with the name
of one or more C source files as arguments. Cflow
uses a custom C lexical analyzer to interpret the

source code, and prints a call graph of the code, starting with the main()
function.

Cflow’s basic functionality can be demonstrated using a classic example:

#include <stdio.h>

void howdy();

int main() {
howdy();
exit(0);

}
void howdy() {

printf(“hi, world!\n”);
}

If this example is stored as hello.c, then running cflow hello.c will produce:

main() <int main () at hello.c:5>:
howdy() <void howdy () at hello.c:9>:

printf()
exit()

GNU cflow’s main strength is that it can easily be configured to present call
data in useful ways. Cflow’s behavior can be modified using two major
approaches. First, cflow can be invoked with options which present the
call graph data in various ways. These options can be used to quickly find
whatever data is needed to answer a particular question, or to format the
call data for processing via script or some other external program. Second,
cflow can be called with options which modify how it processes the source
code and, therefore, what information will be contained in its results. I will
discuss each of these in turn.

Customizing Cflow’s Output Format

Cflow has two major output modes. In tree mode, which is the default,
cflow prints functions one per line, using indentation to indicate call rela-
tionships. In cross-reference mode, cflow prints a two-column list contain-
ing one line for each caller/callee pair within the code base.

C RO S S - R E F E R E N C E M O D E

Cross-reference mode, which is invoked using the -x flag, is the simpler of
the modes, and is not very customizable. In addition to cross-references, it
includes a special line for the beginning of each function definition in a
file. Therefore, this mode can also be used to quickly obtain a list of the
locations of all function definitions within a given file:

cflow -x filename.c | awk ‘$2==“*” {print $1 “\t\t” $3}’

TR E E M O D E

Tree mode is the default and is much more flexible. When invoked without
arguments, cflow looks for a function called main(), and produces an
indented call graph of that function and all functions it calls. The -m flag
tells cflow to begin the tree using a different function. If the specified func-
tion is not found, cflow will print a tree for every function in the examined
file or files. Reverse mode (-r) prints a reverse call tree, and always prints
information about every function in the file.

38 ; L O G I N : V O L . 3 1 , N O . 2

Several flags are available which affect how much information, beyond
function names, is included in cflow’s output. These include -n (number
each line of output), -l (label each line of output with the call depth of
the function listed on that line), --omit-arguments and --omit-symbol-names
(shorten the information printed about each function declaration). The
--level-indent flag can be used to gain fine-grained control over the spacing
and layout of the functions, but -T provides a good set of defaults which
give reasonable visual call tree output. Further, the argument --format=posix
can be used to obtain output similar (though not identical) to that pro-
duced by the older POSIX cflow program.

In tree mode (either standard or reverse), the -d N argument tells cflow to
report only N levels of output. This option can be used to quickly print a
list of all functions which are called by any function within a file of inter-
est. (Note that this is most easily done in reverse tree mode, since forward
tree mode examines only the main() function by default):

cflow -r -d 1 filename.c

I typically format cflow output for automated processing by custom scripts.
However, cflow output can also be used as input for other graphing or pro-
cessing software. A couple of examples are worth mentioning here. Cflow
can be used in combination with the tool cflow2vcg to produce visual call
graphs under the VCG graphing package [4]. Additionally, Emacs users
may be interested in the emacs cflow-mode module which is packaged
with cflow [5].

Customizing Cflow’s Source Code Analysis

Cflow implements its own lexical analyzer for the C language, and there
are several ways to control its behavior. In this section I will discuss some
options which affect how cflow finds functions and definitions within C
source code.

At the simplest level, the -i flag can be used to define subsets of symbols
which should or should not be reported, including static symbols, type-
defs, symbols whose names begin with underscores, and external symbols.

P R E P RO C E S S O R O P TI O N S

GNU cflow does not use a preprocessor by default. When invoked with the
argument --cpp, cflow preprocesses the code using the cpp executable or a
user-specified preprocessor. Using --cpp increases the accuracy of cflow’s
output, but has some visible effects. Most notably, functions which are
implemented as #define statements are silently unrolled. This can occa-
sionally cause confusing output: for instance, getc() is often implemented
by operating systems as a wrapper for another function. It may be confus-
ing to find __srget() in cflow’s output with no indication of what invoked
it. The older POSIX cflow always used a preprocessor, and preprocessor
mode is likely to be desirable for most analysis, but it can sometimes be
helpful to produce GNU cflow output without a preprocessor.

When invoked with --cpp, GNU cflow searches for function definitions in
system header files. It is possible to tweak the set of directories which
cflow should search for function definitions using the -I (include dir) and
-U (undefine) flags. (These flags imply --cpp.) These flags are needed if we
wish to use cflow to parse complex source code accurately.

; LO G I N : A P R I L 2 0 0 6 S I M P L E S O F T WA R E F LOW A N A LYS I S U S I N G G N U C F LOW 39

E M B E D D I N G C F LOW I N M A K E F I L E S

For very small code bases, or to answer simple or file-specific questions, it
can be sufficient to manually run cflow on a small number of C source
files. However, in order for cflow to provide accurate results for complex
code bases, it must process the code the same way the makefile processes
it, to ensure that the function relations cflow finds are the same as those
compiled into the software. Some more complex source analysis tools (e.g.,
the OCaml-based C representation language Cil [6]) compile the code as a
side effect of analyzing it, and can therefore be trivially embedded in make-
files as compiler replacements. Since cflow does not do this, it is necessary
to manually insert cflow-specific rules into the makefile. Makefile editing
requires some effort, but it is often worthwhile due to the increased accu-
racy.

The general idea is to create a separate make target named, for instance,
program.cflow, and configure this target to run cflow using:

n The compiler definitions used for this code base
n The include directives used for this code base
n The preprocessor flags used for this code base
n The file names compiled by this code base

It should be possible to use makefile variables to obtain the correct values
for each of these items. In addition, the cflow -o flag is used to save the
output to a file, and any desired cflow-specific flags are also set. Here is an
example of this configuration which is appropriate for inclusion in a GNU-
style Makefile.in file [7]:

program_CFLOW_INPUT = $(program_OBJECTS:.@OBJEXT@=.c)
CFLOW_FLAGS = -i^s --brief

program.cflow: $(program_CFLOW_INPUT) Makefile
cflow -o$@ $(CFLOW_FLAGS) $(DEFS) $(DEFAULT_INCLUDES) \

$(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \
$(program_CFLOW_INPUT)

With this configuration, the invocation make program.cflow should suffice
to run cflow on the code base as it will be compiled. The CFLOW_FLAGS
variable can be changed in order to run cflow with a different set of
options.

Summary

In software analysis, it is often useful to be able to identify caller/callee
relationships within a code base, and to display such relationships in
usable formats. GNU cflow is a simple tool which performs this function
accurately. Cflow builds on the decade-old tool of the same name by pro-
viding flexible options which significantly increase cflow’s utility and ease
of use. GNU cflow is recommended as a first-line tool for answering ques-
tions about software call flow.

40 ; L O G I N : V O L . 3 1 , N O . 2

R E F E R E N C E S

[1] http://www.usenix.org/events/lisa05/tech/golubitsky.html

[2] http://www.opengroup.org/onlinepubs/009695399/utilities/cflow.html

[3] http://www.gnu.org/software/cflow/

[4] http://www.gnu.org/software/cflow/manual/html_node
/Output-Formats.html

[5] http://www.gnu.org/software/cflow/manual/html_node/Emacs.html

[6] http://manju.cs.berkeley.edu/cil/

[7] http://www.gnu.org/software/cflow/manual/html_node/Makefiles.html

; LO G I N : A P R I L 2 0 0 6 S I M P L E S O F T WA R E F LOW A N A LYS I S U S I N G G N U C F LOW 41

42 ; L O G I N : V O L . 3 1 , N O . 2

L U K E K A N I E S

why you should
use Ruby
Luke Kanies runs Reductive Labs (http://reductivelabs
.com), a startup producing OSS software for central-
ized, automated server administration. He has been
a UNIX sysadmin for nine years and has published
multiple articles on UNIX tools and best practices.

luke@madstop.com

A B O U T T W O Y E A R S A G O , I S W I T C H E D
from doing all of my development in Perl [1]
to using Ruby [2] for everything. I was an
independent consultant at the time, writ-
ing a prototype for a new tool (now avail-
able and called Puppet [3]); I had been writ-
ing tons of Perl since about 1998, and until I
tried to write this prototype I really thought
Perl was the perfect solution to my pro-
gramming needs—I could do OO, I could do
quick one-offs, and it was available every-
where. It seemed I could also think pretty
well in Perl, so it didn’t take long to trans-
late what I wanted into functional code.

That all changed when I tried to write this proto-
type. I tried to do it in Perl, but I just couldn’t
turn my idea into code; I don’t know why, but I
couldn’t make the translation. I tried it in Python,
because I’d heard lots about how great Python
was, but for some reason Python always makes
my eyes bleed. So, in desperation, I took a stab at
Ruby. Prior to this work, I had never seen a line of
Ruby and had never heard anything concrete
about it or why one would use it, but in four
short hours I had a functional prototype; I felt as
though a veil had been drawn from my eyes, that I
had previously been working much harder than
necessary.

I couldn’t have told you then what it was about
Ruby exactly, but there was something that clearly
just seemed to make it easier to write code, even
code that did complicated things. Since then, I’ve
gotten much better at Ruby and a good bit more
cognizant of what sets it apart.

You could argue that mine was a personal experi-
ence and that most people would not benefit as
much from a switch to Ruby, and in some ways
you would be right—I wrote a lot of OO code in
Perl, which isn’t exactly pleasant, and I generally
hate it when I have to do work that the computer
can do (you almost never have to actually use a
semicolon to end a line in Ruby). But the goal of
this article is to convince you that just about any-
one would find benefit from a switch to Ruby,
especially if you use or write many libraries or if
you use your scripting language as your primary
interface to your network.

This article is definitely not meant to teach you
how to write Ruby; the Pragmatic Programmers
[4] have written a great book [5] on Ruby, and I

highly recommend it. I also recommend reading Paul Graham’s essays on
programming language power [6] and beating the averages [7]; they do a
good job of discussing what to think about in language choice.

All of the following examples were written as simple Ruby scripts in a sep-
arate file (I keep a “test.rb” file or equivalent for every interpreted language
I write in, and that’s what I used for all of these examples), and the output
of each is presented prefixed with =>. To run the examples yourself, just
put the code into something like example.rb and run ruby example.rb. You
could also use the separate irb executable to run these examples, but the
output will be slightly different.

What’s So Special About Ruby?

I can’t point to one hard thing that makes Ruby great—if I tried, I would
just end up saying something silly like, “It just works the way I expect,”
and that wouldn’t be very useful. Instead, I’ll run through some of the
things that I love and that really change how I use it.

E V E RY TH I N G I S A N O BJ E C T

Yes, Marjorie, everything. No, there are no exceptions (heh, rather, even
the Exceptions are objects); there aren’t special cases. Classes are objects,
strings are objects, numbers are objects:

[Class, “a string”, 15, File.open(“/etc/passwd”)].each { |obj|
puts “‘%s’ is of type %s” % [obj, obj.class]

}
=> ‘Class’ is of type Class
=> ‘a string’ is of type String
=> ‘15’ is of type Fixnum
=> ‘#<File:0x210310>‘ is of type File

Here we have a list of objects and we print a string describing each object
in turn (puts just prints the string with a carriage return at the end). When
you create a new class, it’s an instance of the Class object. This each syntax
is how pretty much all iteration is done in Ruby—you can use for loops,
but $10 says you won’t once you get used to each.

TH E R E A R E N O O P E R ATO R S

Did you notice that % method in the example above? Yeah, that’s a
method, not an operator. What’s the difference? Well, the parser defines an
operator, but the object’s class defines a method. In Perl, you have one
operator for adding strings, . (a period), and one operator for adding num-
bers, +, because those operators are part of the language and the parser
can’t easily type-check the arguments to verify that you passed the right
arguments all around. But in Ruby, each class just implements a + method
that behaves correctly, including any type-checking.

It gets better. The indexing syntax for hashes and arrays is also a method,
and you can define your own versions:

class Yayness
def initialize(hash)

@params = hash

end

; LO G I N : A P R I L 2 0 0 6 W H Y YO U S H O U L D U S E R U BY 43

def [](name)
@params[name]

end

def []=(name, value)
@params[name] = value

end

end

y = Yayness.new(:param => “value”, :foo => “bar”)
puts y[:foo]
y[:funtest] = “a string”
puts y[:funtest]

=> bar

=> a string

That funny term with the colons is called a “Symbol,” and it’s basically a
simple constant, like an immutable string. It’s very useful for those cases
where you would normally use an unchanging string, such as for hash
keys, but you’re too lazy to actually type two quotation marks. Actually,
one of the reasons I like them so much is that Vim colorizes them quite
differently from strings, making them easier to read.

Why would you use these indexing methods? A large number of my class-
es have a collection of parameters, and this makes it trivial to provide di-
rect access to those parameters. Sometimes it makes sense to subclass the
Hash class, but there are plenty of other times where you want to wrap one
or more hashes, and these methods make that very easy. I also often define
these methods on the classes themselves, so that I can retrieve instances by
name:

class Yayness
attr_accessor :name
@instances = {}
def Yayness.[](instname)

@instances[instname]

end

def Yayness.[]=(instname, object)
@instances[instname] = object

end

def initialize(myname)
self.class[myname] = self
@name = myname

end

end

first = Yayness.new(:first)
second = Yayness.new(:second)

puts Yayness[:first].name
=> first

Here I’ve used attr_accessor (which is a method on the Module class, and
thus available in all class definitions) to define getter/setter methods for
name, and then some methods for storing and retrieving instances by
name. I also use this frequently, possibly even too frequently. In Ruby,
instance variables are denoted by prefixing them with an @ sigil; so, in this

44 ; L O G I N : V O L . 3 1 , N O . 2

case, calling the name method on a Yayness object will return the value of
@name.

The initialize method, by the way, is kind of like a constructor in Ruby—I
say “kind of” because it’s actually called after the object exists and is only
expected to (of course) initialize the object, not create it.

I NTRO S P E C TI O N

Ruby is insanely introspective. We’ve already seen how you can ask any
object what type of object it is (using the class method), and there are a
bunch of complementary methods for asking things like whether an object
is an instance of a given class, but you can also ask what methods are
available for an object, or even how many arguments a given method
expects:

class Funtest
def foo(one, two)

puts “Got %s and %s” % [one, two]
end

end

class Yaytest
def foo(one)

puts “Only got %s” % one
end

end

[Funtest.new, Yaytest.new, “a string”].each { |obj|
if obj.respond_to? :foo

if obj.method(:foo).arity == 1
obj.foo(“one argument”)

else
obj.foo(“first argument”, “second argument”)

end
else

puts “‘%s’ does not respond to :foo” % obj
end

}

=> Got first argument and second argument
=> Only got one argument
=> ‘a string’ does not respond to :foo

Here we create two classes, each with a foo method but each accepting a
different number of arguments. We then iterate over a list containing an
instance of each of those classes, plus a string (which does not respond to
the foo method); if the object responds to the method we’re looking for, we
retrieve the method (yes, we get an actual Method object) and ask that
method how many arguments it expects (called its arity).

You can see here that I’m using a Symbol for the method name during the
introspection; this is common practice in the Ruby world, even though I
could have used a string.

ITE R ATI O N

You’ve already seen the each method on arrays (it also works on hashes),
and you probably thought, “Oh, well, my language has that and it’s called

; LO G I N : A P R I L 2 0 0 6 W H Y YO U S H O U L D U S E R U BY 45

‘map,’ ” or something similar. Well, Ruby goes a bit further. Ruby attempts
to duck the multiple inheritance problem by supporting only single inheri-
tance but allowing you to mix in Modules. I’ll leave it to the documenta-
tion to cover all of the details, but Ruby ships with a few modules that are
especially useful, and the Enumerable module is at the top of the list:

class Funtest
include Enumerable
def each

@params.each { |key, value|
yield key, value

}
end
def initialize(hash)

@params = hash
end

end
f = Funtest.new(:first => “foo”, :second => 59, :third => :symbol)
f.each { |key, value|

puts “Value %s is %s of type %s” % [key, value, value.class]
}
puts f.find { |key, value| value.is_a?(Symbol) }.join(“ => “)
puts f.collect { |key, value| value.to_s }.join(“--”)

=> Value second is 59 of type Fixnum
=> Value first is foo of type String
=> Value third is symbol of type Symbol
=> third => symbol
=> 59---foo---symbol

Here we define a simple class that accepts a hash as an argument and then
an each method that yields each key/value pair in turn (you’ll have to hit
the docs for more info on how yield works—it took me a while to under-
stand it, but it was worth it). By itself our class isn’t so useful, but when
we include the Enumerable module, we get a bunch of other methods for
free. I’ve shown two useful methods: find (which finds the first key/value
pair for which the test is true, and returns the pair as an array) and collect
(which collects the output of the iterative code and returns it as a new
array).

You can see that our each code did exactly as we expected, but we also eas-
ily found the first Symbol in the list (find_all will return an array contain-
ing all matching elements). In addition, we used collect to create an array
of strings (just about every object in Ruby accepts the to_s method to con-
vert it to a string, although you generally have to define the method your-
self on your own classes for it to be meaningful).

The great thing here is that we just defined one simple method and got a
bunch of other powerful iterative methods. Another useful module is
Comparable; if you define the comparison method <=> and include this
module, then you get a bunch of other comparison methods for free (e.g.,
>, <=, and ==).

B LO C KS

On the one hand, I feel as though I should talk about blocks, because they
really are one of the most powerful parts of Ruby; on the other hand, I
know that I am not up to adequately explaining in such a short article how

46 ; L O G I N : V O L . 3 1 , N O . 2

they work and why you’d use them. I’m going to take a shot at such an
explanation, but I fear that I’ll only confuse you; please blame any confu-
sion on me, and not on Ruby. As you use Ruby, you’ll naturally invest more
in using and understanding blocks, but you can survive in Ruby just fine
without worrying about them. It’s worth noting, though, that the iteration
examples above all use blocks—each, find, etc., are all called with blocks.

Blocks just keep looking more powerful the more I use them. They’re rela-
tively simple in concept, and many languages have something somewhat
similar—they’re just anonymous subroutines, really—but the way Ruby
uses them goes far beyond what I’ve seen in most places. As a simple
example, many objects accept blocks as an argument and will behave dif-
ferently—files will automatically close at the end of a block, for instance—
if a block is provided:

File.open(“/etc/passwd”) { |f|
puts f.read

}

Once you get used to blocks automatically cleaning up after you, it
becomes quite addictive. I often find myself creating simple methods that
do some setup, execute the block, and then clean up. For instance, here’s a
simple method for executing code as a different user (the method is signifi-
cantly simplified from what I actually use):

def asuser(name)
require ‘etc’
uid = Etc.getpwnam(nam).uid
Process.euid = uid
yield
Process.euid = Process.uid

end

asuser(“luke”) {
File.unlink(“/home/luke/.rhosts”)

}

We convert the name to a number using the Etc module (which is basical-
ly just an interface to POSIX methods), and then we set the effective user
ID to the specified user’s. We use yield to give control back to the calling
code (which just executes the associated block), and then reset the EUID
to the normal UID.

This is a very simple example; there are a huge number of methods in
Ruby that accept blocks, and there are many ways of using them to make
your life easier. I recently refactored the whole structure of Puppet around
using blocks where I hadn’t previously, and the result was a huge increase
in clarity and, thus, productivity. Here’s a hint: if you find yourself dynami-
cally creating modules or classes, note that you can use a block when
doing so:

myclass = Class.new {
def foo

puts “called foo”
end

}
a = myclass.new
a.foo
=> called foo

Here I’m defining a class at runtime, rather than at compile-time, and
using a block to define a method on that class.

; LO G I N : A P R I L 2 0 0 6 W H Y YO U S H O U L D U S E R U BY 47

This specific example is no different from just using the class keyword to
define the class, but at least for me it provided much more power and flex-
ibility in how I created new classes. This ends up being critical in Puppet,
which is composed almost entirely of classes containing classes; the rela-
tionships between those classes is one of the most complicated parts of the
code—making that easier had a huge payoff.

Conclusion

I hope I’ve at least interested you in learning more about Ruby. I know that
I was short on my descriptions, but I’ve tried to focus more on why you’d
use it than how. I highly recommend looking into some of the discussion
around Ruby on Rails [8]; a lot of Java refugees have taken up Ruby as a
means of getting more done with less effort, and their discussions on why
are very informative.

Even if you don’t use Ruby, though, learn more languages, assess them crit-
ically, and demand more from them. Your computer should be working for
you, and the language you choose for interacting with your computer
determines a lot about how you work.

R E F E R E N C E S

[1] http://Perl.org

[2] http://ruby-lang.org

[3] http://reductivelabs.com/projects/puppet

[4] http://www.pragmaticprogrammer.com/index.html

[5] http://www.pragmaticprogrammer.com/titles/ruby/index.html

[6] http://paulgraham.com/power.html

[7] http://paulgraham.com/avg.html

[8] http://rubyonrails.org

48 ; L O G I N : V O L . 3 1 , N O . 2

D A V I D M A L O N E

unwanted HTTP:
who has the time?
David is a system administrator at Trinity College,
Dublin, a researcher in NUI Maynooth, and a com-
mitter on the FreeBSD project. He likes to express
himself on technical matters, and so has a Ph.D. in
mathematics and is the co-author of IPv6 Network
Administration (O’Reilly, 2005).

dwmalone@maths.tcd.ie

I N O C T O B E R 2 0 0 2 , O N E O F O U R
users raised a req ticket with this message:

When book number p859 is entered in the
Web-based Library Catalogue search this
error message comes up: Internal Server
Error

At first glance, most experienced administrators
would give a diagnosis of “broken CGI script”;
however, as it would turn out, this was far from
the case. Examination of the Web server’s logs
showed an unusually large number of HTTP
requests for our home page, which was causing
Apache to hit its per-user process limit. There was
no obvious reason for a surge in interest in our
Web pages, so we responded:

It looks like our Web server may be under
an attack of some sort! There are lots of
people requesting our home page and the
server is running out of processes for
Webnobody! This isn’t leaving enough space
to complete the library lookup. I’ve no idea
what is going on at the moment—between
18:00 and 18:59 we saw four times as many
requests as we did this time yesterday.

The source of this traffic was far removed from
the original error message and was eventually
unearthed using a mix of investigation and guess-
work. It’s the investigation, ultimate causes, and
our response to this traffic that I’m going to talk
about in this article.

Analyzing the Problem

Our first thought was that our home page had
been linked to from some popular Web site or
referred to in some piece of spam. Our Apache
server had originally been configured to log using
the common log file format, so we naturally
switched to the combined format, which also
records the referring URL and the User-Agent as
reported by the browser making the request [1].

To our amazement, the majority of the requests
included neither of these pieces of information.
However, this seemed to provide a way of easily
identifying these unusual requests. Further study
showed that the machines making these requests
were connecting regularly, some as often as once a
minute (to the nearest second), and they rarely
requested any page bar our home page. Figure 1
shows the autocorrelation of the requests load,
with strong peaks at multiples of 60s. For com-
parison, the autocorrelation without these unusu-
al requests is also shown [2].

; LO G I N : A P R I L 2 0 0 6 U N WA NTE D HT TP: W H O H A S TH E TI M E ? 49

THANKS
Ian Dowse and I conducted the original investigation.
Colm MacCárthaigh provided us with the required
Apache changes and Niall Murphy helped improve sev-
eral drafts of this article.

F I G U R E 1 . A U T O C O R R E L A T I O N O F
T H E S E R V E R ’ S L O A D

Using periodic requests for / as a signature, we
found that this had actually been going on for
months. The number of hosts making these
requests had been gradually increasing. This made
it seem less likely that these requests were an
orchestrated attack and more likely that it was
some sort of quirk or misconfiguration.

Using tcpdump [3] we recorded a number of
these requests. A normal TCP three-way hand-
shake was followed by the short HTTP request
shown below, contained in a single packet. Our
server would reply with a normal HTTP response,
headers, and then the content of the home page.

GET / HTTP/1.0
Pragma: no-cache

The request above is unusual. It does not include
the Referer and User-Agent headers mentioned
above. Also, it does not include the Host header,
which is used to ensure the correct operation of
HTTP virtual hosting. Even though the Host
header is not part of HTTP 1.0, most HTTP 1.0
clients send a Host header. Virtual hosting is such
a common technique that it seemed impossible
that this could be any sort of normal Web client.
In fact, the lack of a Host header indicated that
the software making the request was probably not
interested in the content returned.

Other than the content, the only other informa-
tion returned by Apache was the HTTP headers of

the response. These headers were the Date, the
Server version, the Content-Type, and a header
indicating that the connection would be closed
after the page had been sent. After staring at all
this for a bit, it occurred to us that something
might be using our home page for setting the
clocks on machines, as the Date header was the
only part of the response that was changing.

We made connections back to several of the IP
addresses in question and found that the connect-
ing machines seemed to be Web proxies or gave
signs of running Windows. We picked a random
sample of 10 to 20 machines and made an effort
to identify a contact email address. We sent short
queries to these email addresses, but no responses
were received.

A post [4] to the comp.protocols.time.ntp Usenet
group was more productive. We asked for a list of
software that might use the HTTP date header to
set the time. This produced a list of possibilities,
which we investigated.

Tardis [5] was identified as a likely source of the
queries: it had an HTTP time synchronization
mode and listed our Web server as a server for
this mode. We contacted the support address for
Tardis and asked why our server was listed, and
why someone would implement an HTTP time
synchronization mode when there were other,
better protocols available.

Tardis support explained that they had a lot of
requests to add a method of setting the time
through a firewall, and thus Tardis added a feature
using HTTP to do this. At the time they imple-
mented this feature they scanned a list of public
NTP servers [6] to find ones also running HTTP
servers. The host running our Web server had
been a public NTP server around 10 years previ-
ously, and due to a misunderstanding had not
been removed from the list until mid-2000 [7].

The software only listed four servers for this mode
of operation: a host in Texas A&M University, a
host in Purdue University, Altavista’s address with-
in Digital, and our server. Tardis would initially
choose a server at random and then stick with it
until no response was forthcoming, when it would
select a different server. We suspect that the spike
in load that we saw corresponded to the HTTP
server on one of these machines being unavail-
able, resulting in a redistribution of the clients of
this machine between the remaining hosts.

Note that the default polling interval in Tardis was
once every few hours. However, the software’s
graphical interface included a slider which

50 ; L O G I N : V O L . 3 1 , N O . 2

allowed the poll interval to be reduced to once per
minute.

Tackling the Problem

In the discussions that followed with Tardis sup-
port we agreed that future versions of Tardis
would only list our official NTP server, and only
for Tardis’s NTP mode. We also suggested that
allowing users to automatically set their clock
once per minute was probably a bad idea and sug-
gested modifications to the method used. In par-
ticular, using a HEAD rather than a GET request
could significantly reduce the amount of data
transferred, and setting the User-Agent field
would make it easier for server administrators to
identify such requests.

We did also suggest that our college be given a
complimentary site license for Tardis in exchange
for the not inconsiderable traffic shipped to Tardis
users. For example, in the first 16 hours after
enabling combined logging, we saw 400,000 con-
nections from about 1800 different IP addresses.
We estimated the resulting traffic at around
30GB/month.

However, it was some time before a new release of
Tardis was planned, so we had to take some
action to prevent future incidents of overload on
our server. A first simple step was to increase
process limits for the Web server, which had plen-
ty of capacity to spare.

A second step was to use FreeBSD’s accept filters
[8]. Accept filters are a socket option that can be
applied to a listening socket that delays the return
of an accept system call until some condition is
met. Usually the accept system call returns when
the TCP three-way handshake is complete. We
chose to apply a filter that delays the return of the
accept system call until a full HTTP request is
available. We knew that the request that Tardis
was making arrived in a single packet one round-
trip-time later. Thus the filter saves dedicating an
Apache process to each request for the duration of
the round trip (and avoids a small number of con-
text switches).

While these measures helped prevent our server
being overloaded, they did little to reduce the
actual number of requests and volume of traffic
being served to Tardis users. Using Apache’s con-
ditional rewriting rules, as shown below, we were
able to match Tardis requests and, rather than
returning the full home page (about 3KB), were
able to return a much smaller page (about 300
bytes).

RewriteCond %{THE_REQUEST} ^GET\ /\ HTTP/1.[01]$
RewriteCond %{HTTP_USER_AGENT} ^$
RewriteCond %{HTTP_REFERER} ^$
RewriteRule ^/$ /Welcome.tardis.asis [L]

Using Apache’s asis module [9], we were able to
return custom headers, including a redirect to our
real home page, in case some requests from gen-
uine browsers were accidentally matched by the
rewrite rules.

This significantly reduced the amount of data that
we returned, but we also wanted to reduce the
total number of clients that we were serving. We
considered blacklisting the IP addresses of clients
making these requests. However, we decided that
this was not appropriate, for two reasons. First, a
number of the client IPs were the addresses of
large HTTP proxy servers and we did not want to
exclude users of these proxies from accessing our
Web pages. Second, the large number of IPs
would make this a high-maintenance endeavor.

Instead, we decided to return a bogus HTTP date
header in response to requests matching our
Tardis rewrite rule, in the hope that this would
encourage Tardis users to reconfigure their clients.
By default Apache does not allow the overriding
of the date header, but Colm MacCárthaigh of the
Apache developer team provided us with a patch
to do this. The page was altered to return a date of
Fri, 31 Dec 1999 23:59:59 GMT. A link to another
page explaining why we were returning an incor-
rect time was included in the body of this page.

We expected this to cause significant numbers of
queries, and so prepared an FAQ entry for our
request system to allow our administrators to
respond quickly. However, we have only had to
reply to a handful of email queries about this
anomaly.

This countermeasure had a noticeable impact on
the number of clients connecting to our server.
Figure 2 shows the number of requests from
Tardis users per hour, where we began returning a
bogus time at hour number 1609. Alhough the
number of requests is quite variable, our counter-
measure quickly reduced the number by a factor
of roughly five. Tardis support suggests that this is
actually users reconfiguring Tardis, rather than
some sanity check within Tardis itself. Note that
the reduction achieved by this technique is actual-
ly more prominent than the impact of the new
release of Tardis a year later.

; LO G I N : A P R I L 2 0 0 6 U N WA NTE D HT TP: W H O H A S TH E TI M E ? 51

F I G U R E 4 . N U M B E R O F R E Q U E S T S F R O M
T A R D I S U S E R S P E R H O U R

Contemplations . . .

In dealing with this unwanted traffic, we were for-
tunate in several respects. Though there were only
small hints as to the source of the traffic, they
were sufficient to find the origin. The traffic also
had a clearly identifiable signature, in that com-
mon headers were missing, and was not deliber-
ately designed to be hard to identify. This is in
stark contrast to spam, where successful attempts
to identify features of spam quickly lead to a new
generation of further obfuscated spam.

Though unwittingly inflicted upon us, this attack
was quite like a DDoS. The number of hosts in-
volved was in the thousands, making it infeasible
to deal with each host by hand. Thankfully we
were able to reduce the amount of traffic (both
bytes and requests), since the hosts were request-
ing a valid service via a well-formed protocol
dialog, allowing us to tailor the response appro-
priately.

. . . O N D I AG N O S I S

At the time, our efforts to diagnose the problem
seemed haphazard. On reflection, the steps fol-
lowed do seem to have been sensible and moder-
ately generic:

n Identify some rogue requests.

n Try to spot a signature that matches these
requests.

n Look at all requests matching the signature
(and refine the signature if necessary).

n Examine the corpus of requests, looking for
indications of their likely origin.

Of course, to identify a signature requires some
knowledge of what constitutes a normal request.
In our case, had we been using the combined log
file format all along, we might have realized soon-
er that something unusual was going on. In this
case, simply monitoring the number of requests to
the server would probably not have identified the
problem, as the load on a server can plausibly
increase gradually without arousing attention.
However, as we saw from Figure 1, higher-order
statistics make the problem much more obvious.

. . . O N CO U NTE R M E A S U R E S

Our initial countermeasure was to send a smaller
response to requests matching the signature. This
technique has been adopted as a response to being
Slashdotted [10] by a number of organizations.
For example, Mozilla’s Bugzilla database now
returns a short static page in response to links
from Slashdot. Similarly, it is not uncommon to
follow a link from Slashdot to find a page that
says, “If you really want to download the 1.5MB
PDF report, please go to this page.” In the case of
one of the other Web servers listed by Tardis, they
had no content at /, and were able to create a
short page to satisfy the requests.

In our case, we identified that the client making
the requests was not a full Web browser. This is
why we could use an automatic redirect to accom-
modate legitimate requests accidentally matched
by the rewrite rules. Unfortunately, this option is
not available to those who have been Slashdotted.

As a general technique to stop remote sites from
linking into specific parts of a Web site, it is possi-
ble to generate URLs that have a limited lifetime.
However, such systems typically frustrate book-
mark systems and search engines alike. Similarly,
some people use limited lifetime email addresses
to avoid spam. A more extreme version of these
techniques could use limited lifetime DNS entries.
Options like this were not available to us, as the
URL and DNS name in question were too well
known.

A consideration that we considered to be impor-
tant in designing any response to an HTTP prob-
lem was that legitimate users and problem users
may both be behind the same Web proxy (or NAT

52 ; L O G I N : V O L . 3 1 , N O . 2

device). A student at a local university working
on a spidering project repeatedly crawled the
Mathworld [11] site. As a response, the
Mathworld operators blocked access from the IP
they saw the requests coming from. This resulted
in blocking the student’s entire department!

The final part of our countermeasure was de-
signed to attract the attention of users involved
in the problem. Importantly, changing the date
returned by our Web server is only likely to
attract the attention of users who are using that
date for something unusual. It might possibly
have confused the caching scheme of some
browsers, but we have heard no reports to this
effect. Notifying users who are not involved in the
problem, as often occurs when virus notifications
are returned in response to forged email address-
es, can be counterproductive.

. . . O N S I M I L A R NTP- R E L ATE D I N C I D E NTS

There are eerie similarities between this event
and a number of other incidents. At about the
same time as our incident, CSIRO had to take
action because of hundreds of thousands of clients
accessing their server from outside Australia. The
subsequent incident at Wisconsin [12], where the
address of an NTP server was hardwired into a
mass-produced DSL router, is probably best
known.

Fortunately, our problem was on a smaller scale.
Unlike the Wisconsin incident, the extent of the
problem had actually been augmented by users
configuring the system to poll frequently, rather
than simple bad system design (though providing
a slider that can be set to poll once per minute
probably counts as bad design). It is amusing to
note that we actually had to patch the source of
Apache to produce our deliberate misconfigura-
tion. This must be a rare example of a Windows
GUI providing you with easy-to-use rope to hang
yourself, while the config file-based system at the
other end requires more work to induce “errors”!

One of the solutions considered at Wisconsin was
to abandon the IP address of the host in question;
however, this was not the final solution used.
There have been incidents of the abandonment of
domains because of poor design choices in time
synchronization software [13]. We did consider
moving our Web server before we had put our
countermeasures in place, but this would have
placed a much larger burden on our system
administration staff.

An interesting question is, why has an apparently

innocent service, time synchronization, caused so
many problems? A significant part of the problem
seems to be misuse of lists of well-known servers
[6]. Though the list includes a clear statement
that it is “updated frequently and should not be
cached,” many people serve local copies. A quick
search with Google identifies many pages listing
our retired server as a current NTP server, even
though it has not been on the official list since
2000. Some of these pages include the retired
server in example source code.

This suggests that providing standardized dynam-
ic methods for determining an appropriate NTP
server might be worth the development effort.
Attempts to provide pools of active NTP servers
behind one DNS name have proved quite success-
ful in recent years [14]. Multicast NTP would pro-
vide a more topologically aware technique for dis-
covering NTP servers; however, the still-limited
availability of multicast makes this less practical.
Making a number of anycast servers (or, more
exactly, shared unicast servers) might also be ben-
eficial. This technique has already been used suc-
cessfully for the DNS roots and 6to4 relay routers
[15]. Anycast NTP has been successfully deployed
in the Irish Research and Education Network,
HEAnet.

What other protocols/servers may be subject to
similar problems? There are obvious parallels
with DNS root servers, which are also enumerated
with a highly cached list. The high level of bogus
queries and attacks arriving at the root servers has
been well documented [16].

Conclusions

The investigation of this problem was an interest-
ing exercise in the sorts of problems that sysad-
mins end up tackling. We had to use many of the
standard tools: log files, diagnostic utilities,
Usenet, reconfiguration, and a little software
hacking.

Our countermeasures remain in place today and
seem relatively successful, as the unwanted traffic
remains significantly reduced. The incident itself
seems to fit into a larger pattern of problems with
time synchronization software and statically con-
figured services.

R E F E R E N C E S

[1] The common log file format was designed to be
a standard format for Web servers and was used by
the CERN httpd: see

; LO G I N : A P R I L 2 0 0 6 U N WA NTE D HT TP: W H O H A S TH E TI M E ? 53

http://www.w3.org/Daemon/User/Config/Logging
.html. More recently the combined format has
become more common: http://httpd.apache.org
/docs/logs.html.

[2] Autocorrelation is a measure of how much cor-
relation you see when you compare a value now
with a value in the future: see http://en.wikipedia
.org/wiki/Autocorrelation.

[3] Tcpdump’s -X option is good for this kind of
thing: http://www.tcpdump.org/.

[4] The thread on comp.protocols.time.ntp can be
found at http://groups.google.com/group/comp
.protocols.time.ntp/browse_thread/thread
/710cc3fb87bd08cc/026820ef0e6b4165.

[5] The home page for Tardis Time Synchroniza-
tion Software is at http://www.kaska.demon.co.uk/.

[6] David Mills’s list of Public NTP Secondary
(stratum 2) Time Servers was traditionally at
http://www.eecis.udel.edu/~mills/ntp/clock2.htm
but now lives in the NTP Wiki at http://ntp.isc.org/
bin/view/Servers/WebHome.

[7] Archive.org is very useful for checking the his-
tory of Web pages: http://www.archive.org/.

[8] FreeBSD’s accept filters were developed by
David Filo and Alfred Perlstein. There are filters
that wait until there is data or a complete HTTP
request queued on a socket: http://www.freebsd
.org/cgi/man.cgi?query=accept_filter.

[9] The Apache Module for sending a file as is,
mod_asis, is documented at http://httpd.apache
.org/docs-2.0/mod/mod_asis.html.

[10] Being Slashdotted is, of course, being linked
to from Slashdot and suffering an unexpected
increase in requests as a consequence. Wikipedia
has a nice entry at http://en.wikipedia.org/wiki
/Slashdotted.

[11] Eric Weisstein’s Mathworld is an online ency-
clopedia of mathematics predating the flurry of
Wiki activity: http://mathworld.wolfram.com/.

[12] Dave Plonka’s well-known report on routers
flooding the University of Wisconsin time server
can be found at http://www.cs.wisc.edu/~plonka
/netgear-sntp/.

[13] A description of why the UltiMeth.net
domain was abandoned can be found at
http://www.ultimeth.com/Abandon.html.

[14] The NTP Server Pool project lives at
http://www.pool.ntp.org/.

[15] RFC 3258 describes “Distributing Authorita-
tive Name Servers via Shared Unicast Addresses,”
which is basically making DNS queries to an any-
cast address. A similar trick for finding a 6to4 relay
is described in RFC 3068. Both these techniques
seem to work pretty well in practice.

[16] There are a number of studies of requests
arriving at the DNS root servers. Check out “DNS
Measurements at a Root Server,” available on the
CAIDA Web site at http://www.caida.org
/outreach/papers/bydate/.

54 ; L O G I N : V O L . 3 1 , N O . 2

Addison-Wesley Professional/
Prentice Hall Professional

Ajava Systems, Inc.

AMD

Asian Development Bank

Cambridge Computer Services, Inc.

EAGLE Software, Inc.

Electronic Frontier Foundation

Eli Research

FOTO SEARCH Stock Footage and
Stock Photography

GroundWork Open Source Solutions

Hewlett-Packard

IBM

Intel

Interhack

The Measurement Factory

Microsoft Research

MSB Associates

NetApp

Oracle

OSDL

Raytheon

Ripe NCC

Sendmail, Inc.

Splunk

Sun Microsystems, Inc.

Taos

Tellme Networks

UUNET Technologies, Inc.

It is with the generous financial support of our supporting members that USENIX is able to fulfill its mission to:

• Foster technical excellence and innovation
• Support and disseminate research with a practical bias
• Provide a neutral forum for discussion of technical issues
• Encourage computing outreach into the community at large

We encourage your organization to become a supporting member. Send email to Catherine Allman, Sales Director,
sales@usenix.org, or phone her at 510-528-8649 extension 32. For more information about memberships, see
http://www.usenix.org/membership/classes.html.

Thanks to USENIX & SAGE Supporting Members

56 ; L O G I N : V O L . 3 1 , N O . 2

R A N D O L P H L A N G L E Y

auditing superuser
usage
Randolph Langley is a member of the Computer
Science Department at Florida State University. Prior
to this, he worked both in the financial industry and
for the Supercomputer Computations Research
Institute.

langley@cs.fsu.edu

I M A G I N E B E I N G T H E M A N A G E R O F A
UNIX group who, after receiving a tele-
phone call that a user cannot access his
NFS home directory, happens to find the
following lines in the shell history file for
the root account:

ps -elf | grep -i portmap
kill -TERM 2193
portmap -dlv

It appears that somebody was trying to debug the
portmapper, but when was this done? Who did it?
Is it the cause of the current problem, or was it
someone working on this problem?

While in this case it might be merely desirable to
know more about these lines—after all, you can
just do a ps to find out if the portmap program is
running and start it if it is not—it is sometimes
necessary to maintain records of who does what
on some production systems. Programs such as
sudo [1] and op [2] provide a means of control-
ling the who and, to a lesser degree, the what, but
determining more exactly what was actually done
can still be a challenge.

One method of meeting this challenge, sudoscript
[3], was presented in Howard Owen’s August
2002 ;login: article “The Problem of PORCMOL-
SULB.” It wraps the execution of a shell by sudo
[1] with a script session.1 While this is certainly a
viable approach, modifying script seemed to me
the more natural approach.2 I wanted to add a
remote logging capability since this allows one
both to centralize logging and to provide some
fraction more capability in the event of a break-in
via sudo (although certainly a knowledgeable
cracker should be able to stop this logging quite
quickly). Modifying script seemed the most direct
way to provide such logging.

Rationale

In large organizations, the responsibility for sys-
tem security and its monitoring has natural divi-
sions: system administrators, their managers, the
computer security group, and technology auditing
all have different roles in preserving and monitor-
ing system security. Division of responsibility also
helps maintain accountability in the overall sys-
tem. To divide responsibility, information technol-
ogy controls should exist at every level, eliminat-
ing any single point of trust.

1. I would like to properly credit the program script to some-
one, but my detective skills have not sufficed to find the origi-
nal author.
2. Just to make the sequence of events clear, I had done the
main modifications to script before I was aware of sudoscript.

; LO G I N : A P R I L 2 0 0 6 AU D ITI N G S U P E R U S E R U S AG E 57

Traditionally, however, with UNIX system administration there has been an
imbalance in accountability for superuser activities by system administra-
tors. While important advances such as SELinux [4] introduce new and
useful capability in the form of mandatory access controls in imposing lim-
its, in an audit or forensic situation, tracking superuser actions typically
has meant following whatever logs were available from shells and from
what can be inferred from reading various system logs. Shell logs typically
are not configured to keep timestamps (though many shells, such as bash
[5], do have that option). Shell logs keep a record, not of the actual key-
strokes, but, rather,of the command line that was eventually entered; shell
logs do not keep track of the output from commands; they don’t have the
ability to automatically forward information to other machines designed to
maintain security information.

While a machine such as a honeypot may have a designed-in system for
fine-grained tracking of user interaction at a very low level, such as hon-
eynet’s use of sebek [6]—typically as a hidden kernel module, since such
logging should not be obvious to the intruder—such modifications are not
desirable in a typical production system.

Although the program sudo is commonly used in order to improve
accountability, it also provides other benefits, such as limiting the number
of people who need direct access to a superuser password. In addition, it
provides some measure of limiting use of privilege by providing a means of
allowing certain programs to be executed by a given user.

From a management perspective, simply knowing who did what can be
invaluable, such as when tracking down ad hoc changes that were made in
the heat of problem resolution but were not put into the boot-time config-
uration. For a technology auditor, superior tracking of superuser privilege
allows the auditors to have a more informed opinion of operations. For a
security officer who may be looking through the logs for security lapses,
having better and more accurate logs of actions by superusers may be
desirable.

Changes to script.c

While quite a bit of this can be done by simply configuring a C or Perl
wrapper around script3 for a standard sudo setup, (such as Owen’s Perl
script sudoscript [3]), I think that setup is less than optimal. I thought it
would be nice if session information could be stored on a common, hard-
ened server; additionally, I thought it would be nice not to have a C or Perl
wrapper around script; finally, it would be nice to be able to customize
other aspects of the process, such as the exact environmental variables
passed, just as the wrapper script sudoscript does. It doesn’t need to have
the setuid bit set, since it is going to be invoked by sudo, so on its own it
shouldn’t be a security hazard; the recommended permission is to have it
only executable (not readable or writable) by owner, and having root own
it.

To effect this, I customized script to

n Write session transcripts to /var/log/super-trans, with each session in a
separate file identified by the start time and the PID of the process.

n Write a keystroke log to syslogd (with the idea that syslog is configured
to send these securely to another machine). The default setting currently
is to use the facility LOCAL2, although there is a runtime option -F to let
you (numerically) specify another facility.

3. script.c can be found in the RedHat
source RPM util-linux-2.12a-16.EL4.6
.src.rpm.

58 ; L O G I N : V O L . 3 1 , N O . 2

n Keep it fairly small and redistributable (it can be linked with dietlibc [7]
to create a statically linked binary that is under 50k on a CentOS 4.2 dis-
tribution using gcc 3.4.4.)

To install suroot, all you need to do is compile suroot.c (available at
http://www.cs.fsu.edu/~langley/suroot), place it in (for instance)
/usr/local/bin owned by root and with permissions 0100 (execute bit only
for root; it doesn’t need to be suid), install one hard link per sudo user (for
tracking purposes), and add a line to /etc/sudoers.

For instance, if after you install the binary in /usr/local/bin you want to let
user1 use it, you would add this hard link:

ln /usr/local/bin/suroot /usr/local/bin/suroot-user1

and add the following line to /etc/sudoers:

user1 server1=/usr/local/bin/suroot-user1

The program suroot is simply a modification of script and keeps script’s
model. Here’s how both script and suroot work, using three processes:
(1) the original process, which is used for keyboard input (parent_p);
(2) a child process, which is used for handling the output to the transcript
(child_p); and (3) a grandchild (child of the child) process which is our
shell (gchild_p).

Prior to creating child_p or gchild_p, we have parent_p clear all environ-
mental variables except for TERM and HOME, and obtain a pseudo-termi-
nal, either by the BSD standard openpty(3) or, if it isn’t available, by
searching for a free /dev/pty[p-s][0-9a-f] device.

Just before the gchild_p has a successful exec() to a shell process, its stdin,
stdout, and stderr file descriptors are dup2()’ed over to the slave side of the
pseudo-terminal. The current version of suroot uses a hard-coded
/bin/bash as its shell; the shell is invoked with both the options -i (interac-
tive) and -l (treat this as a login shell).

The child_p process has been modified slightly so that the transcript file is
now always located in /var/log/super-trans/, and is named first by when the
child_p process started and then by its PID. For example, the file name
/var/log/super-trans/2006-01-20-18:06:38-021592 indicates that it was cre-
ated on January 20, 2006, by process 21592.

To effect the system logging of keystrokes, the doinput() routine has been
augmented with two new buffers, svbuf1 and svbuf2. The buffer svbuf1
records the raw input; if the process is in a default printable mode (non-
printable characters are mapped into some visually attractive version, such
as ASCII 010 being rendered as C-h), the printable contents of svbuf1 are
copied into svbuf2. If raw characters are keystroke-logged, then, one would
need to make sure that the receiving syslogd will be happy to receive them.

I like to statically link binaries such as this for three reasons:

n With a security application, I like to be certain that I am not using the
wrong shared library; despite the care that sudo takes to make sure that
all shared library paths are cleared from the environment (most impor-
tantly, of course, LD_LIBRARY_PATH), I am still leery of them.

n The functions that it is calling are simply not likely to be updated by any
libc, so why bother to keep looking dynamically for updated versions of
those functions every time that it runs?

n If you statically link with a small libc such as dietlibc, the resulting static
binary is not much larger than the dynamic version.

However, static linking is not as easy these days as it might be in light of

; LO G I N : A P R I L 2 0 0 6 AU D ITI N G S U P E R U S E R U S AG E 59

the nss_* situation. I wanted to use glibc’s getpwuid() to get home directory
information; however, glibc’s getpwuid() is now entangled with nss_*,
which cannot be statically linked. I didn’t want to write my own parser for
the password file since, historically, this simple activity has been implicated
in various security lapses, and I was already adding two new buffers that
could potentially allow buffer overflows.

So I decided to go with a smaller, more compact libc that doesn’t share this
problem. For Linux I chose dietlibc, since I knew that it was complete
enough to use for a full distribution (the Linux distribution DietLinux [8]
is wholly built with dietlibc). I haven’t managed yet to get suroot to stati-
cally link on Solaris. The implication here would be that somehow this
would be started with UID 0 and a path such as LD_LIBRARY_PATH
would somehow not be wiped out when the code removes all environmen-
tal variables except for TERM.

What are the limitations of this approach? The first is that this is only
meant to directly run administrative code. It’s not a general setup since it
doesn’t try to solve the problems of handling general users, such as those
not in /etc/passwd or creating transcripts for non-root users (presently,
transcripts are only created in /var/log/super-trans, which is only root
writable). While both of these are addressable, there is a third problem
(and one applicable also to the root account): the keystroke logging is not
intelligent enough to detect the entry of a password, and will happily log
any such that are typed.

R E F E R E N C E S

[1] Todd Miller, Chris Jepeway, Aaron Spangler, Jeff Nieusma, and Dave
Hieb, Sudo Main Page, http://www.courtesan.com/sudo.

[2] Tom Christiansen and Dave Koblas, The op Wiki, https://svn.swapoff
.org/op.

[3] Howard Owen, “The Problem of PORCMOLSULB,” ;login:, vol. 27, no.
4, August 2002.

[4] NSA, “Security Enhanced Linux,” http://www.nsa.gov/selinux.

[5] Chet Ramey and Brian Fox, GNU Bash Reference Manual (Network The-
ory Ltd, 2003).

[6] The Honeynet Project, About the Project, http://www.honeynet.org.

[7] Felix von Leitner, “diet lib c—a libc optimized for small size,”
http://www.fefe.de/dietlibc/.

[8] Bernd Wachter, “Aardvarks DietLinux,” http://www.dietlinux.org.

60 ; L O G I N : V O L . 3 1 , N O . 2

D A V I D B L A N K - E D E L M A N

practical Perl tools:
programming,
ho hum
David N. Blank-Edelman is the director of technology
at the Northeastern University College of Computer
and Information Science and the author of Perl for
System Administration (O’Reilly). He has spent the
past 20 years as a system/network administrator in
large multi-platform environments, including
Brandeis University, Cambridge Technology Group,
and the MIT Media Laboratory. He was the chair of
the LISA 2005 conference and is an Invited Talks chair
for the upcoming LISA ’06.

dnb@pobox.com

W E L C O M E B A C K T O T H I S L I T T L E P E R L
column. This time the official ;login: theme
is “Programming.” Given the subject of the
column, that theme is just a walk in the
park for this humble columnist. I could sim-
ply lean back in my chair, put my boots up
on the desk, tilt my hat at a rakish angle,
stick a stalk of wheat between my teeth,
and say, “Ah yup. Perl’s a programming lan-
guage all right,”1 and I would have done my
part to keep this issue on topic.

But for you, I’ll work a little harder. Let’s take a
look at three programming practices that have
cropped up in the Perl world.

Practice #1: Test-First Programming

This first practice isn’t actually Perl-specific at
all, but we’ll look at how it easily can be imple-
mented using Perl. It’s not necessarily new either,
but the notion has caught on with some of the
most respected Perl luminaries and so is receiving
more lip service these days than ever before. Plus,
this was not something I was taught back when I
was a CS major in college (back when you had to
learn to whittle your own Turing machine), so it
may be new to you.

Simply put, when creating anything greater than a
trivial program you need to first write a set of test
cases the code is expected to pass. These are writ-
ten before you write a lick of the actual code. This
is the reverse of the standard practice of writing
the code and later figuring out how to test it.

This ordering may seem strange, because at first
the test cases should completely and unequivocal-
ly fail. Since the real code doesn’t exist yet (you
are just calling stub code at this point), this is to
be expected, because there isn’t really anything to
test. As more and more of the real code is written,
ideally more and more of your test cases should
begin to pass.

So why write a bunch of test cases that start out
failing like this? Perhaps the largest win is that it
forces you to think. You are forced to form a clear
idea of expected input, output, and (ideally) the
possible error-handling the program will exhibit
once fully written. This pre-programming ponder-
ing can often be pretty difficult, especially for
those programmers who like to wander towards
their goal, making stuff up as they go along. The

1. Reprising my pivotal, but deleted scene from Broke-
back Mountain. Look for it in the programming part of
the special features when the collector set comes out on
DVD.

; LO G I N : A P R I L 2 0 0 6 P R AC TI C A L P E R L TO O LS : P RO G R A M M I N G , H O H U M 61

added discipline may sting a little, but you will find the results are better
in the end.

There are other side benefits to this approach as well. It is not uncommon
during development to fix one bug and unwittingly introduce one or more
new bugs in the process. With test-first development, if your test code is
good you should notice those new bugs the very next time you run the
tests. This makes debugging at any point easier because it becomes possi-
ble to discount many other possible contextual problems when other sec-
tions of the code are tested to be known-good.

So now that you are beginning to get religion, let’s see how this works in
Perl. To Perl’s credit, the idea of test cases/code has been present in the
community for a very long time. The classic module installation recipe of:

perl Makefile.pl
make
make test
make install

or the increasingly common:

perl Build.pl
./Build # or just Build (for win32)
./Build test # or just Build test (for win32)
./Build install # or just Build install (for win32)

both imply that there are tests written that should pass before an
installation.

There’s a whole good book2 on writing test code with and for Perl, by Ian
Langworth and chromatic, called Perl Testing: A Developer’s Notebook
(O’Reilly), so I won’t go into any sort of depth on the subject. We’ll just get
a quick taste of the process and if it interests you, you can pursue more
resources online or buy this book.

There are two core concepts:

1. Find ways to encapsulate the question, “If I give this piece of code
a specific input (or force a specific error), does it produce the specific
result I expect?” If it does, test succeeds; if it doesn’t, test fails.

2. Report that success or failure in a consistent manner so testing
code can consume the answers and produce an aggregate report. This
reporting format is called the TAP (Test Anything Protocol) and is
documented in Perl’s Test::Harness::TAP documentation.

See Perldoc’s Test::Tutorial in the Test::Simple package as a first step toward
writing tests. Here’s an utterly trivial example, just so you can see the bare-
bones ideas made real:

use Scalar::Util (‘looks_like_number’);
use Test::Simple tests => 4;

adds 2 to argument and return result (or undef if arg not numeric)
sub AddTwo {

my $arg = shift;
if (! looks_like_number $arg) { return undef; }
return ($arg + 2);

}

ok (AddTwo(2) == 4, ‘testing simple addition’);
ok (AddTwo(AddTwo(2)) == 6, ‘testing recursive call’);
ok (AddTwo(‘zoinks’) eq undef, ‘testing non-numeric call’);
ok (AddTwo(AddTwo(‘zoinks’)) eq ‘bogus test’,

‘testing recursive non-numeric call’);

2. Bias alert: one of the co-authors of this book
is a student of mine here at Northeastern Uni-
versity. Bias aside, it is a really good book.

62 ; L O G I N : V O L . 3 1 , N O . 2

Running the code, we get very pretty output that describes the number of
tests run and their result (including the last, broken test):

1..3
ok 1 - testing simple addition
ok 2 - testing recursive call
ok 3 - testing non-numeric call
not ok 4 - testing recursive non-numeric call
Failed test ‘testing recursive non-numeric call’
in untitled 1.pl at line 16.
Looks like you failed 1 test of 4.

Test::Simple makes it easy to write quick tests like this. It provides an ok()
routine which essentially performs an if-then-else comparison along the
lines of “if (your test here) { print “ok” } else { print “not ok” }”; that sim-
ple construct is at the heart of most of the more complex testing that can
take place. Don’t be fooled by how trivial the ok() construct looks. The
complexity of the code being called in the ok() is in your hands. If you
want to write something that takes eons to compute like:

ok(compute_meaning($life) == 42, ‘life, the universe, and everything’);

you can do that.

There are a whole slew of other modules that allow for more advanced
tests with more sophisticated comparisons (e.g., Test::Deep will compare
two entire data structures), data sources (e.g., Test::DatabaseRow can
access a SQL database), control flow items (e.g., Test::Exception for testing
exception-based code), and other program components (e.g., Test::Pod to
test the code’s documentation).

Once you’ve written a gaggle of individual tests you’ll probably want to
bring something like Test::Harness into the picture to allow you to run all
of the tests and report back the aggregate results. You’ve probably used
Test::Harness before without even knowing it. It is the module called by
most modules during the “make test” or “build test” install phase.

If your test scripts output the right TAP protocol, using Test::Harness is
super-simple:

use Test::Harness;

my @test_scripts = qw(test1.pl test2.pl test3.pl);

runtests(@test_scripts);

The three scripts will be run and the results reported at the end. Test::Harness
also provides a prove command which can be used to run a set of tests from
the command line. See Perl Testing for more details on all of these test-related
ideas.

Practice #2: Write the Code in Another Language

Oh, the heresy, the sacrilege, the gumption! I hate to be the one to intro-
duce a little existential truth into this issue of ;login: (usually I’d save that
for the philosophy-themed issue), but sometimes you need to program in
another language besides Perl to get the job done. Perhaps the vendor of a
product you are using only provides C libraries and header files or you’ve
found a really cool Python library that doesn’t have a Perl equivalent. The
bad news is that sometimes these situations occur; the good news is that
you don’t necessarily have to write your entire program in that foreign lan-
guage. You may be able to create a tiny island of strange code surrounded
by a sea of Perl.

; LO G I N : A P R I L 2 0 0 6 P R AC TI C A L P E R L TO O LS : P RO G R A M M I N G , H O H U M 63

One easy way to include foreign languages within a Perl program is
through the Inline family of modules. Here’s a quick example of embed-
ding Python in Perl code (oh, the impiety!) taken from the man page for
Inline::Python:

print “9 + 16 = “, add(9, 16), “\n”;
print “9 - 16 = “, subtract(9, 16), “\n”;

use Inline Python => <<‘END_OF_PYTHON_CODE’;
def add(x,y):

return x + y

def subtract(x,y):
return x - y

END_OF_PYTHON_CODE

Inline modules exist for a whole bunch of the popular and more obscure
programming languages. There’s a good chance you’ll be able to find what
you need to embed that language into your Perl code.

Another potentially useful method of programming in another language
involves a language that doesn’t really exist yet (certainly not in a finished
form): Perl 6. There are two ways to begin enjoying some of the nifty and
mind-blowing features of Perl 6:

1. PUGS (http://www.pugscode.org)—I don’t think I’d use this for
any serious tasks yet, but if you want to play around with Perl 6 well
ahead of the actual language being ready, you can use a project start-
ed by the worship-worthy Autrijus Tang. Tang and some other pro-
grammers have basically been working to implement the Perl 6 lan-
guage as specified to date using the functional programming lan-
guage Haskell. This lets people kick the tires on the language design
by actually using it. See the URL above for more details.

2. Damian Conway had a similar notion about using implementation
to test the design, so he led the charge to create Perl 5 modules that
offer test implementations for various pieces of the Perl 6 language
design. He and a group of other authors have been releasing modules
into the Perl6:: namespace on CPAN for quite a while.

For example, if you’d like to use the new Perl 6 slurp command to read the
contents of a file into a variable, you could

use Perl6:: Slurp;

$data = slurp ‘file’;

Probably the most useful of these modules is the Perl6::Form module,
which allows you to use the Perl 6 replacement for Perl 4/5’s sub-optimal
format built-ins. See the Perl6:: modules on CPAN for the sorts of Perl 6
features available for use in your Perl 5 programs today.

Practice #3: Add a Little Magic to Your Programs

For our final topic we’re going to look at a couple of ways to get work
done via “magic.” Since we just mentioned Damian Conway in the last sec-
tion, let’s show another one of his creations: Smart::Comments. With this
module the normally passive comments in a program’s listing can spring to
life and do interesting things. For instance, if you wrote code that looked
like this:

64 ; L O G I N : V O L . 3 1 , N O . 2

use Smart::Comments;

for $i (0 .. 100) { ### Cogitating |===[%] |
think_about($i);

}

sub think_about {
sleep 1; # deep ponder

}

the program would print a cool animated progress bar that would look like
this at various stages in the program run:

Cogitating |[2%] |
Cogitating |====[37%] | (about 1 minute remaining)
Cogitating |=============[71%] | (about 30 seconds remaining)
Cogitating |==========================|

We didn’t have to write all of the progress bar code (or even the part that
attempts to provide an estimate for how long the program will continue to
run), all we had to do was add the comment ### Cogitating |===[%] | next
to the for() loop. This module can do other spiffy things that help with
debugging your code; be sure to consult its documentation for details.

The last piece of magic I want to bring to your attention is the IO::All
module by Brian Ingerson. This module is so magical that it is hard to
describe. Here’s what the docs have to say:

IO::All combines all of the best Perl IO modules into a single Spiffy
object-oriented interface to greatly simplify your everyday Perl IO
idioms. It exports a single function called io, which returns a new
IO::All object. And that object can do it all!

And when it says “can do it all!” it isn’t kidding. Here are some examples
to give you a flavor of its capabilities:

io(‘filename’) > $data; # slurps contents of filename into $data
$data = io(‘filename’)->slurp; # does the same thing

$data >> io(‘filename’); # appends contents of $data to filename
io(‘filename’)->append($data); # does the same thing

io(‘file1’) > io(‘file2’); # copies file1 to file2

$line = io(‘filename’)->getline; # read a line from filename
io(‘filename’)->println($line); # write a line to filename

$io = io ‘filename’;
$line = $io->[@$io /2]; # read a line from the middle of filename

@dir = io(‘dirname/’)->all; # list items found in dirname
@dir = io(‘dirname/’)->all(0); # recurse all the way down into dirname

From these examples you can see that IO::All makes it easy to read and
write to files and operate on directories with a minimum of code. It has
both a OO-like interface (e.g. ->slurp) and a set of overloaded operators
(e.g., >) for these tasks. Many of these methods can be chained together
for even quicker results.

But that’s only a small part of the magic. Let’s see more of the IO::All pixie
dust:

; LO G I N : A P R I L 2 0 0 6 P R AC TI C A L P E R L TO O LS : P RO G R A M M I N G , H O H U M 65

io(‘filename’)->lock; # lock filename
io(‘filename’)->unlock; # unlock filename (could also ->close())

io(‘filename’)->{lulu} = 42; # write to DBM database called filename
print io(‘filename’)->{tubby}; # read from that database

$data < io->http(‘usenix.org’); # read a web page into $data
io(‘filename’) > io->(‘ftp://hostname’) # write filename to ftp server

$socket = io(‘:80’)->fork->accept; # listen on a socket
$socket->print(“hi there\n”); # print to the socket
$socket->close; # close the connection

Easy file locking, database access, and a dash of network operations. Pretty
spiffy indeed.

And with that, I’m afraid we have to bring this issue’s column to a close.
Take care, and I’ll see you next time.

RENEW ONLINE TODAY!
Renewing or updating your USENIX
membership has never been easier!

You will receive your renewal notice via email and one click
will take you to an auto-filled renewal form.

Or visit
http://www.usenix.org/membership/

and click on the appropriate links.
Your renewal will be processed instantly.

Your active membership allows the Association to fulfill its mission.
Thank you for your continued support!

66 ; L O G I N : V O L . 3 1 , N O . 2

H E I S O N C H A K

VoIP watch
Heison Chak is a system and network administrator
at SOMA Networks. He focuses on network manage-
ment and performance analysis of data and voice
networks. Heison has been an active member of the
Asterisk community since 2003.

heison@chak.ca

V O I P (V O I C E O V E R I N T E R N E T
Protocol) is becoming an increasingly
popular tool for business. For the system
administrator, VoIP means new protocols to
learn, new security issues, and new servers
to be configured and supported. You will
also want to become familiar with a long
list of acronyms, as VoIP, like the telecoms
that precede it, is speckled with TLAs and
FLAs (three- and four-letter acronyms). Over
the next year, I will expound upon these
topics and more, so you can understand
how VoIP works and how to support it in
the networks you manage, as well as how
to take advantage of it personally.

VoIP is now known as the emerging technology
that allows home users and businesses to save
money by placing calls over the Internet. It brings
innovative applications into telecommunication,
mainly through the ability to remove the con-
straints of circuit switching and replace it with
packet switching. As a result, larger call volume
is achievable on the same raw bandwidth as the
PSTN (Public Switched Telephone Network).
While developers are striving to improve reliabili-
ty and availability of VoIP, security experts and
government agencies are trying to put in place
regulations and processes to protect the interests
of end users as well as operators.

Many are using the terms IP Telephony and
VoIP interchangeably. VoIP samples analog voice
signals, digitizing them into 1’s and 0’s, then
packetizing them before placing them on an IP
network for transmission; IP Telephony takes it
one step further and supports other POTS (Plain
Old Telephone Service) services (e.g., facsimile,
modem communications) that PSTN subscribers
have been using for decades. In essence, VoIP can
be thought of as a subset of IP Telephony.

Benefits of VoIP

Although VoIP has only gained popularity and
momentum in the past two years, the technology
has been around for much longer. In the mid-
1990s, while most homes were using long dis-
tance service provided by their local telephone
carrier, a.k.a. ILEC (Incumbent Local Exchange
Carrier), a wave of CLECs (Competitive Local
Exchange Carriers) offering competitive long dis-

; LO G I N : A P R I L 2 0 0 6 VO I P WATC H 67

tance and international rates were born. Many were early adopters of VoIP
technologies.

Corporations budget hundreds of thousands of dollars every month on
communications to maintain operation of their businesses. With the
growth of the Internet, the improved reliability and availability of this
global network allow IT managers and decision makers to offload more
and more voice calls onto this public network. Interoffice communications
and calls destined for PSTNs (Public Switched Telephone Networks) are
equally suitable for VoIP switchover. Besides reducing the per-minute cost
(or bypassing toll charges altogether), many corporations also find them-
selves receiving large tax benefits. What was previously budgeted for talk
time may now be allocated to expanding the IT infrastructure to cope with
the higher demand of bandwidth and stability on IP networks.

Home users may find themselves overwhelmed with billboard and TV
commercials, and there are mixed reactions to the introduction of VoIP
service. While many are enjoying the convenience and portability of VoIP,
others worry about the reliability of the service. Typical features of VoIP in
SOHO (Small Office, Home Office) deployment may involve:

n Simplified subscription process and easy setup
n Ability to receive calls on a hometown number in another city or country
n Free or bundled pricing on calls made nationwide
n Voice-mail delivery via email
n Failover from VoIP to landline
n Ability to modify call features (e.g., call forwarding) online

In 2005, 16% (42 billion minutes) of all voice calls were made using VoIP,1

and that number is growing. Despite the popularity and acceptance of VoIP,
there are a number of ongoing concerns. Many early adopters have report-
ed problems with VoIP, such as:

n Dropped calls
n Line echo
n Clipping sounds
n Touch tone recognition
n E911

While some of the problems require changes in legislation or government
intervention, most are the result of placing real-time media in networks
originally provisioned for different purposes. With VoIP-aware networks
and improvement in protocols and codecs, many issues that adversely
impact one’s experience with VoIP can be eliminated.

Opportunity to Gain User Trust

One of the benefits of VoIP is the consolidation of voice and data net-
works running over the same physical wiring. Although this brings great
savings to the IT infrastructure, it may also be one of the contributing fac-
tors to deployment failure. In traditional PBX systems, dedicated telephone
(e.g., Category 3 Twisted Pair) wirings provide the physical connectivity
between handsets and the telephone switch. Not only is quality of service
maintained, but PBX systems often provide security by transmitting propri-
etary digital signals across these cablings. With traditional PBX systems
replaced by VoIP, security and availability become significant considera-
tions. With voice and data packets mixed together, anyone with access to
the routers and switches the packets are transmitted on can potentially
compromise the integrity of the media stream. VoIP-ready networking
equipment is essential to a successful deployment, as it makes it easier to

1. Statistics from TeleGeography:
http://www.telegeography.com/press/
releases/2005-12-15.php.

68 ; L O G I N : V O L . 3 1 , N O . 2

differentiate between voice and data packets, allowing it to prioritize time-
sensitive media according to the urgency of those packets. Improving QoS
can better ensure timely delivery of packets and, therefore, higher avail-
ability.

On traditional PBX systems, it is not unusual to see telephone switches
and small UPS units all crammed into tiny riser rooms. When these legacy
systems are replaced by VoIP, UPS power may need to be increased to sup-
port network switches, routers, and VoIP handsets. Cooling capacity and
air circulation will very likely require adjustments. Due to the nature of IP
networks, VoIP outages are more likely to occur as compared to the PSTN.
It is considered good practice to keep a couple of POTS lines for emergen-
cies.

Communication between IT professionals and users plays a significant role
in the success of any major project. Since VoIP allows for deployment in
phases, it may be worthwhile to spend time and share with users the
potential enhancement that VoIP can bring to their communication needs.

Gathering Requirements

VoIP provides many features, but not all may be beneficial or suitable for
an individual or organization’s needs. It is important to understand which
VoIP application can most significantly enhance business development or
daily communications. For example, if a corporation has high-volume tele-
conferencing requirements, it may be more cost-effective to acquire VoIP
conferencing-capable servers to work with existing legacy systems rather
than spend resources replacing the entire system with technologically
advanced handsets.

CDR (Call Detail Records) logs and phone bills are generally good places
to start investigating where telecom resources are spent. If long-distance or
international calls show up frequently in these log histories, it may be time
to investigate more competitive pricing. Some VoIP providers offer 3–5
cents per minute charge to major cities when most PSTN long distance
providers are still selling 20–50 cents per-minute rates.

In terms of providing VoIP services, some VSPs (VoIP Service Providers)
only provide call termination (e.g., allow incoming calls only for toll-free
service), while others provides call termination as well as call origination
(i.e., incoming and outgoing calls). Most residential VoIP service on ATA
(Analog Telephone/Terminal Adapter) provides incoming and outgoing
capabilities, but may not support simultaneous calls. There exists VSP
wholesalers that support multiple incoming and outgoing calls, with toll-
free numbers termination, and the best part—no monthly charges.

Moving Forward

There are pluses and minuses to any technology, and VoIP is no exception.
On one hand, it allows for feature-rich deployments with relatively low
ongoing costs. Communication becomes much more efficient and afford-
able, especially for those who travel a lot (e.g., salespeople, field engi-
neers). In larger corporations, savings as a result of toll bypass may be sig-
nificant. End users of commercial deployment are likely to enjoy the flexi-
bility of taking the VoIP ATA away from their hometown while they travel,
or the ease of giving overseas relatives a hometown number to save on
long distance charges.

; LO G I N : A P R I L 2 0 0 6 VO I P WATC H 69

On the other hand, VoIP is one of those technologies that is evolving
quickly. Because of that, there aren’t very many standards and guidelines to
allow long-term survivability. Carriers and IT managers are having to face
the pros and cons of different technologies and interoperability issues. A
classic example would be the two competing protocols H.323 and SIP.
Although favored by the academic world, SIP still has some of the same
problems that have haunted H.323 (e.g., NAT/firewall issues). Until one of
these protocols becomes dominant, deploying VoIP-aware routers and
switches that support both protocols will guarantee a safer investment.

USENIX Membership Updates
Membership renewal information, notices, and receipts are now being sent to you electronically.

Remember to print your electronic receipt, if you need one, when you receive the confirmation

email.

You can update your record and change your mailing preferences online at any time.

See http://www.usenix.org/membership.

You are welcome to print your membership card online as well.

The online cards have a new design with updated logos—all you have to do is print!

70 ; L O G I N : V O L . 3 1 , N O . 2

R O B E R T G . F E R R E L L

/dev/random
Robert is a semi-retired hacker with literary and
musical pretensions who lives on a small ranch in
the Texas Hill Country with his wife, five high-main-
tenance cats, and a studio full of drums and guitars.

rgferrell@direcway.com

W E L C O M E T O / D E V / R A N D O M , A K AYA K
tour along the sporadically navigable wide
spots in my stream of consciousness.
Various incarnations of UNIX have played a
major role in my life, both professionally
and personally, for a quarter-century now.
Before I get too old and doddering to set
fingers to keyboard, I thought I’d share
some of my own UNIX experiences, those of
close acquaintances, and possibly even a
few from total strangers if the mood strikes
me. It would have been better for public
relations if I could have found some com-
puting luminary to introduce me in glow-
ing terms as a shining UNIX guru and
heavyweight player in the industry, but the
price for that sort of bald-faced hype has
gone through the roof since Oracle
declared themselves “hackproof,” and
frankly we just don’t have the budget for it.
You’re free to pretend, if you like.

I first tumbled down the UNIX rabbit hole in
1981, as a graduate student at Texas A&M
University. Prior to then I’d encountered only O/S
370, and that via a blistering eight-baud teletype
terminal, although I actually started on the path
to hackerdom in the early 1970s with the occa-
sional bout of phreaking. One might reasonably
wonder how a person who styles himself a classic
“geek” avoided contact with perhaps the ultimate
technological expression of that proclivity, the
personal computer. Easy—there weren’t any. OK,
that’s not literally true: there were the Apples, the
Altair, the TRS-80, and a few others. But as one of
the original scions of West Texas poverty, none of
those were available to me. No, I earned my geek
appellation in part by building several radio tele-
scopes (including a three-meter parabolic dish
and a multi-element Yagi interferometer array) in
my backyard and on the roof of the science build-
ing at my high school. My neighbors must have
thought I was some sort of spy, since home satel-
lite dishes were largely unknown in 1975.

Like any good geek, I loved the SR-10 calculator I
had to rake a lot of rocks to afford, but it was at
the beginning of my sophomore year of college
that I landed the part-time job that would largely
determine my future career path: remote terminal
operator. I learned JCL (Job Control Language)

; LO G I N : A P R I L 2 0 0 6 / D E V/ R A N D OM 71

and keypunch and suddenly found myself alone in a data center at nights
and on weekends—just me, the blinking lights, and all that free time. IBM
370 JCL was a wonderfully cryptic jumble of punctuation marks worthy of
an NSA analyst, and I ate it up like candy. I felt all intellectual and tingly
inside, punching in those slashes and asterisks and assorted operands, then
hitting “autoverify.” My very first hacker handle (I used it with my CB
radio, too) was “ddname,” in fact, although I eventually just shortened it
to “deedee.” Another warning sign of incurable geekhood and future gov-
ernment service.

In the summer of 1981 a friend of mine had an account on a VAX in the
Physics Department at Texas A&M running, I seem to remember, AT&T
version 7. It was my first UNIX, my shining virgin leap into the interactive
console command line. I was hooked in 10 minutes, maybe less. No cards
to punch, for one thing, and a seemingly bottomless pool of commands to
explore, most of which resembled actual words. The idea that you could
write and run a shell script in “real time” was pretty seductive, too. My
prior experience with academic computing was that you punched in a pro-
gram, put the box of rubber-banded cards with your name on it in a bas-
ket, and came back the next day for your error messages. With UNIX,
however, you got instant gratification and/or smackdown. Intoxicating it
was, young Skywalker.

Printed manuals were hard to come by in those days, which meant that
any problem solving had to be done by trial and error. At my age now that
sort of mental exercise just makes me tired, but back then it was an irre-
sistible challenge to my nerditude. Hacking out a shell script in the wee
hours was all part of the game. I still see some of the Perl scripts I wrote
(albeit much later) for performance monitoring and so on floating around
in old archives on the Web, like resin-cast trilobites in a museum gift shop.

Another fateful defining moment occurred when my friend and I discov-
ered, via a physics grad student, that a text-based game we had heard
about called “Adventure” resided on this very box. Unfortunately, playing
it required an account with much better privileges than those of a mere
student assistant. We paged through the user roster until we found a pro-
fessor who was on sabbatical, a professor with faculty-level access to the
crucial VAX. All we needed was the elusive account password. In those
prehistoric days you couldn’t just go online and download Jack the Ripper
or L0phtCrack. If you wanted to launch a dictionary attack, you had to
supply your own injection code and your own wordlist. We did our
research and loaded it with words and numbers that seemed as though
they might be significant to the professor in question, including family
member/pet names, phone numbers, faculty ID number, office number, and
so on. Finally nailed it after about an hour of runtime with his street
address and dog’s name. Piece o’ cake. We did the happy hacker hop of vic-
tory, cracked our knuckles, and got down to serious entertainment.

We played Adventure all that summer, breathlessly mapping out the twisty
little passages on the back of used green and white-striped tractor-fed
printer paper and typing “plugh” every few minutes to see what might
happen, always careful to scrub logs and reset quotas after each session. It
was my introduction to computer hacking, computer gaming, and UNIX
all rolled into one, and it was a heck of a lot of fun. Call me an old fuddy-
duddy (you won’t be the first), but the “point, click, and r00t” mantra of
the Metasploit generation just doesn’t have the same allure.

72 ; L O G I N : V O L . 3 1 , N O . 2

N I C H O L A S M . S T O U G H T O N

USENIX
Standards
Activities

Nick is the USENIX Standards
Liaison and represents the
Association in the POSIX, ISO C,
and LSB working groups. He is
the ISO organizational repre-
sentative to the Austin Group,
a member of INCITS commit-
tees J11 and CT22, and the
Specification Authority sub-
group leader for the LSB.

nick@usenix.org

2005 was a busy year for me as
the USENIX standards represen-
tative. There are three major
standards that I watch carefully:

n POSIX, which also incorpo-
rates the Single UNIX Specifi-
cation

n ISO-C
n The Linux Standard Base (LSB)

In order to do that, USENIX
funds my participation in the
committees that develop and
maintain these standards.
Throughout 2005, the Free
Standards Group (FSG) also
helped fund these activities. For
each of these, let’s look at the his-
tory of the standards, then at
what has happened over the past
12 months or so, and, finally,
what is on the agenda for this
year. Each of these standards is
critical to a large proportion of
our members. Without these
standards, open source software
as we know it today would be
very, very different!

P O S I X

The POSIX family of standards
was first developed by the IEEE,
arising from earlier work from
/usr/group and the System V
Interface Definition (SVID),
and was published as a “trial use”
standard in 1986. In 1988, the
first full-use standard was pub-
lished. The difference between
“trial” and “full” use is principal-
ly in the use of the term “should”
rather than “shall” in the require-
ments for any interface.

In 1990, the 1988 API standard
was revised, clarifying a number
of areas and expanding them. At
the same time, the API standard
became an ISO standard. At this
point in history, there were about
10 separate POSIX projects under
development, ranging from the
basic OS system calls and libra-
ries, through commands and util-
ities, to security, remote file
access, super-computing, and
more. In 1992, the second part

of POSIX was published (the
Shell and Utilities volume), and
it became a second ISO standard.
Amendments to these standards
were also under development,
and led to the addition of real-
time interfaces, including
pthreads, to the core system call
set. Many of the other projects
died away as the people involved
lost interest or hit political road-
blocks (most of which were
reported in ;login: at the time).

Until the end of the twentieth
century, POSIX was developed
and maintained by IEEE exclu-
sively. At the same time, the
Open Group (also known as
X/Open) had an entirely separate
but 100% overlapping standard,
known as the Single UNIX
Specification. This specification
started from the same place in
history, and many of the partici-
pants around the table at an
X/Open meeting were the exact
same people who had met a few
weeks before at an IEEE POSIX
meeting to discuss the same set
of issues!

This duplication of effort became
so annoying that a new, collabo-
rative, group was formed to pro-
duce a single document that
would have equal standing for
each of ISO, IEEE, and the Open
Group. That group held its first
meeting in Austin, Texas, in
1998, and was therefore named
the “Austin Group.” The Austin
Group published a full revision
of the POSIX and Single UNIX
specifications as a single docu-
ment in 2001. It was adopted by
all three organizations and is
maintained by the same team,
which represents the interests of
all three member organizations.

Since the 2001 revision, work
has been steadily progressing
maintaining this 3762-page mas-
terpiece. Every week, there is a
steady stream of “defect reports,”
which range from typos in the
HTML version (the document is
freely available in HTML on the

Web; see http://www.unix.org
/single_unix_specification),
through major issues with
ambiguous definitions, and so
on. Some of these defects can be
quickly and cleanly fixed, and
two “Technical Corrigenda”
documents have been approved,
which alter the wording for
some of the interfaces to clarify
their meanings.

Every ISO standard (and every
IEEE standard, too) has a five-
year “reaffirm/revise/withdraw”
process, where the document
is examined to see if it is still
relevant, whether it needs revi-
sion to meet current needs, or
whether it is now outdated and
should be withdrawn. For
POSIX, the Austin Group has
elected to revise the specifica-
tion during 2006.

Under the Austin Group rules,
the group as a whole cannot
invent new material. One of its
sponsor groups (IEEE, ISO, and
the Open Group) must have
prepared a document and had it
adopted under its own organiza-
tion rules before it can be pre-
sented to the group as a whole.
Therefore, the Open Group has
been developing, and is now in
the final stages of approving, a
number of documents which
include new APIs to become a
possible future part of a UNIX
branding program. Once ap-
proved, these documents can
then be examined by the Austin
Group (OK, so it’s still the same
group of people who developed
the set in the first place) for
inclusion into the POSIX
revision.

The new interfaces under con-
sideration are ones that have
been popular in the GNU-C
library (glibc) and Solaris for
some time, but have not been
formally standardized before.
They include support for stan-
dard I/O functions to operate on
memory buffers as well as exter-

nal files, getline and getdelim,
some multibyte string-handling
functions, robust mutexes, and
versions of functions that take
pathnames relative to a directory
file descriptor rather than plain
pathnames (this helps avoid cer-
tain race conditions and helps
with really long pathnames).

I would expect to see official
drafts of this new revision this
summer, and the final version in
2008.

POSIX has long had support
beyond the C language world.
There are Ada and Fortran offi-
cial “bindings” to POSIX. How-
ever, there has never been a real
connection between the C++
world and the POSIX world;
C++ programs can use C to call
POSIX functions. But this leads
to all sorts of complications for
C++ programmers and, more
seriously, to much reinvention
of the wheel in providing map-
pings between C++ constructs
and those of POSIX. The Austin
Group has received several
defects from C++ programmers
who want to know why they
can’t do x, to which the tradi-
tional answer has been “don’t
use C++, use C”! And to make
matters worse, the C++ language
committee is also going through
a revision at present, and they
want to add all sorts of features
to the language that might make
it harder to access some of the
fine-grained features of POSIX
(since they want the language
to work on other platforms,
they deliberately try to be OS-
neutral).

All that may change soon. A
study group has recently been
formed to look into the need
for, and desire to build, a C++
binding to POSIX. USENIX is
hosting the wiki for this group,
and you are welcome to join:
http://standards.usenix.org/posix
++wiki.

I S O C

The first version of the ISO C
standard, then known as ANSI-
C, was published in 1989. It
took the original language from
Kernighan and Ritchie’s book
and tightened it up in a num-
ber of places. It added function
prototypes and considerably
improved on the standard C
library. The first versions of
POSIX used this language as the
underlying way to describe inter-
faces, and included a c89 com-
mand to invoke the compiler.

Between 1989 and 1999, the C
committee added wide character
support and addressed several
language “defects”—internal
discrepancies in the way various
features were described. The
committee included a number
of compiler vendors, who were
also keen to have the language
permit ways to guide an opti-
mizer: features such as con-
stants, volatile variables and
restrict pointers were added to
the language for this purpose.

In 1999, a new revision came
out which included several new
features such as these, along
with major rework for floating
point support (including things
such as complex numbers).

At this point, the committee is
fairly happy with the state of
the core language and is fight-
ing back against proposals to
change it. However, they have
not stopped working! They are
currently preparing several tech-
nical reports that optionally
extend the C language in a
number of directions. Of these,
by far the most significant to
most USENIX members is the
report formerly known as the
“Security TR.” I say formerly
because the term “Security”
(and it turns out, many other
related words) are so overloaded
and charged with meaning that

; LO G I N : A P R I L 2 0 0 6 U S E N I X STA N DA R D S AC TI V ITI E S 73

by far the most objections to the
document were to its title.

The report formerly called the
“Security TR” actually attempts
to deal with the fairly common
problem of buffer overflow. It
does so in a very simple fashion:
every interface in the ISO-C
standard library that takes a
buffer has a secure variant which
includes the size of the buffer.
Now, while that is the meat of
the original concept, it isn’t all
that the report currently propos-
es. The report introduces the
concept of runtime constraints,
that is, various things that must
hold true when an interface is
invoked. The original standard
library simply had undefined
behavior when you passed a null
pointer to an interface that
expected a pointer to a buffer. So

char *p = malloc(10);
gets(p);

could fail in a variety of ways,
despite being well-formed, legal
C.

The new “secure” library ver-
sion of this,

char *p = malloc(10);
gets_s(p, 10);

will invoke a runtime exception
handler (analogous to a signal
handler) if p is null (because the
malloc failed) or if there are
more than 10 characters on the
next line of standard input.

According to its current stats,
this document proposes a
library that might be of benefit
to someone going over thou-
sands or millions of lines of
existing code and trying to find
and plug all of the possible
buffer overflow spots. It is likely
to end up obfuscating some of
the code. It is also possible that
if the buffer size is not well
known, it could end up hiding
bugs where the programmer
simply guesses at a buffer size
but is wrong; now the code
looks as if it has been retrofitted

to prevent buffer overflows, but
it hasn’t!

It will also likely change the ABI
of third-party libraries that want
to use this; they must now have
a way of receiving the size to
check against. This suggests to
me that this library will have lit-
tle uptake as it stands, though
Microsoft has implemented it
and has updated all of its core
programs to use it (is this a
good thing?).

The core of the problem is that
memory handling in C is com-
plicated and error-prone.
Nobody will doubt that
improvements in the supporting
APIs are useful, but the existing
APIs already provide the means
to write correct programs. It is
just cumbersome to do so. The
proposed interfaces won’t
change that; on the contrary,
they could make programs even
more complex. An alternative
approach is to take as much of
the memory handling away from
the programmer as possible.

To that end, I am preparing a
second part to this technical
report that uses dynamic memo-
ry allocation instead of static
buffers. For new programs
(rather than retrofits of old
code), this approach leads to a
cleaner, more robust application,
with fewer possibilities for prob-
lems. For example, instead of
reading data from an input with
gets into a static buffer (that
might be too small), the getline
function allocates a buffer big
enough to hold the entire input
line, however long it was (or
returns NULL if there was in-
sufficient memory). The only
problem with such an interface
is that the programmer must
remember to release the memo-
ry when he or she is done with
it, by means of a call to free.
Some have argued that this, too,
can lead to unexpected bugs, as
programmers forget to free these

buffers, and the application
slowly leaks memory. However, I
believe this is a smaller problem
than the use of static buffers
with guessed sizes.

Back to the name of this report:
as I said , “Secure Library” got
a ringing “no” vote. This report
does not address any of what
many people regard as security
issues. The name “Safer Library”
was suggested, but the owners
of a product called “Safer-C”
objected. In the end it has come
down to “Extensions to the C
Library—Part 1—Bounds
Checking Functions.”

TH E L I N UX STA N DA R D BA S E

The LSB is an Application
Binary Interface (ABI), rather
than an Application
Programming Interface (API).
As such, it covers details of the
binary interfaces found on a
given platform, providing a con-
tract between a compiled binary
application and the runtime
environment that it will execute
on. The first version was pub-
lished in 2000 and has devel-
oped rapidly since then. It now
consists of a Core specification
(including ELF, Libraries,
Commands & Utilities, and
Packaging), a Graphics module
(including several core X11
libraries), and a C++ module.

Each specification has a generic
portion that describes interfaces
that are common across all
architectures and seven architec-
ture-specific add-ons that spell
out the differences between the
architectures.

For the past year or more, I
have been acting on behalf of
the Free Standards Group as the
technical editor for the ISO ver-
sion of this standard. ISO 23360
was unanimously approved last
September by the national bod-
ies that contribute to the sub-
committee responsible for pro-

74 ; L O G I N : V O L . 3 1 , N O . 2

; LO G I N : A P R I L 2 0 0 6 U S E N I X STA N DA R D S AC TI V ITI E S 75

gramming languages and their
runtime environments.

We have had to jump through a
few hoops in the final publica-
tion phase, but now it looks as
though the document is ready.
You will soon be able to buy a
CD from ISO with the LSB on it
(see http://www.iso.org), or you
can just download the PDF for
free from the Free Standards
Group (though the copyright
notice is subtly different, as are
the running headers and foot-
ers—see http://refspecs
.freestandards.org.

What now for the LSB? Are we
done? Of course not! The LSB
workgroup has a new chair, Ian
Murdock (the Ian of Debian). A
new subgroup is developing a
desktop specification, with an
increased focus on libraries
needed by desktop applications
such as GTK, Qt, PNG, XML,
more X, imaging, etc.

And with the pace of develop-
ment in the open source com-
munity, it is necessary to contin-
ually revise the specification to
match current practice. For
example, until recently the plug-
gable authentication modules
(PAM library) had no symbol
versioning, but the upstream
maintainers have now decided
to add that (which makes main-
taining an ABI possible). The
LSB now has to be updated to
discuss which version of which

symbol you should be using to
get the promised behavior.

Additionally, the LSB Core
Specification is mostly a super-
set of the POSIX APIs. How-
ever, there is a small handful of
places where the two specifica-
tions are at odds. For the most
part, these differences won’t
bother most programmers most
of the time, but there are corner
cases you can creep into where
you’ll find your application isn’t
portable between an LSB-con-
forming platform and a POSIX-
conforming platform. For exam-
ple, POSIX requires the error
EPERM if you attempt to unlink
a directory, while the LSB
requires this error to be EISDIR.

A document describing these
differences is now available from
ISO as Technical Report 24715.

During the revision of POSIX
this year, and as a part of any
future LSB development work,
we will review these changes to
see if there is any way that
either specification can accom-
modate the behavior of the
other in some deterministic
fashion.

A well-supported standard for
Linux is a necessary component
of Linux’s continued success.
Without a commonly adopted
standard, Linux will fragment,
thus proving costly for ISVs to
port their applications to the
operating system and making it

difficult for end users and Linux
vendors alike. With the LSB, all
parties—distribution vendors,
ISVs, and end users—benefit as
it becomes easier and less costly
for software vendors to target
Linux, resulting in more appli-
cations being made available for
the Linux platform.

It is important for the LSB
workgroup not to slip into the
comfortable feeling that the job
is now done. If the workgroup
does not remain focused on the
core document, that core docu-
ment will quickly become irrele-
vant, overtaken by the pressures
of distribution vendors to have
their product be the de facto
standard in the absence of a
good de jure base.

My work with the LSB over the
past year has not just been as
the technical editor of the ISO
standard, although this has been
a major part of my work. I have
also been one of the principal
technical editors of the specifi-
cation as a whole. With the
completion of the submission of
the initial core specification to
ISO, the sources of funding for
this critical project have largely
dried up. I end with a plea: if
your organization believes that
standards for UNIX, Linux, and
C are important, consider donat-
ing money to USENIX to help
fund the development and
maintenance of these standards.

A N N UA L M E E TI N G O F TH E U S E N I X B OA R D O F D I R E C TO R S

The Annual Meeting of the USENIX Board of Directors will take place at the Boston Marriott Copley Place
during the week of the 2006 USENIX Annual Technical Conference, May 30–June 3, 2006. The exact loca-
tion and time will be announced on the USENIX Web site.

76 ; L O G I N : V O L . 3 1 , N O . 2

book reviews
E L I Z A B E T H Z W I C K Y

zwicky@greatcircle.com

with Sam Stover and
Rik Farrow

TH E TC P/ I P G U I D E : A COM P R E H E N -

S I V E , I L LU STR ATE D I NTE R N E T

P ROTO CO LS R E F E R E N C E

Charles M. Kozierok

No Starch Press, 2005. 1,539
pages. ISBN 1-59327-047-X

When I started to review books,
my husband found that several
of his cherished illusions about
book reviewing were shattered.
First, having publishers send us
free books was not as exciting as
he had hoped. Second, he had
believed that reviewers always
lovingly read every page of
every book. As an author, I’ve
never believed that, and have in
fact cherished the theory that
any reviewer who dislikes my
book just didn’t pay sufficient
attention. Different reviewers
have different standards; I feel
that it’s necessary to read every
page, except in truly extreme
circumstances, but I’m willing to
gloss rapidly over some of them.

At 1,539 pages, meeting that
standard for the TCP/IP Guide
has taken me quite a long time.
And it’s probably not representa-
tive of what other readers will
do; the book is not intended to
be read end-to-end like a novel.
But I found that I actually got
fonder of the book as I kept
going. My early experiences
were marred by an indexing

issue (I tried to look up the port
number for DHCP, which isn’t
indexed, although it turns out
the information is there) and a
fundamental disagreement with
the author about what consti-
tutes a protocol (I’m sorry, but I
know of no coherent definition
of the term which allows net-
work address translation to be
considered a network protocol).
But as I went along I found that
while I have issues with the
book, it’s actually informative
and easy to read, even when dis-
cussing rather nasty protocols,
and when it covers something, it
generally covers it quite com-
pletely.

The book is something of a
strange beast. I would have
made some different choices
about what to include and what
to leave out; for instance, I’ve
seen some pretty odd things
on networks—including non-
contiguous netmasks, which
Kozierok asserts were never
used—and I’ve never seen the
ICMP traceroute message type
in use. He does point out that
it never made it out of experi-
mental status, but only after
two pages of discussion. More
important, the book’s only ges-
ture towards non-UNIX systems
is to discuss implementations of
UNIX-based TCP/IP protocols.
There’s minimal coverage for
Microsoft extensions and oddi-
ties, and no coverage at all of
Microsoft file sharing or nam-
ing. But it’s not just Microsoft
that gets shorted; there’s no AFS,
Kerberos, or LDAP, and RPC is
mentioned very briefly in pass-
ing during the discussion of
NFS.

In the protocols that it does dis-
cuss (and there are lots of
them), I would have made some
different choices about the
information to put in, preferring
less history and more security,
for instance.

So why is it twice as long as vol-
umes 1 and 3 of TCP/IP
Illustrated, which cover basically
the same protocols? Well, it cov-
ers IPv6 quite thoroughly, it
assumes less expertise on the
reader’s part, and it covers some
topics (like much of the theory
behind routing) that TCP/IP
Illustrated leaves for more spe-
cialized books. If you don’t
have a TCP/IP background, and
you’re looking for understand-
able, implementation-neutral
descriptions of protocols, it’s a
good choice for a reference
work. Despite my initial misgiv-
ings (and my continued pedan-
tic snarling), I’m going to give
this one a place on my book-
shelf.

O P E N S O U RC E F O R TH E E NTE R P R I S E :

M A N AG I N G R I S KS, R E A P I N G

R E WA R D S

Dan Woods and
Gautam Guliani

O’Reilly, 2005. 217 pages.
ISBN 0-596-10119-8

You love open source, but you’re
not sure how to get it into your
IT shop; it’s not that everybody
is committed to what you’ve got
now, but they’re nervous about
something that seems to involve
too many hippies and fanatics.
Or, for that matter, you don’t
love open source, you’re a tradi-
tional IT manager trying to fig-
ure out what to do about open
source for one reason or another
(not enough money to buy com-
mercial, you’re surrounded by
hippies and fanatics, your ven-
dor just snapped your last
nerve). This sensible book is a
good place to start. It’s very
much in favor of open source
software, while maintaining a
good grasp of the pitfalls
involved, and it speaks in lan-
guage that nicely bridges the
worlds of open source and IT
manager.

; LO G I N : A P R I L 2 0 0 6 B O O K R EV I E WS 77

It is a small book; it left me feel-
ing hungry for more. But it does
a nice job of filling its niche. If
you need to figure out how
much you can reasonably do
with open source, or how to
convince people to do that, and
you’re dealing with people who
think in traditional IT terms,
this book will point you in the
right direction and reassure you
that it is possible and reason-
able.

D E S I G N I N G I NTE R FAC E S

Jennifer Tidwell

O’Reilly, 2005. 331 pages.
ISBN 0-596-00803-1

I am by no means an interface
designer. On the other hand,
I’ve ended up designing my fair
share of interfaces, either be-
cause I was the only option or
because everybody else involved
in the project was even less able.
This has left me with the unsur-
prising insights that interface
design matters, it’s a lot of work,
and that people who do it seri-
ously are better at it than I am.
So I was enthusiastic about the
idea of a book that would either
improve my ability or at least
allow me to take a reasonably
interested programmer on a
team and get them to my level
of semi-competence.

Happily, I believe this book
meets both goals. It’s a book of
user interface patterns meant for
people who are just starting to
think about the design of user
interfaces. If you’re a serious
human-computer interaction
person, it’s going to be way too
basic for you. If you were hop-
ing somebody would just tell
you what to do and get it over
with, it’s going to be too fuzzy
for you. But if you’re willing to
do your own thinking and need
somewhere to start, this book
should give you the tools to
work with.

I NTE R N E T F O R E N S I C S : U S I N G

D I G ITA L EV I D E N C E TO S O LV E

COM P UTE R C R I M E

Robert Jones

O’Reilly, 2006. 216 pages.
ISBN 0-596-10006-X

Internet Forensics is somewhat
misleadingly titled. If you’re
hoping to find out what profes-
sionals do when they track
down serious crimes, or you’re
already familiar with computer
security, you’re likely to find it
disappointing. It’s a sensible,
interesting book on amateur
Internet forensics, the sort of
thing you might do at home to
track down people who are real-
ly annoying you. I enjoyed it,
although as somebody who
already has a security back-
ground, I didn’t find anything
particularly novel in it.

I recommend this book if you
don’t know a lot about security
and want to do something about
nasty mail and Web pages. It’s
also a great lesson in a bunch of
basic parts of the Internet; if you
want a really motivating way to
learn how IP and DNS and
HTTP work, it’s a lot more fun
than reading abstract descrip-
tions, and it will give you a
good reason to play around with
things until they make sense to
you.

SA R BA N E S - OX L EY IT COM P L I A N C E

U S I N G CO B IT A N D O P E N S O U R C E

TO O LS

Christian B. Lahti and
Roderick Peterson

Syngress, 2005. 333 pages.
ISBN 1-59749-036-9

This book takes on challenging
territory. “Sarbanes-Oxley” and
“COBIT” (Control Objectives
for Information and related
Technology) are the sort of
words that inspire simultaneous
terror and boredom. Anybody
involved in trying to comply

with Sarbanes-Oxley is probably
going to turn to COBIT as a way
of getting a handle on things,
but they don’t map perfectly, so
it’s a confusing mess where the
only possible downside for get-
ting it wrong is huge fines and
jail time. Just the kind of situa-
tion in which you’d like a good
book to come along and hold
your hand, and all the better if it
includes the tools you need.

Unfortunately, this book doesn’t
do a particularly good job of
hand-holding. It gives a nice
introduction to the issues
involved in Sarbanes-Oxley and
COBIT, and how the two relate
(although I could have done
without the intro that portrayed
the reader as too technology-
obsessed to even pay minimal
attention in important meetings;
thanks, but I get enough insult-
ing stereotypes from people
who’re not trying to sell books
to me). After that, things go
downhill. There are a lot of
statements and not a lot of the
sort of scaffolding you’ll need to
make your own decisions about
your own site.

Open Source for the Enterprise
(see above) does a much better
job of discussing the issues and
advantages of open source to
meet whatever needs you have.
Coverage of open source con-
sists of a brief discussion and a
CD containing a selection of
open source tools that might or
might not be a useful part of
your Sarbanes-Oxley compliance
plan. These tools are mentioned
when they talk about the rele-
vant parts of COBIT, but they
aren’t discussed in enough detail
to help you decide whether
they’re the right tools for you.

As an example of compliance
policy, they offer a password
compliance policy that violates
almost every rule for a good

78 ; L O G I N : V O L . 3 1 , N O . 2

password policy. It mixes infor-
mation of interest only to ad-
ministrators with information
for users. It doesn’t give the
users an understandable reason
for the policy. It states rules for
passwords almost entirely in the
negative (“Don’t do . . .”) and
includes pointlessly specific
rules. An editing error has
caused the only useful informa-
tion on picking a password to be
attached to the “Enforcement”
section. And there’s no verifica-
tion mentioned.

I’d pass this one up. Stick to
Web resources and separate
books on Sarbanes-Oxley and
open source.

S O F T WA R E P I R ACY E X P O S E D

Paul Craig

Syngress, 2005. 310 pages.
ISBN 1-93226-698-4

R E V I E W E D B Y S A M S T O V E R

Since I’m not in on the piracy
scene, I can’t vouch for the tech-
nical accuracy of this book, nor
can I just build a lab and put
its assertions to the test. But
what a fascinating read. I mean,
this book had me hooked from
page 1 to page 296 (right before
the Index). Literally, I couldn’t
wait to get back to it after set-
ting it down. I’m no stranger to
BitTorrent, and we’ve all been
hearing the media hype on
Napster, Gnutella, etc., for
years. When I first picked up
this book, I expected to read
about those very applications
and their detriment to the
Internet, and society as a whole.

What I found was an extremely
detailed and thorough journey
into the world of piracy, a world
that most people don’t know
exists, much less interact with.
Let’s get one thing straight—P2P
applications like eDonkey and
BitTorrent are NOT piracy, at
least not the piracy this book
speaks to. Piracy is the high-
adrenalin world of stealing or

cracking applications and post-
ing them to private sites. This
world seems to be fueled by
peer acceptance rather than
monetary gain. Not that there
isn’t a an underlying “stick it to
the man” attitude in the piracy
groups, but as presented in this
book, fiscal gain is not the pri-
mary motivation. Whether it’s
two couriers racing to get the
same application distributed
first, or the cracker pitting his
sk1llz against the latest anti-
piracy measures, it’s all about
competition.

Unlike other (dry) technical
books, this one was extremely
thought provoking. I still find
myself discussing or contem-
plating the points the author
brings to light. Throughout the
first two-thirds of the book, I
kept thinking “I can totally see
why people get into this.” Then
I got to Chapter 9, where the
high-profile FBI busts were dis-
cussed, complete with actual
names and sentencing details.
Then I started thinking, “Why
would anyone do this?” Risking
10 years in prison for something
that doesn’t pay the bills seems
a little extreme to me. A lot of
the pirates seem to have day
jobs, and piracy is more of a
hobby/passion than a career.
And some of the achievements
are just astounding. Disk storage
is measured in Terabytes, band-
width is FastEthernet or even
GigE, and the number of appli-
cations distributed in the thou-
sands. Wow. If only the dot-
bomb businesses had been this
efficient.

The book has a lot of facts and
plenty of interviews with real
pirates. The research seems very
sound, and the interviews ring
true. Each aspect of the piracy
scene is discussed in depth,
from the Suppliers, to the
Crackers, to the Distribution
Chain. I found the technology
discussed in the Cracking sec-

tion especially interesting, as the
author goes into a fair bit of
detail when describing common
reverse-engineering methods.

The blurb on the front cover
bills this book as a “Must Read
for Programmers, Law Enforc-
ement, and Security Profess-
ionals.” I agree totally. In fact, I
think it should be required read-
ing, especially for application
developers, because if you code
something, someone is going to
pirate it. You need to know how
and why.

My only complaint was the
number of editorial oversights
in the book. Misspellings and
grammatical errors kept popping
up. As with some other Syngress
books I’ve read, I’d say that this
was rushed to press because
they thought the content was
ground-breaking. Well, I agree.
Just an amazingly fun read.

O S X F O R H AC K E R S AT H E A RT

Ken Caruso, Chris Hurley, Johnny
Long, Preston Norvell, Tom Owad,
Bruce Potter

Syngress, 2005. 439 pages.
ISBN 1-59749-040-7

R E V I E W E D B Y S A M S T O V E R

A lot of folks are (or consider
themselves) “Apple bigots.” I
tend to prefer the label “OS X
bigot,” but after reading this
book, I’m starting to convert.
Having only used OS X for
about three years, and never
once with a classic application,
I think of OS X as “*NIX that
works” or “*NIX for the mass-
es” or “*NIX that’s so freaking
sexy I can’t believe it.” Take
your pick.

I knew that Snort, Nessus, and
KisMAC worked just fine. I
knew you could integrate a Mac
into a predominantly Windows-
biased environment via SMB
support, Entourage (the Mac
version of Outlook), and Open
Directory (the Mac version of
Active Directory). I knew I

; LO G I N : A P R I L 2 0 0 6 B O O K R EV I E WS 79

could compile my own source
code manually, or use Fink
and/or DarwinPorts for a more
automated experience. I knew
that most/all of these issues
were in this book, and figured
there wouldn’t be much left for
me to take home.

I knew nothing.

I didn’t know that my Power-
book knows when it’s being
dropped, and reacts accordingly
by parking the hard drive head.
In fact, it does more than that—
it keeps a running three-dimen-
sional profile of its position in
space and monitors G-forces to
determine when it should panic.
Turn your Powerbook sideways
and you can read it like a book.
It knows.

I didn’t know that I could run
CD-based Linux distributions
from VirtualPC. Want to give
the new Helix or Auditor ISO a
spin? Drop it into VirtualPC,
and away you go. Obviously,
this isn’t a long-term solution,
but it will do if your Linux box
dies (which never happens,
right?).

And, most important, I really
knew nothing about the great
stuff that long-time Mac users
take for granted, like Automa-
tor and AppleScript. Sure, I’ve
messed around with AppleScript
every now and then, but I al-
ways end up going back to
Python or possibly shell script-
ing to get things done. The
chapter on getting the most
out of combining Automator,
AppleScript, and any other lan-
guage (Python, bash, Perl, C,
etc.) totally rocked my world.
Apple really goes out of their
way to make it easy for the user
to find the best way to get
things done, and this book is
truly the hackers’ cookbook for
putting it all together.

I totally enjoyed this book and
would recommend it to anyone
who has picked up a Mac and
wants to run it through its
paces. I would also recommend
it to anyone contemplating get-
ting a Mac, because I guarantee
you’ll end up making the pur-
chase after you start salivating
over what it can do.

My only true gripe with this
book is that the editing really
needed more attention. There
weren’t many chapters that did-
n’t have at least one error, with
the top scorer containing 19.
This tells me that Syngress really
rushed this book through to get
it out to me, and, well, to you
too. I suspect the 2nd edition
will be a bit cleaner, but don’t
wait for it. If you want to learn
what you can do with a Mac,
you need this book—warts and
all.

E S S E NTI A L P H P S E C U R IT Y

Chris Shiflett

O’Reilly Media, 2006. 109 pages.
ISBN 0-596-00656-X

R E V I E W E D B Y R I K F A R R O W

PHP is a very popular language
for creating Web scripts, and
one with a bad reputation for
security. Shiflett argues that
much of this reputation is unde-
served, and the issues can be
avoided by carefully following a
set of principles when writing
with PHP. I agree, to some
degree.

This little book is an excellent
way to learn about the security
pitfalls one may encounter, and
defend against, when writing
Web scripts in any language. By
following all of Shiflett’s recom-
mendations, you would avoid
most, if not all, security vulnera-
bilities in PHP. If you use PHP, I
highly recommend that you get
this book, read it, and adhere to
the suggestions found within it.

My only reservation is that I
prefer languages that make it
more difficult, if not impossible,
to do the wrong thing. PHP lets
you shoot yourself in the foot so
many ways, that caution
becomes the watchword.

U N D E R STA N D I N G TH E L I N UX

K E R N E L , TH I R D E D ITI O N

Daniel P. Bovet and Marco Cesati

O’Reilly Media, 2006. 923 pages.
ISBN 0-596-00565-2

R E V I E W E D B Y R I K F A R R O W

I really didn’t want to under-
stand the Linux kernel.
Operating system programming
is difficult, the Linux kernel is
immense, and I have other
things I must focus on. But
when I found myself having to
tinker with the kernel, or inter-
ested in learning about how
modern memory management
with 80x86 CPUs works, I need-
ed a reference that could help
me. And Understanding the
Linux Kernel really worked for
me.

Explaining a program that is
millions of lines of code long
is an enormous challenge. This
book focuses on the operating
system aspects of the kernel,
as opposed to networking or
device drivers (which are cov-
ered in other books). Given that
focus, I feel that the authors
have done an excellent job.
They take the time to explain
the issues clearly, and they pro-
vide cross-references to other
areas of the book (and the ker-
nel).

This was not the first Linux ker-
nel book that I looked at, but it
is the one I can recommend.

80 ; L O G I N : V O L . 3 1 , N O . 2

USENIX
notes

U S E N I X B OA R D O F D I R E C TO R S

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E NT

Michael B. Jones,
mike@usenix.org

VI C E P R E S I D E NT

Clem Cole,
clem@usenix.org

S E C R E TA RY

Alva Couch,
alva@usenix.org

TR EA S U R E R

Theodore Ts’o,
ted@usenix.org

D I R E C TO R S

Matt Blaze,
matt@usenix.org

Jon “maddog” Hall,
maddog@usenix.org

Geoff Halprin,
geoff@usenix.org

Marshall Kirk McKusick,
kirk@usenix.org

EX E C UTIVE D I R E C TO R

Ellie Young,
ellie@usenix.org

TO TH E E D ITO R

I just read in the December issue
of ;login: Peter Salus’s “Ave
Atque Vale” piece (pp. 65f.).

I shall miss Peter’s column. I
always enjoyed reading it and,
on a few occasions, contributing
to it.

Peter, my best wishes, Happy
2006, and thanks for all the
memories . . .

Ted Dolotta

FU N D TO ESTAB LISH TH E JOH N L IONS

C HAI R I N OPER ATI NG SYSTEMS AT TH E

U N IVERSITY OF N EW SOUTH WALES.

USENIX
announces the
creation of a
matching fund
to establish the

John Lions Chair in Operating
Systems at the University of
New South Wales.

The University of New South
Wales is establishing an
endowed Chair to recognize the
enormous contribution made by
John Lions to the world of com-
puting. USENIX will match up
to $250,000 in donations made
through USENIX, now through
December 31, 2006.

The Chair, to be called the
John Lions Chair in Operating
Systems, will enable an eminent
academic to continue the John
Lions tradition of insightful and
inspirational teaching in operat-
ing systems. The creation of the
Chair will perpetuate the John
Lions name, and new genera-
tions of students will benefit
from his legacy.

Donations can be made by
sending a check, drawn on a
U.S. bank and made out to the
USENIX Association, to John
Lions Fund, USENIX
Association, 2560 Ninth St.,
Suite 215, Berkeley, CA 94710,
or by making a donation online
at https://db.usenix.org/cgi-bin/
lionsfund/donation.cgi.

Your contribution may be
tax-deductible as allowed by
law under IRS Code Section
501(c)(3). Check with your tax
advisor to determine whether
your contribution is fully or
partially tax-deductible.

U S E N I X M E M B E R B E N E F ITS

Members of the USENIX
Association receive the following
benefits:

F R E E S U B S C R I P T I O N to ;login:, the Associ-
ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns on
such topics as security, Perl, Java, and
operating systems, book reviews, and
summaries of sessions at USENIX
conferences.

A C C E S S T O ; L O G I N : online from October
1997 to this month:
www.usenix.org/publications/login/.

A C C E S S T O P A P E R S from USENIX confer-
ences online:
www.usenix.org/publications/
library/proceedings/

T H E R I G H T T O V O T E on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

D I S C O U N T S on registration fees for all
USENIX conferences.

D I S C O U N T S on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

S P E C I A L D I S C O U N T S on a variety of prod-
ucts, books, software, and periodi-
cals. For details, see
www.usenix.org/membership
/specialdisc.html.

F O R M O R E I N F O R M AT I O N regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 81

conference
reports

LISA ’05: 19th Large
Installation System
Administration
Conference

San Diego, CA
December 4–9, 2005

Keynote Address

S C A L I N G S E A RC H B EYO N D

TH E P U B L I C W E B

Qi Lu, Vice President of Engineering,
Yahoo! Inc.

Summarized by Roman Valls
Guimera

Qi Lu told us the challenges that
Yahoo is facing to adapt their infra-
structure to a new search level: per-
sonal and social search. These new
forms of searching, as opposed to
the traditional and well-known
public search, are really difficult to
scale.Take the example of Yahoo
Mail: gigabytes of personal mail
that cannot be lost under any cir-
cumstances. Hence, a personal
space should provide high levels of
fault tolerance, replication, and
data-partitioning schemes. One
thing is clear here: it’s really com-
plex to achieve all of them when
you have a massive number of
users. Without going into details,
the Yahoo approach to solving
those issues is cleverly simple,
analogous to a biological cell: when
the data cell grows, it divides and
replicates itself throughout the sys-
tem, keeping the properties we’ve
seen before (redundancy and fault
tolerance). Of course this process
runs unattended, but it can be
monitored in real time.

Without leaving the infrastructure
point of view, we need to think
about new ways to relate data from
different users without losing per-
formance or search quality. As
del.icio.us does, a community of
friends improves user search, and
when there’s a critical mass of

users, we can improve the quality
of results for a lot of users.

You can check Qi Lu’s personal
360º Yahoo space for more info:
http://360.yahoo.com/profile-
dHFl7togcqomOrUGtvI-

CO N F I G U R ATI O N M A N AG E M E NT
WO R KS H O P. .

Moderator: Paul Anderson

Summarized by Matt Disney

Based on a completely unscientific
survey, the odds are high that you
do not use a configuration manage-
ment (confmgt) tool for managing
systems. And if you do use a conf-
mgt tool, you probably wrote it
yourself (despite the availability of
a small number of other confmgt
tools) and that nobody else uses it.
Why? What are you seeking in a
confmgt tool? Are you ready for
systematic management of your
systems? Is it possible to create a
confmgt tool that will be accepted
by a majority of system administra-
tors?

The confmgt community asked
itself these questions, and many
others, at the LISA ’05 Configura-
tion Management workshop. The
unscientific survey mentioned
above was taken at this year’s work-
shop, a gathering of system admin-
istrators, researchers, and tool
developers interested in the chal-
lenge of confmgt.

By some accounts, confmgt prob-
lems are characterized by the lack
of popular adoption of confmgt
tools. Some attendees, while not
entirely unconcerned about adop-
tion, are principally concerned
with the underlying theory. They
believe a solid foundation will yield
tools that are attractive and, more
important, correct according to cer-
tain metrics. Although the differing
priorities of these two groups are
not necessarily mutually exclusive,
the workshop next year will likely
be divided into the two categories
of tools and theory.

TH A N KS TO TH E S U M M A R I Z E R S

Alex Boster

Ali R. Butt

Stefan Büttcher

Laura Carriere

Marc Chiarini

Timothy Denehy

Matt Disney

Rik Farrow

Chaos Golubitsky

Kevin Greenan

Roman Valls Guimera

Abhishek Gupta

Jin Liang

KyoungSoo Park

Charles Perkins

Kristal Pollack

Florentina Popovici

Vijayan Prabhakaran

Josh Simon

Aameek Singh

Shafeeq Sinnamohideens

Matthew Wachs

CO NTE NTS O F S U M M A R I E S

L I S A ’ 0 5

Keynote address. 81

Workshops 81–83

Refereed papers and panels 83–99

Invited talks 84, 86–98

WO R L D S ’ 0 5

Refereed papers and panels 99–102

FA ST ’ 0 5

Keynote address. 103

Refereed papers 103–115

82 ; L O G I N : V O L . 3 1 , N O . 2

One popular topic this year was the
prospect of an OSI-like layered
model for confmgt, which could
facilitate the progress of tools as
well as represent the boundaries
between tools so that developers
can focus on specific challenges.
Such a model emerged from that
discussion:

5. Service level goals. Example:
.5 second response time for
service X.

4. Invariants. Example: port
numbers.

3. Services. Example: IMAP service.
2. Configurable elements. Exam-

ples: users, groups, resolvable
hosts.

1. OS API. Examples: file contents,
process memory state.

That definition led to an explo-
ration of related issues, such as the
general notion of feedback among
the layers and the prospect of sub-
optimal restrictions potentially
inherent in such a framework.

The challenge of federated confmgt
was also covered. Existing tools do
not reflect the complex political
structure of large organizations.
Some suggested methods for ad-
dressing this included combining
abstraction and delegation, separa-
tion by infrastructure ownership,
and the separation of functional
administrative domains.

Andrea Westerinen of Cisco gave a
presentation about the Common
Information Model (CIM) and
helped the attendees frame ways in
which it might be used in the con-
text of confmgt. Increased attention
to a well-defined and popular, if not
technically standard, model for
describing system objects could be
important and useful to confmgt in
the future. Some tools already use
CIM to some extent.

Tom Limoncelli also joined the
workshop with a presentation from
an outsider’s perspective. Entitled
“What I’ve Learned from Avoiding
Configuration Management,” his
talk included some tips on how the
core confmgt group could do a bet-

ter job of connecting with the
greater system administration com-
munity.

While some themes for the work-
shop recurred this year and will
undoubtedly continue to arise on
mailing lists and future workshops,
there is traction on some new ideas
and a continued interest in both
confmgt tool development and the-
ory. For detailed workshop notes
and general information, see
http://homepages.inf.ed.ac.uk
/group/lssconf/.

A DVA N C E D TO P I C S WO R KS H O P

Moderator: Adam Moskowitz

Summarized by Josh Simon

In answer to the question of how
much system administration has
changed in the past year, attendees
at the Advanced Topics Workshop
(businesses, including consultants,
outnumbering universities by
about 4 to 1), the general consen-
sus was “not much” on a profes-
sional level, although various com-
pliance issues (local and federal
regulations on IT, including SOX)
have affected many. There’s an
expectation that compliance will
take up more of our time and
budget. Furthermore, automation
is becoming a more obvious neces-
sity to more people; folks are learn-
ing that scale, especially with clus-
tering, simply requires it. We also
agreed that the so-called soft prob-
lems, such as user interaction and
customer service, will increase. We
noted that many of us seem to be
leaving system administration–type
roles for networking, security, and,
in at least one case, company exec-
utive (CIO), and others are losing
interest in pure SA-type work.

Next was a quick around-the-room
for tools we’ve seen. Many people
said “wiki”; other tools included
cfengine and other configuration
management tools, Google Earth,
IM clients within and across work-
groups, Nagios and monitoring
tools in general, Ruby, System

Installer Suite (SIS), VMware and
other virtual machine tools, VNC,
ILO, other Lights-Out Management
(LOM) software, and Xen. Others
mentioned methodologies for
development and testing, and code
reviews, or hardware tools such as
label makers for cables and power-
consumption monitoring.

After the morning break, we dis-
cussed security and some of the
hardware VPN solutions—using
security incidents as catalysts for
change on both an organizational
and a technical level—and when to
allow exceptions to your mandated
security policy. This segued into a
discussion on compliance; two of
the points someone stressed were
that (1) there’s no established case
law for SOX, so the auditors get
to define what compliance is, and
(2) making the collection of reports
(or at least data) for the auditors
should be both automated and
reproducible. This is much like ISO
9000 all over again in some places.

Our next discussion was on scaling
and automation. You should never
say, “We can do this stuff with less
staff,” but, rather, “We can do more
stuff with the same staff,” lest you
lose budget. It’s essential to plan for
growth at the beginning, because
you’ll rarely get the opportunity to
go back and fix it. Many places run
homegrown systems (especially
configuration management and
automation), because there’s no off-
the-shelf software that does every-
thing we want, and such products
as there are tend to have a steep
learning curve or cost. Further-
more, getting different single-OS
groups to agree on a multi-platform
product is hard, and some people
fear losing their jobs to automa-
tion, as opposed to getting rid of
the mundane tasks to focus on the
more challenging.

We next discussed personal pro-
ductivity tools, ranging from
changing OS (“Mac OS X”), to doc-
umentation (more wikis), to simple
command-line tools (vi, grep,
glimpse), books, PDA-specific

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 83

applications, Web calendaring and
sharing tools, sleeping pills (for
ourselves, not our customers),
unsubscribing from magazines and
mailing lists, delegating to others,
and even going to the gym.

After lunch, we briefly discussed
autonomic computing, and how
we as system administrators will
interact with these self-modifying
systems. In summary, it won’t
change what we do overnight,
there’ll be a cost/value tradeoff in
outsourcing, and it’ll probably be
inappropriate for organizations
with open-ended problem sets
(such as research organizations
and other places where the prob-
lems the systems are there to solve
are not well contained or easily
programmed).

Our next discussion was on pro-
fessionalism and seniority. Some
expressed concern that fewer insti-
tutions of higher education were
offering courses specifically aimed
towards system administrators,
though others argued that as long
as the candidates have thinking
and problem-solving skills, that
(plus experience as needed) was
sufficient. Some concerns were
raised about forthcoming regula-
tion of IT personnel as an indus-
try; between compliance issues
such as HIPAA and SOX and the
issues caused by not patching sys-
tems regularly, several people pre-
dict that regulation is coming
sooner rather than later. The usual
analogies were mentioned: are we
doctors, are we janitors, or are we
on a spectrum like the electri-
cians/electrical engineers?

We next named tools we thought
we’d need to learn in the next year
or so. Answers included concepts
from AJAX to ZFS, along with new
operating systems for people (Mac
OS X, Solaris 10, and Windows),
and the usual suspects (documen-
tation and knowledge manage-
ment, process management, proj-
ect planning, and virtualization).

We next discussed storage and effi-
ciency, followed by network versus
system administration. Some argue
that netadmin is five to ten years
behind sysadmin; others argue the
reverse. The consensus seems to
be somewhere in the middle and
depends a lot on how you define
your terms. For example, it’s
harder to have the Internet in your
test lab, and routers and switches
tend to make changes immediately
rather than “when you reboot”
or “when you send a signal to a
process,” as with systems. There
was also a discussion about the
relative security models for sys-
tems (data) and networks (keys to
the kingdom).

Finally, we discussed physical
plant issues (power, cooling,
weight, and remote access) and
social technologies. Most places
are using some form of wiki or
other documentation and collabo-
ration software; many are using
some form of instant-messaging
client. One novel approach taken
by some places is to use podcast-
ing for information broadcasts.

Technical Sessions

V U L N E R A B I L IT I E S

Summarized by Roman Valls
Guimera

GULP: A Unified Logging Architecture
for Authentication Data

Matt Selsky and Daniel Medina,
Columbia University

GULP (Grand Unified Logging
Project), a distributed approach to
logging centralization, was born
from the difficulties managing log-
ging info at Columbia University:
lots of servers saved different logs
on local disk with unrelated infor-
mationmaking searches and corre-
lation painful.

GULP aims to solve that problem
by applying custom XML tem-
plates to the log files and extracting
the interesting information from

them. When validated, this data is
stored on a MySQL database. Now
the security team can construct
queries to solve their problems:
find stolen laptops, missing people,
owners of infected machines; con-
firm stolen accounts; etc.

http://www.columbia.edu/acis/
networks/advanced/gulp

Toward an Automated Vulnerability
Comparison of Open Source IMAP
Servers

Chaos Golubitsky, Carnegie Mellon
University

Awarded Best Student Paper!

Chaos Golubitsky presented a way
to measure the attackability of
code. That is, the relation between
not commonly accessed code
(which the standard user is not
supposed to reach) and the code
that is accessed under normal cir-
cumstances can be expressed in
the following weighted formula:

attackability(codebase) =
Σ f functionsweight(priv(f))
weight(access(f))

She applied this to UW IMAP,
Cyrus-IMAP, and Courier IMAP.
Using a code analysis tool called
cflow (http://www.gnu.org/
software/cflow/), she managed to
split privileged code functions
from the user-accessible ones and
applied the above weighted for-
mula.

The winner was Courier-IMAP,
because it’s designed to have a
good privilege separation, while
UW and Cyrus were tied.

If you want more information
on this presentation, please see
http://www.glassonion.org
/projects/imap-attack/slides.pdf.

Fast User-Mode Rootkit Scanner for
the Enterprise

Ti-Min Wang and Doug Weck,
Microsoft Research

Almost any enterprise or user who
uses Microsoft Windows will even-
tually be infected by malware.
Tools such as Ad-Aware perform
quite well to wipe out the adware,

trojans, and viruses that infect
Windows machines.

Unfortunately, a new form of mal-
ware has appeared on the scene:
ghostware. Ghostware evades any
attempt to clean the system if you
use current utilities. It does so by
intercepting the API calls, which is
just a step away from owning the
whole OS. In other words, ghost-
ware cannot be detected from
inside the infected machine
because it has kidnapped the OS
itself, and that “ghost program”
responds to the other programs by
lying when asked for its presence.

The main concept behind Strider
GhostBuster is the cross-view diff
approach. Forget about the normal
time diff (standard diff) we all
know. Cross-view is a diff between
what we see inside the infected
machine, and what we see outside
of it, so we can see the lie and the
truth at the same time. We can
then erase the ghost(s): it takes
just seconds to see the liar.

http://research.microsoft.com/csm/
strider

I N V ITE D TA L K

Summarized by Charles Perkins

Network Black Ops: Extracting Unex-
pected Functionality from Existing
Networks

Dan Kaminsky, DoxPara Research

Introduced as a “white hat”
hacker, Dan Kaminsky presented
practical and, in many cases, real-
time exploits of network and cryp-
tographic protocol weaknesses or
unintended behaviors.

The MD5 hash function is broken
both in theory and in practice.
Dan demonstrated how an unsafe
hash (which can be found in about
45 minutes) can be used to create
two pages that hash to the same
value. Key to the demonstration
are that Web pages accept garbage
and that you can present Web con-
tent programmatically.

Dan then described how for the
receiver, keeping track of IP frag-
ments turns a stateless protocol
into a stateful one, and that IP
fragmentation makes IDS harder.
While attention to this has re-
solved many of the issues, timing
attacks remain a problem. When
an intrusion protection system
operates upstream of a protected
host, differences in fragment expi-
ration timing between the host
and the IDS can be exploited. A
stream of fragments can be created
by an attacker such that the IDS
will construct a different packet
from the fragments than the sup-
posedly protected host will. Dan
then described the temporal attack
in detail.

Some firewalls, intrusion protec-
tion systems, and intrusion detec-
tion systems attempt to mask their
existence. Dan listed a number of
existing packet behaviors, respon-
ses, and contents that will reveal
the existence of even “transparent”
defenses; IPv6 will be even easier
to fingerprint, due to encapsula-
tion and reassembly issues.

Dan asserted that IPSes should not
insert rules to ban traffic from
hosts or networks after receiving
invalid, excessive, or anomalous
traffic. Simplistic rules will result
in banning important services
(such as root DNS servers), but,
more important, through DNS poi-
soning an attacker could subvert
your infrastructure and use your
own rules against you.

Dan next described his project of
probing the Internet DNS infra-
structure, which he performed
using copious bandwidth and
novel techniques, including
requesting the addresses of dy-
namically generated names satisfi-
able only by his DNS servers. Of 9
million nameservers scanned, 2.5
million do recursion; 230,000 for-
ward to Bind8, which is a security
problem; and 13,000 have the pre-
cise configuration that caused
trouble for Google. Dan’s resulting

data set is quite large, and most
interrelationships among name-
servers are one hop deep (40,000
are connected graphs that are two
hops deep—e.g., ask alice, get a
request from bob).

As a result of his study, when the
Sony Rootkit was exposed Dan
already had a list of all the name-
servers in the world and was able
to use his tools to get an under-
standing of the breadth of the
rootkit’s distribution. It connects
to connected.sonymusic.com, and
that requires a DNS lookup which
goes into the nameserver’s cache.
Dan performed a scan requesting
connected.sonymusic.com of each
of the nameservers without recur-
sion. Nameservers that were able
to respond with the IP address
therefore had already been queried
for it. Dan found 556,000 hosts
with Sony-linked names. Dan
acknowledged the margin of error
in the survey due to time-to-live
filters, some nodes recursing any-
way, etc. Dan was interested to
find indications that more nodes
were trying to uninstall the rootkit
(based on a different Sony domain
name) than had gotten the rootkit
in the first place.

Dan then showed graphs of the
DNS server relationships, anima-
tions of router source-destination
pairs, and a 65KB/sec video stream
encapsulated in and delivered over
DNS replies from an outside host.

CO N F I G U R ATI O N M A N AG E M E NT
TH E O RY. .

Summarized by Marc Chiarini

Configuration Tools: Working
Together

Paul Anderson and Edmund Smith,
University of Edinburgh

Anderson took a look at the cur-
rent state of system configuration
tools, outlined why there are no
clear successes, and made some
simple suggestions for improving
the technology. Configuration

84 ; L O G I N : V O L . 3 1 , N O . 2

management needs to be viewed as
a continuum, and we are just
beginning to understand how to
translate from high-level goals to
the best low-level network and
machine configurations to achieve
those goals. This understanding
will be facilitated by moving
toward a common, generalized
framework that represents distinct
layers in the continuum and stan-
dard means for transforming data
between layers.

Anderso focused on generic,
semantically unaware operations
for the deployment and manage-
ment of configuration data. First
of these are classing operations,
which, as implemented in many
current tools, cannot easily handle
conflicts, such as those that may
occur when multiple inheritance is
in effect, and do not effectively
address cross-cutting concerns.
One way in which to shore up the
first of these drawbacks is to
implement powerful mechanisms
for constraining subclasses and
prioritizing inherited values. The
second type of operation, aggrega-
tion, involves the (semi-)auto-
matic creation of server configura-
tions based on the needs of the
client. The advantages of aggrega-
tion include a reduction both in
the time required for manual spec-
ification and in the number of con-
figuration errors. Sequencing and
planning operations that enforce
user-defined invariants in a declar-
ative environment will be integral
to any effective configuration tool.
Finally, Anderson delivered a con-
vincing argument that delegation
and authorization should become
multi-valued in order to make
meaningful distinctions among
required services.

We do not need a common system
configuration lexicon or a strictly
enforced operational architecture.
Rather, we require a data structure
for information exchange in the
continuum and between inde-
pendent tools, a “library” of

generic operations for configura-
tion data manipulation, and a sim-
ple interface for performing these
operations. During the Q&A,
someone asked about the lack of
clear guiding theories, standards,
and leaders in the configuration
management space, and whether
clarity is required to move for-
ward. Anderson replied that arriv-
ing at high-level de facto standards
will very likely happen naturally.

A Case Study in Configuration
Management Deployment

Narayan Desai, Rick Bradshaw, Scott
Matott, Sandra Bittner, Susan Coghlan,
Rémy Evard, Cory Lueninghoener, Ti
Leggett, John-Paul Navarro, Gene
Rackow, Craig Stacey and Tisha Stacey,
Argonne National Library

Narayan presented a case study
based on the rollout of the BCFG2
configuration management tool
developed at ANL. The talk
focused on the human aspects
of CM tool adoption, which have
not been extensively researched.
Narayan began by stating that CM
tools are not widely used and
posited a reason: the upside is not
well understood. The reason his
division wanted to deploy a tool
was because they were experienc-
ing serious configuration problems
(change propagation issues, patch-
ing, etc.) due to many years of ad
hoc management. He described a
two-year timeline of in-house
events that began with the devel-
opment of BCFG1 (and the even-
tual realization that it was a miser-
able failure) and culminated in the
successful deployment of BCFG2.
Narayan went on to present a ret-
rospective analysis of key discus-
sions within his group and how
they arrived at their success.

Among the many issues addressed
by the team, four stood out: tool
fitness, group consensus, initial
buy-in, and group dynamics. An
effective approach was to give
admins whitebox access, address
their technical questions as
quickly as possible, and take their

input seriously. Not surprisingly,
this also helped in reaching group
consensus. Narayan pointed out
that this consensus was built by
increasing each person’s familiarity
with BCFG2 and implementing
critical features. Communication
was hard, since individual assess-
ments of the tool embedded strong
personal beliefs, and confidence in
the tool varied over time.

The authors make four recommen-
dations for helping to get a high-
impact tool adopted at one’s site.
First, the tool needs an evangelist.
This person consistently touts the
prospective benefits of the tool and
remains optimistic, but does not
ignore complaints. Second, the
audience must be shown a short-
term payoff. Third, every effort
must be made to address the con-
cerns of the users (system admin-
istrators), whose instincts are usu-
ally correct. Try to incorporate in
minor revisions those suggestions
that make sense for the tool in the
big picture. Lastly, try to keep
everyone on the same page when-
ever possible. This may require
sorcerer-like social skills.

Narayan freely admits that they
had several factors working in
their favor. Their group already
believed that new configuration
management techniques were
needed; their strongest advocate
was also their primary toolsmith;
and they had an amicable and
highly interactive group from the
start. Your mileage may vary.

Reducing Downtime Due to System
Maintenance and Upgrades

Shaya Potter and Jason Nieh, Columbia
University

Awarded Best Student Paper!

Shaya Potter mentioned a few
well-known reasons why manag-
ing computer systems is hard
work: software is buggy, hardware
suffers from various faults, secu-
rity can be compromised, and forc-
ing downtime to upgrade or patch
for any reason will usually annoy

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 85

users. Common approaches to
mitigating the impact of such
events include the replication of
services, OS-based isolation (such
as FreeBSD Jail and Solaris Zones),
and hardware virtualization using
true VMMs like Xen and VMware.
The first of these is only useful for
shorter-term transactions such as
Web requests and is very difficult
to implement for longer-term
stateful services such as user desk-
tops. OS-based isolation suffers
from serious limitations on the
types of applications that can be
run and may also require extensive
non-modular kernel modifica-
tions. Lastly, the biggest drawback
to heavyweight VMMs is that they
still require tight coupling with the
underlying OS, making migration
costly and inflexible.

The AutoPod system provides
secure, virtual private environ-
ments (PODs) in which a multi-
tude of processes can execute nor-
mally with minor restrictions: a
lightweight virtualization layer is
installed on a host OS (currently
only Linux) via kernel module.
The virtualization layer intercepts
and potentially rewrites all system-
call communication between
processes and the real kernel.
AutoPod also features a facility
to migrate whole PODs across
machines or even virtual machines
running different OS kernels.

When considering the initial
design of AutoPod, the authors
identified several hurdles. Most
existing applications are not
designed to migrate between com-
puters, primarily because their
running images are coupled to a
specific instance of an OS. Clearly,
it is not feasible to rewrite all
applications of interest. In con-
junction with virtual namespaces,
this hurdle is overcome by briefly
stopping all POD processes,
recording important high-level
state information for each process,
translating into an efficient inter-
mediate representation, transfer-
ring the process state and POD-

specific info to a POD on an alter-
nate machine, and restarting the
processes where they left off.
Another hurdle that needed to be
cleared was the isolation of
processes for security purposes. In
particular, processes running with
super privileges are rarely
restricted by an underlying OS.

Questions were asked about trans-
ferring network state, especially
long-lived connections. Potter
responded that AutoPod can han-
dle most situations. In some cases,
however, such as when a Web
server is migrated to another sys-
tem with a running Web server, an
external proxy must be in place to
redirect requests to the correct vir-
tual port. Another questioner
asked how AutoPod compared to
VMware’s Vmotion, a migration
facility for entire virtual machines.
The difference is primarily in the
speed with which a migration can
be performed (especially for fully
loaded VMs) and the limitations
on kernel variations.

I N V ITE D TA L KS

What Big Sites Can Learn from
Little Sites

Tom Limoncelli, Cibernet Corp.

Summarized by Alex Boster

Tom Limoncelli gave a relatively
high-level talk about lessons he
has learned turning about the
IT department of a small site. He
began with “why things aren’t get-
ting better.” Using a pyramid dia-
gram, Tom illustrated the earlier
state of IT with a small number
of “Good IT” sites at the top and a
large number of “Bad IT” sites at
the bottom. The state of IT today
was illustrated with the same pyra-
mid with a much larger base
labeled “Really Bad IT.” This was,
he asserted, the result of the prolif-
eration of small sites with “small
sysadmin” attitude and abilities.
However, he asserted that small
sites are important because (1)
they become big and (2) most big

sites are really federations of small
sites. These “broken” sites, he
said, slack on the fundamentals.

Tom then asked, “Are best prac-
tices the solution?” He made an
analogy between electricians ver-
sus electrical engineers: a con-
struction project stops rather than
do something “not up to code.” He
claimed that what’s missing from
this analogy in IT is an inspector
who signs off on a project. The
overall state of best practices is
very fragmented: vendor’s recom-
mendations, SAGE and LISA pub-
lications and tutorials, CMM for
sysadmins. Tom made special note
of applying Maslow’s “hierarchy of
need” from the field of psychology
to IT users as a good practice.

Finally, he presented his lessons
from rebuilding a small site. The
first lesson was that, at first, he
only had time to deal with the
basics, and, furthermore, “being
there” crystallized what those
basics were. Tom presented his
experience in phases. Phase 0,
acclimation, was where he learned
who the players were and dealt
with emergencies. In Phase 1,
basic stability, the goals were to
make the most important services
reliable, establish backup proce-
dures, learn the corporate purchas-
ing process, and replace “accidents
of history” design decisions. He
emphasized the importance of the
email service, meeting with users,
a rudimentary documentation
repository, and physically labeling
everything he touched. Then in
Phase 2, he could move on to
establish basic IT applications:
ticket tracking, network monitor-
ing, documentation wiki, remote
access, and automating backups.

Questioners asked about the size
of the small company (100 users).
In response to a query about back-
ups, Tom stated that he started
with rsync and Retrospect and has
since moved to Bru apps. This was
followed by a back-and-forth
about fixing sites that, once stable,
can be outsourced.

86 ; L O G I N : V O L . 3 1 , N O . 2

Building MIT’s Data Center:
An IT Perspective

Garrett Wollman, Infrastructure Group,
MIT Computer Science & AI Labora-
tory

Summarized by Charles Perkins

IT infrastructure was not consid-
ered early in the design process for
the $300 million CSAIL building,
which, at the time of the initial
planning for the new building,
contained four IT labs with inde-
pendent IT staff.

Garrett outlined the differences
among residential, commercial,
and institutional architecture.
Institutional architecture usually
ends up being one-off construc-
tion. This new building had to
shelter 1,000 people and meet the
needs of 150 faculty, 50 frozen
monkeys, four IT organizations,
three lecture halls, and three
wealthy donors, while reflecting
the artistic vision of a well-known
architect. Garrett and his team, the
Net32 committee representing the
computing labs, were brought into
the project six years in, well after
most of the physical parameters
had been set and budget and space
had been allocated.

The Net32 committee quickly
determined that several miscon-
ceptions by management had
resulted in a woefully inadequate
allocation of space and access for
IT infrastructure, including: (1)
Computers are smaller and need
less space than they used to, never
mind that the computing clusters
are growing by leaps and bounds.
(2) Switches are $50 . . . managea-
bility? What? Why? (3) You can
just move the racks, switches,
UPSes, power supplies, and all of
the rest of the infrastructure over
from the old building . . . except
that the old system has to stay up
and be usable while the move is
taking place. (4) The building AC
in the ceiling is good enough, and
the IT staff doesn’t need to moni-
tor the HVAC independently of the
facilities people . . . although in

the past it has always been the IT
staff telling the facilities people
that the AC is broken and the
computers are overheating. (5)
Conventional quad power outlets
in the floor will be fine.

The Net32 committee wanted
all new racks with room-wide
UPS power, under-floor AC with
humidity control, power and net-
work pre-wired, SNMP monitoring
of the UPS and HVAC, and accessi-
ble cable-trays throughout the
building for easy network changes.

A compromise was reached: some
smaller spaces were coalesced into
an irregular larger space and the
group got all new racks, roomwide
UPS, under-floor AC without
humidity control (as the water
pipes for chilling had not been
designed into the building), power
and network partially pre-wired,
and separate proprietary UPS and
HVAC monitoring.

Lessons learned: You can avoid
a great deal of pain by getting
involved in the planning early:
make sure that management
knows what IT costs, get closets,
watch your wiring contractors like
a hawk, get complete drawings,
give complete requirements, think
about where office infrastructure
goes (printers, etc.), pre-wiring is
great, play hardball with vendors,
get freebies for naming things after
vendors, hold coordination meet-
ings after lunch instead of during
lunch, and raised floors outside of
machine rooms will make you sad.

CO N F I G U R ATI O N M A N AG E M E NT
P R AC TI C E .

Summarized by Roman Valls
Guimera

Integration of MacOS X Devices into a
Centrally Managed UNIX Environ-
ment

Anton Scultschik, ETH Zürich

Software management has always
been complicated, especially on
large, shared UNIX environments.
Even with the help of package

management tools, the admin has
to deal with system diversity.

Template tree 2 helps to ease that
diversity by providing modular-
ized, self-isolated, meaningful con-
figuration entities. This approach
combined with SEPP package
manager, which allows on-the-fly
software provisioning (using auto-
mount), simplifies the daunting
task of installing and updating
software.

Template tree:
http://isg.ee.ethz.ch/tools/tetre2/

SEPP: http://www.sepp.ee.ethz.ch/

RegColl: Centralized Registry Frame-
work for Infrastructure System Man-
agement

Brent ByungHoon Kang, Vikram
Sharma, and Pratik Thanki, University
of North Carolina

Managing large networks of Win-
dows clients can be a daunting
task: users tend to install their
own programs (if they have the
privileges to do so), and with
those changes eventually comes
breakage of their workstation.

Regcoll allows a system adminis-
trator to monitor Windows reg-
istry changes the same way a re-
vision control system does, but
with a real-time feature. If the user
complains about a system mal-
function, by using regcoll the sys-
tem administration can revert the
offending changes and go back to a
state known to be fully operative.

In addition, regcoll can be used as
a monitoring tool and a security
analysis and auditing framework.
To sum up, regcoll helps you keep
your computer park free from
unexpected failures caused by
third-party software and/or user
intervention.

Herding Cats: Managing a Mobile
UNIX Platform

Wout Mertens and Maarten Thibaut,
Cisco Systems, Inc.

Users of laptops behave as if the
laptops are their property; they
will customize them, install pro-

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 87

grams, change default configura-
tions, etc. As a result, the task of
keeping those systems updated
and clean becomes really difficult
for the administrator or help-desk
support staff.

Maarten and Wout solved the
problem using Mac OS X as the
preferred platform (while also sup-
porting others). They use radmind
plus their own additions to distrib-
ute software updates efficiently,
with a pleasant interface on the
user side, and, most important,
safely (users need their laptops to
always be operative). Additionally,
they’ve made backup scripts to
keep clients’ data safe on a server
and configured FileVault (a ci-
phered file system) properly to
ensure users’ privacy. (They’ve also
used their own automated scripts
to manage the process of issuing
client SSL certificates!)

They deployed all these features
quite successfully and, more
important, usefully and painlessly.

radmind: http://sourceforge.net/
projects/radmind

backup software:
http://rsug.itd.umich.edu/
software/radmind/contrib/LISA05/
TacSync.tar.gz

I N V ITE D TA L KS

Under 200: Applying IS Best Practices
to Small Companies

Strata R. Chalup, Virtual.Net, Inc.

Summarized by Alex Boster

Chalup’s talk examined the ques-
tion, “What of the big company
practices can be applied to small
companies?” As smaller compa-
nies grow to 50–70 people, staff
moves on or the junior IS staff
does not know how to handle the
larger site.

She implored listeners to eschew
the term “IT” in favor of “IS,”
since the ultimate goal of the job is
to provide a service, not just the
technology itself. This is part of an

overall attitude adjustment
required of most IT shop patterns.

Chalup’s specific recommenda-
tions included: control access
(widespread root access causes
chaos); standardize and modular-
ize everything you touch; have a
standard plan for debugging
issues; build a knowledge base;
make full use of email lists; and
use change control everywhere.
She also discussed the importance
of having written policies pub-
lished on the intranet. She placed
great emphasis on using a ticket-
ing system with built-in metrics
for all IS tasks. Proper ticketing
system priorities were mentioned.

There was a question about what
to do to keep users from walking
up to your desk if you don’t have a
door to close. She stated that she’s
seen yellow police tape used in
place of a door to good effect. A
discussion then took place about
ticketing systems. Chalup also
noted the importance of learning
how to get the information you
need out of a user.

What’s a PKI, Why Would I Want
One, and How Should It Be Designed?

Radia Perlman, Sun Microsystems
Laboratories

Summarized by Charles Perkins

Radia showed the usefulness of
public key–based systems for
authentication and authorization,
as compared to symmetric key
encryption. She described prob-
lems with current models (the
monopoly of Verisign or oligarchy
of self-signed certificates in brows-
ers vs. the anarchy of PGP) and
then outlined a model that avoids
the concentration of trust inherent
in the first two while addressing
the scalability issues of the third.

Participants in encryption systems
need to get their keys from some-
where. If each participant (n)
required a shared secret for each
other participant it might need to
talk to, n2 keys would need to be
configured. In shared secret sys-
tems, such as Kerberos and Win-

dows NT domains, the n2 require-
ment is relaxed by using central
servers to hold secret keys for par-
ticipants (e.g., users’ workstations
and the services that they connect
to). The only initial shared secret
required is that which allows the
participant to talk to the KDC or
domain controller.

Public key encryption also
requires key distribution, because
participants need to get the public
keys of their intended destinations
from somewhere. The certificate
authority is the equivalent of the
KDC or domain controller in a
Public Key Infrastructure. A cer-
tificate authority has significant
advantages over its private key
equivalent: a KDC is less secure,
contains a highly sensitive data-
base, must be online, and must be
replicated. The CA, on the other
hand, may be offline. Revocation
makes CAs harder to implement,
however.

Radia asked, “What can I do with
PKI?” and answered: establish
secure conversation without
online introduction service, send
encrypted email, send signed
email widely, distribute signed
content and single sign-on to
mutually distrustful sites. Radia
doesn’t believe we can avoid
names in a PKI.

Radia then explored how PKI with
access control lists can create a
scalable system for revocable
granting of permission to
resources. The system allows
resources to require membership
in groups, with the groups nested
in hierarchies. On an access
attempt the group server will (1)
sign a certificate vouching that an
identity is a member of that group
or (2) require the client to walk up
and/or down the tree acquiring
proof of membership in sub-
and/or super-groups in order to
prove membership in the group
the resource requires. Proven
membership certificates, which
may be timestamped, may be
cached by the client, and revoca-

88 ; L O G I N : V O L . 3 1 , N O . 2

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 89

tion is provided for by allowing
the resource requiring the certifi-
cate to accept only recently minted
certificates.

There are three models of PKI
widely used today:

1. The Monopoly model, whereby
Verisign signs all the certificates,
which is easy, understandable, vul-
nerable to monopoly pricing,
introduces vulnerabilities getting
the certificate from a remote
organization, is dependent on
Verisign’s key never changing, and
requires the security of the world
to depend on the honesty and
competence of one organization
forever.

2. The Oligarchy model, used by
Web browsers, wherein 80 or so
self-signed certificates are implic-
itly trusted, which allows users to
add to or delete from the set of cer-
tificates, eliminates monopoly
pricing, is less secure (any of the
80 keys may be compromised),
and makes it impractical to check
the trust anchors.

3. The Anarchy model, used by
PGP, wherein anyone may sign a
certificate for anyone else; users
consciously configure starting
keys; proof of identity is inferred
from traversing chains of trust,
which does not scale as the num-
ber of certificates grows and it
becomes computationally difficult
to find a path; there is no practical
way to tell if a path should be
trusted; and there is too much
work and too many decisions for
the user.

Trust in a CA should not be
binary; a CA should only be
trusted for certain things, and a
name-based system seems to make
sense.

Radia proposes a bottom-up hier-
archical model where each arc in a
name tree has a parent cert (up)
and child certs (down). The name-
space has a CA for each node and
lookups don’t start at the root—
they start at the member’s group
CA and go up to the least common

ancestor. Cross-links are allowed,
and this system allows organiza-
tions to choose top-level cross-link
services. Importantly, the organi-
zation can revoke the up-certifi-
cate to one cross-linking service
and select another if it is unhappy
with the service. In intranets, no
outside organization is required,
inside security is controlled from
the inside, and no single compro-
mised key requires massive recon-
figuration. A uniform PKI policy
across all participants is not
required.

Asked why we don’t have elliptic
curves in all this stuff, Radia
replied that the patent situation
around elliptic curves is unclear.
Also, using the RSI private key is
slow, but using the public key is
fast. Verifying a certificate using
RSI might actually be faster than
using elliptic curves.

A concern was raised that fast fac-
toring might make the PKI infra-
structure obsolete. Radia conceded
that it could happen. However, a
fundamental concept of cryptogra-
phy is to pick a problem mathe-
maticians have been working on
for a long time, meaning, hope-
fully, that it is a hard problem. She
predicted that quantum crypto
hardware might be able to factor
the number “15” in a few years!

She was asked if the bottom-up
PKI architecture described in her
talk was in the book she co-
authored (Network Security: Pri-
vate Communication in a Public
World, 2nd ed.). She replied that it
was.

Modern Trends in UNIX and Linux
Infrastructure Management

Andrew Cowie, Operational Dynamics

Summarized by Laura Carriere

Andrew Cowie delivered a
thought-provoking session, postu-
lating that the profession of system
administration continues to follow
numerous divergent paths when
solving new problems and does
not appear to be converging on a

set of standard solutions to these
problems. He stated that it was
unusual for an industry to fail to
converge on standards by this
stage in its development.

Cowie observed that system
administrators are being asked to
solve increasingly complex prob-
lems with static or reduced
resources and that there are fre-
quently two schools of thought on
how to solve these problems. Our
profession seems to cycle between
the options and often chooses to
apply the wrong solution to a
given situation.

Cowie gave a number of examples
to support his hypothesis. He first
addressed the issue of when to
scale vertically (using a few pow-
erful systems) and when to scale
horizontally (using many small
systems), stating there’s no con-
sensus within the industry on the
criteria to be used when making
such decisions. The end result is
that many companies choose the
wrong solution.

He discussed the related issue of
server consolidation versus
increasing complexity. A reason-
able solution to limited floor space
is to consolidate services onto a
single UNIX system. However, a
conflicting trend is to isolate serv-
ices on separate servers, which
simplifies the administration
required to load, deploy, tune, and
ghost. The end result is that organ-
izations may be reducing or
increasing the number of systems,
or, possibly, following both trends
at once.

The issue of using multiple blade
servers versus moving to virtual-
ization is a similar problem. Multi-
ple small boxes provide plenty of
resources but are a management
nightmare. Putting multiple vir-
tual systems on one powerful box
works well until the virtual sys-
tems overuse one resource, thereby
creating a bottleneck (which is fre-
quently the I/O system).

Additional conflicting themes dis-
cussed by Cowie included Web
interfaces without a command line
interface, which make it impossi-
ble to write management scripts.
The irony is that Web interfaces
are designed to simplify manage-
ment but ultimately prevent the
best mechanism we have to do
that—automation.

Cowie went on to consider desk-
top deployment. Although ven-
dors have developed tools such as
JumpStart and KickStart to auto-
mate installation, maintenance is
difficult, and vendors are not pro-
viding solutions for that, the only
exception being RedHat Satellite
Servers.

Configuration management
(CM) also has two competing
approaches—convergence and
congruence. Cowie cited cfengine
as an example of convergent con-
figuration management, where
desired lines are added to the con-
figuration files if they are missing.
With a congruent CM system,
entire configuration files are
regenerated. The industry cur-
rently has no guidelines to deter-
mine which solution best fits a sit-
uation. Cowie briefly discussed
the idea of encapsulation, an OO
approach to CM that allows the
administrator to specify policy
(i.e., SwitchToPHP) and let the
software do the required configu-
ration.

Cowie concluded with a warning
that Grid computing is coming
and will radically change the
industry. Again there are two
competing approaches, a tightly
linked cluster with shared mem-
ory, such as an SGI predicting
the weather, and an aggregate of
individually maintained systems,
such as the systems that comprise
SETI@home. He expressed his
concern that Grid computing will
drive the development of effective
management tools and that this
will threaten the livelihood of the
junior sysadmin who enjoys repet-

itive tasks. During the Q&A peri-
iod, Cowie expanded on this, say-
ing that change is good and more
evolutionary solutions free us to
do more interesting work.

Incident Command for IT: What We
Can Learn from the Fire Department

Brent Chapman, Great Circle Associ-
ates

Summarized by Marc Chiarini

Brent Chapman, a California Civil
Air Patrol incident commander
and local fire department volun-
teer, gave a talk about applying
the principles of incident com-
mand in IT departments. An IC
system is used by various public
safety organizations (Coast Guard,
local fire and police departments,
FEMA) to coordinate themselves
and communicate with other
agencies in an efficient manner
during major unplanned incidents.
Often, many different individuals
and organizations are involved,
and there needs to be a structure
to determine who is in charge and
exactly what needs to be done.
Brent gave several real-world
examples (car accident, raging
wildfires, total data-center power
outage) to help the listeners
understand the scale of situations
that occur. He also stressed that IC
can be applied to nonemergency
situations, such as facility moves
and major system/network
upgrades.

A typical ICS follows nine key
principles:

1. Maintain a modular and scalable
organizational structure. There
may be five “sections” or groups
responsible for different tasks: a
Command Section with a capable
IC (incident commander) must
always be available; a mandatory
Operations Section executes plans
to achieve command objectives
and worries about the now; a Plan-
ning/Status Section collects and
evaluates information needed to
prepare action plans and tracks
progress; a Logistics Section is
responsible for obtaining all

resources required to deal with
an incident; an Admin/Finance
Section, necessary for the largest
and longest-running incidents,
will track costs and administer
procurements.

2. Maintain a manageable span of
control. Limit section sizes and
grow the hierarchy as necessary.

3. Maintain unity of command. A
strict tree structure (each person
has only one boss) facilitates com-
munication and reduces freelanc-
ing.

4. Transfers of responsibility must
be explicit.

5. Maintain clear, expedited com-
munication. Use no shorthand or
codes and speak directly to re-
sources when possible.

6. Keep action plans consolidated.
Command maintains the top-level
(preferably written) plan for the
current operational period (hour,
shift, day, etc.).

7. Manage by objective. Tell sub-
ordinates what to do, not how to
do it.

8. Maintain comprehensive re-
source management. Track all
assets and personnel. Establish a
sign-in process and “report-to”
site.

9. Use designated incident facili-
ties. Must always identify a Com-
mand Post (CP).

Brent went on to give a compelling
example of using ICS in the IT
world. He presented the timeline
of an IC response to a data center
failure, including the creation of
subgroups in Operations, an ex-
plicit transfer of responsibility,
assignment of a liaison, and ongo-
ing organizational restructuring.

The talk ended with some impor-
tant tips for implementing ICS
effectively: initiate incident
response as soon as possible, use
ICS as a toolbox, keep things sim-
ple, and practice all the time with
routine and pre-planned events.

90 ; L O G I N : V O L . 3 1 , N O . 2

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 91

More info can be found at
http://www.greatcircle.com/blog.

During the Q&A, David Blank-
Edelman asked how people stay
updated in the field. Brent recom-
mended wikis, bulletin boards,
top-down word-of-mouth, and
whiteboards and Post-Its for areas
without power. John Millard men-
tioned having standardized ICS
kits ready for immediate use. I
asked whether there are any stan-
dard metrics for judging the effi-
ciency of a response. Brent replied
that a good way to do this is follow
the paper trail and do not get emo-
tional when reviewing performance.

TH E O RY

Summarized by Marc Chiarini

Toward a Cost Model for System
Administration

Alva Couch, Ning Wu and
Hengky Susanto, Tufts University

Awarded Best Paper!

Alva Couch presented a novel first
step in approximating the costs of
system administration. System
administration incurs both tangi-
ble and intangible costs; the for-
mer, as described in Patterson’s
cost model (LISA ’02), tend to
result in financial or productivity
losses. The latter are much more
difficult to measure, but an appro-
priate model would allow organi-
zations to assess and improve their
current processes. To arrive at
such a model, Couch’s team com-
bined queuing theory, risk analy-
sis, and simulation with an analy-
sis of 400+ days of request ticket
data (obtained from Tufts’ EECS
support group).

At first glance, measuring time
spent waiting seems like a daunt-
ing task. It is, however, possible to
view it as a function of certain
parameters (request arrival rate,
service rate, number of workers,
etc.). This naturally leads one into
queuing theory. Couch demon-
strated how viewing request
arrivals from the appropriate

height, removing outliers from
the ticket data, and adjusting for
daily work cycles can ultimately
reveal Poisson processes. To esti-
mate the expected service rate, it
is possible to apply risk analysis to
the decision trees used by system
administrators to resolve requests.

After examining real data, the
authors chose to simulate a trou-
ble-ticketing environment with
non-product behaviors. As Couch
explained, the motivation behind
this was to account for phenom-
ena that cannot be analyzed effec-
tively via queuing theory. The
team found that running a system
near absolute capacity will cause
chaotic and utterly unpredictable
increases in service wait times.
The important point is that in
order to be useful, the new cost
model cannot be applied to net-
works on the edge of steady state.
When the capacity to resolve stan-
dard requests comfortably exceeds
load, however, estimating the cost
of administrative practice by indi-
rect methods such as risk analysis
can be made much more accurate.

Some interesting points were clar-
ified during the Q&A session.
Mark Burgess asked whether the
data had been overly massaged.
Couch responded that it was with-
in reasonable limits for obtaining
a decent model of steady-state
behavior and extracting inhomo-
geneous trends. On the service
side, non-product (realistic) sys-
tems could be approximated by
introducing interruptions into an
ideal system and analyzed via per-
turbation theory. When Couch
mentioned that the study of realis-
tic systems suffered from lack of
data, someone suggested that
SAGE or LOPSA could volunteer
data sets. Couch was ecstatic
about this prospect and stressed
the importance of anonymized
submissions.

Voluntary Cooperation in Pervasive
Computing Services

Mark Burgess and Kyrre Begnum,
Oslo University College

Mark Burgess spoke of a world-
wide move toward pervasive
computing, with multiple decen-
tralized services provided by in-
dividual actors implementing
autonomous policies. The authors
believe strongly that the sysadmin
tasks of tomorrow must integrate
ideas about this explosion of
autonomy. Mark’s “promise the-
ory” provides a different risk
model for service provision.
Whereas modern services are
driven by demand and the server
and client trust each other almost
implicitly, this new approach takes
an individualistic view of how an
actor protects its own resources
and acquires those it needs. In a
future with very limited resources,
client demand will no longer be
the governing factor; clients and
servers will have to cooperate vol-
untarily to keep things humming.
The focus of every transaction in
promise theory is on minimizing
the risk of the involved parties.

The authors demonstrate the
strengths of their approach by
implementing a proof-of-concept
voluntary RPC mechanism in
cfengine. They observe that coop-
erative agreements now become
the key to eliminating unpre-
dictability. As opposed to tradi-
tional services, the protocol does
not enforce reliability. Actors learn
over time the probability that their
peers will deliver on their prom-
ises, and then fall into stable pat-
terns. The protocol itself was ana-
lyzed and verified for correctness
using Maude, a programming lan-
guage for reasoning about tempo-
ral logic and proving certain prop-
erties. Combined with the POC,
this analysis revealed several limi-
tations: the mechanism for initial
agreement is made out-of-band;
there is no current means of
reprisal for uncooperative actors;

and the protocol does not easily
provide a HA environment.

An interesting question was asked
by Alva Couch about the quandary
of having to put a file system into
the pervasive network. Mark
answered that there does need to
be an addressable superblock out
there.

I N V ITE D TA L K

Automatic PC Desktop Management
with Virtualization Technology

Monica Lam, Stanford University/
SkyBlue Technologies

Summarized by Alex Boster

Monica Lam’s talk was about a
new x86 PC virtualization system
in its pre-alpha stage (details are
available on itCasting.org). She
started by describing their team’s
motivation: to allow end users to
turn over management of their
desktops to professionals by
breaking old assumptions. Their
solution, called itPlayer, solves
issues of mobility, management,
and security.

The itPlayer software is built on a
small, bootable Linux system and
VMware Player. itPlayer is placed
on any bootable storage device,
such as an SD card, micro drive, or
iPod. The whole VM resides at a
known place on the network but is
cached locally—similar to the way
virtual memory works. Changes
can be written back over the net-
work, giving the user an online
backup of the system. The system
can also run in disconnected
mode, provided the local storage
device is large enough to hold the
entire image (e.g., a hard drive,
but probably not an SD card).

According to Lam, itPlayer is fast if
the local cache is good; is as easy
to use as a television (“just turn it
on”); cannot be lost—just grab a
new copy from the network; has
disconnected operation; and has
low virtualization overhead. It’s
limited by what Linux device driv-

ers are available, having no virtual-
ization of advanced graphics, and
the fact that the desktop must be
USB-bootable.

This new system results in new
assumptions: that the state of the
computer is always backed up, and
that hardware is interchangeable.
Lam then compared this system to
other ways of doing desktop man-
agement: stand-alone PCs, main-
frames, and thin clients.

Lam addressed the issue of up-
dates by pointing out that the
image provider (an IT department,
for example) can update an image.
Upon reboot, the users of that
image will simply swap in the new
image blocks from the network
and run the new image. She said
that currently desktop customiza-
tion is easy, and standardization
is hard. Lam asserted that the
itPlayer system reverses that
arrangement.

The talk ended with a demo of
itPlayer. A Windows XP SP1 image
was booted, the backing store
image was replaced with an up-
dated image running SP2, and the
itPlayer restarted into SP2 upon
reboot.

Questions focused on licensing
issues, which Lam addressed
mostly by pointing out that there
is lots of freely available software.
This was followed by a discussion
of practical difficulties in cus-
tomizing itPlayer environments
per user in a corporate setting.

N E T WO R K V I S UA L I Z ATI O N

Summarized by Charles Perkins

Visualizing NetFlows for Security at
Line Speed: The SIFT Tool Suite

William Yurcik, NCSA

William Yurcik demonstrated
Security Incident Fusion Tools,
which leverages human ability to
discern patterns in visual displays.

CANINE provides NetFlows inter-
operability by converting and

anonymizing NetFlow events from
many commercial formats. It per-
forms multi-dimensional anony-
mization of fields to facilitate
secure data sharing and it reads
both Cisco unidirectional Net-
Flows and Argus bi-directional
NetFlows (see http://security
.ncsa.uiuc.edu/distribution
/CanineDownLoad.html).

NVisionIP shows the user the
state of the IP address space, with
default configuration for a class-B
range, in a single screen. Activity
is displayed by address in a pixi-
lated matrix, with subnets across
the top and station addresses
down the side. It provides for
drilling down to graphical views
of activity on subnets, sets of
hosts, and a single machine
(http://security.ncsa.uiuc.edu/
distribution/NVisionIPDownLoad
.html).

VisFlowConnect-IP shows who is
connected to whom on the network
in a parallel axis chart with an
inside view and an inside/outside
view of network traffic. One-to-
many, many-to-one, scanning activ-
ity, and unusual connection behav-
ior can be observed in real time on
the parallel-axis views, and both
drill-down functionality and a filter
language are provided: http://
security.ncsa.uiuc.edu/distribution
/VisFlowConnectDownLoad.html).

Yurick completed his talk by point-
ing interested parties to the VizSEC
community at http://www.ncassr
.org/projects/sift/vizsec/ and http://
www.ncassr.org/projects/sift/.

Question: How do the tools scale
above a class B network? Answer:
One would open different win-
dows, one for each class B. Ques-
tion: How much trouble is it to
make the software handle different
data sources? Answer: It takes
hard work, some “bribing,” and a
clear understanding of the proto-
cols and formats. Also, the soft-
ware is going open source.

92 ; L O G I N : V O L . 3 1 , N O . 2

Interactive Traffic Analysis and Visu-
alization with Wisconsin Netpy

Cristian Estan and Garret Magin,
University of Wisconsin, Madison

Cristian Estan described adding
interactive drill-down and flexible
analysis to real-time traffic moni-
toring of network traffic. The Hier-
archical Heavy Hitter approach
reports traffic that exceeds a
threshold and can use subnets,
ports, and routing table prefixes,
as well as user-defined groupings
as hierarchies with ACL-like rules.

Cristian demonstrated the advan-
tage of real-time interactive drill-
down to determine the cause of
anomalous network behavior,
with “heatmap” charts of sender/
receiver pairs making network
traffic hotspots visually apparent.

Analysis may be conducted
through text, time series plots, bar
charts, and bi-dimensional reports
across hierarchies. The user can
select the time interval, bytes,
packets or flows, and filters to be
applied. The software handles
router sampling and can use a
database or files.

The software will be open source
and more information can be
found at the Netpy home page,
http://wail.cs.wisc.edu/netpy/.

NetViewer: A Network Traffic Visual-
ization and Analysis Tool

Seong Soo Kim and A.L. Narasimha
Reddy, Texas A&M University

Seong Soo Kim presented the
paper, demonstrating, producing,
and analyzing video from captured
packet header information in or-
der to detect DoS, DDoS, and
worm behavior in the network.
He asserted that DDoS flows look
like any other flow and require
aggregate analysis.

NetViewer aggregates seconds of
traffic header information in a
concise data structure in order to
compare sequential frames with
image-processing algorithms. Vari-
ations in pixel intensity and move-

ment indicate DoS, DDoS, and
worms. He displayed representa-
tive sequences and showed charac-
teristic visual patterns produced
by network attacks.

NetViewer has been run on several
university and ISP connections,
and they found things that snort
did not. NetViewer is not looking
for known attacks, is generic, is
real-time with latencies of a few
seconds, is simple enough to be
implemented inline, and has a
Windows and a UNIX GUI.

Email seongsoo1.kim@samsung
.com or reddy@ece.tamu.edu for
more information.

I N V ITE D TA L KS

Internet Counter-Intelligence:
Offense and Defense

Lance Cottrell, Founder, President, and
Chief Scientist, Anonymizer, Inc.

Summarized by Alex Boster

Lance Cottrell began by describing
his company, Anonymizer, Inc.,
and their history, products, and
services. He described some of the
basic problems in intelligence
analysis, pointing out that simple
log file analysis is still the most
common method. He also noted
that tech companies are far from
the only ones doing this.

However, whenever you have
exposed IP addresses, Cottrell
claims, you are leaking informa-
tion about your business out to the
world. Even if you engage in IP
blocking (which people can see
you do) or IP spoofing (having
different versions of Web sites for
different visitors), you are still
“hemorrhaging” data out. For
example, competitors can read
your whitepapers, product listings,
press releases, and so forth to dis-
cover your business and research
profile.

Cottrell then cited a number of
examples: that prior art is a huge
intellectual property issue, and if
you have visited a competitor’s

Web site, you may be exposed;
Cisco employees who surfed to a
competitor’s Web site were pre-
sented with a job offer; European
hackers who would launch auto-
matic DDoS attacks against visi-
tors to their Web site who were
seen to be running Microsoft IE
and coming from a Washington,
D.C., IP address.

One solution to conducting this
kind of intelligence analysis is to
anonymize traffic by routing it
through another network and
rewriting the headers. However,
Cottrell pointed out, it is tricky to
do this without introducing incon-
sistencies (e.g., traffic made to
look as though it originated in
Hong Kong, but the time zone was
PST). Further examples of intelli-
gence analysis were given: airlines
scraping all their competitors’
fares; retailers profiling users both
on their buying habits and on their
geographical location.

Next, Cottrell moved on to exam-
ples of counter-intelligence. Less
aggressive companies can monitor
their traffic closely, for example,
for a 3 sigma change in interest in
whitepapers. Companies in a bid-
ding war might bug the investor
section of their Web site.

A questioner asked if companies
block Anonymizer. The answer
was, yes, they try, but they cannot
do so effectively, due to Anony-
mizer’s large, scattered, frequently
changing IP address space. An-
other question was about ethical
boundaries of Anonymizer. Cot-
trell said that they try to detect and
reject attacks, spam, IP floods, and
the like. Their policy, he said, was
that they would block activities
that are illegal in the U.S.—how-
ever, all other uses by enterprises
were permitted after a committee
review. He also stressed the impor-
tance of Anonymizer ensuring pri-
vacy by never, ever keeping logs.
Other questions dealt with: issues
of ISP trust (Anonymizer must
engage in long discussions when

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 93

94 ; L O G I N : V O L . 3 1 , N O . 2

buying IP blocks from a new ISP);
working with law enforcement
(Cottrell said they are usually
respectful and that Anonymizer
cooperates where appropriate);
how many companies engage in
dynamic customer profiling, for
example, offering different prices
to different people (he said it was
“very widely used” and most big
sites did it).

Preventing Child Neglect in
DNSSECbis Using Lookaside
Validation (DLV)

Paul Vixie, Internet Systems
Consortium, Inc.

Summarized by Chaos Golubitsky

In this talk, Paul Vixie proposed
DNSSEC Lookaside Validation
(DLV) as a means of overcoming
the road blocks which currently
prevent deployment of Secure
DNS. He justified the need for
such a solution with some history.
First deployed in 1987, DNS was
not designed to enable authentica-
tion of name data. The IETF has
been working on Secure DNS since
1994, but it has still not been
deployed at any sites.

The current Secure DNS proposal,
DNSSECbis, works by introducing
a new set of DNS RR types, most of
which are used by a zone to enable
authentication of its own DNS
data using public key cryptogra-
phy.

DNS is hierarchical by design:
just as DNS validators hard-code
the locations of the root name-
servers, DNSSECbis validators will
hard-code the root nameserver
DNSKEY. The effect is that no
zone can deploy DNSSECbis until
the zone’s parent has deployed it.
In particular, DNSSECbis cannot
be meaningfully deployed until it
is present in the root and .com
zones. Since parties higher on the
DNS tree see more of the costs of
DNSSECbis and fewer of the bene-
fits, this may never happen.

DLV is designed to allow zones to
deploy Secure DNS even if their

parents have not deployed it. It
introduces a DLV resource record,
which is functionally similar to the
DS (Delegation Signer) record. It
also introduces DLV namespaces,
zones which have offered to serve
DLV data for all or part of the DNS
space. A validator looking for
Secure DNS data for a given zone
must first look for a DS record at
the zone’s parent. If none is found,
the validator may then look for
entries within any DLV name-
spaces it knows. For example, if
dlv.isc.org is a DLV namespace and
there is no DS entry for vix.com,
then a DLV entry can be stored at
vix.com.dlv.isc.org. Therefore,
vix.com can deploy DNSSECbis
even if none of its parents have
done so.

DLV is intended as a temporary
solution, which should be shut
down either when deployment
of DNSSECbis reaches critical lev-
els or when it becomes clear that
DNSSECbis will fail. As a result,
the DLV namespace should be
introduced by a public benefit cor-
poration which uses a cost-based
fee structure. Vixie identified his
employer, ISC, as committed to
this model. BIND 9.4.0, to be
released soon, will contain support
for DLV, and ISC will operate a
DLV registry using BIND9. For
further information, search for
“ieice vixie dlv” to find Vixie’s
2004 paper introducing DLV.

Attendees asked how individuals
can convince their employers to
roll out DLV, and how ISC plans to
authenticate DLV registrants. First,
the announcement of BIND 9.4.0
will announce DLV, since many
sites will deploy as soon as possi-
ble. Second, Vixie is compiling a
set of marketing whitepapers to
advertise DLV. Authentication of
registrants involves liability risk
for ISC; the exact mechanism has
not been determined. Possibilities
include: initially registering DLV
records only for people with
whom ISC has an existing busi-

ness relationship; charging a fee
to cover the cost of verifying regis-
trants’ identities; obtaining iden-
tity information from existing reg-
istrars; or using a web-of-trust
scheme, starting with existing ISC
business partners.

P L E N A RY S E S S I O N

Picking Locks with Cryptography

Matt Blaze, University of Pennsylvania

Summarized by Alex Boster

Matt Blaze did not, in fact, give a
talk on lock picking using crypt-
analysis. Instead, he talked about
his more recent research into wire-
tap eavesdropping and applying
computer and network security
techniques to wiretap systems.
Blaze pointed out that there are
important legal implications to
vulnerabilities in wiretap systems
that might cast doubt on the relia-
bility of the tap.

Blaze then described the two basic
types of wiretaps: pen registers,
which record the numbers dialed
but not the audio, and full audio
taps, which have greater legal
restrictions. A description of basic
telephone and wiretap terminol-
ogy and functions followed. Blaze’s
research focused not on the many
ways one could do wiretaps but,
rather, on how law enforcement
agencies actually do them.

Various types of wiretap equip-
ment were then presented. Blaze
pointed out that wiretaps do not
perform exactly the same as the
phone company’s central office
(CO) equipment—and that opens
up some vulnerabilities. He was
able to reverse-engineer the signals
used by wiretap systems. Taking
advantage of differences in toler-
ance (the phone tap equipment is
more sensitive to the on-hook sig-
nal than the actual CO equip-
ment), he was able to play two
recordings of the same phone con-
versation: a short one where the
wiretap had been fooled into halt-

ing recording, and the full version
recorded directly from the line.

Questioners asked if audio and call
detail logs are correlated. Blaze
replied that they were not standard
operating procedure. Blaze was
also asked about parallels between
the talk he gave about wiretaps
and his research on lock picking
and cryptography. He said that
parallels included understanding
the limits to mechanical devices,
noting that we tend to upgrade
them to electronic devices, and
that reducing the problem to soft-
ware might not be a good idea.

I N V ITE D TA L KS

How Sysadmins Can Protect Free
Speech and Privacy on the Electronic
Frontier

Kevin Bankston, Electronic Frontier
Foundation Staff Attorney

Summarized by Rik Farrow

Bankston began with a history of
U.S. laws relating to wiretapping.
Until a Supreme Court decision in
1967, U.S. citizens could expect
almost no privacy from surveil-
lance via taps installed on tele-
phone lines. The Wiretap Act of
1968 placed federal law in line
with the court decision, but the
law and later court decisions still
permitted pen-traps, collection of
call log information. In 1986, the
Electronic Communications Pri-
vacy Act attempted to modernize
the law. In 1996, CALEA forced
telephone providers to include
mechanisms for install taps and/or
pen-traps via phone switches, in
support of law enforcement armed
with judicial permissions.

The Patriot Act changed much of
the landscape, making it possible
for a tap to be installed and the tar-
get never informed of it, unlike
earlier laws. NSLs (National Secu-
rity Letters) issued directly by the
FBI can also not be challenged or
made public, ever, and an article in
the Washington Post suggests that

these letters are being used for sur-
veillance of domestic opposition to
the current administration.

What can sysadmins do to protect
the privacy of their users?
Bankston had a series of sugges-
tions:

Minimize logfiles; storing logs for-
ever is more likely to cause prob-
lems than to help you.

Have a clear policy about how
long you keep log files, and follow
it.

Negotiate to keep the government
software and hardware out; you
don’t have to redesign your net-
works—yet.

Lobby for legal challenges (you
can call a lawyer).

Give notice whenever possible.

If you are asked to do surveillance,
do check on the law. Contact EFF,
even if you get a supersecret order,
or you can go to a lawyer (ask
your boss). You often do have the
power to inform people if their
info has been subpoenaed. Yahoo
has done this.

You can also join the EFF (eff.org).

Wireless Security

Michael H. Warfield, Internet Security
Systems, Inc.

Summarized by Chaos Golubitsky

Michael Warfield provided an
overview of the current state of
wireless security. The focus of the
talk was classification of methods
of attacking networks, outcomes
of successful attacks, and available
means of protection.

While war driving for insecure
access points is the best-known
exploit of wireless networks, oth-
ers are also in use. Attackers can
run their own APs, either to
opportunistically snoop on any
machine with an open wireless
configuration (inverse war driv-
ing) or with a specifically chosen
SSID to mirror a legitimate net-
work (evil twin attack). In a
hotspot battle, an attacker

launches a denial of service attack
on a specific wireless network by
interfering with the channel used
by that network.

Once a network has been exploit-
ed, the attacker’s target may be the
network itself (simple bandwidth
theft, denial of service), the con-
tents of machines using the net-
work (information theft, extor-
tion), or the use of the network to
anonymize illegal activity (spam,
visiting illegal Web sites). Warfield
noted that arp cache poisoning can
be used to redirect interesting traf-
fic from adjacent wired networks,
and that owners of wireless net-
works may face liability or reputa-
tion problems due to illegal activ-
ity on their networks.

The last portion of the talk focused
on the benefits and shortcomings
of common wireless network
defenses. Warfield stated that
MAC address control is not very
valuable—the administrative over-
head of maintaining tables is high,
and guessing a valid address can
be trivial. Since tools such as
Kismet can easily probe silent
access points, turning off SSID
broadcasting is not a good security
measure either. In general, WPA
should be preferred to WEP. How-
ever, both protocols have a history
of weak implementations, and a
modern WEP network may
require more traffic in order to
break a key than a broken WPA
network. Virtual Private Networks
should be used, but they provide
no protection against poorly con-
figured legitimate machines. To
the extent possible, wireless net-
works should be protected against
physical threats—for instance, by
placing APs in the interior of a
building rather than near the out-
side.

Warfield repeatedly made the
point that it is useful to classify
attacks according to whether they
are opportunistic or targeted. Evil
twin attacks and hotspot battles
necessarily explicitly target the

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 95

96 ; L O G I N : V O L . 3 1 , N O . 2

network being attacked, while oth-
ers may be indiscriminate attacks
against any nearby network, or
may even be accidents. Similarly,
weak countermeasures may have
value because they prove intent.
WEP is easy to crack, but it cannot
be cracked accidentally, so an in-
truder on a WEP-protected net-
work can be assumed to be
launching a deliberate attack
on that network.

The full slides for the presentation
are available at http://www
.wittsend.com/mhw/2005/
Wireless-Security-LISA.

ACC E S S CO NTRO L

Summarized by Chaos Golubitsky

Towards a Deep-Packet-Filter Toolkit
for Securing Legacy Resources

James Deverick and Phil Kearns,
The College of William and Mary

The goal of this project is to pro-
vide a toolkit for authenticating
access to non-secured legacy
resources through a firewall. The
toolkit should consist of a central
library of solutions which can
secure many network services
with minimal per-service coding,
and should not require that the
protected software be altered in
any way. Jim Deverick presented a
proof-of-concept implementation
which used the Linux netfilter
packet filter to authenticate NFS
mount and umount requests and
LPR printing.

Both services are wrapped using a
netfilter rule set which captures
packets representing new requests
and holds these packets while they
are examined by user-space code
on the firewall. The firewall code
performs an external authentica-
tion step, generally by contacting a
daemon on the client system with
a challenge/response request. If
authentication is successful, the
connection request is forwarded to
the server. If not, the toolkit cleans
up any loose TCP connections cre-
ated on the server.

As implemented, the toolkit
secures only NFS mount and
umount requests and initial LPR
connections. No authentication is
required in order to submit pack-
ets to a connection already in
progress, and, in the NFS case, no
authentication is required in order
to perform NFS operations on a
mounted file system. Since netfil-
ter operates on TCP packets, au-
thorization could be provided at
the granularity of source and desti-
nation IP/port pairs, although the
current implementation authorizes
the entire source host to send
packets to the target port. In the
future, the authors hope to im-
prove the implementation so that
wrappers can be added and modi-
fied more easily.

Administering Access Control in
Dynamic Coalitions

Rakesh Bobba and Himanshu Khurana,
NCSA and University of Illinois at
Urbana-Champaign; Serban Gavrila,
VDG Inc.; Virgil Gligor and Radostina
Koleva, University of Maryland

Radostina Koleva introduced
a prototype of a set of tools for
administering dynamic coalitions.
A dynamic coalition is a set of
independent organizations
(domains) that share resources for
use in a joint project. The example
given was that of a pharmaceutical
company, an FDA review board,
and a research hospital working
together on a new drug. For a
coalition to form, each domain
must have an incentive to bring
private resources to the table. A
flexible framework is needed to
control other domains’ access to
these resources. The coalition may
create shared resources, which will
be owned and administered by
consensus among domains. In
addition, new domains may join
an existing dynamic coalition for
certain projects, and previous
member domains may leave.

Negotiating a coherent access pol-
icy is a challenge, as is implement-
ing a formal policy specification.
The tool set presented here can

help negotiate coalition policies in
a semi-automated fashion, allow
consensus-based administration of
joint resources, distribute and
revoke privileges efficiently, and
provide each member organization
with tools to assess current and
proposed policies.

The tool set is implemented over a
Windows 2000 server and consists
of the Common Access State, a for-
mal specification of the access pol-
icy implemented using an RBAC
tool and Active Directory; policy
management tools for domain
administrators; three types of cer-
tificate authorities, for authenticat-
ing users within each domain, for
authorizing access to resources
belonging to each domain, and
for authorizing access to joint
resources using a shared-RSA
cryptosystem; and a secure com-
munication framework allowing
trusted communication between
domains.

An attendee asked how the coali-
tion verifies that the domains are
not passing shared information to
outside parties. Koleva replied that
confidentiality would need to be
enforced using a non-technologi-
cal mechanism such as a legal
agreement.

Manage People, Not Userids

Jon Finke, Rensselaer Polytechnic
Institute

Jon Finke contends that it is possi-
ble to maintain a single source of
data about the people at your insti-
tution, and that the system admin-
istration group is well placed to
run such a system. In this talk, he
discussed details and strategies for
such a database, using the imple-
mentation he oversaw at RPI as an
example.

The driving principle is that every
person in the system should have a
status (“student,” “faculty,” “staff,”
“guest”) and that a reasonable
provider should maintain data
related to each status. For
instance, Human Resources
should maintain staff data, while

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 97

the registrar handles students.
This system appeals to prospective
data providers because they can be
given total authority over their
data. Consumers can use the data-
base to group people accurately
based on status. For instance, the
library can set different book
check-out intervals for professors
and for students.

Finke then discussed technical
details of the implementation,
including the types of information
stored in the database for each
class of users. He discussed the
maintenance of guests, which is
complicated because universities
have a large number of types of
guests (e.g., visiting professors,
dependents of other people in the
system). In order to manage guests
more easily, he requires that some-
one be responsible for each guest’s
data (the hosting department for
visitors, the employee for depend-
ents), and that guests expire from
the database unless their data is
explicitly renewed.

One attendee asked about prob-
lems encountered when correlat-
ing multiple sources of data. Finke
replied that his group attempts to
ensure that each person has only
one database entry, but it does
not always succeed. Once data
providers are using the system,
getting them to maintain their data
is not hard, since users now know
where to complain if their infor-
mation is inaccurate.

I N V ITE D TA L KS

Wikis, Weblogs, and RSS for System
Administrators

Dr. Jonas Luster, Socialtext, Inc.

Summarized by Laura Carriere

Luster began his highly entertain-
ing talk by acknowledging that
wiki and blog technologies have
been around for a number of years
now and are well established. Soci-
ologists believe that the strongest
human drives are to communicate
and to make sense of communica-

tion; Luster stated that everyone is
a sender but pointed out that there
is no way to filter or roll back the
data once it has been sent. It is the
receiver’s job to filter the data
stream. Weblogs are an example of
sending without filtering. RSS
is an example of the receiver filter-
ing the data. To emphasize his
point, Luster observed that as the
speaker he could choose to moon
the audience and we would be
unable to stop him, only to try
to filter the image.

Wikis, as opposed to Weblogs,
give permission to the receiver to
participate. This makes them col-
laborative and creates fertile
ground for communication.

Luster went on to describe the
Pastures Theory, which explains
that areas with the greenest grass
attract the most cows. These cows
then fertilize these areas, and this
promotes the growth of more
green grass, which attracts more
cows. He compared this process to
a busy wiki such as Wikipedia.
Luster proposed that adding syn-
dication to Weblogs, although it
adds value by providing filtering,
decreases the opportunities for fer-
tilization and leads to empty pas-
tures and deserted Weblogs. Luster
then cautioned the audience to
resist the temptation to compare
our users to cows processing grass,
but many of us were stuck with
this image.

Luster presented survey results
which found that there are 486
Weblog projects and 198 wiki
projects currently available, and
he suggested that we’d be better
off with more wiki software and
less Weblog software. He also
reported that there were 16 million
Weblogs in November 2005 and
13,000 contributors to Wikipedia.
The average user is comfortable
with this technology and users
reported that their coding and
HTML skills improved with
Weblog development, although he
expressed some skepticism about

this result, based on his observa-
tions of many Weblogs.

Luster offered his view that the
future holds tighter integration of
video, audio, text, and collabora-
tion and that these technologies
may converge. He acknowledged
that the required increase in com-
plexity will increase the burden on
the software maintainers. He also
expressed concern that legal issues
related to freedom of speech may
soon come into play but suggested
that the technical people leave this
to the lawyers.

During the Q&A period, Adele
Shakal, Caltech, asked for advice
on social engineering strategies
to deal with outdated content.
Luster offered two recommenda-
tions: tie it to the user’s paycheck
by making it standard company
practice, and automate a congratu-
lations email after every 1,000 visi-
tors, to encourage voluntary page
maintenance.

At the conclusion of the talk the
author expressed his pleasure at
being able to share both the cows
and the mooning images with us
and then performed a live blog
update rather than a live moon.
The audience was profoundly
grateful for his discretion.

Using Your Body for Authentication:
A Biometrics Guide for System
Administrators

Michael R. Crusoe

Summarized by Josh Simon

Michael Crusoe, a recent escapee
from the biometrics industry,
spoke about using biometrics from
a sysadmin point of view. It was a
high-level overview of the major
biometric modalities, or methods
of using body parts for identifica-
tion. Techniques included:

Facial recognition, which are
error-prone in two dimensions due
to changes in position and light-
ing.

Fingerprinting, which can use the
actual image, and the minutiae or
the changes and breaks in ridges;

real-world testing shows that
errors, both false positives and
false negatives, decrease as the
number of fingers examined
increases.

Hand geometry readers, the
largest-deployed technology today.

Iris recognition, which is the most
accurate, due to the large amount
of data available in a small space
(striations, positioning, etc.), but
which is very expensive to calcu-
late; only one vendor is in this
space (with soon-to-expire
patents, so this may change).

Speaker recognition, or voice-
response.

Other modalities were mentioned,
including vein recognition (using
the pattern of the veins in the
hand) and dynamic signature
recognition (specifying the loca-
tion, pressure, and velocity of the
pen). Efforts are made to ensure
that the body part is live (either by
prompted motion, such as smiling
or blinking on cue, or by scanning
for temperature or motion).

WO R K- I N - P RO G R E S S R E P O RTS

Summarized by Charles Perkins

Bedework Open Source Institutional
Calendar System

Jon Finke, Rensselaer Polytechnic
Institute

An open source standards-con-
forming calendar system designed
to meet institutional needs, Bede-
work presents a Web interface,
supports subscriptions, and pres-
ents a calDAV interface. iCal and
skins are supported. Oracle is not
used. Bedework is written in
Java. For more information, see
www.bedework.org.

DeSPAC-SE: Delegated Administra-
tion Framework for SELinux

Ryan Spring, Herbey Zepeda, Eric
Freudenthal, and Luc Longpre, UTEP;
Nick West, Stanford University

Eric Freudenthal presented a dele-
gated administration framework

for SELinux. DeSPAC-SE uses
Mandatory Access Control to cre-
ate security domains, and an active
classifier with human intervention
creates security tables of program
types and allowed behavior. Secu-
rity classification can be delegated
and is amortized over many
systems.

Deployment of BladeLogic for Access
Control Restriction, Change Tracking,
and Packaged Software Distribution
Primary to Ensuring Sarbanes-Oxley
Compliance

Michael Mraz

Developed for Solaris on SPARC as
well as RedHat and SUSE x86
Linux, the software enables log-
ging and auditing from develop-
ment, through QA, and into pro-
duction of complete software
systems.

VNC Manger: A Software Thin Client
Using Perl, VNC, and SSH

Wout Mertens

Mertens showed a brief live demo
of Perl + TK software for managing
multiple sessions of VNC over SSH
with load sharing. The software
thin client works on any UNIX,
and special attention has been paid
to server-side Solaris. Wout’s pres-
entation tied for best WiP. For
more information, see
http://sf.net/projects/vncmgr.

An Exoskeleton for Nagios: Scalable
Data Collection Architecture

Carson Gaspar

Gaspar shows how to solve limita-
tions of Nagios by adding a queue-
ing server, a modular client agent,
a config-file generator, an rrd-
based trending server, and a ping
agent. Multiple Nagios servers in
passive pipe mode display and act
on queued data.

A Brief Look at RSA Moduli

James Smith, Texas A&M

In his presentation, subtitled
“What an English Major Learned
in Class,” James took the audience
on a quick spin through the set of
mathematical knowns and

unknowns when narrowing the
search space for finding factors of
an RSA key.

Mail Backup

Dan McQueen, Cisco

Designed by Dan and coded by
Ed Miller, this Sendmail/procmail
backup system makes local copies
of incoming mail automatically
and allows users to initiate resto-
ration of messages that might be
lost due to user action before the
nightly filesystem backup occurs.
Text- and GUI-based restore tools
are provided. Retention periods
can be set. Restoration is a resend.
Docs are forthcoming, and there
are plans for open source. For
more information, email
dmcqueen@cisco.com.

What I Did on My LISA Vacation

Dave Nolan, CMU Network Services

Dave described the network archi-
tecture set up for the LISA confer-
ence. He addressed problems with
network performance, reliability,
and transparency, suggesting that
for success one should “clone
Tony” and spend money. Good
results were had for LISA ’05
because of a hotel-link upgrade,
donated hardware, and excellent
volunteer staff. Monitoring was
done with the cricket collector,
drraw drawing engine, argus net-
work flow analysis tool, and mon
nagios.

Pretty Network Pictures

Dan Kaminsky, DoxPara Research

In his presentation, subtitled “I
Like Big Graphs and I Cannot
Lie,” Dan explained that while
visual displays allow a human to
absorb more complexity than text,
animation encodes even more
complexity. He then demonstrated
real-time tcpdump data piped
through OpenGL and displayed as
video. With this codebase, Dan
asserts that “OpenGL does the
graphing, Boost does the layout,
the programmer gets to be lazy.”
Tied for best WiP. For more infor-
mation, email dan@doxpara.com.

98 ; L O G I N : V O L . 3 1 , N O . 2

How to Ask Questions the Right Way

Cat Okita

Cat promoted asking better ques-
tions of those seeking technical
help, including: What do you want
to do? What have you tried to do?
What happened? A little more
detail please . . Got any ideas?

Portable Cluster Computers and
Infiniband Clusters

Mitch Williams, Sandia National Labs

Mitch described his work with
clustered computers from the
extremely small (one foot tall and
6x6 inches wide) to the Thunder-
bird system, which is #5 in the
supercomputer list. For more
information, see eri.ca.sandia.gov
/clustermatic.org.

WORLDS ’05: Second
Workshop on Real, Large
Distributed Systems

San Francisco, CA
December 13, 2005

I N F R A STR U C T U R E

Summarized by Rik Farrow

Experience with Some Principles for
Building an Internet-Scale Reliable
System

Mike Afergan, Akamai and MIT; Joel
Wein, Akamai and Polytechnic
University; Amy LaMeyer, Akamai

Joel Wein described Akamai’s Con-
tent Distribution Network (CDN)
as having 15,000 servers in 1,100
third-party networks, with a
NOCC managed by a day crew
of eight and a night crew of three.
The focus of this paper is not on
CDN but on Akamai’s experience
in its seven-year experiment: in
particular, keeping its distributed
system running using Recovery
Oriented Computing. In a single
day, it is not unusual to lose
servers, racks of servers, and
even several data centers. The
base assumption is that there will

be a significant and constantly
changing number of component or
other failures occurring at all times
in the network. The development
philosophy is that their software
must continue to work seamlessly
despite numerous failures.

Wein outlined six design princi-
ples, organized in two sets of
three. The first three principles are
to ensure significant redundancy,
use software logic instead of dedi-
cated pipes for message reliability,
and use distributed control coordi-
nation. Wein then gave examples
of how these principles aid in
operation during failures. The
next three principles have to do
with software design: fail cleanly
and restart, zoning (their term for
their brand of phased rollout), and
notice and quarantine faults. No
software is perfect, and these prin-
ciples have helped to catch faults
in software or configurations.
Sometimes faults do not show up
until a change has been rolled out
to many systems. While most
aborted rollouts occurred during
phase one (36), the next most
commonly aborted rollout
occurred at the world level (23).

During the Q&A, Armando Fox
asked why, if Akamai stages roll-
outs, there were ever any world
aborts. Wein answered that some-
times that was when the problem
showed up, and it could be caused
by hardware, order of events, or
corner cases. Fox followed up by
asking if this was the only way to
tickle the bug? Wein answered
that stupid mistakes caused many
of the world aborts, followed by
needing to run on 50,000 servers
before the problem shows up. Paul
Lu asked how much of the system
is homebrewed? Wein answered
that a lot of this is custom code,
but they are open to using other
people’s ideas and try not to be
religious about these things. Jeff
Mogul commented that most com-
panies try to get down to one per-
son per server, while the Akamai
approach is different. Wein

answered that their design notices
a problem in an automated way,
detects it right away, and removes
it automatically. They have large
brute force redundancy.

Deploying Virtual Machines as
Sandboxes for the Grid

Sriya Santhanam, Pradheep Elango,
Andrea Arpaci-Dusseau, and Miron
Livny, University of Wisconsin, Madison

Sriya Santhanam presented this
research into the use of VMs in
distributed computing. As most
research Grid computing projects
will run code that cannot be
trusted, this code poses a security
challenge. VMs provide security
and isolation, environment inde-
pendence, finer resource alloca-
tion, support for a wider variety of
jobs, and a flexible, generic solu-
tion. They used Xen for their proj-
ect, as Xen adds very little over-
head when running applications
on Linux. The target environment
was Condor, software that watches
for idle workstations so they can
be used in Grid computing.

Santhanam described four differ-
ent sandbox configurations, start-
ing with the least restrictive and
going to a very restricted environ-
ment. Even the least restrictive
version has Condor alone installed
within the VM, but arbitrary pro-
grams can be executed, and Con-
dor itself is still exposed to net-
work attacks. In the next version,
VM gets launched on demand, and
eager whole file caching is used,
so no network access is required.
In the next version, system calls
get executed on the submitting
machine rather than on the local
system, and the final sandbox con-
figuration includes lazy whole file
caching and remote system calls
on the submitting machine. San-
thanam then presented graphs
comparing the performance of the
difference sandboxes.

Sean Rhea asked why sandbox 1
showed such low overhead com-
pared to the other versions. San-
thanam answered that only in this

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 99

100 ; L O G I N : V O L . 3 1 , N O . 2

version is the VM already running.
All other sandboxes include the
time to start the VM in their over-
head. Armando Fox asked, which
sandbox would you choose for
your friends? For people you trust
to run code, sandbox 1 is easiest,
whereas sandbox 4 adds additional
components and complexity. Rhea
asked if only one job is run at a
time, and Santhanam answered
yes, because the goal was limited
and focused on defense. Rhea
asked if the VM gets flushed after
running each job. Santhanam
answered that these are student
workstations, running in labs, so
the focus is on protecting these
machines.

MON: On-Demand Overlays for
Distributed System Management

Jin Liang, Steven Y. Ko, Indranil Gupta,
and Klara Nahrstedt, University of
Illinois at Urbana-Champaign

Jin Liang described the problems
that can occur when running
applications on the PlanetLab
Grid: monitoring and control
require connections from the
many remote systems each to a
separate process. Monitoring the
status of remote applications—
noticing if they have crashed, if
they need to be restarted, or if all
applications need to be stopped
and a new version uploaded—has
been difficult with the existing
tools. The goal also includes soft-
ware distribution to all nodes.

MON is a management overlay
network that uses an equivalent of
a spanning tree to aggregate the
results of all commands and to dis-
tribute commands to all the nodes.
The overlay network is built on
demand when needed, and is sim-
ple, lightweight, and suited to
management, irregular/occasional
usage, and short/medium-term
command execution. When execu-
tion completes, the overlay goes
away. Each remote host runs one
daemon process that not only exe-
cutes commands, but also partici-
pates in the construction of the

tree. The construction of the tree
must itself be lightweight and sat-
isfy the requirements of both sta-
tus query and software distribu-
tion. Liang described research into
the best method of tree construc-
tion, a combination of random tree
construction followed by local
selection of neighbors. The paper
provides more details of tree con-
struction.

The Q&A focused more on what
MON can and can’t do than on tree
construction. Someone asked, how
can you be sure that a response
from a node is calculated exactly
once? Liang answered that this
is not a problem, as each parent
aggregates responses from children
and sends just one response to its
parent. Someone else asked, how
can you find nodes that aren’t
working properly? Jiang said that
MON is not designed for this pur-
pose, but is focused on reliable,
occasional monitoring.

C H O O S I N G W I S E LY

Summarized by Jin Liang

Supporting Network Coordinates on
PlanetLab

Peter Pietzuch, Jonathan Ledlie, and
Margo Seltzer, Harvard University

Jonathan Ledlie first briefly
reviewed what network coordi-
nates are. Network coordinates
such as Vivaldi try to approximate
delay between two nodes using a
geometric space. Thus, they are a
powerful abstraction for distrib-
uted systems. However, the delay
between nodes is not static. There
could be gradual changes as well
as unpredictable, unusually large
deviations. The authors used a
moving minimum filter to deal
with this problem. Specifically,
at any time, the next delay is pre-
dicted as the minimum of the pre-
vious four measurements. The
second problem with network
coordinates is that the changes in
network coordinates might cause
expensive application-level adjust-

ments. For this, some update filter
is used. Specifically, the centroid of
the starting coordinate window is
computed. The application is noti-
fied about the change only when
the current centroid of the coordi-
nate window is significantly differ-
ent from the starting centroid.

Ledlie also showed a movie that
illustrates how the coordinates
would change, with and without
the link (moving minimum) and
update filters. Their evaluation
results are based on the delay
measurement on about 270
machines on PlanetLab.

One audience member com-
mented that the filters are similar
to network time protocol (NTP),
including the update filter
(whether a node is trustable in
NTP). Ledlie said he will look at
the differences. Another audience
member asked if it is possible to
report distribution as well as coor-
dinates to the application, so that
the application is aware of how
much variance there is. Ledlie said
this is currently not in the system
but can be added. Someone else
asked if delay is correlated with
load, and Ledlie answered that
there is a correlation.

Fixing the Embarrassing Slowness of
OpenDHT on PlanetLab

Sean Rhea, Byung-Gon Chun, John
Kubiatowicz, and Scott Shenker,
University of California, Berkeley

Awarded Best Paper!

There is a lot of hype about DHTs
(Distributed Hash Tables). How-
ever, many previous results were
obtained in benign environments
(i.e., in lab). The authors of this
paper wanted to improve the per-
formance of DHT “in the wild,”
and by considering 99th-percentile
performance numbers. Real-world
applications may not have dedi-
cated machines, and the authors
want to provide an OpenDHT
service. There are two flavors of
slowness in nodes. The first is
unexpected, which is discovered

only when a request is routed to
the node. The second is consistent
slowness, which can be avoided by
maintaining a history. The authors
provided two solutions to node
slowness: (1) Delay-aware routing,
in which the delay to the next hop
and the distance in the key space
between hops are considered when
selecting the route.This is in con-
trast to traditional DHT, where
routing is purely greedy in the key
space. (2) Parallelism. Using itera-
tive routing, the requester can
keep multiple outgoing RPC
requests. Thus, even if some slow
nodes are encountered, other
requests can quickly get results.
The user can also send the initial
request to two different gateways.

Their results, obtained from Plan-
etLab using concurrent execution
methods (i.e., a particular ap-
proach is randomly selected for
lookup each time) show that
delay-aware routing is clearly best,
reducing the 99th-percentile
latency by 30% to 60% without
increasing overhead. Other tech-
niques can also reduce the delay,
but will increase overhead.

(Re)Design Considerations for Scal-
able Large-File Content Distribution

Brian Biskeborn, Michael Golightly,
KyoungSoo Park, and Vivek S. Pai,
Princeton University

Well-designed systems may not
work efficiently in a real environ-
ment. In redesigning the Coblitz
file transfer service, the authors
achieved a 300% faster download
and a 5x load reduction on the ori-
gin server. Coblitz uses a content
distribution network for file trans-
fer. A smart agent will divide the
request for one file into multiple
requests for file chunks. The
requests are sent to different CDN
nodes that have the chunks
cached. There are several tech-
niques that are used to improve
the downloading. For example,
some nodes are consistently slow,
and these are removed. Also, when
a node is slow, instead of waiting

for time-out and retry, the new
design keeps several connections
to compete with each other. Also,
before a node requests the file
from the origin server, it looks at
other nodes to see if they are more
suitable for making the request.
Using these techniques, the new
Coblitz system’s performance is
much improved.

One audience member asked if the
set of slow nodes is stable, because
they have found it (in terms of
delay instead of bandwidth) unsta-
ble. KyoungSoo said they have
done a lot of bandwidth measure-
ment and the set is stable. Another
questioner asked where the bottle-
neck is for downloading, and
KyoungSoo answered, the band-
width cap. Another audience
member asked whether they have
run comparisons with SHARK,
and KyoungSoo answered, yes,
and with BulletPrime.

F ROM TH E TR E N C H E S

Summarized by KyoungSoo Park

Non-Transitive Connectivity and
DHTs

Michael J. Freedman, New York
University; Karthik Lakshmi-
narayanan, Sean Rhea, and Ion Stoica,
University of California, Berkeley

Michael Freedman started by
pointing out the difficulty of run-
ning DHT applications due to the
non-transitive connectivity prob-
lem. Non-transitive connectivity is
A not being able to communicate
with B, while A and C and also C
and B can communicate. Because
the conceptual DHT design
assumes full connectivity, people
must often resort to their own
hacks to get around this problem.
Non-transitive connectivity occurs
for various reasons, such as link
failures, BGP routing updates, and
ISP peering disputes, and 9% of
PlanetLab nodes are reported to
show such phenomena, according
to Stribling.

For DHTs, Michael classified the
problems as “invisible nodes,”
“inconsistent roots,” “broken
return paths,” and “routing loops.”
Node B is said to be A’s invisible
node if A can communicate with B
via C, but not directly with B. A
simple fix for this would be to let
A add (or remove) B only when A
directly communicates (cannot
communicate) with B. In order to
get over the performance impact of
invisible nodes, Michael proposes
(1) timeout estimates via network
coordinates, (2) parallel lookups,
and (3) caching of unreachable
nodes. Another problem is “incon-
sistent roots,” possibly caused by
network partition. Two distictive
nodes, say R and R', which cannot
communicate with each other,
may each act as if it were the root.
An expensive consensus algorithm
is one way of solving this; another
is to use link-state routing among
the leaf set with FreePastry 1.4.1.
“Broken return paths” means that
a direct return path between the
destination node and the entry
node may not exist, while a for-
warding path in the DHT lookup
does exist. One solution is to route
backward along the lines of the
forward path, and the other is one-
node source routing via a leaf node
randomly chosen by the destina-
tion node.

Justin Cappos asked whether such
non-connectivity is mostly unidi-
rectional or bidirectional, and
Michael responded that he did not
measure it, but he thinks it is
mostly asymmetrical. Indranil
Gupta mentioned that the problem
is being solved by RON, and asked
if the problem is the fundamental
limit of DHT. Michael and Sean
Rhea responded that it is a prob-
lem of whether to store more
states in the routing table. Rick
McGeer added that Tapestry has a
backup path, and Sean confirmed
that.

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 101

Why It Is Hard to Build a Long-
Running Service on PlanetLab

Justin Cappos and John Hartman,
University of Arizona

Justin Cappos began by asking
why we do not see many long-
running services on PlanetLab,
even though PlanetLab was
mainly created to support them.
He divided the types of services
that researchers are interested in
into three categories. The first cat-
egory consists of highly novel
services that are publishable but
unstable and that usually end up
perishing right after publication
(e.g., Bullet and Shark). Another
category includes services such as
AppManager and Sirius, which
have high stability but are not
novel enough to be made into
papers.The last category, com-
prised of services that combine the
two features, includes Stork, Bella-
gio, and CoDeeN. Justin explained
that the reason why we do not see
many research services on Planet-
Lab is because there is not much
incentive to provide long-running
services, which would take non-
trivial maintenance time that can-
not be rewarded with publication,
and he emphasized the need to
give more credit to long-running
services.

He described the process by
which Stork was shaped into a
reliable, long-running service
and the lessons to be drawn from
Stork’s example: the need to have
a reasonable fall-back scheme for
unreliable services, to build on
other research services, to be
aware of corner cases, and to use
other research systems and pro-
vide the feedback essential to
improving their quality and usabil-
ity.

Jeff Mogul commented that it is
not the novelty of the idea but the
novelty of the results that draws
the attention of paper reviewers,
and conferences like OSDI mainly
focus on such results. Sean Rhea
commented that in the past, good

projects all started with a simple
scheme but evolved into a novel
system by fixing problems in the
middle.

Using PlanetLab for Network
Research: Myths, Realities, and Best
Practices

Neil Spring, University of Maryland;
Larry Peterson, Andy Bevier, and Vivek
Pai, Princeton University

Years of operation of PlanetLab
have created various myths that
used to be true. Still, some re-
search folks believe PlanetLab
is too flaky or too overloaded for
some experiments. Neil Spring
talked about what is and what is
not true about PlanetLab, based on
his careful observation.

He started with what’s true. First,
the experimental results are not
reproducible on PlanetLab, be-
cause it is designed to provide a
real-world Internet environment
rather than a controlled testbed.
Even so, short experiments can be
measured more carefully by avoid-
ing what CoMon has determined
to be heavily loaded nodes. For
reproducible results, Emulab and
Modelnet can be alternatives to
PlanetLab. Also, PlanetLab is not
representative of the Internet or
peer-to-peer network nodes,
because PlanetLab cannot cover
the entire Internet and its nodes
are not desktop machines as in
P2P systems. However, more and
more traffic on PlanetLab includes
lots of commercial sites and is not
PlanetLab-exclusive. Although
PlanetLab does not use P2P nodes,
its nodes can be used as managed
core nodes in P2P systems, as in
End System Multicast (ESM).

Neil also enumerated myths that
are no longer true. First, PlanetLab
is no longer overloaded. Measure-
ment shows that 20 to 30% of
available CPU cycles are available
at any given time, even right be-
fore major conference deadlines.
The current per-slice scheduling
prevents any single slice from hog-
ging all the CPU cycles. Another

myth is about PlanetLab’s sup-
posed inability to guarantee
resources, but resources are avail-
able because they are managed by
a brokerage service, especially in
running short-term experiments.

Best practices also help in demys-
tifing some myths and in improv-
ing the reliability of the experi-
ments on PlanetLab. By using
kernel timestamps and instru-
menting traceroute one can time
the packets on PlanetLab with
great accuracy, and measuring
bandwidth via precise packet
trains is still possible with the use
of an appropriate system call such
as nanosleep(). Random site meas-
urement restriction imposed by
PlanetLab AUP can be implicitly
lifted by soliciting outside traffic,
and observation of such rules is
easily achieved by using a service
like Scriptroute. Finally, it is bene-
ficial to know that surviving exces-
sive churns is essential in making
long-running experiments.

Mic Bowman asked if PlanetLab
suffers from memory pressure due
to the large memory footprint of
some Java programs. In response,
Vivek mentioned that a recent
memory pressure test shows that
80% of all PlanetLab nodes have
at least 100MB available. Besides,
pl_mom is effective in maintaining
a good level of memory status by
killing the highest memory con-
sumer when memory pressure
arises.

Sean Rhea commented that one
problem is that people tend to try
a random tool that works on a
stock Linux, but get frustrated to
see it not working on PlanetLab.
He also mentioned that it would
be useful to make the packet trains
into a tool like KyoungSoo and
Vivek’s CoTop. Neil responded
that using Scriptroute will provide
accurate timing without carefully
implementing it individually.

102 ; L O G I N : V O L . 3 1 , N O . 2

FAST ’05: 4th USENIX
Conference on File and
Storage Technologies

San Francisco, CA
December 13–16, 2005

K EY N OTE A D D R E S S

Greetings from a File-System User

Jim Gray, Distinguished Engineer,
Microsoft Bay Area Research Center

Summarized by Stefan Büttcher

Jim Gray’s message was that we
have arrived at an era of infinite
storage. He argued that in today’s
storage systems, I/O bandwidth
and seek latency are limiting fac-
tors. In order to keep a single CPU
core busy, 100 hard drives are
needed; for future 10-terabyte
hard drives, it will take 1.3 days to
read all data sequentially and five
months to read them randomly.

File systems are becoming so large
that we need database systems in
order to be able to use them effec-
tively: how do we find data in a file
system containing 30 million files
of 1GB each? Integrating a data-
base into the file system and com-
bining the hierarchical structure
with a content-based addressing
mechanism would help.

According to Jim, we are heading
towards a backup-free world,
because the file systems are getting
so large that it would take too long
to restore the contents. Since we
have more storage space than we
need, we might as well keep many
versions of the data (snapshot file
systems) instead of backups.

As a side blow in the direction of
Garth Gibson, one of the inventors
of RAID, Jim pointed out that
RAID-5 is the wrong tradeoff, as it
sacrifices bandwidth for more effi-
cient space utilization. In the
Q&A, Garth, of course, disagreed,
noting that for many people stor-
age space efficiency is still very
important.

F I L E SYSTE M S S E M A NTI C S

Summarized by Vijayan
Prabhakaran

A Logic of File Systems
Muthian Sivathanu, Google Inc.;
Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Somesh Jha,
University of Wisconsin, Madison

Muthian began the talk by dis-
cussing how important it is to
ensure the correctness of file sys-
tems. The current approaches,
such as stress testing and manual
exploration, are inadequate and
error-prone. A logic of file systems
is a formal framework for reason-
ing about file systems. It focuses
on file system interaction with
disk and targets file system design
rather than implementation.

Then Muthian gave some back-
ground on file systems, describing
metadata and data consistencies.
The key challenge in reasoning is
the asynchrony which arises in file
systems due to buffering and
delayed writes. There are three
basic entities in the model: con-
tainers, pointers, and generations.
A file system is a collection of con-
tainers linked through pointers. A
container is a placeholder of data,
and generation is defined as an
instance of a container between
reuse and free. Muthian then
explained the concept of contain-
ers and generations through an
example.

Concepts such as beliefs, actions,
and ordering operators (e.g.,
before, after, and precedes) were
explained. The proof system fol-
lowed by the logic is based on
event sequence substitution.
Muthian gave examples of basic
postulates, for example, “If con-
tainer A points to B in memory, a
write of A will result in the disk
inheriting the belief.”

Three case studies that are
described in detail in the paper
were briefly explained by Muthian.
The first case study verifies the
data integrity under various file

system mechanisms, such as soft
updates and journaling. The sec-
ond case study examines a per-
formance bug in ext3. The last
case study looks at the non-roll-
back property under journaling.
Other case studies detailed in the
paper deal with generation point-
ers and semantic disks.

Providing Tunable Consistency for a
Parallel File Store

Murali Vilayannur, Partho Nath,
and Anand Sivasubramaniam,
Pennsylvania State University

Parallel file systems distribute por-
tions of a file across diff servers.
With multiple data servers and
client-side caches, consistency
becomes an important issue. Cur-
rent configurations provide either
much weaker consistency (e.g.,
PVFS) or much stronger consis-
tency (e.g., Lustre). However, the
applications running on a parallel
file system know better about their
concurrency/consistency needs
than does the file system.

The approach taken in CAPFS is to
export the mechanisms and leave
the policy to the applications,
which provides tunable granular-
ity. CAPFS uses content-address-
able data stores and optimistic
concurrency control mechanisms
to provide serialization.

The architecture consists of two
server components: hash servers,
which are the metadata servers,
and content addressable servers
(CAS), which are the data servers.
Hash servers provide a NFSv4-like
interface. The CAS servers are
multi-threaded servers. Murali
then described how writes are
handled. Whenever a write is
issued it goes to the hash server
first, which computes the hash,
and then the write goes to the
CAS. During commit, the old hash
of the data is compared with the
new hash. If they match, the com-
mit succeeds. Write serialization is
achieved this way. The system is
verified with a 20-node experi-
mental setup.

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 103

S E N S O R STO R AG E

Summarized by Shafeeq
Sinnamohideens

MicroHash: An Efficient Index
Structure for Flash-Based Sensor
Devices

Demtrios Zeinalipour-Yazti,
University of Cyprus; Song Lin,
Vana Kalogeraki, Dimitrios Gunopulos,
and Walid A. Najjar, University of
California, Riverside

Dimitrios Gunopulos first
described a sensor network devel-
oped for, among other applica-
tions, a U.C. Riverside Conserva-
tion Biology project to monitor
soil organisms. While the network
has a large number of sensors,
sensing several parameters over
a long period of time, only a few
time points or parameters are
interesting. The sensor nodes are
based on the RISE platform, have
local flash RAM as their main stor-
age, and limited network and
power resources. Since nodes in
their system only transmit data in
response to queries, each node
must store and index the data it
collects in its local flash memory.
The problem is that while existing
storage and indexing structures
are well suited to the properties of
RAM and hard disks, flash mem-
ory has a few unique properties of
its own: it can only be erased a
whole block (several pages) at a
time; a page can only be written
into an already erased block; and a
page physically wears out after
being written 10,000–100,000
times.

Using structures meant for other
media will result in poor perform-
ance as a result of having to read
and rewrite an entire block when-
ever any of its contents change, as
well as wearing out some pages
more rapidly than others. The
goal of their proposed structure
(MicroHash) is to efficiently sup-
port value-based and time-based
queries for single data points or
ranges while maximizing the life-
time of the flash memory.

MicroHash contains data records
that are both hashed into buckets
and indexed. It uses four types of
pages: data pages that store data
records, index pages that store
indices to the data, directory pages
containing information on hash
buckets, and a root page that
stores properties for the structure.
Pages are always written to flash in
a circular order to provide wear-
leveling. In normal operation, as
the sensor generates data records,
it inserts them into a data page.
When the data page is full, it is
written to flash in the next avail-
able position. The corresponding
index record is updated and the
index page written to the next
position, if necessary. As writing
proceeds, the oldest page will be
overwritten when there are no
more free pages. Because the index
is always updated after data is
written, an index page is never
deleted until the data it indexed is
also deleted. If a particular hash
bucket contains too great a pro-
portion of indexed records, a
repartitioning step will split it into
two less-full buckets.

Searching by time is simple, since
all pages are written in chron-
ological order. Searching by value
requires first hashing the value to
select a dir page. The dir page will
point to the most recent index
page for that value. The index
page will either point to a data
page with the data or to another
index page that can be followed.

Jason Flinn asked how the number
of directory buckets ever shrinks.
The answer is that when splitting
produces two new buckets, the old
bucket is eventually reclaimed by
the normal overwriting process.

Adaptive Data Placement for
Wide-Area Sensing Services

Suman Nath, Microsoft Research;
Phillip B. Gibbons, Intel Research Pitts-
burgh; Srinivasan Seshan, Carnegie
Mellon University

These sensor nodes differ in scale
from those in the previous talk;

they are assumed to have more
computing power and may be dis-
tributed anywhere in the Internet.
Query-issuing clients may also be
anywhere in the Internet. In addi-
tion to sensor nodes, the system
may include other infrastructure
nodes, which can also replicate
data, perform data aggregation,
and process queries. The system
aims to assign functions to nodes
automatically, in order to optimize
efficiency, robustness, and per-
formance across the entire system.
Additionally, the IrisNet infra-
structure may be supporting sev-
eral different sensor networks,
with different access patterns
which may change over time.

The IrisNet Data Placement (IDP)
algorithm attempts to determine,
for a given network hierarchy and
node capabilities, the data place-
ment that optimizes query latency,
query traffic, and update traffic. It
is a distributed algorithm that runs
on each node, using only local
knowledge to approximate the
globally optimal solution, while
rapidly responding to flash
crowds. Each node builds a work-
load graph representing all data
objects necessary for its queries,
with edges weighted by the traffic
across that edge. The algorithm
must select fragments (subgraphs)
to partition and allocate to each
node. The optimal solution is
O(n3), which is too slow to be
used. By only considering sub-
trees, an approximate solution can
be found in O(n). By contrast, all
better-performing algorithms
require global knowledge, and no
distributed algorithms perform as
well.

After partitioning, IDP must
choose where to locate each frag-
ment of the workload. It does this
using two heuristics. One attempts
to cluster data objects together.
This reduces the number of nodes
involved, but requires considera-
tion of whether nearby machines
can handle the extra load. The
other places fragments as close to

104 ; L O G I N : V O L . 3 1 , N O . 2

the data source or sink as possible.
This reduces traffic and latency,
but may involve additional nodes.
Repartitioning or replication is
performed when load on a node
exceeds a set threshold. When
replicas are available, a query can
select either a random replica or
the nearest one. If the nearest is
selected, it may become persist-
ently overloaded, whereas select-
ing a random one will cause all
replicas to have an equally light
load. As a compromise, IDP selects
a replica randomly, but with
weighted distribution, so nearby
replicas are selected more often.

Christopher Hooper asked wheth-
er energy consumption was con-
sidered and whether IrisNet could
take advantage of heterogeneous
power availability. The answer was
that power had not been consid-
ered, but could be considered one
element of a node’s capacity.

FAU LT H A N D L I N G

Summarized by Kevin Greenan

Ursa Minor: Versatile Cluster-based
Storage

Michael Abd-El-Malek, William V.
Courtright II, Chuck Cranor, Gregory
R. Ganger, James Hendricks, Andrew J.
Klosterman, Michael Mesnier, Manish
Prasad, Brandon Salmon, Raja R. Sam-
basivan, Shafeeq Sinnamohideen, John
D. Strunk, Eno Thereska, Matthew
Wachs, and Jay J. Wylie, Carnegie
Mellon University

Awarded Best Paper!

John Strunk presented the work
on versatile cluster-based storage
at CMU’s Parallel Data Lab. To get
the audience into the right state of
mind, Strunk presented a quick
brain-teaser which illustrated the
fact that a single storage system
generally stores different data sets,
with different requirements.
Unfortunately, all of the data in the
system may share the same fault
model and encoding scheme.

Even though cluster-based systems
provide more cost-effectiveness

and scalability than today’s mono-
lithic approaches, these systems
do not necessarily provide versatil-
ity. Ursa Minor attempts to solve
the challenge of versatility in clus-
ter-based storage.

Essentially, Ursa Minor is a cluster-
based storage system which sup-
ports multiple timing models, fault
models, and encoding schemes
among multiple data sets in a sin-
gle system. In addition, changes to
the distribution of data can be
made online, thus configuration
choices are adaptive. The architec-
ture of Ursa Minor is quite simple
and provides object access similar
to NASD architecture and the
emerging OSD standard. Basically,
clients are required to consult an
object manager for metadata
requests and I/O request authori-
zation. Versatility is accomplished
using a protocol family that sup-
ports consistent access to data in
the storage system. Each member
in a protocol family is defined by
three parameters: timing model,
fault model, and encoding scheme.
Online data distribution changes
are made using back-pointers from
the new data locations to the old
data locations. The object manager
can then revoke access to the old
locations, forcing the client to
request the new location of the
data.

In the end, we find there is a lot to
gain from defining specialized
configurations for different work-
loads in a cluster-based storage
system, especially when the work-
loads are running at the same
time.

A great many questions came up
during the Q&A. One member of
the audience asked how an object
is re-encoded upon distribution
change. A distribution coordinator
works its way through the object
by actively re-encoding in the
background, ensuring that newly
written data does not get overwrit-
ten. A few of the questions were
directly related to the encoding
schemes used in Ursa Minor. Cur-

rently, the user is responsible for
choosing which information dis-
persal encoding is used for a given
data set. Lastly, Strunk was asked
whether failures were assumed
during migration, and he an-
swered they are not.

Zodiac: Efficient Impact Analysis for
Storage Area Networks

Aameek Singh, Georgia Institute of
Technology; Madhukar Korupolu and
Kaladhar Voruganti, IBM Almaden
Research Center

Aameek Singh presented work on
impact analysis, starting with a
photograph of a woman pulling
her hair out, which was strategi-
cally placed to symbolize the frus-
tration involved in storage man-
agement. The work focuses on
the change-analysis problem. The
Zodiac framework is provided to
help system administrators deter-
mine the impact of changes to a
SAN (storage area network) before
actually making the change. This
framework integrates proactive
change analysis with policy-based
management; thus, the impact of
an administrator’s action is as-
sessed with respect to a set of user-
defined policies. In the context of
impact analysis, policies can be
thought of as best practices.

Singh briefly explained the four
primary components of Zodiac:
SAN-state for incremental opera-
tion within a single analysis ses-
sion; optimization structures
for efficient policy evaluation; a
process engine for impact evalua-
tion; and a visualization engine,
which acts as the output interface
to the user. The main SAN data
structure is represented by a graph
of entities connected by network
links; thus graph traversals are
required when policies are added
or evaluated. In order to make pol-
icy evaluation more efficient, the
authors exploit policy classifica-
tion, caching at every node in the
SAN graph, and aggregation. All of
these optimizations allow for a

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 105

reduced graph traversal space
when evaluating policies.

Singh showed that the three policy
evaluation optimizations signifi-
cantly decrease the latency of pol-
icy evaluations and allow for more
scalable evaluations as the size of
the SAN increases. Overall, this
work provides an efficient frame-
work that provides what-if analy-
sis under a policy-based infrastruc-
ture.

A member of the audience asked
whether this framework could be
used for root-cause analysis. Singh
replied that this work did not
focus on finding a root cause, but
such a tool used in conjunction
with their framework would be
very helpful.

Journal-Guided Resynchronization for
Software RAID

Timothy E. Denehy, Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseau,
University of Wisconsin, Madison

Timothy Denehy presented an
approach to software RAID re-
synchronization after a system
crash, which was done with some
of the other folks at the University
of Wisconsin, Madison. Denehy
pointed out that it is hard to main-
tain consistency at the RAID layer,
since a very long window of vul-
nerability may exist during
updates. Failures that occur within
this window of vulnerability may
leave a stripe within a RAID array
in an inconsistent state. The
authors show that this window
of vulnerability can be removed
through the use of a write-ahead
log, which may result in poor per-
formance.

Instead of relying on a write-ahead
log or offline scanners, the authors
propose a solution that leverages
the functionality of a client-jour-
naling file system, such as ext3.
Denehy gave a quick overview of
ext3 with respect to transactions
and journaling. A new mode of
operation, declared mode, is added
to the underlying file system. This

new mode of operation, which is
similar to ext3’s ordered mode,
requires the write record for each
data block to reside in the journal
before issuing the actual write.
Unlike ordered mode, this results
in a record of outstanding writes,
which can be used to restore con-
sistency upon a system crash.

In addition to the new mode of
operation, an interface is created,
which allows the file system to
communicate inconsistencies to
the RAID layer. This interface
between the file system and soft-
ware RAID is very straightforward.
The file system can tag a block
with a synchronize flag, which
results in a verify read request at
the software RAID layer. At the
RAID layer, the corresponding
stripe is read and checked. If the
parity is inconsistent, a new parity
for the stripe is computed and
written.

The process of file system recovery
and RAID resynchronization is
done using the new functionality.
After a system crash, the file sys-
tem can scan the journal and com-
municate possible inconsistencies
to the RAID layer. These possible
inconsistencies are handled at the
RAID layer using the verify read
request.

Denehy further justifies the effec-
tiveness of declared mode by
comparing it to ordered and data-
journaling mode on a set of bench-
marks, which shows that declared
mode generally outperforms data-
journaling mode and incurs very
little overhead with respect to
ordered mode. Another important
side effect of this new form of
RAID resynchronization is the
reduction of the window of vul-
nerability from 254 to 0.21 sec-
onds.

C AC H I N G

Summarized by Ali R. Butt

DULO: An Effective Buffer Cache
Management Scheme to Exploit Both
Temporal and Spatial Localities

Song Jiang, Los Alamos National
Laboratory; Xiaoning Ding, Feng Chen,
Enhua Tan, and Xiaodong Zhang,
Ohio State University

Song explained that the motiva-
tion for their work is the increas-
ing gap between disk and proces-
sor speed. Hard disks remain a
performance bottleneck when
accessing data at high speeds. He
explained that the main reason
for this bottleneck is the lack of
sequential accesses to the disk,
which, among other things, causes
expensive disk-head movements.
Although the application accesses
are more sequential than random,
the filtering effect of the buffer
cache results in the accesses to
disk becoming randomized. To
address this issue, Song presented
a new buffer cache-replacement
algorithm, DULO, which uses
both temporal and spatial patterns.
The main goal of the paper is to
increase the sequential accesses
that are issued to disk.

Song explained that there are two
schemes that are employed to
improve the number of sequential
accesses: namely, disk request
scheduling and file prefetching.
The buffer cache sits on top of the
file prefetcher and I/O scheduler.
The cache filters the requests from
the application to the lower layers,
and has the potential problem of
filtering the patterns, which in
turn makes the pattern more ran-
dom. Hence, the buffer cache has
the ability to shape the disk
requests. Since other schemes only
consider temporal locality of the
blocks being accessed, they may
result in a smaller number of
blocks being read from the disk,
but these blocks may have poor
sequential properties, resulting in
more disk head movements.

106 ; L O G I N : V O L . 3 1 , N O . 2

In the Q&A someone asked
whether the authors have com-
pared DULO to LIRS (an algo-
rithm also proposed by the same
authors). Song responded that he
has not yet done that but is con-
sidering extending DULO to a
more general scheme that can
accommodate any cache-replace-
ment algorithm rather than only
LRU. Kai Shen from Rochester
University inquired how DULO
compares to the optimal case in
this situation. Song replied that it
is hard to define “optimal” in this
scenario, due to the complexity of
the components involved.

Second-Tier Cache Management
Using Write Hints

Xuhui Li, Ashraf Aboulnaga, Kenneth
Salem, University of Waterloo; Aamer
Sachedina, IBM Toronto Lab; Shaobo
Gao, University of Waterloo

Examples of second-tier cache
management, the topic of the
paper presented by Kenneth
Salem, are the file server acting as
the lower cache, and the client as
the top cache, or, more interest-
ingly, the lower cache as the stor-
age server and the top cache as a
database system. An important
thing to note in this context is that
database systems that handle
OLTP workloads perform a lot of
write requests.

There are two difficulties that are
faced in two-tier cache manage-
ment. One is that of cache inclu-
sion, i.e., a page is stored in both
the caches, which essentially
wastes space. Therefore the chal-
lenge is to maintain exclusivity
between the two caches. The sec-
ond challenge is that the second-
tier cache exhibits poor temporal
locality. Kenneth pointed out that
other people have looked at vari-
ous schemes to manage two-tier
caches by employing hierarchy-
aware schemes, interpreting stor-
age data, using explicit notifica-
tions between caches, and
providing hints to the higher tiers.
The approach presented in this

paper is based on hint-based
schemes that require only simple
changes to the first-tier cache
management. The main focus of
the work is on write requests so as
to improve the hit ratio of the sec-
ond-tier cache.

In the Q&A session, Song Jiang of
LANL inquired about the effect of
the first-tier cache management
algorithm on the second tier, and
he pointed out that the interaction
may adversely affect the cache per-
formance. Kenneth agreed that
this was possible, which is why
they are interested in evaluating
the scheme for more applications.
Prashant Pandey of IBM Research
said that in the current scheme the
second tier is expected to interpret
the hints on its own and asked
whether there will be any benefit
in telling the storage exactly what
to do. Kenneth replied that they
have made an effort to keep the
hints open for interpretation by
the second tier, but it would be
interesting to see if the second tier
can simply use the hints as classifi-
cation. However, this aspect
remains part of their future work.
Another questioner asked about
the distinction between write hints
and eviction hints. Kenneth
replied that they currently only
interpret the hints at the second
tier, but possibly could introduce
two additional bits in the hints to
ask the second tier for direct evic-
tion.

WOW: Wise Ordering for Writes—
Combining Spatial and Temporal
Locality in Non-Volatile Caches

Binny S. Gill and Dharmendra S.
Modha, IBM Almaden Research Center

Binny presented an innovative idea
that aims at improving the per-
formance of writes to hard disks.
He pointed out that the writes
have often been ignored in caching
research, which mainly focuses on
improving performance of reads.
The presentation started with a
brief history of caching’s important
part in improving the I/O time of

disks. But although read caches
have significantly improved the
performance of disks, there are six
times more writes in terms of disk
seeks. He also pointed out that
write caches are typically 1/16th
the size of read caches. Hence,
improvement in write time can
have a significant impact on the
overall I/O performance, but the
small size of write caches requires
careful planning in order to get
any benefit from them.

Binny then presented WOW,
which uses reordering of writes in
the NVRAM write cache to reduce
the disk seeks associated with
writes. The order in which writes
are destaged to disk is critical.
WOW aims to use the smallest
amount of disk time for writes and
to use most of the time to service
read requests. For this purpose, it
utilizes both temporal and spatial
locality of the writes. To create
spatial locality, WOW uses reor-
dering.

The WOW algorithm is produced
via an innovative marriage of the
CSCAN and CLOCK algorithms,
and has the good qualities of both.
Basically, WOW uses CLOCK bits
for temporal locality information,
and weights of CSCAN to give the
spatial order information. WOW
keeps the sorted order of CSCAN
and temporal bits of CLOCK to
give both spatial and temporal
locality information. The evalua-
tion of the scheme shows that
WOW indeed provides improved
throughput and response time.

S E C U R IT Y

Summarized by Aameek Singh

Secure Deletion for a Versioning
File System

Zachary Peterson, Randal Burns, Joe
Herring, Adam Stubblefield, and Aviel
D. Rubin, The Johns Hopkins University

Due to increasing federal regula-
tions and other business require-
ments, versioning file systems are
being deployed rapidly. These file

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 107

108 ; L O G I N : V O L . 3 1 , N O . 2

systems maintain multiple ver-
sions of the data and can be used
to restore to an earlier version.
For space efficiency, different ver-
sions can share data blocks. This
paper makes two contributions:
(1) secure deletion of a file, imply-
ing that a deleted file cannot be
retrieved by any forensic tech-
niques; (2) authenticated encryp-
tion, ensuring that data has not
been corrupted between a disk
write and its corresponding read.

Some of the earlier approaches—
repeated overwriting, encrypting,
and deleting the key—require
more storage or need data blocks
to be contiguous. This paper’s
approach minimizes the amount of
secure overwriting and eliminates
the need for contiguity. The main
idea is to use a keyed transform to
create a short stub representing
the data blocks with the additional
property that deleting the stub by
secure overwriting automatically
deletes the data.

The authos also presented tech-
niques that are better optimized
for deleting an entire version
chain. The techniques have been
implemented in ext3cow version-
ing file system.

TOCTTOU Vulnerabilities in UNIX-
Style File Systems: An Anatomical
Study

Jinpeng Wei and Calton Pu, Georgia
Institute of Technology

Time-of-check-to-time-of-use
(TOCTTOU) vulnerabilities occur
in UNIX-style file systems when
applications perform two non-
atomic steps—first establish an
invariant about the state of the file
system and then perform an opera-
tion assuming the invariant to
hold. For example, Sendmail first
establishes that the mailbox is not
a symbolic link (a malicious user’s
attempt to corrupt an important
system file) and then writes to the
mailbox. Between these two steps,
a malicious user can modify the
file system so that the invariant
does not hold, but the application

does not check for it in the second
step.

The paper attempts to define a for-
mal model, called CUU, that can
be used to identify such TOCT-
TOU vulnerabilities. For this, they
identify pairs of operations that
establish invariance and then
operate on it: for example, <stat,
open>. Such pairs, called TOCT-
TOU pairs, can then lead to poten-
tial attacks.

The paper identified 224 such
pairs in various utility programs
such as Sendmail, vi, and RPM.
They also checked the feasibility of
attacks on vi, which shows that
such attacks can have nearly a 50%
success rate for large files.

A Security Model for Full-Text File
System Search in Multi-User
Environments

Stefan Büttcher and Charles L.A.
Clarke, University of Waterloo

With increased interest in desktop
search, there are many tools avail-
able now from companies such as
Google, Microsoft, Apple, and
Yahoo. However, a multi-user
environment presents new and
interesting challenges. Keeping a
separate index for each user in the
system is inefficient, since many
files are actually accessed by multi-
ple users and thus a single file sys-
tem change would need to be
pushed into each index.

A second approach, that of keep-
ing a single index and postprocess-
ing search, requiring that files that
a user should not see are removed,
suffers from a subtle problem:
since query ranking uses statistics
that in a single index case would
be systemwide, carefully formed
queries can leak out potentially
critical information.

As a solution, the paper proposes
GCL, a structured query language
developed in the 1990s by one of
the authors which evaluates on-
the-fly query ranking using secu-
rity primitives, ensuring that no
file or its influence on statistics is

revealed through the results. One
of the shortcomings is the memory
caching of security properties of
each file, which is 32 bytes for
each inode.

The system shows good perform-
ance and is available at http://www
.wumpus-search.org.

M U LTI - FAU LT TO L E R A N C E

Summarized by Florentina Popovici
and Timothy Denehy

Matrix Methods for Lost Data
Reconstruction in Erasure Codes

James Lee Hafner, Veera Deenadhay-
alan and K.K. Rao, IBM Almaden
Research Center; John A. Tomlin,
Yahoo! Research

Jim Hafner addressed two general
problems pertaining to erasure
codes, with the ultimate goal of
recovering lost data whenever it is
information-theoretically possible.
First, can the system recover from
uncorrelated errors and, if so,
how? Second, how can the system
efficiently recover partial strip
data? To solve these problems, the
author presented the following
theorem: for any linear erasure
code and a set of sector failures,
there exists a simple mechanism
that identifies which sectors can-
not be recovered and provides for-
mulas for the reconstruction of
those sectors that can be recov-
ered. Jim presented their method,
based on matrix theory and
pseudo-inverses, which com-
pletely solves the first problem and
provides the formulas for solving
the second problem.

He also presented a hybrid
approach which uses the matrix
methods along with the code-spe-
cific recursive reconstruction
methods to improve efficiency.
Finally, he demonstrated their
methodology for recovering lost
array sectors with a TCL/Tk appli-
cation.

The first questioner asked if the
ordering of sector recovery mat-
ters? Jim responded that if the sec-

tors are lost simultaneously, the
ordering of recovery does not mat-
ter. Garth Gibson asked how often
an additional sector can be lost
and recovered under existing era-
sure codes. In his experience, Jim
estimated that a third lost sector
could be recovered about 50% of
the time.

STAR: An Efficient Coding Scheme for
Correcting Triple Storage Node
Failures

Cheng Huang, Microsoft Research;
Lihao Xu, Wayne State University

Cheng Huang asked how to ensure
both reliability and performance
for storage systems. Some of the
characteristics of such systems are
that they are built from less reli-
able components in order to
achieve large capacity, and that
they may also be geographically
distributed.

Reliability is achieved by redun-
dancy. Usually the codes used are
(n,k) threshold codes. n is the
number of nodes where the shares
of the data are distributed, and k
represents the minimum number
of shares that need to be gathered
to reconstitute the original data.
Most systems use MDS schemes,
which allow for the recovery of r =
n – k nodes, where r is called the
reliability degree of an (n,k)
scheme.

But all practical schemes use Reed
Solomon schemes as MDS, and
they are slow, so the question is
whether there are other, better-
performing schemes. The alterna-
tives are MDS array codes such
as XOR (rr = 1) and EVENODD
(r = 2). There is a generalized
EVENODD algorithm that recov-
ers from three failures, but the
authors wanted to reduce its
decoding complexity further and
so propose a new algorithm, called
STAR.

Cheng exemplified the recovery
schemes for the EVENODD and
STAR algorithms and showed how
the algorithms recover from fail-
ures. The extended EVENODD

algorithm uses diagonal parities
with slopes of one and two. STAR,
however, uses diagonals with
slopes of one and negative one.
Cheng showed how this geometric
symmetry used by STAR leads to
faster decoding.

WEAVER Codes: Highly Fault Toler-
ant Erasure Codes for Storage Sys-
tems

James Lee Hafner, IBM Almaden
Research Center

Jim Hafner started by discussing
why there is a need for another
erasure code. The focus is on dis-
tributed storage systems and dis-
tributed RAID with more vulnera-
ble components, and there is a
need for another performance
metric.

The proposal is a vertical code,
with properties of symmetry, bal-
ance, and localization. Symmetry
allows for easy implementation
and natural load balancing. Local-
ization means that I/Os do not
involve the entire stripe. There is
also more sequentiality from
longer I/Os. The array size can be
varied with fixed parity in-degree
(number of inputs). Furthermore,
the data-out degree is constant and
equal to the fault tolerance.

The focus of this work is on codes
with 50% efficiency. One of the
features is variability of fault toler-
ance. The fault tolerance level can
be changed by adding or subtract-
ing an element without remapping
or readdressing existing blocks.
The disadvantage is that there is
only 50% efficiency.

Ed Gould asked Jim to estimate
how much fault tolerance is
needed for a level of recon-
structability of 90%. Jim answered
that it depends on the compo-
nents, as different batches of com-
ponents from manufacturers have
different errors. Also, it depends
on the configuration and the com-
bination of independent versus
dependent domains.

WO R K- I N - P RO G R E S S R E P O RTS

Summarized by Matthew Wachs

Controlling File System Write
Ordering

Nathan Burnett, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau,
University of Wisconsin, Madison

The order in which writes occur to
a file system must be controlled, or
it may not be possible to restore
the file system to a consistent state
after a crash. While operating sys-
tems use techniques such as write-
ahead logging to manipulate file
system structures safely, it is diffi-
cult for an application to do the
same for data consistency within
its own files, because the operating
system does not expose primitives
for write ordering to the applica-
tion. Nathan Burnett described
two conventional ways that appli-
cations can ensure that commits to
stable storage occur in the desired
order: direct I/O and fsync().
Direct I/O allows applications to
write directly to the raw storage
device, avoiding all caches; how-
ever, it is slow (because of syn-
chronous writes) and not portable
(it is not universally available and
APIs are not consistent). fsync() is
portable, but slow as well. The fast
alternative, ignoring write order-
ing, cannot ensure recoverability
after a crash. Burnett suggested
that the OS export an interface
allowing the application to de-
scribe ordering constraints for
writes. Not all writes may need to
be ordered; taking advantage of
this might yield better perform-
ance.

He proposed two methods for
expressing ordering constraints: a
barrier() system call which (glob-
ally) prohibits reordering of writes
across the call; and asynchronous
graphs, which express the con-
straints using an implicit graph
data structure. In conventional
applications, calls to fsync() could
easily be replaced by calls to bar-
rier(). The graph approach requires
more extensive modifications:

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 109

110 ; L O G I N : V O L . 3 1 , N O . 2

write() returns an identifier for
each call, and future invocations of
write() can be passed a list of iden-
tifiers corresponding to writes (if
any) that must occur first.

The authors have simulated both
techniques and shown that the
graph approach reduces the num-
ber of writes and the number of
non-sequential writes in a TPC-B-
like workload over both synchro-
nous writes and the barrier
approach, because it allows the
coalescing, in some cases, of hun-
dreds of small writes into one large
write. They are now implementing
the techniques in FreeBSD 5.4.

Rethink the Sync!

Edmund Nightingale, Kaushik Vee-
raraghavan, Peter Chen, and Jason
Flinn, University of Michigan

Another way of thinking about
durability is at a much higher
level: transactions must not
become visible externally until
they have been committed to sta-
ble storage, but the application
issuing them may continue exe-
cuting while the transactions are
still in volatile memory. When
writes ultimately occur, they are
performed in the order issued,
maintaining the proper write
ordering. Jason Flinn presented
this approach as “external syn-
chrony” or “visible synchrony.”
The authors are implementing
this type of durability in the Linux
kernel using mechanisms from
their Speculator project (which
addresses speculative execution in
a distributed file system). Synchro-
nous operations are performed
asynchronously, and each opera-
tion is a transaction in the ext3 file
system with data journaling.

Synchronous I/Os taint the calling
process with an annotation pro-
hibiting external output (such as
to the screen or network) until all
preceding I/Os are complete. If
processes engage in IPC, taint
annotations are inherited as appro-
priate. Because progress is being
made on I/O in the background,

the latency during which external
output is withheld while pending
commits finish is expected to be
short enough not to be noticed by
a human. Postmark results using
visible synchrony show that per-
formance is within 6% of an asyn-
chronous implementation.

Amino: Extending ACID Semantics to
the File System

Charles Wright, Richard Spillane,
Gopalan Sivathanu, and Erez Zadok,
Stony Brook University

Applications such as mail servers
and text editors often need to
enforce transactional semantics on
file manipulations: atomicity, con-
sistency, isolation, and durability
(known as ACID). While data-
bases provide ACID semantics,
there is no standardized interface
to databases, which limits porta-
bility for applications that might
use them. The availability of ACID
at the file system would simplify
error handling (transactions could
simply be aborted), enhance secu-
rity (time-of-check-to-time-of-use
security vulnerabilities could be
avoided by serializing concurrent
accesses), and ensure durability.

Gopalan Sivathanu presented the
idea of providing support for arbi-
trary transactions in the file sys-
tem as a first-class service. To
make this possible, the operating
system itself must also support
transactions at layers such as the
cache. The authors have created a
prototype file system, Amino, that
provides begin, commit, and abort
calls alongside the standard POSIX
interface. Legacy applications
automatically have each system
call wrapped in a transaction;
enhanced applications can wrap
begin and commit calls around
arbitrary sequences of POSIX I/O
calls and computational activity.
Back-end storage and transactional
primitives are provided by Berke-
ley DB. The prototype is imple-
mented in user level through a
ptrace monitor, allowing existing
applications to run unmodified

and avoiding fundamental modifi-
cations to the OS.

PASS: Provenance-Aware Storage
System

Margo Seltzer, David Holland, Kiran-
Kumar Muniswamy-Reddy, Uri Braun,
Jonathan Ledlie, Harvard University

Provenance is metadata about the
history of an object. For instance,
if an application reads files A and
B, then later writes file C, the
provenance of file C includes files
A and B, the application itself, and
other environmental information
that may have been used to derive
C. Kiran-Kumar Muniswamy-
Reddy explained that provenance
is useful to scientists in under-
standing how results were arrived
at, to homeland security applica-
tions in determining the informa-
tion used to suggest a possible
threat, and to business compliance
systems in tweaking policies for
information life-cycle manage-
ment. He believes that the operat-
ing system and file system should
be in charge of tracking prove-
nance, because all data flows
through them. Provenance should
be a first-class entity which is
automatically annotatable, index-
able, and queryable; the authors
are designing a storage system that
meets these goals.

Muniswamy-Reddy highlighted
several research questions: first,
how provenance should be stored
so that it is indexable and query-
able; second, what the proper
security model for provenance
should be (does access to a file
imply access to its provenance?);
and third, how it can be sent over
“the wire.” A prototypical imple-
mentation added only 2% over-
head for a Linux kernel build.
More information can be found at
http://www.eecs.harvard.edu/
syrah/pass.

Logistical Storage

Surya Pathak, Alan Tackett, and Kevin
McCord, Vanderbilt University

Scientific computing, especially
for efforts such as high energy

physics, often requires sharing
large data sets among collaborators
around the world (for instance,
some projects generate 3TB per
day, 1PB per year). Surya Pathak
introduced L-Store (Logistical
Storage), a framework to address
this need using software agent
technology and the Internet Back-
plane Protocol. The software
agents provide automated resource
discovery and fault tolerance. The
scalability of the authors’ distrib-
uted approach has allowed them to
achieve 10Gb/sec sustained reads
and writes to distributed storage
using a RAID-5 encoding on mod-
erate hardware.

A Unifying Approach to the Exploita-
tion of File Semantics in Distributed
File Systems

Philipp Hahn and Carl von Ossietzky,
University of Oldenburg

Many distributed file systems
exist, but few are widely used in
practice. One reason for this may
be the fact that they are often spe-
cialized for particular types of
environments or applications. File
systems that have seen widespread
adoption because of their general-
ity may suffer from “compromise”
designs that optimize for average
performance and excel at nothing.
Philipp Hahn suggested that it
would be ideal to have a universal
abstraction for a distributed file
system that allows for per-file opti-
mizations and special cases and
permits requirements to change
over time. Various dimensions of
configurability include concur-
rency, latency, availability, and
consistency; the anticipated fault
mode, access frequency, and access
pattern; and the caching, version-
ing, encryption, and compression
strategies employed.

Benefits from his work might
include being able to bypass lock-
ing for backups, to avoid strong
consistency in disconnected oper-
ation, to suppress replicas for tem-
porary files, and to use different
replica placement strategies for
different files. He seeks to achieve

this flexibility by creating a frame-
work for a distributed file system
with pluggable modules that al-
lows the user to control all of these
options up to administrator-con-
figured limits, and falls back to a
default configuration when none is
specified. Hahn anticipates that
self-tuning may relieve some of the
burden of configuration.

A Centralized Failure Handler for
File Systems

Vijayan Prabhakaran, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau,
University of Wisconsin, Madison

Commodity file systems have
“broken” failure handling, because
they assume that disks fail in a
fail-stop manner. Moreover, failure
handling is complex, because the
code that actually performs I/O on
behalf of applications is diffused
throughout the system (for in-
stance, journaling code or the sync
daemon), and thus the code that
must handle failures is distributed
throughout the system. Vijayan
Prabhakaran believes that this
results in illogically inconsistent
policies, because the reactions to
the same error depend upon which
component received it: some may
propagate while others retry. It is
also difficult to separate policies
from mechanisms in this regime;
and each component is subject to
bugs.

The authors’ proposed solution is
a centralized failure handler,
which addresses each of these
shortcomings; it also relieves pro-
grammers of the need to add error-
handling code to each new func-
tion, because the global handler
already takes care of errors. Prab-
hakaran pointed out three issues
with this approach: semantic
information about a particular
I/O needs to be available at the
handler so it can respond to errors
appropriately; the handler has
parts that must be specialized to a
particular file system while other
parts are generic across file sys-
tems; and I/O paths are time-criti-
cal, requiring the common com-

pletion path to be separated from
the error case.

Storage Benchmarking for HPC

Mike Mesnier, James Hendricks, Raja R.
Sambasivan, Matthew Wachs, and
Gregory Ganger, Carnegie Mellon Uni-
versity; Garth Gibson, Carnegie Mellon
University and Panasas

High-performance computing
(HPC) applications are one impor-
tant class of programs that use
storage systems, but it is difficult
to simulate their access patterns
with existing benchmarks. In par-
ticular, the coordination and data
dependencies between multiple
compute nodes that are accessing
storage may need to be modeled in
a benchmark to capture the true
nature of HPC workloads. Mike
Mesnier discussed the idea of
explicitly capturing this coordina-
tion in an existing workflow-speci-
fication language; specifications
could then be used by a distrib-
uted workload simulator to syn-
thetically generate multi-client
accesses similar to those of a given
HPC application.

The modeling language might
include data sources and sinks
with flows between them passing
through compute nodes that per-
form transformations on the data.
At the same time, the language
must also incorporate I/O charac-
teristics such as read/write ratio,
request size, and randomness
for the simulator to follow. The
authors plan to select and extend
an appropriate workflow modeling
environment and to begin a reposi-
tory of specifications expressed in
this language by providing refer-
ence specifications—for example,
HPC codes—and then soliciting
the contributions of domain
experts from different fields such
as computational chemistry, bioin-
formatics, and so on.

POSIX I/O Extensions for HPC

Brent Welch, Panasas

Just as it is important to bench-
mark HPC applications, so, too, is
it fruitful to optimize for them at

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 111

each level of a storage system. The
POSIX semantics for I/O, which
are intended for single-node
access, are not ideal for environ-
ments using collective I/O and
clustered compute-node access to
shared storage. Brent Welch dis-
cussed an initiative, being under-
taken by a large working group, to
draft proposed API enhancements
to POSIX that may boost the per-
formance of this class of applica-
tions. Many of the changes are
based on the ideas of relaxing
expensive semantics and providing
hints to the storage system.
Among the proposals are support
for vector I/O, coherence (propa-
gation or invalidation of data),
lazy attributes in metadata, lock-
ing schemes, shared file descrip-
tors, and layout hinting. For
instance, a statlite() call extends
stat() to poll only those attributes
actually needed by the application;
and ACLs match the new NFSv4
semantics rather than the old
POSIX ACL semantics. More
information can be found at
http://www.pdl.cmu.edu/posix.

Storing Trees on Disk Drives

Medha Bhadkamkar, Fernando Farfan,
Vagelis Hristidis, Raju Rangaswami,
Florida International University

Many modern applications store
tree-structured data, such as those
using XML, those storing directory
hierarchies, and those implement-
ing suffix-tree alignments for
bioinformatics. Because of this,
being able to store tree-structured
data efficiently is an important fac-
tor affecting the performance of
these applications. Currently used
schemes (such as relational data-
bases or flat files) do not take
advantage of the tree structure or
the performance characteristics of
disk drives.

Raju Rangaswami proposed tree-
structured placement, a way of
matching the data structure of a
tree to the semi-sequential access
patterns of a disk drive. Under this
technique, the root is placed at the
outermost track, with its children

residing on the next free track,
placed such that accessing the first
child results in a semi-sequential
access (that is, one which incurs
no rotational delay because it falls
under the disk head just as the
seek to that track completes). Sub-
sequent children are placed just
after the first one and incur only a
slight rotational delay. The draw-
backs of this approach are high
space fragmentation and poor ran-
dom access times. A second strat-
egy, the optimized tree-structured
placement strategy, places child
nodes in non-free tracks and per-
mits some limited rotational la-
tency to reach the first child on
that track, increasing the flexibility
of placement; it also stores multi-
ple nodes in a single disk block.
In the future, the authors plan to
explore how to store arbitrary
graphs more efficiently on disks.

Efficient Disk Space Management for
Virtual Machines

Abhishek Gupta and Norman Hutchin-
son, University of British Columbia

Virtual machines are being used
for various purposes, but the prob-
lem of efficiently providing storage
for each virtual machine has not
been entirely solved. Frequently,
multiple VMs share the same disk
image and software configuration;
existing solutions such as LVM
(the Linux Volume Manager) and
Parallax share blocks between the
images and provide copy-on-write
to achieve good space utilization.
Abhishek Gupta described weak-
nesses in these systems: LVM has a
high cost when the VM running
on the master image overwrites a
block (the original copy of the
block must then be propagated to
all the mirrored images or else
they will see the changed block,
unless they have performed a
copy-on-write to that block). LVM
also does not support hierarchical
copy-on-write images (recursive
snapshots).

Parallax can do recursive snap-
shots, but it is unclear how effi-
cient it is: the cost of traversing

the radix-tree data structure to
translate a block address may be
high, and there is no space recla-
mation. Gupta discussed how to
explore possible solutions to these
limitations: first, the authors have
implemented radix trees in LVM
so that they can be benchmarked
and the existing solutions can be
quantified; next, they will either
try to fix the problems in current
approaches or propose a new data
structure that will support faster
snapshots.

Intelligent Data Placement in a Home
Environment

Brandon Salmon, Carnegie Mellon
University

Consumer media devices are pro-
liferating in the home, and they
are increasingly capable of han-
dling high-quality videos, music,
and photos. At the same time,
the devices have varying degrees
of mobility, storage capacity, and
access to power. Because of this,
Brandon Salmon highlighted the
fact that there is a data synchro-
nization problem in getting
desired data to the right device at
the right time. Currently, data
transfer is typically done manually,
which is not a scalable solution.
Pushing data to all devices is not
feasible, because power or capacity
may be at a premium or some
mobile devices may be out of
range; yet on-demand access is not
sufficient, because it is often not
reliable.

Salmon’s plan is to match data to
appropriate destination devices by
using metadata (such as ID3 tags
in music files), easily observed
access patterns, and machine
learning to anticipate upcoming
requests. Unlike hoarding, he
plans to use information about
data and device access patterns to
match data to a device, rather than
using inter-file access patterns
alone. He also plans to leverage
known cliques (such as a cell
phone usually being near a laptop,
but rarely near a DVR) to optimize
caching.

112 ; L O G I N : V O L . 3 1 , N O . 2

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 113

Functionality Composition Across
Layers in a Storage System

Florentina Popovici, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau,
University of Wisconsin, Madison

Various functions, such as cach-
ing, prefetching, layout, and
scheduling, are implemented at
each component in a layered sys-
tem. For instance, a Web server
may have a cache that duplicates
data in the buffer cache, RAID
controller cache, and hard disk
cache, resulting in inefficient use
of available memory. Florentina
Popovici argued that exclusive
caching would result in superior
use of resources, and that analo-
gous coordination of other func-
tions such as prefetching and
scheduling would similarly im-
prove efficiency. She enumerated a
number of research questions,
such as where the best layer is to
implement a particular algorithm
(such as prefetching); how per-
formance is influenced by a com-
bination of decisions at different
layers; and how quality of service
is influenced by the hierarchy of
layers.

Transaction Support in the Windows
NTFS File System

Surendra Verma, Microsoft

Windows Vista’s NTFS file system
implementation is expected to
include ACID semantics for trans-
actions consisting of arbitrary file-
system operations. Surendra
Verma gave a product demo of
TxF, the code name for the trans-
actional support in Vista, showing
how file-system manipulations
wrapped in transactions being per-
formed in two different command
prompt windows were not visible
to each other. For instance, if a
directory is deleted in one window
but the transaction has not yet
been committed, then the direc-
tory is still visible from the other
window. Conflicts between con-
current transactions result in
errors and aborted transactions
to preserve the semantics.

O N TH E M E D I A

No summaries available

On Multidimensional Data and
Modern Disks

Steven W. Schlosser, Intel Research
Pittsburgh; Jiri Schindler, EMC Corpo-
ration; Stratos Papadomanolakis, Min-
glong Shao, Anastassia Ailamaki,
Christos Faloutsos, and Gregory R.
Ganger, Carnegie Mellon University

Awarded Best Paper!

Database-Aware Semantically-Smart
Storage

Muthian Sivathanu, Google Inc.; Lak-
shmi N. Bairavasundaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau, University of Wisconsin,
Madison

Managing Prefetch Memory for
Data-Intensive Online Servers

Chuanpeng Li and Kai Shen, University
of Rochester

O N TH E W I R E

Summarized by Kristal Pollack

A Scalable and High Performance
Software iSCSI Implementation

Abhijeet Joglekar, Michael E. Kounavis,
and Frank L. Berry, Intel Research and
Development

This work focused on iSCSI soft-
ware solutions rather than com-
mon hardware implementations
that use TCP/IP offload engines or
iSCSI host bus adapters. An iSCSI
software implementation offers the
advantage that it can scale with
CPU clock speed and the number
of processors. Furthermore, it was
shown in earlier work that hard-
ware offload engines can become a
bottleneck for small block sizes.

For the majority of their work, the
authors used a user-level sandbox
implementation of the iSCSI pro-
tocol, coupled with an optimized
TCP/IP implementation. They dis-
covered that the two main bottle-
necks in iSCSI processing are CRC
generation and data copies.They
therefore set out to make these
two operations more efficient.

They were able to improve CRC
generation performance by a factor
of 3 by replacing the standard CRC
algorithm, developed over a dec-
ade ago by Sarwate, with a new
algorithm, Slicing-by-8 (SB8),
which takes advantage of more
modern computer architectures.
SB8 requires fewer operations per
byte on the input stream and takes
advantage of the size of the proces-
sor cache by using appropriately
sized lookup tables. Data copy per-
formance was improved by inter-
leaving the CRC generation with
the data-copy operations.

iSCSI processing performance in
the authors’ sandbox environment
showed a factor-of-two improve-
ment by changing the CRC algo-
rithm to SB8. They gained an
additional 32% performance im-
provement when the interleaving
data copy with CRC generation
was added. With both optimiza-
tions they improved throughput
from 175MB/sec to 445MB/sec.
SB8 was then implemented in
UNHs iSCSI implementation and
improved the overall throughput
by 15%. The authors attribute this
lower gain to the significant over-
heads in the Linux 2.4 implemen-
tation of SCSI and TCP/IP.

In the Q&A session someone
asked why they chose 8 for their
algorithm. It was from empirical
results and may be processor-
dependent. Another questioner
asked how close they were to run-
ning at maximum memory—very
close to maximum, almost mem-
ory limited, was the answer.

TAPER: Tiered Approach for
Eliminating Redundancy in Replica
Synchronization

Navendu Jain and Mike Dahlin, Uni-
versity of Texas, Austin; Renu Tewari,
IBM Almaden Research Center

TAPER is a solution for synchro-
nizing data across distributed
replicas. The authors’ solution
aims to minimize the bandwidth
required for this task by using
multiple phases of redundancy

elimination. The authors intro-
duced a method for quick elimina-
tion of identical files by using con-
tent-based hierarchical hash trees.
They also developed a method for
similarity detection using bloom
filters.

These new methods were com-
bined with existing techniques to
form their overall protocol. In
phase 1 they eliminate all identical
files using their content-based
hierarchical hash tree technique.
In phase 2 they eliminate all iden-
tical data chunks in the remaining
files by using content-defined
chunks similar to LBFS. In phase 3
they use their bloom filter tech-
nique to find a similar file at the
target for each file that has not
been completely matched at the
source. The unmatched pieces of
the files at the source are broken
into fixed-sized blocks, and their
signatures are sent to the target. At
the target these signatures are used
in a sliding-block technique over
the chosen similar file to find iden-
tical blocks. Finally, in phase 4
they use their bloom filter tech-
nique again for similarity detec-
tion between the remaining un-
matched chunks and the already
matched data at the source. The
unmatched chunks are delta-
encoded against the matched data,
and the delta encodings are sent to
the target to complete the synchro-
nization.

TAPER was compared with rsync
for several software sources, object
binaries, and Web data sets. Gzip
compression was used before
sending data over the wire. In
terms of bandwidth reduction,
TAPER saved 18–25% for software
sources, 32–39% for object bina-
ries, and 12–57% for Web data
when compared with rsync.

In the Q&A session someone
asked if TAPER was compared
with any other products, such as
Tivoli. The answer was that rsync
was the most relevant comparison.
Another questioner asked if most

of the savings came from phase 2.
The answer was that 60% of the
total savings came from the first
two phases.

VXA: A Virtual Architecture for
Durable Compressed Archives

Bryan Ford, MIT CSAIL

Both general-purpose compression
and multimedia encoding schemes
have evolved rapidly over the past
few decades. This presents a chal-
lenge for digital preservation of
compressed data as encodings and
the software to read them become
obsolete. The author observes that
instruction encodings are far more
durable than data encodings. He
points out that the x86 architec-
ture has experienced few major
changes over time, and has made
efforts to be backwards-compati-
ble. The author takes advantage of
this observation by implementing
Virtual eXecutable Archives
(VXA), which save executable x86
decoders along with compressed
data.

The VXA architecture uses a spe-
cialized virtual machine to run the
decoders in. Decoders have access
to computational primitives, but
can only read from a given stream
and write the decoding back. The
decoders are extremely isolated
and cannot use any of the operat-
ing system services. An implemen-
tation of this architecture was built
using the zip/unzip tools. When
compressed files are input into the
system they are attached with
decoders to the encoding they are
already in. If the file can be com-
pressed further, a lossless com-
pression technique is used that
best matches the file type, and the
file is tagged with the appropriate
decoder. When files are read, the
appropriate decoder is loaded into
the virtual machine, then executed
on the stream of encoded data to
produce the decoded data. The
decoders are stored in a com-
pressed format using a standard
compression algorithm to reduce
their overhead as well.

The performance for the VXA
implementation was tested using
six common decoders. The storage
overhead for these ranged from
26KB to 130KB. The performance
overhead on an x86-32 execution
was 0–11%, while the performance
overhead for the x86-64 execution
was 8–31%. This can be attributed
to the fact that the VXA decoders
are 32-bit.

In the Q&A session someone
asked if the system assumptions
were violated by gzipping the gzip
compiler. The answer was that
even though he demonstrated
VXA with open source decoders,
the goal was really to use this sys-
tem for proprietary encodings that
are more likely to disappear. If one
was worried that gzip might go
away, the gzip compiler could be
left unencoded. The next ques-
tioner was concerned that this is
only for the x86 instruction set
and wondered why it and not a
universal one, such as Raymond
Lorie’s, was chosen. The answer
was that we won’t forget x86; it’s
ubiquitous. Someone asked if
extracting semantic content was
addressed, and the answer was no.
The last question was, how do you
ensure that decoder code is trusted
and how do you verify that the
sandbox environment is safe? The
answer was that you have to trust
the library for the emulator.

TO O LS

Summarized by Abhishek Gupta

I/O System Performance Debugging
Using Model-Driven Anomaly Char-
acterization

Kai Shen, Ming Zhong, and Chuanpeng
Li, University of Rochester

Performance problems in complex
systems are hard to identify and
debug, due to the presence of
manifold system features and con-
figuration settings coupled with
dynamic workload behaviors and
special cases. In a nutshell, the
approach presented by Kai Shen is

114 ; L O G I N : V O L . 3 1 , N O . 2

to construct simple and compre-
hensive models of system compo-
nents using their corresponding
high-level design algorithms.
Later, discrepancies between
model prediction and actual sys-
tem performance are used to dis-
cover performance anomalies. In
order to quantify these, Kai intro-
duced the notion of a parameter
space, a multi-dimensional space
in which each workload condition
and system configuration param-
eter is represented by a single
dimension. The occurrence of a
performance anomaly under one
setting is identified as a single
point in this space. It was observed
that if samples were chosen ran-
domly and independently, the
chances of missing a bug decrease
exponentially with the increase in
the number of samples. Since,
anomalous settings could be due
to multiple bugs, a hyper-rectan-
gular clustering algorithm was
invented to offset the shortcom-
ings of classical algorithms such
as k-means.

For evaluation purposes these
models were applied to data-inten-
sive online servers hosted on
Linux 2.6.10. These servers access
large disk-resident data sets while
serving multiple clients simultane-
ously. Using this scheme, four per-
formance bugs in Linux were suc-
cessfully discovered.

Accurate and Efficient Replaying of
File System Traces

Nikolai Joukov, Timothy Wong, and
Erez Zadok, Stony Brook University

Nikolai Joukov presented
Replayfs, an accurate and efficient
method to replay file system
traces. Replayfs can replay traces
faster than any known user-level
system, and can even handle
replaying of traces with spikes of
I/O activity or high rates of events.
In fact, with their optimizations in
place, Replayfs can replay traces
captured on the same hardware
faster than the original program
that produced the trace.

Nikolai opined that in developing
a file system trace replayer it is
often difficult to identify its suit-
able position within the operating
system stack. To this extent, user-
level replayers are easier to imple-
ment and thoroughly exercise the
file system, but they do not sup-
port memory-mapped operations
and have high memory/CPU over-
heads. Network-level replaying
avoids the high memory/CPU
costs, but it often misses out on
client-side cached or aggregated
events that do not translate into
protocol messages. Replayfs over-
comes all of these shortcomings by
installing itself, as a kernel mod-
ule, just beneath the VFS level and
above classical file systems. In
doing so it enjoys direct access to
the buffer cache, exercises control
over process scheduling, and ben-
efits from reduced context switch-
ing, though at the cost of reduced
portability.

During Q&A, Ralph Becker from
IBM Almaden Research asked how
Replayfs could handle traces from
large-scale clusters. Nikolai replied
that in such a case they would
have to run Replayfs on multiple
clients and be more intelligent
while capturing traces. Daniel
Ellard from Sun Microsystems
wanted to know if the zero-copy
optimization could be turned off.
Nikolai replied, yes, it is config-
urable.

TBBT: Scalable and Accurate Trace
Replay for File Server Evaluation

Ningning Zhu, Jiawu Chen, and Tzi-
Cker Chiueh, Stony Brook University

In this talk, Ningning Zhu pre-
sented the design, implementa-
tion, and evaluation of TBBT, a
comprehensive NFS trace replay
tool. The author described TBBT
as a turn-key solution that can
automatically detect and repair
missing operations in a trace,
derive a file-system image required
to successfully replay the trace,
initialize and age the file-system
image appropriately, and eventu-

ally drive the file server according
to a user-configurable trace work-
load.

The author began her talk by
highlighting the shortcomings of
synthetic benchmarks, which are
currently the most common work-
loads for file-system evaluations.
Time-varying and site-specific
parameters make it harder for syn-
thetic benchmarks to mimic real-
world workloads. Also, the time
taken to develop a high-quality
benchmark is often outpaced by
the time taken for changes to
trickle in to the workloads of spe-
cific target environments. TBBT is
proposed as a complementary
approach to synthetic benchmarks
and is aimed at evaluating the per-
formance of a file system/server on
a site by capitalizing on the file
access traces collected from that
site.

During Q&A, someone from Sea-
gate wanted to know how good
this approach is in replaying the
traces on a server that has capaci-
ties different from those of the one
from which the traces were col-
lected. The author replied that in
order to evaluate this they would
first have to classify traces accord-
ing to localities within them.

; LO G I N : A P R I L 2 0 0 6 CO N F E R E N C E S U M M A R I E S 115

HotDep ’06 will be held immediately following the
7th Symposium on Operating Systems Design and
Implementation (OSDI ’06), November 6–8, 2006.

Important Dates
Paper submissions due: July 15, 2006 (firm deadline,

no extensions)
Notification of acceptance: August 31, 2006
Final papers due: September 18, 2006

Workshop Organizers
Program Co-Chairs
George Candea, EPFL and Aster Data Systems
Ken Birman, Cornell University

Program Committee
Lorenzo Alvisi, University of Texas at Austin
David Andersen, Carnegie Mellon University
Andrea Arpaci-Dusseau, University of Wisconsin,

Madison
Mary Baker, Hewlett-Packard Labs
David Bakken, Washington State University
Christof Fetzer, Technical University of Dresden
Roy Friedman, Technion—Israel Institute of Technology
Indranil Gupta, University of Illinois at Urbana-

Champaign
Farnam Jahanian, University of Michigan and Arbor

Networks
Petros Maniatis, Intel Research Berkeley
Andrew Myers, Cornell University
David Oppenheimer, University of California,

San Diego
Geoff Voelker, University of California, San Diego
John Wilkes, Hewlett-Packard Labs

Overview
Authors are invited to submit position papers to the
Second Workshop on Hot Topics in System Depend-
ability (HotDep ’06). The workshop will be co-located
with the 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), November 6–8, 2006.
The HotDep ’05 program is available at http://hotdep
.org/2005.

The goal of HotDep ’06 is to bring forth cutting-edge
research ideas spanning the domains of fault
tolerance/reliability and systems. HotDep will center on
critical components of the infrastructures touching our
everyday lives: operating systems, networking, security,
wide-area and enterprise-scale distributed systems,
mobile computing, compilers, and language design. We
seek participation and contributions from both academic
researchers and industry practitioners to achieve a mix
of long-range research vision and technology ideas
anchored in immediate reality.

Position papers of a maximum length of 5 pages
should preferably fall into one of the following cate-
gories:

uu describing new techniques for building dependable
systems that represent advances over prior options
or might open new directions meriting further study

uu revisiting old open problems in the domain using
novel approaches that yield demonstrable benefits

uu debunking an old, entrenched perspective on
dependability

uu articulating a brand-new perspective on existing
problems in dependability

uu describing an emerging problem (and, possibly, a
solution) that must be addressed by the dependable-
systems research community

The program committee will favor papers that are
likely to generate healthy debate at the workshop, and
work that is supported by implementations and experi-
ments or that includes other forms of validation. We

November 8, 2006 Seattle, WA, USA

Announcement and Call for Papers

Second Workshop on Hot Topics in System
Dependability (HotDep ’06)
Sponsored by USENIX, The Advanced Computing Systems Association

http://www.usenix.org/hotdep06

recognize that many ideas won’t be 100% fleshed out
and/or entirely backed up by quantitative measure-
ments, but papers that lack credible motivation and at
least some hard evidence of feasibility will be rejected.

Topics
Possible topics include but are not limited to:

uu automated failure management, which enables sys-
tems to adapt on the fly to normal load changes or
exceptional conditions

uu techniques for better detection, diagnosis, or
recovery from failures

uu forensic tools for use by administrators and pro-
grammers after a failure or attack

uu techniques and metrics for quantifying aspects of
dependability in specific domains (e.g., measuring
the security, scalability, responsiveness, or other
properties of a Web service)

uu tools/concepts/techniques for optimizing tradeoffs
among availability, performance, correctness, and
security

uu novel uses of technologies not originally intended
for dependability (e.g., using virtual machines to
enhance dependability)

uu advances in the automation of management tech-
nologies, such as better ways to specify manage-
ment policy, advances on mechanisms for carrying
out policies, or insights into how policies can be
combined or validated

Deadline and Submission Instructions
Authors are invited to submit position papers by 11:59
p.m. PDT on July 15, 2006. This is a hard deadline—
no extensions will be given.

Submitted position papers must be no longer than 5
single-spaced 8.5" x 11" pages, including figures,
tables, and references; two-column format, using 10-
point type on 12-point (single-spaced) leading; and a
text block 6.5" wide x 9" deep. Author names and affil-
iations should appear on the title page.

Papers must be in PDF format and must be sub-
mitted via the Web submission form, which will be
available on the Call for Papers Web site, http://www.
usenix.org/hotdep06/cfp.

Authors will be notified of acceptance by August 31,
2006. Authors of accepted papers will produce a final
PDF and the equivalent HTML by September 18, 2006.
All papers will be available online prior to the work-
shop and will be published in the Proceedings of
HotDep ’06.

Simultaneous submission of the same work to mul-
tiple venues, submission of previously published work,
and plagiarism constitute dishonesty or fraud. USENIX,
like other scientific and technical conferences and jour-
nals, prohibits these practices and may, on the recom-
mendation of a program chair, take action against
authors who have committed them. In some cases, pro-
gram committees may share information about sub-
mitted papers with other conference chairs and journal
editors to ensure the integrity of papers under consider-
ation. If a violation of these principles is found, sanc-
tions may include, but are not limited to, barring the
authors from submitting to or participating in USENIX
conferences for a set period, contacting the authors’
institutions, and publicizing the details of the case.

Authors uncertain whether their submission meets
USENIX’s guidelines should contact the program co-
chairs, hotdep06chairs@usenix.org, or the USENIX
office, submissionspolicy@usenix.org.

Registration Materials
Complete program and registration information will be
available in September 2006 on the conference Web
site. The information will be in both HTML and a
printable PDF file. If you would like to receive the
latest USENIX conference information, please join our
mailing list: http://www.usenix.org/about/mailing.html.

Rev. 1/20/06

Important Dates
Extended abstract and paper submissions due: May 23, 2006
Invited talk proposals due: June 1, 2006
Notification to authors: July 12, 2006
Final papers due: September 12, 2006

Conference Organizers
Program Chair
William LeFebvre, Independent Consultant

Program Committee
Narayan Desai, Argonne National Laboratory
Peter Galvin, Corporate Technologies, Inc.
Trey Harris, Amazon.com
John “Rowan” Littell, Earlham College
Adam Moskowitz, Menlo Computing
Mario Obejas, Raytheon
Tom Perrine, Sony Computer Entertainment America
W. Curtis Preston, GlassHouse Technologies
Amy Rich, Tufts University
Marc Staveley, SOMA Networks, Inc.
Rudi Van Drunen, Leiden Cytology and Pathology Labs
Alexios Zavras, IT Consultant

Invited Talk Coordinators
David N. Blank-Edelman, Northeastern University CCIS
Doug Hughes, Global Crossing

Guru Is In Coordinator
Philip Kizer, Estacado Systems

Workshops Coordinator
Luke Kanies, Reductive Labs

Overview
The annual LISA conference is the meeting place of choice for
system, network, database, storage, security, and all other computer-
related administrators. Administrators of all specialties and levels of
expertise meet at LISA to exchange ideas, sharpen old skills, learn
new techniques, debate current issues, and meet colleagues and
friends.

People come from over 30 different countries to attend LISA.
They include a wide range of administration specialties. They hail
from environments of all sorts, including large corporations, small
businesses, academic institutions, and government agencies. Atten-
dees are full-time, part-time, student, and volunteer admins, as well
as those who find themselves performing “admin duties” in addition
to their day jobs. They support combinations of operating systems
ranging from open source, such as Linux and the BSD releases, to
vendor-specific, including Solaris, Windows, Mac OS, HP-UX, and
AIX.

Refereed Papers
Refereed papers explore techniques, tools, theory, and case histories
that extend our understanding of system and network administra-
tion. They present results in the context of previous related work.
The crucial component is that your paper present something new or
timely; for instance, something that was not previously available, or
something that had not previously been discussed in a paper. If you
are looking for ideas for topics that fit this description, the Program
Committee has compiled a list of some good open questions and
research areas, which appear in a separate section below. This list is
not meant to be exhaustive; we welcome proposals about all new
and interesting work.

It is important to fit your work into the context of past work and
practice. LISA papers must provide references to prior relevant
work and describe the differences between that work and their own.
The online Call for Papers, http://www.usenix.org/lisa06/cfp, has
references to several resources and collections of past papers.

Proposal and Submission Details
Anyone who wants help writing a proposal should contact the Pro-
gram Chair at lisa06chair@usenix.org. The conference organizers
want to make sure good work gets published, so we are happy to
help you at any stage in the process.

Proposals can be submitted as draft papers or extended abstracts.
Draft papers are preferred. Like most conferences and journals,
LISA requires that papers not be submitted simultaneously to more
than one conference or publication and that submitted papers not be
previously or subsequently published elsewhere for a certain period
of time.

December 3–8, 2006 Washington, D.C., USA

Announcement and Call for Participation

20th Large Installation System Administration
Conference (LISA ’06)
Sponsored by USENIX and SAGE
http://www.usenix.org/lisa06

Get Involved!
Experts and old-timers don’t have all the good ideas. This is your
conference, and you can participate in many ways:

• Submit a draft paper or extended abstract for a refereed
paper.

• Propose a tutorial topic.
• Suggest an invited talk speaker or topic.
• Share your experience by leading a Guru Is In session.
• Submit a proposal for a workshop.
• Present a Work-in-Progress Report (WiP).
• Organize or suggest a Birds-of-a-Feather (BoF) session.
• Email an idea to the Program Chair: lisa06ideas@usenix.org.

Draft papers: A draft paper proposal is limited to 16 pages,
including diagrams, figures, references, and appendices. It should
be a complete or near-complete paper, so that the Program Com-
mittee has the best possible understanding of your ideas and presen-
tation.

Extended abstracts: An extended abstract proposal should be
about 5 pages long (at least 500 words, not counting figures and
references) and should include a brief outline of the final paper. The
form of the full paper must be clear from your abstract. The Pro-
gram Committee will be attempting to judge the quality of the final
paper from your abstract. This is harder to do with extended
abstracts than with the preferred form of draft papers, so your
abstract must be as helpful as possible in this process to be consid-
ered for acceptance.

General submission rules:
• All submissions must be electronic, in ASCII or PDF format

only. ASCII format is greatly preferred. Proposals must be sub-
mitted using a Web form located on the LISA ’06 Call for
Papers Web site, http://www.usenix.org/lisa06/cfp.

• Submissions containing trade secrets or accompanied by
nondisclosure agreement forms are not acceptable and will be
returned unread. As a matter of policy, all submissions are held
in the highest confidence prior to publication in the conference
proceedings. They will be read by Program Committee mem-
bers and a select set of designated outside reviewers.

• Submissions whose main purpose is to promote a commercial
product or service will not be accepted.

• Submissions can be submitted only by the author of the paper.
No third-party submissions will be accepted.

• All accepted papers must be presented at the LISA conference
by at least one author. One author per paper will receive a reg-
istration discount of $200. USENIX will offer a complimentary
registration for the technical program upon request.

• Authors of an accepted paper must provide a final paper for
publication in the conference proceedings. Final papers are
limited to 16 pages, including diagrams, figures, references,
and appendices. Complete instructions will be sent to the
authors of accepted papers. To aid authors in creating a paper
suitable for LISA’s audience, authors of accepted proposals
will be assigned one or more shepherds to help with the
process of completing the paper. The shepherds will read one
or more intermediate drafts and provide comments before the
authors complete the final draft.

• Simultaneous submission of the same work to multiple venues,
submission of previously published work, and plagiarism con-
stitute dishonesty or fraud. USENIX, like other scientific and
technical conferences and journals, prohibits these practices
and may, on the recommendation of a program chair, take
action against authors who have committed them. In some
cases, program committees may share information about sub-
mitted papers with other conference chairs and journal editors
to ensure the integrity of papers under consideration. If a viola-
tion of these principles is found, sanctions may include, but are
not limited to, barring the authors from submitting to or partici-
pating in USENIX conferences for a set period, contacting the
authors’ institutions, and publicizing the details of the case.
Authors uncertain whether their submission meets USENIX’s
guidelines should contact the program chair,
lisa06chair@usenix.org, or the USENIX office, submission-
spolicy@usenix.org.

For administrative reasons, every submission must list:

1. Paper title, and names, affiliations, and email addresses of all
authors. Indicate each author who is a full-time student.

2. The author who will be the contact for the Program Com-
mittee. Include his/her name, affiliation, paper mail address,
daytime and evening phone numbers, email address, and fax
number (as applicable).

For more information, please consult the detailed author guide-
lines at http://www.usenix.org/events/lisa06/cfp/guidelines.html.
Proposals are due May 23, 2006.

Training Program
LISA offers state-of-the-art tutorials from top experts in their fields.
Topics cover every level from introductory skills to highly
advanced. You can choose from over 50 full- and half-day tutorials
covering everything from performance tuning, through Linux,
Solaris, Windows, Perl, Samba, TCP/IP troubleshooting, security,
networking, network services, backups, Sendmail, spam, and legal
issues, to professional development.

To provide the best possible tutorial offerings, USENIX continu-
ally solicits proposals and ideas for new tutorials. If you are inter-
ested in presenting a tutorial or have an idea for a tutorial you
would like to see offered, please contact the Training Program
Coordinator, Daniel V. Klein, at tutorials@usenix.org.

Invited Talks
An invited talk discusses a topic of general interest to attendees.
Unlike a refereed paper, this topic need not be new or unique but
should be timely and relevant or perhaps entertaining. An ideal
invited talk is approachable and possibly controversial. The material
should be understandable by beginners, but the conclusions may be
disagreed with by experts. Invited talks should be 60–70 minutes
long, and speakers should plan to take 20–30 minutes of questions
from the audience.

Invited talk proposals should be accompanied by an abstract
describing the content of the talk. You can also propose a panel dis-
cussion topic. It is most helpful to us if you suggest potential pan-
elists. Proposals of a business development or marketing nature are
not appropriate. Speakers must submit their own proposals; third-
party submissions, even if authorized, will be rejected.

Please email your proposal to lisa06it@usenix.org. Invited talk
proposals are due June 1, 2006.

The Guru Is In Sessions
Everyone is invited to bring perplexing technical questions to the
experts at LISA’s unique The Guru Is In sessions. These informal
gatherings are organized around a single technical area or topic.
Email suggestions for Guru Is In sessions or your offer to be a Guru
to lisa06guru@usenix.org.

Workshops
One-day workshops are hands-on, participatory, interactive sessions
where small groups of system administrators have discussions
ranging from highly detailed to high-level.

A workshop proposal should include the following information:
• Title
• Objective
• Organizer name(s) and contact information
• Potential attendee profile
• An outline of potential topics
Please email your proposal to lisa06workshops@usenix.org.

Work-in-Progress Reports (WiPs)
A Work-in-Progress Report (WiP) is a very short presentation about
work you are currently undertaking. It is a great way to poll the
LISA audience for feedback and interest. We are particularly inter-
ested in presentations of student work. To schedule your short
report, send email to lisa06wips@usenix.org or sign up on the first
day of the technical sessions.

Birds-of-a-Feather Sessions (BoFs)
Birds-of-a-Feather sessions (BoFs) are informal gatherings orga-
nized by attendees interested in a particular topic. BoFs will be held
in the evening. BoFs may be scheduled in advance by emailing
bofs@usenix.org. BoFs may also be scheduled at the conference.

Suggested Topics for Authors and Speakers
Challenges

• Architecture: Keeping an infrastructure up to date
• Autonomic computing: Self-repairing systems, zero administra-

tion systems, fail-safe design
• Configuration management
• Content and collaborative systems: Building them, managing

them, growing them
• Data center design: Modern methods, upgrading old centers
• Scaling: Dealing with a doubling in storage, backup, net-

working, address space, database, etc.
• Spam: Will we ever be able to control it?
• Virtualization: Benefit or bane?
• Viruses: Preparing for the onslaught of UNIX viruses

Profession
• Information flows: Creating, understanding, and applying them
• Management: Transitioning from technical to managerial,

“managing” your manager, measuring return on investment
• Metrics: Inventing and applying meaningful metrics
• Outsourcing/offshoring system administration: Is it possible?
• Proactive administration: Transitioning from a reactive culture
• Problem-solving: Training sysadmins to solve problems
• Quality: Control, measurement, and quality assurance
• Standardizing methodologies: IT Infrastructure Library (ITIL),

best practices, practical use, applicability

Technologies
• IPv6: Deployment, large-scale implementation
• Peer-to-peer networking
• Scripting languages
• VoIP
• XML: Usage for configuration management, other potential

applications

Tools
• Content and collaborative systems
• Diagnostics: Tools that explain what’s wrong
• Google tools: Making use of them in system administration
• Tools for system administration: Implementation, use, and

applicability

Case Studies
• Practical implementations and deployments of ideas or tools
• Scaling and expanding an infrastructure
• Theory meets practice

Contact the Chair
The Program Chair, William LeFebvre, is always open to new ideas
that might improve the conference. Please email any and all ideas to
lisa06ideas@usenix.org.

Final Program and Registration Information
Complete program and registration information will be available in
September 2006 at the conference Web site, http://www.usenix.org
/lisa06. If you would like to receive the latest USENIX conference
information, please join our mailing list at http://www.usenix.org
/about/mailing.html.

Sponsorship and Exhibit Opportunities
The oldest and largest conference exclusively for system adminis-
trators presents an unparalleled marketing and sales opportunity for
sponsoring and exhibiting organizations. Your company will gain
both mind share and market share as you present your products and
services to a prequalified audience that heavily influences the pur-
chasing decisions of your targeted prospects. For more details
please contact sponsorship@usenix.org.

Rev. 1/17/06

Save the Date!

3rd Symposium on Networked Systems Design & Implementation
May 8–10, 2006, San Jose, CA

http://www.usenix.org/events/nsdi06

The NSDI symposium focuses on the design principles of large-scale networks and distrib-
uted systems. Join researchers from across the networking and systems community—
including computer networking, distributed systems, and operating systems—in fostering
cross-disciplinary approaches and addressing shared research challenges.

Save the Date!
15th USENIX Security Symposium

July 31–August 4, 2006, Vancouver, B.C., Canada
http://www.usenix.org/events/sec06

Join us in Vancouver, B.C., Canada, July 31–August 4, 2006, for the 15th USENIX Security
Symposium. The USENIX Security Symposium brings together researchers, practitioners,
system administrators, system programmers, and others interested in the latest advances
in the security of computer systems and networks.

Join us in Boston for 5 days of groundbreaking
research and cutting-edge practices in a wide
variety of technologies and environments.
Don’t miss out on:
• Extensive Training Program featuring
 expert-led tutorials
• New! Systems Practice & Experience Track
 (formerly the General Session Refereed
 Papers Track)
• Invited Talks by industry leaders
• And more
Please note: USENIX ’06 runs Tuesday–Saturday.

Check out
the Web site

for more information!
www.usenix.org/usenix06

www.usenix.org/usenix06

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

