

2 ; L O G I N : V O L . 3 0 , N O . 2

R O B K O L S T A D MOTD

motd

L E V E R A G E : G E T T I N G R E S U LT S

Dr. Rob Kolstad has long served as editor of ;login:.
He is SAGE’s Executive Director, and also head coach
of the USENIX-sponsored USA Computing Olympiad.

kolstad@usenix.org

Given our finite working life, the concept of
leverage holds interest for those who wish
to accomplish more things, to “get more
done.” In our careers as computer profes-
sionals, we see leverage and its application
(or misapplication) continually.

The dictionary says that “leverage” is a synonym for
both “effectiveness” and “power,” and that feels about
right to me. The whole computer industry revolves
around paying a (presumably) low cost for an engine
or machine that will amplify effectiveness for a person
or group and supplementing the hardware with soft-
ware that customizes that machine for a particular
environment.

The airline reservations industry is a fabulous exam-
ple of this approach. Imagine 10,000 people shuffling
index cards that represent the availability of seats on
the myriad airplanes flying every day for, say, the next
year. That image is almost laughable. Nowadays, cus-
tomers choose seating preferences and request special
meals, in addition to seeing several dozen flight possi-
bilities for their journey, with a minimal number of
clicks. The power of databases coupled with the
Internet and home computing engines enables this
solution as the quickest, most accurate, and presum-
ably cheapest. This is a great example of leveraging a
computer and software to attack a problem.

Software is the medium by which computer leverage
is conveyed. Software’s creators intend to endow their
users with specific skills or power. Their software
tends to provide not only specific attacks (algo-
rithms) on problems but also paradigms that offer
useful approaches. The choice of a suitable comput-
ing environment can confer astounding leverage on
folks who otherwise could never dream of attempting
a complex solution.

Another kind of leverage is people leverage, com-
monly called management. Making the transition
from enjoying personal accomplishments to enjoying
the total set of accomplishments is a difficult one (or
at least it was for me). “You didn’t do anything but sit
in your office,” say the skeptics. Planning, encourage-
ment, hiring, provisioning, and all the other myriad
tasks are ignored by those who take them for granted.
Nevertheless, it’s easy to see that some people might
feel pride of accomplishment in projects they cham-
pion, manage, and somehow move to completion.
This is serious leverage.

Management leverage appears in a variety of situa-
tions and locales, ranging from large institutions like
General Motors or Harvard University to smaller
organizations like a church or a model railroading

club. Each of these milieus offers a different kind of
potential leverage and concomitant reward.

Another kind of leverage is seen more on the political
front and is potentially exemplified in one way by the
open source movement. In increasing order of degree
of leverage, the open source promoters provide:

n software
n communication
n documentation and training
n advocacy

Why is advocacy the highest-leverage activity?
Because it is the one that wins the hearts and minds of
those who only then will use the other three to attack
whatever problem is important to them.

This is not to say, of course, that advocacy for its own
sake has a lot of value. Open-mindedness often
trumps tunnel vision when trying to solve problems.

What difference does all this make? It makes a differ-
ence if your personal motivators include concepts
such as effectiveness, solution completion, and get-
ting things done.

Thinking in terms of leverage means asking questions
such as: “Is this a good way to spend my time?” “Will
this action be as effective as [some other action]?” “If
[Alice and Bob] do this, can I attack some issue or
problem that they are unable or unwilling to attack?”
Obviously, it also revolves around answering those
questions with some level of usefulness.

I believe those who enjoy accomplishment may also
enjoy leverage. It can lead to a tremendous amplifica-
tion of personal skills and, best of all, make the world
a better place. After all, that’s the goal, isn’t it?

; LO G I N : A P R I L 2 0 0 5 M OTD 3

USENIX Membership Update
Membership renewal information, notices, and receipts are now being sent to you electronically!

Remember to print your electronic receipt, if you need one, when you receive the confirmation email.

If you have not provided us with an email address, you are welcome to update your record online.

See http://www.usenix.org/membership.

You are welcome to print your membership card online as well. The online cards have a new design with

updated logos—all you have to do is print!

Please note that some annual membership dues increased as of February 1, 2005:

• Individual membership dues: $115.

• Educational membership dues: $250.

• Corporate membership dues: $460.

• Student and Supporting memberships remained at 2004 rates.

• SAGE membership dues remained the same at $40.

4 ; L O G I N : V O L . 3 0 , N O . 2

letter to
the editor

TO R I K FA R ROW:

Rik,

Very likely someone has already mentioned sfs—
http://www.fs.net/sfswww/sfsfaq.html—to you.
But just in case . . .

Cheers,

M A R K O
schutz_m@usp.ac.fj

R I K FA R ROW R E P L I E S :

I am aware of SFS, as Kevin Fu wrote an article about
it for the Security edition of ;login: (which I edited)
four or five years ago.

SFS does provide strong security over untrusted net-
works. It also works mainly for anonymous access, as
its strong point is self-certification of the server, not
of the user accessing the server. Users can authenti-
cate using sfsagent, then log out and back in again.

For most organizations that are using NFS, SFS would
work well enough, but the extra hoops needed for
user authentication (and if there are multiple SFS
servers, on each server) are an obstacle.

My column was about old, generally ignored failings
to authenticate users in NFS, which many people are
still using. It was the incident at SDSC that got me
interested in this again. I want people to examine
what they are currently using, rather than champi-
oning a new approach. There are quite a few people
working on improving NFS, whereas SFS is still con-
sidered alpha software, and the last update was April
23, 2003.

I hope we have succeeded in reminding people of the
existence of SFS, so they can make their own deci-
sion.

R I K F A R R O W
rik@spirit.com

6 ; L O G I N : V O L . 3 0 , N O . 2

S T E V E N A L E X A N D E R

finding malware
on compromised
Windows
machines
Steven is a programmer for Merced College. He
manages the college’s intrusion detection system.

alexander.steven@sbcglobal.net

This article discusses possible responses to
suspicious activity on Windows machines. It
surveys several free tools that are useful in
documenting the current state of a system
and in detecting and analyzing suspicious
processes or open network ports.

Sometimes it is obvious that a machine has been com-
promised (e.g., when a Web site is defaced). Other
times, suspicious behavior is detected that warrants
further investigation. This activity could be the result
of a break-in, a virus or worm, spyware, or something
more benign. If the suspicious behavior is the result of
a break-in, law enforcement may need to be contacted
(depending on your organization’s policy). For this
reason, it is important that volatile information be
saved and that every step you take is documented.
The tools discussed in this article can be used to doc-
ument the current state of a system that has been
compromised or to investigate a system that is behav-
ing suspiciously.

I was recently called upon to investigate two Win-
dows machines that had been exhibiting suspicious
behavior. The first thing I did was to create a CD with
several tools I thought would be useful in analyzing
the system and documenting the state of the system.
As it turns out, the machines in question had not been
compromised by a human intruder but by two differ-
ent worms; these two systems were not properly
patched.

Starting Out

The first thing I do when investigating any system
(Windows, UNIX, or otherwise) is glean lists of the
users who are logged on, running processes, and net-
work connections. System administrators should use
these tools on freshly installed systems and on pro-
duction systems to determine what a normal system
looks like. If you don’t know what should be on your
system, it is very difficult to figure out what shouldn’t
be on your system.

After gathering basic information, I check the Win-
dows registry and the Windows startup folders to see
what is starting up with the system. Sometimes it is
easy to determine what each of the programs that are
scheduled to start automatically actually is. Unfortu-
nately, a lot of legitimate software vendors like to do
asinine things such as stick an executable with a
weird name into C:\windows or C:\windows\sys-
tem32. This can make it difficult to determine
whether a program is legitimate. The best thing to do
is to Google for the filename and see what turns up.

The Reg tool, described below, can be used to dump the appropriate keys from
the registry. Any undesired entries can be removed using Regedit or, on Win-
dows XP, Msconfig. I strongly suggest using Msconfig on XP systems, since it
enables you to uncheck an entry but, if you wish, restore the entry later. If you
are using Regedit, back up the registry before deleting anything. Also, rather
than deleting any programs referenced by these entries, move and/or rename
them to avoid losing something you need. Administrators should try to become
familiar with the software that should be starting automatically on their servers
and workstations. Again, it’s hard to determine what is anomalous if you don’t
know what normal is.

My approach when investigating a system is to look for anything that does not
belong. This includes spyware, worms, back doors, etc. A centrally managed
antivirus program is a good way to detect a lot of malware as soon as it enters
the system, but it won’t detect everything. Netcat, for instance, is not malware
and won’t be detected by an antivirus program, but it can be used to bind
cmd.exe to a port for use as a back door.

This article is limited to discussing the tools and procedures that can help deter-
mine whether a system has been compromised. Responding to a compromise is
an even larger issue (one I hope to cover in another article). Still, a response pol-
icy—vetted by upper management—must be in place before an incident occurs.
Some important points that must be decided include who is responsible for the
technical response, how evidence will be handled, who decides whether to con-
tact law enforcement, and whether it matters if the intrusion occurred from
within or from outside your organization.

It is also helpful to find out from your local law enforcement agency what they
want you to do in the event of a break-in. At what point do they want to be con-
tacted? How should you proceed? How should you preserve possible evidence?
Whom, in law enforcement, should you contact? If you simply call your local
police department after a break-in, the response will probably be from a uni-
formed officer who has no training in these matters. Often, you will want to
contact the detective or group that handles computer evidence or computer
crimes.

See references [1–4] for useful reading on incident response and forensics.

In the following sections, I give brief descriptions of several tools, all freely
available, that I’ve found useful. With the exception of Microsoft’s Reg tool, they
are available from SysInternals [5].

The Tools

W I N D OWS : R E G

Reg is a Windows utility that can be used to extract data from the Windows reg-
istry. A large number of malware programs add an entry in the registry so that
they will be started automatically if the computer reboots. Under most circum-
stances (if you’re not currently installing something), the RunOnce and RunOn-
ceEx keys should be empty. Track down any programs listed under the Run keys
and make sure they represent legitimate software.

; LO G I N : A P R I L 2 0 0 5 F I N D I N G M A LWA R E O N W I N D OWS 7

reg query "HKEY_CURRENT_USER\Software\Microsoft\Windows\Currentversion\Run" /s
reg query "HK_LOCAL_MACHINE\Software\Microsoft\Windows\Currentversion\RunOnceEx" /s
reg query "HK_LOCAL_MACHINE\Software\Microsoft\Windows\Currentversion\RunOnce" /s
reg query "HK_LOCAL_MACHINE\Software\Microsoft\Windows\Currentversion\Run" /s

8 ; L O G I N : V O L . 3 0 , N O . 2

SYS I NTE R N A LS : P S L I ST

PsList is similar in function to the UNIX ps command. It displays a list of
the running processes on the system, including the process ID, priority,
and number of threads. With the -m option, PsList also displays mem-
ory-usage information, including the working set size. With the -t option,
the running processes are displayed in a process tree instead of a flat
list.
PsList 1.26 - Process Information Lister
Copyright (C) 1999-2004 Mark Russinovich
Sysinternals - www.sysinternals.com

Process information for C37163ALEXANDER:

Name Pid Pri Thc Hnd Priv CPU Time Elapsed Time
Idle 0 0 1 0 0 85:28:28.343 0:00:00.000
System 4 8 80 292 0 0:04:00.593 0:00:00.000
smss 452 11 3 19 164 0:00:00.046 143:29:16.906
csrss 524 13 11 407 1648 0:02:12.312 143:29:12.890
winlogon 548 13 19 581 7728 0:00:09.875 143:29:11.250
services 592 9 16 286 4244 0:00:15.750 143:29:09.187
lsass 604 9 17 377 2468 0:00:06.515 143:29:09.046
svchost 796 8 5 133 1360 0:00:00.109 143:29:06.093

SYS I NTE R N A LS : H A N D L E

Handle is a command-line utility that shows the handles open by every process
on the system. When used without options, Handle only displays open file han-
dles. When used with the -a option, Handle displays open handles to all objects,
including files, registry keys, processes, ports, and semaphores. I suggest dump-
ing all open handles to one file and dumping just open file handles to a second
file for convenience. Handle is very useful for figuring out what a program is
actually doing.

Handle v2.2
Copyright (C) 1997-2004 Mark Russinovich
Sysinternals - www.sysinternals.com
———————————————————————————-
smss.exe pid: 452 NT AUTHORITY\SYSTEM

8: File C:\WINDOWS
1c: File c:\WINDOWS\system32

———————————————————————————-
csrss.exe pid 524 NT AUTHORITY\SYSTEM

c: File C:\WINDOWS\system32
38: section \NLS\NlsSectionUnicode
40: Section \NLS\NlsSectionLocale
44: Section \NLS\NlsSectionCType
48: Section \NLS\NlsSectionSortkey
4c: Section \NLS\NlsSectionSortTbls

2e0: Section \BaseNameObjects\ShimSharedMemory
564: File c:\WINDOWS\system32\ega.cpi

SYS I NTE R N A LS : SYS L I STD L LS

ListDLLs is a command-line utility that displays the DLL files loaded by each
process running on the system. The utility shows the full path of each DLL. I
find that the path information is particularly helpful because it helps me to iden-
tify what application or service a process is associated with.

ListDLLs v2.25 - DLL lister for Win9x/NT
Copyright (c) 1997-2004 Mark Russinovich
Sysinternals - www.sysinternals.com
———————————————————————————————

SYS I NTE R N A LS : TC P VCO N

Tcpvcon displays a list of all established TCP connections along with their
owning process. When used with the -a option, it will display all connection
endpoints (TCP and UDP), established or not.

[TCP] C:\Program Files\Netscape\Netscape\Netscp.exe
PID 2676
State: ESTABLISHED
Local: c37163alexanders:3283
Remote: c37163alexanders:3284

[TCP] C:\Program Files\Netscape\Netscape\Netscp.exe
PID: 2676
State: ESTABLISHED
Local: c37163alexanders:3284
Remote: c37163alexanders:3283

P S LO G L I ST

Psloglist displays the contents of the event logs. By default, Psloglist dumps the
system log, but it can be used to dump the other logs by running psloglist log-
name. If used to dump the Directory Service or File Replication Service logs,
quote the name on the command line. The program is also capable of dumping
records from after a specified date by running it with the -a option, e.g., psloglist
security -a 01/01/05.

It is essential to remember that your system needs to be configured to log impor-
tant events in the first place. The standard events that are logged by Windows
simply do not provide you with enough detail about a break-in.

At a minimum, enable auditing for policy change, privilege use, and logon
events in the Local Security Policy under Administrative Tools in the Control
Panel (this can also be accessed using mmc). You may also wish to audit access
to important or confidential data (this can be configured by right-clicking
on any file or folder, choosing Properties, and clicking Advanced under the
Security tab).

[005] Security
Type: AUDIT SUCCESS
Computer: SEGFAULT
Time: 12/30/2003 3:34:52 PM ID: 643
User: MCCEDU\alexander.s

; LO G I N : A P R I L 2 0 0 5 F I N D I N G M A LWA R E O N W I N D OWS 9

System pic: 4
Command line: <no command line>
————————————————————————————————————
smss.exe pid: 452
Command line: \SystemRoot\System32\smss.exe

Base Size Version Path
0x48580000 0xf000 \SystemRoot\System32\smss.exe
0x7c900000 0xb0000 5.01.2600.2180 C:\WINDOWS\system32\ntdll.dll

————————————————————————————————————
winlogon.exe pid: A548
Command line: winlogon.exe

Base Size Version Path
0x01000000 0x80000 \??\C:\WINDOWS\system32\winlogon.exe
0x7c900000 0xb0000 5.01.2600.2180 c:\WINDOWS\system32\ntdll.dll
0x7c800000 0xf4000 5.01.2600.2180 c:\WINDOWS\system32\kernel32.dll
0x77dd0000 0x9b000 5.01.2600.2180 c:\WINDOWS\system32\ADVAPI32.dll
0x77e70000 0x91000 5.01.2600.2180 c:\WINDOWS\system32\RPCRT4.dll
0x776c0000 0x11000 5.01.2600.2180 c:\WINDOWS\system32\AUTHZ.dll
0x77c10000 0x58000 7.00.2600.2180 c:\WINDOWS\system32\msvcrt.dll

10 ; L O G I N : V O L . 3 0 , N O . 2

Domain Policy Changed: Password Policy modified
Domain Name: SEGFAULT
Domain ID: %{S-1-5-21-123456789-123456789-123456789}
Caller User Name: alexander.s
Caller Domain: MCCEDU
Caller Logon ID: (0x0,0xC6EF)
Privileges: -

Conclusion

Your best tool is wetware. The more familiar you are with the normal processes
and services running on your systems, the easier it will be to detect anything out
of place. Also, the Event Logs are of little use unless you enable additional
auditing.

Some intrusions are hard to detect. If your firewall logs or IDS indicates that
there may be a problem with a machine and your initial investigation turns up
nothing, you may wish to crank up the logging for a spell and see what turns up.

I do not recommend blindly searching the file system unless you are willing to
image the drives on the system (or, less preferably, make a tape backup) before
searching, since you might inadvertently modify the file access times. I know of
one utility that is supposed to be able to search for files accessed within a given
time range without updating the attributes, but that utility fails to find many
files.

Not searching the file system has the drawback that you may miss the signs of a
break-in. Nevertheless, I would rather increase logging and wait things out. If
the attacker is discreet, you may miss whatever he has left behind anyway.

Sometimes it is known that a system has been compromised, but it is not known
whether the attack is the work of self-propagating malware or a human intruder.
If you don’t find any evidence of a virus or worm that accounts for previously
observed events, it may be appropriate to treat it as a human attack until proven
otherwise. At this point, you should take the affected system offline and image
the drives. If you do find malware on the system, make sure that particular mal-
ware accounts for any observed events and is not independent of or a cover for a
human attack.

P O STS C R I PT

Since this article was written, SysInternals has released a new tool, Rootkit
Revealer. It looks promising: check it out.

R E F E R E N C E S

[1] Jamie Morris, “Forensics on the Windows Platform, Part One,” http://www.security
focus.com/infocus/1661.

[2] Jamie Morris, “Forensics on the Windows Platform, Part Two,” http://www.security
focus.com/infocus/1665.

[3] H. Carvey, “Win2K First Responder’s Guide,” http://www.securityfocus.com/
infocus/1624.

[4] Chris Prosise, Kevin Mandia, and Matt Pepe, “Incident Response and Computer
Forensics,” McGraw-Hill Osborne Media, 2003.

[5] Mark Russinovich and Bryce Cogswell, SysInternals, http://www.sysinternals.com.

musings
R I K F A R R O W

musings
Rik Farrow provides UNIX and Internet security con-
sulting and training. He is the author of UNIX System
Security and System Administrator’s Guide to System V,
and editor of the SAGE Short Topics in System
Administration series.

rik@spirit.com

Corruption. The very thought sends shivers
up and down my spine. And that is the goal
of those who would break into your systems,
so they can “own” them. They want to take
control of your systems, preferably in a
manner that is difficult to detect. Out of
this desire came rootkits: corruption made
simple.

I got my first rootkit from a friend at a university, my
source for lots of examples of stuff left behind on com-
promised systems (nice, delicate term for being
hacked). That rootkit was one of the first written, and
contained trojans for SunOS 4. In the README file,
the author of the rootkit had written (approximately),
“I got tired of doing the same things over and over
again, so I packaged them up.” The rootkit contained
trojans designed to hide the presence of certain files,
processes, network connections, and a network sniffer.
If you remember what networks and network proto-
cols were like in 1993, you’ll understand why this snif-
fer worked very well at collecting usernames and pass-
words.

Over the years, people added features to rootkits, such
as the ability to edit logfiles or, better yet, prevent cer-
tain log entries from being appended to logfiles by tro-
janing the syslog daemon. New commands were added
to the list of trojans. But the worst was yet to come.

The problem with command-level trojans is that it is
relatively easy to detect them. Tools like Tripwire were
written specifically with this in mind, as installation of
trojans and other malware became commonplace.
Most trojans rely on access to source code, and that
leads to trojans for closed source systems being based
upon open source software. If someone used the BSD
source to ls, for example, the flags and behavior would
not be the same as they would be for AIX or HP/UX.
Close, but not exact. And systems like Solaris don’t
have just one version of ls, but several.

Going Deep

The solution, from the perspective of an attacker, was
to move the rootkit deeper. If the rootkit runs at the
kernel level, then nothing can be trusted. All software,
whether on UNIX, Windows, Linux, or *BSD, relies on
the kernel for all access to resources such as files, sock-
ets, memory, and new processes. The system call inter-
face provides this access. In UNIX-like systems, the
system call interface provides a couple of hundred
entry points for doing things like listing directories,
files, programs, sockets, and active processes (189 in

; LO G I N : A P R I L 2 0 0 5 M U S I N G S 11

12 ; L O G I N : V O L . 3 0 , N O . 2

OpenBSD 3.4, 315 in Linux 2.6). In Windows NT and its descendants, the num-
ber of entry points is more than 2000, but the concept is the same. In either
case, if the attacker can insert code into the kernel, that attacker has the deepest
level of control over a system.

The obvious way to insert code is to modify the kernel source directly. But there
is a problem with that approach, in that a system must be rebooted before the
changes take effect, and rebooting a UNIX-like system is rare enough that it
would be noticed (in most cases). But there is also an obvious solution—use a
method that permits patching the operating system without rebooting.

You have certainly heard of loadable kernel module (LKM) rootkits. LKMs per-
mit sysadmins to install software in an operating system without rebooting it, or
to configure a kernel at boot time without having all possible devices already
linked into the kernel. While LKMs are convenient for sysadmins, they are just
as convenient for any attacker who has acquired root access and wants to install
the best in rootkit technology.

And Deeper

Over time, even LKM rootkit technology has improved. Early versions worked
by replacing function addresses in the system call table with their own entry
points. The original system call function still gets called, but the results of the
system call get filtered to hide whatever the rootkit designer wants to hide. Ini-
tially, this was pretty much the same stuff that was done in the original, SunOS,
command-level rootkit. But then it started to change.

One creative use of kernel-level rootkitting was file redirection. If you ran an
integrity-checking tool like Tripwire (or anything that read a file), you would
get the original version of the file. But if that file contains a program, when a
request was made to execute it, a different program got run instead.

LKM rootkits can perform privilege elevation. In many of the rootkits around
today (e.g., adore, adore-ng, all-root, kbdv3, rkit, shtroj2, and synapsys), the
rootkit installer can either get a root shell or run a program as root by using
whatever key the rootkit requires. In adore-ng, echoing the adore key to /proc
elevates the privilege and capabilities of the shell to root without restrictions.
This beats the pants off the old, SunOS rootkit technique of using back doors in
SUID files like chsh and passwd. Adore-ng also prevents log records of hidden
processes from being written.

Even the methods used to hide things have changed. Adore-ng, instead of hook-
ing system calls, actually hooks into the Virtual File System (VFS) interface to
perform its deeds. This works because both files and processes get listed via the
VFS in Linux and some other operating systems (adore-ng works only on
Linux). You can read Phrack (http://www.phrack.org/phrack/58/p58-0x06) if
you want to learn how this is done.

Adore-ng also offers a new technique for hiding its own presence. The adore-
ng.o file can be linked with an existing kernel module, so that when that module
gets loaded at boot time, so will adore-ng. This makes adore-ng much more diffi-
cult to detect, and quite neatly solves the problem for the attacker of how to
reload it after the next reboot. For details, you can check out Phrack again
(http://www.phrack.org/phrack/61/p61-0x0a_Infecting_Loadable_Kernel_
Modules.txt). It turns out neither to be difficult nor difficult to understand, and
relies on a documented feature of ld plus a little symbol name manipulation.

By moving the hooks into a deeper level of the file system, tools that monitor the
system call table for changes will miss the installation of rootkits like adore-ng. I
did uncover a paper by Kruegel, Robertson, and Vigna (http://www.cs.ucsb.edu/

; LO G I N : A P R I L 2 0 0 5 M U S I N G S 13

~vigna/pub/2004_kruegel_robertson_vigna_ACSAC04.pdf) that performs
binary analysis of LKMs and detects rootkits by checking for the memory they
seek to modify. Most LKMs stick to the regions of memory that a device driver
would need to modify in order for initialization to succeed, but not rootkits,
which stray to regions only miscreants would go. Certainly an interesting
approach.

Another “interesting approach” comes in the form of SUCKIT, a kernel-level
rootkit that does not rely on using LKM hooks. This charmingly named rootkit
does its work by reading and writing directly to /dev/kmem. Unlike the LKM
approach, which relies on being able to locate the kernel symbol tables, this
rootkit searches through kernel memory looking for the pattern of bytes typi-
cally found within the soft interrupt handler, the entry point to the kernel and
the system call table. The soft interrupt handler address can be gleaned from a
single Intel assembler instruction, sidt %0, and then the code searches for the
offset to the actual call to the system call table. You can read about this in Phrack
too: http://www.phrack.org/show.php?p=58&a=7.

So, even if you compile a kernel without LKM support, someone can still patch
your kernel. As I read the Phrack article about this technique, I shuddered
again. While getting your system rootkitted is bad, SUCKIT (like LKM rootkits)
might just abort your kernel if it doesn’t work perfectly.

The authors of SUCKIT suggest modifying your kernel so that writes to
/dev/kmem are prohibited, even to root. This will stop this rootkit, without
stopping you from tuning your kernel using the /proc interface. They even
suggest a one-line patch to mem.c that will do this. Some solution.

But what about stopping LKM rootkits? I mentioned earlier that there were
three ways of rootkitting kernels. The third way I was alluding to works with
Windows and involves installing a device driver (for information, see
http://www.rootkit.com). Microsoft certainly deserves a lot of the bad marks it
gets for security, but you may have noticed that Microsoft not only supports but
encourages the use of signed device drivers. If a device driver has been signed,
you know it has not been modified to include a rootkit and (relying on the
signer of the device driver) is not a rootkit. I will confess to being less than cur-
rent as a Windows sysadmin, but there was a time when someone who could
administer printers could also install device drivers. And I do know that the
default on XP is to make the first (and often the only) user a member of the
Administrator group.

I wondered if LKM signing had been accomplished in the Linux world and
found a “discussion” (a polite term for it) on an archive of the Linux-kernel
mailing list. It seems that most of those involved are not interested in adding
more bloat to the Linux kernel (I certainly understand that concern) by adding
support for checking the signatures of LKMs before loading them. David Howell
even posted patches that support checking GPG signatures of kernel modules
(http://people.redhat.com/~dhowells/modsign/), but his solution appeared over-
whelmed by opposition. Perhaps RedHat will decide to do this on their own for
their commercial Linux version.

Proper use of LKM signing implies that any time you build kernel modules, you
copy them to another system, sign them, and copy them back to the system
where they will be used. As long as the signing system cannot be compromised,
the signature checking mechanism will guarantee that only signed, unmodified
modules get loaded into your kernel. RedHat could certainly offer signed LKMs
with their distros, and those that build their own kernels could include the
mechanism and the public key, in the kernels they build. Combined with dis-
abling writing to /dev/kmem, LKM signing would appear to block an entire class
of popular attacks. And it might even provide a use for the TCPA chip, in that it
could hold the public key and be involved in signature checking.

14 ; L O G I N : V O L . 3 0 , N O . 2

I do want to add a note that FreeBSD kernels after 4.0 have the securelevel flag,
which, when set to one or two, prevents kernel modules from being loaded. A
positive securelevel also blocks writing to kernel memory (goodbye SUCKIT).
Evil kernel modules could still be placed in a directory where they would be
automatically loaded during the next reboot.

The history of computer (in)security has been one of attacks, defenses, and new
attacks designed to counter those defenses. Signing LKMs could be just another
failed defense. But some form of kernel defense does appear to be justified.

Anything beats corruption.

SAVE THE DATE!
NSDI ’05: 2nd Symposium on Networked

Systems Design and Implementation
May 2–4, 2005, Boston, MA
http://www.usenix.org/nsdi05

The NSDI symposium focuses on the design principles of large-scale networks and dis-
tributed systems. Join researchers from across the networking and systems community—
including computer networking, distributed systems, and operating systems—in fostering
cross-disciplinary approaches and addressing shared research challenges.

A D A M T U R O F F

practical Perl

P R O G R A M S T O W R I T E P R O G R A M S

Adam is a consultant who specializes in using Perl to
manage big data. He is a long-time Perl Monger, a
technical editor for The Perl Review, and a frequent
presenter at Perl conferences.

ziggy@panix.com

Testing Web sites can be quite tedious, but
it doesn’t need to be. In this column I de-
scribe how I wrote a few small programs to
generate hundreds or thousands of regres-
sion tests for a Web site.

One of my current projects involves reimplementing a
large, dynamic Web site. Back in the go-go dot-com
days, this kind of project was rather common. The
preferred technique was slash-and-burn: Throw out
all of the old code and implement the new Web site
from scratch using whatever language, library, frame-
work, or platform is popular this week. Along the
way, the Web site would get a facelift and be upgraded
to use the latest and greatest Web design techniques.
The new Web site would look wonderful, garner
praise, and win awards, up until the point that the
cycle repeated, a few short months later.

Thankfully, the Web development scene has settled
down considerably in recent years. Throwing every-
thing out and reimplementing a Web site from scratch
has come to be seen as not only foolish, but in many
cases as not even feasible. The current Web site I am
working with is the result of years of requirements
gathering, design, development, testing, and debug-
ging. It represents a slow evolution to match the
application requirements with the capabilities and
quirks of the Web browsers our customers use.

Throwing out years of work because some popular
new system can generate Web pages “easier” or “bet-
ter” is interesting but ultimately irrelevant. While the
current Web site architecture may be aging and brit-
tle, any new implementation needs to faithfully repro-
duce the HTML interface in use today. Customers
have come to expect the site’s current interface and
behaviors. Gratuitous changes made for the sole ben-
efit of the development team would negatively impact
customers, and that could easily impact the bottom
line. Yet some kind of change is necessary whenever
the current Web site code becomes hard to maintain
and difficult to extend.

Testing to the Rescue

In some respects, this problem seems like the classic
“unstoppable force meets immovable object.” The
existing HTML must be preserved, and the easiest
way to generate the existing HTML is to keep the
existing Web site, however old and brittle it may be.
The only way to move forward is to replace the exist-
ing Web site, but only in a manner that will faithfully
reimplement the existing HTML, bug for bug. Seen
this way, reimplementing this Web site is a software

; LO G I N : A P R I L 2 0 0 5 P R AC TI C A L P E R L 15

16 ; L O G I N : V O L . 3 0 , N O . 2

project like any other, with one additional constraint, which we can check
empirically as we move forward. (Fixing HTML bugs and updating HTML
designs are discussions for another time and place.)

This constraint sounds cumbersome and tedious, and indeed it is. Each dynami-
cally generated HTML page from the new site must be checked against a corre-
sponding page from the old Web site to check that all expected content, layout,
and structure is present, and only that material is present. Repeat this process for
each of the dozens of pages to be tested. Because pages may appear differently
for different users, check each page multiple times, one time for each account to
be tested.

Other factors also require consideration. Like many Web sites today, this site is a
front end for a very large database. The database is constantly being updated, so
a Web page that passed a test yesterday or this morning might fail this afternoon
because the underlying data has changed. But that kind of failure is a “false neg-
ative,” since that is the expected behavior. So tests need to be updated periodi-
cally in order to ignore normal data changes, and focus on the HTML interface
elements that surround that data.

As my friend brian d foy likes to point out, we’re working with computers, and
computers are built for doing boring, repetitive work over and over again. On
this project, I need hundreds of long test scripts in order to make sure that the
new Web site faithfully re-creates the output of the existing one. Rather than
writing those boring, tedious test scripts by hand, I decided to write three inter-
esting programs instead:

n find-links: Finds Web pages on the old site to examine
n build-test: Examines a single Web page on the old site and builds a test script
n MyHTMLAnalysis.pm: A module that analyzes HTML input when building

and running a test script

By running two programs, I can generate a few hundred test scripts in the time it
takes to get a cup of coffee. If the underlying data changes, I can just delete some
tests and rebuild them while I get more coffee.

Test Setup

In order to easily compare old and new Web sites, I needed to spend a little time
building an environment to support this testing activity. I started out with two
identical copies of the Web site checked out from CVS, Subversion, or another
source control system. The two copies of the Web site must be configured iden-
tically and run side by side on two different Web servers running on two differ-
ent ports, or on two different systems. One copy will be the “baseline,” running
the existing code unchanged. The other copy will be the development server,
where all of the changes will be made.

Having access to both versions of the code at all times is important. Whenever a
test failure occurs on the development server, the baseline server should be
checked with the same test script to determine whether the failure is a bug or a
false negative due to normal data changes. If a test failure is in fact a false nega-
tive, the baseline can be reexamined to produce a fresh test to find real bugs in
development.

With the baseline Web server in place, the first task is to find the pages to pro-
file, the task automated by the find-links script. I could have maintained a text
file of links to examine, but it was just as easy to write a program to find links
for me. In the spirit of automating tedious tasks, this program emits a Makefile
fragment that will build the tests.

Below is the find-links script that I used to crawl the baseline site and find all
pages linked from the home page. Of course, each Web site is different, so the

; LO G I N : A P R I L 2 0 0 5 P R AC TI C A L P E R L 17

rules for what to profile will likely vary from site to site. For my project, it was
sufficient to look at the home page and look at any link into the site from the
home page. For other sites, it might be necessary to examine a small, predeter-
mined list of links, to perform an exhaustive traversal of every link in a site, or
something in between. Note that links to other Web sites are ignored, since they
are beyond the scope of what is to be tested here.

#!/usr/bin/perl -w
use strict;
use WWW::Mechanize;
my $usage = "Usage: $0 <baseurl> <urlpath> <testpath> [cookiejar]\n";
my $baseurl = shift(@ARGV);
my $urlpath = shift(@ARGV);
my $testpath = shift(@ARGV);
my $cookies = shift(@ARGV) || "";
die $usage unless $baseurl;
die $usage unless $urlpath;
die $usage unless $testpath;
Specifying a cookie jar is optional
Find URLs
my %seen;
my $number = "000";
my $mech = WWW::Mechanize->new (

cookie_jar => {file => $cookies}
);

my $base = "$baseurl$urlpath";
$mech->get($base);
foreach my $url ($mech->links()) {

Normalize this URL:
convert into an absolute URL
and remove the internal anchor (if present)
$url = $url->url_abs()->as_string();
$url =~ s/#.*$//;
Focus on links within this site, and
make the URL relative to the base
next unless $url =~ s/^$base//;
Test each URL once and only once
next if $seen{$url}++;
Write out another entry in the Makefile
my $file = "$testpath/$number.t";
print "$file:\n\tbuild-test $baseurl $url $cookies > $file\n\n";
$number++;

}

This script is invoked with four parameters: the location of the baseline server
(http://localhost:8080), the URL path to the page to profile (/start), a path to
deposit test scripts, and an optional file containing the cookies to use for user
authentication. The location of the baseline server must be split out from the
URL to process, so that build-test can create a test that assesses either the base-
line or the development server.

By using this program I can create multiple test suites from the baseline Web site
quickly and easily:

$ find-links http://localhost:8080 \
/start ./admin admin.conf > Makefile.admin

$ find-links http://localhost:8080 \
/start ./user user.conf > Makefile.user

$ find-links http://localhost:8080 \
/start ./guest guest.conf > Makefile.guest

...

18 ; L O G I N : V O L . 3 0 , N O . 2

Analyzing HTML

Once find-links has run, the next step requires profiling the baseline server to
build test scripts. Because these scripts will be used to check both the baseline
and the development server, the location of the Web server to test should not be
specified in these test scripts. I have found that the best way to specify which
server to test is to place that information in environment variables, either in a
Makefile or on the command line. Switching or overriding an environment vari-
able makes it quick and easy to check the baseline server to see whether a test
failure on the development server is a true bug or a false negative.

Ideally, the best way to test the output of the development server against the
baseline server is to use a simple string comparison. If the output of the develop-
ment server does not precisely match the expected output, the test fails. In prac-
tice, that level of rigor is simply impractical. If the output from the development
server does not exactly match the output from the baseline server, it could be
because one character changed or because 1000 characters changed. Also, locat-
ing where and how the two pages differ can be difficult, especially when dealing
with very large HTML pages.

Furthermore, there are many textual changes that have no semantic or struc-
tural impact in HTML. The tags below are all equivalent in HTML, but fail a
simple textual comparison:

<img src="button.gif"
width="5" height="10" >

For any meaningful comparison of baseline against development Web servers,
some measure of scanning or parsing HTML output is necessary. If you are pro-
filing an XHTML site or other XML data, you can use any of the many Perl mod-
ules for processing XML to aid your analysis. If not, then regular expressions
and some of the many HTML parsing modules on CPAN can help you along.

To ease HTML profiling, it’s best to put the code to analyze output from the
baseline and development servers into a module used by both the build-test
script and the test scripts it generates. This module contains code to do things
such as find links, images, and JavaScript blocks and produce data structures
that are easy to examine when building and running tests.

Purists will note that this setup adds a measure of uncertainty to the testing
process. Although this is true, pre-processing HTML before testing it helpsto
factor out meaningless differences and focus on the more meaningful changes
between versions. Because HTML is such a troublesome format, using an analy-
sis module provides one central place to catalog all of the differences you con-
sider meaningless in your application.

For example, JavaScript <script> blocks should have a type="text/javascript"
attribute. That attribute may or may not be present. The deprecated
language="javascript" attribute may be present. If neither is present, browsers
will assume that the content of the <script> block will be JavaScript.

Within a JavaScript block, whitespace characters are (mostly) meaningless. If
two JavaScript blocks differ only in indentation, they should be considered iden-
tical. JavaScript blocks can also be wrapped with optional HTML comments. If
the only difference between two such blocks is the presence/absence of HTML
comments, the two blocks should be considered equivalent.

Finally, if two JavaScript blocks really do differ, it doesn’t matter where they dif-
fer, just that they differ. To simplify test output, I find it useful to pre-process

; LO G I N : A P R I L 2 0 0 5 P R AC TI C A L P E R L 19

JavaScript blocks and convert them into MD5 checksums. If two JavaScript
blocks differ after all meaningless differences have been factored out, their
checksums will differ.

Here is the function in my analysis module that cleans up JavaScript blocks for
easy comparison. The analysis sounds complex, but the code is actually rather
straightforward:

package MyHTMLAnalysis;
use MD5;
sub process_javascript {

my $html = shift;
Grab JavaScript code. Ignore attributes on the <script> tag
my @javascript = $html =~ m{<script.*?>(.*?)</script>}sig;
Normalize whitespace
@javascript = map {s/\s+/ /; s/^\s//; s/\s$//; $_} @javascript;
Remove the leading/trailing comments, if found
@javascript = map {s{^<!—\s*(.*?)\s*//\s*—>$}{$1}s; $_} @javascript;
Convert it to MD5 checksums
@javascript = {MD5->hexhash($_)} @javascript;
return @javascript;

}

Analysis functions for other portions of the HTML input are generally simple
and easy to write and test on their own. HTML testing requirements generally
vary from site to site, so be sure to identify what portions of the HTML input
you need to analyze, and what meaningless changes you want to factor out from
your tests.

Building Tests

With an HTML analysis module in place, it was time to build and run the scripts
that would profile the baseline Web site and test the development Web site.

The process of building a test script was pretty simple. Each analysis function
that build-test calls is mirrored with a corresponding call in the test script being
generated. All of the results available to build-test are copied into the test script
as test assertions using Test::More. Here is the portion of build-test that handles
building JavaScript tests:

#!/usr/bin/perl -w
use strict;
use MyHTMLAnalysis;
use WWW::Mechanize;

my $usage = "Usage: $0 <base> <url> [cookie jar]\n";

my $base = shift(@ARGV) or die $usage;
my $url = shift(@ARGV) or die $usage;
my $cookies = shift(@ARGV) || ""; ## Cookies are optional
my $mech = WWW::Mechanize->new (

cookie_jar => {file => $cookies}
);

$mech->get("$base$url");
my $html = $mech->content();
print preamble($url, $cookies);
print test_javascript($html);
##...create more tests
sub preamble {

my $url = shift;
my $cookies = shift;
return <<EOF;

#!/usr/bin/perl -w
use strict;

20 ; L O G I N : V O L . 3 0 , N O . 2

use Test::More qw(no_plan);
use MyHTMLAnalysis;
use WWW::Mechanize;
my \$mech = WWW::Mechanize->new (

cookie_jar => {file => $cookies}
);

\$mech->get("\$ENV{TEST_SERVER}$url");
my \$html = \$mech->content();
my \@data;
EOF
}
sub test_javascript {

my $html = shift;
my @data = MyHTMLAnalysis::process_javascript($html);

my @tests;
push (@tests, q/@data =

MyHTMLAnalysis::process_javascript($html)/);
Test that all of the expected JavaScript blocks match
foreach (@data) {

push (@tests, qq/is(shift(\@data), q{$_});/);
}
Make sure there are no other JavaScript blocks
pushd (@tests, <<EOT);

foreach (@data) {
fail("Unexpected Javascript block: $_");

}
EOT

return join("\n", @tests);
}

The snippet above shows how to test JavaScript blocks in a Web page. The
process can easily be repeated to test more components on a Web page by
adding more analysis functions to the shared analysis module, calling them in
this script, and embedding the results of that analysis into the test scripts
generated.

Note that this program is actually producing a Perl program (a test script), so it
is important to get the quoting correct: Some variables need to be escaped
because they are variables in the test script being generated. Other variables are
unescaped because they are variables in build-test, where the values are being
copied into the test script. The resulting program can be run using standard test-
ing tools like Test::Harness and prove.

Finally, keep in mind that these scripts must be able to examine either the base-
line or the development server. The location of the server to test is expected to
be in the TEST_SERVER environment variable, and that will generally point to
the development server (e.g., http://localhost:8081). When checking for changes
in the database, this value would be reset to point to the baseline server (e.g.,
http://localhost:8080).

Conclusion

Testing Web sites is a notoriously difficult and error-prone task, but with a little
advance planning and analysis, Web site testing can be a breeze. Just write a few
programs to profile your Web site, and let Perl generate your test scripts for you.

J A S O N G . A N D R E S S

IPv6: the next
Internet protocol
Jason Andress works as a system administrator for
Agilent Technologies. He is currently wrapping up his
master’s degree in CS and will soon be starting on
his doctorate. He is also a recent Debian convert.

Jason.Andress@Agilent.com

N OTE

1. The effort to develop the Internet Protocol Next Genera-
tion was started in 1994 [2]. One of the fields carried for-
ward from IPv4 was the version field. IPv4 used version
number 4; another protocol, the Internet Stream Protocol,
was already using version number 5. Thus, the first avail-
able version number was 6 and the name “IPv6” was born.

The follow-on to IPv4, IPv6 has not yet seen
wide deployment. This article discusses the
motivations for IPv6, its history, its design
criteria, and some of its new features.
Finally, a look at future deployment and
applications is presented.

IPv6 is the network protocol follow-on to the popular
IPv4,1 the network transport layer of the TCP/IP pro-
tocol that runs the majority of the Internet. IPv6 was
designed with the knowledge of all of IPv4’s short-
comings and with 20 good years of experience run-
ning the Internet. IPv6 addresses the Internet’s cur-
rent and anticipated problems with elegant solutions.

IPv4

IPv4 was designed in 1980 to replace the already
archaic NCP protocol on the ARPANET as it then
existed. When first deployed, fewer than 1,000 com-
puters were linked by IPv4. Who would have guessed
that a 32-bit address space whose theoretical maxi-
mum connectivity was about two billion computers
would not be enough?

Two decades after its first implementation, the explo-
sive growth of the Internet exposed some of IPv4’s
limitations, the most serious of which is limited
address space. The problems of expanding the
address space drove the design of IPv6. IPv4 had sev-
eral other problems, however:

n Its header
n Routing
n Configuration
n Security
n Quality of Service (QoS)

I P V 4 A D D R E S S S PAC E

Two problems exist in the IPv4 address space. First,
the 32-bit address does not allow sufficient address
space; second, the address allocation is not granular
enough. In the original allocation scheme there are
five classes of addresses: A, B, C, D, and E. Of these
classes, only A, B, and C are used during normal oper-
ation. These classes are broken out like so:

n Class A—125 networks, 16 million hosts per net-
work, ~2 billion hosts total

n Class B—16,382 networks, 65,534 hosts per net-
work, ~1.1 billion hosts total

n Class C—2 million networks, 254 hosts per net-
work, ~508 million hosts total

; LO G I N : A P R I L 2 0 0 5 I P V 6 21

22 ; L O G I N : V O L . 3 0 , N O . 2

Note that 125 (0.006%) of the 2,016,507 networks constitute more than half of
the available addresses.

One solution to IPv4’s address-space problems is Classless Inter-Domain Rout-
ing (CIDR) [9]. CIDR replaces the previous A, B, and C address classes with an
addressing scheme that enables the full IP address space to be partitioned much
more finely. CIDR enables addresses to be assigned to networks as large as
500,000 hosts or as small as 32 hosts. The smallest block of addresses assignable
under class-ful routing was 254 addresses (a class C), which was one of the con-
tributing factors in the 3% usage rate of assigned addresses. (The other two
addresses of the 256 possible are used as broadcast addresses.)

In addition to the address allocation changes brought about by CIDR, Network
Address Translation (NAT) technology enables multiple systems to share a sin-
gle IP address by carefully routing the combination of IP address and port num-
ber on local networks. The advantages of having a unique address for every
computer on the Internet are obvious. Coupled with the proliferation of small
appliances that exploit very inexpensive networking technologies, the address-
ing problem continues to fester.

I P V 4 H E A D E R

The IPv4 header has two main problems that slow throughput:

n A checksum must be computed for each packet being processed.
n Each router that processes the packet must process the option field.

Unfortunately, without restructuring the header (redesigning the protocol),
neither of these problems is particularly fixable.

I P V 4 RO UTI N G

CIDR also addresses the problem with the growing size of the global routing
tables. Under the previous class-ful system, the global routing tables were grow-
ing toward their maximum theoretical size of 2.1 million entries. In addition to
restructuring address conventions, CIDR also implemented Hierarchical Rout-
ing Aggregation with a logically tiered structure to reduce entries in routing
tables. Under this system, each router keeps only the routing information for the
next routers in its own logical hierarchy. This change has reduced the number of
entries in the global routing tables to approximately 35,000.

I P V 4 CO N F I G U R ATI O N

Under IPv4, TCP/IP-based networking requires several pieces of data to config-
ure a network. An administrator or user must supply the IP address(es), routing
gateway address, subnet mask, DNS server(s), and possibly other information.
In order to simplify configuration, some networks utilize Dynamic Host Config-
uration Protocol servers and then enable local area network clients to request
appropriate network configuration from a central server as network services are
configured on that client. Although this eases configuration for the end user, it
really only moves the burden to the network’s administrators.

I P V 4 S E C U R IT Y

The IPv4 protocol was created in an age of cooperation among research and
development institutions that composed the network. The goal was to create a
protocol that enabled the network to succeed; the twin notions of hostile envi-

; LO G I N : A P R I L 2 0 0 5 I P V 6 23

ronments or noncooperative, even destructive, users were not strongly consid-
ered. Unfortunately, such attacks need to be taken into consideration today.

The lack of integral security in the design of IPv4 enabled the wide variety of
attacks that are commonly seen today. Spoofing attacks, attacks that exploit pro-
tocol implementations to crash or disable the host or slow other connections,
and a variety of others are commonplace in today’s network environment.

Mechanisms to secure IPv4 do exist, but no requirements for their use are in
place and no one standard exists. One of these methods, IPSec [10], sees com-
mon use in securing packet payloads. IPSec exploits cryptographic security
services to provide:

n Confidentiality (messages cannot be read in transit)
n Integrity (messages cannot be altered in transit)
n Authentication (the origin of the sender is known with total confidence)

Confidentiality is provided via the use of encryption, integrity by means of a
cryptographic checksum that incorporates the encryption key, and authentica-
tion by digitally signing with the encryption key.

I P V 4 Q O S

Quality of service (QoS) enables the priority of traffic to be adjusted to suit the
type of traffic that is being handled. When IPv4 was designed, most Internet
traffic was text-based. As the Internet has expanded and technology has pro-
gressed, new types of traffic such as streaming video and multiplayer gaming
have created a need to prioritize traffic that is dependent on speed of delivery
over traffic which does not depend on speed, such as email.

While QoS standards exist for IPv4, real-time QoS support relies both on the
type of service (TOS) field and on identification of the contents of the packets.
Unfortunately, the IPv4 TOS field has limited functionality and is interpreted
differently by different vendors. Additionally, it is not possible to identify the
contents of encrypted packets.

Design Considerations for IPv6

By 1990 it had become clear that the protocols then in use would not be able to
hold up under the explosive growth of the Internet. A January 1991 meeting of
the Internet Activities Board (IAB) and the Internet Engineering Steering Group
(IESG) put forth five main categories as the focus for development efforts on
future protocols [11]:

n Routing and addressing
n Multi-protocol architecture
n Security architecture
n Traffic control and state
n Advanced applications

Those groups completed design of the specifics of the IPv6 (then termed IPng)
protocol exactly four years later [12].

I P V 6 H E A D E R

The IPv6 header design reduces routing and processing overhead by moving
nonessential and option fields to extension headers placed after the IPv6 header.
The new header is only about twice as large as the IPv4 header, even with the
new features and (relatively) huge 128-bit addresses. The increased header size

24 ; L O G I N : V O L . 3 0 , N O . 2

does not cause any appreciable delay in traffic, due to the improvements made
to the header in order to ease processing.

IPv4 headers and IPv6 headers can coexist on a network, although IPv6 is not
backward compatible with IPv4. A host or router must support both the IPv4
and IPv6 protocol stacks in order to process both header formats.

I P V 6 A D D R E S S I N G

IPv6 sports 128-bit addresses, in contrast to the 32-bit addresses of IPv4. This
gives IPv6 an address space of 3.4 x 1038 machines, theoretically enough to
assign three trillion addresses for every human on earth and 10,000 trillion
other planets. However, this large space is not intended to be used in that way.
Many of the address bits are used less efficiently in order to simplify addressing
configuration dramatically.

Only a small percentage of IPv6 addresses are currently allocated for use by
hosts, with a huge number of addresses available for future use. The address
space that IPv6 provides obviates address-conservation techniques (e.g., NAT).

I P V 6 RO UTI N G

IPv6 routing is almost identical to CIDR IPv4 routing. The IPv6 address design
facilitates an efficient, hierarchical routing system that enables smaller routing
tables, which, in turn, permit routing of more hosts than is possible under IPv4.

I P V 6 CO N F I G U R ATI O N

IPv6 supports a new stateless address configuration scheme that dramatically
simplifies host configuration. In IPv6, hosts automatically configure themselves
with addresses created by combining prefixes advertised by local routers with
information local to the host. Even without a router, hosts on the same link can
automatically configure themselves with local addresses and communicate on
that local link without need for manual configuration. This new configuration
system not only removes a menial task from the network administrator, but also
allows renumbering of an entire network by changing local address information
on the local routers [2].

I P V 6 S E C U R IT Y

Compliance with IPSec [10] is mandatory in IPv6, and IPSec is actually a part of
the IPv6 protocol. IPv6 provides header extensions that ease the implementation
of encryption, authentication, and Virtual Private Networks (VPNs). IPSec func-
tionality is basically identical in IPv6 and IPv4, but one benefit of IPv6 is that
IPSec can be utilized along the entire route, from source to destination.

IPSec in IPv6 is implemented using two extension headers: the authentication
extension header and the Encrypted Security Payload (ESP) extension header.
The authentication extension header provides integrity and authentication of
source, protection against replay attacks, and protection for the integrity of the
header fields. The ESP extension header provides confidentiality, authentication
of source, protection against replay attacks, and limited traffic flow confidential-
ity [14].

; LO G I N : A P R I L 2 0 0 5 I P V 6 25

I P V 6 Q O S

The IPv6 header has new fields to define how traffic is handled and identified.
By using a flow label field in the header, traffic identification enables a router to
identify and potentially provide special handling for packets that belong to a
flow (a series of packets between a source and destination). Because the traffic is
identified in the header, support for QoS can be provided even when the con-
tents of the packet are encrypted with IPSec.

The Urgency of IPv6 Deployment

NAT and CIDR have somewhat eased the address space issue for the current
time frame; however, address space is not allocated evenly across the globe.
“Some regions of the world were allocated fewer IPv4 addresses than others. The
most populated part of the world, the Asia-Pacific region, was allocated the
smallest amount of the remaining IP addresses: 2%, compared with 5% for the
Americas and 4% for Europe. Some countries in Asia-Pacific have virtually run
out of addresses already, others are close. The European Union has predicted
that address space in Europe will become critical in 2005.” [13] Using IPv4,
China’s allocation amounts to only about 22 million IP addresses. With a popu-
lation of 1.3 billion people and 17 million Internet subscribers, China will
shortly be entirely out of IPv4 space.

These observations, among others, are prompting many organizations to exam-
ine the transition to IPv6 in the near future. One of the largest and most visible
organization with firm plans for the transition to IPv6 is the United States
Department of Defense. According to a DOD memorandum on IPv6, “The DOD
goal is to complete the transition to IPv6 for all inter- and intra-networking
across the DOD by 2008.” [6] In accordance with this memo, any network
assets that are put into place as of October 1, 2003, must be both IPv6 and IPv4
capable. For those forward thinkers, there is great significance to this. If the
DOD plans to be entirely on IPv6 by 2008, any company that interfaces with the
networks of the DOD must be able to accommodate IPv6. This seems to be an
excellent setup for a rather swift chain reaction of IPv6 conversions.

Wide IPv6 Deployment

The pain of upgrading to facilitate migration to IPv6 can be reduced by perform-
ing as much of the work as is feasible in advance. Almost all of the required
changes fall into this category, making the final switchover to IPv6 an anti-cli-
mactic event. Forward-looking organizations such as the DOD are already tak-
ing these steps.

Network infrastructure changes can be phased in over time with minimum dis-
ruption by switching to routing and related equipment that supports both IPv4
and IPv6. This activity alone removes a great deal of the work in making the
transition and can be accomplished fairly simply by eschewing equipment that
does not support IPv6. In theory, the natural turnover of network equipment
will cause IPv6 hardware compatibility to become a non-issue over time.

Much work for the transition to IPv6 involves the software and operating
systems in use on clients and servers.

Almost all major operating systems have had at least some level of support for
IPv6 for the last five years. Upgrading a corporate network, however, is not so
simple as changing a configuration parameter and requires extensive planning
in order to ensure a smooth rollout.

26 ; L O G I N : V O L . 3 0 , N O . 2

Migrating to IPv6 does not need to be painful, but it does need advance prepara-
tion and identification of networked applications that require major investment
(vs. simple changes). Aside from making hardware and software changes, what
better way to prepare for a new technology than hands-on experience?

Further Research on IPv6

Useful experience in running IPv6 networks can be gained in one of two ways:
experimenting with an IPv6-based machine on the Internet, or setting up an
offline test lab.

Several options exist for running a live IPv6 machine on the Internet:

n The “6bone” is an experimental Internet facility for tunneling IPv6 packets
over the IPv4 Internet. See the Web site [4] to learn how to run IPv6 in gen-
eral and obtain proper IPv6 addresses to use with the IPv6 Testing Address
Allocation experimental protocol [7].

n Several ISPs and companies also have functioning IPv6 network connections.
Connecting an IPv6 machine to the Internet poses no great difficulty given an
IPv6 address, proper equipment, and a configuration [5].

n O’Reilly’s Ipv6 Essentials [1] is a good guide to configuring various operating
systems to use IPv6 and testing IPv6-oriented applications and utilities.

Appendix E in the Microsoft Press Understanding IPv6 [3] is a guide to setting
up an IPv6 test lab on Windows, including clients, routers, and a DNS server.
Although intended specifically for Microsoft platforms, the main concepts trans-
late easily to other operating systems. As specified in the book, the test lab
cycles through pinging, static routing, name resolution, IPSec, and some of the
IPv6 security features. Although limited, this lab setup enables experimentation
without concern for security threats or other issues related to connecting to a
live IPv6 network.

Practical Implications

The majority of the issues related to IPv6 fall into the categories of economics
and adopter comfort level.

Economics plays a large part when looking at a migration to IPv6, not only in
the sense of capital expenditure, but also in manpower, time, and other
resources.

The main economic factor that needs to be considered when looking at a migra-
tion to IPv6 is the timeline for the migration. The speed of the migration can
have a large effect on the cost of the project.

In the long term, migrating to IPv6 is not an expensive proposition. Over time,
network infrastructure equipment will be replaced, software will be upgraded,
and most of the other changes that are needed for a migration can be integrated
with the normal upgrade process.

Given a very short timeline for a migration to IPv6, the cost can increase dra-
matically. If upgrades to network infrastructure, client software, servers, and
other associated items are attempted concurrently and over a short period, not
only does the cost increase, but so does the impact on users, which brings us to
adopter comfort level.

; LO G I N : A P R I L 2 0 0 5 I P V 6 27

The comfort level of potential users of IPv6 may not seem to be a large issue, but
it definitely has the potential to be. If, during the transition to IPv6, a security
issue or other problem of sufficient magnitude were publicized, the impact on
large-scale migration could be significant and far-reaching. This is another case
where carefully planning migrations to IPv6 can help to avert problems.

The Future

From a high-level view, the major benefits of IPv6 are its scaling and increased
security. The global deployment of IPv6 will be an enabling factor in redefining
the Internet as we now know it.

With IPv6, the Internet can continue its dramatic growth while embracing
mobile telephones, PDAs, home appliances, automobiles, intelligent buildings,
and a plethora of other devices.

Looking to the longer-term future, the ability to address and fully access any
networked device has the potential to lead to new technologies and the renewal
of existing ones. Consider the opportunity to take “single sign-on” a step further
by addressing individuals as well as machines. An implanted chip [8] could
carry an address for a particular individual and facilitate the use of cell phones,
PDAs, workstations, etc. Such devices would read the user’s address from the
implanted chip and configure themselves accordingly. Such a technology would
facilitate routing of email, retrieval of data, and other tasks that currently incon-
venience users by fragmenting their data by geographical location.

Conclusion

IPv6, still in its initial stages of deployment after several years of availability, is
definitely coming. It will renormalize the Internet by removing stopgap meas-
ures such as NAT, by providing a standard security mechanism for packet pay-
loads, and by effectively removing the cap on address space. It will reduce, in the
long term, the load of day-to-day administration tasks currently required just to
keep networks running at a basic level, and it will relegate most network config-
uration to just plugging in the cable.

In the end, worry and hand-wringing over the transition to IPv6 will likely rise
to the level of headline-making, but, with a little planning, the transition will be
as anticlimactic as the Y2K problem.

R E F E R E N C E S

[1] Hagen, S., IPv6 Essentials, O’Reilly Media, Inc., 2002.

[2] Loshin, P., IPv6 Clearly Explained, Morgan Kaufmann Publishers, Inc., 1999.

[3] Davies, J., Understanding IPv6, Washington: Microsoft Press, 2003.

[4] Fink, B., “6Bone testbed for deployment of IPv6,” retrieved December 2, 2004, from
http://www.6bone.net/, 2004.

[5] Hinden, R., “IPng implementations,” retrieved December 4, 2004, from http://
playground.sun.com/pub/ipng/html/ipng-implementations.html, 2002.

[6] Stenbit, J., “Internet Protocol Version 6 (IPv6)” [electronic version], Department of
Defense Memorandum, 2003.

[7] Hinden, R., Fink, R., & Postel, J., “IPv6 Testing Address Allocation,” retrieved
December 1, 2004, from ftp://ftp.isi.edu/in-notes/rfc2471.txt, 1998.

[8] Digital Angel Corporation, “FDA Clears Verichip for Medical Applications in the
United States,” retrieved December 15, 2004, from
http://www.4verichip.com/nws_10132004FDA.htm, 2004.

28 ; L O G I N : V O L . 3 0 , N O . 2

[9] Fuller, V., Li, T., Yu, J., & Varadhan, K., “Classless Inter-domain Routing (CIDR): An
Address Assignment and Aggregation Strategy,” retrieved December 17, 2004, from
ftp://ftp.rfc-editor.org/in-notes/rfc1519.txt, 1993.

[10] “Internet Protocol,” retrieved December 16, 2004, from ftp://ftp.rfc-editor.org/
in-notes/rfc2401.txt, 1998.

[11] Clark, D., Chapin, L., Cerf, V., Braden, R., & Hobby, R., “Towards the Future Internet
Architecture,” retrieved December 19, 2004, from http://www.rfc-editor.org/cgi-bin/
rfcdoctype.pl?loc=RFC&letsgo=1287&type=ftp&file_format=txt, 1991.

[12] Bradner, S., Mankin, A., “The Recommendation for the IP Next Generation Proto-
col,” retrieved December 19, 2004, from http://www.rfc-editor.org/cgi-bin/
rfcdoctype.pl?loc=RFC&letsgo=1752&type=ftp&file_format=txt, 1995.

[13] Holder, D., “Upgrading the Net,” British Computer Bulletin, retrieved December 19,
2004, from http://www.bcs.org/BCS/Products/Publications/JournalsAndMagazines/
ComputerBulletin/OnlineArchive/may02/digitalworld.htm, 2002.

[14] Cisco, “Implementing Security for IPv6,” retrieved December 19, 2004, from
http://mail.cat.or.th/ipv6/sa_secv6.pdf, 2004.

SAVE THE DATE!
MobiSys 2005: The 3rd International Conference on

Mobile Systems, Applications, and Services
June 6–8, 2005, Seattle, WA

http://www.usenix.org/mobisys05

Mobisys 2005 will bring together engineers, academic and industrial researchers, and
visionaries for three exciting days of sharing and learning about this fast-moving field.

R O B E R T H A S K I N S

ISPadmin

I N T E R V I E W W I T H
V I P U L V E D P R A K A S H

Robert Haskins has been a UNIX system administra-
tor since graduating from the University of Maine
with a B.A. in computer science. Robert is employed
by Renesys Corporation, a leader in real-time
Internet connectivity monitoring and reporting. He
is lead author of Slamming Spam: A Guide for System
Administrators (Addison-Wesley, 2005).

rhaskins@usenix.org

I’d like to thank Vipul Ved Prakash for taking
time out of his busy schedule to answer my
questions. I interviewed Vipul via email
during January 2005.

RH: You are well known within the anti-spam com-
munity as the author of Vipul’s Razor, as well as a
founder of Cloudmark. For those readers who don’t
know, and to provide context to get started, I’d like
you to give me some background regarding your past
accomplishments. How did you get to where you are
today?

VVP: During the mid-nineties, I closely followed the
Cypherpunks list and was fascinated by the funkier of
the cryptographic protocols that cypherpunks wrote,
cited, and talked about. The notions of trust and rep-
utation were particularly interesting to me, and I
thought a lot about the mechanics of reputation net-
works and the problems that could be solved with
them. Following a brief stint on USENET, I was sud-
denly inundated with spam. There wasn’t much in
terms of anti-spam on the Net back then, and anti-
spam seemed like the perfect test application for a
reputation network. That was the genesis of Vipul’s
Razor. At its heart, Razor is a system for assigning
reputations to people who submit spam reports and,
in turn, to the reports themselves.

Perl is my favorite programming language, and I’ve
written a bunch of Perl modules that are published
through CPAN. By way of merging my interests in
Perl and cryptography, I’ve written implementations
of some of the more popular cryptographic algo-
rithms as Perl modules. I also wrote an implementa-
tion of RSA in 512 characters that was formatted to
look like a dolphin. Thinkgeek carried it on a t-shirt
for a while.

Another interesting project I worked on was CODD—
which measures contributions to open source projects
by doing source analysis to find authorship attribu-
tions. CODD is now developed at the University of
Madrid, and the good folks there are doing some
remarkable things with it.

RH: Can you describe how the Razor system works,
and how it is similar to and different from other
related anti-spam systems, namely the Distributed
Checksum Clearinghouse?

VVP: Vipul’s Razor is a network for sharing informa-
tion about spam in propagation. The system builds a
continually updating model of known spam mes-
sages, which is used by mail delivery applications to
filter out subsequent deliveries of known spam.

A set of signature (fingerprinting) schemes is used to
reduce spam messages to a set of signatures. Report-

; LO G I N : A P R I L 2 0 0 5 I S PA DM I N 29

30 ; L O G I N : V O L . 3 0 , N O . 2

ing and checking of messages are done through these one-way signatures.
Reporters have an identity in the Razor system and have to authenticate them-
selves prior to nominating a message as spam. The back end is composed of a set
of nomination servers that accept reports and a set of catalogue servers that
serve the database of signatures for known spam messages.

Reports gather on the nomination side of the back end, where they are evaluated
by TeS (the Truth Evaluation System), Razor’s trust system. TeS examines the
reports as they come in to determine the degree of agreement on whether a sig-
nature is considered “spammy” by the community. TeS also identifies the users
who have reported spam in the past and whose historical decisions were mostly
“unchallenged” by the community. These users accrue trust points and are even-
tually considered to be trusted users. It is the reports of trusted users that deter-
mine the “spaminess” of a signature, which is reflected in its confidence value.
Signatures that cross the confidence threshold to become spam are replicated
over to the catalogue side of the back end, from where they are “fed back” to the
community.

Vipul’s Razor is a collaborative classifier driven by content samples reported by
its users. It predicts whether a message is spam or legit. DCC, on the other hand,
determines the “bulkiness” of a particular mailing. DCC works by collating sig-
nature sightings from participating MTAs to see how many copies of a particular
mailing were sent out. The task of classifying bulk into spam and desired bulk is
left to out-of-bound methods in DCC.

RH: You mention trust points, scores, and confidence levels. I’d like some idea
of the make-up and threshold values for some of the more common trust/scor-
ing/confidence mechanisms in the Razor system. For example, what does a mes-
sage score consist of? What score causes a message to be considered spam?
What do trust and confidence scores consist of, and how are they generated?

VVP: All signatures have a confidence level associated with them; it ranges from
-100 (legitimate) to 100 (spam). The confidence of a signature is a function of
the number of trusted reports as well as the level of trust of the reporters who
submit the reports. Razor Agents also come with a razor-revoke tool, which is
used to make negative assertions—“this message is not spam.” Revokes factor
into the confidence as well, by pushing the confidence toward -100. TeS at-
tempts to determine whether there is statistical consensus among trusted
reporters on a particular signature. When statistical consensus is discovered,
TeS selects, through a rather complex set of heuristics, a few reporters to award
for participating in the reporting process. Those that disagree with the consen-
sus are selected for penalty. An award is a positive trust point added to a repor-
ter’s trust counter, and a penalty is one or more trust points subtracted from the
trust counter.

TeS is an inductive trust system. It starts out with a few trusted reporters
(myself, some of the early Razor users, and folks at Cloudmark) and assigns
trust to new users who tend to agree with the existing trusted users. Once the
new users have accrued enough trust points to be considered trusted, they par-
ticipate in selection of still newer trusted reporters. As you can imagine, over
time the system becomes progressively harder to game, as the spammer has to
subvert an increasing number of trusted users in order to change the disposition
of their spam to legitimate. In fact, the spammer must first become trusted by
agreeing with trusted reporters, i.e., by reporting messages as correctly as spam.

RH: I want to talk a little bit about the relationship between Cloudmark and
Razor, but before I do that I’d like readers to have some background on Cloud-
mark. Can you describe how Cloudmark came to be, and what the Cloudmark
products and services are?

; LO G I N : A P R I L 2 0 0 5 I S PA DM I N 31

VVP: Cloudmark was born in September 2001. I was working on the design of
Razor 2, as a sudden boost in usage had put the prototypical first version at its
limits. I bumped into Jordan Ritter, my co-founder at Cloudmark, on IRC. Heo
was very interested in Razor and was also working on text classification algo-
rithms for anti-spam, and he proposed that we start a company. After many
whiteboard sessions to merge our visions, we founded Cloudmark with the goal
of building widely deployable and highly accurate spam filters.

Today, Cloudmark provides anti-spam products to more than a million con-
sumers and several thousand corporations. We build high-performance anti-
spam engines for ISPs and large enterprises. These engines are licensed by lead-
ing mail infrastructure companies like Sendmail and Openwave. Cloudmark’s
SafetyBar and CEE products are Windows siblings of Razor and integrate into
Outlook, Outlook Express, and Microsoft Exchange. Partner companies have
integrated the SafetyBar/Razor technology in other mail products. We recently
launched Cloudmark Immunity, which incorporates a proximity-based classifier
for real-time online learning based on feedback from users. Immunity is de-
signed for use in large enterprises.

RH: Can you go into some detail about exactly what anti-spam checks are in the
various Cloudmark products? Does it use Razor data or a separate data set?
Also, please talk more about Cloudmark Immunity and the “proximity-based
classifier,” as I am not sure what that is.

VVP: Cloudmark SafetyBar and Cloudmark Exchange Edition products plug
into the same network as Razor and use the same data. The difference is that
they support more signature schemes and perform with better accuracy and pre-
cision. Razor Agents provide accuracy to the order of 90%, whereas SafetyBar
and CEE record 98% or higher with very few false positives. In fact, in the last
four tests conducted by PC Magazine, SafetyBar was the only product to record
zero false positives. Cloudmark’s enterprise and ISP products are based on
homegrown classifier technologies, but are trained from the data set created by
Razor. Over a million people report spam to Razor, and the reports are verified
by TeS, which results in a high-quality, comprehensive database with which to
train our classifiers.

Immunity was designed to solve some of the problems inherent in statistical
classification systems such as naive Bayesian, which, while providing compact
hypotheses, were not designed to work in adversarial and rapidly evolving envi-
ronments like anti-spam. Immunity maps its training set in a hyper-dimensional
space (such that a spam is a point in this space) and classifies incoming docu-
ments based on the disposition of points that fall in its neighborhood. Unlike
Bayesian classifiers, Immunity’s classifier can be trained on one-off samples, can
modify its model based on individual pieces of feedback (since accepting feed-
back is a simple matter of making an entry into the hyperspace), and can pro-
vide filtration that is specific to individual users. It’s also more robust in that it is
not vulnerable to common poisoning attacks.

RH: Some people have criticized you/Cloudmark for using the Razor spam sig-
nature data for commercial purposes (i.e., in Cloudmark’s products). Is this a
valid complaint? How do you respond to this criticism? What have you done (if
anything) to help mitigate the issue?

VVP: We pour the data submitted by Razor users and by SafetyBar users into the
same funnel and it all goes through the same trust system. Both communities
benefit from the collective reports, so they actually do better than they would
have without each other.

When we founded Cloudmark, there was concern about Razor Agents disap-
pearing or moving entirely into the commercial realm. Such concerns have now

32 ; L O G I N : V O L . 3 0 , N O . 2

been alleviated, as we have done a major release of Razor Agents almost every
quarter since and continue to add hundreds of new Razor users every day.

Merging open source and commercial software worlds is hard, especially in the
face of extreme ideological commitments that people make about developing
software. It has been an interesting experience for me in that regard, and I think
we’ve done a decent job of it.

RH: I’d like to get your ideas specifically about the area of reputations in com-
bating spam. [For background on anti-spam reputations, please see my article in
the February 2005 issue of LinuxWorld titled “The Rise of Reputations in the
Fight Against Spam.”] Can you give readers some idea of how reputations have
changed the fight against spam? How have spammers changed their tactics in
response to reputation-based systems? I’d like to hear your views not only as
they apply to Razor/Cloudmark, but the other reputation services as well—
Verisign, Ironport, Kelkea, etc.

VVP: I believe reputation systems are central to the fight against spam; I like to
think of a reputation system as a predictive model that uses a combination of
historical performance and opinions of trusted sources to make a good/bad pre-
diction about an unknown object. The objects evaluated in the context of email
are usually IP addresses, sender domains, individual or institutional senders,
email content, and newsletters/mailings.

Reputations require identities. Since email, as a protocol, is mostly identity-
free, identification mechanisms have to be overlaid. SPF, Sender-ID, and
DomainKeys, three schemes that are garnering a lot of support, attach identity
to sender hosts and domains via reverse DNS lookups. A few reputation systems
are cropping up to assign reputations to domains and hosts as identified by
these schemes. Cloudmark Rating is one of them. As I mentioned earlier, we
also use reputations in the context of Razor. From that perspective, Razor’s sig-
nature schemes can be thought of as a way to assign identity to spam content.

In general, reputation systems are good news for good guys. Once you can iden-
tify yourself, recipients can ensure delivery. Legitimate communications can
pass through anti-spam mechanisms without evaluation if identity and reputa-
tion can be established.

Reputations are changing the playing field, i.e., the anti-spam problem is mov-
ing to a slightly different place. There are two kinds of attacks spammers can
mount against reputation-based systems. The first is to avoid identification. As
long as identification systems are not pervasive, spammers will try to blend in
with “unknown” mail. To fight SPF/DomainKeys, spammers will register a lot of
domains and cycle through them as soon as a domain is considered spammy. In
response, reputation systems need to be quick, allowing only a little spam to get
through per domain. If the system is fast enough to make the cost of domain
registration prohibitive, then we have a good defense against this attack.

The second, more ominous, attack is to hijack the mail infrastructure of senders
with good reputations. Spammers are doing this today through zombie net-
works. The current zombies don’t exploit SPF/DomainKeys, but it is the obvious
next step to infect machines inside a good network, look up advertised MX
servers, and inject spam through them. This is a hard attack to defend against,
especially with identity-based methods, which assume perfect internal security.
To provide meaningful filtration, reputation systems would have to learn the
patterns of abuse associated with hijacking attacks. Personally, I believe the
solution to this attack would come from content-based methods, something
along the lines of raising a “content-exception” so that reputation systems don’t
persecute abused domains, while still disabling the propagation of spam.

; LO G I N : A P R I L 2 0 0 5 I S PA DM I N 33

I am not very familiar with the internals of other reputation systems. I believe
Verisign and Habeas are providing accreditation (as opposed to reputation) serv-
ices, where they do out-of-band research and accreditation of good senders.

RH: Each anti-spam vendor seems to have its own idea of what a reputation is.
Obviously, this poses a major stumbling block for both anti-spam vendors and
spam-fighting system administrators. Anti-spam reputations are often compared
to credit bureaus, except that the risk is the “spamminess” of the sender rather
than someone not paying their bill. Are we going to have a common definition
of a reputation the way credit bureaus have? Failing that, will there be a stan-
dard API so that there can be one programming interface to multiple “reputation
bureaus”?

VVP: There is considerable value in a standardized reputation API, but we need
to be careful about representing the semantics intended by individual reputation
systems. Reputations are measurements of behavior against a defined policy. In a
space where different vendors are measuring very different aspects of email, it
becomes necessary to understand exactly what they are measuring and how
these measurements map to a filtration policy.

Many ISPs have their own reputation databases based purely on the quantity of
email received from senders,\; others measure conformance to their AUP; yet
others assign reputation by co-relating senders with the nature of their emails’
content. Cloudmark’s reputation system is based on reports from the trusted
members of its community of users, whereas Habeas is based on real-world
identity and mail-stream permission levels. Almost every reputation system out
there is different.

One option for standardization is to allow the user to ask contextual questions
of a reputation service so it can offer a binary decision (accept/drop) to the user.
The other is to find a way to encapsulate the diversity of semantics so that the
burden of finding the appropriate policy is shifted to the user of the reputation
system.

RH: You mentioned SPF and DomainKeys; recently in the open source arena we
have seen lots of attention on the area of reputations as well as domain authenti-
cation (GOSSiP and Sender Policy Framework/Aspen, among others). What
impact will open source anti-spam reputation applications such as GOSSiP and
SPF have on fighting spam?

VVP: GOSSiP combined with SPF and DomainKeys has the potential to enable
private, quasi-disjoint, peer-reviewed email networks. It will be very exciting,
especially when GOSSiP or a similar distributed reputation scheme achieves
critical mass. The cost of joining the email network would increase selectively
for spammers, but good guys would be able to get “introductions” to the
network. I also think augmenting protocols is best done as open-source projects.
Since adoption is the biggest hurdle these schemes face, publication under
liberal licenses helps immensely.

34 ; L O G I N : V O L . 3 0 , N O . 2

H A L M I L L E R

customer requirements
specifications for
system administrators

Hal Miller, having returned from three years as a
recalled reserve officer (Lt. Col., U.S.A.F.), is in the
UNIX Infrastructure group at BankOne in Ohio. In a
previous life, he was president of SAGE, and before
that, president of SAGE-AU, as well as a “working
sysadmin.”

halm@sage.org

Whether you are trying to find your way
around a “new” site, reviewing for a poten-
tial rework of your present organization, or
planning for a new project, sometime dur-
ing your career you will probably be faced
with having to pin down a set of formal
customer requirements. Informally, you
face it every day, but most of us deal with
that “by the seat of the pants.” Formal spec-
ification is much more involved and takes
some planning in itself.

This article discusses the issues involved, purposes of
the specification, goals, and roles. It is intended to be
a guide to those sysadmins who suddenly need to fit
this process into their already busy schedule.

We like to think that we are continually observing,
understanding, and meeting customer requirements
as they occur or effectively anticipating and preparing
to meet those requirements before they arrive. As a
rule, that is just wishful thinking.

In the world of “firefighting” that describes a typical
sysadmin’s workday, such planning is pretty thin, and
the time needed to plan around customer needs is just
too costly to spend regularly. Thus, periodically we
should consider tackling it as a priority project. That
periodicity will depend on many things, such as how
often we meet with customers already (in an appro-
priate forum, as opposed to individually at their
desk), the nature of the business, and the size or com-
plexity of the organization.

The Customer Requirements Specification (CRS) is a
document normally used for computer systems sup-
port planning purposes. It identifies in some depth
issues the customers have now and foresee for the
next period, issues the computing support group fore-
sees, and any potential business climate changes in
the works.

The CRS creation process involves four classes of peo-
ple: “customers,” those who use the computing envi-
ronment to perform their own daily tasks; the “sup-
port team,” responsible for the design, implemen-
tation, and management of the computing environ-
ment; “management,” responsible both for approving
budgets and for validating the requirements given by
“customers”; and “vendors,” who can supply infor-
mation on available technology and tools that might
be applied once the CRS is completed.

A CRS should point out to the computing support
team any gaps in current coverage, any “sore points”
as seen from the customer’s vantage point, and holes

; LO G I N : A P R I L 2 0 0 5 C U STOM E R R E Q U I R E M E NTS S P E C I F I C ATI O N S 35

in current planning. It should reassure the customer about the support team’s
level of interest and ability to meet perceived needs, and the support team about
their ability to prevent contention with customers and last-minute emergencies.
It should also become the primary input in short- and long-term planning, both
for budgeting (including personnel and organizational issues) and for infra-
structure design work. The CRS is not an audit—that’s a different process with a
different set of goals. The CRS is a snapshot of thought, not implementation. It
is important to avoid building the environment first, then trying to justify it by
weighting the CRS to fit the design!

Lay of the Land

You will need an organizational chart that maps not only levels of official man-
agement, but all those who have an impact on budgeting and staffing plans.
Begin by asking for the official organizational chart, then modify it to suit your
goals, asking employees at all levels for their input. This process may have value
beyond your immediate needs: the completed chart may highlight problems in
the current organizational structure and thus perform an invaluable service for
management as well.

Once you map the organization, assemble an accurate inventory and description
of “what is.” List physical facilities along with the business purpose of each; cur-
rent computing facilities, including the space, power, and bandwidth available;
and numbers of personnel supported at each facility. If users at a given location
fall into multiple categories (e.g., heavy programming, administrative staff, and
CAD), chart those uses and their impact. Determine the extent of inter-site com-
puting and managerial relationships, storage currently in use, types of operating
systems, software packages, and numbers of users of shared areas at each site.

Take a look at the management structure. Who actually makes decisions, con-
sidering both those in authority and those supplying options and recommenda-
tions? What process is used to determine what should go into the budget? What
parts of the whole cost of doing business go into each manager’s piece of the
budget? Are personnel costs included in the sysadmin portion? Does that
include training and conference attendance? Medical benefits? Team t-shirts
(don’t underestimate the value of team-building toys)? What is the information
flow during the budgeting cycle? Who assigns tasks and responsibilities? Is
there a reasonable delegation process, or is authority closely held (read: micro-
management)?

Look at the IT Team. It should have some identifiable structure, even if “flat,”
“chaotic,” or “harried” seems to apply. How does information flow to, through,
and from the computing support folks? What is the current backlog of “repair”
type tasks? Are larger-scale projects getting done? Are they even on the drawing
board, or have people given up? What are the current problems—perceived by
IT folks, management, and customers—with the IT Team? Are any changes
anticipated? Are any agreed upon as being required even if not scheduled?

When you have a handle on the current organizational structure and situation,
turn to the business itself. What is the true purpose or type of business? Is the
organization there to conduct retail sales? Manufacturing? Supplying services?
If a clear answer to this isn’t in everyone’s mind, something needs fixing right
there. Don’t be afraid to ask the marketing folks, whose job it is to deduce these
items with pinpoint precision.

What sort of business model is followed? How does the organization run—what
are the processes and practices? Try to trace on paper, step by step, the normal
flow of information throughout the organization, bearing in mind that (1) it
probably won’t match the official line and (2) there may be many different flows
for different purposes.

36 ; L O G I N : V O L . 3 0 , N O . 2

You might find some interesting “We’ve always done it that way” and “I just ask
Joe” situations. What use is currently made of the computing power in place?
Fancy typewriters or actual compute engines? Are they being underutilized, or
overburdened for the tasks currently assigned? Are changes in business process
being anticipated? Most important, how willing is the organization to review
those processes?

When an inspection, review, or consultation is announced, people have reac-
tions and expectations. Do customers feel threatened by the CRS? Do they have
axes to grind and see this as a way to get their views heard, perhaps anony-
mously? What are customer expectations of the computing environment, and
are those expectations being met? Are they knowledgeable? Are they even rea-
sonable? Is there some change underway that may alter those expectations? Is
there fear that the CRS might get someone fired or disciplined? Is there push-
back, and, if so, from whom?

What other gains might there be from the CRS? What are the IT team’s expecta-
tions of it? Are there affiliated organizations that may need to be interviewed?
Suppliers, dependent groups, potential competitors, etc., might have something
of value to add.

When you have a good picture of the expectations and a good idea regarding any
process reengineering you may need to tackle, goal-setting becomes important.
The target becomes a refined set of goals and agreed-upon deliverables.

Two sets of goals will dominate: those of the CRS performer (you) and those of
your customer organization, including all of its various parts. The CRS per-
former should work toward:

n obtaining the information required to recommend computing environment
design;

n obtaining information required to size equipment;
n making projections and establishing what the growth patterns are;
n determining support requirements;
n pinning down costs, both up front and recurring; and
n performing process engineering for business and information flow.

The customer will supply a set of goals. Get them in writing; in fact, help them
to draft the list. Make each goal clear, achievable, measurable, and focused (each
with a single purpose).

Your deliverables include:

n A survey questionnaire
n All the raw data from the survey
n A summary of the reduced/refined data
n A final report

The report should cover projected growth, proposed process changes, proposed
computing environment design criteria, a draft overall computing environment
design, and a ball-park estimate of up-front, recurring, and personnel costs for
the new computing environment as proposed.

Your Knowledge Target

Creating the set of deliverables requires a lot of learning and processing of orga-
nizational information. This section discusses the knowledge that will be chased
down and how to target it.

A typical analysis of computing needs begins by examining the current systems.
How many files are stored and in what sizes, types, and hierarchical layout? To
whom do they belong—are they grouped somehow? What sort of file service is
in place? Does it cover all machines, or just certain subsets? If the latter, is it by

; LO G I N : A P R I L 2 0 0 5 C U STOM E R R E Q U I R E M E NTS S P E C I F I C ATI O N S 37

design, by default (grew that way, or nobody bothered figuring out how to
implement something more), or by technical limitation? What types of servers
are in place? What types of client machines, operating systems, and applica-
tions? Where are they run—are they grouped, and if so, why? Look constantly
for things that grew without design or things that should have been cleaned up
and just never were.

What numbers, types (including experience levels), groupings, strengths, and
weaknesses do you find in the user community? Do some tend to drive require-
ments more than others? Why? Do some tend to drive priorities more than oth-
ers? If so, is it by authority or just by being the squeaky wheel?

Analyze the existing IT team. How is it organized and what are its strengths and
weaknesses? Is training required? Training will need to be addressed later with
regard to the new environment, but holes may already exist that need to be filled
regardless of what new computing technology is applied. Include a full-scale,
critical review of the non–IT team people in the organization who have root or
administrator privileges. Emphasize that these people have the same responsi-
bilities as the regular support staff.

Document the existing computing environment. Include a detailed inventory
that covers the networking infrastructure and security implementation as well
as servers and desktops, remote capability (location-independent computing,
dial-in, etc.), and written policy and procedure. Analyze the help-desk function.

Determine and document your opinion on the adequacy of the environment
(and its parts) for the current requirements and processes, including the per-
ceived requirements of various groups in the organization. Carefully review the
security status and requirements of these groups. This will be critical later when
you try to justify the security implementation you will recommend.

In fact, drive hard on the security issues, noting the number of ways, posted on
the Internet, to break into the organization’s machines/devices/OSes/whatever.
Carefully document the access requirements of those outside the organization;
too often people “out there” collaborating with your organization on something
demand completely open access, get it, and are not protected. Find all such
instances, back doors, etc. Document existing location-independent operations
and measures of actual usage.

The next step is to figure out where your information is hiding. Who has it, and
is there hard-copy documentation? Electronic documentation is handy for gen-
eral reading, but if it’s on disaster recovery, it’s hard to read it when it’s most
needed. Who has the corporate history for the computing environment, and
what chain of control has been used to pass things along? What things are left as
is because “things might break” if they’re changed?

For all the items above, determine how best to obtain the information: through
direct questioning, by probing servers, or by examining fielded configurations.

Writing the Survey

In those areas where people are the best source of information, compile a set of
survey questions. Don’t be afraid to use a template or gather examples from
associates who have done this before or from sites surveyed in the past. There is
nothing wrong with plagiarizing questions.

Begin by breaking down the knowledge target issues (see above) for which
information is not available. List specific information that needs to be gleaned.
Make the list very comprehensive—don’t worry about the number of questions
or the number of people to be surveyed.

38 ; L O G I N : V O L . 3 0 , N O . 2

Craft the questions carefully to get directly to the required piece of data. Try
hard not to display biases here; avoid telegraphing the preferred answer in the
question.

Target the question sets to specific audiences—there’s no need to give exactly
the same survey to everyone; fairness is not an issue. Bound the questions:
instead of “Do you purchase software regularly?” ask “In the past six months,
how many software packages have you purchased?” Be exact and avoid ambigu-
ity. Instead of “Are you experienced in installing hardware?” ask “How many
internal disk drives have you installed in PCs this past year?”

If you cannot extrapolate accurately from those answers, ask secondary ques-
tions, such as adding, “How many PCI video cards?” to the previous example. If
you give multiple-choice questions, make the alternatives clear and show no
leanings or biases. People tend to try to give the answer they think you’re look-
ing for, e.g., if there is an “all of the above” and each option is reasonable, people
may tend to use it, meaning data may either be skewed or too weak to mean
much.

Ask different questions aimed at getting the same data: “How much time do you
spend per week doing X?” and “Order the following based on the amount of
time you spend on each,” then cross-check them to validate as well as to build
on your knowledge.

Ask some similar questions (perhaps in different forms) of members of different
groups, looking for perceptions: “Do you answer all highest-priority trouble
tickets within established time guidelines?” and “Did the IT team meet your
highestpriority trouble tickets within within established time guidelines?”

Ask both the customers and the IT team members to order some sample tasks
based on priority, to find out whether there is agreement and comfort with the
prioritization process. Ask at least one text question that gives people the
chance to express their opinion on overall issues. Obviously, you should check
spelling, ensure sentences are complete (or use the “complete this sentence”
approach where appropriate), be grammatical, be certain of your use of vocabu-
lary, and make sure to use words in their most commonly understood meanings.
Remember, simple words are fine when properly used.

H, have someone proofread your survey, both for language use (including typo-
graphical errors) and for ease of understanding. Discuss with your reader what
they got out of each question, to make sure the respondents will be likely to pro-
vide the desired data.

Administering the Survey

As noted above, it is easy to bias a survey. The most common ways to invalidate
results are to:

n Incorrectly select the participants.
n Be less than fully objective in your language.
n Structure questions in an unclear or ambiguous way.
n Mistime the administration of the survey.

The middle two were covered above; the first and last are addressed here.

Many factors influence how people respond to questions. One significant factor
is the participant pool’s other members. People tend to try to maintain a consis-
tent reputation for themselves within a group. If the group they are in seems
homogeneous based on some given factor, the answers will be homogeneous if
questions revolve around that factor. If the group is very diverse, people may
feel more free to give independent opinions.

; LO G I N : A P R I L 2 0 0 5 C U STOM E R R E Q U I R E M E NTS S P E C I F I C ATI O N S 39

Some factors to consider in selecting the participating audience include the size
of the group, social factors, time of day, and the physical setting. Will the survey
be administered to a large room full of people, small groups together, or individ-
uals? Will each hear or be heard by others? Will responses be treated as anony-
mous or confidential? If grouped, will the groups be homogeneous or hetero-
geneous? Are managers and subordinates, genders, races, etc., combined or
segregated? Are only members of certain groups selected, e.g., upper-level but
not lower-level staff? Will the survey only cover day shift, excluding night folks?
Will people take the survey home or otherwise work on it off-site, or will it be
completed during work hours? One session, or multiple sessions? All of these
affect the results.

The number of questions on a survey has some bearing on the accuracy of the
results. Too few questions may yield too little information, but too many may
yield contradictory, or, if the participant tires of responding, poor information.
Decide exactly what information is desired and construct your questions to get
that information. Be prepared to give out different sets of questions, in multiple
combinations, to employees in different situations.

Data Reduction, Refinement, and Analysis

Once the information has been gathered, how is it processed? What does it
mean? Reducing data from raw form to something structured, refining it to
address the target knowledge list, and then analyzing the results is the whole
reason for the survey process.

Begin by setting the knowledge target list on the desk in plain sight. Continually
refer to it to keep on track. As the saying goes, when you’re up to your knees in
alligators, it’s hard to remember that you’re there to drain the swamp.

As much as it may be of interest to go down any side tracks that appear, just
make a note to get back to them another time and press on. Otherwise the
process will take forever. The exception, of course, is if you run into something
so significant and so unexpected that it completely changes the purpose of your
project, such as an organizational decision to change from manufacturing auto-
mobiles to selling hot dogs.

Good questions will generally yield some reasonably quantifiable responses,
at least in most cases (some things are better asked in non-quantifiable form).
Tallying responses is a fairly easy form of data reduction, and percentages can
quickly be calculated. Of course, the wording of a question may turn out to be
less clear than had been hoped. Responses may then fall into two or more
groups: those who thought the question meant one thing, and those who
thought differently. In other words, you may actually be looking at answers to
multiple questions.

Solutions to this problem could involve resurveying, throwing out questions,
or guessing. This is a good time to recall that surveys are not an exact science,
but a picture of people’s opinions based on their understanding of what is being
asked. Don’t rely on the results as “fact,” but merely as indicators for planning
purposes.

The hard part of data reduction is keeping nonquantifiable responses in context
as part of the whole viewpoint of the participant. Many textual answers tend to
get off the point of the question, and may be misleading if not understood
within the framework of the rest of that individual’s answers. Don’t assume it’s
possible to cut and paste all the answers to question 37 into one large file and
make complete sense of it—critical issues could be obscured by doing so.

Take the time, when reading a text answer, to glance through the quantifiable
answers to relevant questions on the same survey response, to ensure that you

40 ; L O G I N : V O L . 3 0 , N O . 2

understand the participant’s full intent. Yes, this is time-consuming, but it is
important, especially for responses that cannot be tallied easily.

Once the data has been reduced, it’s time to refine it. Raw data is numbers and
text strings. Reduced data is effectively a summary of those numbers and text
strings. Refined data is information. Analysis, which comes shortly, is the inter-
pretation of that information.

Refining quantifiable data might include selecting a value-added method of pres-
entation. To some, that’s a chart or graph; to others, a list of percentages. Deter-
mine the preferences of the audience for the final report and try to accommodate
their wishes.

For some of the process, you yourself are the target audience, so you get some
input too! Refining this kind of data again includes throwing out questions,
rephrasing, and asking againas necessary. Take whatever measures are required
to give the results meaning. Regard this step as a reality check.

Refining unquantifiable data is a more difficult task but has the same goal. Pres-
entation is more difficult, especially to managers who tend to base decisions on
trends, budgets, or percentages. Some information doesn’t fit neatly into numeri-
cal form, however. Bear in mind the most important points to be conveyed to
the target audience, and try to see the presentation through their eyes—might
they misunderstand any of these points? jump to a conclusion without seeing
what is really there? This step doesn’t deal with the results of the survey, just
with ensuring that whatever the results were will be conveyed.

Once the summarization, presentation, and reality checks are done, the analysis
phase commences. If the knowledge target list was clear and valid, the questions
simple and to the point, and the data collection methods trustworthy, the refined
results should neatly fill in the blanks on the knowledge target list.

If they don’t, it is your job to decide whether you should interpolate, guess, or
try again. The actual analysis varies dramatically depending on what the sce-
nario provides and cannot be covered here in any depth. Don’t get bogged down
in numbers or semantics—the information is based on opinion and survey and
is not “proven fact.” Use it to gain an understanding of what the real needs are,
with the purpose of determining how best to plan to meet them.

A good CSR has plenty of built-in flexibility, since organizational needs change
constantly, so aim for being reasonable and appropriate, as opposed to being
right in any absolute sense.

Final Report and Follow-on Proposals

Once the data analysis is complete, it’s time to assemble a report of the cus-
tomer’s requirements, along with proposals for meeting them. This is the set of
deliverables.

During the process of preparing this report, keep the sheet describing the
agreed-upon deliverables in front of you. Sometimes it is a good idea to struc-
ture those deliverables as a set of questions, at least for the purpose of writing
the report—this gives a clear structure for responding to the customer and
serves to remind you of which issues have not yet been addressed thoroughly.

The final report should briefly restate the goals and deliverables and then
quickly review the process followed to achieve those goals and deliverables. The
final report should be a reasonably short paper (effectively an executive sum-
mary) that summarizes your findings and recommendations in high-level, rather
generic terms. The reader should be referred to appendices for both raw and
refined data, with detailed findings and recommendations in additional
appendices.

Appendices should include the following:

n Survey questions
n Raw survey data
n Refined survey data, in various presentation formats
n Findings and expert opinions
n Various options, including pros and cons, costs, and proposed timelines
n Recommendations

The findings are really the meat of the report. This is the assessment of the
actual customer requirements, enumerated by category—CPU server power,
storage space, reliability issues, network bandwidth, etc.). Explain what is
needed, with occasional references as to why (but not in depth). Be prepared to
defend those findings orally, and possibly later in writing, to those who will read
your report.

Remember, you are the expert here, and the customer has asked for your opin-
ion: render it. Two rules apply: professionalism, and the KISS Principle. Gear the
CRS to your target audience, but even if they’re computer-savvy, it’s preferable to
focus on the big picture rather than getting bogged down in detail.

If you are supposed to do additional consulting, provide proposals at this point
that address your recommendations. For instance, you might be suggesting that
you build out the new computing environment you’re recommending, or that
further investigation/research be undertaken for business process consulting.
Proposal documents should be separate from the final report—you want your
report accepted by the customer as a completed consulting task, regardless of
whether or not they accept your proposals.

Periodic Reviews

One of your recommendations is likely to be a periodic review or performance
of this sort of CRS. Needs change, organizations change, people change, tech-
nology advances, and (over time) the purposes for which a computing environ-
ment exists may have changed sufficiently to make the existing one obsolete or
irrelevant. In any case, the organization will benefit from regular review to
ensure that the original requirements specification was valid—remember, we’re
working with a survey of opinions here; relying on people’s thoughts of the day
is an inexact science.

Write your CRS, including goals, explanations (e.g., why you grouped the par-
ticipants as you did), and recommendations, with a review in mind. Assume that
someone else will conduct the next one. Even if it’s you, it’ll likely have been
long enough ago that you will have forgotten your reasoning for whatever isn’t
written out in detail.

Appendix: Examples

K N OW L E D G E TA RG E T L I ST

This is a sample list of information to be considered during the drafting of rec-
ommendations. Anything not known is a candidate for survey questions. A box
(n) indicates “critical”; a dash (–) indicates a normal level of importance.

n Purpose of the business/organization

– Purpose of the computing environment

– Expectations of the computing environment

; LO G I N : A P R I L 2 0 0 5 C U STOM E R R E Q U I R E M E NTS S P E C I F I C ATI O N S 41

42 ; L O G I N : V O L . 3 0 , N O . 2

n Current information flow in the organization (not specifically computing-
related)

n Projected information flow after a new computing environment is
implemented

n Disaster recovery and business resumption models and plans

n Plans for hardware and software migration, life-cycle replacement, legacy
issues

n Perceived problems to be resolved by a new design

– Current network layout

– Current computing policies

– Current security implementation and policies

– Who drives actual priorities for support work

– The organization of the existing support group

– Physical plant layout, number of floors and buildings, remote sites related

– Number, size, and interrelationship of sysadmin groups involved; their depth
and abilities

– Number of current servers, OSes, manufacturers, models, hardware configura-
tions (cards and card layout, space, cabling, OS versions, usage), life
expectancy

– Number of clients, purposes, integration requirements (AppleTalk, NFS,
Samba, printing), file-sharing requirements

– Applications in use, versions, predicted changes in patterns

– Quantity of storage applied, models, brands, amount in use, usage patterns
(e.g., periodic, long-term, number of readers/writers, aging process), data
types, rates of change of files, databases, raw vs. cooked file systems, filesys-
tem specifics (sizes, chunks), RAID levels, snapshot usage, mirrors, types of
service (NFS, CIFS, etc.)

– Number of users (on-site and off-site), external connectivity issues, collabora-
tors or sharing issues, location-independence requirements, impact on secu-
rity

– High availability requirements, uptime

– Software installed, license issues, version issues, restrictions

– Computer room construction, availability of resources (power, space, air con-
ditioning, cabling, security)

– Number of servers accessing the same data

– Business hours, maintenance windows

– Interoperability issues between groups, sites, machines/OSes

– Tools in use to manage site, monitoring, logging

– Centralized vs. decentralized services: printing, email, servers, management
reasoning

n Applications to be used in the new environment

n Growth expectations, storage, compute power, users, reasoning

– Off-site connectivity requirements upcoming, collaborations, “shared” areas
outside the new environment

– Backup plans and intentions, off-site and on-site mirrors, reasoning

n High availability and uptime requirements predicted, reasoning

– Hardware and software vendor biases, reasoning

– Possible changes to the business model, business purposes, collaborations

– Software version requirements anticipated, potential conflicts, support issues

– Support group plans

n Other vendors involved in design phase, implementation phase, internal peo-
ple involved

– Corporate stability, financial status, funding for this project, budget model
timeline

– Plans for training support group and users

– Support conflict managements, SLAs

– Special requirements, e.g., 10-minute snapshots, root/administrator access for
users, high performance CPU crunching

S A M P L E S U RV EY

I NTRO D U C TI O N

It is always a good idea periodically to review the computing environment to
ensure that it continues to meet the needs of the user community. When
resources are stretched and need to be expanded, or when significant change to
the user community is in process, this review becomes even more important.

The organization is out of IP address space and is short of disk space. The
backup process leaves significant gaps in coverage. Funding changes are on the
horizon. The current computing environment grew in a piecemeal fashion over
a period of years, from a time when the needs of the organization were different.
Although this is a common situation, this environment needs review and possi-
ble reorganization for effectiveness and maintainability. This survey is designed
to lead to a Customer Requirements Specifications document which will provide
the basis of a plan for computing environment changes.

The CRS document will help define the services to be provided. Your timely par-
ticipation in this survey is absolutely crucial to its success and will lead to an
improved computing environment. Please feel free to ask questions or to make
comments in the margin. Answer as many of the questions as you can. Thank
you for your cooperation.

P E O P L E

P1. What is the name of your group or project?

P2. Who are the people in your group?

P3. What are their usernames?

P4. What computing equipment preferences does each have?

P5. What actual computing equipment needs does each have?

P6. How are these people divided into subgroups?

P7. What permissions does each person need with regard to files outside of their
home directory?

P8. What permissions do the other members of each group need with regard to
files in home directories?

; LO G I N : A P R I L 2 0 0 5 C U STOM E R R E Q U I R E M E NTS S P E C I F I C ATI O N S 43

44 ; L O G I N : V O L . 3 0 , N O . 2

P9. Who else, outside of the group, needs permissions in your project and/or
home areas?

P10. What computer-use training does each person need? Who provides this?

P11. How many new positions are scheduled to be added to your group? When?

E Q U I PM E NT

E1. What computing equipment belongs to your group?

E2. What computing equipment do the members of your group use?

E3. What is the age and end-of-life projection for each item?

E4. Is each suited to its current tasks?

E5. Is each suited to upcoming requirements?

E6. Will any be transferred to another group or organization?

E7. What are your “uptime” requirements? Why?

E8. Are there periods where you are able to accept “scheduled outages”?

E9. How long would you be able to withstand a “catastrophic outage”?

E10. How much data do you have online now?

E11. What change do you anticipate to that level of data online? What rate?

E12. What performance changes do you need? Why?

G R A NTS O R OTH E R F U N D I N G

G1. What grants are current in your group?

G2. When will each run out, in its current iteration?

G3. What is the likelihood of each being extended? For how long? When?

G4. What equipment does each grant own? Are there other co-owners as well?
Co-users who are not part of the grant?

G5. What ties does each grant make upon equipment, in the sense of funding?

G6. Will any grants be transferred to another group?

G7. What additional grants are being considered? When?

G8. What additional non-grant projects are being considered? When?

S E C U R IT Y

S1. What collaborative ties do you have to organizations outside of your group,
but within the overall organization?

S2. What collaborative ties do you have to external organizations?

S3. What collaborative ties do you anticipate being formed? When?

S4. How many of your group use location-independent computing? (This
includes dial-in or remote login from other dial-in services or from other
sites.)

S5. What services do you and your group use remotely?

S6. What use do you make of superuser/administrator access on your machines
now? Why? When?

S7. Are there parts of your data that require extra protection?

S O F T WA R E

O1. What software packages does your group use? Please give the version num-
ber of each.

O2. Where do you get those packages?

O3. What other software packages will you need? When?

O4. What operating systems does your group use now? Why?

O5. What changes do you anticipate in your operating system needs? Why?

M I S C E L L A N E O U S

M1. What current computing needs do you have that are not being satisfied?

M2. Do you have special needs for additional services?

M3. What current computing problems do you face?

M4. What other computing requirements do you foresee?

M5. What responsibilities do you see as belonging to the support team?

M6. How do conflicts in requirements or priorities get resolved?

; LO G I N : A P R I L 2 0 0 5 C U STOM E R R E Q U I R E M E NTS S P E C I F I C ATI O N S 45

46 ; L O G I N : V O L . 3 0 , N O . 2

N I C K S T O U G H T O N

update on standards
Nick is the USENIX Standards Liaison and represents
the Association in the POSIX, ISO C, and LSB working
groups. He is the ISO organizational representative
to the Austin Group, a member of INCITS commit-
tees J11 and CT22, and the Specification Authority
subgroup leader for the LSB.

nick@usenix.org

At the end of last year, the USENIX Board
of Directors asked me to prepare a report
for ;login: on the activities in the world of
formal standards in 2004.

And a very busy year it’s been.

For two years or so, since the Austin Group revised
the POSIX standard completely, the majority of activi-
ties have been centered on maintenance. Maintenance
is a good thing; the fact that since 2001 we have
addressed hundreds of problem reports against the
3700+ pages of POSIX, as well as publishing two
Technical Corrigenda, shows that the standard is
being used. People are reading it carefully and asking
hard questions of the form “Did you really mean to
say this?” Sometimes the answer is “yes,” sometimes
it’s “no,” but every question is carefully reviewed ,
and if necessary new text is written to clarify the
meaning.

Having the standard freely available online (see
http://www.unix.org/single_unix_specification/) helps
enormously in spreading the use of POSIX: no system
implementer or application developer can excuse
nonconformance with “I couldn’t afford the stan-
dard.” Additionally, the relative ease of licensing the
text means that open source implementations have
started to adopt the actual standard text for their man
pages; both FreeBSD and the Linux Man Page project
have licensed it for this purpose. Increasingly, open
source solutions set POSIX conformance as a deliber-
ate objective.

POSIX is about to embark on its next major revision.
This year will see the development of material suit-
able for inclusion in POSIX as Open Group specifica-
tions, IEEE specifications, or ISO Technical Reports.
Then, during 2006, this new material will be worked
into the core document and published, probably in
2007. Work here includes fixing some of the more
controversial items from the maintenance process,
adding new interfaces widely used in GNU utilities
but missing from POSIX, and handling convergence
with other ISO standards (see the LSB discussion
below).

The Linux Standard Base

POSIX is all well and good for people working in soft-
ware at the source level and looking for portability.
However, there is still a substantial market for closed
source applications. Although Linux has undergone a
meteoric rise in popularity over recent years, the lack
of proprietary software is still seen as a stumbling
block for enterprises that equate “proprietary” with

“commercial.” The Free Standards Group (FSG) has been developing a very differ-
ent sort of standard to help address this problem: the Linux Standard Base (LSB).
The LSB is an Application Binary Interface (ABI) standard, whereas POSIX is an
Application Programming Interface (API) standard.

The LSB ABI allows an application developer to build an application in such a way
that the binary will run in the same way on any conforming implementation. You,
as an application developer, can feel sure that your conforming application will run
on any conforming distribution. The ABI deals with issues such as versions of
libraries, the value of certain macros, and so on. Much of the detail of what a partic-
ular interface does is left to some underlying specification such as POSIX.

Although the LSB is heavily based on POSIX, with most of its interfaces (excluding
C++) coming from that source, there are a few notable differences between some
implementations of these interfaces. In particular, POSIX may specify one behavior,
but glibc or some GNU utility has implemented a subtly different behavior. POSIX
is in a position to dictate how a conforming implementation should behave. The
LSB, on the other hand, is an ABI standard, describing how something has been
implemented rather than how something should be implemented.

A good example is the open system call. POSIX states clearly that open “shall fail if
. . . [ENXIO:] The named file is a character special or block special file, and the
device associated with this special file does not exist.” However, the Linux kernel
returns ENODEV in this case, rather than ENXIO. If you are writing an application
that cares about the value of errno (i.e., tries to perform some sort of error recovery
for certain values of errno), then you’ll need to test for both values for this case.

One of the goals of the next POSIX revision is to see whether any of these differ-
ences could be resolved by careful wording in POSIX. The LSB is also looking to see
how many of these differences it can remove. Clearly, this also requires support of
the upstream maintainers, the folks who write and support glibc, the Linux kernel,
the various GNU utilities, etc. If code changes are required to achieve conformance
to POSIX, how many existing applications will be broken? Developing standards
can sometimes be a veritable tightrope walk between competing requirements.

Moving Toward Standardization

At the beginning of 2004, the LSB was almost ready to release version 2.0, a major
overhaul of version 1.3. Version 2.0 contains several new libraries, notably, the
standard C++ library. Many Independent Software Vendors (ISVs) had asked for
C++ support in the LSB; it was one of the most common reasons people said that
previous versions of the LSB were not useful.

One of the criteria for inclusion in the LSB is “best practice.” You have to remember
that standards are not typically at the leading edge of technology development.
Good standards document existing practice, finding a common ground for multiple
competing similar interfaces. It turns out that the C++ ABI is not yet particularly
stable. GCC has had an unfortunate habit of changing the ABI for C++ with almost
every release. When the LSB started the work of documenting the C++ ABI, GCC
was at version 3.2. Midway through the LSB development, along came version 3.3,
with a subtly altered ABI. Almost all the vendors said, “We are going to base our
next product on GCC 3.3,” so the LSB followed suit and upgraded the ABI specifi-
cation to be based on GCC 3.3. Guess what: just as the LSB was about to release,
GCC came out with 3.4, a new ABI.

To complicate matters further, the ISO (International Organization for Standards)
had decided in 2003 that they wanted some standard “in the Linux space” to help
keep up their relevance. The FSG was engaged in all of the discussions concerning
this, and they proposed that the LSB was an appropriate answer.

; LO G I N : A P R I L 2 0 0 5 U P DATE O N STA N DA R D S 47

Having the LSB become an International Standard like POSIX and ISO-C would help
cement the position of Linux as an acceptable enterprise-level operating system. The
ISO’s Publicly Available Specification (PAS) process offers a way to transform stan-
dards developed by other groups into full-scale International Standards: first, the
submitting organization is vetted and voted on by the members (countries), and
then the document is submitted and goes through a six-month ballot to become an
International Standard.

The FSG was accepted as a PAS submitter on October 31, 2003. They then had
twelve months to submit a document. The plan was to submit 2.0 when it was pub-
lished, which at that time was expected to be around February 2004.

Two factors then kicked in simultaneously: first, the C++ ABI instability issue, with
distribution vendors arguing as to which version represented “best practice.” The
word “best” was originally supposed to mean “most widely used.” In other words, if
nine distributions were using GCC 3.3 and one was using GCC 3.4, then 3.3 was the
“best.” Of course, we all know there’s another meaning to “best”—the motivation
for the changes in the ABI from 3.3 to 3.4 was that 3.3 was buggy! The other thing
that acted to delay an early release of LSB 2.0 was evaluating it in terms of “This is
going to ISO: is it as good as it deserves to be?”

The answer to that last question landed directly on my own shoulders. I had to say
to the LSB workgroup, “You know, this isn’t a truly wonderful piece of work when
you look at it in the light of an ISO standard.” Thus started six months or more of
hard slog to review and fix some of the inconsistencies, ambiguities, and other
potential problems so that the FSG could submit it before 10/31/2004.

We made it on both fronts. Version 2.0 was published at the end of August, with the
C++ material still based on GCC 3.3, but separated into a distinct module. That
module was excluded from the material submitted to ISO but remained a required
part of the FSG’s certification program for LSB 2.0. To date, there have been 11 dif-
ferent products (distributions) certified against 2.0.

Since the C++ module was based on an outdated, buggy version of the GCC ABI, a
roadmap was made for upgrading to GCC 3.4’s ABI during the first quarter of 2005.
It looks as though this version of the LSB (which will be called LSB 3.0, since the
ABI itself has changed), will indeed have been published by the time you’re reading
this.

Meanwhile, the six-month ISO ballot is in progress. It started November 10, 2004,
and finishes May 10, 2005. Votes here are by country. The U.S. has a vote, as do 21
other member countries (see http://www.jtc1.org under “Membership”). The proce-
dure is somewhat complex: each member country is responsible for putting together
its national body recommendation, but there are no overall rules as to how this rec-
ommendation is made. The U.S. does it one way, the U.K. another, and Australia yet
another. On May 10, each national body sends its vote to the ISO secretariat in
Zurich.

A country can vote yes, yes with comments, no (which must include substantive
reasons), or abstain. The project editor has to address any no vote’s comments, and
doing so may change that no to a yes.

After the ballot has closed and the project editor has called and held a ballot resolu-
tion meeting to produce a “disposition of comments” report, the final votes are
counted. If more than two-thirds of the votes are yes and fewer than one-quarter no,
the document becomes a numbered International Standard. POSIX is ISO/IEC 9945,
C is ISO/IEC 9899, and the LSB is destined to become ISO/IEC 23360.

As the LSB gathers momentum, we are starting to see public attacks on it from some
organizations whose revenues could be directly affected by the widespread adoption
of Linux at the enterprise level. This is proof positive that we are doing The Right
Thing (TM).

48 ; L O G I N : V O L . 3 0 , N O . 2

; LO G I N : A P R I L 2 0 0 5 TH E B O O KWO R M 49

Æ L E E N F R I S C H

the bookworm
Æleen Frisch is a system adminis-
trator and writer living in
Connecticut (www.aeleen.com).

aeleen@usenix.org

Books Reviewed in this Column

F O R E N S I C D I S COV E RY

Dan Farmer and Wietse Venema
Addison-Wesley, 2004, 0-201-63497-X,
217 pp.

B U I L D I N G A LO G G I N G

I N F R A STR U C TU R E

Abe Singer and Tina Bird
Short Topics in System Administration
12, USENIX Association, 2004,
1-931971-25-0, 82 pp.

TRO U B L E S H O OTI N G L I N UX F I R EWA L LS

Michael Shinn and Scott Shinn
Addison-Wesley, 2005, 0-321-22723-9,
381 pp.

I NTE R N E T D E N I A L O F S E RV I C E :

AT TAC K A N D D E F E N S E M E C H A N I SM S

Jelena Mirkovic, Sven Dietrich,
David Dittrich, and Peter Reiher
Prentice-Hall, 2004, 0-13-147573-8,
400 pp.

TH E E X E C UTI V E G U I D E TO

I N F O R M ATI O N S E C U R IT Y: TH R E ATS,

C H A L L E N G E S, A N D S O LUTI O N S

Mark Egan with Tim Mather
Addison-Wesley Symantec Press, 2005,
0-32-130451-9, 288 pp.

S L A M M I N G S PA M : A G U I D E F O R

SYSTE M A D M I N I STR ATO R S

Robert Haskins and Dale Nielsen
Addison-Wesley, 2005, 0-13-146716-6,
420 pp.

S E N DM A I L M I LTE R S : A G U I D E F O R

F I G HTI N G S PA M

Brian Costales and Marcia Flynt
Addison-Wesley, 2005, 0-321-21333-5,
347 pp.

L I N UX A P P L I C ATI O N D EV E LO PM E NT,

2 N D E D ITI O N

Michael K. Johnson and
Erik W. Troan
Addison-Wesley, 2005, 0-321-21914-7,
732 pp.

JAVA A P P L I C ATI O N D EV E LO PM E NT

O N L I N UX

Carl Albing and Michael Schwarz
Prentice-Hall, 2005, 0-13-143697-X,
598 pp.

K N O P P I X H AC KS : 1 0 0 I N D U STR I A L-

STR E N GTH TI P S & TO O LS

Kyle Rankin
O’Reilly, 2005, 0-596-00787-6,
314 pp. + CD.

I am thrilled and honored to be
taking over from the illustrious
Peter Salus as the Bookworm. This
month’s books are a somewhat
random set, as the review copy
pipes are just getting started for
me.

F E AT U R E D : F O R E N S I C D I S COV E RY

Dan Farmer and Wietse Venema
are best known collectively as the
authors of the SATAN security
evaluation application. However,
they are also the authors of the one
of the most important security
articles in the literature, “Improv-
ing the Security of Your Site by
Breaking into It,” which explained
the concept of (implicit) transitive
trust. Venema and Farmer have
collaborated on a new software
tool, the Coroner’s Toolkit, for per-
forming post-break-in analysis;
this is also the subject of their new
book (the software appears at vari-
ous points throughout the book
and is discussed in an appendix).
The book is divided into three
parts, covering an overview of
forensics and related concepts,
fundamental system entities/data
structures related to forensic dis-
covery, and the specifics of data
persistence.

This book is an excellent mix of
the theoretical and the practical.
Fundamental concepts are covered
in detail, as are system data struc-
tures and entities (e.g., file sys-
tems, inodes, processes, system
calls), providing a helpful—and
necessary—knowledge base for
the specific techniques for examin-
ing the latter that follow. As is typ-
ical of their work, Farmer and
Venema have the knack of getting
even experienced UNIX folks to
look at and appreciate familiar
things/material in a new way.

A significant thread running
through the book is the persist-
ence of data, including data
deleted from memory and storage
media. In the first chapter of the

book’s final part, the authors have
compiled and performed a number
of useful experiments that enable
them to make very specific quanti-
tative statements (e.g., how long
trace data from a deleted file can
be expected to linger under vari-
ous system usage scenarios). This
kind of information is needed to
make both analysis and prevention
planning practical (or even feasi-
ble).

This book is extremely useful for a
wide spectrum of readers. People
who are just getting started with
computer forensic analysis will
find it a clear and useful first book
that will provide additional bene-
fits on rereading. At the other
extreme, experienced security
administrators will appreciate the
authors’ clarity and insight in
thinking about forensics in general
and the specific discovery/analysis
operations in particular. I always
find that reading Dan and Wietse’s
work inspires me to strive for
greater excellence in my own.

TH E D E F I N ITI V E WO R K O N LO G G I N G

Abe Singer and Tina Bird have
done a marvelous job with the lat-
est volume in SAGE’s Short Topics
in System Administration series.
Building a Logging Infrastructure is
a very comprehensive discussion
of syslog and its uses and foibles.
The work covers logging on both
UNIX/Linux and Windows sys-
tems, and also discusses some
replacements for syslog and when
they are useful or necessary. The
relative lack of material on log
data reduction is due to the dearth
of options in this area rather than
the authors’ omission. This book is
so good that I find myself falling
into a typical writer’s emotional
pitfall: being jealous that I didn’t
write it myself. A must-have for
everyone.

TH R E E M O R E O N S E C U R IT Y

The authors of Troubleshooting
Linux Firewalls describe their
books as including “the Tao of fire-
wall security, the Zen of trou-
bleshooting, and the nitty-gritty
step-by-step instructions to fix a
problem.” This is a good descrip-
tion of their approach to their
topic. The book does a very good
job of handling the second and
third of these items, which is the
main thrust of their book. The first
topic, firewall security, covered in
two early chapters, seems a bit
rushed (more space needs to be
given to system hardening in par-
ticular). The book focuses on Red-
Hat and SuSE Linux, but the prin-
ciples and many of the specifics
apply to almost any Linux distri-
bution.

Internet Denial of Service: Attack
and Defense Mechanisms is an in-
depth treatment of DoS and DDoS
attacks and ways of responding to
and preventing them. The authors
constitute a DoS dream team. Not
surprisingly, the level of detail,
understanding, and technical
expertise is consistently high
throughout the book. The book is
also quite readable and even in
tone and quality, despite having
four authors. Don’t let the book’s
goofy cartoon cover illustration
mislead you or put you off. This is
a serious book on an important
topic.

Finally, The Executive Guide to
Information Security is exactly
what it sounds like: a book about
computer security designed for
nontechnical business executives.
It places security concepts and
practices within a typical business
framework (mindset). As such, it
may be useful to some readers of
this column who need to present
such technical information to
managers and other nontechnical
audiences.

50 ; L O G I N : V O L . 3 0 , N O . 2

S PA M I S TH E WO R D

Slamming Spam is another excel-
lent book. It surveys all of the
major spam-fighting techniques in
common use today, covering both
user-level and system-level strate-
gies. It discusses—and provides
detailed, correct directions for—
configuring email clients (“user
agents”), Sendmail, Postfix, qmail,
Exchange, and Lotus Notes for
spam filtering. It includes chapters
on procmail, SpamAssassin,
Vipul’s Razor, blacklists, SMTP
authentication, sender verifica-
tion, and, of course, Bayesian fil-
tering. Mail administrators, system
administrators, and anyone who
has to deal with a significant spam
problem will find this book indis-
pensable.

Sendmail Milters is the definitive
reference for using Sendmail’s fil-
tering facility—milters—for deal-
ing with spam messages. Its four
parts cover the characteristics of
spam, deploying a test environ-
ment for developing and testing,
writing milters, and configuring
Sendmail to use milters. This book
is very comprehensive, extremely
well written and eminently read-
able, and of the high quality one
would expect from Brian Costales,
working in concert here with Mar-
cia Flynt.

A PA I R O N L I N UX P RO G R A M -
M I N G

Both of the programming books
this time are aimed at beginners of
various sorts. Java Application
Development on Linux is written for
readers with some programming
experience and a basic familiarity
with object oriented programming
concepts. The first major section
of the book introduces the Linux
environment and the basic Java
language, and the remaining four
parts cover Java in action, includ-
ing database queries, GUIs, Web
interfaces, and distributed applica-
tions. The pace of the book is slow,
but this is appropriate for its
intended audience, and the book is
long enough to introduce its topics
in nontrivial detail. Students—and
others—with only a moderate
amount of programming experi-
ence will have no trouble working
through this book on their own,
and they’ll be ready for advanced
Java texts when they are through.

Linux Application Development is
now in its second edition. Peter
called the previous edition “a
superb piece of work,” while not-
ing that it “makes no concessions
to the unwashed.” It would seem
that much of the effort that went
into the second edition was
designed to broaden the book’s
appeal. For example, it now pro-
vides many, albeit brief, explana-
tions of how Linux does things
and also includes coverage of
glibc. The book has been updated
for the 2.6 Linux kernel and GNU
C library 2.3. It continues to serve
as an excellent reference for seri-
ous Linux application developers.

PA RTI N G G L A N C E

I’m going to try to end each col-
umn with a brief mention of some-
thing a little out of the main-
stream. This time it’s Knoppix
Hacks, a book that made me nos-
talgic for the days when I fre-
quently used a Yggdrasil install
CD as a PC hardware diagnostic
tool. Knoppix is a Linux distribu-
tion that runs directly from a CD
without installation to disk. This
book describes the many tasks it
can perform, ranging from system
configuration and repair to creat-
ing computer kiosks and roll-your-
own Tivo-like systems. My one
gripe with the book is its organiza-
tion. Like all of the volumes in the
O’Reilly Hacks series, it is struc-
tured as a numbered series of short
articles, a scheme that inevitably
favors breadth over depth. I’d say
about two-thirds of the topics here
are useful and the other one-third
are cool, resulting in a book that is
a good reference and also fun to
flip open and start reading.

; LO G I N : A P R I L 2 0 0 5 TH E B O O KWO R M 51

book reviews
R I K F A R R O W

rik@spirit.com

G O O G L E H AC KS, 2 N D E D ITI O N

Tara Calishain and Rael Dornfest
O’Reilly, 2005, 0-596-00857-0, 443 pp.

When the first edition of Google
Hacks came out, I ignored it. Sure,
I thought I would learn something
from the book, but Google seemed
pretty easy to use as is. Then I
heard Johnny Long (http://johnny
.ihackstuff.com) talking about
penetration testing using Google.
Long opened my eyes to a lot of
Google potential that I had been
missing, and now I wanted to
learn more.

This is not a review about Google
Hacking for Penetration Testers.
That book hasn’t arrived yet (but I
did ask for a copy). What showed
up first was the second edition of
Google Hacks, which seemed like a
good place to start learning more
about Google. And it is.

The first 28 pages cover the “bas-
ics” of Google, including useful
special syntax such as site:, inurl:,
and define:. Did you know you
can include number ranges in your
searches? Some of this information
is so easy and useful, searching
will never be the same.

But what are the other 415 pages
for? The hacks in this book often
require some programming, as
hacks should. Unlike some recent
O’Reilly books, this one is mostly
for UNIX users, and it is useful to
have not only Perl but also Python
and PHP installed. If you want to

try all the hacks, you will also
need Java and .Net. And, yes, there
are one or two hacks that will
work only on Windows, and other
things that work only if you have a
Web server that can run scripts.

Why bother programming when
you can just use the interfaces
Google provides you? You can use
Advanced Search or choose a date
range for your search. Or you can
instruct the Google search engine
to include only pages indexed
within a certain time period—but
you must use Julian dates if you
want to do so. A bit of Perl pro-
gramming makes using Julian
dates trivial to do.

Many hacks are pretty fanciful,
such as a grid search, a popularity
contest, Google mindshare, or
finding a recipe to match the
ingredients you have in your
refrigerator. But there is lots of
useful stuff, including an entire
chapter about using the Google
API, Gmail, how Google PageRank
works, and adding Google
searches to your own Web sites. If
you are interested in improving
the accuracy of your searches, or
just want to have fun with Google,
this book is a bargain.

K N O P P I X H AC KS

Kyle Rankin
O’Reilly, 2005, 0-596-00787-6, 314 pp.
+ CD.

Ever wanted to turn someone on
to Linux but shied away from hav-
ing to take responsibility for sup-
porting the installation? Instead of
taking the plunge, just hand some-
one a copy of Knoppix on a CD
(knoppix.net), and—as long as
they have an i386-based system
that can boot from the CD-ROM—
they can experience Linux without
installing it. Note that there are
versions of Knoppix for some
other architectures as well.

Knoppix Hacks is not for the casual
explorer but for someone who
wants to understand how to get
the most out of Knoppix, because

Knoppix is a lot more than a demo
CD. I have been using Knoppix to
teach my hands-on Linux security
class for a year now. I customize
my version of Knoppix by remov-
ing some packages and adding
class exercises. When I first started
doing this, I had to piece together
the methods for working with
Knoppix. This book provides
details about creating your own
custom Knoppix distribution in
the final group of hacks. Wish I
had had this a year ago.

Knoppix out-of-the-box is a fine
toolbox. You can use it to replace
lost passwords (including on Win-
dows systems, with a downloaded
utility), replace or fix boot loaders,
repartition a system, and even
recover a master boot block (as
long as you don’t use extended
partitions). Knoppix can be a ter-
minal server, DNS server, DHCP
server, NFS server, Samba server,
or Web server. Knoppix can also
be used to rescue unbootable Win-
dows systems through a registry
edit or recovery of a CAB file.

Knoppix Hacks provides the infor-
mation you need to make the most
out of Knoppix. Without it, you
would be hard pressed to discover
all you can do with Knoppix. The
book comes with an older version
of a Knoppix CD (3.4), but even
so, think of it as the perfect gift for
a talented sysadmin, whether she
works with UNIX or Windows.

F O R E N S I C D I S COV E RY

Dan Farmer and Wietse Venema
Addison-Wesley, 2004, 0-201-63497-
X, 217 pp.

Forensic Discovery is a book you
must have if you are seriously
interested in computer security.
Farmer and Venema take you on a
journey that covers just about any-
thing that might remain in a com-
puter as a result of an intrusion or
other activity. Unlike other foren-
sics books, the focus is not on
finding evidence that can stand up
in court. Instead, the authors

52 ; L O G I N : V O L . 3 0 , N O . 2

explore uncovering all the bits and
pieces that might still be around
months or years after an incident.

Farmer and Venema carefully lay
the foundation for their methods
of discovery. They explain booting,
kernel initialization, system
startup, file system details, process
details, and examining malware in
safety. They also dig deep into file
systems, uncovering information
about deleted files and informa-
tion cached by journaling file sys-
tems. They offer thorough expla-
nations that make it much easier
to understand those normally
ignored structures that underlie all
modern file systems, yet are criti-
cal in forensics. Ever wonder just
how long deleted data stays on

UNIX systems? The authors
explore persistence of data on disk
and in memory through experi-
ments, using real systems with dif-
ferent activity profiles to deter-
mine just how long data, or signs
of intrusion, can remain in a sys-
tem. The authors also discuss why
uncovered data may only poorly
represent the past, either because
of normal system activity or active
attempts at deception by miscre-
ants.

While this book uses some of the
tools developed as part of the
Coroner’s Toolkit, it is not a book
about those tools. Rather, it is a
serious exploration of how mod-
ern operating systems work in
practice, what types of informa-

tion get stored, how this informa-
tion is stored, and techniques for
retrieving and making sense of
that data. The writing flows
smoothly and clearly, with occa-
sional geek humor, making this
book easy to read and very accessi-
ble.

Even if you do not focus on secu-
rity, you might want to read this
little book just so you can have a
better understanding of the sys-
tems you use and manage daily.
The authors focus mainly on
Solaris, Linux, and the BSDs.
While Windows gets mentioned in
passing, this is not a book for
MSCEs. I highly recommend
Forensic Discovery and am very
glad it has finally been published.

; LO G I N : A P R I L 2 0 0 5 B O O K R EV I E WS 53

SAVE THE DATE!
14th USENIX Security Symposium

August 1–5, Baltimore, MD
http://www.usenix.org/sec05

Join us in Baltimore, MD, August 1–5, 2005, for the latest advances in computer
system security. The USENIX Security Symposium brings together researchers, prac-
titioners, system administrators, system programmers, and others interested in the
latest advances in security of computer systems.

54 ; L O G I N : V O L . 3 0 , N O . 2

USENIX
notes

U S E N I X B OA R D O F D I R E C TO R S

Communicate directly with the
USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E NT

Michael B. Jones,
mike@usenix.org

V I C E P R E S I D E NT

Clem Cole,
clem@usenix.org

S E C R E TA RY

Alva Couch,
alva@usenix.org

TR E A S U R E R

Theodore Ts’o,
ted@usenix.org

D I R E C TO R S

Matt Blaze,
matt@usenix.org

Jon “maddog” Hall,
maddog@usenix.org

Geoff Halprin,
geoff@usenix.org

Marshall Kirk McKusick,
kirk@usenix.org

E X E C UTI V E D I R E C TO R

Ellie Young,
ellie@usenix.org

Years and Years Ago

Peter H. Salus
peter@usenix.org

2005!

Think about it!

Fifty years ago, 1955, IBM encour-
aged the first meeting of “users”—
operators of the new 704—I guess,
the first LISA. Also in 1955,
AT&T/Western Electric submitted
to the consent decree that, among
other things, barred them from
entering any business other than
telephony or telegraphy (when was
the last time you sent or received a
telegram?).

A decade later, 1965. The Multics
project has gotten underway. CTSS
and DTS on the DEC-10 are the big
thing. IBM is just coming out with
the 360.

1975! Big time. The Labs have
come out with V6. The “UNIX
Users’ Group” (linear parent of
USENIX) has met (nearly two
dozen in attendance!) and is brac-
ing itself for another—publi-
cized—meeting to be held 18 June.
(Attendance bounded to 40.) It
was the beginning of multiple
meetings, too.

In October, Mel Ferentz chaired a
meeting at CUNY, and Belton Allen
chaired one four days later at the
NPG in Monterey.

The year 1976 saw three meetings,
too: one in Berkeley in February
chaired by Bob Fabry; two at Har-
vard—April and October—both
chaired by Lew Law.

The second of these was the first
meeting to top 100 attendees, but
the next May, Steve Holmgren
chaired the first Midwest meeting
at UIUC and eclipsed that with 250
in attendance.

In September, Oliver Whitby and
John Bass ran a West Coast meet-
ing at SRI with about 100 atten-
dees.

U S E N I X M E M B E R B E N E F ITS

Members of the USENIX Associa-
tion receive the following benefits:

F R E E S U B S C R I P T I O N to ;login:, the Associ-
ation’s magazine, published six times
a year, featuring technical articles,
system administration articles, tips
and techniques, practical columns on
such topics as security, Perl, Java, and
operating systems, book reviews, and
summaries of sessions at USENIX
conferences.

A C C E S S T O ; L O G I N : online from October
1997 to this month:
www.usenix.org/publications/login/.

A C C E S S T O P A P E R S from USENIX confer-
ences online:
www.usenix.org/publications/
library/proceedings/

T H E R I G H T T O V O T E on matters affecting
the Association, its bylaws, and elec-
tion of its directors and officers.

D I S C O U N T S on registration fees for all
USENIX conferences.

D I S C O U N T S on the purchase of proceed-
ings and CD-ROMs from USENIX
conferences.

S P E C I A L D I S C O U N T S on a variety of prod-
ucts, books, software, and periodi-
cals. For details, see
www.usenix.org/membership
/specialdisc.html.

F O R M O R E I N F O R M AT I O N regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

The organization was about to
become USENIX. The publication
was about to become ;login:.

An informal gathering of under
two dozen people in May 1974
had turned into a semiannual
event of major proportions.

[Blatant advertisement: Tom
Limoncelli and I have edited an
anthology of all the April Fool’s
Day RFCs. No Starch Press, out in
July.]

Short Topics Booklets

Rik Farrow, Short Topics Editor
rik@spirit.com

The Short Topics in System
Administration series of booklets
are intended to fill a void in the
current information structure, pre-
senting topics in a thorough, refer-
eed fashion but staying small and
flexible enough to grow with the
community.

Number 12 in the series, Building
a Logging Infrastructure, by Abe
Singer and Tina Bird, appeared
first at LISA ’04. As of March 1, a
new booklet, A Sysadmins’ Guide to
Oracle, by Ben Rockwood, was
beginning a technical review, and
it should be in production early
this summer. A contract has gone
out to Xev Gittler and William
Charles for a booklet with the
working title Being Root, providing
guidelines for working as the root
user, focusing on best practices,
tools, and ethics.

USENIX welcomes suggestions for
topics, proposals for booklets, and
technical reviewers. Interested?
Please send email to
sagebooklets@usenix.org.

For the list of booklets, see
www.usenix.org/publications/.

Thirtieth Anniversary,
USENIX Association

Peter H. Salus
peter@usenix.org

June 18, 1975. CUNY in Manhat-
tan. Mel Ferentz runs the first
USENIX conference. Of course, it
wasn’t called USENIX then, it was
a UNIX users’ group, until the
lawyers at AT&T got tough about
that (tm). And it wasn’t the first
meeting, either, as Lou Katz had
run a small meeting in a confer-
ence room at Columbia in May
1974.

But there were “about 40 people
from 20 institutions” at the 1975
meeting.

Look around at any USENIX con-
ference, workshop, symposium.
There’ll be many times 40 folks.
Yes, it has been 30 years, but the
growth has come because USENIX
has been where it’s happening.
And still is.

USENIX is where Kirk McKusick
talked about memory manage-
ment.

USENIX is where Tom Ferrin told
us how to “cut this foil etch” and
“insert this jumper wire.”

USENIX is where we first heard
about Tcl and OAK (= Java) and
Perl and GNOME.

USENIX is where, in 1980 in
Boulder, Colorado, Jim Ellis
announced USENET.

USENIX is where UUNET began.

USENIX is where portability has
been supported for 30 years.

USENIX has been sponsoring
redistributable software since
1976.

USENIX held its first security
workshop in 1988.

USENIX held a POSIX workshop
in 1987.

And:

1st Graphics Workshop, 1985

1st C++ Workshop, 1987

1st Supercomputing Conference,
1987

1st Security Workshop, 1988

1st Mobile Computing Workshop,
1993

1st OSDI, 1996

1st Electronic Commerce Work-
shop, 1998

1st Embedded Systems Workshop,
1999

SAGE became a Special Technical
Group of USENIX in 1992.

USENIX has brought together the
core of the Linux Kernel develop-
ment team in the Linux Kernel
Developers Summit, held annually
since 2001.

USENIX is where Ken Thompson
spoke in 1974; where Steve Jobs
spoke in 1987; where Stu Feldman
lectured us on architecture; where
we learned how Google works.

Oh, yeah. And how to fix your
PDP-11 with this 98-cent resistor.

In 1966 BU (Before UNIX),
Crispian St. Peters sang, “Follow
me, I’m the Pied Piper . . .” It made
it to #4 on Billboard’s list.

But if you follow USENIX, you’ll
really know where it’s at.

; LO G I N : A P R I L 2 0 0 5 U S E N I X N OTE S 55

The organization was about to
become USENIX. The publication
was about to become ;login:.

An informal gathering of under
two dozen people in May 1974
had turned into a semiannual
event of major proportions.

[Blatant advertisement: Tom
Limoncelli and I have edited an
anthology of all the April Fool’s
Day RFCs. No Starch Press, out in
July.]

Short Topics Booklets

Rik Farrow, Short Topics Editor

rik@spirit.com

The Short Topics in System
Administration series of booklets
are intended to fill a void in the
current information structure, pre-
senting topics in a thorough, refer-
eed fashion but staying small and
flexible enough to grow with the
community.

Number 12 in the series, Building
a Logging Infrastructure, by Abe
Singer and Tina Bird, appeared
first at LISA ’04. As of March 1, a
new booklet, A Sysadmins’ Guide to
Oracle, by Ben Rockwood, was
beginning a technical review, and
it should be in production early
this summer. A contract has gone
out to Xev Gittler and William
Charles for a booklet with the
working title Being Root, providing
guidelines for working as the root
user, focusing on best practices,
tools, and ethics.

USENIX welcomes suggestions for
topics, proposals for booklets, and
technical reviewers. Interested?
Please send email to
sagebooklets@usenix.org.

For the list of booklets, see
www.usenix.org/publications/.

Thirtieth Anniversary,

USENIX Association

Peter H. Salus

peter@usenix.org

June 18, 1975. CUNY in Manhat-
tan. Mel Ferentz runs the first
USENIX conference. Of course, it
wasn’t called USENIX then, it was
a UNIX users’ group, until the
lawyers at AT&T got tough about
that (tm). And it wasn’t the first
meeting, either, as Lou Katz had
run a small meeting in a confer-
ence room at Columbia in May
1974.

But there were “about 40 people
from 20 institutions” at the 1975
meeting.

Look around at any USENIX con-
ference, workshop, symposium.
There’ll be many times 40 folks.
Yes, it has been 30 years, but the
growth has come because USENIX
has been where it’s happening.
And still is.

USENIX is where Kirk McKusick
talked about memory manage-
ment.

USENIX is where Tom Ferrin told
us how to “cut this foil etch” and
“insert this jumper wire.”

USENIX is where we first heard
about Tcl and OAK (= Java) and
Perl and GNOME.

USENIX is where, in 1980 in
Boulder, Colorado, Jim Ellis
announced USENET.

USENIX is where UUNET began.

USENIX is where portability has
been supported for 30 years.

USENIX has been sponsoring
redistributable software since
1976.

USENIX held its first security
workshop in 1988.

USENIX held a POSIX workshop
in 1987.

And:

1st Graphics Workshop, 1985

1st C++ Workshop, 1987

1st Supercomputing Conference,
1987

1st Security Workshop, 1988

1st Mobile Computing Workshop,
1993

1st OSDI, 1996

1st Electronic Commerce Work-
shop, 1998

1st Embedded Systems Workshop,
1999

SAGE became a Special Technical
Group of USENIX in 1992.

USENIX has brought together the
core of the Linux Kernel develop-
ment team in the Linux Kernel
Developers Summit, held annually
since 2001.

USENIX is where Ken Thompson
spoke in 1974; where Steve Jobs
spoke in 1987; where Stu Feldman
lectured us on architecture; where
we learned how Google works.

Oh, yeah. And how to fix your
PDP-11 with this 98-cent resistor.

In 1966 BU (Before UNIX),
Crispian St. Peters sang, “Follow
me, I’m the Pied Piper . . .” It made
it to #4 on Billboard’s list.

But if you follow USENIX, you’ll
really know where it’s at.

; LO G I N : A P R I L 2 0 0 5 U S E N I X N OTE S 55

The organization was about to
become USENIX. The publication
was about to become ;login:.

An informal gathering of under
two dozen people in May 1974
had turned into a semiannual
event of major proportions.

[Blatant advertisement: Tom
Limoncelli and I have edited an
anthology of all the April Fool’s
Day RFCs. No Starch Press, out in
July.]

Short Topics Booklets

Rik Farrow, Short Topics Editor

rik@spirit.com

The Short Topics in System
Administration series of booklets
are intended to fill a void in the
current information structure, pre-
senting topics in a thorough, refer-
eed fashion but staying small and
flexible enough to grow with the
community.

Number 12 in the series, Building
a Logging Infrastructure, by Abe
Singer and Tina Bird, appeared
first at LISA ’04. As of March 1, a
new booklet, A Sysadmins’ Guide to
Oracle, by Ben Rockwood, was
beginning a technical review, and
it should be in production early
this summer. A contract has gone
out to Xev Gittler and William
Charles for a booklet with the
working title Being Root, providing
guidelines for working as the root
user, focusing on best practices,
tools, and ethics.

USENIX welcomes suggestions for
topics, proposals for booklets, and
technical reviewers. Interested?
Please send email to
sagebooklets@usenix.org.

For the list of booklets, see
www.usenix.org/publications/.

Thirtieth Anniversary,

USENIX Association

Peter H. Salus

peter@usenix.org

June 18, 1975. CUNY in Manhat-
tan. Mel Ferentz runs the first
USENIX conference. Of course, it
wasn’t called USENIX then, it was
a UNIX users’ group, until the
lawyers at AT&T got tough about
that (tm). And it wasn’t the first
meeting, either, as Lou Katz had
run a small meeting in a confer-
ence room at Columbia in May
1974.

But there were “about 40 people
from 20 institutions” at the 1975
meeting.

Look around at any USENIX con-
ference, workshop, symposium.
There’ll be many times 40 folks.
Yes, it has been 30 years, but the
growth has come because USENIX
has been where it’s happening.
And still is.

USENIX is where Kirk McKusick
talked about memory manage-
ment.

USENIX is where Tom Ferrin told
us how to “cut this foil etch” and
“insert this jumper wire.”

USENIX is where we first heard
about Tcl and OAK (= Java) and
Perl and GNOME.

USENIX is where, in 1980 in
Boulder, Colorado, Jim Ellis
announced USENET.

USENIX is where UUNET began.

USENIX is where portability has
been supported for 30 years.

USENIX has been sponsoring
redistributable software since
1976.

USENIX held its first security
workshop in 1988.

USENIX held a POSIX workshop
in 1987.

And:

1st Graphics Workshop, 1985

1st C++ Workshop, 1987

1st Supercomputing Conference,
1987

1st Security Workshop, 1988

1st Mobile Computing Workshop,
1993

1st OSDI, 1996

1st Electronic Commerce Work-
shop, 1998

1st Embedded Systems Workshop,
1999

SAGE became a Special Technical
Group of USENIX in 1992.

USENIX has brought together the
core of the Linux Kernel develop-
ment team in the Linux Kernel
Developers Summit, held annually
since 2001.

USENIX is where Ken Thompson
spoke in 1974; where Steve Jobs
spoke in 1987; where Stu Feldman
lectured us on architecture; where
we learned how Google works.

Oh, yeah. And how to fix your
PDP-11 with this 98-cent resistor.

In 1966 BU (Before UNIX),
Crispian St. Peters sang, “Follow
me, I’m the Pied Piper . . .” It made
it to #4 on Billboard’s list.

But if you follow USENIX, you’ll
really know where it’s at.

; LO G I N : A P R I L 2 0 0 5 U S E N I X N OTE S 55

Our thanks to the
summarizers:
Ashwin Bharambe
Christopher Clark
Priya Mahadevan
Tipp Moseley
Mohan Rajagopalan
Marianne Shaw
Alan Shieh
Craig Soules
Andrew Warfield
Charles Weddle

conference
reports

OSDI ’04:
6th Symposium on
Operating Systems Design
and Implementation
San Francisco, California
December 6–8, 2004

D E P E N DA B I L IT Y A N D
R E L I A B I L IT Y

Summarized by
Christopher Clark

Recovering Device Drivers

Michael M. Swift, Muthukarup-
pan Annamalai, Brian N. Ber-
shad, and Henry M. Levy, Uni-
versity of Washington

Awarded Best Paper!

Michael Swift presented the
first paper of the session on a
technique for accommodat-
ing device driver failure.

Building on the previous
Nooks work on protecting
the operating system when
driver failures occur, the
next challenge addressed is
how to keep applications
running when devices fail.
This is achieved by introduc-
ing shadow drivers tasked
with masking failures by act-
ing as a “spare tire” in the
event of an emergency.

A single shadow driver is
written for each device class,
implementing the same
interface to the operating
system that a driver for a real
device does. A shadow runs
silently alongside each real
driver, observing requests,
until failure is detected by
the OS. This triggers a restart
of the real driver, while the
shadow temporarily assumes
responsibility for spoofing it
and handling application re-
quests until the restart com-
pletes. The shadow assists in
reinitialization of the restart-
ed driver by replaying previ-
ously observed configuration
commands to the driver

before handing back responsibility
for requests.

This scheme was implemented in
the Linux 2.4.18 kernel for sound
cards, network cards, and an IDE
disk driver. Evaluation used both
artificial fault injection of common
programmer errors and deliberate
porting of real bugs into the test
kernel. Results showed that 98%
of errors examined were recover-
able using shadow drivers.

George Dunlap (University of
Michigan) inquired whether this
work would reduce the inclination
of companies producing drivers to
bother removing bugs; Swift
advised not to tell them we are
doing this. Val Henson (IBM
Research) offered praise and asked
if there were plans to port the
work into the mainstream Linux
2.6 kernel; Swift indicated not,
given the current “grad student
quality” of the code. A delegate
from HP Labs likened the work to
a dangerous condition for humans,
where sufferers are unable to feel
pain. Swift argued he would rather
not experience the immediate con-
sequences of driver faults, prefer-
ring instead to receive failure fre-
quency statistics.

Unmodified Device Driver Reuse and
Improved System Dependability via
Virtual Machines

Joshua LeVasseur, Volkmar Uhlig, Jan
Stoess, and Stefan Götz, University of
Karlsruhe, Germany

Motivated by the desire to reuse
existing device drivers written for
commodity operating systems
with the L4 research operating sys-
tem, Joshua LeVasseur presented a
method of using virtual machines
to achieve this. The benefits are
clear: they comprise a very large
body of code and have undergone
testing that would have to be
repeated were they to be rewritten,
if it were even possible to do so.

The classic technique for driver
reuse is to write “glue code,”
implementing the device driver
API of the OS the driver was writ-
ten for and performing translation

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 57

to the primitives of the new OS.
The difficulty is that the driver API
is often loosely defined, very wide,
and messy, entailing manipulation
of arbitrary data structures within
the original OS, which conse-
quently must be simulated by the
glue code. The alternative
approach proposed is to use the
original OS itself as the glue code
by running it atop a virtual
machine monitor and exporting
access to the device to other
hosted virtual machines. Client
VMs run a stub driver that com-
municates with the driver VM to
achieve the desired use of a device.
Memory protection hardware
ensures that DMA initiated by
device drivers is intercepted by the
VMM and translated to indicate
the correct physical addresses as
necessary; with a paravirtualized
VM, this step may be elided. A sin-
gle machine arbitrates access to
the PCI bus, with other machines
communicating with this to imple-
ment higher-layered drivers.

A performance evaluation of the
reuse of paravirtualized Linux
drivers demonstrates single-digit
percentage decrease for network
and disk throughput, with a cost
of approximately double the CPU
consumption of the native driver.

Bin Ren (University of Cambridge)
asked how the CPU scheduler
selects which VM to run. Le-
Vasseur responded that scheduling
needed tuning to match the driv-
ers in question. Val Henson noted
that running multiple OSes to sup-
port the drivers increases the
amount of code that needs to be
correct for the system to function.
LeVasseur countered that reuse of
existing drivers increases confi-
dence that the drivers are correct.

Microreboot—A Technique for
Cheap Recovery

George Candea, Shinichi Kawamoto,
Yuichi Fujiki, Greg Friedman, and
Armando Fox, Stanford University

George Candea gave a talk on
micro-rebooting, or restarting
components within a system to

purge any damaged state. The aim
is to make reboot-based recovery
fast in enterprise systems.

Candea’s thesis is that improved
availability can be achieved if it is
possible to restart only the faulty
parts of the system. This is an
argument for making component
restart possible and fast; to enable
this, one must refactor code to
move session state in a separate
lump, distinct from the ephemeral
state within the component. The
session state alone may then per-
sist between component restarts,
and the micro-reboot can address
the symptoms of software failure,
such as transient exceptions, dead-
locks, and memory leaks.

To evaluate the approach, a proto-
type auction Web service was con-
structed from J2EE components
running on the JBoss platform.
Since rebooting individual compo-
nents is significantly faster than
rebooting the entire JVM and has
little discernible impact on avail-
ability, the fault detector need not
be very accurate, because false
positives are not expensive. This
encourages a strategy of micro-
rebooting aggressively, or periodic
“micro-rejuvenation” to keep the
system healthy.

A delegate from Georgia Tech
noted that in real applications
there may be significant depen-
dencies between components, and
so the restarting of a single compo-
nent may require the restarting of
almost the entire system. Candea
replied that the common design
patterns encouraged by the use of
EJBs make such tight coupling
infrequent. A delegate from Rice
University asked about the com-
plexity of the prototype and
whether it was entirely in Java or
included modifications to the run-
time. Candea responded that the
JVM was not modified, 200 lines
of code were added to JBoss, and
the remaining implementation was
composed of managed EJBs.

AUTOM ATE D M A N AG E M E NT I

Summarized by Andrew Warfield

Automated Worm Fingerprinting

Sumeet Singh, Christian Estan, George
Varghese, and Stephan Savage, Univer-
sity of California, San Diego

This work addresses the problem
of identifying worm outbreaks as
quickly as possible. Sumeet began
by identifying the design space
and clarifying the three main
requirements of their approach:
response time, granularity of con-
tainment, and deployment. Their
system, dubbed “EarlyBird,” aims
for a response time on the order of
seconds, contains worms at a pre-
cise content signature granularity,
and is network (rather than end-
host) based. The key challenges in
developing such a system are pro-
cessing and storage: at gigabit line
rates, packets must be processed in
12 microseconds or less, and log
data accumulates very quickly.

EarlyBird capitalizes on two prop-
erties of worms for fast identifica-
tion: content prevalence, which
involves the frequency of the sub-
string, assuming that there is an
invariant substring across all
instances of a particular worm,
and address dispersion, the prop-
erty that such substrings will
travel between a large set of hosts.
Their approach uses fixed-length
substring hashes to find common
signatures. Hashing has the addi-
tional benefit of allowing value
sampling, through only examining
packets in a specified range of
hashes. EarlyBird has been de-
ployed for eight months in sepa-
rate academic and ISP environ-
ments, and has found all known
worms as well as several new ones.

Petros Maniatis from Intel
Research asked about how Early-
Bird would fare against polymor-
phic worms. Sumeet answered that
most encrypted worms were easy
to classify because embedded
decryptor code is invariant. Con-
cerning SSH tunneling, he pro-
posed that encryption be made

58 ; L O G I N : V O L . 3 0 , N O . 2

gateway-to-gateway rather than
end-to-end. Regarding harder
polymorphism, for instance
NOOP insertion, he said that more
investigation was required. Brad
Karp (Intel Research) asked how
many hosts would be exploited
before prevalence thresholds were
crossed, and mentioned the 30/30
rule (the address dispersion
threshold of 30 sources and 30
destinations) described in the
paper. Sumeet agreed that this
issue needed more consideration
but said that they had moved on to
better methods than 30/30 since
the paper was written. Someone
from Microsoft Research asked
whether worms could circumvent
EarlyBird’s detection mechanisms.
Sumeet explained that value sam-
pling was difficult to outguess.
Someone from Rice University
asked about worms over P2P.
Sumeet answered that in general
these were not a problem, but that
in some specific cases, such as Bit-
Torrent, there is a risk of generat-
ing false positives.

Understanding and Dealing with
Operator Mistakes in Internet
Services

Kiran Nagaraja, Fabio Oliveira,
Ricardo Bianchini, Richard P. Martin,
and Thu D. Nguen, Rutgers University

Operator-caused outages are a
major problem in Internet serv-
ices. The authors explored ways to
provide “realistic virtual environ-
ment”-based support to help pre-
vent such mistakes. The talk was
divided into three parts: under-
standing operator mistakes, deal-
ing with the problem, and valida-
tion of their results.

In order to better understand oper-
ator error, the authors conducted a
study involving 43 experiments
and 21 operators of varying levels
of experience. Operators were
asked to perform a variety of both
proactive and reactive tasks on a
model three-tier Web service envi-
ronment, and the experiments
resulted in a total of 42 operator
mistakes. The highest categories of

mistakes were those resulting in
degraded throughput or inaccessi-
ble service, most frequently as a
result of configuration problems.
In order to prevent operator mis-
takes from happening, the authors
developed a virtual environment
in which system changes could be
tested before they were applied.
Their system could be run online,
by “shunting” the request stream,
or offline using traces. Finally,
Kiran presented a validation of
their prototype. In a set of live
operator experiments using their
environment, six of nine mistakes
were caught before being applied
to the production system. The
authors also emulated the opera-
tors from the initial experiments
and were able to catch 28 of the 42
mistakes that were observed there.
The most frequently corrected
mistakes were those of global con-
figuration and starting the wrong
version of a service.

Andrew Whitaker (University of
Washington) asked if mistakes had
been symptomatic of operator
unfamiliarity with the model
three-tiered service. Kiran
acknowledged that this was worth
considering in future work but
that this was the best initial
approach to the study. Jonathan
Appavu (IBM Research) asked
what other tools might be devel-
oped to help operators avoid mis-
takes. Kiran pointed out that the
biggest problem is that many tools,
such as configuration checkers,
are very application-specific.
While these tools are useful, he
pointed out that the approach
described in the paper worked
with all applications and tested the
actual results of operator actions.

Configuration Debugging as Search:
Finding the Needle in the Haystack

Andrew Whitaker, Richard S. Cox,
and Steven D. Gribble, University of
Washington

Andrew began by describing his
work as a different sort of debug-
ger, one targeted at configuration
errors. As an initial example he

presented the issue of Mozilla
crashing sometime after a set of
extensions had been installed and
observed that current approaches
to the problem might involve
googling for “mozilla crash” or
reading help menus. Unfortu-
nately, in many cases these will not
provide a solution, and even rein-
stalling the broken application will
not fix the problem. Their work
aims to provide tool support to
systematically identify the causes
of this class of “worked yesterday,
not today” (WYNOT) configura-
tion errors.

Chronus is a tool that the authors
have developed to isolate WYNOT
errors. In Chronus, the operating
system runs in a lightweight vir-
tual machine above Denali, a vir-
tual machine monitor that the
group developed previously.
Denali allows block devices used
by the operating system to be
made into “time travel” disks, log-
ging a history of all past states of
the disk. To diagnose a configura-
tion error, the user provides a
probe script that tests for the exis-
tence of the error. Chronus will
then do a binary search across a
specified region in the history of
the disk, booting the OS and run-
ning the probe, finally returning a
pair of disk images in which the
probe results transition from suc-
cess to failure. By examining the
differences between these images,
Chronus will provide the user with
the specific block update that
resulted in configuration error.
Returning to his Mozilla example,
Andrew observed that the search
process finished while he got cof-
fee, and it isolated the error to the
specific extension that was crash-
ing Mozilla.

Chi Zhang (Princeton University)
asked whether Chronus would be
able to identify problems that
resulted from large logical disk
transactions, for instance the
installation of new software pack-
ages. Andrew answered that extra
tools would be required to identify
larger-granularity causes. Shinji

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 59

Suzuki (University of Tokyo)
asked a follow-up question regard-
ing the effects of buffer caches,
which Andrew agreed were also a
problem. A third question
regarded issues such as spyware,
in which failure might occur after
a disk is changed. Andrew pointed
out that this was discussed in
more detail in the paper, but that
spyware was a problem in general.
Finally, David Oppenheimer (Uni-
versity of California, Berkeley)
asked Andrew to comment on the
difficulty of probe writing, espe-
cially for difficult-to-test issues—
for instance, changing Mozilla’s
text from English to Japanese.
Andrew pointed out that Chro-
nus’s contribution was to change a
very time-consuming class of con-
figuration debugging problems
into software testing problems. He
agreed that while probes could be
difficult to write, he felt that they
could be developed by experts and
reused in many situations.

F I L E A N D STO R AG E SYSTE M S I

Summarized by Craig Soules

Chain Replication for Supporting
High Throughput and Availability

Robbert van Renesse and Fred B.
Schneider, Cornell University

This talk, given by Robbert van
Renesse, described chain replica-
tion, a system for high-throughput
replication. Their system services
two types of requests: updates and
queries. The storage nodes are
formed into a chain, and then
updates are sent to the head of the
chain and queries are sent to the
tail. When a storage node sees an
update it processes and then for-
wards it to the next server in the
chain. Once the request has been
processed by the tail, it is guaran-
teed to have executed on all of the
storage nodes, and an acknowl-
edgment is sent to the client. This
same guarantee means that any
queries processed at the tail will
return data seen by all storage
nodes.

In this system, a master maintains
the chain membership. Node fail-
ure is handled by the master and
the previous node in the chain
coordinating to remove the failed
node. Nodes may only be added to
the tail of the chain, and their con-
tent must first must be synchro-
nized with the existing tail. Once
synchronized, the master and the
tail coordinate to move the node
into the tail. All new queries are
then sent to the new node. Any
lost requests must be resubmitted
by clients (consistency is main-
tained via the requirement that all
updates be idempotent).

The results of this work indicate
that chain replication can provide
higher throughput than most pri-
mary/backup systems. David
Shultz (MIT) asked how the sys-
tem handled network partitions to
coordinate chain formation. He
was told that the configuration of
chains among masters is done
using Paxos, which automatically
handles such failures. Jay Lorch
(Microsoft Research) asked if they
had examined weak-consistency
chain replication. He was told that
weak-consistency chain replica-
tion performs identically to weak-
consistency primary/backup.

Boxwood: Abstractions as the
Foundation for Storage Infrastructure

John MacCormick, Nick Murphy, Marc
Najork, Chandramohan A. Thekkath,
and Lidong Zhou, Microsoft Research
Silicon Valley

This talk, given by Lidong Zhou,
described Boxwood, a toolkit for
developing distributed storage
abstractions. Today, distributed
storage systems make use of reads
and writes of blocks (or objects)
and strict interface primitives that
sometimes make it difficult to
layer more complex abstractions
(e.g., b-trees, hash tables) on top
of them while still maintaining the
same guarantees of consistency
and scalability.

Boxwood provides several tools
needed to create more complex
data abstractions: a lock service, a

logging service, a consensus serv-
ice, and a replicated chunk store.
The first three of these can be used
by the application to provide con-
sistency to the new algorithm. The
chunk store provides a replicated
virtualized address space to store
data across a large set of machines,
thus providing reliability and scal-
ability of data storage.

Lidong then described an example
distributed algorithm they built by
taking an existing non-distributed
b-link tree algorithm and hooking
it into the Boxwood abstractions
to provide a distributed version of
the algorithm. With this new dis-
tributed b-link tree in place, they
were then able to layer an entire
distributed file system, labeled
BoxFS, over the abstraction. Per-
formance analysis of BoxFS indi-
cates excellent scaling from two to
eight servers, and better perform-
ance than a system running NFS
over NTFS.

Erik Reidel (Seagate) asked about
their performance graph that indi-
cated they were getting 0.5 MB/s
throughput using 5 to 40 disks.
Lidong answered that the graph
was supposed to show the effect of
lock contention on concurrency
rather than actual throughput.
Erik then asked how many clients
were used in these experiments.
Lidong responded that they used
two to eight mount points with
one client per mount point.

Secure Untrusted Data Repository
(SUNDR)

Jinyuan Li, Maxwell Krohn, David
Mazières, and Dennis Shasha, New
York University

This talk, given by Jinyuan Li,
described SUNDR, a system for
ensuring tamper detection of files
stored on untrusted data reposito-
ries. They began by describing a
new kind of consistency: “fork
consistency.” Fork consistency
guarantees that if a server provides
two clients with different copies of
the same file, that it can never
again provide those clients with
the same copies of that file. Also,

60 ; L O G I N : V O L . 3 0 , N O . 2

the server is unable to tell the
client that their change has not
been applied once it has agreed to
the change.

To achieve this, SUNDR stores a
version vector with each file. This
vector contains a version number
for each client of the file. When a
client makes a change to the file, it
obtains the file and the file’s ver-
sion vector. The client can then
compare the provided version vec-
tor with its current vector from its
last access of the file. If its stored
vector is not an exact subset of the
provided vector (i.e., its version
numbers are all less than or equal
to the provided ones, and the ver-
sion number for that client is iden-
tical), then it can detect that the
server has broken fork consistency.
Undetected modification of the
version vector is prevented using
signatures.

Emin Gun Sirer (Cornell Univer-
sity) asked about the possibility of
a malicious client using replay
attacks to make the server appear
faulty. Jinyuan indicated that even
a colluding server and client could
not break the fork consistency.
Algis Rudys (Rice University)
asked at what data abstraction
level this would be most useful.
Should it be coupled with each
NFS operation? Each block?
Jinyuan responded that SUNDR
currently works at the block level,
but that the techniques could be
applied to any of these levels.

D I STR I B UTE D SYSTE M S

Summarized by
Priya Mahadevan

MapReduce: Simplified Data
Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat,
Google, Inc.

MapReduce is a programming
model with an associated imple-
mentation for processing extreme-
ly large input data sets. Along with
the programming model, MapRe-
duce also automatically handles

fault tolerance, I/O scheduling,
load balancing of input data set
among various machines, and
inter-machine communication.

The programming model is
designed such that the input and
output is a set of key/value pairs;
the computation is expressed as
two functions, map and reduce,
both of which are user specified.
On supplying the input key/value
pair, the map function produces a
set of intermediate key/value pairs.
The intermediate key/value sets
are then used by the reduce func-
tion to produce the output. An
example of this type of program-
ming model is counting the occur-
rences of a specific word in an
input data file or files.

There are two kinds of programs,
master and worker. The master
program is special, in that it dele-
gates tasks to the workers. Map
Reduce also handles the following
functionality:

Parallel execution: Input data is
split into tasks, and each task is
executed on different sets of
machines. Users can also specify a
partitioning function for this
purpose.

Fault tolerance: Failures are
detected using periodic heartbeats,
and in-progress tasks are then exe-
cuted on other machines.

Dynamic load balancing: The mas-
ter takes proximity of the workers
into consideration (with respect to
location of the input data) while
assigning tasks to the workers.

In addition several refinements—
skipping bad records, generating
sorted output files, providing sta-
tus pages that indicate tasks in
progress, etc.—are provided by
MapReduce. The performance was
tested for two benchmarks, grep
and sort, on a cluster comprising
1800 machines. In conclusion,
MapReduce simplifies large-scale
computations, and since it handles
most of the parallelization and dis-
tributed systems internals, users
without experience in parallel and

distributed systems can use it
effectively.

A member of the audience wanted
to know of any task that could not
be handled using MapReduce. The
answer was join operations could
not be performed with the current
model. Someone else wondered
how MapReduce differs from par-
allel databases. MapReduce data is
stored across a large number of
machines as compared to parallel
databases, the abstractions are
fairly simple to use in MapReduce,
and MapReduce also benefits
greatly from locality optimiza-
tions.

FUSE: Lightweight Guaranteed
Distributed Failure Notification

John Dunagan, Michael B. Jones,
Marvin Theimer and Alec Wolman,
Microsoft Research; Nicholas J. A.
Harvey, Massachusetts Institute of
Technology; Dejan Kostić , Duke
University

Managing failures in a distributed
application is a challenging task:
one needs to maintain a lot of
state, and handling cascading fail-
ures require handling many differ-
ent cases. FUSE is a failure notifi-
cation mechanism that addresses
the above issues. FUSE is not a
failure detection service; it
requires the participation of appli-
cations to guarantee failure notifi-
cation. Examples of applications
that could benefit from FUSE
include peer-to-peer storage, mul-
ticast trees, and content distribu-
tion networks. The advantages of
using FUSE include guaranteed
failure notification, convenient
handling of all corner failure cases,
and reduction in distributed appli-
cation complexity.

Applications create a FUSE group
by specifying the participating
nodes, and FUSE guarantees that
every member in this group will be
notified whenever a failure condi-
tion affects this group. By creating
a spanning tree among the group
members, FUSE can guarantee
failure notification; it does not

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 61

need to monitor all the paths
between all the nodes.

FUSE can tolerate arbitrary net-
work failures and node crashes,
but it cannot handle byzantine
failures. Applications need to han-
dle such failures explicitly. The
FUSE API comprises three meth-
ods: CreateGroup, RegisterFailure-
Handler, and SignalFailure. The
authors implemented FUSE over
the SkipNet overlay, so that they
could take advantage of the DHT’s
liveness checking properties.
Using a DHT also assures low
network costs even when there are
many groups.

FUSE was evaluated on the Model-
Net testbed. Evaluation metrics
included group creation latency
time, failure notification latency,
performance under churn, and
false positive rates. During Q&A,
someone asked whether FUSE
could pinpoint which node in the
group failed rather than simply
notifying group members about a
failure. It turns out that FUSE can-
not notify the exact node where
the failure occurred. Someone was
concerned about how FUSE could
handle transient network failures
such as a certain node failing and
recovering before all the group
members could be notified of the
news of the failure. The speaker
said there is no good way to
handle such a situation.

PlanetSeer: Internet Path Failure
Monitoring and Characterization in
Wide-Area Services

Ming Zhang, Chi Zhang, Vivek Pai,
Larry Peterson, and Randy Wang,
Princeton University

Anomalies in Internet routing are
common, and detecting them is a
nontrivial task. The irregularities
could reside in either the forward
or reverse paths and are hard to
isolate. The contributions of this
paper include large-scale study
and classification of routing anom-
alies and techniques for anomaly
detection and isolation.

PlanetSeer combines passive mon-
itoring with active probing. Probes
are sent only during the period of
anomaly, so there is low network
overhead. Both modules use TTL
change and n consecutive timeouts
in TCP flows for the detection
mechanism. The probing module
is made up of baseline probes
(when a new IP appears), forward
probes (when a possible anomaly
is detected), and reprobes (to find
duration of an anomaly). By clus-
tering nodes based on their geo-
graphic location and choosing a
node in each group for probing
purposes, the probing overhead is
reduced. The authors also use
traceroute from multiple vantage
points to narrow down anomaly
location.

Some of their results:

The authors found approximately
two anomalies per minute over a
period of three months.

Tier-1 autonomous systems (ASes)
account for the least number of
persistent and temporary loops,
path changes, and outages, while
tier-3 ASes account for the largest.

Temporary loops have much
longer hop lengths than persistent
loops. Persistent loops either get
resolved very quickly or stay for
a very long period of time
(> 7 hours).

Outages occur closer to network
edge, while path changes have a
much wider impact.

One of the more interesting ques-
tions posed was whether any cor-
relation was observed between the
anomalies observed at the rate of
two per minute. The speaker
replied that while they did not
explicitly look at anomalies corre-
lation, his guess was that they
were correlated.

N E T WO R K A RC H ITE C T U R E

Summarized by
Ashwin Bharambe

Improving the Reliability of Internet
Paths with One-Hop Source Routing

Krishna P. Gummadi, Harsha V.
Madhyastha, Steven D. Gribble,
Henry M. Levy, and David Wetherall,
University of Washington

Krishna Gummadi began by stat-
ing that recently proposed overlay
designs (RON, Detour) for
improving Internet path reliability
were overly complex. This obser-
vation was supported by a detailed
study using a Planetlab testbed to
measure Internet path-failures.
About 3000 different types of des-
tinations (including commercial
servers and broadband home
users) were probed from Planetlab
nodes. A failure was defined as
three consecutive TCP RST losses
in response to TCP ACKs com-
bined with a traceroute failure to
the destination. The observed
path-failure rates were four per
week for servers and seven per
week for broadband hosts. Most
paths witnessed at least one failure
every week. Furthermore, last-hop
failures for servers were infre-
quent, implying that unavailability
of servers could very well be due
to path failures in the network.
The conclusion is that while fail-
ures definitely exist, they are
uncommon and short, and mecha-
nisms to overcome these should
themselves be lightweight.

Gummadi went on to propose a
new scheme called Simple One-
hop Source Routing (SOSR),
which achieves the above objec-
tives. The idea is simple: Instead
of using complex multiple-hop
overlay routes, end nodes just uti-
lize one intermediary node for
“routing around” in case of a fail-
ure. Several measurements were
performed to understand the util-
ity of such an approach. It was
found that in most cases, the fail-
ure could be avoided by using any
one of a large set of intermediaries.

62 ; L O G I N : V O L . 3 0 , N O . 2

The authors showed that the
random-4 strategy (picking four
random intermediaries) provides
most of the possible benefits. No-
tice that this scheme does not re-
quire any a priori probing either
by end nodes or by the intermedi-
aries, and hence is stateless. Gum-
madi concluded by stating that in
spite of these positive results, it is
unclear whether end users will be
able to perceive performance im-
provements due to SOSR, since
multiple orthogonal factors con-
tribute to overall end-user percep-
tion.

CoDNS: Improving DNS Performance
and Reliability via Cooperative
Lookups

KyoungSoo Park, Vivek S. Pai,
Larry Peterson, and Zhe Wang,
Princeton University

Most of the previous studies of the
DNS infrastructure have ignored
the impact of local DNS name
servers (LDNS) on performance.
In this talk, KyoungSoo Park,
using a comprehensive set of
measurements, showed that client-
side DNS (LDNS) failures are
widespread and frequent and
reduce overall performance and
availability. LDNS servers belong-
ing to several Planetlab sites (these
servers are site-specific and not
tied to Planetlab) were monitored
for an extended period by issuing
trivial local name lookups. While
most of the lookups took minimal
time to complete (as expected), a
surprisingly heavy tail was
observed for the lookup times.
Furthermore, such delays were
widespread, across several sites,
and were frequent. The authors
cited two principal causes for this
effect: overloading of local name-
servers due to heavy memory pres-
sure, and lack of maintenance.

The authors propose an incremen-
tally deployable cooperative DNS
lookup scheme (CoDNS) with an
aggressive adaptive timeout to
overcome LDNS problems. The
basic idea is to forward a name
lookup to one or more DNS

servers at other sites when LDNS
is suspected of failing. The choice
of which servers to contact is
determined by their proximity to
the querying server as well as
availability. The authors showed
that CoDNS is able to remove the
heavy tail of lookup times and add
an extra “9” to the availability of
the local DNS infrastructure.

A few issues were raised during
the Q&A session: Andrew Myers
(Cornell University) worried that
CoDNS reduced the security of an
already insecure and critical infra-
structure. David Oppenheimer
stated that a simple tweak to exist-
ing DNS implementations (viz.,
adding remote secondary nam
servers in configuration files, and
reducing the default timeout val-
ues) would essentially provide the
benefits of CoDNS.

Middleboxes No Longer
Considered Harmful

Michael Walfish, Jeremy Stribling,
Maxwell Krohn, Hari Balakrishnan,
and Robert Morris, MIT Computer
Science and Artificial Intelligence
Laboratory; Scott Shenker, University
of California, Berkeley, and ICSI

Middleboxes are defined as entities
interposed between end hosts
(over the Internet) that perform
more tasks than plain IP forward-
ing. Several such middleboxes
(e.g., NATs, firewalls, caches) are
in common use. However, because
they violate the end-to-end princi-
ple, middleboxes are not in har-
mony with the existing Internet
architecture, despite their clear
practical benefit. In this talk,
Michael Walfish presented an
architectural extension to the
Internet (Delegation-Oriented
Architecture, or DOA) to accom-
modate such middleboxes.

DOA is composed of two funda-
mental primitives: First, each end-
point (middleboxes are also con-
sidered endpoints) has a globally
unique topology-independent
identifier called an EID; second,
receivers and/or senders can in-
voke one or more endpoints as dele-

gates for routing messages. By
treating NATs and firewalls as such
delegates, DOA can elegantly in-
corporate middleboxes into the
overall design. Furthermore, the
DOA permits the existence of new
functionality, such as off-path fire-
walls where entities external to an
organization can offer firewall
services.

In order to implement these primi-
tives, an infrastructure for resolv-
ing flat EIDs to physically routable
identifiers (IP addresses) is essen-
tial. The authors present a global
DHT as a promising candidate for
such a resolution infrastructure.
While security and performance of
the resolution infrastructure have
been addressed to some extent by
the authors in the paper, Steve
Gribble (University of Washing-
ton) argued in the Q&A session
that the next critical challenge for
DOA is investigating suitable
mechanisms for maintenance and
troubleshooting.

AUTOM ATE D M A N AG E M E NT I I

Summarized by Marianne Shaw

Correlating Instrumentation Data to
System States: A Building Block for
Automated Diagnosis and Control

Ira Cohen, Moises Goldszmidt, Terence
Kelly, and Julie Symons, Hewlett-
Packard Laboratories; Jeffrey S. Chase,
Duke University

Ira Cohen presented an approach
for automatically inducing models
of system performance; the tech-
nique requires little or no domain-
specific knowledge, and therefore
can be applied to a wide variety of
systems.

The motivation behind this work
is that we, as a community, have
figured out how to build complex,
large-scale network services; we’ve
instrumented those services to
capture a large number of diverse
performance metrics. However, for
any particular failure or event,
how do we know which metric or
set of metrics we should be look-
ing at? Which metrics will not

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 63

help in determining the root cause
of the problem?

This work automates the analysis
of this large collection of instru-
mentation data using Tree-Aug-
mented Naïve Bayesian networks,
or TANs. By capturing traces of
both normal and anomalous
events from an instrumented
three-tier Web server, and combin-
ing that with instances of Service
Level Objectives (SLO) failures,
TANs are used to produce per-
formance models. These models
can be used to select the set of
gathered metrics that correlates
strongly with higher-level Web
server performance.

In evaluating their approach, sev-
eral key observations were made.
Small sets of metrics are much bet-
ter than a single metric at predict-
ing system behavior; for the Web
server workload, it was typically
three to eight metrics. Because
each metric in the set is associated
with a particular system compo-
nent, the set can provide assis-
tance identifying the root cause of
anomalous behavior.

Questions focused on how to use
the approach. If you are interested
in the dynamics of the system
rather than a binary observation,
could you still use this technique?
Yes, if you could convert those
dynamics into a binary classifica-
tion. Is it possible to use this tech-
nique for prediction of input? The
authors do not yet have sufficient
experience to know what the gen-
erated models will look like.

Automatic Misconfiguration
Troubleshooting with PeerPressure

Helen J. Wang, John C. Platt, Yu Chen,
Ruyun Zhang, and Yi-Min Wang,
Microsoft Research

Helen Wang presented PeerPres-
sure, a mechanism for trouble-
shooting misconfigurations in
modern, complex operating sys-
tems and applications. PeerPres-
sure uses Bayesian statistics to
compare the Windows registry of a
misconfigured machine with a col-

lection of Windows registries from
other machines; the statistics can
then be used to find the misconfig-
uration and fix it.

PeerPressure embraces the con-
formity of computer systems and
their configurations, and the belief
that most applications work cor-
rectly on most machines. When an
application is deemed to be work-
ing incorrectly, its associated Win-
dows registry entries (“suspects”)
are captured by the user and fed
into PeerPressure. Suspects are
canonicalized and statistically com-
pared with the collection of sample
Window registries to generate a
ranking based on the probability
that a suspect is misconfigured.
PeerPressure uses this ranking to
modify entries in the Windows reg-
istry one by one until the configu-
ration problem is resolved.

Twenty real-world “troubleshoot-
ing” problems and a database of 87
machines’ Windows registries
were used to evaluate PeerPres-
sure. The system was able to diag-
nose the misconfiguration prob-
lem in 12 of these 20 cases, and to
significantly narrow down the set
of possible misconfigured entries
for the remaining eight.

To demonstrate the obscurity of
various misconfigurations, Helen
introduced and showed the conse-
quences of a misconfiguration
error in the Windows registry dur-
ing her talk.

Using Magpie for Request Extraction
and Workload Modeling

Paul Barham, Austin Donnelly, Rebecca
Isaacs, and Richard Mortier, Microsoft
Research, Cambridge, U.K.

Rebecca Isaacs presented the use
of the Magpie toolchain for auto-
matically generating models of a
system’s workload that can be used
for performance debugging, anom-
aly detection, and capacity plan-
ning.

Magpie is designed as an online
mechanism, so it must handle
intermingled requests, unrelated
operating system and application

events, cross-machine interac-
tions, and monitoring of resource
consumption in a lightweight,
non-obtrusive manner. Therefore,
rather than tagging each request
flowing through the system, Mag-
pie uses an application-specific
schema to correlate system events
corresponding to the same
request. A request parser uses this
schema while processing an event
log to correlate events. These
events are then associated with a
particular request using a tech-
nique called “temporal joins,”
which attributes events to the
same request if they could have
occurred during the same valid
interval.

Magpie was validated against
traces of synthetic workloads and
shown to be feasible for a two-tier
Web server and the TPC-C Bench-
mark Kit. Someone asked whether
they had looked into its applicabil-
ity to real-world systems yet.
While they would like to look at
large distributed systems, cur-
rently they have only looked at
two- or three-machine systems;
they need to scale out to larger sys-
tems. Magpie does require applica-
tion instrumentation, so it will
require effort to apply to existing
systems; they have been evangeliz-
ing to try to get instrumentation
added to products.

B U G S

Summarized by
Mohan Rajagopalan

Using Model Checking to Find Serious
File System Errors

Junfeng Yang, Paul Twohey, and
Dawson Engler, Stanford University;
Madanlal Musuvathi, Microsoft
Research

Awarded Best Paper!

This paper, presented by Junfeng
Yang, was about identifying file
system bugs by using model
checking techniques. These bugs
are potentially destructive, but tra-
ditional testing techniques have

64 ; L O G I N : V O L . 3 0 , N O . 2

been ineffective due to the expo-
nential possibilities that one needs
to consider. The talk described a
file system model checker called
FiSC, based on the CMC frame-
work, which was effective in find-
ing bugs that would otherwise
have been very difficult to detect
using static analysis techniques.

Of the several interesting compo-
nents that make up the system, the
talk dealt primarily with state
reduction for the model checker.
The checking process starts with
some state and sees whether the
state was encountered previously.
Instead of a randomized approach
for a state-space search, they advo-
cate a guided search for their test-
ing. Consistency checks are per-
formed through an abstract file
system that models the file system
(e.g., for tracking topology), and
this can be compared with the
model to check for errors. To han-
dle journaling file systems they
resort to logging. This description
concluded with the observation
that checking could be made more
thorough by downscaling and via
canonicalization.

George Candea (Stanford Univer-
sity) asked about the modifica-
tions required to apply this system
to identify bugs in databases. Jun-
feng noted that this may be easy to
incorporate.

CP-Miner: A Tool for Finding Copy-
Paste and Related Bugs in Operating
System Code

Zhenmin Li, Shan Lu, Suvda Myagmar,
and Yuanyuan Zhou, University of
Illinois, Urbana-Champaign

Zhenmin Li described a technique
to identify “copy-paste” bugs in
operating systems by adopting a
programmer’s perspective rather
than software analysis. Zhenmin
noted that in principle this work
was similar to, and was in fact
motivated by, plagiarism detection
tools such as MOSS and JPlag.
While the software engineering
community has taken a recent
interest in identifying copy-pasted
code, existing tools have several

shortcomings, such as high cost,
inaccuracies, etc.

The basic idea is to apply subse-
quence matching to identify code
that has appeared at least twice, an
idea frequently used in data min-
ing. The algorithm is based on
identifying frequent sequences,
building a sequence database, and
composing (joining) sequences
within the database. This process
is repeated several times. The talk
also described an example where
their technique was able to iden-
tify a “forget to change” bug—
where the programmer forgets to
replace variable names in a copy-
pasted segment of code.

The first question was whether
their tool was suitable for other
large systems and if they had tried
it out elsewhere. Zhenmin replied
that while they had only tried it on
small software benchmarks, it
could be suitable. Another inter-
esting remark was that comments
can be very useful in identifying
copy-pasted code. Finally, some-
one asked whether their system
could mine CVS code repositories.
Zhenmin replied that this was
something they were currently
looking at.

Enhancing Server Availability and
Security Through Failure-Oblivious
Computing

Martin Rinard, Cristian Cadar, Daniel
Dumitran, Daniel M. Roy, Tudor Leu,
and William S. Beebee, Jr., Massachu-
setts Institute of Technology

Martin Rinard presented a very
interesting and entertaining paper
on a controversial new concept,
“failure-oblivious computing,”
which differs from the traditional
fail-stop philosophy used to build
computer systems. The driving
principle here is that programs are
complex and should be able to tol-
erate localized memory errors. The
talk began with a discussion of
bounds violations in the standard
C model. An empirical evaluation
of five “failure-oblivious” pro-
grams was then presented by com-
paring these programs to their reg-

ular counterparts in the context of
security, initialization, correct con-
tinuation, and ability to handle
attack input. While failure-oblivi-
ous programs had some limita-
tions, the results of this evaluation
looked promising.

During Q&A, someone asked
whether this meant that bugs
should not be fixed and we should
not bother about them. Martin’s
reply was that with failure-oblivi-
ous computing they are no longer
bugs, so the program should do
what it’s doing. Zin Dong (Prince-
ton University) pointed out that
while this idea would be useful for
some things, it may not be able to
handle linked structures. Rob Pike
(Google) mentioned that he did
something similar with data min-
ing, and it would be more comfort-
ing to know that all the failures
were stored in a log. Margo Seltzer
(Harvard University) asked Martin
to compare this to sandboxing sys-
tems; Martin replied that this was
much simpler. Dawson Engler
(Stanford University) noted that it
may not be possible to track race
conditions this way. Another inter-
esting question was what if an
attacker knew that the application
being targeted was failure oblivi-
ous. Someone pointed out that this
approach could be very frustrat-
ing, especially in pinpointing
bugs, since a program would con-
tinue even when you want it to
fail. Jay Lepreau from Utah men-
tioned that this would be analo-
gous to testing when optimiza-
tions are turned on.

WO R K- I N - P RO G R E S S R E P O RTS

Summarized by Tipp Moseley

pDNS: Parallelizing DNS Lookups to
Improve Performance

Ben Leong and Barbara Liskov, MIT

Up to 10% of DNS queries exceed
2s of latency. To hide this latency,
overlay networks of resolving
nameservers are cached and
queried in parallel. This results in
a latency being the maximum

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 65

latency of N queries instead of the
sum of the latencies of N queries.

Trickles: A Stateless Transport
Protocol

Alan Shieh, Andrew Myers, Emin Gun
Sirer, Cornell University

Typical protocol stacks require
resources, limit scalability, are vul-
nerable to DoS, and are barriers to
migration. Trickles proposes to
move all state to the client, via
continuations, which are self-
describing and encapsulate server
state. This enables transparent
failover, load balancing, and any-
cast services.

Surviving Internet Catastrophes

Flavio Junqueira, Ranjita Bhagwan,
Alejandro Hevia, Keith Marzullo, and
Geoffery M. Voelker, University of Cali-
fornia, San Diego

In order to improve server uptime
and protect important data from
attacks from worms, data must be
duplicated across different operat-
ing systems and configurations.
This approach will differentiate
exploitable flaws in software, and
is successful in surviving past and
even more aggressive worms at
low cost.

Honeycomb: Enabling Structured
DHTs to Support High-Performance
Applications

Venugopalan Ramasubramanian,
Yee Jiun Song, and Emin Gun Sirer,
Cornell University

DHTs show great promise to run
infrastructure services because
they are self-organizing, failure
resilient, and highly scalable.
Honeycomb investigates the
space-time tradeoff in caching
data, and guarantees <1 hop
average lookup performance
while minimizing resource
consumption.

PRACTI Replication for Large-Scale
Systems

Mike Dahlin, Lei Gao, Amol Nayate,
Arun Venkataramani, Praveen
Yalagandula, Jiandan Zheng,
University of Texas at Austin

PRACTI focuses on several princi-
ples involving replication for
large-scale systems: separate
mechanism from policy, and
separate data and control paths.
This result is a universal replica-
tion toolkit with the following
attributes:

Partial replication: an order-of-
magnitude less bandwidth and
storage space

Topology independence: reduced
time taken to synchronize

Arbitrary consistency: improved
availability in disconnected
operation

Shruti: Dynamic Adaptation of
Aggregation Aggressiveness

Praveen Yalagandula, Mike Dahlin,
University of Texas at Austin

Shruti is a dynamically adapting,
lease-based mechanism that adapts
based on read/write history.

MOAT: A Multi-Object Assignment
Toolkit

Haifeng Yu, Phillip B. Gibbons,
Intel Research Pittsburgh

Heavy user accesses to shared files
requires replication of data objects
and files. The goal of such a sys-
tem is high availability for multi-
object accesses, and the key issue
of the problem is replica assign-
ment. MOAT is the first system to
observe the importance of replica
assignment, shows strong theoreti-
cal results regarding best/worst
assignments, and implements a
toolkit for replica assignments.

Causeway: Operating Systems Sup-
port for Distributed Resource Man-
agement, Performance Analysis, and
Security

Anupam Chanda, Khaled Elmeleegy,
Nathan Froyd, Alan L. Cox, John Mel-
lor-Crummey, Rice University; Willy
Zwaenepoel, EPFL

Causeway provides a general-pur-
pose, distributed, multi-tier frame-
work for scheduling, performance
analysis, and security and access
control. This project is motivated
by solutions that exist for single-
node systems, poor ad hoc solu-
tions for multi-tier systems, and
the lack of a general-purpose
framework.

PLuSH: A Tool for Remote Deploy-
ment, Management, and Debugging

Christopher Tuttle, Jeannie Albrecht,
Alex C. Snoeren, Amin Bahdat,
University of California, San Diego

Fundamental abstractions of
remote deployment include things
such as abstract description lan-
guage, resource discovery, resource
allocation, host and environment
monitoring, experiment deploy-
ment, and execution management.
PLuSH is a framework of compo-
nents that integrates these abstrac-
tions.

Using Inferred Emergent Behavior to
Automate Resource Management

Patrick Reynolds, Duke University;
Janet Wiener, Jeff Mogul, and Marcos
Aguilera, Hewlett-Packard Labs; Amin
Vahdat, University of California, San
Diego

To automate resource manage-
ment, we must find a system’s
emergent behavior from events
and discover highly suspicious
behavior that is different from a
programmer’s stated expectation,
statistically anomalous, or a domi-
nant source of delay. To find prob-
lem sources, applications are
instrumented to infer a model of
system behavior. Multi-resolution
tracing starts with a black-box
approach and then explores the
benefits of additional information,

66 ; L O G I N : V O L . 3 0 , N O . 2

resulting in more specific, more
accurate information.

Using Access Logs to Detect
Application-Level Failures

Peter Bodik, University of California
Berkeley; Greg Friedman, Lukas
Biewald, and H.T. Levine, Ebates.com;
George Candea, Stanford University

Sometimes it takes months or
years to detect a failure in Internet
services. Based on the assumption
that users change behavior in
response to failures, a chi-square
test of access history can detect
anomalous activity.

A Trust-Based Model for
Collaborative Intrusion Response

Kapil Singh, Norman C. Hutchinson,
University of British Columbia

Most intrusion detection systems
emphasize detection; response is
limited to blocking part of the net-
work. This approach temporarily
stops the intrusion but does not
cost anything for the attacker. If
network components collaborate
to identify the source of attack,
they can defend against it by
attacking the attacker. An attacker
is identified by a proof of attack
using router logs of activity.

The Ghost of Intrusions Past

Ashlesha Joshi, Peter M. Chen,
University of Michigan

There is a window of vulnerability
between the discovery of a bug
and the application of its patch.
An administrator may not know
whether an intrusion occurred in
this window. An approach to this
problem is to use virtual machine
replay and introspection to detect
the triggering of the vulnerability.

SoftwarePot: A Secure Software
Circulation System

Yoshihiro Oyama, University of Tokyo;
Kazuhiko Kato, University of Tsukuba

SoftwarePot is a user-level middle-
ware system that provides a virtual
environment “pot.” The system
contains a private namespace of
resources and a private file tree,

and it can be mapped to a real
external resource.

Implementing an OS Scheduler for
Multi-threaded Chip Multiprocessors

Alexandra Federova, Harvard Univer-
sity and Sun Microsystems; Margo
Seltzer, Harvard University; Christo-
pher Small, Daniel Nussbaum, Sun
Microsystems

Multi-threaded chip-multiproces-
sors lead to contention for L2
cache. Modifying the OS scheduler
to co-schedule hand-picked
processes can lead to increased
throughput of 27–45% and a
reduction in L2 miss rate by
19–37%. Processes are character-
ized and profiled by predicting
miss ratios by randomly sampling
how often certain memory loca-
tions are reused (30% overhead).

Charon: A Framework for Automated
Kernel Specialization

Mohan Rajagopalan, Saumya K.
Debray, University of Arizona; Matti A.
Hiltunen, Rick D. Schlichting, AT&T
Labs Research

Charon takes a holistic systems
design to combine programming
languages and OS design to
improve both performance and
security. Charon uses binary
rewriting capabilities and static
analysis to achieve a reduction in
memory footprint while ensuring
correctness. Potential applications
include synthesizing kernels for
specific targets (motes, routers,
cell phones), QoS, adaptation reli-
ability, configuration checking,
and bug discovery.

Java in the Small: Enabling Standard
Java on Embedded Devices Through
Customization

Alexandre Courbot, Gilles Grimaud,
LIFL; Jean-Jacques Vandewalle,
Gemplus Research Labs

Many embedded devices would
like to run Java, but often Java
does not fit because the entire JRE
is too large. JITS tailors a full-
fledged JRE to a specific applica-
tion based on runtime usage by

removing unnecessary com-
ponents and reducing space
overhead.

Singularity: Software Systems as
Dependable, Self-Describing Artifacts

Galen Hunt et al., Microsoft

Singularity is a new operating sys-
tem developed by Microsoft to be
used for dependable systems
research. Dependability, defined as
behaving as expected by creators,
owners, and users, is the primary
goal of this project. Singularity
makes configuration a first-class
concept with built-in abstractions.
Online and offline inspection, ver-
ification using partial specifica-
tions, and IPC via bi-directional
message channels are all supported.

K E R N E L N E T WO R K I N G

Summarized by Alan Shieh

Deploying Safe User-Level Network
Services with icTCP

Haryadi S. Gunawi, Andrea C.
Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, University of
Wisconsin, Madison

icTCP addresses the deployment
of TCP/IP extensions. Many such
extensions have been proposed in
recent research. However, the tran-
sition from research to practice has
been slow. Moreover, as new oper-
ating environments such as wire-
less networks emerge, new exten-
sions may be needed. icTCP aims
to reduce the kernel development
costs of extensions by moving
extensions from the kernel to user
libraries, and adding a small, easy-
to-implement set of kernel inter-
faces to enable multiple such user-
level extensions. Thus, the kernel
modifications are amortized over
multiple extensions. Extensions
written using icTCP require small
amounts of kernel support, have
low design and performance over-
head, and are guaranteed to be
TCP friendly.

icTCP provides application
read/write access to internal TCP

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 67

variables (cwnd, ssthresh). By
modifying these variables, applica-
tions can modulate the send rate.
These variables are virtualized in
that applications are not allowed
to write arbitrary values, since this
would enable TCP-unfriendly
flows. Instead, only those transfor-
mations allowed by RFC 2581 are
allowed, and so extensions are, by
definition, TCP-friendly. The
icTCP virtual variables should be
applicable to most TCP implemen-
tations, since the TCP variables
are found in most implementa-
tions. A recent packet history may
also be provided; this extension is
optional, since not all imple-
mentations keep such a history,
and passing this history can be
expensive.

icTCP requires 316 lines of code in
Linux. The effectiveness and nec-
essity of restricting the operations
on virtual variables are confirmed.
Multiple TCP extensions (TCP
Vegas, TCP Nice, TCP-RR, TCP-
EFR) were implemented as user
extensions, at smaller line-number
counts than the original kernel
implementations. Extensions
could be combined in a stack to
leverage the benefits of multiple
different extensions for the same
connection. Interposing a user-
level extension degrades perfor-
mance slightly—bandwidth is not
affected at small numbers of con-
nections, but is slightly degraded
at larger numbers of connections.

George Kola (University of Wis-
consin, Madison) pointed out that
TCP Reno has a coarse timer reso-
lution, while TCP Vegas has a fine-
grained timer resolution; he asked
how icTCP supports TCP Vegas.
The response was that icTCP has
more fine-grained timeout.
Andrew Whitaker asked how the
icTCP technique applies to non-
TCP protocols, for instance, con-
gestion-controlled UDP. The
response was that the authors have
explored how UDP flows can use
information from TCP flows and
that this has not yet been imple-
mented. Currently, the authors

have only looked at algorithmic
extensions, not new protocols.

ksniffer: Determining the Remote
Client Perceived Response Time from
Live Packet Streams

David P. Olshefski, Columbia Univer-
sity and IBM T.J. Watson Research Cen-
ter; Jason Nieh, Columbia University;
Erich Nahum, IBM T.J. Watson
Research Center

Response time is critical, and poor
response time can have economic
consequences. Also, response time
must be controlled to meet service
level agreements (SLAs). Improv-
ing accuracy and minimizing
latency to feedback (e.g., provid-
ing online rather than offline
results) could improve the efficacy
of automated management sys-
tems. However, existing method-
ologies have shortcomings. Prob-
ing at external points is either not
scalable or does not have a high
sampling rate. Application-level
log analysis is typically offline and
does not capture all the system
latencies. Instrumenting Web
pages requires overhead and
changing the content, and does
not work for all clients.

Ksniffer, a kernel-level latency
analysis that captures the kernel
and network latencies of a com-
plete HTML page view, operates at
gigabit rates on commodity hard-
ware (e.g., relies on no driver
modification and requires no spe-
cial hardware) and works for all
clients and all types of content,
without instrumentation over-
head. To minimize the persistent
state of a packet, all packets are
processed online, without inter-
vening windowing or queuing.
Using these techniques, ksniffer
achieves low overhead while meas-
uring response time accurately.

ksniffer returns page view infor-
mation—the latency from the ini-
tial request of the root object, to
the last object on that page.
ksniffer does not parse HTML to
identify the last object, since
parsing is too slow and the HTML
does not directly correlate with the

actual fetch/processing order.
Instead, ksniffer uses pattern
learning to determine the embed-
ded objects for a given page using
referrer fields: The referral field for
a request for an embedded object
(e.g., a JPG or GIF) generally
points to the container. These pat-
terns are not used for situations
where container information is
directly available—e.g., requests
from a single HTTP/1.1 connec-
tion, referrer field available. In the
remaining cases, the referrer field
is inferred by matching against the
pattern cache. Where appropriate,
low-level TCP latencies (e.g.,
propagation time for the last
packet, connection setup time) are
added to the page view time com-
puted from this HTTP analysis.

The evaluation measured ksniffer
under a range of experimental
conditions. ksniffer results closely
matched directly measured results
from a modified client instru-
mented to directly report its per-
ceived timeout. ksniffer correctly
correlated the response time distri-
bution within a subnet (similar
distance from server), and differ-
entiated the distribution between
different subnets (different dis-
tance from server). ksniffer results
also tracked the load surges in a
highly variable stress test. Com-
pared to Apache, ksniffer meas-
ured the correct response time,
while Apache measured an order
of magnitude lower (and incor-
rect) response time.

Ilya Usvyatsky (EMC Corpora-
tion) asked, “How do content dis-
tribution networks (CDNs) affect
the correlation techniques?” The
response was that the only way the
CDN will affect the response time
is if it generates the last complet-
ing download. However, since a
CDN should be much faster than
the server, and runs in parallel, the
last download to complete is
unlikely to come from the CDN.
Stefan Savage (University of Cali-
fornia, San Diego) commented
that “often there are external
objects, e.g., advertising banners,

68 ; L O G I N : V O L . 3 0 , N O . 2

which could add significant over-
head (especially when DNS is
accounted for). Also layout and
rendering time can dominate.
These DNS/external fetches and
layout issues are invisible to the
server.” The response was that the
latency due to other Web sites can
be significant, but if the critical
path is not on your own server,
optimizations on your server are
not going to improve response
time. Other tools are available for
measuring end-to-end rendering.
One can’t measure this on the
server.

FFPF: Fairly Fast Packet Filters

Herbert Bos and Willem de Bruijn,
Vrije Universiteit Amsterdam, The
Netherlands; Mihai Cristea, Trung
Nguyen, and Georgios Portokalidis,
Universiteit Leiden, The Netherlands

Code is available from
http://ffpf.sourceforge.net.

FFPF reexamines packet filters,
since the assumptions underlying
their original design no longer
hold. For instance, at the time,
computational speed was close to
network speed; this is no longer
the case. While network monitor-
ing is important, a large fraction of
traffic is unclassifiable due to
shortcomings in the expressive-
ness of traditional packet filters.
Many monitoring solutions sup-
port only slow networks, or only
sample portions of the input.

The goal of FFPF is to achieve
high link rate without resorting to
sampling. To allow more traffic to
be classified, FFPF supports a
more flexible notion of a flow as
any packet stream that matches
arbitrary criteria. FFPF is designed
to support multiple simultaneous
filters efficiently: common subex-
pressions of different filters are
executed only once, and copying is
avoided by allowing different fil-
ters to share buffers.

To minimize bus and memory
bandwidth, operations are pushed
as close to the data sources as pos-
sible (e.g., executing aggregation

operators on a NIC or in the ker-
nel, rather than on the CPU or
user space, respectively). For
instance, a FFPF pipeline to count
the number of packets in a flow
would both filter and perform the
count. FFPF supports multiple
languages, and compiles to user
space, kernel space, and network
processor code (IXP1200). FFPF
is faster than existing libraries;
packet loss is lower than pcap, and
CPU utilization is slightly lower
for a single filter and considerably
lower for multiple filters with
common subexpressions.

F I L E A N D STO R AG E SYSTE M S I I

Summarized by Charles Weddle

Energy Efficiency and Storage
Flexibility in the Blue File System

Edmund B. Nightingale and Jason
Flinn, University of Michigan

Edmund B. Nightingale’s presenta-
tion began with a discussion of
ubiquitous computing—specifi-
cally, network variability, power
management, and stale data. This
led to the introduction of the
BlueFS and the “read from any,
write to many” strategy. The
BlueFS’s flexible cache hierarchy
extends battery lifetime through
energy-efficient data access, sup-
ports portable storage, and im-
proves performance by leveraging
the unique characteristics of het-
erogeneous storage devices.

The presentation next discussed
how BlueFS’s implementation han-
dles read from any/write to many,
as well as power management, hid-
ing device transitions, cache man-
agement, and cache consistency.
The BlueFS implementation con-
sists of a user-level daemon called
Wolverine that handles reading
and writing of data to multiple
local, portable, and remote storage
devices. It also contains a kernel
module that intercepts VFS calls,
interfaces with the Linux file
cache, and redirects operations to
Wolverine. In addition, there is a

BlueFS server that stores repli-
cated data. Most interesting is the
ability of the BlueFS to hide device
transitions to mask the perfor-
mance impact of device power
management. The BlueFS can also
create device affinity so that the
latest version of an object will
always be cached on a particular
device.

BlueFS compared favorably to NFS
and Coda in a modified Andrew
benchmark, being over ten times
faster than NFS and 19% faster
than Coda. The evaluation showed
that, because of its ability to hide
access delays caused by disk
power management, BlueFS can
read 4k-sized files up to 60 times
faster then ext2 starting from a
disk in standby mode, due to the
ability of BlueFS to hide access
delays caused by disk power man-
agement. Someone asked whether
it was assumed that a connection
to the network must be present.
The presenter responded that if
data consistency guarantees are
wanted, then a network connec-
tion must be in place.

Life or Death at Block-Level

Muthian Sivathanu, Lakshmi N.
Bairavasundaram, Andrea C.
Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, University of
Wisconsin, Madison

Muthian Sivathanu began with a
discussion of how liveness infor-
mation is not available in modern
storage systems and how certain
functionality can be enabled with
this information: for example,
eager writing, adaptive RAID, opti-
mized block layout, intelligent
prefetching, faster recovery, self-
securing storage, and secure
delete. This led into a discussion
of how to make storage liveness-
aware—specifically, through the
two approaches taken by the
authors, explicit notification and
implicit detection.

Explicit notification adds new
allocate and free commands to the
existing storage interface. The file

; LO G I N : A P R I L 2 0 0 5 O S D I ’ 0 4 69

system is modified to use these
commands to explicitly convey
liveness information to the storage
system. With implicit detection,
the storage system monitors
block-level reads and writes issued
by the file system from underneath
an unmodified interface and
implicitly infers liveness informa-
tion. The presentation points out
that explicit notification is concep-
tually simple to implement but
made difficult due to the asyn-
chrony of file systems. Implicit
notification can be implemented
without an interface change but is
fairly complex and ties the file sys-
tem and storage system layers
together.

The authors presented the secure
delete case study they conducted
to show the design, implementa-
tion, and evaluation of a secure
deleting disk using both explicit
notification and implicit detection.
The authors chose the secure
delete problem because it requires
the tracking of generation liveness
and provides a context in which
liveness information is very
important. For performance evalu-
ation, a prototype-enhanced disk
was implemented as a pseudo
device driver in the Linux 2.4 ker-
nel. Exploring the foreground per-
formance of implicit and explicit
secure delete, the authors found
that the explicit implementation

performs better. When asked
whether the implementation
duplicated file system functional-
ity, Muthian stated that they dupli-
cate a small amount but only on
disk structures about the file
system.

Program-Counter-Based Pattern
Classification in Buffer Caching

Chris Gniady, Ali R. Butt, and
Y. Charlie Hu, Purdue University

Chris Gniady began his presenta-
tion with a discussion of the buffer
cache in file systems and how
important the buffer cache is to
performance. A key observation in
process architecture is that pro-
gram instructions, or the instruc-
tion’s program counters, provide
highly effective means of recording
the context of program behavior.
This led to the introduction of PC-
based pattern classification (PCC).
PCC identifies the access pattern
among the blocks accessed by I/O
operations triggered by a call
instruction in the application.
These pattern classifications are
then used by a pattern-based
buffer cache to predict the access
patterns of blocks accessed in the
future by the same call instruction.
Chris noted that this is the first
demonstration of program
counter-based prediction used in
operating system design.

Chris went on to describe the PCC
design and talked about the pat-
tern classifications in PCC. There
are three reference patterns that
PCC uses to classify the instruc-
tions: sequential references, loop-
ing references, and other refer-
ences. These classifications are
used by PCC to manage future
block accesses by a classified pro-
gram counter. Chris then dis-
cussed the implementation of
PCC, how PCC data structures
capture the classifications of the
program counters, and how this
information is used.

In evaluating PCC, the authors
compared PCC, UBM, ARC, and
LRU through trace-driven simula-
tions. They found that PCC com-
pares favorably to UBM, improving
the hit ratio by as much as 29.3%,
with an average improvement of
13.8%. PCC also outperforms
ARC, with the hit ratio improving
by as much as 63.4% and with an
average improvement of 35.2%.
Lastly, the authors found that com-
pared to basic LRU, PCC results in
an average of 41.5% reduction in
the number of disk I/Os. With this
disk I/O reduction, PCC reduces
the average execution time of LRU
by 20.5%.

70 ; L O G I N : V O L . 3 0 , N O . 2

	motd0504
	letter0504
	malware0504
	musings0504
	turoff0504
	andress0504
	haskins0504
	miller0504
	standards2004
	bookworm0504
	reviews0504
	yearsandyears
	shorttopics
	thirtieth
	osdi04

