

2

Why Can’t
They . . . ?
I really try to project a positive image
and create positive slants on things. In
fact, I usually hate sentences that begin
with “Why can’t they . . .” or “Why don’t
they . . .”, because these phrases seem to
introduce rhetorical questions – people
generally don’t really want to know why
they {can’t|don’t} do {stuff}. Usually,
there’s a good reason.

But I can hardly stand it any longer.
Maybe if enough people point out the
obvious, things can change.

Let’s start with Microsoft’s security push.
Network World reports on page 6 of its
February 2, 2004, issue that “Microsoft
sought to advance its Trustworthy Com-
puting Initiative last week” with a
US$6.8 billion budget and IE browser
modifications.

That sounds pretty darn good to me.
You’d think you could get a result with
that much money (which comes to $25
for almost every person over the age of
two in the whole of the United States). I
wonder, though.

How hard is it to disable execution of
incoming email? Wouldn’t you think
they would have started on that project
by now? And seen some results? I can’t
imagine that it could cost an entire bil-
lion dollars. The most recent worm
demonstrated yet again that people lack
the impulse-control to click “no” in
attachment warnings. In fact, I’ll argue
that, in general, the informational value
of “Click YES to accept this potentially
harmful {widget}” has degenerated
almost to nil, rendering such warnings
useless for the general user. There are
simply too many of them, and the gen-
eral user has little understanding or
concern.

Are customers really demanding the
“infect my computer with a single
keyclick” feature? I can’t imagine that’s
true. Why can’t Microsoft address this?
Imagine the time and money it would
save just on the most recent cleverly
socially engineered malware.

On another topic, why can’t spam be
stopped? Or at least slowed down? What
entity is running around trumpeting,
“Spam is OK! It’s a sign of a healthy
industry! We should all embrace this
vibrant new way of learning about new
products!”? I honestly think that adver-
tising industry members believe they
have a right to figure out any way possi-
ble to annoy me with a commercial mes-
sage, and that mitigating their efforts is
somehow unpatriotic. Don’t even start
to talk to me about the benefit to me of
popups and the even more insidious
popunders.

Returning to spam, the old “it’s not ille-
gal even if you don’t like it” argument is
gone, to a great extent. A quick perusal
of my 400/day spambox shows that the
number of people who even begin to
label their spam properly approaches
0.5% (it doesn’t exceed 0.5%, it barely
approaches 0.5% on some days). Yes,
that’s 99.5% noncompliance with our
shiny new federal CAN-SPAM law.
When will lawmakers judge the law a
failure? Why in the world are we creating
another multi-billion-dollar industry
(spam elimination) so that email can be
usable again as it was before we spent the
money? Just keep saying: Each $1B is
more than $3 for every living person in
the USA. And don’t kid yourself, you’ll
end up paying for it one way or another
in higher prices or lower functionality in
every single purchase you make.

Consider how many person-hours and
money-units are consumed:

n removing spam
n fixing filters
n administrating anti-spam software

Vol. 29, No. 2 ;login:

by Rob Kolstad
Dr. Rob Kolstad has
long served as editor of
;login:. He is SAGE’s
Executive Editor, and
also head coach of the
USENIX-sponsored USA
Computing Olympiad.

<kolstad@usenix.org>

motd

3April 2004 ;login:

n upgrading networks to handle the
extra load

n “protecting” children from porn
spam

n consoling users who are offended
n denying that it’s {x}’s fault
n learning that an important email

was missed since it was buried in
spam.

Why does anyone think this is OK? It’s
not OK! It’s not even close! People
should be screaming, yet there seems to
be more of a collective sigh of inevitabil-
ity, along with a promise of a solution
from Microsoft (make mailing lists
expensive). The costs are pervasive, yet
we continue to tolerate it. Please, stop
tolerating spam. How to solve the spam
problem? Remove one of:

n easy access to the Internet (not pos-
sible)

n people clicking through to purchase
spam products (not possible)

n anonymity (possible – make PKI or
some other technology work so that
you know who’s sending you email)

n ability to take money via credit
cards

It’s a bit easier to see why computer ser-
vice is so challenging and frustrating,
given the way software can mess up a
system’s installation and configuration.
My laptop’s LCD display cable is appar-
ently broken. Of course, the phone ser-
vice force couldn’t even consider this as
the problem until discussing new driv-
ers, new window systems, etc. And,
regrettably, they’re doing a good job.

Why can’t Microsoft make a desktop
operating system that has at least a tiny
bit of robustness? Why can random pro-
grams change my home page? Why can
random programs write into the system
startup so that my home page changes
back to http://sexygirls.ru or whatever
every time I reboot? Were customers
really demanding this feature? I can well
imagine it: “I’m too lazy to make Russ-

EDITORIAL STAFF
EDITOR

Rob Kolstad kolstad@usenix.org

CONTRIBUTING EDITOR
Tina Darmohray tmd@usenix.org

MANAGING EDITOR
Alain Hénon ah@usenix.org

COPY EDITOR
Steve Gilmartin

PROOFREADER
jel jel@usenix.org

TYPESETTER
Festina Lente

MEMBERSHIP, PUBLICATIONS,
AND CONFERENCES

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710
Phone: 510 528 8649
FAX: 510 548 5738
Email: office@usenix.org

login@usenix.org
conference@usenix.org

WWW: http://www.usenix.org
http://www.sage.org

ian porn pages my home page, so please
make sure any random Java program [or
pick your favorite mechanism] can get
so deep into my system that I have to
reload Windows from scratch in order to
get the system back to where it’s sup-
posed to be.” Are we all really this stu-
pid? I think not. By the way, I do my best
never to click “Yes.” I have no idea how
that damned registry entry got into my
system.

Some problems really are hard to solve.
But I think we didn’t scream loud
enough when “executable email” came
into being or Cantor and Siegel sent us
down the road to spam. I distinctly
remember screaming about executable
email and being told “customers
demand this.” Maybe, just maybe, we
should try to counter stupid marketing
decisions with a bit more objection than
a collective sigh of resignation.

Any ideas on how to do this are solicited
and will be warmly received.

http://sexygirls.ru
http://www.usenix.org
http://www.sage.org

4

ing of management’s integral role in
achieving overall success results from the
fact that they suffer from their own
workplace success, just as we system
administrators do, i.e., “If we’re doing
our job well, no one notices.”

The very best managers may be so
smooth at their job we don’t even notice
what they’re doing. In reality, they’re
working toward a key set of top-level
tasks that are essential to our success.
They set priorities, identify resources,
match assets to goals, leverage team
strengths, defend turf, provide feedback,
and boost accomplishments.

Being the manager of system adminis-
trators is a double-whammy of the “suf-
fering from your own success”
syndrome: If you’re doing a good job
and the folks who are working for you
are doing a good job, no one knows that
you’re doing a good job of managing
what they’re doing a good job of. Whew.
It’s clear, if you’re in the position of
managing system administrators, good
old-fashioned PR has got to be one of
your top priorities. Here are some ideas
on what’s newsworthy and what to do
with it.

Toot Your Horn
Take advantage of opportunities to let
your user community know that things
are getting done. If you’re having trouble
thinking about what to talk about, take a
mental accounting of the status reports
you request in your team meetings.
Chances are some of these same topics
would be suitable for user updates. For
example, when you make upgrades, let
people know, and make sure to put it in
“what’s in it for me” terms they can
understand. Short newsworthy sound
bites can go a long way – for example,
“Storage capacity on the central mail
servers was doubled over the weekend,
preventing the need to decrease users’
mail spool allocation.”

Create and Measure Metrics
At raise time, I used to complain that
other managers could cite the number of
lines of code their employees had written
over the year and I could only say, “We
kept the network and servers running.”
Of course it wasn’t that clear-cut, but
you get the idea. Keep track of your
work. Create metrics and track perfor-
mance against them, e.g., number of
uninterrupted days servers are up, num-
ber of help-desk calls answered, number
of patches applied, etc. We tend to view
these kinds of things as “all in a day’s
work,” but although individually they
represent short time-slices, they are still
deliverables, and when they are tracked
and presented as a total deliverable, they
have a pretty good thunk factor.

Document Milestones
System and network administrators are
all about staying ahead of the curve. It
takes sustained effort and know-how to
keep systems current and poised to
accommodate the future. If you upgrade
the OS on your server pool, swap out all
your old routers, or change to a new
higher-capacity backup system, make
sure you document these “unseen” mile-
stones and get credit for staying “ready
to meet future business needs.” Make
sure these milestones are shared with
your higher-ups so that they know you’re
on board to ensure the success of the
organization.

Manage Expectations
Communicate out, up, and down. Let
your peers, your higher-ups, and your
users know what to expect. Be proactive
about giving status when things are good
and when things are bad. Let people
know what is going on and, as much as
possible, avoid surprises. This applies
from service outages to personnel
changes.

apropos

Vol. 29, No. 2 ;login:

by Tina
Darmohray
Tina Darmohray,
contributing editor
of ;login:, is a com-
puter security and
networking consult-
ant. She was a
founding member of
SAGE. She is cur-
rently a Director of
USENIX.

tmd@usenix.org

Increased Visibility
A friend recently called me from an
airport bookstore and said he was
thumbing through a book I might find
interesting. After looking it up on the
Web, I agreed and ordered The Acciden-
tal Leader: What to Do When You’re Sud-
denly in Charge, by Michael Finley and
Harvey Robbins. The book is split into
two main areas: what to do if you unex-
pectedly are tapped to run the show, and
how to do it, including specifics on iden-
tifying and leveraging your assets, man-
aging teams, and even firing people.

As with most of the things I manage to
read these days, I carried this book with
me and squeezed in a couple of pages of
reading in between errands, standing in
lines, and, yes, during meetings. Interest-
ingly, this book seems to have a provoca-
tive effect on people, since I received
many comments from folks who
observed me reading it. Predictably, peo-
ple talked about climbing the corporate
ladder or looking for new employment.
Many wondered if it was a good book.
Those who know me well asked why in
the world I was reading that book.

Like so many techies, I’ve loathed the
trappings of management and tended to
give greater respect to technical achieve-
ment. I’ve now decided that becoming a
leader may happen by accident, but
becoming a good one is far from acci-
dental. I think my delayed understand-

5April 2004 ;login:

Raise Awareness
Phones, heat, light, serviceable rest-
rooms, and computers are the things we
expect to “be there” for us when we get
to the office each day. Depending on
whether you’re a glass is half full or half
empty person, you may feel that means
system administrators are essential or
close to, ahem, well, we won’t go there.
Computers and networks are no longer
dispensable in the workplace, and the
folks who make them run aren’t either.
Use every opportunity to position your
work as essential to accomplishing the
goals of the organization.

Becoming a successful manager is no
accident; it takes deliberate effort in the
key areas that are essential to the success
of your team. For managers of system
administrators, raising the visibility of
system administration accomplishments
and their role in the overall success of an
organization has got to be a top priority.
Keep at it, and keep visible!

To the Editor:

I very much enjoyed the focus-on-secu-
rity issue of ;login:. However, I wish to
take exception to one statement in one
article. In Abe Singer’s article “Life With-
out Firewalls,” the very first sentence
ends “. . . four years without an intrusion
on our managed machines.”

I have no doubts at all that SDSC went
four years without detecting an intru-
sion. But there are two possible explana-
tions. The preferred explanation is that
there were no successful intrusions. The
ugly second explanation is that there
were intrusion(s) that were so skillful
and sophisticated that they could not be
detected.

I know and respect Abe, and I know that
he’s aware (or at least, Marcus’s cat has
assured me, there’s a 95% probability
that he’s aware) of this distinction, so I
put this sentence down to compact
prose. But I have met at least one senior
government official who honestly
believed that if they had not detected an
intrusion, none had happened. He could
not be persuaded that the second possi-
bility even existed. Given the state of
diplomatic relations between the coun-
try in question and the US at the time, I
believe that he was almost certainly
wrong.

Sorry to be pedantic, but that’s one of
the statements I simply won’t let past
without comment. (The other one is
“Encryption ensures message integrity”
. . . so don’t say it.)

Greg Rose
ggr@qualcomm.com

The author responds:

Greg is correct. I intended an aside or
footnote to point out that we had no
compromises that we knew of, but it was
omitted. Mea culpa.

Abe Singer
abe@sdsc.edu

letters to the editor

6 Vol. 29, No. 2 ;login:

by Qusay H.
Mahmoud
Dr. Qusay H.
Mahmoud is an
assistant professor at
the Department of
Computing and
Information Science,
University of Guelph,
and associate chair of
the Distributed Com-
puting and Commu-
nications Systems
Technology program
(University of
Guelph-Humber).
qmahmoud@cis.uoguelph.ca

wireless Java™

application
development
Developing wireless applications using the Wireless Application Protocol
(WAP) is similar to developing Web pages with a markup language,
because WAP is browser-based. While Java Servlets and Java Server Pages
(JSPs) can be used to generate WAP’s WML pages dynamically, all commu-
nications between the device and the application go over the wireless link,
and this is expensive. In addition, WAP isn’t really suitable for developing
wireless interactive applications such as mobile games. The Sun Java 2
Micro Edition (J2ME) platform can be used to develop wireless interactive
applications or MIDlets that can be downloaded over the air and installed
on the device.

This article presents an overview of the genesis of the J2ME platform and walks you
through a sample wireless application to give you a flavor of what’s involved in devel-
oping wireless Java applications. It is worth noting that the J2ME is already deployed
on millions of devices, such as cell phones, that are available from Motorola/Nextel,
Nokia, and other vendors.

Introduction to J2ME
The Java 2 Micro Edition (J2ME) is aimed at the consumer and embedded-devices
market. It specifically addresses the rapidly growing consumer space that contains
commodities such as cellular telephones, pagers, Palm Pilots, set-top boxes, and other
consumer devices. It is targeted at two product groups: personal, mobile, connected
information devices (e.g., cellular phones, pagers, and organizers) and shared, fixed,
connected information devices (e.g., set-top boxes, Internet TVs, and car entertainment
and navigation systems). The groups are addressed using different configurations and
profiles.

Configurations
Cellular telephones, pagers, organizers, etc., are diverse in form, functionality, and fea-
ture. For these reasons, the J2ME supports minimal configurations of the Java Virtual
Machine (JVM) and APIs that capture the essential capabilities of each kind of device.
At the implementation level, a J2ME configuration defines a JVM and a set of hori-
zontal APIs for a family of products that have similar requirements on memory
budget and processing power. In other words, a configuration specifies support for:
(1) Java programming language features, (2) JVM features, and (3) Java libraries and
APIs.

Currently, there are two standard configurations: the Connected Limited Device Con-
figuration (CLDC) and the Connected Device Configuration (CDC). The CLDC is
aimed at cellular phones, pagers, and organizers, while the CDC targets set-top boxes,
Internet TVs, and car entertainment and navigation systems. In this article we are
more concerned with the CLDC.

As you can see from Figure 1, a JVM (e.g., the K Virtual Machine or KVM) is at the
heart of the CLDC. Note that CLDC 1.0 was the initial version, but today CLDC 1.1,
the enhanced version, is the standard. A major difference between the two is that

CLDC 1.0 didn’t include support for floating point numbers (so you could not declare
variables of type float or double), but CLDC 1.1 does.

The K Virtual Machine
The K Virtual Machine (KVM) is a compact, complete, and portable Java vir-
tual machine specifically designed from the ground up for small, resource-
constrained devices. The design goal of the KVM was to create the smallest
possible complete JVM that would maintain all the central aspects of the Java
programming language but would run in a resource-constrained device with a
few hundred kilobytes of total memory. The J2ME specification describes that
the KVM was designed to be: (1) small, with a static memory footprint (40–80
KB), (2) clean and highly portable, (3) modular and customizable, and (4) as
“complete” and “fast” as possible.

Profiles
The J2ME makes it possible to define Java platforms for vertical markets by
introducing profiles. At the implementation level, a profile is a set of vertical
APIs that reside on top of a configuration, as shown in Figure 1, to provide
domain-specific capabilities such as GUI APIs.

Currently, there is one profile implemented on top of the CLDC, the Mobile Informa-
tion Device Profile (MIDP), but other profiles are in the works. The MIDP 1.0 was the
initial profile and has several constraints (e.g., no support for low-level sockets). MIDP
2.0 is the enhanced version of MIDP with several new features, including end-to-end
security (support for HTTPS), as well as support for sockets.

JVM Supporting CLDC vs. J2SE JVM
There are several differences between a JVM supporting CLDC and the Java 2 Stan-
dard Edition (J2SE) JVM. A number of features have been eliminated from a JVM
supporting CLDC, either because they are too expensive to implement or because their
presence would have imposed security problems. Therefore, in a JVM-supporting
CLDC such as the KVM, there is:

n No floating point support: CLDC 1.0 does not support floating point numbers and
therefore no CLDC-based application can use any floating point numbers and
types such as float or double. This is mainly because CLDC target devices do not
have hardware floating point support. Note that CLDC 1.1 does include support
for floating point numbers.

n No finalization: Finalization is not supported, meaning that the CLDC APIs do
not include the method Object.finalize(), and therefore there is no finalization of
class instances.

n Limited error handling: Runtime errors are handled in an implementation-specific
manner. The CLDC defines only three error classes: java.lang.Error, java.lang.Out-
OfMemoryError, and java.lang.VirtualMachineError. Other types of errors are han-
dled in a device-dependent manner that would involve terminating the applica-
tion or resetting the device.

n No Java Native Interface (JNI): A JVM-supporting CLDC does not implement the
JNI, mainly for security reasons and because implementing JNI is considered
expensive given the memory constraints of the CLDC target devices.

n No user-defined class loader: A JVM-supporting CLDC must have a built-in class
loader that cannot be overridden or replaced by the user. This is mainly for secu-
rity reasons.

7April 2004 ;login:

l

A

P
P

LI
C

AT
IO

N
S

WIRELESS JAVA APPLICATION DEVELOPMENT l

Figure 1: High-level architecture of J2ME

Vol. 29, No. 2 ;login:

n No support for reflection: No reflection features are supported, and therefore there
is no support for RMI or object serialization.

n No thread groups or daemon threads: While a JVM-supporting CLDC implements
multi-threading, it should not have support for thread groups or daemon threads.
If you want to perform thread operations for groups of threads, collection objects
should be used to store the thread objects at the application level.

The CLDC APIs
The J2SE APIs require several megabytes of memory and therefore they are not all
suitable for small devices with limited resources. In designing the APIs for the CLDC
the aim was to provide a minimum set of libraries that would be useful for application
development and profile definition for a variety of small devices. The CLDC library
APIs can be divided into two categories:

1. Classes that are a subset of the J2SE APIs: These classes are located in the
java.lang, java.io, and java.util packages. They have been derived from the
J2SE 1.3. However, note that not all classes from these packages have been
inherited.

2. Classes that are specific to the CLDC: These classes are located in the
javax.microedition package and its subpackages.

MIDP Programming
Anyone who has some hands-on programming with Java can start developing MIDP
applications (or MIDlets) right after reading this article. MIDP programming is easier
than J2SE programming because the MIDP API is simpler. You need to learn about a
few classes before you start writing your own MIDlets. Your MIDlet must inherit from
the MIDlet class of the javax.microedition.midlet package, then you simply override
some methods; the MIDlet lifecycle methods are: startApp(), pauseApp(), and destroy-
App(). To handle events, you must implement the CommandListener interface. Here is
a simple MIDlet example:

LISTING 1: LOGINMIDLET.JAVA
import javax.microedition.lcdui.*;
import javax.microedition.midlet.MIDlet;

/**
* This login MIDlet prompts the user for a username and a password. If the
* user enters the correct account information, a list of options is
* displayed, otherwise an error message is displayed.
*
* @author: Qusay H. Mahmoud
*/
public class LoginMIDlet extends MIDlet implements CommandListener {

private Display display;
private TextField userName;
private TextField password;
private Form form;
private Command cancel;
private Command login;

// Constructor
public LoginMIDlet() {

userName = new TextField("LoginID:", " ", 10, TextField.ANY);
password = new TextField("Password”, " ", 10, TextField.PASSWORD);

8

form = new Form("Sign in");
cancel = new Command("Cancel", Command.CANCEL, 2);
login = new Command("Login", Command.OK, 2);

}

// MIDlet lifecycle method: called when the MIDlet is started:
public void startApp() {

display = Display.getDisplay(this);
form.append(userName);
form.append(password);
form.addCommand(cancel);
form.addCommand(login);
form.setCommandListener(this);
display.setCurrent(form);

}

// MIDlet lifecycle method: called when MIDlet is paused:
public void pauseApp() {
}

// MIDlet lifecycle method: called when the MIDlet is destroyed:
public void destroyApp(boolean unconditional) {

notifyDestroyed();
}

// Checks if the user enters the correct account information:
public void validateUser(String name, String password) {

if (name.equals("qm") && password.equals("guessit")) {
menu();

} else {
tryAgain();

}
}

// Display a list of services:
public void menu() {

List services = new List("Choose one", Choice.EXCLUSIVE);
services.append("Check Email", null);
services.append("New Message", null);
services.append("Address Book", null);
services.append("Customize", null);
services.append("Sign Out", null);
services.addCommand(new Command("Back", Command.CANCEL, 2));
services.addCommand(new Command("Select", Command.OK, 2));
display.setCurrent(services);

}

// Display an error message if the user enters the incorrect account info:
public void tryAgain() {

Alert error = new Alert("Login Incorrect", "Please try again", null,
AlertType.ERROR);

error.setTimeout(Alert.FOREVER);
userName.setString(" ");
password.setString(" ");
display.setCurrent(error, form);

}

// Handle events:

9April 2004 ;login:

l

A

P
P

LI
C

AT
IO

N
S

WIRELESS JAVA APPLICATION DEVELOPMENT l

Vol. 29, No. 2 ;login:

public void commandAction(Command c, Displayable d) {
String label = c.getLabel();
if(label.equals("Cancel")) {

destroyApp(true);
} else if(label.equals("Login")) {

validateUser(userName.getString(), password.getString());
}
// add code to handle user’s selection from list of services

}
}

In Listing 1, the midlet and lcdui packages are imported. The midlet package defines
the MIDP, and the lcdui package provides graphical user interface APIs for imple-
menting user interfaces for MIDP applications. It is worth noting that the lcdui pack-
age is not a subset of Swing/AWT, simply because the Swing/AWT assumes certain user
interaction and provides a rich feature set (such as resizing overlapping windows) not
found on mobile devices. The basic unit of interaction on a mobile device is the screen
– users’ interaction with wireless applications by navigating through screens.

Each MIDlet must extend the MIDlet class, similar to applets, which allows for the
orderly starting, stopping, and cleanup of the MIDlet. Therefore, a MIDlet must not
have a public static void main() method.

In LoginMIDlet, the Command class is used to encapsulate the semantic information
of an action. The command itself contains only information about a command, but
not the actual action that happens when a command is activated. The action is defined
in a CommandListener associated with the screen. Let’s look at the following com-
mand statement:

Command infoCommand = new Command("Info", Command.SCREEN, 2);

A command contains three pieces of information: a label, a
type, and a priority. The label (which is a string) is used for
the visual representation of the command. The type of the
command specifies its intent. And the priority value describes
the importance of this command relative to other commands
on the screen. A priority value of 1 indicates the most impor-
tant command, and higher priority values indicate commands
of lesser importance. When the application is executed, the
device chooses the placement of a command based on the type
of the command, and places similar commands based on their
priorities.

Figure 2 shows the screens when the application is first
launched.

Development Tools
There are several commercial and freely available tools for developing wireless Java
applications. My favorite tool is Sun’s J2ME Wireless Toolkit (J2ME WTK), which is
easy to use and freely available. The J2ME WTK provides a comprehensive tool set and
emulators for developing and testing wireless applications, and it is available for the
Windows, Linux, and Solaris platforms. It simplifies the development of wireless appli-
cations by automating several steps such as preverification and creating Java Archive

10

Figure 2: LoginMIDlet launched and activated

(JAR) and Java Application Descriptor (JAD) files
(more on this later). Figure 3 shows the interface for
the J2ME WTK.

The J2ME WTK can be downloaded from http://
java.sun.com/products/j2mewtoolkit. To test the
LoginMIDlet described above, create a new proj-
ect, call it Login, and call the MIDlet LoginMIDlet.
Then copy my LoginMIDlet.java (the above code)
to the apps\Login\src directory of your J2ME WTK
installation. The next step is to compile (click on
the Build button) and run (click on the Run but-
ton) the application. You can choose a device to
emulate the application on.

Behind the Scenes
As I mentioned above, the J2ME WTK automates the processes of preverification and
packaging of the application. This is done when you click on the Build and Run but-
tons. So what are preverification and packaging?

CLASS VERIFICATION

In the J2SE Java virtual machine, the class verifier is responsible for rejecting invalid
class files. A JVM-supporting CLDC must be able to reject invalid class files as well, but
the class verification process is expensive and time-consuming and, therefore, is not
ideal for small, resource-constrained devices. The KVM designers decided to move
most of the verification work off the device and onto the desktop, where the class files
are compiled or onto a server machine from which applications are being downloaded.
This step (off-device class verification) is referred to as preverification. The device is
simply responsible for running a few checks on the preverified class file to ensure that
it was verified and is still valid.

Therefore, after compiling the .java into .class, the .class file must be preverified using
the preverify command (in J2ME WTK). This command preprocesses the program for
use by the KVM without changing the name of a class. The preverify command takes a
class or a directory of classes and preprocesses them. Luckily, this task is automated by
the J2ME WTK.

PACKAGING THE APPLICATION

If an application consists of multiple classes, a JAR file is used to group all the classes
together so that the application is easy to distribute and deploy. In the above example,
a JAR file (Login.jar) is created – the J2ME WTK automates this using the jar com-
mand.

The next step in packaging is creating a manifest file (or application descriptor), which
provides information about the contents of the JAR file. The application descriptor is
used by the application management software on the device to manage the MIDlet. It
is also used by the MIDlet itself to configure specific attributes. The file extension of
the application descriptor is jad, which stands for Java Application Descriptor. There is
a predefined set of attributes to be used in every application descriptor. One of the
attributes is the MIDlet-Jar-Size, which is used by the application management soft-

11April 2004 ;login:

l

A

P
P

LI
C

AT
IO

N
S

WIRELESS JAVA APPLICATION DEVELOPMENT l

Figure 3: The J2ME Wireless Toolkit

http://java.sun.com/products/j2mewtoolkit

Vol. 29, No. 2 ;login:

ware to determine whether the device is
capable of running the MIDlet before it
downloads it (over the air) to the device.
Figure 4 shows the JAD file for the Login
project (click on the Settings button of the
J2EME WTK to see this).

Deploying Applications
If you have a Java-enabled cell phone from
Motorola/Nextel, you can download appli-
cations on it either over the air (you’ll get
billed for the air time) or from the Internet
through your PC using a data cable. For
more information, visit http://idenphones.
motorola.com.

Once you have tested the application and you are satisfied with what you see, you can
deploy it on a Web server simply by uploading its JAR and JAD files to a Web server.
Now your application is downloadable. However, you need to add the following new
MIME type to your configuration file and restart the Web server:

text/vnd.sun.j2me.app-descriptor jad

Integrating WAP and J2ME
MIDlets combine excellent online and offline capabilities that are useful for the wire-
less environment, which suffers from low bandwidth and network disconnection. Inte-
grating WAP and MIDP opens up possibilities for new wireless applications and
over-the-air distribution models. Therefore, WAP and MIDP should be viewed as
complementary rather than competing technologies. In order to facilitate over-the-air
provisioning, there is a need for some kind of an environment on the handset that
allows the user to enter a URL for a MIDlet, for example. This environment could
very well be a WAP browser. Similar to Java Applets that are integrated into HTML,
MIDlets can be integrated into a WML page. The WML page can then be called from a
WAP browser, and the embedded MIDlet gets installed on the device. In order to
enable this, a WAP browser (with support for over-the-air provisioning) is needed on
the device. An alternative approach for over-the-air provisioning is the use of Short
Message Service (SMS), as has been done by Siemens, where the installation of
MIDlets is accomplished by sending a corresponding SMS. If the SMS contains a URL
to a JAD file specifying a MIDlet, then the recipient can install the application simply
by confirming the SMS.

Conclusion
This article introduced the J2ME platform and described the development model for
wireless Java applications. The MIDlet provided shows that programming with J2ME
is easier than programming with J2SE, because the API is simpler and there are only a
dozen classes you need to learn. I hope this article helps you get started with wireless
Java application development. Stay tuned for more articles on wireless Java.

FURTHER READING
Java 2 Micro Edition (J2ME):
http://java.sun.com/j2me

The J2ME Wireless Toolkit:
http://java.sun.com/products/j2mewtoolkit

Learning Wireless Java, by Qusay H. Mahmoud,
available from O’Reilly

Motorola iDEN phones:
http://idenphones.motorola.com

Sun’s Source for Java Developers:
http://java.sun.com

12

Figure 4: JAD file for the Login project

http://idenphones
http://java.sun.com/j2me
http://java.sun.com/products/j2mewtoolkit
http://idenphones.motorola.com
http://java.sun.com

13April 2004 ;login: MUSINGS l

l
SE

C
U

R
IT

YIn one of those weird twists of fate, being popular meant that you got bom-
barded with many copies of the MyDoom virus in late January and early Febru-
ary 2004. The MyDoom virus (A version) used its own SMTP engine to mail
copies of itself, as an attachment, to names culled from users’ address books.
The same email addresses were also used as sender addresses, so you would also
get besieged with bounce messages. If you were deluged with copies of
MyDoom, you just received a measure of your online popularity.

Adding insult to injury, most anti-virus email server products, when armed with a sig-
nature to detect MyDoom, would send a notification to the forged sender, so you were
also bombarded with assertions that you had sent the MyDoom virus, and thus, were
infected. By implication, you should have bought the AV vendor’s product so you
could be protected, and spam other people by sending messages to forged sender
addresses.

You might think that I am being unfair, but a simple inspection of mail headers would
show that the alleged sender of MyDoom had nothing to do with the source address of
the system that sent the email. You would think that companies that deal with viruses,
which get spread mainly by email, would at least be capable of running trivial checks
on email headers before spamming people with useless notices.

MyDoom turns out to have another interesting tie into spam. Some security friends
were discussing the virtues of blacklisting entire netblocks. Many people have already
decided to reject all SMTP connections coming from Asian netblocks, as many of these
countries have large broadband (mostly DSL) networks of home users, and these
home systems have become a popular haven for the open relays used by spammers.
Some of my friends were going further, deciding that they should also be blocking the
netblocks used by the large US-based broadband providers, such as Comcast, ATTBI,
and RoadRunner.

To me, this appeared to be a little extreme. So I decided that I should take a deeper
look. I started by grepping the Received lines added to incoming email by my own
email server. My Spam directory had, at that time, about 4000 emails in it. I also asked
Brian Martin, a friend from attrition.org who not only saves spam emails but dili-
gently sends messages off to abuse@whatever for his Received headers. Together, we
had close to 10,000 Received lines that included both the sender’s IP address and the
domain name resolved by Sendmail or postfix in the form

Received: from mail11.cybertrails.com
(mail.cybertrails.com [162.42.150.35])

The system that delivered this particular email to my system gave its name in the
HELO message as mail11.cybertrails.com. The source IP address during the TCP
transaction was 162.42.150.35, and the reverse lookup of that address was mail.cyber-
trails.com. Note that I am not beating up on Cybertrails, a past ISP that apparently
continues to forward spam to me based on an email address that I never used and have
asked them to kill. They are now on my REJECT list.

Next, I used a Perl one-liner to extract the resolved domain name and IP address from
the Received lines, then used another one-liner to extract just the last two names in
each domain (cybertrails.com in the above example). Finally, I ran that result through

musings
by Rik Farrow
Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

Vol. 29, No. 2 ;login:

a pipeline that sorted the names, used uniq -c to count them,
and sorted the counts by uniq in reverse order. Now I had a
sorted list of the sources of the 10,000 spam messages that
Brian and I had received over about a month.

The results were revealing, but not too surprising. Comcast.net
and attbi.com together accounted for 15% of all spam received,
with RoadRunner coming in third with 5%. Many other well-
known broadband providers fit into the top 20 offenders, for a
total of over half of all the spam we had received.

Now, this is not a scientific survey, just a quick peek at a sample
of spam. I make several assumptions, such as that I trust Brian’s
and my own SMTP MTA to correctly resolve addresses, and that
spammers are not adding forged Received lines, complete with
domain names and addresses in the format used by UNIX
MTAs. But it appears to me that my friends who have been con-
sidering blocking all email from broadband providers as a way
of stopping spam really do have a good point.

One person in the group, known as Hobbit, has already blocked
many broadband providers, but with a very reasonable twist. He
permits SMTP from the mail servers for each broadband
domain, based on the MX records for that domain. I thought
this was a great idea, as it means that only email relayed by the
SMTP servers for a domain would be permitted. Most spam-
mers will not use an ISP’s mail relays, but send email directly,
using their own SMTP engines installed via viruses or other
attacks, or via open relays. Hobbit could still receive legitimate
mail, relayed from “registered” servers – those that have MX
records for the sender’s domain.

When I started looking deeper, I discovered that what Hobbit
had done was a lot of work. For example, there is a fl.comcast.
net, but fortunately only two MX records for all of comcast.net,
corresponding to four IP addresses. Other broadband providers
actually support a set of SMTP servers, represented by MX
records, for each subdomain, which are often organized by
state. And this information is subject to change.

I decided I didn’t want to maintain a comprehensive list of net-
works to block while permitting only registered SMTP servers
within these blocks. Sure, blocking some netblocks looks like a
good idea, something that would quickly free up my system for
other tasks (using client_acl of Postfix or your favorite MTA to
reject connections from clients that don’t correspond to MX
records). But I think that there is a better way.

What if ISPs blocked outgoing connections to port 25 that
come from clients that don’t have their own domains and MX
records? Some ISPs do this already, although obviously not
some of the larger ones. Doing so would require that the ISP
actually maintain filter rules that would permit the SMTP

servers that it knew about, while blocking all others. It appears
to me that doing this would block the most commonly abused
spam relays. It would also prevent the ISPs from being added to
spammer blacklists.

Of course, getting ISPs to do any useful filtering has been wish-
ful thinking so far. Back in 1998, RFC 2267 sought to prevent
source address spoofing by encouraging ISPs to block packets
that enter their networks from leaf networks that have spoofed
source addresses. Source address spoofing on the Internet
would have vanished if this had been accomplished. Obviously,
it hasn’t.

Now what do you think would have happened to MyDoom, and
SoBig, and many other of the big viruses that spread using their
built-in SMTP engines, if these filters were in place? The ISPs’
filters would have blocked attempts to connect to any SMTP
servers outside of their networks, slowing the spread of these
viruses to a crawl.

ISP filtering certainly could be done. One of the reasons it is not
done is that it means more work for the ISPs – work that many
are loathe to do, as it costs money and affects the bottom line.

So we get deluged with viruses, virus bounces, AV warnings,
and spam, largely because of ISPs not willing to take responsi-
bility for managing their own networks properly. Perhaps it is
time for a little regulation.

14

15April 2004 ;login:

document it
with a picture

l

SY

SA
D

M
IN

by Hernan Laffitte
Hernan Laffitte has
worked in UNIX
administration and as
a consultant since
1993. He currently
works as sysadmin
for the Storage Sys-
tems Department at
Hewlett-Packard.

hernan@hpl.hp.com

A Case Study
Introduction
Shortly after joining the Storage Group at HP Labs as system administrator, I was
asked to add some disks to the group’s production XP512 disk array. At that
time, I didn’t have much experience with that array model, so one of the
researchers helped me navigate the console menus. We documented the whole
process using a digital camera, which was a method of documenting sysadmin
tasks I had never seen before. This method proved to be quite useful: A few
months later, I needed to add more disks to the array, but I had forgotten some
details of the procedure. The pictures were there to help me recall the necessary
steps, saving me hours of research.

Digital photography is a technique particularly well suited for documenting tasks that
require interacting with hardware, as it shows the steps taken chronologically. Well-
chosen pictures can be self-explanatory and are often clearer than documentation
manuals, because they show precisely the task being performed. It is a time-efficient
technique, too: It adds little overhead to the task being performed and can help elimi-
nate future mistakes, thereby saving more time.

Our department has developed a set of simple Perl scripts [Laff03] that enables us to
generate a Web page quickly, right after we download the pictures to a laptop. There is
no need to order the pictures chronologically by hand either: The camera itself assigns
reasonable (sequential) filenames to the images.

After the Web page is generated, we publish it on our intranet and may add some com-
ments later by editing the HTML code (see Figure 1). We usually document interac-
tion with the disk array console this way, too. The photos of the screens are easy to
read if taken correctly, as Figure 2 shows.

With some discipline, this is an efficient way to document a variety of system adminis-
tration tasks. Taking some notes during the process helps, but even without comments
the images usually serve well enough. Experience has also shown us that when we
don’t take pictures, we find ourselves regretting it later.

This approach is often useful for infrequent but complex tasks, especially ones that
involve physical operations. In the next section, we will compare this approach to
some alternatives, and will then summarize our experiences in the last section. Pictures
and references are collected at the end.

Why This Is a Good Idea
Our main focus is documentation of system administration tasks as a training tool.
Some of the ideas discussed in this article will apply to documentation of forensic pro-
cedures or Capability Maturity Model-related documentation of tasks, but that is not
our primary objective.

Eric Anderson’s thorough survey [Ande99] of the LISA papers published between
1987 and 1999 shows only a few papers discussing sysadmin training. Two papers
([Shar92] and [Hunt93]) describe the use of text-based trouble-ticket software as a

DOCUMENT IT WITH A PICTURE l

FIGURES ARE GROUPED TOGETHER STARTING ON

PAGE 18

and Eric Anderson
Eric has been a
researcher at HP Labs
working on storage
and information
management since
1999. He wrote his
dissertation on sys-
tem administration at
U.C. Berkeley.

anderse@hpl.hp.com

Vol. 29, No. 2 ;login:

training aid for novice system administrators. The Indiana University USAIL Web-
based education project is presented in Tomp96. Finally, Wendy Nather’s seminal
;login: article [Nath93] discusses the benefits of the school of hard knocks.

Suppose you are performing a complex system administration task and you want to
document what you are doing. You want the documentation to explain the task to a
new sysadmin, or maybe to yourself six months from now. You can use commands
such as “script” and “tee” to keep a record of what happens on your terminal. Maybe
take a screenshot or two to show how you use a graphical tool.

In fact, there are several ways to go about documenting a sysadmin procedure. A basic
taxonomy of the different documentation techniques would be:

1. Text document: just writing the documentation manually.
2. Snapshots: Any time-frozen representation of the state of a system taken at differ-

ent points in time: e.g., photographs, screenshots, cut-and-paste of the text in a
Telnet session.

3. Time series: techniques to generate a continuous picture of a system as it changes
through time: e.g., video recording, commands like “tee” and “script,” a log of a
Telnet session, or some screen recording utility such as Lotus ScreenCam.

We can of course create multimedia documents that combine the three techniques.

So, there are lots of ways of documenting a sysadmin task, of which taking a photo of
the computer screen does not immediately appear to be the most efficient option.
However, in some cases it can the best solution. Here are some reasons why:

n Physical procedures can only be documented by photos and video. Until we can
buy a wearable Memex [Bush45] that records all our actions, a digital camera can
be the next best thing. With a camera, you document what you are seeing now –
and will probably see again the next time you have to perform the same task. See
Figure 3 for examples of a “this part goes here” kind of operation that would be
difficult to document in a non-pictorial manner.

n Pictures are more selective than video. It’s easier to use them to show the impor-
tant parts only. Browsing the pictures is faster, and less boring. Taking photos is
also less intrusive than filming. As a downside, there is always the possibility of
forgetting to photograph some important step.

n For some GUIs, taking a screenshot or running a screen-recording program is not
feasible. Some reasons for this:

n Hardware limitations: The consoles of some devices (disk arrays, printers)
are simply too dumb.

n Security: Even if the console of a dedicated device is a PC-like machine
running a full-featured operating system, for security reasons, it may not be
connected to the network. This makes it difficult to download a screenshot,
even if one could record the shots to the local disk.

n Self-discipline: In our case, we decided not to connect the console of our
main disk array to the network. This way, we don’t have the convenience
of being able to wipe out all its contents from the comfort of our desks.

n A regular screenshot will not usually show where the cursor is or which button it’s
clicking on at the moment. A ScreenCam movie will show this information, but
it’s platform-dependent. Taking a photo of the screen is a reasonable compromise.
See Figure 2 for an example.

Physical procedures can only
be documented by photos
and video.

16

n In a text-only environment, “script” and “tee” may be an alternative, but their out-
put can sometimes be illegible. For example, CURSES-based tools often generate
near-infinite sequences of control characters. Finding useful information in the
resulting ASCII animation can be a chore (see Figure 5).

n Digital photos are cheap and convenient. As of August 2003, a 2-megapixel cam-
era with 128MB of flash RAM can be bought for around $150 new or $100 used.
This represents less than a few hours of the fully loaded cost of an administrator.
So if the pictures save you a day of work, the camera has already paid for itself.
These small cameras fit into a pocket, and the time cost to taking the pictures and
uploading them to a Web site can be less than 10 minutes. Adding a few com-
ments to the resulting Web page adds some time, but always less than writing a
text-only document. For example, accurately describing in writing the steps to
replace a printer’s transfer kit would be more difficult than just having the pic-
tures.

n Documents of a known “good” state before performing a complex operation can
also be useful, especially when trying to debug a problem in some operation. In
one case we failed to document a procedure because it was performed by a com-
pany service engineer. When something went wrong, we brought in more experi-
enced administrators, but they could only see the current, broken state, rather
than the steps taken to get there or information from before the operation. As a
result, solving the problem took longer than necessary. Subsequent to this experi-
ence, we have set a new policy of documenting all changes regardless of who per-
forms them.

Experience and Summary
Several months elapsed before I had to install a second disk group in the XP512 disk
array. Of course, by that time I had already forgotten most of the procedure for adding
the disks. Did I need to click on the button labeled “Maintenance” or the one labeled
“Install”? Fortunately, the pictures were there to help.

The second run was also documented with the camera. This time it wasn’t necessary to
add as many comments as before, only to comment on the differences from the previ-
ous run. Currently, every time I have to perform some task on the disk array, I keep
referring to these photos. I also take pictures of new procedures to help my memory
the next time they need to be done. We now have more than 10 sets of documentation
photographs.

The first set of pictures was taken before I joined the company, when the Storage
Department acquired the XP512 disk array. Because we are a research group, the idea
was to assemble the array ourselves, and we took pictures of the whole process for
future reference. While installing the array, we realized that it was a natural step to also
take pictures of what we were doing on the console and interleave them with the pic-
tures of what we were doing at the hardware level (connecting cables, installing disks,
etc.). The resulting set of pictures is a “story” that clearly reflects all the steps we took
to install the disk array.

We believe that this technique will be even more useful at larger sites. A senior admin-
istrator could perform a task the first time and record the pictures, and then a junior
administrator could use the pictures to perform the same steps later. If they also take
pictures as they go along, then if a problem occurs, the senior administrator can easily
review the steps that were taken.

17April 2004 ;login:

Accurately describing in
writing the steps to replace a
printer’s transfer kit would be
more difficult than just
having the pictures.

l

SY

SA
D

M
IN

DOCUMENT IT WITH A PICTURE l

Vol. 29, No. 2 ;login:

In conclusion, digital photography is an efficient and useful way of documenting
sysadmin operations, and is excellent for reminders on infrequently performed tasks.
It complements other approaches to documenting procedures, and should therefore be
considered in the arsenal of techniques administrators can use to make their lives eas-
ier.

Future work being considered in this area includes:

n Find an efficient way to perform character recognition on the pictures of the
devices’ consoles.

n Newer digital cameras support audio clips. Having one of these perform speech
recognition on the sound bits could further ease and improve the documentation
process.

Acknowledgments
The authors of this article would like to thank Alistair Veitch for his valuable com-
ments, which improved this text tremendously.

Figures
Figure 1a: A Web page generated by our Perl script from the contents of the digital
camera. The three links under each thumbnail take the user to versions of the image in
different resolutions.

Figure 1b: A detail of the same page, after adding comments. The HTML code could
be more polished.

REFERENCES
[Ande99] Eric Anderson and Dave Patterson, “A
Retrospective on Twelve Years of LISA Proceed-
ings,” Proceedings of LISA ’99 13th Systems
Administration Conference, November 1999.

[Bush45] Vannebar Bush, “As We May Think,”
Atlantic Monthly, July 1945.

[Hunt93] Tim Hunter and Scott Watanabe,
“Guerrilla System Administration: Scaling
Small Group Systems Administration to a
Larger Installed Base,” Proceedings of LISA ’93
Seventh Systems Administration Conference,
November 1993.

[Laff03] See http://www.hpl.hp.com/
personal/Hernan_Laffitte for source code sam-
ples and full-color example pictures.

[Nath93] Wendy Nather, “Think or Thwim: The
Cold Creek Approach to Systems Administra-
tion Training,” ;login:, vol. 18, no. 4, July/August
1993, p. 22.

[Shar92] James M. Sharp, “Request: A Tool for
Training New Sys Admins and Managing Old
Ones,” Proceedings of LISA ’92 Sixth Systems
Administration Conference, October 1992.

[Tomp96] Raven Tompkins, “A New Twist on
Teaching System Administration,” Proceedings of
LISA ’96 10th Systems Administration Confer-
ence, September 1996.

18

Figure 1a Figure 1b

http://www.hpl.hp.com/

Figure 2: The text from a screenshot is usually legible. We
generally use a Canon S30 digital camera, which provides
2048x1536 resolution (3-megapixel). The department also has
two 2-megapixel HP digital cameras.

With our 3-megapixel camera, photographs of the screen are
easy to read, provided they are taken with a steady hand.

This figure also shows how we can record the fact that the
mouse pointer is here, clicking on this button, etc. This is a
useful feature for recording the interaction with a GUI.

Figures 3a–3b: An example of “this piece goes here.”

Figures 3c/3d: Moving dip switches around is also best described graphically, as this
“before and after” sequence illustrates.

19April 2004 ;login:

l

SY

SA
D

M
IN

Figure 2

Figure 3a Figure 3b

Figure 3c Figure 3d

DOCUMENT IT WITH A PICTURE l

Vol. 29, No. 2 ;login:

Figure 4: We also document the mistakes we make during the
procedure. In this case, a disk we forgot to install. The second
panel shows the empty slot; the third panel, the author’s hand
holding the missing disk.

Figures 5a–5b: What the competition
looks like. A screenshot of a CURSES-
based GUI (left) and the output it
generates when we record it using the
“script” command (right). Tracking
what the user did can be quite chal-
lenging.

20

Figure 4

Figure 5a

Figure 5b

by Christopher M.
Russo
Chris is an informa-
tion technology man-
ager with extensive
experience building
and running high-
performance enter-
prise, software devel-
opment, and quality
assurance teams.
cmrusso@3rdmoon.com

21April 2004 ;login:

l

TH

E
W

O
R

K
P

LA
C

E

KEEPING EMPLOYEES l

keeping employees
by keeping them
happy
Part III — The Finer Points
Employee retention is a difficult challenge that faces most managers today.
This is the third in a series of articles designed to help managers better
understand the unique needs of employees, the measures necessary for
keeping them happy, and the justification and reasoning for doing so.

If you have missed one or more of the articles in this series, please feel free to read
them at the author’s Web site, located at http://www.3rdmoon.com/crusso/articles.

Once you have the basics down of ensuring that you are not personally a management
problem for your employees, it is time to start working on the slightly more advanced
principles of keeping your staff happy. I feel it is important to stress again that these
are ideas most of which I use and all of which I have found to be successful. The
important thing is to pay attention to what is going on in your team and be creative.
Remember – every situation, every company, every group, every employee is different!

Bad Apples
Any employee can have a very significant effect – either positively or negatively – on
the general morale and well-being of your team members. It is very important to
understand that the impact of a single team member run amok can turn your good
employees into bad ones.

For example, let’s say that you have someone on your team who is consistently late, not
covering their workload, and causing more problems than they resolve. Your other
team members are ultimately going to have to pick up the slack for this person, which
is going to be very frustrating for them. Over the long haul, they are likely to start
wondering why they are bothering to work so hard, when clearly it doesn’t matter all
that much anyway – after all, if that one lackluster employee can shirk duties so egre-
giously with no concern for accountability, then why shouldn’t they?

Or say that you have a great team that has been working together and doing a fantastic
job for months. One day you bring in a new employee and it becomes evident within
the course of a week or two that the person is not working out. Perhaps he is com-
pletely ignoring standards that your team agreed on, or maybe he’s not bothering to
attend meetings that are critical to the operation of the team. Maybe the person has
key information that he’s not inclined to share with others. Any of these things can be
very disruptive and frustrating for your staff, which once again will promote dissatis-
faction and unhappiness.

One way or another, a bad employee is likely to appear in your team eventually. It just
happens. Sometimes you make a bad judgment call on a hire; other times, people have
serious life problems that affect their work; and sometimes people have simply been
on the job a little too long and need to get away – temporarily or permanently. You
need to deal with such problems quickly and efficiently or your team productivity will
come crashing down around you.

http://www.3rdmoon.com/crusso/articles

Vol. 29, No. 2 ;login:22

Hiring the Right People
The first and simplest step in avoiding a bad apple is to do your best to steer clear of
hiring them in the first place. This may seem like an oversimplification – primarily
because it actually is. Doing this properly is an enormous amount of work and will
take great dedication from both you and your team members.

First, be certain to spend some time working with your team to clearly define what
kinds of people you are looking for, and how many of each type you would like to
have. It is also very important not only to focus on the skills that you are seeking but
also to coordinate with the personality types and general qualities that would make an
individual a success in your organization. Having this definition ready and available
will help you and your team to make decisions during the hiring process about who is
appropriate and who is not. Keep in mind that this definition is likely to change on a
daily basis, depending on how the team grows, what needs come and go, and how
much you learn about your own team’s needs through the process. Be sure to consider
this constantly and rethink it often.

Second, have your team members interview all prospective candidates when they come
in for interviews. When the interviews are complete, make sure that you have a discus-
sion with all of the members in the interview process before you make your final deci-
sion. In some cases, you may need or want to get the entire team into a room to
discuss the issue for 15 minutes or so and try to come to a consensus on how you
should proceed. This not only helps you ensure that you have found the right person,
but also makes certain that the decision to, or not to, hire someone is a decision made
by the team and not just by you. People brought in under these circumstances are usu-
ally far more successful, because the members of the team feel that they were genuinely
involved in the decision, and have an even more deeply vested interest in the new per-
son’s success.

Dealing with the Wrong People
When you do find that someone on your team has a problem, you must deal with him
or her quickly and effectively. There really is no short way to explain how to handle
this – it is a long and arduous process that can take weeks or even months to resolve.
The best I can do within the scope of this document is to give some basic tips.

First, be sure to speak to the employee immediately. Try to communicate in a con-
structive and positive way and gently articulate the reasons for your distress. Always
approach the situation from a standpoint of “I’m certain this is not deliberate, so how
can I help you address it?”

Second, document everything. This is painful but critical, because if your dealings
with this person wind up resulting in a dismissal, you will need the documentation to
work with HR, and possibly even the legal department, to back up your decision.

Third, if it looks even slightly worse than a “quick fix,” be sure to involve HR right
away. Call your business representative and explain the situation and see what is the
best approach to handle such issues within your particular organization.

Fourth, bolster and protect your team. This is a tough one. It is important for your
team to be aware that you know of the problem and are attending to it, as it will help
alleviate their feelings of distress that you may be ignoring the issue that is causing
them so much pain. However, it is inappropriate and potentially damaging to the rela-

l

TH

E
W

O
R

K
P

LA
C

ETreat contractors almost
exactly like everyone else.

tionship between the troubled member and your team if you handle this poorly.
Again, talk with HR and see how they feel you should best handle it.

Last, remember to keep your cool. This is often very difficult, as sometimes employees
like these are causing you as much pain as they are causing your staff – in many cases,
they may even be causing you more. If you lose it and start yelling or handling things
in an unprofessional manner, it’s going to hurt your chances of turning it around, and
may even wind up landing you in court.

The Wrong Way to Use Contractors
Contractors are an excellent way to supplement your team’s skill set and ensure you
have a little more manpower behind your projects. However, if handled improperly,
contractors can be a horrible detriment to your team’s productivity and morale.

The absolutely worst approach is for a manager to view a contractor as a “hired gun” –
someone to come in and “clean up this mess,”“really bring this team into line,” or any-
thing of that sort. In other words, if you plan on bringing in some contractor to act as
some sort of renegade, working in their own way, ignoring the team – or, worse, delib-
erately slamming the team and the way they work – then the results are likely to be dis-
astrous.

This misguided approach is often the result of a manager trying to “catch up” or “get
ahead” by “bringing someone in who really knows [some skill].” To many such man-
agers this seems like a great idea, but the result is usually the same. It may very well get
the project done and out in time, but there’s a very good chance that the project may
not even be right because the contractor has worked alone, and it’s almost certain that
the contractor and their final result will upset everyone in the team. What’s more, your
team is going to hold you accountable, not the contractor. Clearly this will be very
damaging to your own relationship with your staff.

The trick is to treat contractors almost exactly like everyone else. Obviously, there is
not usually justification for sending contractors to training (and your permanent staff
may resent you for doing so), but put your consultants through exactly the same inter-
view process as anyone else. In fact, you should consider being more strict on the
requirements than you would with a permanent candidate, because the contractor will
have less time to ramp up and no justification for training.

Once the contractor is in your organization, be sure to mentor and guide her of him
through the ramp-up period as you would anyone else, and be certain to involve the
contractor in every aspect of the team relationship that you can – from meetings to
game nights. He or she need to be a member of the team through and through. Per-
sonally, I call my contractors “temporary permanent staff.” It’s a distinction that makes
a big difference in my team, and even seems to make the contractors happy, since I
treat them with more respect and consideration than many of their other clients do.

Mentorship
One of the most frustrating and distressing things for a new employee is to have no
idea what they should be doing with their time. Most people feel pretty bad when they
have to “bother the manager” with questions about what they should be doing, and
they feel even worse when they spend a whole day sitting in the office staring at the
wall.

April 2004 ;login: 23KEEPING EMPLOYEES l

Vol. 29, No. 2 ;login:24

Granted, if they are staring at the wall you may have other issues, but the easiest way to
avoid this problem is to assign the new person a mentor the first day they come in the
door.

Mentors are great, because they can guide the new employee through the rigors of get-
ting started up in your organization, as well as assigning them some initial tasks that
they should be doing to come up to speed. Additionally, they can be the first point of
contact for basic questions such as “Where do I fill out time sheets?”“Where can I get
CDs to install Visual Basic?” or even “Where is the lunchroom?”

Assigning a mentor will also enable you, the manager, to go about your business with-
out being concerned that you are not unfailingly available for your new employee. I
spend about half of my time in meetings – this can sometimes make me fairly inacces-
sible, and the last thing I want is for my new employee to feel like he or she cannot get
help on his or her first days of work. Most of my staff members, however, are usually
around, so if one of them is acting as a mentor to the new employee, there’s almost
always someone available to handle such issues. Plus, if something comes up that does
need my immediate attention, the mentor knows how to find me and will be less nerv-
ous about disturbing me when it is appropriate.

Be sure to define the parameters of the mentor role with the chosen staff member. For
example, it’s perfectly appropriate for my new guys to talk to their mentor about tech-
nical issues such as where our documentation is kept and how to fill out a timesheet,
but it is inappropriate for them to discuss their compensation or other personnel-
related issues.

Promote an Environment of Communication
There is absolutely no question that if there is not ample communication within your
team, you will have many problems, and most people will find themselves frequently
frustrated with you and other team members.

One of the best ways I have found to ensure that communication flows within my
group is to promote a very casual atmosphere. The simple fact is that I tend to hire
people who are interesting, bright, and capable. Because of this, I often find that I
enjoy talking with them and attempt to engage them on non-work-related topics all
the time. Since I happen to come from the same general background as most of my
employees, this is usually pretty easy. (We’re a bunch of geeks with some really odd
hobbies.)

In time, I find that the employees frequently stop by my office to say hello and talk
about whatever happens to be on their mind. More often than not it’s just something
funny or a mention of a new way to tweak up my 3-D card, but a lot of the time the
conversations are work-related, or possibly just taper into a work-related discussion
within a few minutes.

It seems very non-productive on the surface, and people do spend an incredible
amount of time in my office talking about movies, X10, Team Fortress Classic, and all
manner of things. It seems, however, to make it very easy for my staff to approach me
with pretty much anything, and since people come to talk to me frequently, I also get a
steady flow of information about what is going on in my team.

The other wonderful side-effect is that other team members usually jump in on con-
versations, which means that not only are my staff more comfortable with me, but also

25April 2004 ;login:

with each other. This helps everyone communicate on issues that are more serious
with less stress and consternation – after all, how can anyone be so bad if they have
their house X10ed to the rafters and are completely addicted to capping people with a
sniper rifle in a 3-D computer world, right?

Resources
Your employees cannot do their jobs unless you provide the resources that they need
to do them. It seems like a very simple statement, yet for some reason traditional man-
agement seems more concerned about the more obvious budget and time issues that
are right in front of them, and are unable to see the long-term effects of “cutting a few
dollars here and there.”

If I told you that I wanted you to build a house, but only made available one box of
nails and a rock to bang them in with, you’d think I was crazy. You would think I was
even crazier if you had almost no idea how to build a house at all, and that I refused to
give you any sort of training on how to do it or any money to hire someone else to do
it for you.

How is that any different from asking someone to administer a new technology and
not allowing them to attend training on it? Or even to go to the store to buy a book?
Would you want to be in a situation where your job depended on your ability to sup-
port a production service or product that you didn’t know from a hole in the wall? I
don’t think so.

Books are ridiculously cheap. Consider how much it costs to pay your employees by
the hour (roughly their salary divided by 2000), and try to figure out how many hours
it will take of your employee banging his head against the wall on a difficult problem
with the service, and then compare it to the price of the book. In most cases, you can
fairly well assume that you are costing your company money by not allowing them to
purchase it.

Now consider that training – it’s a lot more expensive, right? Most technical training
seminars run on the order of $1200–2500. Certainly, even if you figure several tough
problems appearing and figure in the hourly rate of your employee, you’re not likely to
quite make up that figure.

However, consider the fact that the time your employee is wasting is actually com-
pounded by the fact that they cost a heck of a lot more than just their salary. In most
cases, if you include all the support staff, facilities and equipment costs, health insur-
ance and other benefits, you can almost double the cost associated with your employee
spinning his or her wheels for hours on end.

Now factor in the aspect that your employee is likely to be working on something that
is holding up your company’s productivity – and this is most especially true in the
technology field. What if your mail server or file server goes down? Perhaps your
source control is damaged and you are unable to complete that big project, or lose
hundreds of hours of development time for a staff of 10. What if your e-commerce
Web site is losing out on hundreds of orders every hour . . . every minute . . . while
your bewildered staff member fumbles through online support pages for six hours?
Ouch. That’s getting very expensive, very quickly.

Consider, too, that your employee is most likely miserable during this time period. He
is stressed more than you can possibly imagine, feeling helpless, lost, and totally unable

Your employees cannot do
their jobs unless you provide
the resources that they need
to do them. l

TH

E
W

O
R

K
P

LA
C

E

KEEPING EMPLOYEES l

Vol. 29, No. 2 ;login:26

to deal with a problem that he knows full well is crushing the company’s productivity.
Not to mention that you are probably going to be yelled at by your management for
the same reason. Needless to say, this will make neither you nor your employee feel
very good about his life in his present role, and if it keeps up he is very likely to quit.

Now what if your employee could have fixed the entire thing in under an hour had you
had the forethought to send your employee to training and had bought a couple of
books?

There’s also a very interesting twist on this theme – as I mentioned, most management
does not seem to get this, so very few companies train their employees properly, if at
all. If you do train your staff properly, they will be very happy, reluctant to leave, and
word on the street will be that you take good care of your staff, which will actually
attract more talent to your organization.

DeMotivational Posters
“Aspire!”“Success!”“Achievement!” . . . “Rubbish!”

Good lord. What pointy-haired, disconnected, completely unaware individual decided
that those posters were a “great way to motivate the staff”? For the most part, they do
the exact opposite.

Most people are very critical of things like this, and it usually boils down to a simple
formula: If you have to say it, then there is a very good chance that either you’re not
doing it or it isn’t working.

My company recently posted an enormous banner on the outside of the building tout-
ing the company name and “A great place to work!” Now, truth be told, I actually agree
with this statement, but every single one of my staff looked at that and groaned
painfully, because it is indicative of the kind of management that just doesn’t get it. I’m
happy to report that the banner only stayed up for a couple of weeks, and I’m pretty
sure it was taken down because they got lambasted for it.

Believe me, rather than investing $5000 to have a big banner printed with some goofy
slogan, to be plastered on the side of the building for all to see and despise, have free
ice cream day in the cafeteria every Friday for a few months. Then rather than claiming
that it is a great place to work, it actually will be. I’m certainly not attempting to claim
that the availability of frozen dairy products makes a workplace, but keep going with
this general approach and you’ll get there eventually.

Buzzword Bingo
Along the same line as DeMotivational Posters is the excessive use of industry buzz-
words and catch phrases. To understand what I am talking about, it is important to
understand what I mean by each. When I say “buzzword,” I am referring to the contin-
ual dropping of words that relate to hot topics in the industry. “ASP,”“Information
Super Highway,”“intranet,” and “e”-anything are good examples. When I say catch
phrases, I’m referring to words and phrases that are used by people to quickly and
conveniently summarize a commonly used business or industry concept. For example,
“I don’t think my team has the bandwidth to support that” or “Let’s put a stake in the
ground.”

The reason that they are similar to the DeMotivational Posters is that those who use
them repeatedly are usually demonstrating only that they are too wrapped up in the
“secret handshake and code word” of management and aren’t really saying anything

Very few companies train
their employees properly, if at
all.

27April 2004 ;login:

with any substance. Think about it. What does “I think we have the bandwidth to sup-
port this plug-and-play operation, assuming that everyone is motivated and we really
put a stake in the ground” mean? It sounds like a whole lot of nothing.

This sort of behavior makes the manager exhibiting it look really foolish, both in the
eyes of his or her staff and in those of other people in the organization. And the man-
ager looking bad can reflect directly upon the manager’s team as well. Of course, this
makes the team feel badly about their situation, and generally makes them very
unhappy.

I worked in one environment where the people on my team wrote a program that
would generate random bingo cards where the values in the squares were buzzwords
and catch phrases. They would bring these to meetings conducted by a certain man-
ager, and would play a game of buzzword bingo during the meeting. Many times dur-
ing such meetings, someone would suddenly yell out “BINGO!” Appropriately enough,
the manager usually laughed and had absolutely no idea that he was openly being
made fun of. All hail Dilbert.

Work Should Be Fun
I don’t know about anyone else, but I don’t personally want to do anything that isn’t
fun. In fact, pretty much my only goal in life is to ensure that each and every day is as
fun-filled as humanly possible.

Therefore, I work very hard to promote a work environment that is all about doing
what makes my staff happy, as long as it can fit within the needs of the business. If I
cannot find one of my staff a role that makes them happy within the needs of the busi-
ness, I will try my hardest to get them into a department where they will be happy. My
goal is to make it so that every morning my staff members jump out of bed, excited to
go to work. When the day is coming to a close, I want them to be so excited about what
they are doing that they literally have to tear themselves away from their project – not
because I want them to work long hours, just because I want them to be enjoying
themselves.

If you can promote such an attitude within your organization, you are likely to have a
lot of happy people — after all, if they’re having fun, they will be happy.

Game Night
Believe it or not, I go out and buy games like Quake III Arena and Half Life and
expense them to the company. Then I give each of my employees a copy and have
them install them on their machines at work. Then, every Tuesday night I buy every-
one dinner and we sit around the office for several hours playing games.

It’s very funny.

To make it even more entertaining, I hook up a conference call and we all get on and
yell at each other while we’re playing.

I’ve been doing this kind of thing at work for several years now, and truth be told I
actually do it primarily because it’s just a heck of a lot of fun. However, I was recently
taken aback when one of my staff pulled me aside and said, “Chris, I feel very tight
with this team, and I think the thing that really brought us closest together were these
silly game nights.”

What does “I think we have
the bandwidth to support this
plug-and-play operation,
assuming that everyone is
motivated and we really put
a stake in the ground” mean?

l

TH

E
W

O
R

K
P

LA
C

E

KEEPING EMPLOYEES l

Vol. 29, No. 2 ;login:28

I was floored. Certainly, I figured having fun together would promote some level of
team friendship, but I never thought it would be so significant. Needless to say, we still
play every Tuesday night, and we even try to involve members from other groups. It’s
been so successful that my boss has specifically asked me to set up a game server acces-
sible to the Internet so that people in remote locations can join in the fun.

It’s usually a little difficult to get everyone to play the first night, as people tend to be
squeamish about it – either because they’ve never played or think it’s “weird.” Encour-
age them at least to give it a shot, because it’s a great time and well worth it.

Thanks for Coming to Work: Have a Shirt!
It’s really kind of strange, but little freebies always seem to make people happy. I’m no
different. I couldn’t be more pleased than when someone gives me a shirt, or takes me
out for lunch, or gives me a free Porsche. OK, I’m dreaming a bit here.

The point is that little things like this really make a big difference to people, especially
when given at strategic times. If my team works incredibly hard for months on end to
roll out a new and important product, I try to commemorate the occasion by having a
shirt or other article of clothing made with the company logo and possibly a small bit
of tasteful text with the team and/or product name embroidered on it.

It doesn’t necessarily have to be for big team wins, either. In some cases, I have given
out a shirt or some other small token because one individual really worked far beyond
what was reasonable on a critical issue, or when someone did another team a favor
that was particularly noteworthy.

It doesn’t really even have to be something that one gives for a win. Despite my contin-
ual attempts to discourage it, many of my staff members feel compelled to work late
nights and over weekends. For these people, I try very hard to run out and get them
some food, or at least encourage them to order something and expense it. I have even
driven 45 minutes back to work on a Sunday to deliver lunch to a couple of guys who
were hard at work trying to get a product out the door before noon on Monday.

Keep in mind that no one said it had to be food or clothing! It could be a silly toy or
possibly even something grandiose like a bonus or a weekend getaway for the
employee and his or her partner. Maybe a week of cleaning service or pet care for a
staff member who is having a hard time pulling away from work. The point is to be
creative.

Now, many people may start to wonder about the costs associated with doing things of
this nature – after all, some of these suggestions can really add up!

The truth is that most of them are very economical. Shirts cost on the order of
US$10–40 each – the former being a nice t-shirt, and the latter being a very nice but-
ton-down or rugby shirt. Dinner or lunch usually costs at most $25–30 per person,
and if it’s from a takeout place, it usually only costs about $10. Silly toys are usually
$5–15 each. (I highly recommend Nerf weaponry – a great toy as well as excellent
stress relief.) Even a cleaning service or pet care is usually no more than $20–50 a day.
Of course a weekend getaway can be several hundred dollars, but it’s up to you to
determine what is appropriate and within your budget.

If you’re still concerned about the costs, consider what you are getting in return. In
most cases, we are talking about situations where people are doing more than they
really need to in order to get their jobs done. It’s a cold-steel way of thinking about

Little freebies always seem to
make people happy.

29April 2004 ;login:

this, but the truth is that the cost associated with you giving them a little something in
appreciation is nothing compared to the costs in labor and delayed completion of
tasks that would be the result if the employees were not essentially giving you their
extra time free of charge.

Even when there is no obvious “justification” for such gifts, they go a long way in mak-
ing employees feel welcome and appreciated, which of course makes them happy and
contented in their jobs.

Conclusion
Clearly there is a lot to do when trying to keep a team happy and together. I have only
addressed some of the main points. There are a great many more that could be
addressed, and a significant amount of detail that could be put into each. I hope, how-
ever, that these will help you get started on the road to significant employee happiness
and retention.

Now take the list of principles that you created after reading my last article and
attempt to update it with some of the things you would like to work on from this one.
Take a moment to review your progress so far and think about how much you have or
have not improved in the time that has passed.

Here’s the tough part. What I really would like you to do is schedule some time to sit
down with your human resources partner to review the list together. Discuss your feel-
ings with the person and see what they think of your ideas and how you might better
proceed in achieving your goals. Don’t worry, though – they are there to help you and
will likely be very pleased to know that you are even thinking about this.

Lastly, if you happen to come up with anything that you think works better than some
of the things I have suggested, or perhaps you feel I have missed a principle that you
feel is critical, please send me email and let me know. If I get enough of these, I will
write a follow-up article and may include a synopsis of your findings in it.

If you happen to be in the tech industry, let’s have a contest. I’m trying to see if I can
keep no fewer than one-half of my staff for no less than three years. That’s quite a chal-
lenge – do you think you’re up to it? Drop me a line and let me know how you fare.
Good luck!

l

TH

E
W

O
R

K
P

LA
C

E

KEEPING EMPLOYEES l

30

Have you ever wondered whether you have something beyond a technical
problem – whether you might have disturbed the natural order of the uni-
verse? Are you not only unable to keep your machines going, but you are
the first to contract each new Trojan that comes out, and when you drop
toast it lands butter-side down? Is your horoscope failing you? Do you get
grumpy when it’s not posted promptly near the coffee pot, or do you scour
multiple astrology sites for the best outlook? Maybe it’s time to try Feng
Shui, the ancient “Chinese system of maximizing the accumulation of ch’i
(vital energy of the universe) to improve the quality of life” (Skinner 1997).
Some of the advice is common sense, while other aspects should be
reserved for the very desperate.

Clutter
The first item of business is to get rid of clutter, as it creates “confusion, shame and
guilt” (CAMEX ’02). Clutter creates a pattern of struggle in your life and symbolizes
your stagnant energy. It’s time to let your local computer parts recycler take your
80MB hard drives, 4MB SIMMs, and VGA monitors. Are you the way I used to be and
claim to use “pile management”? Who are you kidding? Do you really need the stack of
handouts from USENIX 1989 or the $3 totebag from COMDEX 1995? Worse yet, have
you refused to part with shells of previously hot computers – their guts strewn about
your office? “If in doubt, throw it out” is a guideline I was told by a Feng Shui consult-
ant. She also advised that if you are really having trouble deciding to discard an item,
journal about it.

vi journal

> I bought a second processor for my old streaming server in 1999 and never
> got it working right. It’s been exposed to sun (I happened to set it in front
> of a window) and every visitor to my office in the past three years has
> fondled the contacts. I’d throw it away, but it reminds me of a kinder,
> gentler era when my customers and I had no interest in Windows Media
> Server. What to do? The Feng Shui master says to ask, “Is it useful? Does it
> lift my energy? Do I love it”?

If you are completely unable to throw things out, involve a metal person (one of the
five elements: see sidebar). Metal people love to clean.

vi journal

> After much anguish, Kevin pried the processor from my hands. It is now on
> the pallet for Surplus Sales. The stagnant air is circulating again.

If you are a metal person, be careful about helping others. Practicing Feng Shui for
others causes you to take on a great karmic responsibility. You should be careful with
others’ luck. If I forgot to make disclaimers at the beginning of the article, I just want
to say I don’t take any responsibility for anyone who takes this advice. I have my own
karma to deal with already!

feng shui for
computer geeks

Vol. 29, No. 2 ;login:

by Christine
Bagwell
Christine Bagwell heads
University of California
San Diego's Instruction-
al WWW Development
Center.

cbagwell@ucsd.edu

31April 2004 ;login:

Circulate That Energy
Another item that can help stagnant energy spaces is a bright or reflective object. If
hanging crystals will raise too many eyebrows around the department, see whether
your office manager will spring for a few mirrors. Keep that ch’i moving! Try hanging
wind chimes in the entryway to your computer room. They not only help your energy,
but also alert you to prying “super users” who are trying to fiddle with your servers! If
possible, a fountain or fish pond should be placed in the southeast sector of the office.
For your company, this might mean the shareholders would greatly benefit if you can
convince your CEO to place a fish pond in her or his office. Feng Shui practitioners
recommend plants in the workplace. Aside from representing a life force, they pur-
portedly help with office relations. Rows of plants should be used to block workers
from being seen as soon as a user walks in the door. This might have seemed intuitive.
Who wants their boss to catch them checking sports stats or see they are still reading
Slashdot? Now you have another excuse to barricade yourself. Gurus recommend buy-
ing three identical plants. For example, if you have been arguing with a particular user
you would place one plant in his/her office, one in your office, and one in a common
place, such as a break room or mailroom. Don’t let them get too wilted or they will
have the opposite effect. Coworkers will get the message that your place of work does
not care for people – “If they can’t take care of this plant, how will my needs be met?”

Last Christmas one of my programmers bought me a lucky bamboo. He surprised me
by placing it near my phone, knowing how much I enjoy using thate technology. It has
indeed helped. After hoping it would cause less calls, I accidentally knocked it over,
spilling its water and shorting out my phone. Feng Shui works!

Colors
Colors can take on a meaning of their own in Feng Shui. Described as the Basic Bagua,
nine colors represent different aspects of life.

WEALTH (PURPLE) FAME & REPUTATION (ORANGE) PARTNERSHIP (PINK)
FAMILY (GREEN) HEALTH (YELLOW) CHILDREN & CREATIVITY

(WHITE)
KNOWLEDGE (BLUE) CAREER (BLACK) HELPFUL PEOPLE (GRAY)

You can apply these in a variety of ways. You might try wearing certain colors to an
important meeting. Some dignity should be preserved no matter how good it is for
your ch’i. I don’t care if you are proposing to a supermodel, orange and pink are con-
traindicated. You should also not paint your house purple and green (though I have
seen it done, unfortunately). Installing blue lights in your office or computer room
might make people think you are more Nutty Professor than Einstein.

Watch Your Back!
Though you might not gain funding for crystals, mirrors, ficus trees, or repainting,
you may be able to change your luck with some rearranging of your office or computer
room. If you come away with one thing, let it be that you do not want your back to the
door – ever! You need to protect it with a wall or other desk. Do not point your desk
directly at colleagues. This can create unconscious hostility. That guy who keeps click-
ing on viruses in Outlook may be doing it unconsciously intentionally. Try rearranging
his office. If nothing else, he will be (a) really confused and (b) too scared of you to

FENG SHUI FOR COMPUTER GEEKS l

THE FIVE ELEMENTS
Elements are associated with your year (most
important), month, day, and hour of birth.
These elements together make up the Chinese
horoscope (Skinner 1997).

1. Subtract 10 from the last two digits of the
year you were born.
2. Repeat until you have a number less than or
equal to 10.

Number Element

0 Metal
1 Metal
2 Water
3 Water
4 Wood
5 Wood
6 Fire
7 Fire
8 Earth
9 Earth

10 Metal

l

TH

E
W

O
R

K
P

LA
C

E

Vol. 29, No. 2 ;login:32

test your patience further. Remind him that you have a master key in addition to con-
trol over his mail and thus his whole life!

Using your personal magic number, you can determine the best direction for you to
face when seated at your desk. I was pleased to find that I was facing west. I went over-
board, also changing my seat at a standing meeting. When coworkers asked why I had
moved from the seat I’d held for the last three years, I giddily replied, “It wasn’t my
auspicious direction!” (BTW, that was #2 on my 10-point action plan to ruin my
career.) Weeks later, a colleague threw my life into a tailspin by bringing me a compass.
I had assumed our building was built squarely pointing north. I had been facing
southwest, not west, the whole time! There are also auspicious directions for toilets.
The one saving grace was that I no longer needed to sit sideways. Nonetheless, I would
have rather found I had been facing “great prosperity & success” more than “relation-
ships & family.” I can work on my ch’i for family at home.

Another easy item is to avoid criss-crossing wires. You thought interference was the
worst evil to come of that sloppy practice. You probably didn’t know you were intro-
ducing conflicting energies. Depending on how bad your situation is, you may need a
few tie wraps or a whole rewire of your network closet. The door may be closed, but
your ch’i is getting messed up right behind it!

You also don’t want sharp edges. They can create feng sha, “a noxious ch’i destroying
wind” (Skinner 1997). And you thought that unpleasant smell was the desktop sup-
port guy. Stay away from desk lamps with sharp edges, opting for round models. If
your bookshelf has blunt edges, attach doors. In my office, the earthquake retrofitting
did just this. The 2” Plexiglas affixed to each shelf softens the sharp edge of the shelf.
This could be the perfect reason to go from telco racks to enclosed racks in your com-
puter room. Give your ch’i a break!

How have you been inspired? Send me anecdotes or jpegs of your most recent Feng Shui
change to cbagwell@ucsd.edu.

REFERENCES
CAMEX 2002. “Feng Shui and Your Retail
Space.” Los Angeles, CA. 2/21/2002

Skinner, Stephen. Feng Shui. New York, NY:
Paragon, 1997

33April 2004 ;login:

STUG 20 Years Ago
by Peter H. Salus

peter@netpedant.com

The Software Tools User Group published its 12th newsletter (“Software Tools Com-
munications”) in July 1984. Among other things, it announced the availability of two
implementations of the “Basic Tape” for IBM CMS and for IBM VMS. (I still have my
copies of “CMS Notes” by Marc Donner: 1981, revised 1984.)

Also announced was a “potpourri” tape, dubbed the “Toys Tape.” Nancy Travis wrote,
“Despite its title, the tools included are far from trivial, including the long-awaited
YACC, LEX, LISP, and TCS as well as improved versions of format and the archiver.”

There was also a new version of Ratfor along with ratfix programs.

(For those unfamiliar with Software Tools, the software tools, and Ratfor (a) buy and
read a copy of Kernighan and Plauger and (b) take a look at the NetBSD packages col-
lection, devel/ratfor.)

Vern Paxson “revealed” that RTSG (Real-Time Systems Group) had developed a Lex
tool. Ken Poulton wrote about his shell enhancements (“I have implemented much of
csh in Ratfor”).

There were contributions from Neil Groundwater and Van Jacobson, as well as a
report from the EUUG by Teus Hagen.

Thanks, guys.

When I was working on my UNIX history, a decade ago, Debbie Scherrer let me bor-
row her STUG archive; Lou Katz gave me several issues of the Communications. I’d
like to thank Chris Kantarjiev for giving me his collection, completing my set.

Finally, it’s 15 years since I left USENIX. This means that the Boston meeting will see
Ellie Young’s 15th year as executive director. Congratulations!

STUG 20 YEARS AGO l

l

H

IS
TO

RY

34 Vol. 29, No. 2 ;login:

using C# abstract classes

In our last column we discussed C# interfaces, a mecha-
nism for specifying a contract, a particular set of meth-
ods, that an implementing class must define.

In this column we’ll consider another somewhat similar feature
known as abstract classes. Such classes are a basic design and
structuring tool for C# applications and allow you to provide
partial class implementations that can be customized.

An Example
Imagine that you’re doing some work with benchmarking and
performance analysis, and you’d like to develop some C# utility
classes to aid in this effort. You need one utility that executes a
particular routine or task repeatedly and keeps track of the
elapsed time.

Here’s some C# code that captures this idea:

using System;
using System.Threading;

abstract public class PerfUtils {
abstract public void DoRun();

public long TimeRun(int repcount) {
long currtick = DateTime.Now.Ticks;
for (int i = 0; i < repcount; i++)

DoRun();
return DateTime.Now.Ticks - currtick;

}
}

public class BenchMark1 : PerfUtils {
public override void DoRun() {

Thread.Sleep(500);
}

}

public class PerfUtilsDemo {
public static void Main() {

PerfUtils pu = new BenchMark1();
long elapsed = pu.TimeRun(10);

Console.WriteLine("elapsed time in milliseconds = " +
elapsed / 10 / 1000);

}
}

PerfUtils is an abstract class, meaning that it declares but does
not define all its methods. An abstract class, like an interface,
specifies a contract that must be fulfilled or implemented by
another class (BenchMark1). In the case at hand, the TimeRun
method is implemented, but the DoRun method is not – it’s an
application-specific method that a subclass must supply.

Since an abstract class does not have definitions for all its meth-
ods, it’s not possible to create instances of such classes, and the
following code will evoke a compiler error:

abstract public class A {
abstract public void f();

}

public class AbstractNew {
public static void Main() {

A aref = new A();

aref.f(); }

}

If such code was legal, then at runtime there might be calls to
unimplemented methods.

We can say that an abstract class must be derived from or
extended in order to be of any value; that is, there must be a
further class that uses the abstract class. By contrast, the other
extreme is a sealed class that cannot be derived from at all. For
example, this code is illegal:

sealed public class A {
void f() {}

}

public class B : A {}

Sealed classes are useful in a case where a derived class would
alter the semantics of the class in some way, causing it to break.

Factoring Common Functionality
One of the key differences between an interface and an abstract
class is that an abstract class can provide partial implementa-
tions of some methods, as a base, and thus factor out common
functionality. By contrast, interface methods cannot be defined,
and so the following code is invalid:

public interface IA {
void f() {}

}

public class B : IA {

by Glen
McCluskey
Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.
glenm@glenmccl.com

35April 2004 ;login: USING C# ABSTRACT CLASSES l

l

P

R
O

G
R

A
M

M
IN

Gpublic void f() {}

public static void Main() {}
}

In the earlier example, the common functionality is TimeRun, a
routine that’s useful across a range of applications. It works
with an application-specific method DoRun, supplied in a
derived class.

Another example of factoring is the code below which illus-
trates a bit of a framework for putting together some collection
classes (lists, hashtables, etc.):

public interface ICollection {
int Size();

bool IsEmpty();

// ... other methods ...
}

abstract public class Collection : ICollection {
abstract public int Size();

public bool IsEmpty() {
return Size() == 0;

}

// ... other methods ...
}

public class ListCollection : Collection {
public override int Size() {

// ... logic for computing size of ListCollection ...

return 0; // dummy return
}

}

public class Test {
public static void Main() {

ICollection ic = new ListCollection();
}

}

ICollection is an interface that declares some common methods
all collections will have. These methods include both Size, used
to obtain the number of elements currently in the collection,
and IsEmpty, which determines whether a collection is empty.
Since IsEmpty can be implemented in terms of Size, it makes
sense to provide a definition in the abstract class. By contrast,
the appropriate logic to compute the size of a collection will
vary, depending, for example, on whether the collection is a list
or a hashtable.

Using interfaces and abstract classes together in this way is a
very powerful technique. The abstract class serves as a means of
factoring common functionality and providing an implementa-

tion for it. But because an interface is also defined, it’s possible
to sidestep the abstract class and start over with your own cus-
tom implementation that implements the interface. If you pro-
gram in terms of interfaces, as we described in the last column,
then it’s easier to substitute your own implementation for that
provided to you in a standard library.

Other Differences Between Interfaces and
Abstract Classes
An abstract class can provide a partial implementation, as we
mentioned above, whereas interfaces are used to specify but not
implement a contract.

Another difference involves multiple inheritance. It’s possible to
implement more than one interface at a time, like this:

public interface IA {
void f();

}

public interface IB {
void g();

}

public class C : IA, IB {
public void f() {}
public void g() {}

public static void Main() {}
}

whereas the corresponding code with abstract classes is not per-
mitted:

abstract public class A {
abstract public void f();

}

abstract public class B {
abstract public void g();

}

public class C : A, B {
public override void f() {}
public override void g() {}

public static void Main() {}
}

Implementing multiple unrelated interfaces can be quite useful,
and sometimes the term “mixin” is used to describe this tech-
nique. For example, in the previous column we declared an
interface:

public interface IDistance {
double GetDistance(object obj);

}

A class implements this interface to provide functionality to
compute the distance between two objects, for example the
Euclidean distance between X,Y points or the number of days
between two calendar dates. The class could implement several
of these interfaces, each one adding a bit of functionality.

Polymorphic Programming
Our final example illustrates another aspect of programming
with abstract classes. Modern object-oriented languages make
use of what is called polymorphic programming, with virtual
functions as another term for the same idea. This idea centers
on programming with a common interface across a hierarchy of
classes and their associated objects, and runtime binding for
method calls.

We can tie down this concept by considering an example:

using System;

abstract public class A {
abstract public void f1();

public virtual void f2() {
Console.WriteLine("A.f2");

}

public virtual void f3() {
Console.WriteLine("A.f3");

}
}

public class B : A {
public override void f1() {

Console.WriteLine("B.f1");
}

public new void f2() {
Console.WriteLine("B.f2");

}

public override void f3() {
Console.WriteLine("B.f3");

}
}

public class Polymorphic {
public static void Main() {

A aref = new B();

aref.f1();
aref.f2();
aref.f3();

}
}

In this code, we create a new B object and assign it to a base
class reference (A is the base of B). We then call methods f1, f2,
and f3 through the base reference.

What happens when the methods are called? For f1, B.f1 is
called, because the object pointed at by the A reference is really
a B, and we specified that B.f1 overrides A.f1, and A.f1 is
abstract anyway.

The same consideration applies to B.f3. The method is virtual
(bound at runtime), and we’re operating on a B object.

What about f2? It’s marked as virtual in A, but B declares f2 to
be “new,” that is, the virtual dispatch hierarchy is broken. So
A.f2 is called.

Virtual method dispatch is extremely powerful. For example,
suppose that you have an abstract class Graphics that represents
a graphics object and declares a Draw method. Then you have a
variety of classes that extend the abstract class and that repre-
sent graphical objects like Circle and Line and Point and Rectan-
gle. Instances of these classes can be assigned to a Graphics
reference (pointer), and then the Draw method can be called on
each instance, without worrying about the exact type of the
object being referenced.

Abstract classes are fundamental building blocks that you can
use to structure your C# programs. They are a good choice if
you'd like to provide a partial class implementation that can be
extended and customized.

36 Vol. 29, No.2 ;login:

An Introduction to Web
Services
Web services are easily the most hyped topic in soft-
ware development since the big “Push Technology”
craze of the mid-1990s. Proponents believe that Web
services represent the future of software development.
Detractors believe that Web services are nothing more
than an ever-expanding orb of complexity.

In fact, the concept of Web services is a very broad topic with
ill-defined edges. There’s a grain of truth in each of these per-
spectives.

At the low end, Web services are just a new form of remote pro-
cedure calls (RPC). They generally use HTTP as a transport
layer, coupled with some form of XML to encode messages and
data. This enables simple CGI programs, mod_perl handlers,
and stand-alone Web servers to implement a service. By using
HTTP and XML, Web services make it easier to focus on writ-
ing an application other than on the low-level details of han-
dling sockets, implementing a protocol, or debugging
client-server transactions.

At the high end, Web services are a loosely federated series of
specifications that describe business processes. These specifica-
tions are expressed in XML-based languages that describe how
to execute a business process, such as processing a purchase
order or provisioning new hardware. Other activities that can
be described under the Web services rubric include transac-
tional reliability, process coordination, and security.

With these two different perspectives on Web services, it is easy
to get confused. On the one hand, Web services are just a new
way to build software using ubiquitous standards such as HTTP
and XML. On the other hand, Web services are a very high-level
description of how to automate business, where the implemen-
tation details are mostly irrelevant. In this article, I focus on the

first meaning of “Web service” – the low-level reinvention of
RPC using HTTP and XML.

Building Services
Let’s consider a practical example. Suppose you wanted to work
with your friends to create a dictionary. You need to collect defi-
nitions and look up terms you have defined already. You could
start with a server that supports the dict protocol, except that
that protocol does not allow you to create new definitions.

Where do you begin? You could start by creating a new proto-
col, “newdict,” that supports the features you need. Then you
would need to create (and test!) new software for your client
and server programs. Frankly, that path leads to a lot of work
and not a lot of value. Your mission here is to create a new dic-
tionary, not rediscover the arcana of dealing with sockets and
writing protocols.

Another alternative is to use a preexisting RPC library. Instead
of developing a protocol, using RPC allows you to create one
service that responds to multiple procedure calls, such as
add_definition and get_definition.

This is where Web services become interesting. Low-level RPC
libraries require packing and unpacking data (bytes) to send
messages over the network. On the other hand, Web services
transfer data between clients and servers using XML. This helps,
because Perl’s support for low-level RPC libraries has always
been weak, but its support for XML and text has always been
strong. Additionally, Web services are a language-neutral RPC
mechanism. It is easy to write a connect for Perl clients to Java
and .Net Web services, or vice versa.

There are three main ways to write a Web service: REST, XML-
RPC, and SOAP. REST is not a Web service technology, but a
description of how the Web works, and a set of conventions for
how to write well-behaved programs that respect those princi-
ples. Chances are good that if you’ve ever written a CGI script,
you’ve written a REST service.

XML-RPC is a very simple protocol for creating Web services. It
is an XML description of how to invoke a remote procedure,
and an XML description of the corresponding result. XML-RPC
is a simplification of SOAP, a richer Web services protocol that
can be used for simple RPC or for more complex interactions
involving message-based communications.

Perl supports all three kinds of Web services. To use REST Web
services, the only thing that is absolutely required is a Web
client library, like LWP. The RPC::XML and XMLRPC::Lite mod-
ules both support XML-RPC, and the SOAP::Lite module sup-
ports the SOAP protocol. (XMLRPC::Lite can be found in the
SOAP::Lite distribution.)

l

P

R
O

G
R

A
M

M
IN

G

PRACTICAL PERL l April 2004 ;login: 37

by Adam Turoff
Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long-time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.
ziggy@panix.com

practical perl

Vol. 29, No.2 ;login:38

Publishing a Dictionary Authoring Service
One of the easiest ways to start with Web services is to add an XML-RPC interface onto an existing program. Here are the guts of a
newdict program to look up definitions and define new terms. It has two main actions, add_definition and get_definition, which
insert data into a database and query it:

#!/usr/bin/perl

use strict;
use warnings;
use DBI;

my $dbh = DBI->connect("dbi:SQLite:dbname=dictionary.db");

my $insert_stmt = $dbh->prepare("INSERT INTO dictionary (term, definition) VALUES (?, ?)");

my $select_stmt = $dbh->prepare("SELECT definition FROM dictionary WHERE term=?");

sub add_definition {
my $term = shift;
my $definition = shift;

return $insert_stmt->execute($term, $definition);
}

sub get_definition {
my $term = shift;

$select_stmt->execute($term);

my $rows = $select_stmt->fetchall_arrayref();

Transform a list of lists of strings into a list of strings
my @definitions = map {$_->[0]} @$rows;

Return a structure containing the term, and all definitions found
return {term => $term,

definitions => \@definitions};
}

That’s it! Like many services (DNS, dict, whois), this newdict service is merely an interface to a data store. In this case, the data store
is a simple SQLite database. The newdict service could grow into something more complex, but this is enough to get started.

The rest of the server side of this application – responding to requests, and running as a daemon – is handled through a Web service
library. To publish this small program as an XML-RPC Web service, all that’s necessary is to add some glue code using the RPC::XML
module from CPAN:

use RPC::XML::Server;

my $server = new RPC::XML::Server(port => 10000);

Add a method to add new definitions
$server->add_method({

name => "newdict.add_definition",
code => \&add_definition,
signature=>['int string string'],

});

Add a method to add search for definitions
$server->add_method({

name => "newdict.get_definition",
code => \&get_definition,
signature=>['struct string'],

});

39April 2004 ;login:

l

P

R
O

G
R

A
M

M
IN

G## Launch the service
(This statement never returns)
$server->server_loop();

The first step is to create a RPC::XML::Server object and specify which server port to use (10000 in this example). Next, each opera-
tion that this XML-RPC server will support must be added into the server object with a call to add_method. Each method is defined
with a name (like newdict.add_definition), a reference to the subroutine to call, and a description of the inputs and outputs to that
method.

The third part of the XML-RPC method definition, the “signature,” is a textual description of data types for the result and input val-
ues for a method. XML-RPC defines eight basic datatypes that can be used in XML-RPC messages: integers, floating point numbers,
Boolean values, date/time values, strings, and also binary structures, arrays, and hashes (called struct in XML-RPC).

With XML-RPC, methods return a single value, and the first datatype in a method signature is the result. The other values in the sig-
nature describe the types of the input parameters. In the example above, the add_definition method returns an integer value and
takes two strings, a term to be defined and its definition. The get_definition takes a single string as input (the term to be defined) and
returns a hash containing both the term and its definitions.

Using RPC::XML::Server, the final bit of glue is the call to $server->server_loop(). This starts a stand-alone Web server (using
HTTP::Daemon) and waits for requests to arrive. Each XML-RPC request will be an HTTP request containing a bit of XML that
describes what method to call and the parameters to pass to that method. For each message received, the RPC::XML::Server object
will parse the XML message, identify what method is requested, pass the arguments, and receive a result. The server object will then
encode the result in XML and send back to the client program, where its XML-RPC library will perform the same deserialization.

We’re almost done. The RPC::XML library calls RPC methods with an initial parameter containing information about the XML-RPC
request received from the client. This parameter needs to be captured in each of the published methods:

sub add_definition {
my $xmlrpc = shift;
my $term = shift;
my $definition = shift;

##...
}

sub get_definition {
my $xmlrpc = shift;
my $term = shift;

##....
}

And now we’re done. By adding a few lines of glue code and making two small changes to the original newdict program, we now
have a newdict Web service.

Using the Dictionary Authoring Service
Now that we have a newdict service, anyone with an XML-RPC library can communicate with it. All that is necessary is a URL to
find this XML-RPC server (http://localhost:10000/ in this example), the names of the methods to call, and an understanding of the
signatures for those methods.

To connect to this service, we can use the RPC::XML::Client module that also comes with RPC::XML distribution:

#!/usr/bin/perl

use strict;
use warnings;

use RPC::XML::Client;

PRACTICAL PERL l

http://localhost:10000/

Vol. 29, No.2 ;login:40

my $client = new RPC::XML::Client("http://localhost:10000");

$client->simple_request('newdict.add_definition',
'XML-RPC',
'An RPC Protocol');

$client->simple_request('newdict.add_definition',
'XML-RPC',
'A Web Services Protocol');

my $result = $client->simple_request('newdict.get_definition', 'XML-RPC');

my $definitions = $result->{definitions};
print join("\n\t", "$result->{term}:", @$definitions), "\n";

This new dict-client program starts by creating an RPC::XML::Client object that will act as a proxy for the XML-RPC server found at
http://localhost:10000. Each call to $client->simple_request() encodes an XML message to send to the XML-RPC server, where the
request is processed and a result returned. The client object then translates the XML result into native Perl data structures, which are
then returned from the simple_request method.

And that’s it! All of the necessary glue code to talk to the server is handled in the RPC::XML::Client module. Communicating with an
XML-RPC server is as simple as writing straightforward Perl code.

Conclusion
Web services are many things to many people. At the heart of it all are simple RPC mechanisms that use HTTP and XML. While Web
services may not provide the highest-performance solutions, they greatly simplify the work required to create client and server pro-
grams.

Using XML-RPC is an easy way to get started using Web services with Perl. The RPC::XML module makes it easy to glue an XML-
RPC server interface to an existing piece of code, and easy to write clients to talk to XML-RPC servers.

http://localhost:10000
http://localhost:10000

41April 2004 ;login: THE TCLSH SPOT l

l

P

R
O

G
R

A
M

M
IN

G

Mobile Agents in Tcl
The previous “Tclsh Spot” article described how to build
a client/server pair using the Secure Socket Layer exten-
sion (TLS) and a safe slave interpreter. This article
extends that client/server pair to support transferring
complete Tcl programs to the server for remote evalua-
tion.

A mobile software agent is a set of code that can be sent from
one trusted system to another to be evaluated on the remote
system. A few years ago, this was considered a rather exotic style
of program architecture, but it’s become commonplace now.
For example, when you download a Web page with a script
component, your browser evaluates that code in a safe sandbox
on your system. You are trusting that the code will not escape
that sandbox and damage your system. Whether or not this
trust is misplaced is left as an exercise for the reader. (If you
hear a rant about IE and lack of proper sandboxes, you aren’t
mistaken.)

The protocol for the Client/Server pair described in this article
is simple. The Server sends a Ready prompt when it’s ready to
accept input. The client sends Tcl commands to the server and
waits for a Ready.

The simple client/server pair described in the previous article
was able to implement most of this protocol, but had some
shortcomings.

One of the least obvious problems is that using Tcl’s basic
interp create -safe command provides a bit more security
than we need.

The safe interpreter created with the interp create -safe com-
mand is very limited in what it will do. Among the restrictions
is that a safe interpreter has absolutely no access to the file sys-
tem. This makes it impossible to load Tcl extensions or pure Tcl
packages into the slave interpreter. We can extend a safe inter-
preter with the interp alias command that was described in the
previous article to add support for loading packages, safe access
to the file system, and such. In fact, there are enough require-
ments for extended functionality that Tcl provides a package
with the common aliases already built.

The Tcl distribution comes with the ::safe:: package which
extends the base safe interpreter. The interpreters created with
the ::safe::interp create command still run in a safe sandbox,
but also have hooks to allow a few more actions, including load-
ing pure Tcl packages and extensions with a SafeInit entry
point to be loaded into the safe slave.

There are several commands in the ::safe:: package (docu-
mented under man safe), but the three important ones are:

Syntax:::safe::interp create ?name? ?key value?

::safe::interp create create a new safe interpreter. Returns the
name of the new interpreter

?name? An optional name for the new inter-
preter. The default name will be some-
thing boring like interp0.

?key value? Optional keyword/value pairs to fine-
tune the safe interpreter’s environment.
Some include:

-statics boolean
True allows the slave interpreter to
load statically linked packages (load
{} Tk). False disables this ability. The
default is True.

-nested boolean
True allows the slave inter-
preter to load packages into
sub-interpreters. False dis-
ables this ability. The
default is True.

-deleteHook script
A script to be evaluated before delet-
ing an interpreter. This hook gives
the slave interpreter a chance to do
cleanup (perhaps log an exit mes-
sage) before being destroyed.

by Clif Flynt
Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

the tclsh spot

Vol. 29, No.2 ;login:42

Syntax:::safe::interpAddToAccessPath path

::safe::interpAddToAccessPath
Adds directories to the list of directories the
slave interpreter can search to find packages
to load. This list is maintained in the parent
interpreter. A safe slave cannot access the list,
thus preventing a slave from leaking informa-
tion about a filesystem to the outside world.

path The directory path to add.

Syntax:::safe::interpDelete interpName

::safe::interpDelete
Delete the slave interpreter. All state for that
interpreter will be destroyed.

interpName
The name of the interpreter to be destroyed.

The following code uses the ::safe:: commands to create the
interpreters. For a more restrictive environment, you can substi-
tute the base interp create etc. for these.

The previous example server had only one set of state informa-
tion and only one slave interpreter. For a single-purpose, state-
less server, this is appropriate. However, if two agents tried to
use such a server at the same time and each sent a script with
the same name but a different body to be evaluated, one agent
would be running the wrong code.

The agent server must maintain separate interpreters and sets of
state information for each active connection, to keep the agents
from interfering with each other. Fortunately, all the state for an
active agent can be kept in that agent’s interpreter. All we need
to track in the server is the channel associated with an agent, the
name of the interpreter for that agent, and incomplete input
waiting to be evaluated.

In C, you might have an array of state structures to hold the
necessary information. It might look like this:

struct agent {
IO_channel *channel;
Tcl_Interp *interp;
char *input;

} activeAgents[10];

When data is read from a client, the server steps through the
structures in the array activeAgents until it finds the appropri-
ate element, identified by the IO_channel field.

Tcl does not support an array of structures the way you would
define the data in C or Java. However, the associative array pro-
vides the same functionality for this requirement. In Tcl, we can

initialize the equivalent data structure keyed by the channel
identifier, like this:

set State(interp.$channel) [interp create -safe]
set State(input.$channel) " "

The procedure to establish a connection with a new client
described in the previous “Tclsh Spot” article just waited for the
handshake to be complete and established a fileevent to handle
the input.

proc openConnection {channel clientaddr clientport } {
global tlssignal

Wait until the handshake is complete
fileevent $channel readable \

[list handshakeHandler $channel $clientaddr]
vwait tlssignal($channel)

fileevent $channel readable\
[list processMessage $channel]

fconfigure for line buffering.
fconfigure $channel -buffering line

}

In the agent-based server, the procedure starts the same, but
after the handshke is complete, it creates and initializes the
interpreter for this agent. The interp alias for writeLog is a pro-
cedure that was defined in the previous article; it allows a safe
slave interpreter to write to a predefined log file.

proc openConnection {channel clientaddr clientport } {
global State
global tlssignal

Wait until the handshake is complete
fileevent $channel readable \

[list handshakeHandler $channel $clientaddr]
vwait tlssignal($channel)

fileevent $channel readable [list readLine $channel]

fconfigure for line buffering.
fconfigure $channel -buffering line

Create a safe interpreter
set State(interp.$channel) [::safe::interp create]

Link the 'writeLog' procedure in this environment
to the 'log' procedure in the safe child interpreter.

$State(interp.$channel) alias log writeLog
puts $channel "Ready"

}

The next trick is to send the agent server a procedure to run.
Since the server is running in a secure sandbox, we don’t need a
special protocol to support this: we can send normal Tcl com-

43April 2004 ;login:

l

P

R
O

G
R

A
M

M
IN

Gmands to the server. This even includes complex commands
such as procedure and namespace definitions.

However, in order to download scripts, the agent server must be
able to accept multiple line inputs. The previous server read a
single line and evaluated it. If the line were something like “pro-
cedure foo {args} {,” it would be incomplete, and the slave
interpreter would throw an error. The server needs to know
when a complete command has been received before it tries to
evaluate that input.

This problem has been solved in many ways ranging from com-
plex parsers to requiring a special pattern like “\n.\n” to mark
the end of input.

Each of these techniques has some limitations:

1. An input parser must return the same results as the actual
evaluation parser. Keeping these in sync and verifying that
neither has unexpected exception conditions can cause
headaches.

2. A special pattern must not be something that could exist
in a real message.

Tcl has an elegant solution to this problem: use the actual parse
engine to test input.

One of the powerful aspects of Tcl is how many of the inter-
preter’s internal functions are exposed to the script writer. The
script writer can use the complex parser that’s already built into
Tcl to test input data. Since the same parser is used both to test
the input and then to evaluate it, this guarantees that the test
parser and evaluation parser accept the same information,

The info command gives a Tcl script a sneak-peek into the state
of the interpreter. You can get a list of known commands, global
and local variables, the argument and body of a procedure, and
a fair amount more.

The info complete command gives the script writer access to
the Tcl interpreter’s parsing logic. It returns TRUE (1) if the
string it’s presented is a complete Tcl command, and FALSE (0)
if there are mismatched parentheses, quotes, braces, etc.

Syntax: info complete string

string The string to check for matching braces,
brackets, quotes, etc.

A server that only accepts single line commands from a client
could look like this:

proc readLine {channel} {
global State

Read a line of data
set len [gets $channel line]

Close if we’ve recevied an EOF from the client
if {($len <= 0) & [eof $channel]} {

close $channel
return

}

processMessage $channel $line
}

The agent server is just a little more complex. Once the server
has received a complete command, it can eval it within the
proper safe interp, but until then, it needs to save the data and
check each time there’s a new line.

The code below saves each line as it’s read in an associative array
indexed with the field name input and the channel identifier. It
checks the saved text to see if it’s a complete Tcl command, and
if it is, processes it. If not, it appends a newline (the gets com-
mand strips off newlines), and continues.

One trick with the info complete command is that an empty
string has no mismatched quotes, braces, etc., and is thus com-
plete, even if it’s meaningless. The script checks for empty lines
just to avoid wasting time processing nothing.

proc readLine {channel} {
global State

Read a line of data
set len [gets $channel line]

Close if we've received an EOF from the client
if {($len <= 0) & [eof $channel]} {

close $channel
::safe::interpDelete $State(interp.$channel)
return

}

Put the data in a safe place
append State(input.$channel) "$line"

And check to see if we've got a complete command

if {(![string equal " " $State(input.$channel)]) &&
([info complete $State(input.$channel)])} {
processMessage $channel
set State(input.$channel) " "

} else {
if {(![string equal " " $State(input.$channel)])} {

append State(input.$channel) "\n"
}

}
}

The processMessage procedure is quite simple. All it needs to
know is the channel identifier, which it can use to index into the
State associative array to find the appropriate input and inter-

THE TCLSH SPOT l

Vol. 29, No.2 ;login:44

preter. It evaluates the script within the proper interpreter and
sends the results to the client, along with a new Ready prompt.

proc processMessage {channel} {
global State

if {[string match "" [string trim $State(interp.$channel)]]} {
return

}
set rply [$State(interp.$channel) eval $State(input.$channel)]
puts $channel "$rply"
puts $channel "Ready"

}

With the addition of a dozen lines of code (including some
comments), we’ve changed the previous simple server into one
that handles receiving scripts to be evaluated remotely, while
maintaining the security of the system the server is running on.

The previous client was very simple. It sent a command to the
server and waited for the reply. The reply was always a single
line, and each command had a reply.

The protocol for communicating with this agent server is a little
more complex. Input is requested with a Ready prompt, and
other information is the response to the previous client com-
mand. We can add a procedure to watch for the Ready prompt.
This procedure grabs a line of data and checks to see if it’s the
expected prompt. If it’s not the prompt, the line of input is
saved; when the prompt is received, the input is returned to the
calling script.

proc wait4Prompt {channel prompt} {
set rtn " "
while {[string first $prompt [set line [gets $channel]]] != 0} {

if {[eof $channel]} {error "CLOSED" "Channel Closed"}
append rtn "$line\n"

}
return $rtn

}

With the addition of that procedure, a simple agent that
requests a base64 encoding of some data might resemble this:

set setup {
package require base64
}

set serverSocket [tls::socket -password getPassword \
-keyfile $certDir/clif@noucorp.com.key \
-certfile $certDir/../1000.pem \
-cafile $certDir/../rootca.pem \
-request true -require true $host $port]

fconfigure $serverSocket -buffering line

wait4Prompt $serverSocket Ready

puts $serverSocket $setup
wait4Prompt $serverSocket Ready

puts $serverSocket [list base64::encode "This is a test
message."]

set rply [wait4Prompt $serverSocket Ready]

puts "The reply is: $rply"

And that’s a basic mobile agent client/server pair. In this imple-
mentation, only valid agents are allowed to use the server. The
validation is done with the OpenSSL extension (TSL) which
only allows connections from an agent that knows the pass-
words and keys to the SSL configuration files that exist on the
server.

Including comments, this is 161 lines of code. Of course, inter-
esting agents will have more application-specific instructions.
As usual, this code will be available at http://www.noucorp.com.

http://www.noucorp.com

45April 2004 ;login:

New Federal Anti-Spam Law Sets
Nationwide Standards for Commercial
Email Messages
The new federal law regulating spam went into effect on January 1, 2004.
It creates a single nationwide set of rules governing commercial email that
overrides the inconsistent standards in state anti-spam law. It also criminal-
izes certain conduct and creates new civil penalties with substantial mone-
tary fines.

Unfortunately, CAN-SPAM is a toothless tiger that nullifies most aspects of every
state’s anti-spam laws and leaves spam victims without meaningful legal recourse. The
single exception is that it doesn’t preempt state laws which prohibit false or deceptive
content in any portion of a commercial email message or its attachments. Thus, the
suits that Serge Egelman is so joyfully bringing against spammers under state law as
described in the accompanying article may soon be a thing of the past.

This article outlines CAN-SPAM’s most salient features and presents recommenda-
tions for compliance.

The Need for Federal Legislation
Unsolicited commercial email (“spam”) has dramatically increased during the past
three years.1

In the absence of federal legislation, many states passed their own laws to regulate
spam. Those laws imposed standards and requirements that differed significantly from
state to state. Since email addresses don’t specify geographic locations, it is almost
impossible for commercial email senders to know with which of the disparate state
statutes they were required to comply.

California passed a law in October that would have flatly prohibited sending unso-
licited commercial email messages to recipients unless they opted in to receiving them.
Other states passed different anti-spam laws with different compliance standards. Also,
many of these state laws were opposed by the direct marketing sector. As a result, the
pressure on Congress to establish nationwide (and more forgiving) rules became
intense. CAN-SPAM is the result.

Summary of the New Law
The new law:

n Prohibits senders from using false “header” information, false return addresses,
and deceptive subject lines

n Requires senders to include valid physical postal addresses in their messages
n Requires senders to provide an opt-out mechanism and to comply with all opt-

out requests
n Mandates labeling in the subject line of messages containing adult-related content
n Makes advertisers legally responsible for compliance by their email service ven-

dors

CAN-SPAM

CAN-SPAM l

1. In 2001, spam accounted for approximately
seven percent of all email traffic, whereas it now
accounts for over 50 percent. Some estimates
are as high as 70 percent.

l
TH

E
LA

W

by Dan Appelman
Dan Appelman is a
partner in the inter-
national law firm of
Heller Ehrman, White
& McAuliffe, LLP. He
practices intellectual
property and com-
mercial law, primarily
with technology
clients, and is presi-
dent-elect of the
California Bar Associ-
ation’s Standing
Committee on
Cyberspace Law.

dan@hewm.com

Vol. 29, No. 2 ;login:

n Authorizes the Justice Department, the Federal Trade Commission, and other fed-
eral agencies to enforce the new law and establishes fines and jail terms for viola-
tors

n Permits state attorneys general and Internet service providers to bring civil suits
and to be granted injunctive relief, money damages, and attorney fees

n Authorizes (but does not require) the Federal Trade Commission to create a
national “do not email” registry

n Pre-empts all state laws that regulate commercial email, except to the extent that
state law prohibits falsity or deception in messages or their attachments.

PRINCIPAL PROVISIONS OF THE NEW LAW

NO FALSE OR MISLEADING TRANSMISSION INFORMATION

It is now illegal to send email messages that contain materially false or misleading
“header” information (i.e., information that identifies the source, destination, or rout-
ing of an email message). Header information that does not identify the true email
address of the sender because of false source information, because the sender has reg-
istered for multiple email accounts, or because the message has been routed through
other computers for the purpose of disguising its origin is considered materially mis-
leading.

CAN-SPAM makes it a crime to promote a trade or business, or the products or ser-
vices of a trade or business, using commercial email messages that contain false or
misleading transmission information. Businesses that hire advertising companies or
email service vendors to help them promote their goods or services by email may
themselves be deemed to have violated the Act if the email contains false or misleading
transmission information, such as disguising the true identity of the sender.

NO DECEPTIVE SUBJECT HEADINGS

It is now illegal to send commercial email that includes subject headings that are likely
to mislead the recipient about the content or subject matter of the message.

COMMERCIAL EMAIL MUST INCLUDE AN IDENTIFIER, AN OPT-OUT MECHANISM, AND A PHYSICAL
ADDRESS

All commercial email messages must include (i) a clear and conspicuous identification
that the message is an advertisement or solicitation; (ii) a clear and conspicuous notice
of the opportunity to opt out of receiving further commercial email messages; and (iii)
the sender’s postal address.

COMMERCIAL EMAIL MUST INCLUDE A FUNCTIONING, ACCURATE, CONSPICUOUS RETURN EMAIL
ADDRESS

The new law requires that all commercial email messages contain return email
addresses that recipients can use to opt out of receiving future solicitations. These
return addresses must appear conspicuously in the email message, they must be accu-
rate, and they must function for at least thirty days after the transmission of any out-
going message.

NO CONTINUED SENDING AFTER OPT-OUT

The new law gives senders a ten-day grace period after receiving any opt-out request
in which to cease sending further email messages to that recipient. Continuing to send
emails after that date will be deemed a violation of CAN-SPAM. It will also be illegal
for the sender or any other person who knows of the recipient’s opt-out request to give

46

the recipient’s email address to anyone else. This provision is Congress’s attempt to
restrict the common practice of selling or exchanging recipient email mailing lists.

ACTIVITIES THAT WILL MAKE THE VIOLATIONS DESCRIBED ABOVE MORE SERIOUS

ADDRESS HARVESTING AND “DICTIONARY” ATTACKS

Under CAN-SPAM, it is illegal to transmit commercial email messages to email
addresses that are obtained using automated means from certain Internet Web sites or
online services. This prohibition includes collecting email addresses from those Web
sites and online services that have privacy policies stating that their email addresses
will not be shared with those who would use them for commercial purposes. The new
law also prohibits sending commercial email messages to email addresses that are gen-
erated by combining names, letters, or numbers into random permutations.

CREATING MULTIPLE ELECTRONIC ACCOUNTS

It is illegal under the Act to use automated means to register for multiple email
accounts with an Internet registrar or online service provider.

RELAYING MESSAGES THROUGH UNAUTHORIZED ACCESS TO OTHER COMPUTERS OR NETWORKS

It is illegal under CAN-SPAM for senders to disguise the origin of their commercial
email messages by sending them through computers or networks to which they do not
have authorized access.

SPECIAL REQUIREMENTS PERTAINING TO SEXUALLY ORIENTED MATERIAL

CAN-SPAM requires commercial email messages that contain sexually oriented mate-
rial to include marks or notices in their subject headings to inform recipients of their
content and to facilitate filtering. It also limits the content that can be initially viewable
by the recipient of such messages to (i) the aforementioned marks and notices; (ii) an
opt-out mechanism; and (iii) instructions on how the recipient may access the sexually
oriented material. The Act orders the Federal Trade Commission to prescribe the con-
tent of the marks and notices.

THE “DO-NOT-EMAIL” REGISTRY

CAN-SPAM requires the Federal Trade Commission to send Congress a plan and
timetable for establishing a nationwide marketing “do not email” registry similar to
the new “do not call” registry. But implementation of the plan is discretionary, not
mandatory, and comments by several FTC commissioners indicate that the Commis-
sion is unlikely to establish the registry.

How Will CAN-SPAM Be Enforced?
Most violations of CAN-SPAM will be enforced by the Federal Trade Commission
under its authority to prosecute unfair or deceptive trade practices. The Commission
will investigate consumer complaints, and those found to be engaging in unlawful
practices will be subject to fines and possible prison sentences in actions brought in
federal courts. Other agencies have authority to enforce the Act against certain defen-
dants, such as banks and savings and loan associations, credit unions, broker-dealers,
regulated investment companies, investment advisers, insurance providers, air carriers,
and telecommunications service providers. In addition, the prohibitions against preda-
tory and abusive email practices can be enforced by the federal Department of Justice.

CAN-SPAM can also be enforced by state attorneys general in civil actions in federal
court. State officials can seek injunctive relief to prevent senders from continued viola-

47April 2004 ;login:

l
TH

E
LA

W

CAN-SPAM l

Vol. 29, No. 2 ;login:

tions as well as monetary damages and attorney fees. In addition, Internet access ser-
vice providers who have been adversely affected by a violation of the Act can bring a
civil action to enjoin further violations and to recover monetary damages and attorney
fees.

Unlike many state laws that will now be preempted, the new federal law does not give
private individuals the right to sue.

Against Whom Can CAN-SPAM Be Enforced?
In general, the new law will be enforced against those who “initiate” the transmission
of unlawful email messages. The Act defines “initiate” very broadly. It not only
includes those who actually send the messages, but also those who create or pay for
them. Many companies hire email service vendors to help them with their solicita-
tions; and the new law applies to both. In addition, the Act makes it unlawful for any
person to promote goods or services by means of commercial email messages they
know or should know contain false or misleading transmission information. Cus-
tomers of commercial email service vendors must therefore have a reasonable level of
confidence that the service they use is in compliance with CAN-SPAM’s requirements
or risk being held in violation of the Act themselves.

What is the Status of State Anti-Spam Laws After CAN-SPAM?
CAN-SPAM explicitly supersedes all state laws that regulate the use of email to send
commercial messages except to the extent that a state law prohibits falsity or deception
in any portion of a commercial email message or its attachments. Therefore, most state
anti-spam statutes will be preempted, including most of the provisions of the new Cal-
ifornia law that would have prohibited sending commercial email messages absent
some preexisting relationship between the sender and the recipient. The new federal
law imposes a nationwide “opt-out” standard that nullifies the much tougher “opt-in”
approach adopted by California and several other states.

Issues Created by CAN-SPAM
PROBLEMS FOR ADVERTISERS

Many commercial email solicitations involve three or more parties: the advertiser, the
service provider that actually sends the email messages under contract with the adver-
tiser, and the recipient. The new law makes the advertiser equally guilty or liable for
the transgressions of the service provider. Advertisers will be required to closely super-
vise the practices of their service providers, and will be well advised to renegotiate
their contracts to provide for indemnification and other protection in the event they
are prosecuted or sued for the actions of their service providers.

OPT-OUT LOGISTICS

The new law gives senders ten days to comply with opt-out requests. In order to com-
ply, the advertiser must purge the recipient’s email address from all of its service
providers’ lists, which may be difficult within that short time frame. Advertisers may
be compelled to require service providers to share opt-out information with one
another, and service providers may resist those requests. If the opt-out requests are
sent to the advertiser rather than directly to its service providers, the service providers
may not find out about them in time to comply with the ten-day deadline.

48

LABELING REQUIREMENTS

The new law requires all commercial email messages to be clearly and conspicuously
labeled as advertisements or solicitations. But the law includes no guidelines for satis-
fying this requirement.

Recommendations
Everyone who sends commercial email messages must comply with CAN-SPAM. Here
are a few suggestions for complying with the new law:

n Know the requirements of the new law and adopt a compliance plan.
n Designate someone within your organization to be in charge of implementing the

plan.
n Keep records of opt-out and opt-in requests. Document how your company com-

plies with those requests.
n Include a clearly explained opt-out mechanism in every commercial email mes-

sage.
n Label all commercial email messages as advertisements or solicitations.
n Understand the compliance procedures of your service providers and make sure

those procedures satisfy CAN-SPAM’s requirements.
n Renegotiate your contracts with service providers to provide that they will indem-

nify you from any liability resulting from their failure to fully comply with CAN-
SPAM.

n Review your insurance coverage to determine whether and to what extent it pro-
tects you in the event of suit.

49April 2004 ;login:

l
TH

E
LA

W

CAN-SPAM l

50 Vol. 29, No. 2 ;login:

How would you like to expand a body part by up to 30%? What would you
say if you could get your degree from a leading non-accredited university
for just three easy payments of Okay, we all see it every day, spam
advertising everything from low-interest mortgages to an Extreme Colon
Cleanser. A few recent studies have shown that spam, or unsolicited com-
mercial email, accounts for nearly 50% of all email this year. That number is
rapidly increasing.

Personally, I receive about 80 messages a day, though I have friends who receive
500–1000 messages. I run my own mail server with a fairly common Sendmail config-
uration; I subscribe to the black-hole lists and have all the default spam prevention
measures enabled. I also use SpamAssassin (http://www.spamassassin.org) to sort most
of my spam (procmail puts all the tagged spam into a different mailbox). However,
almost a dozen messages still get through to my main mail spool each day. It is rather
annoying, and so I have started taking action.

Last year I happened to notice that my state, Virginia, has an anti-spam law. Since then
I have been archiving all my spam, tracking down those responsible, and taking them
to court. The following is a summary of what I have done, what I have learned, and
what you can legally do to decrease your spam volume.

The Laws
In 1997, Nevada became the first state to pass legislation regulating spam, and cur-
rently 35 states have passed spam laws. The state laws share many similarities. They
make it illegal to send messages with forged headers, deceptive subjects, no opt-out
mechanism, or no clear indication in the subject line that the message is indeed an
advertisement. States that have laws use some subset of these requirements (e.g., Vir-
ginia makes it illegal to falsify header information, whereas New Mexico only makes it
illegal to omit “ADV” from the subject line). The legislation also outlines civil reme-
dies, and a few states go so far as to make sending unsolicited email a criminal offense.

What this means is that if you are in one of the 29 states that provide for a civil action,
you can start taking spammers to court and getting awarded statutory damages for all
the spam that you receive. The majority of these laws provide $10 per message, but a
few (California and West Virginia) go as far as allowing $1000 per message, as well as
all associated legal fees. Some of the states that do not allow civil actions on behalf of
the recipient or the ISP allow complaints to be filed by the state attorney general (in
the case of Pennsylvania, the attorney general shall remit 10% of the damages collected
to the person who filed the complaint).

The main problem with current legislation is that it is not unified; though similar to
each other, laws vary from state to state. Some state laws grant personal jurisdiction to
the court over out-of-state spammers, some require the spammer and the recipient to
be in the same state, and some require the spammer to have knowledge that the recipi-
ent is in a particular state. What is needed is a federal law to regulate all spam sent
within this country.

In fact, the 108th Congress saw nine such bills, one of which, the 2003 CAN-SPAM
Act, was signed into law at the end of last year and went into effect on January 1. The
law outlines many of the aforementioned requirements for sending unsolicited mail.

suing spammers for
fun and profit

DISCLAIMER: The following is just a
personal account of my experiences
and should in no way be interpreted as
legal advice. I am not a lawyer and do
not claim to be one. Additionally, all
quotes contained herein are from
memory and are therefore not verba-
tim.

by Serge Egelman
Serge Egelman is an
undergraduate in
Computer Engineer-
ing at the University
of Virginia. He
expects to graduate
next month barring
any unforseen diffi-
culties. He plans to
continue battling
spammers on the
side as a graduate
student next year

serge@guanotronic.com

http://www.spamassassin.org

First, it is illegal to send a message with forged header information. The law defines
header information as:

“the source, destination, and routing information attached to an electronic mail
message, including the originating domain name and originating electronic mail
address, and any other information that appears in the line identifying, or purport-
ing to identify, a person initiating the message.”

Essentially, it is illegal to put any false information in any part of the header. Next, the
law makes it illegal to use deceptive subject lines. This is clarified by saying that the
subject must not mislead a recipient “acting reasonably under the circumstances.”

Finally, the law regulates the opt-out mechanisms that each message must contain and
what must happen after a recipient has notified the spammer. Each message sent must
contain either a URL or an email address to which the recipient can respond in order
to opt out. Furthermore, this address must be functioning for at least 30 days after the
original message was sent. The sender is also required to include his or her physical
postal address. Upon being notified by the recipient, the sender has up to 10 days to
cease sending further spam. Finally, the law mandates that the FTC outline a plan for
implementing a nationwide Do-Not-Email registry within the next six months. This,
of course, is similar to the Do-Not-Call registry. While this law has many provisions
for regulating commercial email, the main question is, how are they to be enforced?

The CAN-SPAM Act provides a few different measures for enforcing the new restric-
tions. The law provides both criminal and civil penalties. A defendant deemed guilty
can be fined and/or imprisoned for up to three years for the first offense. Repeated
offenses can carry prison terms of up to five years. In terms of enforcement, the FTC is
granted the most power; however, state attorneys general can also bring cases to court.
Since this is a federal law, cases can be brought in any US district court. In terms of
statutory damages, the FTC or a state attorney general can seek up to $250 for each
message sent in violation of the law (up to a maximum of $2 million for any offense
other than falsifying header information).

Unfortunately, the law is sparse on private civil remedies. The only private right of
action that is outlined is for ISPs. ISPs that receive spam may take the spammer to
court and claim statutory damages of $100 for every forged message and $25 for every
message that violates any other part of the statute. Additionally, legal fees can be
claimed. This, though, is a two-way street: The defendant may also claim legal fees if
they get a favorable ruling. While this is the only private civil action that may be pur-
sued, it might be available to more people than one might think. The law defines an
ISP as any entity that provides email or any other Internet service to others. Thus, any-
one who provides email or shell accounts is technically an ISP and can therefore pur-
sue spammers under this law. However, in addition to the risk of losing and having to
pay the spammer’s legal fees, there is another downside: this law can only be used in a
federal court, so in addition to the increased filing fees, you will most certainly need a
lawyer.

While it is clear that this law has potential, there is much criticism surrounding it. Last
year, the Direct Marketing Association (DMA) spent millions of dollars lobbying
against the newly implemented Do-Not-Call registry. This legislation was a huge blow
to the telemarketing industry (many telemarketing companies belong to the DMA). It
might come as a surprise to hear that the DMA has been heavily lobbying in favor of
the CAN-SPAM Act (affectionately called the I-CAN-SPAM Act by many anti-spam-

51April 2004 ;login:

l
TH

E
LA

W

SUING SPAMMERS l

Vol. 29, No. 2 ;login:

mers). Just recently, California amended their existing anti-spam laws to make the
sending of any spam illegal (instead of just imposing restrictions, like most other
states). This new law was set to go into effect on January 1. Unfortunately for Califor-
nians, the federal law contains a preemption clause:

This Act supersedes any statute, regulation, or rule of a State or political subdivision
of a State that expressly regulates the use of electronic mail to send commercial
messages, except to the extent that any such statute, regulation, or rule prohibits fal-
sity or deception in any portion of a commercial electronic mail message or infor-
mation attached thereto.

This means that any state law that outright bans spam is now null and void. However,
laws that only regulate deceptive spam (e.g., outlawing forged headers or fraudulent
subject lines) will remain. While the new CAN-SPAM law outlines certain restrictions
on how messages can be sent, it takes an opt-out approach: It is perfectly legal to send
spam to recipients until they say to stop (or, more accurately, 10 days after that time).
This, of course, leaves open the possibility for a spammer to sell the email address to
someone else (and thus the recipient has to tell all subsequent spammers to stop).
Additionally, the law legalizes spam sent from someone with whom you have an exist-
ing business relationship.

This is why it’s no surprise that the nation’s largest ISPs have heavily backed this legis-
lation. Most media outlets have two sources of revenue: the subscribers who pay for
the service, and the advertisers who pay to get their message seen by the subscribers
(e.g., you pay for cable television, yet still have to endure commercials). This business
model is now moving to ISPs. You pay them for an email account and Internet access;
now they can legally send advertisements for additional revenue. Furthermore, it pro-
tects this business model in that they can forward you spam from companies who are
paying and in turn pursue those who spam and have not paid for the privilege.

With all the more serious crimes occupying the time of the FTC and others charged
with enforcing this act, it’s laughable to believe that they will be devoting large efforts
to enforcing it. In fact, California has had an anti-spam statute for a few years, yet the
first criminal conviction occurred only a few months ago. The DMA and others who
lobbied for the CAN-SPAM Act also understand this. In fact, when the bill was signed
into law, Bill Gates wrote an article hailing this as a tremendous victory. Clearly, in the
coming months we can expect a whole line of ludicrously priced Microsoft anti-spam
products. So while this law probably won’t reduce the flow of spam by itself, individu-
als . . . errr . . . “small ISPs” can still take action by saving spam and tracking down
those responsible.

Tracking Down the Spammer
Spammers’ use of open relays and forged addresses discourages most people from
bothering to hunt down the sources of their spam. While there is still a lot of spam
that comes from legitimate return addresses, most spammers go out of their way to
obfuscate the origin. The fact of the matter remains, however, that they are trying to
do business with you and therefore need to leave a way for you to contact them. Natu-
rally, this means that they will include a URL for their Web site.

There are many tools online that can aid in locating the origin of your spam. The site
that I use the most is Spamhaus (http://www.spamhaus.org). They have a running data-
base of known spammers and known IP blocks that host spammers. Most spammers

52

http://www.spamhaus.org

will use fake whois information, so this site is an invaluable tool. Simply enter the IP
address corresponding to the URL and, hopefully, it will return the lucky winner. If
there are no hits, there is a good chance that the IP address of the corresponding DNS
server (taken from the whois information for the advertised domain name) might be
in the Spamhaus database. Spammers purchase large IP blocks and will often use them
for spamming once or twice before moving on to a different IP block, but changing
the IP of a DNS server so frequently is a lot more difficult.

If you have gotten lucky and have found a name and address for a spammer, the next
step is to locate the address for their “registered agent.” This is their retained attorney,
whom you will serve with the court summons. This information is available online in
most states and, by law, is required to be on file with the Office of the Secretary of
State (or equivalent) in the state where the company is incorporated. Finding the
address of the registered agent is often as simple as going to the secretary of state’s Web
site and using an online query tool. Some states charge for this information, but it is
still publicly available. If all else fails, you are probably safe just using the regular busi-
ness address of the company.

So You Are Going to Court
The first time I did this was in March of last year; I had received 80 messages sent by
Etracks.com, Inc., a California-based marketing company. After the first message I
received from them, I sent a response explaining that they had violated state law, and if
they continued to do so I would not hesitate to settle this matter in court. Naturally, I
never received a response, and the spam continued. So I went to the local courthouse
to file a complaint in small claims court.

A friend who had been to small claims court a few times gave me some invaluable
advice: Know exactly what you want before you go to the clerk’s office, since they are
not allowed to give any sort of legal advice. Their job is merely to give you the forms
requested. With this in mind, I showed up at the court clerk’s office with all the infor-
mation pertinent to my case, and explained that I needed a Warrant in Debt for small
claims court (usually called a court summons). I explained that under the statute this
company owed me $800 plus my court fees. The clerk was a bit confused, since she did
not realize an individual could take a corporation to small claims court. I was a bit baf-
fled, since the court’s Web site said that in fact I could. After arguing for a few minutes,
I eventually went home to print out the Web site.

I returned with a hard copy of the page and also went one step further and printed out
the section of state code that corroborated it. I then proceeded to fill out the proper
forms and pay the court fee. Next, I wrote up a settlement letter and attached it to a
copy of the summons (so that they would know I was serious). Again, I never received
a response from the defendant.

On the date of the trial, I printed out all my communications with Etracks.com (my
cease-and-desist letter as well as the settlement letter), the abbreviated headers for all
messages received (rather than the full messages, I printed out the To, From, Subject,
Date, and Received headers), and, finally, since it was my first time in court, I decided I
should write up my testimony. When I got there, I ended up having to wait for about
an hour before my case was heard. When it was, the judge was a bit surprised; this was
apparently the first spam case he had ever heard. I explained a little bit about the prob-
lem, he asked a few questions, and since I had more than enough evidence and the

53April 2004 ;login:

l
TH

E
LA

W

SUING SPAMMERS l

Vol. 29, No. 2 ;login:

defendant failed to show up, I was awarded judgment for $841 ($800 for the original
complaint, $41 for the court costs).

Send Lawyers, Guns, and Money
Since then I have been filing suits every few months. This is always preceded by a letter
sent to the defendant. Last August I received a call from a man who identified himself
as Brian Benanhaley, COO and in-house counsel for SubscriberBase, Inc. I had just
filed suit against them for 47 messages and they had apparently just received their
court summons. This was nothing new; I had been through this routine before – they
call, threaten, and then don’t follow through. I was expecting the same thing, to receive
another default judgment. After just finishing the routine “we’re not going to settle, so
you better drop your suit since we’re not at fault,” Mr. Benanhaley went on to threaten
to countersue. Having not wanted to really continue this conversation, I told him that
he should consult my attorney.

My roommate’s parents have a law firm in town, Snook & Haughey P.C., and while his
parents did not seem very interested in my spam endeavors, one of the other attorneys
in their firm did. He mainly practices business and consumer protection law; he had
never done anything like this before and so was very interested in trying some of these
cases. Being a poor college student, I had no intention of retaining anyone, but since
he was interested in trying to make some case law (our research showed that no cases
under the Virginia anti-spam statute had ever been appealed, so we were both hoping
for an appeal so that we could set a precedent), he was willing to take the case on con-
tingency.

My attorney, Jim Garrett, seemed to think that SubscriberBase was very serious; they
had apparently retained a local firm. My only concern now was that the case was not as
straightforward as my others. In Virginia, it is illegal to “falsify or forge header or rout-
ing information in any matter.” The messages I received all came from seemingly ran-
dom usernames, though the domains were registered to SubscriberBase. Replies to the
messages would bounce. However, the defendants alleged that since they owned the
domain names, this does not violate the law. I wanted a judge to make that decision.

In the weeks approaching the trial, the saga became odder and odder. When Sub-
scriberBase first contacted me, they kept insisting that they would be filing a counter-
suit in their state of South Carolina. Jim insisted that there would absolutely be no
merit to any suit that they would bring; I hadn’t done anything wrong. They might
allege that this was a frivolous suit, but he said that would also be without merit since
they continued to spam me even after I had sent them a clear cease-and-desist letter.
Each week they would call with a new empty threat; they were still making a counter-
claim, this time in Virginia. Next they said that they wouldn’t make a counterclaim but
would ask the judge for their fees. A week or so before the trial, they called Jim asking
if I would be willing to pay their legal fees. He said that he asked them to repeat that,
since he was sure he misunderstood. In fact they were indeed asking if I would volun-
tarily pay for their expenses. You can guess our response.

The fact that I had a lawyer was a fairly big surprise for them. They were in for a few
more surprises. I had recruited two volunteers from the Computer Science Depart-
ment to testify as expert witnesses: a professor and the system administrator. In addi-
tion to going through the department’s mail logs and finding spam sent by
SubscriberBase, we made another huge discovery the day before the trial. I had not
noticed this earlier, but the X-Mailer header was clearly forged on all of the messages.

54

The 47 messages claimed to have been sent from 29 different mail clients running on
11 different platforms (including Amiga). This clearly qualified as “falsified in any
manner.” We made a printout of all the X-Mailer headers to be entered into evidence
during the trial.

On the day of the trial, we met at the law firm to make our final plans. It turned out
that my roommate’s father, Lloyd Snook, a criminal defense lawyer, would be doing the
cross-examinations and the closing arguments. The five of us arrived at the court-
house, and met the opposing four in the hallway (their COO/counsel, CEO, a technical
person who didn’t look any older than 15, and their local retained counsel).

We decided to call their CEO, Jeff French, first. He answered a few questions about
what his company does, his role, their business model, etc. Then he explained in detail
what systems they use: a cluster of Linux servers sending out messages via RoboMail (a
commercial mass-mailing package). Finally, he explained how they obtain addresses:
They purchase lists from other companies of addresses that are “confirmed opt-in.”

It was then my turn to testify. I explained how I am a student and run my own server
which provides email and Web hosting and that I receive an inordinate volume of
spam. I explained that when I register on various sites, I try to do a fairly good job of
reading privacy policies and never register for sites that outright say they will sell my
personal information. I also create aliases to help in determining where spam is com-
ing from (and which sites are violating their privacy policies).

During my cross-examination, Mr. Benanhaley listed a few sites, asking if I had been to
any of them. I had heard of one and explained that I have tracked a lot of spam to that
site. I also explained that the defendants had sent spam to three different addresses of
mine. It was clear to the court that they make no effort to confirm that each address
has really opted in. Finally, I was asked what I was discussing with a friend in the hall-
way prior to the trial.

Recently I have been working with a group of friends on an idea for a cryptography-
related startup and was discussing this outside the courtroom; I guess they must have
overheard me. Because we are currently working with another lawyer on a related
patent, I really did not want to divulge too many details. So I glanced over at my
lawyer, and responded, “I’m sorry, but I really don’t see how this is relevant.”

“Please just answer the question,” said the judge. “If there are objections, your legal
team will raise them.”

“Objection, your honor. Relevance?”

“Sustained.”

The defense then approached the bench and began explaining to the judge how I was
committing barratry and that this case was entirely without merit. He went so far as to
pull out printouts of slides that were posted on our UNIX User’s Group Web site; I had
given a talk a few months earlier on current trends in anti-spam tools as well as anti-
spam legislation. Most of the people in the audience (in addition to my legal team)
were now giggling, since we all knew what I was really talking about and that the
defense was really grasping here.

The judge sounded very annoyed; they argued back and forth for what seemed like 10
minutes. I changed my mind and interjected, “If you want, I can just answer.” My
lawyers shut me up; they were having fun watching the judge lecture the opposing

55April 2004 ;login:

l
TH

E
LA

W

SUING SPAMMERS l

The 47 messages claimed to
have been sent from 29
different mail clients running
on 11 different platforms
(including Amiga).

Vol. 29, No. 2 ;login:

counsel. The judge ended the argument by saying, “Regardless of the plaintiff ’s moti-
vations, we are here to determine if you have violated the law.”

After another hour or so of testimony (both my witnesses testified that these messages
contained falsified information, though we were still only arguing about the addresses
in the From line), we took a recess.

The defense called their CEO and asked that he be an expert witness. My legal team
objected after it became clear that his experience was limited to his role as CEO of
SubscriberBase. The judge agreed; he could only testify based on his own experiences.
During the cross-examination, we asked him why they use the randomly generated
From addresses. He explained that “anti-commerce” individuals use various filters to
stop spam, and thus the company’s “legitimate” advertisements often get filtered out
by accident; therefore they take measures to get past such filters.

With this statement, he had admitted that they intentionally format messages to evade
filters in order to increase their profit; it was time for the coup de grace. “You testified
earlier that you exclusively use RoboMail under Linux to send messages. Why is it that
there’s no identifier corroborating that in these messages?”

“The same reasons I just mentioned.”

“Then maybe you can explain why 29 different mail programs are listed,” my lawyer
said and handed the list to the CEO, “and why there are also 11 different operating sys-
tems mentioned here. Was it not your earlier testimony that you used Linux exclu-
sively?”

Everyone on the defense team suddenly turned bright red. They knew it was over. Half
the courtroom was giggling. Mr. French finally responded, “I’m not a technical person,
so I’m not entirely positive what we use, come to think of it.”

“Well let’s just go through the list then.” My lawyer began naming off everything on
the list, without stopping to wait for responses. When he came to the Amiga, he
waited. We all wanted the defense to say that they use an Amiga for their spamming.

“It’s entirely possible. We might use one. I would have to double check.”

Mr. French was finished testifying. We assumed that given the recent humiliation and
disqualification as an expert witness, they would not even bother trying to get their
technical person to testify. The defense rested. Closing arguments were made. They
argued that “clearly” I opted in and that what they are sending was not even spam.

We asserted that, hypothetically, even if I had opted in, the majority of the messages
were received after I sent them a cease-and-desist letter (a copy of which was in evi-
dence). Additionally, the court was reminded that the defense had testified that they
willfully altered the headers to evade filters.

After four hours of testimony and arguments, the judge spoke. He started by saying
that he was “confident that whatever decision is reached, it will only determine which
side files the appeal.” He, of course, was right. Unfortunately, this was a different judge
from my previous cases, and he was not very familiar with the law. He said that the
case would be taken under advisement for a week. Outside I commented, “Hopefully,
the first thing he does is go home and check his email.”

A week passed before Jim called: we won. I was awarded $470 for the spam, $50 for the
filing fee, and $5000 in legal fees (http://www.guanotronic.com/~serge/opinion.jpg). The

56

http://www.guanotronic.com/~serge/opinion.jpg

defendants had 10 days to file an appeal; we were confident that they would, and we
welcomed it. And they did, the day after the initial ruling was entered into the court
record. In Virginia, when a defendant appeals a civil case, they must also post a bond
for the amount awarded to the plaintiff. They had 30 days to do this, but failed. Thus
the appeal did not occur and the saga came to an end.

So You’ve Won a Judgment
I have since been to court about half a dozen times, and have yet to lose a case, though
I have only had one spammer show up. Since my first time in court, the judge seems to
have gotten friendlier and more interested in what I am doing. No one likes spam;
judges receive it too. I am currently owed a little over $5000, but being owed money is
quite different from actually receiving it. However, there are legal methods that can be
used to aid in the collection process.

The first thing that should be done is to put the judgment on file in a court of record;
in most cases, this will be a court above the small claims court (in Virginia, for
instance, small claims is part of the general district court, and the court of record is the
state circuit court above that). This means that creditors and anyone else with an inter-
est in your debtor will be able to readily see that you are owed money, and this can
adversely affect their credit rating.

Once the appeals period is over, various legal means can be used to enforce your judg-
ment. Most of these, however, will only work if the defendant resides or owns property
in the state of the judgment. If they do, the first thing that you must do is locate their
assets and property; this is done with a Summons to Answer Interrogatories (again,
this might be called something else in other states), which means they must show up
in court to answer your questions.

If they own real estate, you can place a lien on it (so that your judgment must be satis-
fied before they can sell the property). If they own other personal property (or prop-
erty belonging to the business), you can get a Writ of Fieri Facias (sometimes called a
Writ of Execution) to have their property sold at public auction. Finally, you can get a
Garnishment Summons to garnish their wages or any bank accounts that they have. In
any case, you will probably end up the winner (also, all costs incurred during collec-
tion can be added to the judgment in most states).

If your debtor resides in another state, there is still hope. You can have the judgment
domesticated to the debtor’s home state. This means the judgment goes on file with a
court there and becomes legally binding in that state. You can then use the measures
mentioned above, assuming they are applicable in the new state. To domesticate a
judgment; usually, all that is involved is sending a certified copy of the original judg-
ment along with a court fee.

I personally have been going a step further and using a collection agency. Their job is
to keep contacting the debtor until they are willing to pay. Collection agencies usually
work on contingency and will take anywhere from 30 to 50% of the total amount col-
lected. I use Dun and Bradstreet Small Business Solutions (http://sbs.dnb.com), which
has another advantage: They are the largest business credit reporting company. This
means that when a company is not cooperating with the collection process, their credit
report will be adversely affected.

If you do not have the time to try collecting the judgment on your own, using a collec-
tion agency is probably the easiest solution. The only disadvantage is that it can take a

57April 2004 ;login:

l
TH

E
LA

W

SUING SPAMMERS l

http://sbs.dnb.com

Vol. 29, No. 2 ;login:

long time before you see any money. I just received my first check from the agency for
around $400 after three months, care of Mr. Joshua Baer of Skylist.net (I was owed
$631 before the commission). For those short on time or energy, there is still one other
option: selling the judgment. There exists a market for court judgments: an individual
or corporation will give you a fraction of the judgment’s value in exchange for the
right to collect on it. It won’t be much, but it’s something and you will receive it
quickly.

Conclusion
While I do not think I have personally made an impact on the spam problem, I have
certainly helped to decrease the amount I have been receiving. Most have stopped
sending me messages after being served with their court summons, though with one
company it took three judgments before they got the message. The majority of states
have laws that can be exercised by any resident, but such laws are useless unless they
are used. The same applies to the newly enacted federal law. Spammers are not going
to be deterred by the laws until more individuals begin to take action.

58

RENEW ONLINE TODAY!
Renewing or updating your USENIX
membership has never been easier!

You will receive your renewal notice via
email and one click will take you to an

auto-filled renewal form.
Or visit

http://www.usenix.org/membership/
and click on the appropriate links.
Your active membership allows the

Association to fulfill its mission.
Thank you for your continued support!

http://www.usenix.org/membership/

59

April 2004 ;login:

the bookworm
by Peter H. Salus
Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He owns nei-
ther a dog nor a cat.

peter@netpedant.com

BOOKS REVIEWED IN THIS COLUMN

about Blum’s padded book of several
years ago, the better.

Dent has done a really neat job. In fact,
his chapter on blocking spam is a great
supplement to Hunt’s.

Designed to . . .
Design Research is a brilliant anthology,
full of interesting articles and thought-
provoking assertions. I found it extraor-
dinarily difficult to read, however. This
is because the book designers (“The
Offices of Anne Burdick, Los Angeles”)
have run amok. Each section is demar-
cated by color (orange for Section 1;
sage for 2; pale yellow-green for 3; etc.).
The yellow-green was near impossible
for me to read. I have no idea what the
diagram labels on p. 143 say, or most of
the headings in the following section; I
cannot discriminate the letters from the
background.

So, in some manner, Section 3 (“Process”)
was opaque to me. Many of the texts
were interesting, even though they were
periodically interrupted by areas of
color in which some things were intelli-
gible, but the whole was not.

The volume is “over-designed” to death,
resembling an early issue of Wired.
Surely, this is not the result of any sensi-
ble “design research.”

I have long admired the work of Brenda
Laurel. What a pity to have the content
marred and obscured by out-of-control
designers.

XML
There’s a new (fifth) edition of Gold-
farb’s XML Handbook. Previous editions
were quite useful. The new one is quite
enormous, and could use a bit of editing
and some reorganization. This is an
excellent updating, nonetheless.

I’ve got to begin with a confession this
month: I was going to write about Mal-
ware. But Chuvakin’s review came in,
and it’s one with which I concur 100%.
So I’ve not bothered. Just read the
review following this column and go
with what Anton says. It’s a fine book.

I also need to apologize: In the Decem-
ber column, I mentioned Waldrop.
Knowing just how many computer folk
read SF, I made an unwarranted
assumption. Howard Waldrop is an SF
author. I think he’s up there with the
best, but he’s neither as famous nor as
popular as Gibson or Sterling. So I apol-
ogize to those who wrote me and to oth-
ers – I didn’t intend to be a snob. (But
if you get a chance, read some of Wal-
drop’s stuff.)

We’ve All Got Mail
OK. We’ve all got copies of Costales, All-
man, and Rickert (Sendmail), yet we still
may not have completely mastered the
sendmail.cf file (sometimes I wonder
whether anyone has, but that merely
exposes one of my shortcomings).

Craig Hunt’s Sendmail Cookbook really
helps. I was especially impressed by his
chapter on AUTH (pp. 242–273); it is
extraordinary. The chapters on mas-
querading (pp. 103–150) and securing
mail transport (pp. 274–317) are very
fine, too. While the chapter on spam is
good, I fear that it just isn’t enough.
Unfortunately, I don’t have a panacea. I
get a lot of trash every day, and I can’t
adjust my filters as rapidly as header
variants and bogus subject lines origi-
nate.

Craig, this is a fine job.

Another fine job is Dent’s Postfix. This is
a very good guide to a splendid MTA.
Written by Wietse Venema while he was
at IBM Research, Postfix was released as
open source in 1998 and has become
fairly widely employed since. This book
is, to the best of my knowledge, only the
second book on Postfix, and the less said

SENDMAIL COOKBOOK
CRAIG HUNT

Sebastopol, CA: O’Reilly, 2004. Pp. 388.
ISBN 0-596-00471-0.

POSTFIX
KYLE D. DENT

Sebastopol, CA: O’Reilly, 2004. Pp. 264.
ISBN 0-596-00212-2.

DESIGN RESEARCH
BRENDA LAUREL, ED.

Cambridge, MA: MIT Press, 2004. Pp. 334.
ISBN 0-262-12263-4.

XML HANDBOOK, 5TH ED.
CHARLES F. GOLDFARB AND PAUL PRESCOD

Upper Saddle River, NJ: Prentice Hall, 2003. Pp.
1200 + 2 CD-ROMs.
ISBN 0-13-049765-7.

April 2004 ;login:

book reviews
(as utilized by malware); the presenta-
tion on sniffing backdoors and hacks
using VNC; and the coverage of source-
Trojans (with detailed analysis of recent
attacks against common open source
software) and some neat data-hiding
tricks.

The section on rootkits (two chapters
for application and kernel-level), how-
ever, was my favorite, presenting this
malicious technology in a logical, very
well-written fashion. Starting with brief
but useful overviews of Linux and Win-
dows kernels, coverage continues by not-
ing “five ways to manipulate a kernel”
for malicious purpose. The material on
Windows rootkits and kernel tricks is
fascinating. Several examples of fairly
recent kernel rootkits are analyzed for
both platforms.

If the rest of the book is exciting, the
author’s discussion in Chapter 9 of the
possibility for BIOS and CPU microcode
malware is simply awesome. The book
follows this up with coverage of some
end-to-end malware-related attacks sce-
narios, which are lots of fun to read.

The book is topped with a chapter on
analyzing malware, complete with sug-
gestions for a lab setup and a structured
presentation of various analysis
approaches (static and dynamic). An
analysis template is there as well.

Overall, the book is a great read for any
security professional, system admin, or
aspiring hacker. Its focus includes both
attacks and defenses, with a slight bias
toward attack (it also often touches on
“defenses against defense” tricks, utilized
by malicious software). UNIX and Win-
dows platforms are both covered at
almost equal levels of detail.

60

MALWARE: FIGHTING MALICIOUS
CODE
ED SKOUDIS (WITH LARRY ZELTSER)

Upper Saddle River, NJ: Prentice Hall, 2004.
Pp. 647.
ISBN 0-13-101405-6.

Reviewed by Anton Chuvakin
I rarely label something a “masterpiece,”
but Ed Skoudis’ Malware: Fighting Mali-
cious Code is nothing short of that. The
book is an amazing combination of
depth and breadth, which I always love
in a security book. Moreover, it com-
bines these with lively and easy to follow
presentation style as well as Ed’s trade-
mark humor (featuring the traditional
overuse of the word “evil”). In many
regards, the book is more fun to read
and more packed with material than his
previous work, Counterhack. The book
also strongly conveys the excitement that
the author obviously feels about this
field.

The book covers the wide scope of mali-
cious code (viruses, worms, mobile
code, rootkits, Trojans, backdoors) in a
logical and well-structured fashion. This
is not your grandmother’s “virus book,”
as it covers all sorts of malicious pro-
gramming and scripting. Chapter sum-
maries, reasons “why you need to know,”
examples, clear diagrams, accurate
analogies (often abused in other security
books) are all there to educate and
entertain. Early on, I thought that some
of the examples were a bit simplistic, but
later I noticed that they worked
extremely well, especially for some of the
technologies I was not intimately famil-
iar with (such as the Windows kernel).

The book starts with a nice, clear defini-
tion of “malicious code,” which helps to
set the frame for the rest of the book. It
goes on to cover all the types of malware
outlined above. Highlights included the
exciting material on future worms and
possible trends in worm activity; cover-
age of various browser-based attacks,
including evil plugins, ActiveX, and XSS

SECURITY WARRIOR
CYRUS PEIKARI AND ANTON CHUVAKIN

Sebastopol: O’Reilly, 2004. Pp. 525.
ISBN 0-596-00545-8.

Reviewed by Rik Farrow
Security Warrior is touted as an
advanced book, and some parts of it
actually are. I obtained a copy of the
book because I was interested in learn-
ing more about reverse engineering of
hostile code. The book does start out
with four chapters on reverse engineer-
ing, with the chapter on working with
Linux the most extensive in terms of
material and explanation.

The second chapter covers Windows
code disassembly tools and says, quite
correctly, that since access to source code
is rare in the Windows world, the tools
have considerably greater maturity than
in the Linux world. The authors men-
tion several of the tools, but do not
discuss the structure of Windows pro-
grams, which really disappointed me
since I wanted to learn more about Win-
dows disassembly. Chapter 3 goes into
much greater detail about the structure
of Linux programs and how the C com-
piler works. My impression was that the
authors assume that their audience
already understands Windows program-
ming in intimate detail, and they them-
selves are exploring how to disassemble
Linux with the primitive tools available.

The authors do provide working code
and scripts that help with disassembling
Linux programs, and that is a real plus.
These code examples can be found on
one of the authors’ Web site. But the real
focus of the disassembly techniques does
not appear to be exploring hostile code,
but discovering how to bypass checks on
serial numbers and other copy protec-
tion or access control schemes. That was
not what I wanted, as I expect to see
more hostile Linux code to appear in the
future. I expect code that, like the viruses
and worms familiar from its Windows’

Vol. 29, No. 2 ;login:

counterparts, will not come with source
code.

The remainder of the book provides a
beginner to intermediate text on general
computer-security topics, with some
glaring errors. For example, on page 186,
at the end of the TCP/IP handshake, the
“command is received and resets the
sequence number to zero.” Huh? Haven’t
these guys spent any time with their eyes
glued to sniffers?

The chapter on UNIX security touches
on some interesting topics, but provides
little useful advice. The suggestion that
some accounts in the passwd file should
simply be deleted appears seriously mis-
advised, and the authors completely
miss the significance of ownership and
permissions on system directories –
pretty basic stuff.

This is not a bad book – I simply wish
that it had been better tech edited and
more focused on reverse engineering of
hostile code. There are other books that
cover incident response, honeypots,
UNIX security, and other topics in much
greater detail.

61April 2004 ;login:

writes superb dialogue that reveals his
characters’ thoughts and feelings while
educating the reader at the same time. I
loved his exploration of the evolution of
the financial world of banks and mar-
kets.

The book’s pace is somewhat uneven in
that there are slow sections – for exam-
ple, exchanges of letters. But these are
more than compensated by the brilliant
episodes of action salted throughout the
book. I found myself reading the book
for its prose and dialogue, learning
about this period of history, and then
getting caught up in a chase scene that
just could not be postponed. I highly
recommend this book, both for its
entertainment value and for what you
can learn not only about history but also
about how humans operate.

l

B

O
O

K
R

EV
IE

W
S

BOOK REVIEWS l

QUICKSILVER
NEAL STEPHENSON

San Francisco: Harper Collins, 2003. Pp. 926.
ISBN 0-380-97742-7.

Reviewed by Rik Farrow
While not a technical book, Quicksilver
seems to me worth mentioning since it
was written by Neal Stephenson, the
keynote speaker at USENIX ’03 and
author of Cryptonomicon, a very popular
book among the computing community.
When I learned that Stephenson
planned on venturing into historical fic-
tion, I was at first disappointed. But
Quicksilver did not disappoint me. It is a
book to savor.

Quicksilver deals with the people and
events at the end of the 16th century,
primarily in England and Europe.
Throughout the book, Stephenson
brings to life characters such as Newton,
Leibnitz, Hooke, and other famous nat-
ural philosophers in a way that makes
the era in which they lived exciting and
real. Stephenson examines not only the
birth of science, but the political, reli-
gious, technological, and social structure
on which it depended. Stephenson

62

notes

Vol. 29, No. 2 ;login:

An Open Letter
from the USENIX
Association
Rebutting SCO's
Position on Open
Source Software
February 27, 2004

The SCO Group, Inc. (SCO), has
recently sued IBM and Novell and
launched broad attacks on the legality of
and the economic justification for so-
called open source licensing, including
the free licensing of Linux. As an organi-
zation dedicated to advancing the skills
and contributions of computer
researchers and developers, the USENIX
Association is compelled to address and
refute the position SCO has taken
regarding open source software.

Since 1975, USENIX has brought
together the community of engineers,
system administrators, scientists, and
technicians working on the cutting edge
of the computing world. USENIX was
here before SCO. USENIX was here
before Linux. USENIX and its members
serve as an unparalleled demonstration
that the best way to support advances in

computer programming and to create
better computer programs (and to help
the American economy) is by sharing
innovations, rather than keeping them
secret or charging large amounts of
money for access to them, as SCO advo-
cates.

SCO argues that open source software,
and in particular the General Public
License (GPL), by means of which Linux
and many other open source programs
are licensed without charging fees, are “a
threat to the U.S. information technol-
ogy industry.” SCO’s own programmers
themselves use open source computer
software tools, so it is difficult to explain
SCO’s position except by noting its
hypocrisy. Many of the most popular
computer development tools are avail-
able to programmers worldwide for free
through the contributions of the open
source development community. If their
developers were to charge substantial
fees for their use or to withdraw them
from distribution entirely, commercial
programmers such as SCO and non-
commercial programmers alike would
be the worse for it.

SCO specifically argues that open source
(free) licensing “undermines our basic
system of intellectual property rights.”
This assertion lacks any legal justifica-
tion and therefore appears to be merely
self-serving. Nothing in our intellectual

USENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits

FREE SUBSCRIPTION TO ;login:, the Association’s
magazine, published six times a year, featur-
ing technical articles, system administration
articles, tips and techniques, practical
columns on such topics as security, Tcl, Perl,
Java, and operating systems, book reviews,
and summaries of sessions at USENIX con-
ferences.

ACCESS TO ;login: online from October 1997
to last month: www.usenix.org/
publications/login/.

ACCESS TO PAPERS from the USENIX Confer-
ences online starting with 1993:
www.usenix.org/publications/library/proceedings/

THE RIGHT TO VOTE on matters affecting the
Association, its bylaws, election of its direc-
tors and officers.

DISCOUNTS on registration fees for all
USENIX conferences.

DISCOUNTS on the purchase of proceedings
and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,
books, software, and periodicals. See
<http://www.usenix.org/membership/
specialdisc.html> for details.

FOR MORE INFORMATION
REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE
http://www.usenix.org/

membership/

OR CONTACT
office@usenix.org

Phone: 510 528 8649

USENIX BOARD OF DIRECTORS
Communicate directly with the USENIX Board
of Directors by writing to board@usenix.org.

PRESIDENT:
Marshall Kirk McKusick, kirk@usenix.org

VICE PRESIDENT:
Michael B. Jones, mike@usenix.org

SECRETARY:
Peter Honeyman, honey@usenix.org

TREASURER:
Lois Bennett, lois@usenix.org

DIRECTORS:
Tina Darmohray, tina@usenix.org
John Gilmore, john@usenix.org
Jon “maddog” Hall, maddog@usenix.org
Avi Rubin, avi@usenix.org

EXECUTIVE DIRECTOR:
Ellie Young, ellie@usenix.org

63April 2004 ;login: AN OPEN LETTER l

l
U

SE
N

IX
 N

EW
Slower-cost or free substitutes are com-

pelled to find other things to sell. SCO’s
claims that open source developers are
damaging our system of intellectual
property rights and are threatening the
viability of our technology industry are
intellectually dishonest. Indeed, the
open source community's practice of
sharing innovations and of making
them available for free clearly stimulates
development and invigorates the tech-
nology sector. From the software that
controls the majority of the world's Web
servers to the software that makes tasks
easier on your desktops, open source
development has enhanced the Ameri-
can economy.

Society is better off when consumers
have choices and when products com-
pete with one another on the basis of
functionality and price, and inventing is
facilitated when inventors share their
ideas. USENIX supports the right of
programmers to choose whether to
charge for their programs or to make
them available for free, and we oppose
any attempt to change the balance inher-
ent in our intellectual property laws.

Sincerely,

Marshall Kirk McKusick, President
USENIX Board of Directors

property laws requires inventors to
charge substantial fees for access or use
of their inventions. In fact, the laws of
copyright and patents, which underlie
the intellectual property rights that most
often protect computer software pro-
grams, give their owners complete dis-
cretion in deciding how large their
licensing fees should be, or, indeed,
whether to impose fees at all.

SCO specifically argues that open source
software “has the potential to provide
our nation's enemies or potential ene-
mies with computing capabilities that
are restricted by U.S. law.” Intellectual
property law is not the right place to
impose restrictions on the use of com-
puter programs abroad. That’s what our
export control laws do. This confusion
between intellectual property licensing
and export policy shows how bankrupt
SCO’s arguments are. Furthermore, the
U.S. export control authorities have
acknowledged the impossibility of
restricting the geographical distribution
of most computer software programs. In
any event, neither area of law hinges on
whether software programs are licensed
for fees or for free, or whether the inno-
vations are kept secret or are shared.

SCO specifically argues, “Each Open
Source installation displaces or pre-
empts a sale of proprietary, licensable

and copyright-protected software.” This
would only be true if the open source
applications were superior or at least
equal to their proprietary counterparts.
America has always asserted that the
marketplace is the best regulator. Expen-
sive products stimulate the introduction
of less expensive and better substitutes.
Intellectual property laws do not change
that basic principle of capitalism. SCO’s
desire to be protected against competi-
tion is understandable, particularly if its
products are inferior to those of its open
source competitors. But it is unreason-
able to expect that intellectual property
laws will shield SCO from the normal
operation of the marketplace.

Intellectual property law has always bal-
anced the need to give inventors protec-
tion from competitors with the need to
give society the benefit of their innova-
tions and to let the marketplace regulate
fees through the mechanisms of supply
and demand. Intellectual property laws
have never given inventors absolute pro-
tection against the competition of
lower-cost substitutes. Copyright laws,
for example, only protect against copy-
ing. If substitute programs are not
copies, then they do not infringe, and
they are free to compete with the origi-
nal programs in the marketplace. Inven-
tors who find they can’t compete against

USENIX SUPPORTING MEMBERS
Ajava Systems, Inc.

Aptitune Corporation

Atos Origin BV

Computer Measurement Group

Delmar Learning

DoCoMo Communications Laboratories

USA, Inc

Electronic Frontier Foundation

Hewlett-Packard

Interhack

MacConnection

The Measurement Factory

Microsoft Research

Portlock Software

Raytheon

Sun Microsystems, Inc.

Taos – The SysAdmin Company

UUNET Technologies, Inc.

Veritas Software

Vol. 29, No. 2 ;login:64 April 2004 ;login:

Attention Members:
ACM Queue Magazine has partnered with USENIX to offer our members a one-year
complimentary subscription to Queue, a new magazine for software developers and
system engineers. To subscribe or for more information, please visit

http://www.usenix.org/membership/special_offers/queue.html

SAVE THE DATE!
13th USENIX Security Symposium

August 9–13, 2004 u San Diego, California

The USENIX Security Symposium brings together researchers, practitioners, system administrators,
system programmers, and others interested in the latest advances in security of computer systems.

– Steve Bellovin, AT&T Fellow, AT&T Labs Research;
co-author of Firewalls and Internet Security: Repelling the Wily Hacker (Addison-Wesley Professional, 2003)

http://www.usenix.org/sec04/

ÒThis is the most impor-

tant conference I go to.Ó

	MOTD
	Apropos
	Mahmoud
	Farrow
	Laffitte
	Russo
	Bagwell
	History
	McCluskey
	Turoff
	Flynt
	Appelman
	Egelman
	Books
	Usenix

