

2

motd

I have some comments on some of the recent press reports
about “Cyber Terrorism” and computer security in general that
contain fabulous quotes that the media has widely disseminated.

James A. Lewis, a Center for Strategic & International Studies
analyst wrote a monologue entitled, “Assessing the Risks of
Cyber Terrorism, Cyber War and Other Cyber Threats”1. Simply,
he said:

The assumption of vulnerability is wrong.

and in the paper’s stated context, he’s right. Its second paragraph
defines: “Cyber-terrorism is ‘the use of computer network tools
to shutdown critical national infrastuctures (such as energy
transportation, government operations) or to coerce or intimi-
date a government or civilian population.” OK. It’s fair to define
terms and then analyze the results of that definition.

The Gartner Group published a Q/A column2 entitled Cyberat-
tacks and Cyberterrorism: What Private Business Must Know.
Here’s a quote that I think would be warmly received by those
trying to decrease IT security budgets:

Criminal cyberattacks are real and occur daily, while cybert-
errorism is still a theory. Despite the hype, there is no known
case of cyberterrorism. Government efforts focus on helping
enterprises help themselves, and each other.

and, later:

[The] Federal Bureau of Investigation defines terrorism as
“unlawful or threatened use of force or violence . . . against
persons or property to intimidate or force a government [or]
civilian population [to further] political or social objectives.”
GartnerG2 defines cyberterrorism as “terrorism attacks using
a digital channel.”

Defining words is important. I think that defining words care-
fully and then using them publicly in quotes like “Cyberterror-
ism is still a theory” advances ideas that are counterproductive
and can easily lead to decision-making with wide-ranging nega-
tive repercussions.

The recent Slammer Worm, 376 bytes of code that flashed
through the internet recently, demonstrates one dimension of
the state of the “cracking” art. The CAIDA folks have published
an analysis called “The Spread of the Sapphire/Slammer Worm,”
principally authored by David Moore. It contains these facts:

� The number of infected systems doubled every 8.5 seconds
during its first minute. That’s 133x growth in a single
minute.

� At its peak (3 minutes in), it scanned 55,000,000
systems/second (that’s a rate of 3.3 billion per hour). After
that, no more network bandwidth was available. This is
100x the speed of the July 19, 2001 Code Red Worm, which
hit 359,000 hosts.

� Of all systems possible to infect, 90% were infected within
10 minutes of the worm’s launch.

� The worm began to infect hosts around 05:30 UTC on Sat-
urday, January 25, 2003 and exploited a buffer overflow dis-
covered in July, 2002. A patch was released shortly there-
after, months before the worm was launched.

� 75,000 total hosts were infected.
� A “better” vulnerability would have enabled infection of

the entire internet in 15 minutes, a “flash worm” or a
“Warhol Worm.”

� Neither Code Red nor Slammer had a malicious payload.

Now, this sort of result doesn’t agree with Joshua Green com-
ments for Washington Monthly in November of 20023:

There’s just one problem: There is no such thing as cyberter-
rorism – no instance of anyone ever having been killed by a
terrorist (or anyone else) using a computer. . . . What’s more,
outside of a Tom Clancy novel, computer security specialists
believe it is virtually impossible to use the Internet to inflict
death on a large scale, . . .

Dorothy Denning, Georgetown University Professor and cyber-
security experts says, “Not only does [cyberterrorism] not rank
alongside chemical, biological, or nuclear weapons, but it is not
anywhere near as serious as other potential physical threats like
car bombs or suicide bombers.”

The article goes on to cite US$15 billion lost last year to various
cyber attacks.

I believe that all these authors are writing words that are true:
No one (hardly anyone?) has died from a computer attack, at
least directly. The Slammer worm did infect some 911 comput-
ers; it’s not apparent that any real problems emerged from that.

But I think that all these analyses are missing the point. By
demonstration, the computer and networking infrastructure is
vulnerable. Slammer was a small worm with a relatively low suc-
cess rate.

Vol. 28, No. 2 ;login:

by Rob Kolstad

Rob Kolstad is cur-
rently Executive
Director of SAGE, the
System Administra-
tors Guild. Rob has
edited ;login: for
over ten years.

kolstad@sage.org

3April 2003 ;login:

The networking infrastructure drives huge parts of the USA and world economies. It’s
easy to see that the fallout from the 9/11 attacks has contributed to the bankruptcy of
airlines and, I believe, contributed to the lengthening of the USA economic recession.
The attacks and their media coverage have moved USA society, at least, to a state of
paranoia and fear not seen since the nuclear bomb scares of the late 1950s and early
1960s.

Please join me in a mental exercise about cyberattacks. Imagine that:

� a cyberattack causes the banking system to fail in its interbank money transfers.
� a cyberattack infects enough routers on the internet that traffic is slowed by 100x

for weeks as the routers ping-pong infect one another.
� a cyberattack infects so many business computers that deliveries of commercial

good of all kinds (including food) are halted for a week and then restarted manu-
ally with concomitant inefficiencies and lower throughput.

� a cyberattack takes out the airline reservation system, causing airlines to suspend
their operations.

� a cyberattack takes out the computer control of the communications infrastruc-
ture, thus reducing telephone and other bandwidth by 100x and disabling long-
distance phone calls, internet connectivity, and 80% of television programming
relays

While none of these results would result in widespread death, any one of them would
foment panic, chaos, and a deep new fear about the stability of at least the USA eco-
nomic foundations and maybe its society in general. This level of disruption has the
potential to destroy huge portions of the commercial infrastructure and unemploy
millions of workers. It is easy to believe that the results would dwarf the depression of
1929.

Let’s take a rational and calm course in “selling” computer security. Let’s not use “Fear,
Uncertainty, and Doubt” to motivate decision-makers. But please: let’s not stick our
heads in the sand, either. The Slammer Worm is only the latest realized threat. It is dif-
ficult to believe that no more threats exist. Keep your systems patched; heed vendors’
warnings about upgrades; use common sense security precautions when designing and
procuring software. Let’s not make attackers’ goals easier to achieve.

1. http://www.csis.org/tech/0211_lewis.pdf

2. http://www.gartnerg2.com/qa/qa-0902-
0091.asp

3. http://www.washingtonmonthly.com/
features/2001/0211.green.html

ED
IT

O
RI

A
L

http://www.csis.org/tech/0211_lewis.pdf
http://www.gartnerg2.com/qa/qa-0902-
http://www.washingtonmonthly.com/

5April 2003 ;login:

�

O

P
IN

IO
N

Provable security is never

affordable while affordable

security is never provable

The Critical Infrastructure Protection Board (CIPB) released the Draft

National Strategy to Secure Cyberspace for comment last November. The

strategic shift it proposed was to focus on vulnerabilities rather than oppo-

nents. While to a ;login: audience it may well seem trite to note that on

the Internet every sociopath might be your next-door neighbor, in endors-

ing this idea the National Strategy broke new ground for audiences other

than ours. As the critical infrastructure of this and any other free nation will

be dominatedly in private hands, policy at the national level will flow

through people like us whether we are design-side or operations-side,

USENIX or SAGE. To give one view on what this will take, what it will

mean, what it will demand, below you will find my own formal response to

the National Strategy, as is and as delivered. Formal responses such as this

have not yet been made publicly available and so I cannot directly point to

the body of responses in full. I can say that all of us here have a role to play

one way or another in a world where what we do is already critically neces-

sary. I urge all of you to be involved at whatever limit of skill and wisdom

you possess.

Note that the situation is moving faster than ;login:’s publication schedule

can handle–as of this writing (early March) the final draft of the Strategy

came out and the CIPB was disbanded shortly thereafter, leaving lobbyists

torn between how-wonderful-no-regulator and how-terrible-no-grant-

money emotions.

To: Richard Clarke, Howard Schmidt, et al.

From: Dan Geer, CTO @stake, and other affiliations

Date: 18 November 2002

Re: Primum non nocere – National Strategy to Secure Cyberspace

Because (1) the cost of duplication of electronic information is zero and (2) the Inter-
net is a commons where distance in space and time is irrelevant, it is therefore
absolutely necessary to replace a military style doctrine of security (focused assess-
ment of hostile parties and their capabilities) with a market style doctrine of security
(focused risk management of one’s own vulnerabilities). In this we concur with the
Draft National Strategy.

Provable security is never affordable while affordable security is never provable; trade-
offs are therefore natural and inevitable. Such tradeoffs are preferably based on market
forces except where market failure is intolerable. Such market failure is likely whenever
risk is diffuse and deferrable. Risk will seem diffuse and deferrable in an absence of
adequate visibility to the sharable risk information we collectively do have or where
whether to act or not is based only on qualitative argument. The Draft speaks to an

comments on the
national strategy to
secure cyberspace

by Dan Geer

Dan Geer is a
USENIX Past Presi-
dent and is Chief
Technology Officer
at @Stake, Inc.

geer@world.std.com

THE NATIONAL STRATEGY TO SECURE CYBERSPACE �

Vol. 28, No. 2 ;login:6

The single most fundamental

enemy of security in

cyberspace is complexity.

“information deficit” and indeed there is one. The top priority going forward is to
share data that is already in hand and to share it in a way that provides coherent, quan-
titative decision support. Unless and until there are quantitative measures, a market
failure is unavoidable. The need for legislative relief in this area, e.g., the Bennett-Kyl
“Critical Infrastructure Information Security Act,” is real.

The information technology woven through our critical infrastructure is what in a
military setting would be called a force multiplier–it adds significant power to its user
out of all proportion to its cost, ergo, it is about productivity. When a force multiplier
is developed by and for an elite, it will be used in whatever way the goals and the con-
straints, the culture if you will, of that elite would imply. When that force multiplier is
made available to everyone regardless of their goals and their constraints, it should
come as no surprise that goals and constraints may well have to be injected – through
the rule of law, one should hope. That there is a need for a National Strategy to Secure
Cyberspace at all confirms this observation.

The single most fundamental enemy of security in cyberspace is complexity. Any solu-
tion in the name of security that increases complexity is asking for trouble; any solu-
tion that costs more in productivity than it produces will consume wealth. As such,
security solutions must be simple or they will be unsustainable – security’s accumulat-
ing costs will grow in visibility as security’s deliverables will shrink in visibility when
recent events inevitably recede in group memory.

Networked communications are increasing in type, kind, and capacity to the point
that the perimeter of every entity, public or private, is dissolving. When perimeters
cannot be defined they cannot be defended, and when they cannot be defended there
is no practical difference between the “inside” and the “outside” of the organization or
society. Plainly put, perimeter defense strategies are trending sharply toward the disec-
onomic and will eventually fail. The effective blurring of inside and outside, exagger-
ated by the cost trend made above, makes security in the form of “access control”
long-term unsustainable. When access control is unsustainable, the only alternative is
accountability.

Accountability for actions taken is the hallmark of a free society. Accountability
requires records. When the nature of offenses to security can be enumerated a priori,
the records on which accountability will be based can be minimal and their handling
can be procedural. When the nature of the offenses to security cannot be enumerated a
priori, neither can the records that would otherwise be required to enforce accounta-
bility a posteriori.

The form of accountability most consistent with existing private sector structure and
habit is that of liability. Just as the Draft National Strategy calls on all levels of society
to do their part, the need for accountability must extend to all levels of society. That
includes accountability in the form of liability, but if and only if that accountability is
built on the calculus of risk rather than the calculus of influence. The two principal
areas where the lack of teeth in the Draft must be addressed are both of this sort: prod-
uct and service vendors who sell insecure products must shoulder the liability there-
from while companies and persons whose property is used for attacks on others must
shoulder the liability therefrom. The easily confirmed persistence of known, fixable
security flaws in the field already proves that the present regime of information-push
without liability-based accountability simply will not work. Conclusions include but
are not limited to:

� Software vendors can make security claims their customers are in no position to
confirm. Hence, software vendors must not make security claims without either
assuming the liability for those claims or by seeking, for the claims, the confirma-
tion of a third party audit.

� Computer network operators are already well motivated to police and repulse
inbound attacks. Hence, computer network operators must become liable for
attacks outbound from their networks.

� When infrastructures, fail they do so in cascade. Management of large computing
infrastructures is made easier by homogeneity within that infrastructure but the
only defense against common mode cascade failure is heterogeneity. Hence, infra-
structures that choose homogeneity must separately correct for the added risk
burden they thereby impose on those who depend upon them.

� Security is a means; it is not an end. With rapid technical change, means cannot
be durable. Only ends can be durable. Security-centric “procedural correctness”
without a concrete description of goal state(s) makes any risk worse by soaking up
the resources that might actually have gone to genuine repair and by comforting
the ill-informed. Hence, whatever regulation is created or augmented in support
of the National Strategy must be about ends and not means.

� The critical infrastructure of the United States of America obviously includes pri-
vate sector firms that are not US-based. Hence, the National Strategy will not
complete so long as it is bound to US-based firms only and the National Strategy
must be so modified.

� Because the price of bandwidth falls faster than the price of storage which falls
faster than the price of computation, long-term economic pressures favor captur-
ing observable events to multiple locations for later analysis when and if needed.
Because a linear growth in network end-points creates a geometric growth in net-
work complexity, any entity charged with security must never fall behind in data
collection even if it assumes analysis of that data may never occur or occur much
delayed. As observability in the electronic sphere vastly exceeds observability in
the physical sphere, hence the phrase “expectation of privacy” must be based on
cultural norms as it cannot be any longer based on what is within the realm of the
possible.

In sum, details, quantitative details, matter. We, all of us, must share data on occur-
rence of risk and countermeasures to risk, we must share it in a setting of sticks and
carrots that harness self-interest rather than work against it, and national policy can
only stress quantifiable ends that must be met or liability be assessed, assuming that
the National Strategy to Secure Cyberspace wishes to itself reach a goal rather than
merely look good.

7April 2003 ;login:

�

O

P
IN

IO
NSecurity is a means; it is not

an end.

THE NATIONAL STRATEGY TO SECURE CYBERSPACE �

8 Vol. 26, No. 2 ;login:

IPv6 configuration on
Solaris 9 and freeBSD-4.x

The basic setup to enable IPv6 on the Solaris 9 and

FreeBSD-4.x operating systems is discussed. The text

will begin with a quick overview of the IPv6 packet for-

mat and various addressing types, before continuing to

stateless address autoconfiguration for a host and a

router. The text will also deal with the current and tran-

sition issues of the Domain Name Service for IPv6.

Finally, there is discussion about IPsec and how to use

IPsec for inbound authentication and to secure commu-

nication between two hosts.

Introduction
“Is there a customer requirement?” and “Have you been asked
about migration?” were the first comments I received when I
said that I had started to work on IPv6.[1] Undeterred by reality,
my incentive to play with IPv6 was to experiment with the pro-
tocol to see how it works. Although the buzzwords “next gener-
ation Internet” and “migration” have been flying around for the
past eight years, no one really knows whether this will ever hap-
pen. Instead, I decided to take a fresh look at IPv6 and view it as
a completely new network protocol that just happens to
improve IP further.

IPv6’s availability has improved in the past few years. It is no
longer a network protocol for only researchers to play with, but
the emergence of IPv6 stacks, commercial and open source,
means that IPv6 is getting serious. If IPv6 is in the operating
system already, enabling it will cost nothing. IPv6 is a turnkey
protocol as SPX/IPX was, and you don’t have to request an IP
address.

In the following text we will discuss how to set up IPv6 on
Solaris 9 and FreeBSD-4.x. We will briefly cover the various
addressing types of IPv6 and what they mean to an average user
who wants to get his/her feet wet. A quick overview of the two
recommendations for IPv6 DNS will be presented. Finally, we

will discuss the use of IPSec, try a very basic setup, and test
interoperability between Solaris and FreeBSD.

Getting Started — Header Format
No discussion of a networking protocol would be complete
without displaying the actual packet header (Figure 1), as in
RFC-2460.[1] The IPv6 header is 40 octets long, as opposed to
the 20 octets of the IPv4 header. The IPv6 header is much sim-
pler, which will speed up its processing on routers and end-
nodes.

The fields of the IPv6 header are as follows:

FIELD BITS DESCRIPTION

Version 4 Internet Protocol header version.
Has value of “6”.

Traffic Class 8 Used by routers to recognize differ-
ent traffic classes or priorities.

Flow Label 20 Requests special handling of the
IPv6 packet, e.g., real-time quality
of service.

Payload Length 16 Length of the payload, i.e., packet
excluding IPv6, in octets.

Next Header 8 Type of header following IPv6, as
in RFC-1700.[2]

Hop Limit 8 Time-to-live value.
Source Address 128 Sender’s address.
Destination Address 128 Recipient’s address.

The IPv6 header does not have a header checksum field.
Although this seemed important in the days of IPv4, error
checking in the link layer protocols has made this field obsolete.
The removal of header checksum leaves the possibility that the
IPv6 header could get corrupted between the network interface
and the network protocol. The probability for this to happen is
minimal and computers are far more reliable nowadays than
they were in 1981, when IPv4 was designed.

IPv6 also has built-in provisions for Quality of Service (i.e.,
Flow Label, Traffic Class), although these will not be discussed
in this text. QoS is a major improvement over IPv4, and IPv6
should be able to prove its worth as a voice over IP and video
over IP delivery vehicle. The major advantage of IPv6 QoS is its

tljs@greenwichtech.com

by Timo Sivonen

Timo Sivonen is a
principal consultant
working for Green-
wich Technology
Partners. His profes-
sional activities circu-
late around operating
systems, internet-
working, and infor-
mation security.

Figure 1. IPv6 Header

architectural independence of the underlying link layer. Not
surprisingly, online gamers have also shown some interest in
IPv6.

Getting Started — Addressing
The first thing you need is an address, and IPv6 has 2128 of
those, compared to 232 of IPv4. In this section we will deal with
the basics of IPv6 addresses and address formats. The logic of
IP addressing has changed quite a bit from the days of Classes
A, B, and C. As with IPv4, each address type is defined by its
prefix and RFC-2373[3] lists the following prefixes:

Since working with binary prefixes is usually confusing and
sometimes error-prone, you may want to consult the IPv6
Address Oracle[4] at the Advanced Network Management Labo-
ratory at Indiana University. While I was trying to learn the
address structure, I was almost continuously visiting the site.

Note that the dotted-decimal notation of IPv4 addresses has
been replaced with hexadecimal. Practically speaking, an IPv4
address is 32 bits, i.e., 4 octets long, while an IPv6 address is 128
bits, i.e., 16 octets long. Hexadecimal representation is more
economical for large addresses, and one can use “::” as an abbre-
viation for a string of zeros. However, this can be used only
once in an address. In other words, one can write an IPv6
address as

fe80::280:c7ff:0:434

or equally

fe80:0:0:0:280:c7ff:0:434d

but fe80::280:c7ff::434d would be ambiguous and thus illegal.

It is possible to use the IPv4 dotted-decimal notation under cer-
tain circumstances. If there is an embedded IPv4 address inside
of the IPv6 address, the last four octets are represented using
the dotted-decimal notation:

::ffff:192.168.1.1

Currently IPv6 defines the following address types:

� Unicast. A unicast address identifies a single interface.
There are several unicast address types such as unspecified
address, loopback address, global aggregateable unicast
address and local-use addresses. There are other types
which are not in the scope of this discussion.

� Anycast is a special case of unicast. An anycast address
identifies a set of interfaces, typically belonging to different
nodes. A packet sent to an anycast address will be delivered
to the nearest interface. Anycast is not in the scope of this
discussion.

� Multicast. There is no broadcast in IPv6 since multicast can
be used for the same purpose. A multicast address is identi-
fied by the prefix ff/8.

UNICAST ADDRESSES
A unicast address consists of the subnet prefix and the interface
identifier (Figure 2). Although the interface identifier depends
on the type of the unicast address and the underlying media
(e.g., Ethernet LAN, point-to-point circuit or a tunnel end-
point), it must be 64 octets for all addresses in Table 1.

In the following text we will discuss loopback addresses, local-
use addresses and aggregateable global unicast addresses. Other
address types such as IPv6 addresses with embedded IPv4
addresses, NSAP addresses, and IPX addresses are covered in
RFC-2373 and Huitema.[5]

INTERFACE IDENTIFIER

Finding the interface identifier for LAN-connected nodes is rel-
atively straightforward, since the 48-bit MAC address is globally
unique. The procedure to expand the MAC address to the 64-
bit interface identifier is based on EUI-64.[6] This is accom-

9April 2003 ;login:

�

N

ET
W

O
R

K
IN

G
Figure 2. Unicast Address

ALLOCATION PREFIX FRACTION OF

(BINARY) ADDRESS

SPACE

Reserved 0000 0000 1/256

Unassigned 0000 0001 1/256

Reserved for NSAP Allocation 0000 001 1/128

Reserved for IPX Allocation 0000 010 1/128

Unassigned 0000 011 1/128

Unassigned 0000 1 1/32

Unassigned 0001 1/16

Aggregatable Global Unicast Addresses 001 1/8

Unassigned 010 1/8

Unassigned 011 1/8

Unassigned 100 1/8

Unassigned 101 1/8

Unassigned 110 1/8

Unassigned 1110 1/16

Unassigned 1111 0 1/32

Unassigned 1111 10 1/64

Unassigned 1111 110 1/128

Unassigned 1111 1110 0 1/512

Link-local Unicast Addresses 1111 1110 10 1/1024

Site-local Unicast Addresses 1111 1110 11 1/1024

Table 1. IPv6 Address Assignments and Prefix

IPV6 CONFIGURATION �

Vol. 28, No. 2 ;login:10

plished by inserting two octets with hexadecimal values of 0xff
and 0xfe in the middle of the address and setting the
universal/local bit to 1. This is displayed in Figure 3:

The g bit denotes the local/global bit and it is set to zero for 48-
bit MAC-based identifiers. The c and m bits are for the com-
pany ID and manufacturer-selected extension identifier,
respectively. Hence, we will get the following kind of expan-
sions:

0:3:ba:6:14:66 → 203:baff:fe06:1466
0:80:c7:54:43:4d → 280:c7ff:fe54:434d

IPv6 does not have the Address Resolution Protocol[7] to con-
vert IPv6 addresses to MAC addresses. Instead, this function has
been transferred to the ICMPv6 Neighbor Discovery protocol,
which provides generic mechanisms to discover the MAC
addresses of the other hosts. Neighbor Solicitation is either
multicast or unicast, and Neighbor Advertisement (the reply) is
always unicast.

One may well use the same interface identifier on multiple
interfaces as long as the subnet prefix is different. RFC-2373
states the following:

Note that the use of the same interface identifier on multiple
interfaces of a single node does not affect the interface iden-
tifier’s global uniqueness or each IPv6 address’s global
uniqueness created using that interface identifier.

For example, Sun hardware assigns the same MAC address to all
Ethernet interfaces. This is perfectly legal as long as the interface
identifier is unique to each link (e.g., Ethernet segment) and the
complete IPv6 address (64 bits of the subnet prefix and 64 bits
of the interface identifier) is globally unique.

UNSPECIFIED ADDRESS

The first unicast address type you will encounter is the unspeci-
fied address:

0:0:0:0:0:0:0:0

or, in the compressed form:

::

The unspecified address is only used when an interface does not
have a unicast address assigned to it yet. It can never be assigned
to a node or used as a destination address.

LOOPBACK ADDRESS

The loopback address is the equivalent of 127.0.0.1 and
cannot be used on a physical interface. The IPv6 loop-
back address consists of 127 binary zeros ending with
binary one:

0:0:0:0:0:0:0:1

or in the compressed form:

::1

As with IPv4, the loopback address is always associated within a
single node. You cannot use it as the source or the destination
addresses for packets you are sending over a link to another
node.

LINK-LOCAL ADDRESS

You can use this address type (Figure 4) on a subnet (e.g., Eth-
ernet segment) the host is connected to. The link-local address
is configured automatically for each IPv6-capable interface.
Since there is only the prefix, fe80::/10, but no subnet identifier,
these addresses cannot be routed.

The link-local address space is roughly equivalent to the IPv4
169.254.0.0/16 address space[8] that DHCP auto-configured
hosts are expected to use if no DHCP server is present. It is
pointless to attempt to route link-local addresses, since there
will be other link-local addresses on the destination network
and the destination host will have no idea which is the correct
host.

On a Solaris system, your interface list will look like the follow-
ing (after the interfaces have been configured for IPv6 but the
local router has not handed out the subnet prefix yet. . . or there
may not be a local router at all):

ifconfig -a6
lo0: flags=2000849<UP,LOOPBACK,RUNNING,

MULTICAST,IPv6> mtu 8252 index 1
inet6 ::1/128

eri0: flags=2000841<UP,RUNNING,MULTICAST,IPv6>
mtu 1500 index 2

ether 0:3:ba:e:6a:6a
inet6 fe80::203:baff:fe0e:6a6a/10

Figure 3. Expansion of a 48-bit MAC Address into an EUI-64 Interface
Identifier

Figure 4. Link-local Address

The bottom line is that link-local addresses are instant: You
don’t have to ask for an IPv6 address to be able to communicate
with the other IPv6 hosts on the same segment. You only need
to hook up to the network and the other hosts are immediately
reachable, without any waiting periods for a DHCP server that
isn’t there. Finally, since MAC addresses are globally unique,
there can be up to 264 nodes on a single IPv6 LAN segment.

SITE-LOCAL ADDRESS

The site-local unicast address (Figure 5) is the IPv6 equivalent
of the 10.0.0.0/8-network.[9] Site-local address is for organiza-
tions that want to set up private routed IPv6 internetworks
without Internet connectivity.

The site-local address prefix is fec0::/10. There are only 16 bits
for the subnet identifier, which is equal to the two middle octets
of the 10.0.0.0/8 network, i.e., 216 subnets. Since the subnet and
the interface identifier are separate entities, it is not possible to
increase the number of subnets at the expense of hosts on each
subnet. The interface identifier is a 64-bit fixed-length field that
cannot be shortened. On the other hand, with IPv6 one does
not have to put any all-zeros and all-ones addresses aside for
network numbers and broadcast addresses, respectively, since
each subnet is denoted by its own subnet identifier and there is
no broadcast in IPv6.

Today, it seems that a high fraction of enterprise networks are
using RFC-1918[9] address space and resort to Network Address
Translation (NAT) to communicate with the rest of the world.
To make things worse, many of them confuse NAT with net-
work security even though the two main goals of NAT are:

� To extend the registered official address space one has
received from the ISP, e.g., five official addresses on the
outside and a mixture of private networks on the inside.

� To get at least some independence from one’s Internet Ser-
vice Provider. It is difficult enough to get official IPv4 net-
work numbers, but renumbering all the IPv4 networks and
hosts is a nightmare if the ISP changes.

It remains to be seen whether the IPv6 address space is large
enough to convince enterprise network administrators to put
site-local addresses aside and use registered (i.e., aggregateable
global unicast) IPv6 addresses instead. Moreover, IPv6 networks
are much easier to renumber since all nodes get the network
prefix(es) automatically from the nearest router; there can be
multiple prefixes on an interface simultaneously, and if things

start to go wrong, one can always get to a host via a link-local
address. If these arguments are not enough, there will be a mar-
ket for IPv6 network address translation.

As your IPv6 interface starts up, it will receive its network prefix
from its default gateway:

ifconfig -a6
lo0: flags=2000849<UP,LOOPBACK,RUNNING,

MULTICAST,IPv6> mtu 8252 index 1
inet6 ::1/128

eri0: flags=2000841<UP,RUNNING,MULTICAST,IPv6>
mtu 1500 index 2

ether 0:3:ba:e:6a:6a
inet6 fe80::203:baff:fe0e:6a6a/10

eri0:1: flags=2080841<UP,RUNNING,MULTICAST,
ADDRCONF,IPv6> mtu 1500 index 2

inet6 fec0::a801:203:baff:fe0e:6a6a/64

Depending on your IPv6 implementation, additional IPv6
addresses may show up as subinterfaces (Solaris) or aliases
(KAME[10] stack on BSD). This is merely a matter of represen-
tation, since the two forms share the same functionality.

AGGREGATABLE GLOBAL UNICAST ADDRESS

You need the aggregateable global unicast address (Figure 6) to
run IPv6 on the Internet, that is, if your ISP is connected to
6bone (http://www.6bone.net/) and they have registered a prefix
for themselves. The address type is specified in RFC-2374.[11]

The Format Prefix (FP) is always binary 001 for this type of an
address. Since the length of FP is three bits and the Top-Level
Aggregation Identifier (TLA) is 13 bits, the TLA is actually 16
bits, with the FP restricting the values TLA may have. Hence,
the possible values for the TLAs are 2000::/16 through 3fff::/16.

The Top-Level Aggregation Identifier is the highest level in the
routing hierarchy. A large ISP could have a TLA, but currently
there is no TLA for a single organization. Instead, three types of
TLAs have been allocated:

� Regional Internet Registry allocated sub-TLAs (prefix
2001::/16) a.k.a. Production sub-TLAs.

� 6to4 TLAs (prefix 2002::/16) to route IPv6 traffic over the
IPv4 Internet.

� 6bone pseudo-TLAs (pTLAs, prefix 3ffe::/16).

The Reserved field is for future use and is always zero. However,
in the following section we will discuss the previously men-

11April 2003 ;login:

�

N

ET
W

O
R

K
IN

G

Figure 5. Site-local Address

Figure 6. Aggregatable Global Unicast Address

IPV6 CONFIGURATION �

http://www.6bone.net/

Vol. 28, No. 2 ;login:

tioned TLA types more closely, and all of them use the address
space put aside in the Reserved field.

The Next-Level Aggregation Identifier is used by organizations
that have received a TLA to create an addressing hierarchy.
Instead of using the space of 24 bits as a flat index, RFC-2374
recommends putting aside a number of bits as a selector and
reserving the remaining space for each site the organization has
to support (Figure 7).

The organization may also choose to use the site identifier space
to create an NLA hierarchy and manage routing tables more
efficiently (Figure 8). This is not mandated in RFC-2374, but
the recipients of TLAs are advised to set up their addressing in a
hierarchical manner.

The bottom line is that 24 bits of NLA is a lot of real estate for
anybody. The designers of IPv4 did not want to use their 24 bits
of network space as a flat index but created the structure of
Class A, B, and C networks – and added Classless Inter-Domain
Routing later – to be able to control address allocation. Simi-
larly, it does make sense to set up an NLA hierarchy since other-
wise one might end up with 224 entries in the routing table.

The Site-Level Aggregation Identifier is the registered equivalent
of the subnet identifier in the site-local address. It can accom-
modate a total of 216, or 65,536, networks with up to 264 nodes
on each. However, it is the responsibility of each administering
organization to maintain its address space reasonably well, and
the current state-of-the-art is to set up an addressing hierarchy
(Figure 9).

There is an interesting consequence of using 16 bits both for the
SLA and the subnet identifier. Even if the organization decides
to start with site-local addresses and upgrade to aggregateable
global unicast addresses later, there is an upgrade path. Both
site-local addresses and the various types of aggregateable

global unicast addresses have 16 bits assigned for the local net-
work identifier. Hence, one will not have to change the local
addressing structure to get or change an ISP, since this informa-
tion remains untouched in the process.

While your host auto-configures its IPv6 interfaces, you will see
new entries in the interface list. Note how it is perfectly legal to
use the same network value (0xa801) both in the subnet identi-
fier and SLA for the interfaces eri0:1 and eri0:2, respectively.
Interface renumbering has never been this easy.

ifconfig -a6
lo0: flags=2000849<UP,LOOPBACK,RUNNING,

MULTICAST,IPv6> mtu 8252 index 1
inet6 ::1/128

eri0: flags=2000841<UP,RUNNING,MULTICAST,IPv6>
mtu 1500 index 2

ether 0:3:ba:e:6a:6a
inet6 fe80::203:baff:fe0e:6a6a/10

eri0:1: flags=2080841<UP,RUNNING,MULTICAST,
ADDRCONF,IPv6> mtu 1500 index 2

inet6 fec0::a801:203:baff:fe0e:6a6a/64
eri0:2: flags=2080841<UP,RUNNING,MULTICAST,

ADDRCONF,IPv6> mtu 1500 index 2
inet6 2001:11f8:5ef9:a801:203:baff:fe0e:6a6a/64

OTHER AGGREGATABLE GLOBAL UNICAST ADDRESSES

In the following sections we will discuss other aggregateable
global unicast address types. It would have been too easy to
have only one address structure and, therefore, IETF has
invented three of them, depending on the address prefix one is
using.

TLA 1

Production sub-TLAs (prefix 2001::/16) are meant to be used
on native IPv6 infrastructure. This is also known as the TLA 1,
and the initial prefix assignments can be found in RFC 2928.[12]

To make things more complicated, the TLA 1 addresses have a
structure that differs from the one discussed before. (Figure 10)

All sub-TLA addresses share the same TLA prefix, 2001::/16, but
the sTLA portion of the address is allocated by the Regional
Internet Registries, i.e., APNIC, ARIN, and RIPE. As of Septem-
ber 11, 2002, the RIRs had allocated 219 sTLA prefixes.

The length of the sTLA is 13 bits, i.e., the total prefix length FP
+ TLA + sTLA should be 29 bits. However, the Global IP Allo-
cation List[13] at RIPE shows prefix lengths of 32 and 35 bits:

12

Figure 7. NLA and Site Identifiers

Figure 8. NLA Hierarchy

Figure 9. SLA Hierarchy

Figure 10. TLA 1 Address

13April 2003 ;login:

�

N

ET
W

O
R

K
IN

GWIDE-JP-19990813 2001:0200::/35
EU-UUNET-19990810 2001:0600::/35
UK-JANET-19991019 2001:0630::/32

Obviously, this extends the sub-TLA to the Next-Level Aggrega-
tion Identifier and leaves 16 bits or 13 bits (/32 and /35 prefixes,
respectively) for the NLA. On the other hand, even with 13 bits
for the NLA and 16 bits for the Site-Level Aggregation (SLA)
Identifier one can design quite a respectable network.

6TO4 TLA

6to4 TLAs (prefix 2002::/16) are usedto route IPv6 traffic over
the IPv4 Internet and even over IPv4 dialups, if necessary. This
TLA and the address format are discussed in Carpenter et al.[14]

and Carpenter and Moore.[15] The address format is shown in
Figure 11.

6to4 is an alternative vehicle if you want to run IPv6 but don’t
have access to a 6bone gateway. In this case, your IPv6 address is
constructed from your registered IPv4 address. Of course, if you
are dialing in to an ISP or your cable modem/DSL provider
assigns your address via DHCP, your IPv4 address won’t be
static and you cannot run any persistent services.

6BONE TLA

6bone (prefix 3ffe::/16) is a global IPv6 testbed on the Internet.
Originally 6bone links were IPv6-over-IPv4 tunnels, but the
infrastructure is gradually moving toward native IPv6 links and
routers. On the practical side of things, one is most likely to get
a 6bone address if one wants to run IPv6 outside a single LAN
or an organization. Since the ISPs and other organizations that
have registered a TLA 1 address may not be able to deliver an
IPv6 service to end customers for a long time, your most viable
route to the IPv6 world is to use 6bone addresses and IPv6-
over-IPv4 encapsulation.

The 6bone pTLA address is shown in Figure 12:

As of September 3, 2002, there were 132 6bone prefixes allo-
cated. Unlike RIR-allocated sub-TLAs, there were /24, /28, and
/32 prefixes:

ROOT66/US-CA 3ffe:0000::/24
TRUMPET/AU 3ffe:8000::/28
TELEPAC/PT 3ffe:4000::/32

If you don’t have any 6bone gateway you can access, probably
the easiest way to get connected is to use the TSP client pro-
vided by Freenet6 (http://www.freenet6.net/).

MULTICAST ADDRESSES
While multicast came to IPv4 only later, in the form of the D
address class,[16] it has been a critical part of IPv6 from the very
beginning. The major advantage that multicast has over broad-
cast is better control of propagation, since an application will
not have to reach every station on the network but only those
nodes that actually need the data. The format of the multicast
address is in Figure 13:

The prefix for multicast is all-ones (i.e., binary 1111 1111 or
ff::/8). The next four bits are the flags (Figure 14), but only the
last bit is in use. The T bit must be 0 for permanently assigned
multicast addresses (visit http://www.iana.org/ for more infor-
mation) and 1 for non-permanent (i.e., transient) addresses.
The first three bits are reserved for future use and must be set to
zero.

While IPv4 multicast has few propagation-controlling mecha-
nisms other than time to live, IPv6 multicast has a clearly
defined scope:

Figure 11. 6to4 Address

Figure 12. 6bone pTLA Address

Figure 13. Multicast Address

Figure 14. Multicast Flags

VALUE SCOPE

0 Reserved

1 Node-local scope

2 Link-local scope

3 —

4 —

5 Site-local scope

6 —

7 —

8 Organization-local scope

9 —

a —

b —

c —

d —

e Global scope

f Reserved

Table 2. Multicast Scope Values

IPV6 CONFIGURATION �

http://www.freenet6.net/
http://www.iana.org/

Vol. 28, No. 2 ;login:14

For example, the assigned Group Identifier for Routing Information Protocol Next Generation (RIPng) routing protocol is 9 (hex)
and thus all RIPng updates are sent using the multicast address ff02::9, i.e., the scope is for the local link only. It is a bit difficult to
imagine any practical use for route updates beyond the local link, but an application such as Network Time Protocol could well have
several scope values:

ff01::101 means all NTP servers on the same node as the sender.

ff02::101 means all NTP servers on the same link (e.g., Ethernet LAN) as the sender.

ff05::101 means all NTP servers in the same site as the sender.

ff08::101 means all NTP servers in the same organization as the sender.

ff0e::101 means all NTP servers in the Internet.

Note that transient multicast addresses are relevant only within the given scope. For example, the transient, site-local address
ff15::101 is a completely different entity from the transient, link-local address ff12::101 or the permanent address ff05::101. Transient
addresses are disposed of at the end of their use.

Since multicast has a critical role in IPv6 and all IPv6 hosts and nodes must be multicast-capable, it is likely that the emergence of
IPv6 will also enable large-scale deployment of multicast gaming and multicast audio and video over the Internet.

AUTO-CONFIGURATION
Address auto-configuration is one of the many areas where IPv6 makes sense to an end user. IPv6 defines two modes of auto-config-
uration: stateless and stateful. All IPv6 hosts are capable of stateless auto-configuration,[17] in which they generate their link-local
address from the MAC addresses, possibly using some external source (the nearest router) to generate the site-local and aggregate-
able global unicast address. At the end of the auto-configuration process there is duplicate detection to verify uniqueness of the
addresses and to prevent address collisions with the other hosts on the same link.

The most common example of stateful auto-configuration is a DHCP server. While stateful auto-configuration is perfect for setting
up the addresses and the default route, it does not cover things like DNS resolution, path to the boot image, timeservers, and other
information one might need for host configuration.

In practice, one may use both stateless and stateful auto-configuration to set up a host. Stateless auto-configuration is used for the
initial configuration, and the rest of the parameters are obtained through a stateful process. Consequently, the auto-configuration
server does not necessarily have to share the same link with the host, although this could be desirable for administrative reasons. In
other words, if things start going wrong the administrator does not have to troubleshoot both the network and the server. Moreover,
in large organizations these are two different groups that may not even want to talk to each other, and having a critical organization-
wide resource behind multiple routers could become fertile ground for finger-pointing and other corporate trouble.

SOLARIS HOST

The information is this section is based on the Solaris documentation[18] and Zilbauer.[19] You can set up Solaris 8 or Solaris 9 in
just a few steps:

1. Find out the device name for your primary Ethernet interface. There are a few ways to do this but let us use ls:

ls -l /etc/hostname*
-rw-r--r-- 1 root root 23 Jun 15 14:36 /etc/hostname.eri0

2. Create an empty file /etc/hostname6.interface and reboot:

touch /etc/hostname6.eri0
ls -l /etc/hostname*
-rw-r--r-- 1 root root 23 Jun 15 14:36 /etc/hostname.eri0
-rw-r--r-- 1 root other 0 Sep 12 13:37 /etc/hostname6.eri0
reboot

Rebooting is necessary due to the way Solaris initializes interfaces for IPv4 and IPv6.

3. After the system has come back up you will see IPv6 active on the loopback and the Ethernet interfaces:

15April 2003 ;login:

�

N

ET
W

O
R

K
IN

G# ifconfig -a6
lo0: flags=2000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6> mtu 8252 index 1

inet6 ::1/128
eri0: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 2

ether 0:3:ba:e:6a:6a
inet6 fe80::203:baff:fe0e:6a6a/10

4. Edit /etc/inet/ipnodes[20] to add the addresses to the host table. For some reason Sun didn’t want to continue to use /etc/hosts
but created a completely new hosts file instead. Interestingly, the syntax of the file has not changed from /etc/hosts. This is a
perfectly valid reason to start using DNS with IPv6 as soon as possible.

vi /etc/inet/ipnodes
"/etc/inet/ipnodes" [Read only] 17 lines, 500 characters
:a
fe80::203:baff:fe0e:6a6a mysun.v6.mydomain.org mysun.v6 ll-mysun
.
:wq!
"/etc/inet/ipnodes" 18 lines, 522 characters

Note how we used the .v6 subdomain for the IPv6 addresses. Bucklin and Sekiya[21] make an excellent argument for separat-
ing IPv6 addresses from the IPv4 ones. Most importantly, there are quite a few resolvers in use that do not understand the
AAAA record and may fail when they get such a record back. On the other hand, since it is uncertain how IPv6 will be rolled
out to organizations, keeping the IPv6 and IPv4 namespaces separate at this stage seems a practical solution.

Naming conventions for IPv6 hosts can be a bit tricky. While IPv4 usually defines only one IP address for an interface, it is
common to have at least two IPv6 addresses for an interface: one link-local and one routable. Hence, to distinguish between
these two we will prefix the hostname with ll- (e.g., ll-mysun) for the link-local address while the fully qualified domain name
points to the routable address. The interface name is another possible prefix.

5. We also have to edit /etc/nsswitch.conf to enable host lookups from DNS as well as /etc/inet/ipnodes:

ex /etc/nsswitch.conf
"/etc/nsswitch.conf" 26 lines, 690 characters
:/^ipnodes
ipnodes: files
:s/files/files dns/
ipnodes: files dns
:wq!
"/etc/nsswitch.conf" 26 lines, 694 characters

6. As we discussed in the section on Link-local Address, you can immediately communicate with other IPv6 hosts on the local
LAN. As always, pinging them is a good way to start, and if ping works, Telnet will probably too:

ping -A inet6 fe80::2e0:98ff:fe83:48d0
fe80::2e0:98ff:fe83:48d0 is alive

Now you are all set. Auto-configuration is about the only reasonable way to set up an IPv6 host, since it guarantees consistent setup
across all your hosts on the network. Of course, without a router there will not be anyone to hand out a site-local prefix or an aggre-
gateable global unicast prefix, and you will have to use link-local addresses only.

FREEBSD HOST

FreeBSD and other BSD variants running the KAME stack are easy to configure for IPv6. The GENERIC kernel in FreeBSD-4.6 has
IPv6 enabled by default, and you only have to add the following line to your /etc/rc.conf and reboot:

ipv6_enable="YES"

Your Ethernet interface is probably set up for IPv6 anyway, but this entry will guarantee that the host will also request the prefix
from the nearest router and sets up its routing table accordingly.

IPV6 CONFIGURATION �

Vol. 28, No. 2 ;login:16

1. Check that there is ipv6_enable entry in /etc/rc.conf and /etc/defaults/rc.conf:

grep ipv6_enable /etc/rc.conf
grep ipv6_enable /etc/defaults/rc.conf
ipv6_enable="NO" # Set to YES to set up for IPv6.
#

In this case the default setting is “NO” and we have to override it in /etc/rc.conf:

2. Add two entries, ipv6_enable and ipv6_network_interfaces, to the end of /etc/rc.conf:

ex /etc/rc.conf
"/etc/rc.conf " 22 lines, 625 characters
:$
:a

IPv6 configuration settings
ipv6_enable="YES"
ipv6_network_interfaces="auto"
.
:wq
"/etc/rc.conf " 24 lines, 668 characters

3. Reboot.

shutdown -r now

When the host boots up it will obtain the prefixes and routing information from the nearest router, if any. If no router is live, it
will use its link-local address until a router becomes available.

4. Log in and run ifconfig(8) after the system has rebooted:

ifconfig -a
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2
inet 127.0.0.1 netmask 0xff000000

ed1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
inet6 fe80::2e0:98ff:fe83:48d0%ed1 prefixlen 64 scopeid 0x3
inet6 fec0::a801:2e0:98ff:fe83:48d0 prefixlen 64 autoconf
inet 192.168.35.51 netmask 0xffffff00 broadcast 192.168.35.255
ether 00:e0:98:83:48:d0
media: Ethernet 10baseT/UTP
status: active

Note that the KAME stack has a funny habit of appending the interface name at the end of the link-local address. Hence, to ping the
Solaris host we just configured we have to issue the following command (unlike Solaris, FreeBSD has ping and ping6 for IPv4 and
IPv6, respectively):

ping6 fe80::203:baff:fe0e:6a6a%ed1
PING6(56=40+8+8 bytes) fe80::2e0:98ff:fe83:48d0%ed1 --> fe80::203:baff:fe0e:6a6a%ed1
16 bytes from fe80::203:baff:fe0e:6a6a%ed1, icmp_seq=0 hlim=64 time=0.12 ms
16 bytes from fe80::203:baff:fe0e:6a6a%ed1, icmp_seq=1 hlim=64 time=0.121 ms
16 bytes from fe80::203:baff:fe0e:6a6a%ed1, icmp_seq=2 hlim=64 time=0.134 ms
^C
--- fe80::203:baff:fe0e:6a6a%ed1 ping6 statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/std-dev = 0.120/0.125/0.134/0.006 ms

17April 2003 ;login:

�

N

ET
W

O
R

K
IN

GThe link-local address notation adopted by KAME does have its advantages when you have a multi-homed host, especially if you
have a Sun box running some variant of BSD. Because all Sun Ethernet interfaces share the same MAC address, the link-local address
becomes ambiguous – one does not know which interface to use to reach the destination. For example, the following link-local
address could refer to any interface on a multi-homed Sun box:

fe80::a:a20:22ff:fe6d:6e

In contrast, the KAME notation explicitly points to the right interface:

fe80::a:a20:22ff:fe6d:6e%le0
fe80::a:a20:22ff:fe6d:6e%le1

Of course, the discussion on interface identifiers in the link-local address has meaning only on the host one has the KAME stack on.
In other words, do not add the interface extension to the IPv6 address if you are pinging a FreeBSD host from Solaris:

ping -A inet6 fe80::2e0:98ff:fe83:48d0%ed1 This will not work
ping: unknown host fe80::2e0:98ff:fe83:48d0%ed1

ping -A inet6 fe80::2e0:98ff:fe83:48d0 This works!
fe80::2e0:98ff:fe83:48d0 is alive

SOLARIS ROUTER

If you want to connect your IPv6 LAN to the rest of the world you will need a router. Cisco, Nortel, and Juniper, to name a few ven-
dors, all have IPv6 support in at least some of their products. However, we will choose the poor man’s alternative and use a dual-
homed Solaris box instead.

The basic configuration of a Solaris router does not differ from setting up a Solaris node. Since we have two Ethernet interfaces, we
have to create a hostname6.interface file for them both.

1. Find out your interface names and create empty /etc/hostname6.interface for all physical devices. If both interfaces are on
the motherboard (as is the case with Netra X1) or you have a quad Ethernet card, figuring out the second interface is simple.

ls -l /etc/hostname*
-rw-r--r-- 1 root root 23 Jun 15 14:36 /etc/hostname.dmfe0

Since Netra X1 has two Ethernet interfaces and the primary is dmfe0, we can make an educated guess that the secondary inter-
face is dmfe1. Now we only have to create the hostname6 files.

touch /etc/hostname6.dmfe0 /etc/hostname6.dmfe1
ls -l /etc/hostname*
-rw-r--r-- 1 root root 23 Jun 15 14:36 /etc/hostname.dmfe0
-rw-r--r-- 1 root other 0 Sep 12 13:37 /etc/hostname6.dmfe0
-rw-r--r-- 1 root othe 0 Sep 12 13:37 /etc/hostname6.dmfe1

Normally we would reboot the box right after creating hostname6.interface, but this box is going to be a router. Hence, change
the default directory to /etc/inet and create ndpd.conf to set up prefixes for Neighbor Discovery.

2. Edit /etc/inet/ndpd.conf to set up prefixes for each IPv6 interface. To keep things simple we are going to use site-local addresses
in our example. The following sample configuration has been adapted from Solaris documentation:

cd /etc/inet
ex ndpd.conf
"ndpd.conf" [New file]
:a
ifdefault AdvReachableTime 30000 AdvReTransTimer 2000
prefixdefault AdvValidLifetime 240m AdvPreferredLifetime 120m

0xa801 = 168.1
if dmfe0 AdvSendAdvertisements 1

IPV6 CONFIGURATION �

Vol. 28, No. 2 ;login:18

prefix fec0:0:0:a801::/64 dmfe0

0xa802 = 168.2
if dmfe1 AdvSendAdvertisements 1
prefix fec0:0:0:a802::/64 dmfe1
.
:wq
"ndpd.conf" 8 lines, 248 characters
reboot

Now we are all set for reboot. When the system boots up it will create the IPv6 interfaces and auto-configure them. Conse-
quently, the in.ndpd auto-configuration daemon will start up and assign the prefixes for the interfaces. It will also hand out
the prefixes for all the stations on the local Ethernet. At the end of the process, the RIPng routing daemon will start up to
advertise and listen for route updates on both sides of the router.

3. Log in and check the IPv6 interfaces list after the host has booted up. You should see the link-local interfaces the host has con-
figured for itself and the site-local prefix it has received from the router:

ifconfig -a6
lo0: flags=2000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6> mtu 8252 index 1

inet6 ::1/128
dmfe0: flags=2100841<UP,RUNNING,MULTICAST,ROUTER,IPv6> mtu 1500 index 2

ether 0:3:ba:6:14:66
inet6 fe80::203:baff:fe06:1466/10

dmfe0:1: flags=2180841<UP,RUNNING,MULTICAST,ADDRCONF,ROUTER,IPv6> mtu 1500 index 2
inet6 fec0::a801:203:baff:fe06:1466/64

dmfe1: flags=2100841<UP,RUNNING,MULTICAST,ROUTER,IPv6> mtu 1500 index 3
ether 0:3:ba:6:14:66
inet6 fe80::203:baff:fe06:1466/10

dmfe1:1: flags=2180841<UP,RUNNING,MULTICAST,ADDRCONF,ROUTER,IPv6> mtu 1500 index 3
inet6 fec0::a802:203:baff:fe06:1466/64

4. Before we continue any further, it is a good practice to record the IP addresses in /etc/inet/ipnodes and enable IPv6 DNS
lookups in /etc/nsswitch.conf:

vi /etc/inet/ipnodes
"/etc/inet/ipnodes" [Read only] 17 lines, 500 characters
:a
fe80::203:baff:fe06:1466 sun-gw.v6.mydomain.org sun-gw.v6 ll-sun-gw
fec0::a801:203:baff:fe06:1466 dmfe0-sun-gw.v6.mydomain.org dmfe0-sun-gw
fec0::a802:203:baff:fe06:1466 dmfe1-sun-gw.v6.mydomain.org dmfe1-sun-gw
.
:wq!
"/etc/inet/ipnodes" 18 lines, 522 characters

It is a bit difficult to find reasonable IPv6 naming conventions on Sun hardware, since Sun insists on using the same MAC
address on every interface. One way around this is to use the ll- prefix for all the link-local addresses and the interface name for
all routable addresses. It is not perfect but, after all, /etc/inet/ipnodes is like /etc/hosts: you use the file to get the most critical
interface names (i.e., yours) and obtain everything else from the DNS. In other words, this minimal /etc/inet/ipnodes would be
as follows:

::1 localhost.mydomain.org localhost
fe80::203:baff:fe06:1466 sun-gw.v6.mydomain.org sun-gw.v6 ll-sun-gw

For maximum flexibility you may not even want to have anything other than the link-local address in /etc/inet/ipnodes , since
the link-local address will always be associated with the device. Otherwise, all routable addresses, be those site-local or aggre-
gateable global unicast ones, become elusive. If the host knows only its link-local address and gets everything else from the
DNS, there is one issue less to worry about when you eventually have to renumber the network.

19April 2003 ;login:

�

N

ET
W

O
R

K
IN

G

Finally, the -gw suffix to the hostname is in accordance with the ipnodes(4) manual page, which, in turn, refers to RFC-952.[22]

5. We also have to edit /etc/nsswitch.conf to enable host lookups from DNS as well as /etc/inet/ipnodes:

ex /etc/nsswitch.conf
"/etc/nsswitch.conf" 26 lines, 690 characters
:/^ipnodes
ipnodes: files
:s/files/files dns/
ipnodes: files dns
:wq!
"/etc/nsswitch.conf" 26 lines, 694 characters

This is everything you have to do to get started. The existing hosts on both sides will learn of the gateway when it boots up and will
adjust the interface and routing tables accordingly. For example, there is a new IPv6 address for the Solaris workstation we config-
ured earlier:

ifconfig -a6
lo0: flags=2000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6> mtu 8252 index 1

inet6 ::1/128
eri0: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 2

ether 0:3:ba:e:6a:6a
inet6 fe80::203:baff:fe0e:6a6a/10

eri0:1: flags=2080841<UP,RUNNING,MULTICAST,ADDRCONF,IPv6> mtu 1500 index 2
inet6 fec0::a801:203:baff:fe0e:6a6a/64

Similarly, the routing table has changed to indicate a new default gateway:

Routing Table: IPv6
Destination/Mask Gateway Flags Ref Use If

------------------------------ --- ------- ----- ------ -------
fec0:0:0:a801::/64 fec0::a801:203:baff:fe0e:6a6a U 1 2 eri0:1
fe80::/10 fe80::203:baff:fe0e:6a6a U 1 1 eri0
ff00::/8 fe80::203:baff:fe0e:6a6a U 1 0 eri0
default fe80::203:baff:fe06:1466 UG 1 0 eri0
::1 ::1 UH 1 0 lo0

And this is how it looks on FreeBSD:

Routing Tables

Internet6:
Destination Gateway Flags Netif Expire
::/96 ::1 UGRSc lo0 =>
default fe80::203:baff:fe06:1466%ed1 UGc ed1
::1 ::1 UH lo0
::ffff:0.0.0.0/96 ::1 UGRSc lo0
fe80::/10 ::1 UGRSc lo0
fe80::%lo0/64 fe80::1%lo0 Uc lo0
fe80::1%lo0 link#2 UHL lo0
fe80::%ed1/64 link#3 UC ed1
fe80::203:baff:fe06:1466%ed1 00:03:ba:06:14:66 UHLW ed1
fe80::2e0:98ff:fe83:48d0%ed1 00:e0:98:83:48:d0 UHL lo0
fec0:0:0:a823::/64 link#3 UC ed1
fec0::a801:203:baff:fe06:1466 00:03:ba:06:14:66 UHLW ed1
fec0::a801:2e0:98ff:fe83:48d0 00:e0:98:83:48:d0 UHL lo0
ff01::/32 ::1 U lo0
ff02::/16 ::1 UGRS lo0
ff02::%lo0/32 ::1 UC lo0
ff02::%ed1/32 link#3 UC ed1

IPV6 CONFIGURATION �

Vol. 28, No. 2 ;login:

If sometime in the future you decide to open up your network
to the world and get connected to 6bone, you only have to
advertise the new 6bone TLA or production sub-TLA prefix
and the hosts will pick it up instantly.

MANUAL CONFIGURATION

It is also possible to configure the IPv6 address manually on
Solaris. This makes little sense on a local LAN, but it is quite
necessary, for example, when you have to define the endpoints
of an IPv6 over IPv4 tunnel. However, on a local LAN this
would only contribute to the administrator’s headache, since
you would have to manually change this configuration every
time you renumber the local LAN. If you used auto-configura-
tion instead, the nearest router would take care of handing out
the prefixes.

To summarize, there are situations when you have to configure
the IP address manually, but the local LAN would not be
involved in any of those. However, for the sake of simplicity the
following example will show manual configuration of the pri-
mary Ethernet interface:

1. Check the interface name for your primary Ethernet
interface:

ls -l /etc/hostname*
-rw-r--r-- 1 root root 23 Jun 15 14:36 /etc/

hostname.eri0

2. Enter the prefix parameters into /etc/hostname6.eri0:

cat > /etc/hostname.eri0
addif fec0::2001:203:baff:fe0e:6a6a up
Ctrl-D
#

3. Reboot.

HOW DOES IT WORK?

Since RFC-2462 specifies the process for stateless address auto-
configuration, we will only examine the process as it appears on
the network. There are some variations to the process, depend-
ing on your particular stack implementation, but Figure 15 dis-
plays the operation at a generic level:

The first step in auto-configuration is for the host to generate
the link-local address for itself. If the host is connected to a
LAN and therefore has a MAC address, this is a fairly straight-
forward procedure:

0:3:ba:e:6a:6a � fe80::203:baff:fe0e:6a6a

Although MAC addresses are supposed to be globally unique,
this is not always the case. Some vendors have used unregistered
or duplicate MAC addresses in their low-end Ethernet inter-
faces and there is a possibility that one of these devices is on the
same LAN segment with the auto-configuring host.

The duplicate detection algorithm is relatively straightforward.
After the host has configured a link-local address for itself, it
will join the All-Nodes multicast group by sending a Multicast
Listener Report and announcing the multicast address it is lis-
tening to:

If there is another host listening at the same address, it will
notify the host and give its link-local address. If there is a colli-
sion, the host may modify its address and try again, or stop the
process altogether and alert the operator to intervene. Duplicate
address detection is not perfect; it cannot detect offline hosts or
the reply may be lost due to a collision. Duplicate detection still
is a cheap sanity check to prevent the most obvious address
problems.

After the host has verified that it has a more or less unique link-
local address, it continues the auto-configuration process by
sending a Router Solicitation to the All-Routers multicast
address:

The router on the local segment will reply with a Router Adver-
tisement sent to the All-Nodes multicast address (Figure 18).
The Router Advertisement will contain the prefixes for the net-
work and the lifetime of the prefix. Note that it makes perfect
sense to use the All-Nodes address for the Router Advertise-
ment. There could be multiple hosts in the midst of auto-con-
figuration, in which case it is cheaper to use multicast as
opposed to replying with a unicast to each and every host that
sent a Router Solicitation.

20

Figure 15. Stateless Address Auto-configuration

Figure 16. Multicast Listener Report

Figure 17. Router Solicitation

Figure 18. Router Advertisement

Since high availability seems to be the most repeated mantra in
quite a few TCP/IP networks, there is a tendency to have a
router pair on critical LAN (i.e., Ethernet) segments. Since the
routers are supposed to use HSRP or VRRP to monitor each
other’s status, only the master router can reply to the Router
Advertisement. Depending on the configuration, the master
may use either its own interface address or the high availability
virtual address.

A host should not know anything about routing. The idea of
Router Solicitation and Router Advertisement was already in
ICMPv4 but it did not gain much popularity. IPv6 takes the
concept further, to the extent that one cannot have a routable
IPv6 address if there is no router to hand out the prefix. Yet the
hosts can communicate with each other on the local segment,
using the link-local addresses.

Vendors, such as Sun Microsystems, may decide to add their
own solicitation messages to auto-configuration (Figure 19).
Sun Solaris registers itself to the multicast group ff02:202 a.k.a.
Sun RPC PMAPPROC_CALLIT. This group appears to be for the
communication of Sun RPC portmapper to locate some partic-
ular RPC service.

Stateless address auto-configuration is a great concept, but like
all concepts, it can be subverted by stupid designs. For example,
Sun Netra X1 has two Ethernet interfaces on the motherboard.
Some designers got the bright idea of using the two interfaces
on different subnets and setting up route metrics to use either
side as the default gateway. IPv6 auto-configuration will not
permit this, since the router sending the Router Advertisement
will also become the default gateway, and having two default
gateways will cause asymmetric routing. One would have to
bypass auto-configuration with fixed prefixes and run RIPng on
the host without packet forwarding to enable this kind of setup,
thus losing the automations (and benefits of IPv6) described
above.

IPv6 and DNS
The status of the DNS in the IPv6 world is still in flux. BIND 8
implemented the RFC-1886[23]-specified IPv6 DNS extensions
such as the AAAA resource record and the ip6.int domain for
reverse lookups. There is no true IPv6 name resolution over
IPv6 with BIND 8, unless the server and the resolver have been
patched for IPv6. Note that Solaris 9 and FreeBSD-4.x include
BIND 8 in the distribution.

To confuse things further, RFC-2874[24] introduced a list of
new DNS extensions for address aggregation and network

renumbering and changed the outlook of IPv6 name resolution
completely. This was not entirely a bad thing, since old A and
PTR records were specified in the days of the Class A, B, and C
networks. Although there was name delegation for forward
maps, reverse map delegations for CIDR blocks have been more
or less painful. CIDR blocks and network renumbering, the
exercise every administrator will go through sooner or later,
were not enough of a concern for forward maps.

RFC-1886 basically extended the old DNS concepts to the IPv6
world with little thought put into aggregateable global unicast
addresses, TLAs, NLAs, or SLAs. With 16 octets of an address,
CIDR blocks and renumbering became major issues, and the A6
and DNAME resource records and the ip6.arpa domain were
proposed. The BIND 9 implementation prefers RFC-2874 but
provides support for RFC-1886. The following quote is from
the BIND 9 Administrator Reference Manual.[25]

For forward lookups, BIND 9 supports both A6 and AAAA
records. The use of AAAA records is deprecated, but it is
still useful for hosts to have both AAAA and A6 records to
maintain backward compatibility with installations where
AAAA records are still used. In fact, the stub resolvers cur-
rently shipped with most operating systems support only
AAAA lookups, because following A6 chains is much harder
than doing A or AAAA lookups.

For IPv6 reverse lookups, BIND 9 supports the new “bit-
string” format used in the ip6.arpa domain, as well as the
older, deprecated “nibble” format used in the ip6.int
domain.

BIND 9 name server can listen to IPv6, enabling the users to use
IPv6 for name lookups if they have the new Lightweight
Resolver installed. The introduction of a new resolver is due to
simultaneous IPv4 and IPv6 lookups and the added complexity
of the A6 and DNAME resource records.

To summarize, DNS support for IPv6 will be at an introductory
phase until BIND 9 and the Lightweight Resolver are available
for all operating systems that have an IPv6 stack. Even then
there will be a considerable installed base of BIND 8 sites,
which will have a negative effect in the rollout of IPv6.

RFC-1886 LOOKUPS

FORWARD LOOKUPS

From the perspective of the named configuration file, IPv6 for-
ward lookup zones are no different from the IPv4 ones. The
configuration file specifies the name of the zone, and the proto-
col-specific details are kept in the zone file. For example, there
isn’t anything IPv6-specific in the following zone entry from the
master configuration file, except the v6 subdomain:

21April 2003 ;login:

�

N

ET
W

O
R

K
IN

G

Figure 19. Sun RPC Portmapper

IPV6 CONFIGURATION �

Vol. 28, No. 2 ;login:22

zone "v6.mydomain.org" in {
type master;
file "db.v6.mydomain.org";

};

The AAAA resource record is the IPv6 equivalent of the IPv4 A record. The syntax of the AAAA resource record is exactly the
same as the A record, except that the addresses take longer to type. For example, consider the following entries for the zone
v6.mydomain.org:

$ORIGIN v6.mydomain.org.
localhost 86400 IN AAAA ::1
mysun 86400 IN AAAA fec0::a801:203:baff:fe0e:6a6a
dmfe0-sun-gw 86400 IN AAAA fec0::a801:203:baff:fe06:1466
dmfe1-sun-gw 86400 IN AAAA fec0::a802:203:baff:fe06:1466

REVERSE LOOKUPS

The reverse lookups are performed using the nibble format and the ip6.int domain. One octet or byte consists of two nibbles, e.g.,
decimal 192 equals 0xc0, which has nibbles 0xc and 0x0. The nibble format is the IPv6 equivalent of the traditional IPv4 in-addr.arpa
representation, and the logic of the nibble format is exactly the same. Since the IPv6 addresses are hexadecimal, it makes a certain
sense to reverse the order of the address and separate each nibble with a dot. This permits reverse zone delegation similar to the one
in IPv4.

First we will examine the reverse map of the IPv6 localhost. The normal abbreviation for the localhost address is:

::1

This is equivalent to the expanded address:

0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1

Consequently, we could have the following PTR resource record for localhost:

$ORIGIN 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.int.
1 86400 IN PTR localhost.v6.mydomain.org.

This translates to the following zone entry in the master configuration file:

zone "0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.int" in {
type master;
file "db..1";

};

The reverse zone entries for the prefixes fec0:0:0:a801::/64 and fec0:0:0:a802::/64 are not much different. Since we have to reverse
the order of nibbles, we get the following PTR resource records:

$ORIGIN 1.0.8.a.0.0.0.c.e.f.ip6.int.
a.6.a.6.e.0.e.f.f.f.a.b.3.0.2.0 86400 IN PTR mysun.v6.mydomain.org.
0.d.8.4.3.8.e.f.f.f.8.9.0.e.2.0 86400 IN PTR mybsd.v6.mydomain.org.
6.6.4.1.6.0.e.f.f.f.a.b.3.0.2.0 86400 IN PTR dmfe0-sun-gw.v6.mydomain.org.

$ORIGIN 2.0.8.a.0.0.0.c.e.f.ip6.int.
6.6.4.1.6.0.e.f.f.f.a.b.3.0.2.0 86400 IN PTR dmfe1-sun-gw.v6.mydomain.org.

And these are the respective zone master configuration file entries:

zone "1.0.8.a.0.0.0.c.e.f.ip6.int" in {
type master;
file "db.fec0..a801";

};

23April 2003 ;login:

�

N

ET
W

O
R

K
IN

Gzone "2.0.8.a.0.0.0.c.e.f.ip6.int" in {
type master;
file "db.fec0..a802";

};

The most obvious problem of the nibble format becomes very clear very quickly: The address prefixes and the interface identifiers
are difficult to carry around, and each resource record takes a lot of proofreading to get it right. Reverse zone delegation may help
here to limit the size of a single resource record but, on the other hand, it makes little sense to delegate to the interface identifier
(e.g., the 203:baff portion of the aforementioned addresses). However, it does not help to set up a separate root zone for the fec0::/10
prefix, since one has to define fec0:0:0:a801::/64 and fec0:0:0:a802::/64 in the master configuration file and the zone files anyway.

RESOLVER

Note that we did not set up any resolver entry in the discussion on stateless address auto-configuration. This process could be auto-
mated with stateful address auto-configuration, but since DHCP6 is still in the works we have to set up our configuration file manu-
ally. Since we already made the decision to keep all IPv6 hosts in a separate .v6 subdomain and worry about migration later, we have
to have both domain names in a search list. Moreover, since the BIND 8 resolver uses IPv4 only, we have to list our name server(s) as
usual:

search mydomain.org v6.mydomain.org
nameserver 192.168.1.36

Since IPv4 applications are supposed to be in the majority, this setup will first look up for IPv4 names with mydomain.org. Since
IPv6 applications do not care about A records, the lookup will proceed using v6.mydomain.org, hoping to find AAAA records. Telnet,
FTP, and ping (on Solaris) will use IPv6 if available and revert back to IPv4 by default.

BIND 9 AND RFC-2874

FORWARD LOOKUPS

RFC-2874 introduced the new A6 resource record to eventually replace the AAAA record. It can be used just like the AAAA record,
as the following example will show:

$ORIGIN v6.mydomain.org.
localhost 86400 IN A6 0 ::1
mysun 86400 IN A6 0 fec0::a801:203:baff:fe0e:6a6a
mybsd 86400 IN A6 0 fec0::a801:2e0:98ff:fe83:48d0
dmfe0-sun-gw 86400 IN A6 0 fec0::a801:203:baff:fe06:1466
dmfe1-sun-gw 86400 IN A6 0 fec0::a802:203:baff:fe06:1466

These entries are no different from the aforementioned AAAA records. Site-local addresses gain little from the A6 records, since the
network space is only 16 bits wide and you can have only so much address aggregation in two octets. On the other hand, changing
the prefix for all the zones at a large site takes a considerable amount of work. To avoid this we can rewrite the zone by using all
zeroes for the prefix:

$ORIGIN v6.mydomain.org.
mysun 86400 IN A6 48 0:0:0:a801:203:baff:fe0e:6a6a prefix.v6.mydomain.org.
mybsd 86400 IN A6 48 0:0:0:a801:2e0:98ff:fe83:48d0 prefix.v6.mydomain.org.
dmfe0-sun-gw 86400 IN A6 48 0:0:0:a801:203:baff:fe06:1466 prefix.v6.mydomain.org.
dmfe1-sun-gw 86400 IN A6 48 0:0:0:a802:203:baff:fe06:1466 prefix.v6.mydomain.org.

We can then specify the prefix with a separate resource record:

prefix 86400 IN A6 0 fec0:0:0::

First, the lookup for mysun.v6.mydomain.org will get the A6 record 0:0:0:a801:203:baff:fe0e:6a6a. Since this record is incomplete,
the query will follow the pointer to prefix.v6.mydomain.org and will receive the prefix fec0:0:0::. Then resolver on the querying node

IPV6 CONFIGURATION �

Vol. 28, No. 2 ;login:24

will construct the IPv6 address from the local part and the prefix and return fec0::a801:203:baff:fe0e:6a6a as the address. This
process is known as the A6 chain. This is how it works with dig:

dig @::1 mysun.v6.mydomain.org. A6
; <<>> DiG 9.2.1 <<>> @::1 mysun.ipv6.mydomain.org. A6
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13152
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:
;mysun.ipv6.mydomain.org. IN A6

;; ANSWER SECTION:
mysun.ipv6.mydomain.org. 86400 IN A6 64 ::203:baff:fe0e:6a6a prefix.ipv6.mydomain.org.

;; AUTHORITY SECTION:
ipv6.mydomain.org. 86400 IN NS localhost.ipv6.mydomain.org.

;; ADDITIONAL SECTION:
prefix.ipv6.mydomain.org. 86400 IN A6 0 fec0:0:0:a801::

;; Query time: 1 msec
;; SERVER: ::1#53(::1)
;; WHEN: Thu Sep 19 20:37:03 2002
;; MSG SIZE rcvd: 146

There is no predefined limit to the number of hops in the A6 chain. However, since it is up to the querying application – dig in the
example above – to construct the A6 chain, it makes sense to keep the chain as short as possible. If you use other tools, such as
nslookup or host, you have to follow the chains manually.

REVERSE LOOKUPS

Nibble format may be rather error-prone since if something is difficult to read, it is also probably difficult to get right. The other
improvement of RFC-2874 is the bitstring format for reverse zones. Simply put, the reverse zone example above looks like the fol-
lowing when using bitstrings:

$ORIGIN \[x0000000000000000000000000000000/124].ip6.arpa.
\[x1/4] 86400 IN PTR localhost.v6.mydomain.org.

$ORIGIN \[xfec000a801/64].ip6.arpa.
\[x0203bafffe0e6a6a/64] 86400 IN PTR mysun.v6.mydomain.org.
\[x02e098fffe8348d0/64] 86400 IN PTR mybsd.v6.mydomain.org.
\[x0203bafffe061466/64] 86400 IN PTR dmfe0-sun-gw.v6.mydomain.org.

$ORIGIN \[xfec000a801/64].ip6.arpa.
\[x0203bafffe061466/64] 86400 IN PTR dmfe1-sun-gw.v6.mydomain.org.

The corresponding master configuration file entries are as follows:

zone "\[x0000000000000000000000000000000/124].ip6.arpa" in {
type master;
file "db..1";

};

zone "\[xfec000a801/64].ip6.arpa" in {
type master;
file "db.fec0..a801";

};

25April 2003 ;login:

�

N

ET
W

O
R

K
IN

Gzone "\[xfec000a801/64].ip6.arpa" in {
type master;
file "db.fec0..a802";

};

At least bitstrings produce a more readable reverse map representation than nibble format.

The last IPv6 DNS extension of RFC-2874 is DNAME. It is only normal for an IPv6 host to have at least two addresses, link-local
address and site-local address, and possibly an aggregateable global unicast address as well, yet all these addresses share the same
interface identifier. Although it is normal routine to maintain these resource records in one forward zone, the reverse maps will cer-
tainly go to three different zones. For example, mysun.v6.mydomain.org may have the addresses found in Table 3:

Table 3. Possible Addresses for a Single Host

The reverse zone record for the link-local address would be as follows:

$ORIGIN \[xfe80/16].ip6.arpa.
\[x000000000000/48] 86400 IN DNAME v6-rev.mydomain.org.

Similarly, the site-local address would have the following reverse zone record:

$ORIGIN \[xfec0/16].ip6.arpa.
\[x00000000a801/48] 86400 IN DNAME v6-rev.mydomain.org.

The aggregateable global unicast address would follow with a similar entry:

$ORIGIN \[x200111f85ef9/48].ip6.arpa.
\[xa801/16] 86400 IN DNAME v6-rev.mydomain.org.

Finally, the host entry would specify the interface identifier:

$ORIGIN v6-rev.mydomain.org.
\[x0203bafffe0e6a6a/64] 86400 IN PTR mysun.v6.mydomain.org.

DNAME can be used very effectively in reverse maps, since the interface identifier alone contains twice as much information as an
IPv4 address. Moreover, renumbering a network may not happen by turning a switch: It requires a lot of careful planning and the
transition period can be several months. A reverse map is usually the first thing about the DNS that will be ignored, and, hopefully,
DNAME is powerful enough to help the DNS administrators with this area.

Finally, there are some interoperability considerations. Since BIND 8 and especially BIND 8–based resolver libraries are going to be
around for a very long time, it is possible to configure BIND 9 to return AAAA records and PTR records in nibble format, even if the
zone files use the A6 records and bitstrings. This feature is off by default and can be activated on a per-client basis:

options {
allow-v6-synthesis {

192.168.1.30;
};

};

RESOLVER

The new BIND 9 Lightweight Resolver consists of two components: the stub library accessed by the applications and the lwresd
resolver daemon responsible for processing the forward and reverse lookups (Figure 20). This new setup was mandated by the A6
and DNAME chains, which could have any number of links. The chains are resolved by the daemon, which returns the completed
IPv6 address to the resolver library.

ADDRESS DESCRIPTION

fe80:: 203:baff:fe0e:6a6a Link-local Address

fec0::a801:203:baff:fe0e:6a6a Site-local Address

2001:11f8:5ef9:a801:203:baff:fe0e:6a6a Aggregatable Global Unicast Address

IPV6 CONFIGURATION �

Vol. 28, No. 2 ;login:

The lwresd process is essentially a cache-only nameserver for
localhost (127.0.0.1, ::1). The communication between the stub
library and lwresd is UDP-based at port 921.

IP Security
IP Security, aka IPSec, was originally envisioned as the security
architecture for IPv6, but it was retrofitted onto IPv4, mostly for
Virtual Private Network tunnels, long before IPv6 had a chance
to take off. Consequently, IPSec is almost always associated with
VPNs, although it may prove its usefulness in host-to-host
communication as well. Good news is that IPSec is a mandatory
component of IPv6. The bad news is that we are not there yet.

The general architectural placement of the IPSec layer is
between the transport and network layers. The
concept of inserting a security protocol between
transport and network protocols is actually quite
old, since it was one of the ideas proposed in the
OSI Security Framework.[26]

The general idea of the IPSec protocol is quite sim-
ple, since an IPSec packet consists of two elements:
the Authentication Header (AH) and the Encapsu-
lating Security Payload (Figure 21). Since the IPSec
protocol takes the transport protocol data unit,
authenticates and/or encrypts the data, and passes
the completed IPSec packet to the network layer to
be transmitted and routed, it can offer very limited
protection for the IPv6 protocol. On the other
hand, the transport protocol packet (e.g., TCP)
enjoys the full protection of the IPSec layer.

AH provides data integrity, data origin authentication, and
optional replay protection. It is an authentication service that
is used to verify the source of the data and that the data has
not been modified while in transit, but it does not protect
against eavesdropping. The possible authentication algo-
rithms used by AH are HMAC-MD5 and HMAC-SHA-1.

ESP, on the other hand, offers data confidentiality through
encryption. It is possible to combine AH and ESP to have
data integrity, data origin authentication, and confidentiality
without reapplying AH over an already authenticated packet.
The possible encryption protocols are DES, 3DES, Blowfish,
and AES. The key lengths are shown below in Table 4.

Since the IPSec architecture is transparent to the application, by
definition it cannot be used to authenticate users. The end-user
applications such as Telnet, FTP, or X11 must rely on their own
methods to verify the authenticity of the users. In other words,
if someone is able to establish an IPSec session to the Telnet
port and the only authentication mechanism is the standard
username and password, the system can be broken into over
IPSec. Moreover, if the ESP protects the communication, the
network intrusion detection system will never know that some-
thing went wrong.

IPSec, and ESP in particular, defeats firewalls too. A firewall
cannot see inside the ESP payload and make any kind of filter-
ing decision based on port numbers. In essence, the firewall will

only know the end-points (i.e., IPv6 addresses) and has to rely
on the host to make the correct decision whether to permit or
deny communication for this particular application.

The two modes of IPSec are transport mode and tunnel mode
(Figure 22). All VPNs use the tunnel mode, while host-to-host
communication should use the transport mode.

26

Figure 20. BIND 9 Name Resolution

Figure 21. IPSec Packet

Figure 22. IPSec Transport Mode and Tunnel Mode

27April 2003 ;login:

�

N

ET
W

O
R

K
IN

GThe transport mode is meant to protect end-to-end communi-
cation between two hosts using IPSec. Since the network ana-
lyzers such as snoop and tcpdump attach between the device
driver and the network layer, IPSec will protect the data in tran-
sit from these as well. Authentication and decapsulation of data
takes place after the datagram has been successfully received
and processed by the network protocol.

As mentioned earlier, VPNs have been the primary users of
IPSec, to the extent that IPSec is often associated with the tun-
nel mode. Boosted by the VPN market, the tunnel mode has
turned into another link layer technology, albeit cheaper than
frame relay, ATM, or (fractional) T1. The main security issue
with a VPN is to determine whether the other network really is
trustworthy.

There have been occasions in which an application needed data
integrity and confidentiality. A good example is a query applica-
tion to a database that contains sensitive financial or other data.
Since it may not have been possible to protect the data in transit
with SSL/TLS, and the hacks to use SSH as a secure proxy, users
were somewhat forced to set up a VPN from the server network
to their own group. This kind of setup may raise an eyebrow or
two, but such setups are often implemented, since getting the
job done is usually more important for a corporate environ-
ment than waiting for the one true solution. That one true solu-
tion could well be the IPSec transport mode, since it can be
configured to protect end-to-end communication to the data-
base application and pass everything else between the hosts in
clear. To summarize, the transport mode can put an end to one-
application VPNs.

SET IT UP
In the following section we will
discuss how to set up KAME
IPSec in transport mode to pro-
tect traffic between two systems.
Since IPSec provides authentica-
tion, data integrity, and confiden-
tiality services, we will discuss
trivial host authentication for an
inbound connection and then
move to a more complex setup using both AH and ESP.

By default IPSec is not compiled into the FreeBSD-4.x kernel.
Before proceeding with this discussion you may want to check
that the following options have been defined in the kernel con-
figuration file:

options IPSEC #IP security
options IPSEC_ESP #IP security (crypto; define w/

IPSEC)
options IPSEC_DEBUG #debug for IP security

You may also want to issue the setkey -D command to find out
whether setkey(8) can talk to the IPSec kernel. If you get any
kind of error message, you probably don’t have IPSec in the ker-
nel. Follow the instructions in the FreeBSD Handbook to com-
pile a new kernel.

Perhaps the trickiest part in IPSec is defining the security asso-
ciations and the policy controlling the associations. For exam-
ple, SSH and applications using SSL/TLS are on top of the
transport layer, i.e., the transport protocol has already set up a
two-way communication channel between the endpoints. The
security context is implicit, since it is defined by the underlying
TCP connection from Host A to Host B: We know that there is a
TCP connection from A to B and we only have to provide a
secure channel from A to B to keep the data safe. In contrast,
since the IPSec layer is below the transport protocol, all security
contexts must be explicitly defined: It is not enough to set up a
context from A to B, but one has to define the context from B to
A as well.

The various address types of IPv6 add another dimension to the
IPSec setup. If a host has a site-local address and an aggregate-
able global unicast address in addition to the link-local address,
all these address types must be specified in the IPSec policy. It
would be somewhat silly to have a policy for the link-local
address but have no policy whatsoever for the routable
addresses. Consequently, an IPSec policy that applies to the
routable addresses but omits the link-local one leaves a back
door to the host.

HOST AUTHENTICATION

The first example is a simple authentication between two
FreeBSD hosts using HMAC-MD5. The link-local address
of Host A is fe80::203:47ff:feb8:19be and Host B is
fe80::280:c7ff:fe54:434d. For the sake of simplicity we will
exclusively use link-local addresses. Any traffic to the Telnet
port on Host B must be authenticated at the IPSec layer for fur-
ther communication to take place. However, no IPSec will apply
to the reply packets from B to A. This setup is in Figure 23:

Figure 23. AH required by Host B

IPV6 CONFIGURATION �

Vol. 28, No. 2 ;login:28

One might find this type of setup suitable to replace, or to use together with, TCP Wrappers. Since TCP Wrappers make the access
control decision based on the IP address, one could further strengthen the access control setup by demanding authentication via
IPSec before the packet is even passed to TCP Wrappers.

Note that different IPSec algorithms specify different key lengths and that you must have the right key length for the algorithm to
accept the key. Table 4 displays the various KAME IPSec authentication and encryption algorithms, and the respective key lengths:

1. First we have to define the security associations on A and B in /etc/ipsec.conf. The following example will be used on Host A:

cd /etc
ex ipsec.conf
"ipsec.conf" [New File]
:a

KEY LENGTH

Algorithm Bits Bytes Description

hmac-md5 128 16 ah: RFC-2403

128 16 ah-old: RFC-2085

hmac-sha1 160 20 ah: RFC-2404

160 20 ah-old: 128-bit ICV (no document)

keyed-md5 128 16 ah: rfc1828

128 16 ah-old: 96-bit ICV (no document)

keyed-sha1 160 20 ah: 96-bit ICV (no document)

160 20 ah-old: 128-bit ICV (no document)

null 0-2048 0-256 For debugging purposes

hmac-sha2-256 256 32 ah: 96-bit ICV (no document)

256 32 ah-old: 128-bit ICV (no document)

hmac-sha2-384 384 48 ah: 96-bit ICV (no document

384 48 ah-old: 128-bit ICV (no document)

hmac-sha2-512 512 64 ah: 96-bit ICV (no document)

512 64 ah-old: 128-bit ICV (no document)

des-cbc 64 8 esp: RFC-1829

64 8 esp-old: RFC-2405

3des-cbc 192 24 RFC-2451

simple 0-2048 0-256 RFC-2410

blowfish-cbc 40-448 5-56 RFC-2451

cast128-cbc 40-128 5-16 RFC-2451

des-deriv 64 8 ipsec-ciph-des-derived-01

3des-deriv 192 24 No document

rijndael-cbc 128/192/256 16/24/32 draft-ietf-ipsec-ciph-aes-cbc-00

Table 4. KAME IPSec Authentication Algorithms[27]

29April 2003 ;login:

�

N

ET
W

O
R

K
IN

Gadd fe80::203:47ff:feb8:19be%fxp0 fe80::280:c7ff:fe54:434d%fxp0 ah 0x30e8 -m transport
-A hmac-md5 "mysecretissecret" ;

spdadd fe80::203:47ff:feb8:19be%fxp0 fe80::280:c7ff:fe54:434d%fxp0 [23] tcp -P out ipsec ah/transport//require ;

.
:wq
"ipsec.conf" [New File] 2 lines, 218 characters written

This entry is similar on A and B, with the exception of the interface suffix (i.e., fxp0 on Host A and xe0 on Host B). Note that
each statement must fit on one line. Line feeds and line escapes (\) are not permitted. The hanging indent in the example
above is only for typographical reasons.

The syntax for add and spdadd can be found from the setkey(8) manual page. Note that the Security Parameter Index
(0x3048) for add should be a random number, which has to be greater than or equal to 256. This number will be passed
between A and B to determine the correct security association between the systems. And since the AH algorithm is HMAC-
MD5, the shared key must be 16 bytes long.

The spdadd entry will define the security policy for the security association. The security association is between the hosts A
and B, and the association will become active when A opens a TCP connection to the port 23 (Telnet) on the Host B. All other
communication (e.g., FTP, TFTP, or ping) will take place outside IPSec.

2. Load the key and the policy into the operating system kernel with the setkey(8):

setkey -f /etc/ipsec.conf

3. Set up Host B similarly to require AH authentication for inbound traffic:

cd /etc
ex ipsec.conf
“ipsec.conf” [New File]
:a
add fe80::203:47ff:feb8:19be%fxp0 fe80::280:c7ff:fe54:434d%fxp0 ah 0x30e8 -m transport

-A hmac-md5 "mysecretissecret" ;

spdadd fe80::203:47ff:feb8:19be%fxp0 fe80::280:c7ff:fe54:434d%fxp0 [23] tcp -P out ipsec ah/transport//require ;

.
:wq
"ipsec.conf" [New File] 2 lines, 218 characters written

Of course, instead of specifying Host A for spdadd one could use the IPv6 wildcard address (::) to require AH for all connec-
tion attempts to the Telnet port.

4. Load the configuration into the kernel on Host B:

setkey -f /etc/ipsec.conf

5. Once the IPSec configuration is active, you can view the security association database with setkey -D:

setkey -D
fe80::203:47ff:feb8:19be%xe0 fe80::280:c7ff:fe54:434d%xe0

ah mode=any spi=12520(0x000030e8) reqid=0(0x00000000)
A: hmac-md5 6d797365 63726574 6d797365 63726574
seq=0x0000000e replay=0 flags=0x00000040 state=mature
created: Sep 22 14:42:32 2002 current: Sep 22 14:49:27 2002
diff: 415(s hard: 0(s) soft: 0(s)
last: Sep 22 14:42:44 2002 hard: 0(s) soft: 0(s)
current: 1184(bytes) hard: 0(bytes) soft: 0(bytes)
allocated: 1 hard: 0 soft: 0
sadb_seq=2 pid=640 refcnt=1

IPV6 CONFIGURATION �

Vol. 28, No. 2 ;login:30

On the other hand, the -DP command will show the effective IPSec policies. There should be only one entry since we didn’t
have anything else in /etc/ipsec.conf:

setkey -DP
fe80::203:47ff:feb8:19be%xe0 [any] fe80::280:c7ff:fe54:434d%xe0[23] tcp

in ipsec
ah/transport//require
spid=45 seq=1 pid=641
refcnt=1

6. You can test the setup by opening a Telnet session from Host A to B:

telnet -K fe80::280:c7ff:fe54:434d%fxp0
Trying fe80::280:c7ff:fe54:434d%fxp0...
Connected to fe80::280:c7ff:fe54:434d%fxp0
Escape character is '^]'.

FreeBSD/i386 (hostb) (ttyp2)

login:

We can monitor the progress of the connection with tcpdump. The first two packets exchanged at the beginning of the session
are as follows:

fe80::203:47ff:feb8:19be > fe80::280:c7ff:fe54:434d: AH(spi=0x000030e8,seq=0xf): 1052 > 23: S
3462415989:3462415989(0) win 16384 <mss 1440,nop,wscale 0,nop,nop,timestamp 527422 0>

fe80::280:c7ff:fe54:434d.23 > fe80::203:47ff:feb8:19be.1052: S 1868912997:1868912997(0) ack 3462415990
win 57344 <mss 1440,nop,wscale 0,nop,nop,timestamp 752453 527422>

Obviously, traffic from Host A to Host B contains the AH header with the Security Parameter Index of 0x30e8, and the
acknowledgments from B to A are normal TCP packets. If you unloaded the policy on B or changed the key on either host, it
would be impossible for Host B to connect:

telnet -K fe80::280:c7ff:fe54:434d%fxp0
Trying fe80::280:c7ff:fe54:434d%fxp0...

Although having host-based authentication before the connection is really opened sounds like a good idea, there are at least two
security issues with this setup. First, the Security Parameter Index is static. Our packet capture with tcpdump(8) shows clearly how
the SPI is exchanged between the hosts in the clear. The ideal SPI is a large random number that changes for each security associa-
tion. Similarly, the shared secret that is used over the connection is static, and it is stored into /etc/ipsec.conf and the security associ-
ation database in cleartext.

AUTHENTICATE AND ENCRYPT DATA BETWEEN TWO HOSTS

In the second example we will secure all TCP communication between Host B running FreeBSD-4.x and Host C running Solaris 9.
Before we can proceed, it is a good idea to flush the setup on Host B to avoid surprises:

setkey -FP
setkey -F

In this setup we will encrypt the payload, i.e., TCP packet, using 3DES-CBC in the ESP, and we will enforce data integrity with
HMAC-MD5 in the AH. To make this setup more interesting, there will be one pair of shared keys, one for AH and another one for
the ESP, for the direction Host C to Host B, and another key pair for traffic from Host B to Host C. This setup is shown in Figure 24
on the next page.

We will not use key management in this example, since in.iked(1m), the Solaris 9 IKE daemon, only works with IPv4.[28] Moreover,
the KAME IKE daemon, racoon(8),[29] must be built separately from FreeBSD ports. To summarize, it may take a while before IKE is
universally available for the various IPv6 IPSec implementations.

31April 2003 ;login:

�

N

ET
W

O
R

K
IN

G

1. First we have to define the security associations and policies on FreeBSD. You may remove the old /etc/ipsec.conf and start
working on a new one:

rm ipsec.conf
ex ipsec.conf
"ipsec.conf" [New File]
:a
add fe80::203:baff:fe06:1466%xe0 fe80::280:c7ff:fe54:434d%xe0 esp 0xe63f -E

3des-cbc "JnRs6Riou3wwlPHv5zdPED5k" -A hmac-md5 "hostahostbsecret" ;
add fe80::280:c7ff:fe54:434d%xe0 fe80::203:baff:fe06:1466%xe0 esp 0xf52a -E

3des-cbc "G95lvYfQePVkul9Byvibi7fd" -A hmac-md5 "hostbhostasecret" ;

spdadd fe80::203:baff:fe06:1466%xe0 fe80::280:c7ff:fe54:434d%xe0 tcp -P in ipsec esp/transport//require ;
spdadd fe80::280:c7ff:fe54:434d%xe0 fe80::203:baff:fe06:1466%xe0 tcp -P out ipsec esp/transport//require ;
.
:wq

Since the key length for 3DES-CBC is 192 bits, our shared keys must be 24 characters long. One should always use random
strings as the keys, but for demonstration purposes we selected simple keys for authentication. In this case the encryption keys
are random strings since Solaris ipseckeys(1m) would otherwise complain about weak keys.

2. Load the policy into the kernel:

setkey -f /etc/ipsec.conf

3. Print out the entries in the security association database:

setkey -D
fe80::280:c7ff:fe54:434d%xe0 fe80::203:baff:fe06:1466%xe0

esp mode=any spi=62762(0x0000f52a) reqid=0(0x00000000)
E: 3des-cbc 4739356c 76596651 6550566b 756c3942 79766962 69376664
A: hmac-md5 686f7374 62686f73 74617365 63726574
seq=0x0000003b replay=0 flags=0x00000040 state=mature
created: Sep 24 15:05:37 2002current: Sep 24 15:17:35 2002
diff: 718(s) hard: 0(s) soft: 0(s)
last: Sep 24 15:14:15 2002 hard: 0(s) soft: 0(s)
current: 6484(bytes) hard: 0(bytes soft: 0(bytes)
allocated: 59 hard: 0 soft: 0
sadb_seq=1 pid=311 refcnt=2

fe80::203:baff:fe06:1466%xe0 fe80::280:c7ff:fe54:434d%xe0
esp mode=any spi=58943(0x0000e63f) reqid=0(0x00000000)
E: 3des-cbc 4a6e5273 3652696f 75337777 6c504876 357a6450 4544356b
A: hmac-md5 686f7374 61686f73 74627365 63726574

Figure 24. Security Association with AH and ESP

IPV6 CONFIGURATION �

lines below broken for display

Vol. 28, No. 2 ;login:32

seq=0x00000041 replay=0 flags=0x00000040 state=mature
created: Sep 24 15:05:37 2002 current: Sep 24 15:17:35 2002
diff: 718(s) hard: 0(s) soft: 0(s)
last: Sep 24 15:14:15 2002 hard: 0(s) soft: 0(s)
current: 4801(bytes) hard: 0(bytes) soft: 0(bytes)
allocated: 65 hard: 0 soft: 0
sadb_seq=0 pid=311 refcnt=1

This command will dump the contents of the security administration database on-screen, including the AH and ESP keys in
the hexadecimal format. Since we cannot enter ASCII keys into the Solaris IPSec key database (/etc/inet/secret/ipseckeys), we
must copy the entries to the Solaris key file. This raises the age-old question of how to arrange secure key distribution to avoid
sending the AH and the ESP keys over an insecure connection. SSH is always one solution, but it only provides a channel: The
key distribution process is still largely manual work or requires custom scripts to extract shared secrets from the central host
and distribute those to the remote hosts.

4. On Solaris, edit /etc/inet/secret/ipseckeys:

cd /etc/inet/secret
ex ipseckeys
"ipseckeys" [...]
:a
add esp spi 0xf52a src6 fe80::280:c7ff:fe54:434d dst6 fe80::203:baff:fe06:1466 \

encralg 3des-cbc encrkey 4739356c765966516550566b756c39427976696269376664 \
authalg hmac-md5 authkey 686f737462686f737461736563726574

add esp spi 0xe63f src6 fe80::203:baff:fe06:1466 dst6 fe80::280:c7ff:fe54:434d \
encralg 3des-cbc encrkey 4a6e52733652696f753377776c504876357a64504544356b \
authalg hmac-md5 authkey 686f737461686f737462736563726574

.
:wq

5. Now we have to load the keys into the Solaris IPSec kernel. This is accomplished with the ipseckey(1m) command:

ipseckey -f ipseckeys

We can use ipseckey also to verify that the entries were loaded correctly:

ipseckey -n dump
Base message (version 2) type DUMP, SA type ESP.
Message length 200 bytes, seq=1, pid=8407.
SA: SADB_ASSOC spi=0xe63f, replay=0, state=MATURE
SA: Authentication algorithm = HMAC-MD5
SA: Encryption algorithm = 3DES-CBC
SA: flags=0x80000000 < X_USED >
SRC: Source address (proto=0)
SRC: AF_INET6: port 0, fe80::203:baff:fe06:1466.
DST: Destination address (proto=0)
DST: AF_INET6: port 0, fe80::280:c7ff:fe54:434d.
AKY: Authentication key.
AKY: 686f737461686f737462736563726574/128
EKY: Encryption key.
EKY: 4a6e52733752686e753276766d514976347a64514545346b/192
LT: Lifetime information
CLT: 3072 bytes protected, 0 allocations used.
CLT: SA added at time Tue Sep 24 14:09:01 2002
CLT: SA first used at time Tue Sep 24 14:14:10 2002
CLT: Time now is Tue Sep 24 14:19:24 2002

33April 2003 ;login:

�

N

ET
W

O
R

K
IN

GBase message (version 2) type DUMP, SA type ESP.
Message length 200 bytes, seq=1, pid=8407.
SA: SADB_ASSOC spi=0xf52a, replay=0, state=MATURE
SA: Authentication algorithm = HMAC-MD5
SA: Encryption algorithm = 3DES-CBC
SA: flags=0x0 < >
SRC: Source address (proto=0)
SRC: AF_INET6: port 0, fe80::280:c7ff:fe54:434d.
DST: Destination address (proto=0)
DST: AF_INET6: port 0, fe80::203:baff:fe06:1466.
AKY: Authentication key.
AKY: 686f737462686f737461736563726574/128
EKY: Encryption key.
EKY: 4638346d765867516451576b756d38437976686268376764/192
LT: Lifetime information
CLT: 2944 bytes protected, 0 allocations used.
CLT: SA added at time Tue Sep 24 14:09:01 2002
CLT: Time now is Tue Sep 24 14:19:24 2002

Dump succeeded for SA type 0.

Now we only need the policy to control the use of IPSec.

6. Edit /etc/inet/ipsecinit.conf:

cd /etc/inet
ex ipsecinit.conf
:a
{

laddr fe80::203:baff:fe06:1466
raddr fe80::280:c7ff:fe54:434d
ulp tcp

} ipsec {
encr_algs 3des-cbc
encr_auth_algs hmac-md5
sa shared

}
.
:wq

In this file we will specify that one has to use 3DES-CBC encryption with HMAC-MD5 authentication for all TCP communi-
cation between Hosts B and C. Since the direction has not been specified, the policy will apply to both directions. The syntax
of ipsecconf(1m) allows more complex policy setups, but these have already been documented in the manual page.[30]

7. Load the IPSec policy into the kernel:

ipsecconf -a ipsecinit.conf

Now we are all set. If there were no typos in the shared keys or the Security Parameter Indices, all TCP traffic between B and C
is protected with IPSec. As usual, the easiest way to find out is to launch Telnet and monitor the connection with tcpdump
(FreeBSD) or snoop (Solaris). If everything went well, the connection attempt from B to C will look like this:

telnet fe80::280:c7ff:fe54:434d
Trying fe80::280:c7ff:fe54:434d...
Connected to fe80::280:c7ff:fe54:434d.
Escape character is '^]'.

FreeBSD/i386 (hostb) (ttyp2)

login:

IPV6 CONFIGURATION �

Vol. 28, No. 2 ;login:34

The output from tcpdump should show something like this for the first two packets:

fe80::203:baff:fe06:1466 > fe80::280:c7ff:fe54:434d: ESP(spi=0x0000e63f,seq=0x42)
0x0000 6000 0000 003c 323c fe80 0000 0000 0000 `....<2<........
0x0010 0203 baff fe06 1466 fe80 0000 0000 0000f........
0x0020 0280 c7ff fe54 434d 0000 e63f 0000 0042TCM...?...B
0x0030 4e9c e2dd 3a98 76d4 5eca 1717 3b1c 9538 N...:.v.^...;..8
0x0040 2b0f 5f74 0056 71f7 34f5 1923 a694 68f6 +._t.Vq.4..#..h.
0x0050 d7f0 1c20 3543 ee5e 8bdc 8fe6 09cb 7ab15C.^......z.
0x0060 9b7a 546f 5cbc b702 .zTo\...
fe80::280:c7ff:fe54:434d > fe80::203:baff:fe06:1466: ESP(spi=0x0000f52a,seq=0x3c) [flowlabel 0x3baff]
0x0000 6003 baff 003c 3240 fe80 0000 0000 0000 `....<2@........
0x0010 0280 c7ff fe54 434d fe80 0000 0000 0000TCM........
0x0020 0203 baff fe06 1466 0000 f52a 0000 003cf...*...<
0x0030 1db8 733e f397 3c1f 7fef 083d 39d8 eda6 ..s>..<....=9...
0x0040 1b3d d8a2 1b3e c8d5 b149 e432 4e89 c31d .=...>...I.2N...
0x0050 bdb4 c7c5 101b bafb 19a5 cf0f d358 e354X.T
0x0060 1753 0af8 .S..

When we used tcpdump earlier to monitor AH packets, it was able to disassemble the AH header, peek into the TCP packet, and
show us the sequence numbers and other TCP parameters. However, since ESP completely hides the upper-layer payload, we
would not know anything about the upper-layer protocol if we hadn’t configured the IPSec policy by ourselves. In other words,
we can only see that fe80::203:baff:fe06:1466 sent a packet to fe80::280:c7ff:fe54:434d and the receiving host seemed to
acknowledge it. It should be no surprise that a packet like this will make a firewall and the (network) intrusion detection very
angry.

IPSec is a very powerful network security mechanism to protect applications from network eavesdropping or interception. This dis-
cussion has been in the context of IPv6, but the main user community for IPSec seems to be in IPv4, at least for the time being. Net-
work and enterprise management is likely to be the primary beneficiary of IPSec, since management applications have had little or
no security capabilities. The list of dangerously insecure million-dollar enterprise systems seems endless and any responsible enter-
prise management project should absolutely take a close look at the transport mode and assess whether it could be used to improve
the security of the management system.

As with AH earlier, the primary security issues with the setup described above are the static Security Parameter Indices and static
shared keys. Both SPI and the key should be random values that can be disposed of at the end of the session. History shows repeat-
edly it is a bad practice to store cleartext secrets in configuration files, even if the files are only readable by the super-user. One can
decrease the risk by issuing unique keys for each security association (e.g., four keys for a bi-directional security association), but
clearly this creates a key distribution problem.

Conclusion
IPv6 has come a long way from the drafts to the current implementations, but there is still a lot of work to be done. Although IPv6
has been around in one form or another for a long time, it may take a while before IPv6 will be mainstream. This is underscored by
the facts that one must run Solaris 9 to get IPSec to work with IPv6, or that only Windows XP users can run Microsoft’s IPv6 stack.
One must also have BIND 9 to be able to use the new A6 and DNAME resource records, which all means that it will take years before
bleeding-edge technology becomes commodity.

Yet IPv6 is a great protocol. When I set up my first IPv6 nodes I had to ask myself several times why I had waited so long. The
addressing plans with link-local, site-local, and aggregateable global unicast addresses and stateless address auto-configuration made
a lot more sense than requesting that an IP address become eligible in order to get connected to the network.

On the other hand, a new network protocol isn’t any good if the only applications for it are ports of a 20-year-old virtual terminal or
a file transfer program. Luckily, the situation is not really that bad for IPv6. Obviously, Telnet and FTP were the first IPv6 applica-
tions since, they have been a part of TCP/IP for ages. There are IPv6 ports available for open source applications at ftp.kame.net and
the FreeBSD Ports Collection, for example, shows an ever-growing list of IPv6-enabled applications.

IPv6 is a successor of IPv4 in the sense that it is not very difficult to get IPv4 applications to speak IPv6. There are socket scrubbers
available to identify IPv4-specific code and suggest changes to make them IPv6-ready. Consequently, there are few IPv6-only applica-
tions, and the convention seems to be to simply make the applications listen to IPv4 and IPv6 sockets simultaneously. This approach
does indeed give the users more flexibility in deciding their migration path.

Even if IPv6 networks are hard to find, the developers could
start using IPv6 immediately. Since the startup cost to enable
IPv6 is minimal – the code is in the operating system already
and enabling it requires two steps – it is actually the new inter-
process communication mechanism. You don’t even need a
router to run IPv6 on the local LAN, since the link-local
addresses are available to everyone anyway. IPv6 is not a unique
protocol in the sense that many IPv6 features are available for
IPv4 as well, starting with IPSec. Yet IPv6 does not have to carry
the history of IPv4; the many good ideas and concepts arising
from IPv4 have been imported to IPv6, and now it is time to
move on.

References
[1] S. Deering and R. Hinden, “Internet Protocol, Version 6
(IPv6) Specification,” RFC-2460, December 1998. Available
from http://www.ietf.org/rfc/rfc2460.txt.

[2] J. Reynolds and J. Postel, “Assigned Numbers,” RFC-1700,
October 1994. Available from http://www.ietf.org/rfc/rfc1700.txt

and http://www.iana.org/.

[3] R. Hinden and S. Deering, “IP Version 6 Addressing Archi-
tecture,” RFC-2373, July 1998. Available from
http://www.ietf.org/rfc/rfc2373.txt.

[4] IPv6 Address Oracle, Indiana University, Advanced Network
Management Laboratory. Available from
http://steinbeck.ucs.indiana.edu:47401/.

[5] C. Huitema, IPv6: The New Internet Protocol, 2d ed.,
Prentice-Hall, 1998.

[6] IEEE, “Guidelines for 64-bit Global Identifier (EUI-64™)
Registration Authority,” May 2001. Available from
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html.

[7] D. Plummer, “An Ethernet Address Resolution Protocol,”
RFC-826, November 1982. Available from
http://www.ietf.org/rfc/rfc0826.txt.

[8] IANA, “Special-Use IPv4 Addresses,” IETF Network Work-
ing Group, August 2002. Available from
http://www.ietf.org/internet-drafts/draft-iana-special-ipv4-05.txt.

[9] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and
E. Lear, “Address Allocation for Private Internets,” RFC-1918,
February 1996. Available from http://www.ietf.org/rfc/rfc1918.txt.

[10] J. Itoh, “Overview of KAME project,” Work-in-progress
report, USENIX 1998 Annual Conference, New Orleans, 1998.
Available from http://www.kame.net/project-overview.html.

[11] R. Hinden, M. O’Dell, and S. Deering, “An IPv6 Aggregat-
able Global Unicast Address Format,” RFC-2374, July 1998.
Available from http://www.ietf.org/rfc/rfc2373.txt.

[12] R. Hinden, S. Deering, R. Fink, and T. Hain, “Initial IPv6
Sub-TLA ID Assignments,” RFC-2928, September 2000. Avail-
able from http://www.ietf.org/rfc/rfc2928.txt.

[13] Global IPv6 Allocations Made by the Regional Internet
Registries, RIPE. Available from
http://www.ripe.net/ipv6/ipv6allocs.html.

[14] B. Carpenter, K. Moore, and B. Fink, “Connecting IPv6
Routing Domains over the IPv4 Internet,” Cisco Internet Proto-

col Journal, vol. 3, no. 1, March 2000. Available from
http://www.ieng.com/warp/public/759/ipj_3-1/ipj_3-1_routing.html.

[15] B. Carpenter and K. Moore, “Connection of IPv6 Domains
via IPv4 Clouds,” RFC-3056, February 2001. Available from
http://www.ietf.org/rfc/rfc3056.txt.

[16] S. Deering, “Host Extensions for IP Multicasting,” RFC-
1112, August 1989. Available from http://www.ietf.org/rfc/rfc1112.txt.

[17] S. Thomson and T. Narten, “IPv6 Stateless Address Auto-
configuration,” RFC-2462, December 1998. Available from
http://www.ietf.org/rfc/rfc2462.txt.

[18] Sun Microsystems, “Administering IPv6,” Solaris System
Administration Guide: IP Services, part no. 806-4075–10, pages
303-322, May 2002. Available from http://docs.sun.com/.

[19] R. Zilbauer, “Configuring IPv6 on Solaris 8,”
Native6Group, 2002. Available from
http://www.native6group.com/docs/Configuring%20IPv6%
20on%20Solaris8.pdf.

[20] Sun Microsystems, “ipnodes – Local Database Associating
Names of Nodes with IP Addresses,” Solaris 9 Reference Manual
Collection, Section 4: File Formats, October 1999. Available
from http://docs.sun/com/.

[21] B. Bucklin and Y. Sekiya, “IPv6 DNS Setup Information,”
January 31, 2000. Available from http://www.isi.edu/
~bmanning/v6DNS.html.

[22] K. Harrenstien, M. Stahl, and E. Feinler, “DoD Internet
Host Table Specification,” RFC-952, October 1985. Available
from http://www.ietf.org/rfc/rfc0952.txt.

[23] S. Thomson and C. Huitema, “DNS Extensions to Support
IP Version 6,” RFC-1886, December 1995. Available from
http://www.ietf.org/rfc/rfc1886.txt.

35April 2003 ;login:

�

N

ET
W

O
R

K
IN

G

IPV6 CONFIGURATION �

http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc1700.txt
http://www.iana.org/
http://www.ietf.org/rfc/rfc2373.txt
http://steinbeck.ucs.indiana.edu:47401/
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://www.ietf.org/rfc/rfc0826.txt
http://www.ietf.org/internet-drafts/draft-iana-special-ipv4-05.txt
http://www.ietf.org/rfc/rfc1918.txt
http://www.kame.net/project-overview.html
http://www.ietf.org/rfc/rfc2373.txt
http://www.ietf.org/rfc/rfc2928.txt
http://www.ripe.net/ipv6/ipv6allocs.html
http://www.ieng.com/warp/public/759/ipj_3-1/ipj_3-1_routing.html
http://www.ietf.org/rfc/rfc3056.txt

Vol. 28, No. 2 ;login:

[24] M. Crawford and C. Huitema, “DNS Extensions to Support
IPv6 Address Aggregation and Renumbering,” RFC-2874, July
2000. Available from http://www.ietf.org/rfc/rfc2874.txt.

[25] Internet Software Consortium, “IPv6 Support in BIND 9,”
BIND 9 Administrator Reference Manual, pages 36–39, 2001.
Available from http://www.nominum.com/resources/
documentation/Bv9ARM.pdf.

[26] ISO, “OSI Security Model, Part 1: Security Framework,”
ISO 10181-1.

[27] KAME Project, “setkey – Manually Manipulate the Ipsec
SA/SP Database,” FreeBSD System Manager’s Manual, Chapter
8, FreeBSD, 2000. Available from
http://www.freebsd.org/cgi/man.cgi?query=setkey&
apropos=0&sektion=8&manpath=FreeBSD+4.6-RELEASE&
format=html.

[28] Sun Microsystems, “in.iked – Daemon for the Internet Key
Exchange (IKE),” Solaris 9 Reference Manual Collection, Sec-
tion 1m: System Administration Commands, Sun Microsys-
tems, Inc., February 2002. Available from http://docs.sun/com/.

[29] KAME Project, “racoon – IKE (ISAKMP/Oakley) key man-
agement daemon,” available in the KAME distribution from
http://www.kame.net/.

[30] Sun Microsystems, “ipsecconf – configure system wide
IPSec policy,” Solaris 9 Reference Manual Collection, Section
1m: System Administration Commands, February 2002. Avail-
able from http://docs.sun/com/.

36

37April 2003 ;login:

�

PR

O
G

RA
M

M
IN

G

In our introductory C# column, we discussed some of

the background and context for the C# language, in

particular how C# fits into the .NET Framework. In this

column we’ll start describing the C# language itself.

The Hello Program
Let’s look first at the C# version of the “Hello, world” program.
This is a trivial application but one we can use to tie down
many of the C# basics. Here’s the code:

using System;

class Hello {
static void Main() {

Console.WriteLine("Hello, world!");
}

}

We’re going to assume the use of the Microsoft SDK in our dis-
cussions. Given this, we compile and execute the program by
saying:

$ csc Hello.cs
$ Hello

The compilation produces an EXE file. This file is very small
(3072 bytes) and is not self-contained. It depends on the pres-
ence on the local system of the .NET JIT (just-in-time com-
piler), as discussed in the introductory column. The csc
compiler generates opcodes in an intermediate language, and
the opcodes are stored in the EXE. When the EXE is executed at
some later time, the JIT is used to translate the intermediate
language into machine language.

We put our Hello program in a source file Hello.cs. But there’s
no file-naming requirement implied by doing so; we can instead
say:

$ cp Hello.cs xyz.cs
$ csc xyz.cs
$ xyz

and it will still work.

Another point about this example is that there is a distin-
guished method named Main() in a C# program, used as the
entry point for program execution. Main is a static method in
the Hello class, “static method” meaning that the Main method
does not operate on instances of the Hello class but is part of
the class for packaging purposes. In this particular example, we
don’t actually create any Hello class objects. For languages like
C++ and C#, using a class as a packaging vehicle for static
methods and data is a common program-structuring technique.

Classes are a basic unit of composition and design in C#. C#
programming consists of the development of new types, real-
ized via classes and the related struct and interface mechanisms,
along with use of standard types such as System.String.

The Main method is called to begin execution of the Hello pro-
gram, and there’s a single statement to execute. Console is a
class found in the System namespace, and the “using System”
statement says that the types found in this namespace are made
available to the Hello program. If we got rid of the using state-
ment, we’d need to say:

System.Console.WriteLine("Hello, world!");

Using statements is very convenient but can sometimes pollute
the application with extraneous and conflicting names.

Namespaces are another basic design mechanism for C# pro-
grams; they serve to collect and segregate names in a large
application. In our example, we refer to the System namespace.
There’s also a single global namespace to which the Hello type is
added, given that we don’t specify a namespace for the Hello
class. We could instead say:

namespace ABC {
class Hello {

...
}

}

to put the Hello class into the ABC namespace.

Actual output from the Hello program is done by the WriteLine
method. This is a static method that is part of the Console class
found in the System namespace. It writes output to standard
output and is equivalent to:

Console.Out.WriteLine("Hello, world!");

in which the stream (In, Out, Error) is specified. I/O occurs
using standard streams, and I can redirect the output in the
usual way:

$ Hello > out

examining the C#
“hello, world” program
by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

EXAMINING THE C# “HELLO, WORLD” PROGRAM�

Vol. 28, No. 2 ;login:38

For the statement:

System.Console.Out.WriteLine("Hello, world!");

System is a namespace, Console a class in that namespace, Out
a static stream object of class TextWriter in the Console class,
and WriteLine a method in the TextWriter class.

Command-Line Arguments and Exit Codes
Let’s go on and look at another program, this one a variation of
the Hello program. It illustrates some additional C# features.

Suppose that you’d like to write the Hello program, but instead
of the output going to standard output, you want to specify the
output file on the command line, and have output written to
that file. How can you do this? Here’s an example:

using System;
using System.IO;

class FileIO {
static void Main(string[] args) {

if (args.Length != 1) {
Console.Error.WriteLine("missing filename");
Environment.Exit(1);

}

try {
StreamWriter sw = new StreamWriter(args[0]);
sw.WriteLine("Hello, world!");
sw.Close();

}
catch {

Console.Error.WriteLine("couldn’t open file");
Environment.Exit(1);

}
}

}

Command-line arguments are represented by an array of
strings. If there’s no command-line argument specified, the
program writes an error message to standard error and exits
with a non-zero status.

Otherwise, the StreamWriter class is used to perform output to
a file. Note that StreamWriter operations are wrapped in a
try/catch block. This is done because C# uses exceptions to sig-
nal error conditions: for example, failure to open a text file for
writing. We use the try/catch block to catch any exception that
is thrown. If there is no try/catch block, and an invalid file is
specified, the program will terminate with an unhandled-excep-
tion diagnostic.

Character Encodings
C# uses the Unicode 16-bit character set. However, in our
examples so far, we’ve implicitly assumed that ASCII is being
used: for example, when redirecting output to a file. How does

this work? C# I/O uses encodings to map Unicode into other
character sets. For example, when you run this little program:

using System;
using System.IO;

class Encode {
static void Main() {

StreamWriter sw = new StreamWriter("out");
Console.WriteLine("file encoding is: "

+ sw.Encoding);
sw.Close();

}
}

the result is:

file encoding is: System.Text.UTF8Encoding

Roughly speaking, the UTF-8 encoding maps Unicode charac-
ters with 7-bit ASCII values into the corresponding ASCII char-
acters, and other Unicode characters into two or three bytes. So
C# can use Unicode and still be compatible with ASCII. A simi-
lar mechanism is used in Java I/O.

Applications with Multiple Source Files
Suppose that you’d like to write the Hello program, but as part
of a more elaborate system whereby messages are logged to a
file along with a timestamp. How might this be done?

In such a case it is worth defining your own C# class. Instances
of the class represent an open file, to which messages are being
logged. Here’s what the code looks like:

// MainFile.cs

class MainFile {
static void Main(string[] args) {

FileLogger flog = new FileLogger(args[0]);
flog.write("Hello, world!");
flog.close();

}
}

// FileLogger.cs

using System;
using System.IO;

class FileLogger {
private StreamWriter sw;

public FileLogger(string fn) {
sw = new StreamWriter(fn);

}

public void write(string msg) {
sw.WriteLine(DateTime.Now + ": " + msg);

}

39April 2003 ;login:

�

PR

O
G

RA
M

M
IN

Gpublic void close() {
sw.Close();

}
}

You compile this program by saying:

$ csc MainFile.cs FileLogger.cs

Compilation units can depend on each other. For example, the
MainFile class uses the FileLogger class, defined in a separate
file.

When you run the program, by saying:

$ MainFile outlog

the result written to the log file is something like this:

11/29/2002 10:33:35 AM: Hello, world!

This particular application does not handle exceptions via
try/catch. If you specify an invalid log file name, for example:

$ MainFile .

the program will abort, and display a stack traceback for the
unhandled exception.

Browsing System Types
There’s one final area we’d like to look at in our discussion of
the C# Hello program. Earlier we mentioned the System.Con-
sole class, a standard class used for console I/O. How can you
know what the standard classes are? Obviously, you can consult
reference books, browse online documentation, and look at
Web sites.

But there’s another way to find out what standard types are
available, using the reflection features of C#. You can write a C#
program that essentially asks itself what types it knows about
and displays the names of those types.

Here’s some code that does this:

using System;
using System.Reflection;

class DumpTypes {

// Display a help message and exit.

private static void dohelp() {
Console.WriteLine("Usage: [-h|-help] " +

"[-dumpmem|-m] [-t|-type targ_type] patt1 patt2 ...");
System.Environment.Exit(0);

}

// Filter a string to determine if it contains
// patterns specified on the command line.

private static bool filter(string str, string[] args, int argi) {
str = str.ToLower();

for (int i = argi; i < args.Length; i++) {
if (str.IndexOf(args[i]) == -1)

return false;
}

return true;
}

public static void Main(string[] args) {
bool mem_flag = false;
string targ_type = null;

// Parse command-line arguments.

int argi = 0;
while (argi < args.Length && args[argi][0] == '-') {

if (args[argi] == "-dumpmem" || args[argi] == "-m") {
mem_flag = true;

}
else if (args[argi] == "-t" || args[argi] == "-type") {

if (argi + 1 < args.Length) {
targ_type = args[argi + 1].ToLower();
argi++;

}
}
else if (args[argi] == "-h" || args[argi] == "-help") {

dohelp();
}

argi++;
}
for (int i = argi; i < args.Length; i++)

args[i] = args[i].ToLower();

// Get a list of all types found in the standard
// library.

Assembly asm = Assembly.Load("mscorlib.dll");
Type[] typelist = asm.GetTypes();

// Iterate across each type.

foreach (Type atype in typelist) {

// Check whether type matches specified
// target type.

string typestr = atype.ToString();
if (targ_type != null && typestr.ToLower() !=

targ_type)
continue;

// If asked to display all members, iterate
// across them.

if (mem_flag) {
MemberInfo[] memlist = atype.GetMembers();

EXAMINING THE C# “HELLO, WORLD” PROGRAM�

Vol. 28, No. 2 ;login:40

foreach (MemberInfo amember in memlist) {
string memstr = amember.ToString();
string s = typestr + " " + memstr;
if (filter(s, args, argi))

Console.WriteLine("{0} {1}",
typestr, memstr);

}
}

// Just display the type itself without
// members.

else {
if (filter(typestr, args, argi))

Console.WriteLine(typestr);
}

}
}

}

The source code for this program and others in this column is
available at ftp://ftp.glenmccl.com/pub/usenix/cs2.zip.

The heart of the DumpTypes program is these two lines:

Assembly asm = Assembly.Load("mscorlib.dll");
Type[] typelist = asm.GetTypes();

An assembly is a collection of files something like a shared
library or archive. These lines of code load the standard C#
assembly and extract a list of types from it, using the GetTypes
method. Given a type such as a class and it’s possible to call an
analogous method (GetMembers) to find a list of the members
(methods, fields, properties) defined within the type.

If you run this program with no command-line arguments, it
displays a list of standard types:

System.Object
System.ICloneable
System.Collections.IEnumerable
System.Collections.ICollection
System.Collections.IList
...

If you specify a given type:

$ DumpTypes -t System.String

it displays just that type. If you specify that members are to be
displayed as well, like this:

$ DumpTypes -t System.String -m

the result is a list of members for the System.String class:

System.String System.String Empty
System.String System.String ToString(System.IFormatProvider)
System.String System.TypeCode GetTypeCode()

System.String System.Object Clone()
System.String Int32 CompareTo(System.Object)
...

For example, the first line of output refers to the Empty static
field of System.String. Empty is of type System.String and
refers to an empty string (" ").

If you specify a list of matching patterns, every line of output
will be filtered against all those patterns. For example, saying:

$ DumpTypes -m

provides a voluminous list of all types and members, a total of
more than 20,000 lines of output. But if you say:

$ DumpTypes -m cos

the output is:

System.Math Double Acos(Double)
System.Math Double Cos(Double)
System.Math Double Cosh(Double)

which describes three trigonometric methods in the
System.Math class.

We’ve looked at some of the basics around writing C# pro-
grams. C# is typically pitched as a language for developing GUI
and network applications, but you can also write stand-alone
utility programs just as you would in C programming.

ftp://ftp.glenmccl.com/pub/usenix/cs2.zip

41April 2003 ;login:

�

PR

O
G

RA
M

M
IN

G

the tclsh spot

The previous two Tclsh Spot articles described building a

Tcl extension to push packets onto a network, and

using the Spirent AX-4000 to characterize the rate at

which packets could be sent.

We generated the IP packet by using tcpdump to sniff a packet
and by copying the data into the packet-generating program.
This was adequate to test that the program could work but is
not versatile enough for using the packet generator to test other
systems.

Modern networks use a “Russian doll” paradigm to define
packets of information. A small packet is embedded in a larger
packet, which is embedded in a still larger packet. And, like the
dolls, each packet looks much like the others, but with subtle
differences.

For example, a DNS message contains an identification field,
some flags, and a payload of a set of questions and answers.
This packet is enclosed in a UDP packet that includes source
and destination port identifiers and a payload that consists of
the DNS packet. The UDP packet gets enclosed into an IP
packet, with source and destination IP addresses as identifiers
and a payload of the UDP packet. And the IP packet will finally
get enclosed in an Ethernet or PPP packet, with machine iden-
tifiers and a payload that consists of the IP packet.

From a software design point of view, a set of similar entities
with small differences is a classic situation for an object-ori-
ented design. You can construct a base object with the core
functionality and then derive special cases for the unique fea-
tures.

The [incr Tcl] Tcl extension provides support for full-featured
object-oriented programming, with classes, protection, inheri-
tance, etc. For applications that require a rigorous OO imple-
mentation, this is an ideal solution. The standard Tcl

distribution (ActiveTcl from http://www.activestate.com)
includes [incr Tcl].

One of the Tcl features that makes [incr Tcl] possible is the
namespace command (the [incr Tcl] extension introduced the
namespace command to Tcl). The Tcl namespace provides
hooks to do OO-style programming in Tcl. Using only the stan-
dard namespace command, you can implement inheritance,
aggregation, and simple protection.

For this application, where I expect to have a relatively small
number of object types (types of data packets – IP, ICMP, TCP,
etc.) and a large number of objects (as many data packets as I
need), I elected to use a very lightweight model in which the
packet-type objects contain static data and methods, while the
packet objects contain only data.

A Class/Object diagram of this design would resemble this:

The data objects include a single variable – an associative array
indexed by the names of the fields within a packet using a par-
ticular protocol. The data is the value for that field. For exam-
ple, an object named packet_1 might be an ICMP packet, which
would have indices like type, code, and checksum (the minimal
ICMP header fields).

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

THE TCLSH SPOT �

http://www.activestate.com

Vol. 28, No. 2 ;login:42

One extra index is used to hold a bytestream representation of
the packet, with the appropriate ordering and padding. This
index is named packet.

The data objects always inherit a few basic methods from the
packet class, which has no associated data, and inherit public
methods and data from one parent class that describes the pro-
tocol.

The parent classes contain information to define the layout of
fields within a packet of this type, a lookup table to convert
from common mnemonics for this type of packet to a numeric
value, and methods that implement the specific rules for build-
ing this type of packet. These classes invoke generic functions in
the dataManipulation class as they need them.

This set of abstractions can be implemented with just the name-
space command – no need for fancy OO extensions. While 700
lines of code to build ICMP, TCP, UDP, IP, and Ethernet packets
is rather small, it’s too much to completely discuss in this arti-
cle. This article will introduce the interesting features of using
the namespace command to implement this, and show how to
test the output.

The Tcl namespace command provides a private area where
static data and procedures can be kept. The same data and
variable names can be used in multiple namespaces. Tcl name-
spaces are created and manipulated with the namespace com-
mand, which includes several subcommands. The namespace
eval command creates new namespaces. It will evaluate a Tcl
script within a namespace (and create the namespace if neces-
sary.)

Syntax: namespace eval namespaceID arg1 ?argN...?

Create a namespace, and evaluate the script
arg in that scope. If more than one arg is pres-
ent, the arguments are concatenated into a
single script to be evaluated.

namespaceID The identifying name for this namespace.

arg* The script or scripts to evaluate within name-
space namespaceID.

This code will create a namespace that holds an associative
array, and includes two functions to set and retrieve array val-
ues.

namespace eval packet_1 {
variable fieldArray

proc setField {name value} {
variable fieldArray
set fieldArray($name) $value

}

proc getField {name } {
variable fieldArray
return $fieldArray($name)

}
}

The variable command declares that a variable exists within a
namespace and may initialize the variable’s value. The variables
declared with the variable command are persistent and will not
be destroyed when the namespace scope is exited. These vari-
ables are easily accessed by procedures within their namespace,
but not from other namespaces.

Note that the syntax for the variable command is different from
the global command. The variable command supports setting
an initial value for a variable, while the global command does
not.

Syntax: variable varName ?value? ?varNameN? ?valueN?

Declare a variable to exist within the current name-
space. The arguments are pairs of name and value
combinations.

varName The name of a variable.

?value? An optional value for the variable.

The first variable fieldArray declares that the variable exists. The
next variable fieldArray, inside the setField procedure, maps the
fieldArray variable from the namespace scope into the local pro-
cedure scope.

The variable fieldArray is persistent, just like global variables,
but exists in the packet_1 object.

Tcl namespaces are named in a tree fashion, similar to a direc-
tory tree. The separator for namespaces is a double-colon (::),
and the top namespace (the default when you start up a Tcl
shell) is also ::.

The first example creates a namespace named packet_1 in the
scope where the command was evaluated. Assuming it is evalu-
ated in the top-level scope, it creates the namespace ::packet_1,
which contains a variable ::packet_1::fieldArray and two proce-
dures, ::packet_1::getField and ::packet_1::setField.

Invoking the packet object’s procedures by full namespace path
resembles the C++/Java type of naming convention:
packet_1::getField resembles packet_1->getField. This isn’t
really the best technique for accessing methods in Tcl. This style
of invoking the procedures exposes the implementation of the
object and makes the packet_1::getField invocation appear to be
a unit, instead of the packet_1 being an object and getField
being a method.

43April 2003 ;login:

�

PR

O
G

RA
M

M
IN

GA Tcl-style object would be a command, and the methods
would be subcommands.

Since Tcl has separate resolution tables for namespace names,
variable names, and procedures, we can use the same name for
a namespace, and the procedure to access it. This script will cre-
ate a packet_1 command:

proc packet_1 {args} {namespace eval packet_1 $args}

When a variable named args is the last argument in a procedure
definition, Tcl will assign any unassigned arguments to that
variable. This allows you to define procedures that can be
invoked with any number of arguments.

We can create namespaces with any script. For instance, this is
equivalent to the first example:

set packetDef {
variable fieldArray

proc setField {name value} {
variable fieldArray
set fieldArray($name) $value

}

proc getField {name } {
variable fieldArray

return $fieldArray($name)
}

}

namespace eval packet_1 $packetDef
proc packet_1 {args} {namespace eval packet_1 $args}

This makes it easy to create multiple packet namespaces, each of
which includes its own copy of the fieldArray variable, which
may contain unique values.

proc makePacket {name} {
global packetDef
namespace eval $name $packetDef
proc $name {args} "namespace eval $name \$args"

}

makePacket packet_1
makePacket packet_2
makePacket packet_3

A downside to this technique is that the procedures are also
duplicated in each namespace. While the variables in these
namespaces are unique, the procedures are identical, and we
don’t need a new copy in each namespace. With three objects
this doesn’t matter, but if our application had several thousand
objects, the overhead of duplicating the procedures could start
to be a problem.

The namespace import and namespace export commands solve
this problem (and several others we’ll address later).

The namespace export command lists commands that are
available to be imported. You would consider these public meth-
ods in a Java or C++ environment.

Syntax: namespace export pattern1 ?patternN...?

Export members of the current namespace that match
the patterns. Exported procedure names can be
imported into other scopes. The patterns follow glob
rules.

pattern* Patterns that represent procedure names and data
names to be exported.

The flip side is the namespace import command, which will
map a procedure that exists in one namespace into the current
namespace.

Syntax: namespace import ?-force? ?pattern1 patternN...?

Imports procedure names that match a pattern.

-force If this option is set, an import command will overwrite
existing commands with new ones from the pattern
namespace. Otherwise, namespace import will throw
an error if a new command has the same name as an
existing command.

pattern* The patterns to import. The pattern must include
thenamespaceID of the namespace from which items
are being imported.

One trick to the import command is that it maps the procedure
name into the current namespace, but when the procedure is
evaluated, it evaluates within the namespace it was defined in.
This makes the namespace import command work well for
implementing inheritance, but makes a slight problem when we
try to use it naïvely to avoid duplicating procedure bodies.

The code below doesn’t work.

It sets values in ::BADprocs::fieldArray, rather than
::packet_1::fieldArray or ::packet_2:fieldArray.

namespace eval BADprocs {
namespace export setField getField

proc setField {name value} {
variable fieldArray
set fieldArray($name) $value

}

proc getField {name } {
variable fieldArray
return $fieldArray($name)

}
}

THE TCLSH SPOT �

Vol. 28, No. 2 ;login:44

set packetDef {
variable fieldArray
namespace import ::BADprocs::*

}

namespace eval packet_1 $packetDef
namespace eval packet_2 $packetDef

proc packet_1 {args} "namespace eval packet_1 \$args"
proc packet_2 {args} "namespace eval packet_2 \$args"

packet_1 setField foo bar1
packet_2 setField foo bar2

The Tcl upvar command is the solution for this. Upvar will map
a variable from a higher level scope into the current scope.

Syntax: upvar ?level? varName1 localName1 ?varName2? ?localName2?

Maps a variable from a higher variable scope
into the current variable scope.

?level? An optional level to describe the level from
which the variable should be linked. This
value may be a number or the # symbol fol-
lowed by a number.

The level defaults to 1, the level of the script
that invoked the current proc.

varName* The name of a variable in the higher scope to
link to a local variable.

localName* The name of a variable in the local scope.
This variable can be used in this script as a
local variable. Setting a new value to this vari-
able will change the value of the variable in
the other scope.

Normally, the upvar command is used to implement call-by-
name (instead of Tcl’s normal call-by-value paradigm). For
example, a procedure to print the contents of an array would
resemble this:

proc printArray {arrayName} {
upvar $arrayName a
foreach index [array names a] {

puts "$index: $a($index)"
}

}

array set demo {index1 val1 index2 val2}
printArray demo

When doing object-style programming in Tcl, we can use the
upvar to map the fieldArray variable from the packet_* name-
spaces into the procs namespace like this:

namespace eval procs {
namespace export setField getField

proc setField {name value} {
upvar fieldArray localArray
set localArray($name) $value

}

proc getField {name } {
upvar fieldArray localArray
return $localArray($name)

}
}

set packetDef {
variable fieldArray
namespace import ::procs::*

}

proc makePacket {name} {
global packetDef
namespace eval ::$name $packetDef
proc $name {args} “namespace eval $name \$args”

}

makePacket packet_1
makePacket packet_2

packet_1 setField foo bar1
packet_2 setField foo bar2

Note how the namespace eval command in makePacket
prepends the :: to the namespace identifier. Like file-system
paths, namespace identifiers may be absolute or relative. The
namespace identifier ::packet_1 defines a namespace that is a
child of the global scope. The namespace identifier packet_1
defines a namespace that is a child of the current scope, which
could be anything.

Creating a procedure packet_1 that uses namespace eval
packet_1 setField rather than directly invoking packet_1::set-
Field creates an entry on the procedure stack for code evaluated
in the packet_1 namespace. This allows the upvar command to
map the fieldArray into the ::procs namespace. If you intend to
invoke methods as namespace::method, you’ll need to define
the methods within the namespace rather than importing them.

This technique can be generalized further to create class and
new commands, just like those in Java, C++, or [incr Tcl]. Sev-
eral pure Tcl object-oriented programming packages such as
stooop and SNIT use similar techniques. Since this application
only creates one type of object (data packets), the simple
makePacket command is sufficient.

Using this technique, we can define packets that contain named
fields with numeric values with code like this:

45April 2003 ;login:

�

PR

O
G

RA
M

M
IN

GmakePacket icmp_packet_1
icmp_packet_1 setField sourcePort 9999
icmp_packet_1 setField destPort 25
icmp_packet_1 setField sequence 1234
...

These values can be extracted, and assembled in the proper
order, with the proper padding to create a network packet. The
next trick is to define the order of the fields, sizes, etc.

In C++, Java, or [incr Tcl] the packet class would be an abstract
class, and we’d derive TCP, UDP, ICMP, etc. classes from this
base class with the field definitions.

In pure Tcl, we can define a namespace that contains field defi-
nitions and methods for creating network packets and import
those methods into our packet object.

We commonly think of a network packet as a series of bytes.
However, some fields (header length, TCP flags) are less than 8
bits long. To generalize the algorithms, I decided to build the
packets as bitstreams and define the fields as bit offsets and
lengths. After the bitstream is completely assembled, it’s con-
verted to bytes.

The protocol definition namespace resembles:

namespace eval icmp {
name bit-offset bit-length
set fields {

type 0 8
code 8 8
checksum 16 16 }

Place a bytestream representation of the packet in
the fieldArray associative array.
proc fillPacket {} {

upvar fieldArray f
variable fields

foreach {name start len} $fields {
lappend bitStream [makeElement $len $f($name)]

}

set f(packet) [Bits2Bytes $bitStream]
}

Return a bitstream padded to the required length.
proc makeElement {len value} {}

Convert a bitstream to a hexadecimal bytestream.
proc Bits2Bytes {bitStream} {}

}

The definition of a packet object now looks like this:

namespace eval icmp_packet_1 {
variable fieldArray ;# Array of values for fields

namespace import ::proc::*

namespace import ::icmp::*
}

A bytestream packet can be constructed with code like:

icmp_packet_1 setField type 0
icmp_packet_1 setField code 0
icmp_packet_1 setField checksum 0
icmp_packet_1 fillPacket

The calls to setField will be evaluated in the ::procs namespace,
which will use upvar to map the ::icmp_packet_1::fieldArray
variable into the local procedure scope.

The call to fillPacket will be evaluated in the ::icmp namespace
and will use upvar to map the ::icmp_packet_1::fieldArray vari-
able into this scope. The ::icmp::fields variable is already in the
correct scope.

By defining different values in the fields variable, we can define
different protocols. These descriptions can be used to create dif-
ferent types of data packets by importing the appropriate
namespace.

This leads to a more generalized makePacket procedure:

proc makePacket {name type} {
global packetDef
namespace eval ::$name $packetDef
namespace eval ::$name "namespace import ::${type}::*"
proc $name {args} "namespace eval $name \$args"

}

makePacket icmp_packet_1 icmp

The final useful tweak to the makePacket procedure is to sup-
port setting the fieldArray values when the object is created,
instead of creating an empty object and requiring multiple set-
Field calls.

The array set command assigns values to multiple associative
array indices in a single command. For example, this command
would assign 0s to fieldArray(type), fieldArray(code), and fieldAr-
ray(checksum):

array set fieldArray {type 0 code 0 checksum 0}

This makePacket procedure definition creates the new object,
populates the fieldArray variable, inherits the field definition
and packet-generating methods, and creates the procedure to
use for further interaction with the new object.

proc makePacket {name type args} {
global packetDef
namespace eval ::$name $packetDef
namespace eval ::$id [list array set fieldArray $args]
namespace eval ::$name “namespace import ::${type}::*”
proc $name {args} "namespace eval $name \$args"

}

THE TCLSH SPOT �

Vol. 28, No. 2 ;login:46

...
makePacket icmp_packet_1 icmp type 0 code 0 checksum 0

In actual fact, this package is a bit larger and more complex
than described. It allows values to be defined with mnemonics
as well as numbers, translates from Internet and Ethernet style
addresses into bytestreams, checks for a complete set of values,
etc. The use of namespaces to implement an abstract class and
lightweight objects, however, works as described.

In the actual packet-generating package, the makePacket com-
mand is named make and is contained in the ::packet:: name-
space.

The first thing to do with the network packet package is to con-
firm that it generates the expected packets. There are more ways
to test software than there are software writers. In this case, the
tests break down into two categories:

1. Tests that compare the packet data to a known good
bytestream

2. Tests that use external systems to analyze packets “off the
wire”

The Tcl interpreter comes with a package for automating
regression tests. This package is used to test the Tcl interpreter
(and many other Tcl packages) and to invoke make tests.
The two workhorses of this suite are:

Syntax: tcltest::test name desc constraint script expectedAnswer

Run a test, and compare the results to the
expected results.

name The name of this test – to use when reporting
pass/fail results.

desc The description of this test – to use when
reporting pass/fail results.

constraint A set of constraints – to define when this test
should be evaluated. (For example, only test
on certain platforms, if other tests pass, etc.)

script The test script to evaluate.

expectedAnswer The expected result.

A simple test would resemble:

tcltest::test expr-1 "Confirm that expr will add 2+2" {} \
{expr 2+2} 4

If the test fails (for instance, if we declare a wrong value for the
expectedAnswer), Tcl generates output resembling this:

==== expr-1 Confirm that expr will add 2+2 FAILED
==== Contents of test case:
expr 2+2

—— Result was:
4
—— Result should have been (exact matching):
5
==== expr-1 FAILED

After running the tests, we can generate a report with the
::tcltest::cleanupTests command. The ::tcltest::cleanupTests
command generates a report resembling this:

: Total 2 Passed 1 Skipped 0 Failed 1

To test the packet-generating package, we can generate the
expected packets by hand and compare these values to the out-
put from the code.

A set of tests like this can exercise a package and confirm that it
behaves as expected:

package require tcltest
package require packet

set p1 [packet::make ICMP type ICMP_ADDRESS code 0 \
checksum 0 identifier 1 sequence 2 subnet 00]

set expected [list 0x11 0x00 0xee 0xfc 0x00 \
0x01 0x00 0x02 0x00 0x00 0x00 0x00]

tcltest::test makeICMP-1 {ICMP_ADDRESS} {} \
{$p1 getField packet} $expected

... more tests
::tcltest::cleanupTests

This produces a regression suite that runs quickly, provides a
nice summary of results, and is easy to create. The downside is
that it confirms that the package does what I expect, which may
not be what’s correct.

This is where an outside validation tool is useful. One easily
available tool for this testing is tcpdump. We can generate pack-
ets, transmit them, and let tcpdump sniff the packets, do some
analysis, and report problems.

For instance, the tcpdump command

tcpdump -s 15000 -l -x -n -v -i eth1

will generate output like this:

14:22:12.963048 192.168.9.2 > 192.168.9.17: icmp:
address mask request (ttl 32, id 2, len 32)

4500 0020 0002 0000 2001 0778 c0a8 0902
c0a8 0911 1100 eefc 0001 0002 0000 0000

14:22:12.963051 192.168.9.2 > 192.168.9.17: icmp:
address mask request (wrong icmp csum) (ttl 32, id 2, len 32)

4500 0020 0002 0000 2001 0778 c0a8 0902
c0a8 0911 1100 ee99 0001 0002 0000 0000

47April 2003 ;login:

�

PR

O
G

RA
M

M
IN

GWhen testing packets generated with this code:

lappend auto_path .

package require packet
package require ip
package require icmp
package require ether
package require tcp
package require udp
package require dnetlib

load ./libdnet.so

set e [dnet::open eth1]

Generate a good icmp Address Mask Request.
set icmp1 [packet::make ICMP type ICMP_ADDRESS code 0 checksum 0 \

identifier 1 sequence 2 subnet 00]

Generate a BAD CHECKSUM icmp Address Mask Request.
set icmp2 [packet::make ICMP type ICMP_ADDRESS code 0 checksum 99 \

identifier 1 sequence 2 subnet 00]

Embed the icmp packets into IP packets.
set ip1 [packet::make IP version 4 hdrlen 5 tos 0 length 32 id 2 flag 0 \

offset 0 ttl 32 protocol ICMP checksum 0 source \
192.168.9.2 dest 192.168.9.17 options {} payload [$icmp1 getField packet]]

set ip2 [packet::make IP version 4 hdrlen 5 tos 0 length 32 id 2 flag 0 \
offset 0 ttl 32 protocol ICMP checksum 0 source \
192.168.9.2 dest 192.168.9.17 options {} payload [$icmp2 getField packet]]

Embed the IP packets into Ethernet packets.
set ep1 [packet::make ETHER dest 00:E0:4C:00:14:4D src 00:A0:CC:D1:B6:00 \

type IP payload [$ip1 getField packet]]
set ep2 [packet::make ETHER dest 00:E0:4C:00:14:4D src 00:A0:CC:D1:B6:00 \

type IP payload [$ip2 getField packet]]

Convert the Ethernet packets into binary.
dnet::importPacket $ep1
dnet::importPacket $ep2

Send the binary packets out into the world.
dnet::send $e $ep1
dnet::send $e $ep2

These two sets of tests (one internal, and one external) are probably adequate. But proper testing should use the most expensive and
complex piece of equipment you can access. After all, how else can you justify nifty toys?

The Spirent AX-4000 was described briefly in the previous Tclsh Spot article. The next article will discuss using the AX-4000 to cap-
ture and analyze the output of the packet generator.

THE TCLSH SPOT �

48 Vol. 28, No. 2 ;login:

practical Perl
fixing broken modules

Introduction
I recently worked on a project where I needed to make

some bug fixes to some locally written Perl modules. To

make my changes, I fixed and tested a local copy of

these modules, modifying Perl’s search path to find my

copy of them instead of the buggy versions. Modifying

Perl’s search path is an excellent way to test experimen-

tal code without the hassle of installing each fix, or

impacting other users on the same system.

Dynamic languages like Perl, Python, and Ruby all have one
very important feature in common: Programs written in these
languages are distributed in source form. This is a great boon to
software developers who need to debug a system after it is
installed. A Perl programmer can examine a large Perl applica-
tion and see exactly how it works and even make changes, if
necessary. Debugging an installed application written in Perl is
trivial. Debugging a program written in C, C++, or Java is more
difficult, especially if the original source code is lost, misplaced,
or otherwise unavailable.

Access to a program’s source code eases repair. Once I find a
bug in a Perl program that needs fixing, I can easily copy the
program, make a change, and test the updated program. I can
then replace the original program with my fixed version if I
have write access to the appropriate directories. If I do not have
sufficient permissions to upgrade the program, I can maintain
the updated program in a local portion of my path while I wait
for installation issues to be sorted out. In the worst case, I can
update my PATH environment variable to find my updated
program before the existing version.

Fixing a broken library module is a similar process, but slightly
more complicated. If I do not have write permission to the
library module directories, then I cannot install the update.
Even if I could, there are good reasons not to update a module
that could be used by many programs and users on a system. It
is entirely possible that my blindly overwriting an existing mod-

ule with my updated version will fix my program, but it will
also break a great many other programs in use.

If I want to install an updated module locally, I need to update
Perl’s module search path to find my update before the preexist-
ing version. Because this is Perl, there’s more than one way to do
it. Which technique I will use will depend on the situation.

Perl’s Module Search Path
Perl processes programs in two phases: compile time and run-
time. During compile time, Perl ensures that your program is
syntactically correct and performs other operations, like loading
modules. Once this process is complete, the runtime phase
begins and Perl starts to execute your program statements.

During compile time, Perl includes external modules by looking
through a list of directories named by @INC until it finds an
appropriate file to load. To include modules from a specific
directory, update @INC during compile time and before use
statements are processed. Modifying @INC at runtime will have
no impact since the program has been compiled and all use
statements have already been processed.

By default, Perl looks in one of two general file-system areas
when a module is to be loaded. Core modules (the ones that are
bundled with Perl) are stored in $PREFIX/lib/perl5, where $PRE-
FIX is the base of the Perl installation, like /usr, /usr/local, or
/opt. Additional modules, like those installed from CPAN, are
stored in $PREFIX/lib/site_perl. These directories may also
include subdirectories containing Perl’s version number (e.g.,
5.005_03, 5.6.1, or 5.8.0) and subdirectories containing the
current platform architecture (i386-freebsd, darwin, etc.).

If a module is not found in any of these locations, Perl will look
in the current directory. If Perl still cannot find a module, it will
terminate processing the program and report a fatal error.

Whenever Perl is loading a module, it looks for the first match-
ing module encountered in the list that is the search path. If I
want to override a previously installed module, I must place it
in a directory that will appear before the normal module search
directories.

Updating the Module Search Path
There are many ways to update the module search path. One
way is to use the PERL5LIB environment variable. Using envi-
ronment variables to change Perl’s behavior is generally dis-
couraged, because “opaque” settings are hard to notice,
especially by a casual maintainer; besides, they can vary on a
per-user or per-terminal basis. Sometimes, setting PERL5LIB is
the best way to update the module search path, like communi-
cating with Perl subprocesses.

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long- time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.

ziggy@panix.com

49April 2003 ;login:

�

PR

O
G

RA
M

M
IN

GPERL5LIB adds new library directories to the front of the mod-
ule search path. It can contain a series of colon-delimited direc-
tories:

[ziggy@duvel ~]$ mkdir newlib1 newlib2
[ziggy@duvel ~]$ export PERL5LIB=newlib1:newlib2
[ziggy@duvel ~]$ perl -le 'print join("\n", @INC)' newlib1
newlib2
/opt/lib/5.8.0/darwin
/opt/lib/5.8.0
/opt/lib/site_perl/5.8.0/darwin
/opt/lib/site_perl/5.8.0
/opt/lib/site_perl

Whenever a directory in PERL5LIB contains a subdirectory that
matches the current platform architecture, that platform-spe-
cific directory will also be added to the search path. This is also
the location where compiled C extensions will be installed.

[ziggy@duvel ~]$ mkdir newlib2/darwin
[ziggy@duvel ~]$ export PERL5LIB=newlib1:newlib2
[ziggy@duvel ~]$ perl -le 'print join("\n", @INC)' newlib1
newlib2/darwin
newlib2
/opt/lib/5.8.0/darwin
/opt/lib/5.8.0
/opt/lib/site_perl/5.8.0/darwin
/opt/lib/site_perl/5.8.0
/opt/lib/site_perl

Another way to extend the module search path is to use Perl’s -I
command line switch. Adding multiple -I switches when invok-
ing Perl will add multiple directories (and version-specific sub-
directories) to @INC. Note that adding -I switches on the
command line will prepend directories to @INC, while using -I
on the shebang (#!) line will append directories to the end of
@INC:

[ziggy@duvel ~]$ cat > test.pl
#!/usr/bin/perl -lw -Inewlib2
print join("\n", @INC);
^D
[ziggy@duvel ~]$ perl -Inewlib1 test.pl
newlib1
/opt/lib/5.8.0/darwin
/opt/lib/5.8.0
/opt/lib/site_perl/5.8.0/darwin
/opt/lib/site_perl/5.8.0
/opt/lib/site_perl
.
newlib2/darwin
newlib2
[ziggy@duvel ~]$

With this behavior, using -I on the shebang line is sufficient for
adding a module directory to @INC to find modules that are not
stored in the core or site module directories. If you want to
include a directory in @INC to supersede the modules installed
elsewhere on the system, you must specify -I on the command
line when invoking Perl.

A third way to add directories to @INC is to modify @INC
directly at compile time. One way to do this is to modify @INC
in a BEGIN block, so that it will be modified before modules are
loaded:

#!/usr/bin/perl -lw
BEGIN {unshift(@INC, "newlib1", "newlib2"); } print
join("\n", @INC);

No output is produced.

Using BEGIN blocks and directly tweaking @INC works, but it is
ugly and obscure. A better way to perform the same task is to
use a use lib; declaration instead. This declaration is processed
at compile time, before modules are loaded. The use lib; decla-
ration does exactly what it says — prepends another library
path to the list of module search paths.

[ziggy@duvel ~]$ perl -lw
use lib qw(newlib1 newlib2);
print join("\n", @INC);
^D
newlib1
newlib2
/opt/lib/5.8.0/darwin
/opt/lib/5.8.0
/opt/lib/site_perl/5.8.0/darwin
/opt/lib/site_perl/5.8.0
/opt/lib/site_perl
.

Note that use lib; declarations can insert directories at the front
of @INC, but each directory must be explicitly added. Only
PERL5LIB and perl -I can automatically add a platform-specific
subdirectory to @INC to find compiled modules.

Using Local Module Directories
Updating the module search path has a great many uses. The
most common use is to load modules from an application-spe-
cific library directory. Installing modules in a local library
makes it easy to quickly modify an application’s modules when
it is in development. This eliminates the need to go through the
module-install process for each update.

If you cannot or do not want to add modules to the standard
module library, you can install modules elsewhere and find
them with a use lib; declaration. This is a great way to test mod-

PRACTICAL PERL �

Vol. 28, No. 2 ;login:50

ules before installing them, or install modules in a central loca-
tion on a system where you cannot install a module in the nor-
mal site-wide location.

Fixing a Broken Module
One of the lesser-known ways to use a local library directory is
to fix a broken module. Because I can create a local module
library directory and configure Perl to look there for modules, I
can make a copy of a broken module and fix it. I can update
programs to look for this fixed module, or invoke Perl using
PERL5LIB or perl -I to find my fixed module.

Consider this little module, which misbehaves and emits an
obnoxious number of status messages:

package Sample;
use strict;
$|++; ## Turn on auto flushing
sub new {

print STDOUT "Creating a new object\n";
my $object = {};
bless $object, __PACKAGE__;
$object->load_config();
return $object;

}
sub load_config {

print STDOUT "Loading configuration file\n";
my %config;

$/ = "\n"; ## Read in a series of lines
open(F, "/etc/Sample.conf");
while (<F>) {

chomp;
s/#.*$//;
s/s+/ /;
next unless m/^(.*?)=(.*)$/;
$config{$1} = $2;

}
return %config;

}
...
1;

This module contains a few errors I want to fix. I start by copy-
ing Sample.pm from its location in /opt/lib/perl5/5.8.0 to my
local module directory, ~/fixed-modules/. I then make my
changes to ~/fixed-modules/Sample.pm.

In some cases, I could fix this module by writing a new module
and inheriting from Sample.pm. However, the problems that I
want to fix are endemic and cannot be fixed effectively without
rewriting the entire module.

Another approach would be to create a fix to this module and
rename it as FixedSample.pm. If I have several programs that
use the Sample module, then I will have a lot of programs to

update to use FixedSample instead. By making a fixed version
of Sample available, I can continue to use existing programs
with little or no modifications to those programs.

The first error I need to fix is the modification of the $| special
variable at the beginning of the module. This global variable
controls “auto flushing,” or automatically flushing data sent to
STDOUT instead of buffering it. Modification to $| is usually a
global change in program behavior. Methods in this module
may want to have output to STDOUT flushed immediately, but
other portions of this program may rely on STDOUT being
buffered. Changing global behavior like this is bad style when
writing a module.

A better way to flush output to STDOUT within a module is to
modify the value of $| locally. This can be done by making a
local copy of $| within a sub and modifying that copy:

sub new {
Turn on autoflushing only within this sub
local $| = 1;
print STDOUT "Creating a new object\n";
...

}

There is a similar problem in load_config(). It modifies the $/, or
input record separator. Within load_config(), this variable needs
to be a newline character (the default value). Another portion
of the program may need a different behavior, like reading in an
entire file at once, or reading in one block at a time. These
behaviors are defined by setting $/ to undef or the empty string.
Calling load_config() will change this global behavior and may
inadvertently impact other portions of the program.

Fixing this buggy behavior also requires making a local modifi-
cation to the value of $/:

sub load_config {
turn on autoflushing locally
local $| = 1;
print STDOUT "Loading configuration file\n";

my %config;
Read in a series of lines within this sub
local $/ = "\n";
...

}

Another problem I want to fix deals with opening the configu-
ration file. Remember that file handles in Perl are global vari-
ables. The configuration file is opened using the file handle fh,
which is a very common name for a file handle. If my program
already has an open file handle called fh, then load_config() will
close it and open up another file instead. I could fix this prob-
lem by choosing a better name for my file handle. A better solu-

51April 2003 ;login:

�

PR

O
G

RA
M

M
IN

Gtion would be to use a lexical file handle, or a file handle that
exists only within this sub:

sub load_config {
...
open (my $fh, "/etc/Sample.conf");
while (<$fh>) {

...
}
...

}

After I make these changes, my copy of the Sample module will
be well behaved. But it still emits an obnoxious number of log
messages. I don’t need to see them, and I would like to eliminate
them. Here is what my fixed version of this module looks like
after I’ve removed the unnecessary print statements:

package Sample;
use strict;
sub new {

my $object = {};
bless $object, __PACKAGE__;
$object->load_config();
return $object;

}
sub load_config {

my %config;
local $/ = "\n";
open(my $fh, "/etc/Sample.conf");
while (<$fh>) {

chomp;
s/#.*$//;
s/s+/ /;
next unless m/^(.*?)=(.*)$/;
$config{$1} = $2;

}
return %config;

}
...
1;

With an updated version of my module, all I need to do now is
use it in my programs. I can do this in a number of ways. I can
modify programs that I explicitly want to use this module by
adding a use lib ‘$ENV{HOME}/fixed-modules’;. If I do not want
to modify my Perl programs, I can use perl -I~/fixed-modules
when invoking programs that use this module, or set PERL5LIB
to include ~/fixed-modules. Any of these techniques will allow
me to override Sample.pm with my copy.

Annotating Unfamiliar Modules
Periodically, I need to fix a module I have never seen before. I
might be able to isolate a problem using the Perl debugger, but

any insights I gain will probably be lost by the time I finish a
debugging session. I could write them down on paper or online
somewhere, but there is no guarantee I’ll have that paper or file
available when I need it again. Usually, it will be sitting on my
desk at home when I am at work, or sitting on my desk at work
when I am at home.

A better solution would be to comment on the program’s
source code directly. In this situation, I probably do not want to
update the installed module directly, but I can comment on a
module if I create a local copy and annotate that copy. If my
changes are useful, then I can easily create a patch to send back
to the module’s author.

Another modification I can make locally is to normalize a mod-
ule’s coding style. Many module suites are written by multiple
programmers over a period of time. Sometimes the style of
each author will vary, or the coding style is so different from my
own that it makes the module difficult to read.

I’d rather fix a problem than complain about coding style. If I
make a local copy of a module, I can process it using a code for-
matter like perltidy and apply a single, readable style to one or
more modules. My goal here is to understand how a module
works, not to start a flame war over style. By loading my refor-
matted version of the modules, I can also use them when
debugging a program. Once I understand how the module
works, I can patch the original version of the module.

Conclusion
Because Perl programs and Perl modules are distributed as
source code, it is easy to take an existing program and modify it
to quickly fix a bug. This kind of fast turnaround helps you
solve a problem before the boss fires you.

Fixing modules takes a little more effort than fixing a broken
program, but it can be done. The key to fixing a broken module
rests with loading modules from a local directory, and updating
Perl’s module search path, @INC, to find the updated modules.

PRACTICAL PERL �

52 Vol. 28, No. 2 ;login:

Perhaps the mystery of the trojaned open source code has been solved. In

my February column, I discussed the trojaned configure scripts that would

connect to a fixed IP address, and exec a shell if there was any response.

On January 22, CERT published an advisory (http://www.cert.org/advi-

sories/CA-2003-02.html) about a double free() bug in CVS servers that

allowed an attacker to execute code as root, requiring no more than read-

only access to start with.

We have no way of knowing if this will be the only bug ever discovered in CVS or on
other services that run on mirrors used to distribute open source software. But it sure
makes having signed distributions seem a lot more important. Of course, that pre-
cludes having enough signers on your own key ring that you can trust the public key
used to sign the code.

Other great events have occurred. The world’s fastest spreading and shortest lived
worm appeared about 0530 UTC on January 25, late Friday night in the US, where it
appeared to have been launched. Sapphire, or Slapper, attacked unpatched versions of
Microsoft SQL Server and MSDE. As usual, a patch had been published by Microsoft
months before the worm was released. But even Microsoft got the infection, and was
still fighting it on Monday morning. Bank of America and Imperial Bank of Com-
merce ATMs went down on Saturday, and some other well-known organizations
(AMEX, A.C. Nielsen, Price Waterhouse, and Citicorp) were hit hard as well.

Perhaps these organizations should not be blamed for not patching their Windows
boxes, as Microsoft had put out a later hot fix for MS SQL that would have regressed
the DLL involved, ssnetlib.dll, after the initial security patch was posted. Or perhaps
the sysadmins involved had no idea they had an open network service listening at a
UDP port attached to MS SQL Server. Keep in mind that many applications embedded
MSDE, a developer-only version of MS SQL, so that someone running McAfee Cen-
tralized Virus Admin, Veritas Backup Exec, or ISS RealSecure 7.0 and Scanner were
also vulnerable. ISS, a security company, included a vulnerable version of MSDE at
least as late as September 2002, two months after the patch had been announced, and
never reported that their own software was vulnerable to the attack.

Sapphire was the fastest spreading worm yet seen. A paper describing Sapphire’s
spread (http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html) explains
why. In brief, Sapphire was fast because it used short UDP packets (404 bytes, includ-
ing headers) to attack, so no TCP handshaking, which caused Code Red to spread
much more slowly. The number of Sapphire-infected systems doubled every 8.5 sec-
onds, reaching 90% of all vulnerable hosts in 10 minutes. If you had read the Paxton
paper presented at last summer’s USENIX Security Conference (http://www.icir.org/

vern/papers/cdc-usenix-sec02/), Sapphire might not have seemed such a surprise.

The main effect of Sapphire was denial of service. Some networks became unreachable
within minutes of the start of the attack. But many ISPs acted quickly to block packets
going to port 1434/UDP, which is, after all, not a required or necessary service. The
effects on the greater Internet were soon damped down, and almost back to normal
within 14 hours: http://www.matrixnetsystems.com/ea/2003/20030125_packetloss.jsp.

I found Sapphire interesting because it so easily penetrated “protected” networks. No
firewall maintainer in his or her right mind allows arbitrary UDP packets to enter
from the Internet. So how did Sapphire get inside financial institutions, Microsoft, and

musings
by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
http://www.icir.org/
http://www.matrixnetsystems.com/ea/2003/20030125_packetloss.jsp

53April 2003 ;login:

�
SE

C
U

RI
TYmany other sites? The answer includes VPNs, connections to home systems, and vari-

ous routing leaks.

Books
The notion of various undocumented connections to networks reminds me of one of
the books I have been reading lately. The venerable Firewalls and Internet Security

(Cheswick, Bellovin, and Rubin, Addison-Wesley, 2003, ISBN 0-201-6346-6) has
finally come out in a second edition. I had quit bugging Ches about this, feeling it was
a futile gesture, but am glad to see the project completed at last.

Firewalls used to be my favorite security book, and still comes close (it now has to
compete with Ross Anderson’s Security Engineering). The first edition (from 1994)
didn’t even mention HTTP, so the book really needed revision. The new book contains
new chapters, including a short one on Web services, IDS, and Network Layout, as well
as updates to most other materials. Occasionally, I would find something that seemed
very out-of-date, like the mention on page 58 that most sniffers are discovered when a
disk fills up or that filtering with routers entails a performance penalty, but that the
Internet is “connected by (at best) a DS1 (T1) line (1.544 Mb/sec).”

The writing in Firewalls is terse. You will find information about the most popular net-
work services and the issues involved in passing them through firewalls, as well as the
related risks. An “evening with Berferd” survives, and there is also a new section about
a different attack, complete with crude forensics used to examine Clark, the ULTRIX
system in question. While I wouldn’t recommend this book to firewall “newbies” (I
don’t want them attempting to rip out the IP forwarding routines in their kernel), I do
recommend it to people who must run firewalls and who already understand the dif-
ference between an application gateway and a circuit relay.

Matt Bishop also has a new book out: Computer Security, Art and Science (Addison-
Wesley, 2003, ISBN 0-201-44099-7). Matt wrote his book as a textbook for advanced
undergraduates and graduate students of computer science. In other words, you can
learn a lot about security using this book in addition to using it to teach security, but it
is not a book for people wanting to improve the way they maintain system or network
security. Perhaps getting Matt to teach a couple of semesters to the programmers who
write our network servers and authentication code might be a good idea, though. And
if your goal is to really learn about computer security, Matt’s book is clear, easy to read,
thorough, and includes exercises as well as telling you which chapters to skip if your
math skills are rusty (or perhaps never at the level of following formal proofs).

I was fortunate enough to get to tech edit Mick Bauer’s Building Secure Servers with

Linux (O’Reilly, 2002, ISBN 0-596-00217-3). That forced me to read his book in excru-
ciating detail, which he later claimed he appreciated. Building explains securing a
Linux server at a very practical level. There is a section that talks about risk analysis at
the beginning, but then the book gets very nuts-and-bolts, with examples of fire-
walling, OS hardening, using SSH, OpenSSL, securing DNS, SMTP, Web servers, FTP
servers, handling logs, and some simple IDS techniques.

I didn’t just read Mick’s book, I used his instructions to do things that I had put off,
like putting BIND in jail. Note that I did this on a BSDi box, not a Linux box. I believe
that most of the configuration examples will work just as well on any OS where a
server package is supported (except Windows), so this book can have a broader audi-
ence than just Linux users. If you find you need something that goes beyond what

MUSINGS �

Vol. 28, No. 2 ;login:

comes as documentation for some open source security package, check out Mick’s
book. The writing is clear, it’s well organized, and provides enough detail for you to
install and configure the services it covers.

And, finally, you can read a book about BGP (van Beijnum, O’Reilly, 2002, ISBN
0-596-00254-8). You might wonder why I would read a book about BGP besides
curiosity, but there are important intersections between BGP and security. Van
Beijnum does a good job explaining issues like peering and how that affects a site that
wants or needs multiple connections to the Internet for reliability. Filtering is also
vitally important to the proper functioning of BGP (and in being a good neighbor)
and is covered, but not in its own chapter.

The Finale
The Internet survived yet another attack. While Sapphire disrupted local connectivity,
and access to many sites became difficult, the Internet as a whole continued running.
And the quick efforts to dampen the packet flooding caused by Sapphire, estimated at
55 million packets per second at its peak (CAIDA paper), were accomplished by the
night-shift personnel at ISPs, not by government organizations.

Sapphire could have been much worse, though not in the sense that it could have
killed or maimed people. In a bit of cheerful news in an otherwise depressing time,
Marcus Sachs (director of communications infrastructure protection in the Office of
Cyberspace Security in Washington, DC) said in a response to Sapphire, “There was no
lasting damage done to the infrastructure. We’d like to see the term cyber-terror
dropped.” Yes, someone in the US government who understands that terrorism
involves “something that physically kills people” (his words).

But all Sapphire did was invade and attack. The SQL module involved, ssnetlib.dll,
runs with Local System privileges. Had the author been a bit less frugal with his or her
code, he or she could have included a timer that stopped the worm from scanning
about 15 minutes after it was released. A second timer could then have counted down
the seconds until some other activity began, whether it was a different DoS (like Code
Red flooding the IP address for whitehouse.gov) or perhaps something a bit nastier,
not as subtle as disk formatting, but some other form of data destruction. Or Sapphire
could have downloaded and installed DDoS agents. A relatively unheard-of trojan
named Leaves had been installed on over 20,000 systems last summer and communi-
cated via IRC. The author of Leaves, a British man, was caught before he used his net-
work of agents for anything.

The Internet has proven to be remarkably resilient. The security of Internet-connected
systems, on the other hand, has been proven to be a rare beast, although it probably
does exist in a minority of locations. Perhaps more people need to follow the advice of
Cheswick, Bellovin, and Rubin (install bulkhead firewalls internally) and of Mick
Bauer (harden those servers!).

54

55April 2003 ;login:

�
SE

C
U

R
IT

YAs terms borrowed from classic American westerns, often inhabited by

black-hatted villains and white-hatted heros, a “black hat” cracker describes

someone who breaks into a computer system or network with malicious

intent; a “white hat” is a cracker who identifies a security weakness in a

computer system or network so that the system’s owners can fix the breach

before it is exploited. White-hat cracking is a hobby for some while others

provide their services for a fee. The paid white-hat cracker may work as a

consultant or be a permanent employee on a company’s payroll.

Regardless of hat color, both kinds of crackers are trying to achieve the same goal: suc-
cessfully breaking into networks and computers. When used by the white hats, these
targeted break-in attempts are often part of an overall security plan and are referred to
as penetration tests. While you never know what you’re going to find when embarking
on such a test, it turns out that what they are (and are not) good for is well understood
by security professionals. I asked over a dozen such individuals when they’d recom-
mend penetration tests for an organization and got a lot of feedback, with a few varia-
tions on the theme. So if you’re wondering what penetration testing can do for you,
read on.

First off, penetration testing is part of an overall security plan. Security testing, like
many other pieces of a total security solution, is not going to provide security to your
site all by itself. And, in fact, penetration testing is really a post-implementation verifi-
cation tool rather than something like a firewall or VPN concentrator, which are actu-
ally implementing part of the security at a site. There’s a lot of legwork to be done
before any verification is begun. Appropriate use of a penetration test implies that the
up-front work is complete and is ready to be tested. The professionals reiterate that
penetration testing is not a replacement for careful security design and implementa-
tion and that these designs begin with a thorough risk assessment and management
buy-in of the organization’s IT security priorities.

Once the security goals have been hammered out and a solution is in place, it’s time to
haul out the white hats and verify you’ve hit your target. Penetration testing is recom-
mended to verify a site’s initial security deployment and as a follow-up whenever new
systems are deployed or existing systems are reloaded, upgraded, reconfigured, or
patched, or when there are code changes to exposed services or applications. There-
after, on a semiannual or annual basis, penetration tests are recommended to ensure
that you’re maintaining the security stance you’ve adopted and that your exposure
profile has not degraded. Major vulnerabilities that lead to remote privileged access
come out all of the time, so even though you passed the last test with flying colors, it
helps to have one done at regular intervals. One frequent recommendation is to con-
sider hiring someone else to do some of these follow-up tests, just to get a fresh set of
eyes looking at your site.

Whether a penetration test is hired out or performed in-house, the tools and method-
ology used can determine the true value of the test results. Simply pointing a scanner
at a site is not penetration testing; there must be a diligent effort to look at the site
from several different angles, using a myriad of tools and some hand inspection of
custom code and components. Better testers continue until they have found at least
one vulnerability. The best testers carry out a test plan that includes a list of planned
tests, so that they test much more than just the firewall or public servers, but look for
other ways into the site.

hacking for
fun and profit

by Tina
Darmohray

Tina Darmohray,
contributing editor
of ;login:, is a com-
puter security and
networking consult-
ant. She was a
founding member of
SAGE. She is cur-
rently a Director of
USENIX.

<tmd@usenix.org>

HACKING FOR FUN AND PROFIT �

Vol. 28, No. 2 ;login:

Aside from straightforward verification, penetration tests appear to be used for a vari-
ety of other, perhaps more political, reasons. Some organizations use them as “feel
good” reassurance which they provide to third parties to prove a certain level of secu-
rity is in place. Sadly, sometimes it’s necessary to use them to assist in in-house battles:
“Hey! You can’t put that application on the Web server; it’s a huge vulnerability!”
“Well, it’s too late, we’ve gone live with it, and we won’t shut it off unless you prove
there’s a problem.” You know what happens next . . .

Prevailing practice indicates, however, that penetration tests have their place in the
standard security suite, with the proviso that most of the security risk is still from
authorized users. This is the old branch bank scenario. Penetration tests are the tech-
nological equivalent of having the manager of the local bank, before going home,
walking about to ensure that all of the windows, doors, and safes are shut. This will not
prevent the assistant manager from giving the key to an in-law who then breaks in on
Sunday night. Similarly, a penetration test will not stop the technological equivalent of
the assisted in-law, but the embarrassment factor and concomitant loss of business to a
bank that loses money because the window was open is much greater than the errant
in-law loss. That is true even if the in-law losses are larger than the loss as a function of
the open window. It is the appearance that the basics weren’t done right that is most
damaging.

One last thing to keep in mind with regard to penetration testing: If it isn’t successful,
that doesn’t mean you’re safe, just that the right thing wasn’t tried. It’s the old problem
of trying to prove the negative, and whether you do it yourself or hire it out, there is
only so much time.

56

Penetration tests are the

technological equivalent of

having the manager of the

local bank, before going

home, walking about to

ensure that all of the

windows, doors, and safes

are shut.

57April 2003 ;login:

�
SE

C
U

RI
TY

An exciting area of UNIX, security presents many challenges not resolved

by a single technology. Host-based security solutions occupy a crucial place

between network-based defenses (e.g., firewalls and network intrusion

detection) and good administrative practices (e.g., securely configured and

hardened hosts). Many of the SANS Top 20 Vulnerabilities can be success-

fully mitigated using host-based security. For example, buffer overflows in

Sendmail, BIND, and RPC services can be secured using kernel-call tracing,

and the consequences of most of the other attacks from the list can be dis-

covered using file-system integrity checking.

Host-Based Security Technologies
This paper deals with UNIX host-based intrusion detection and prevention. We will
take a look at UNIX host security solutions, with the focus on their inadequacies and
ways to overcome them (whenever possible). Currently, many different technologies –
integrity checking, kernel- and system-call tracing, log analysis, local-host NIDS – are
lumped together into host-based security.

Integrity-checking software examples include Tripwire, AIDE, and a large number of
lesser-known scripts and applications. Linux RPM also provides some integrity-check-
ing functionality (“rpm -V” mode). The common feature of integrity checkers is that
they keep a record of file properties such as modification or change times, location on
disk, permissions, owner, and other attributes. They also compute and keep crypto-
graphic checksums of the file contents. The simplest application of this kind would be
a shell script similar to the following:

#!/bin/sh
#primitive integrity checker

ls -laRi / >/home/files
cd /usr/bin
ls | xargs -i md5sum {} > /home/sums

diff /home/files /home/files.old
diff /home/sums /home/sums.old

HIDS such as Entercept operate on a kernel level. While high-security kernel patches
(such as Linux LIDS and Solaris Pitbull) also work in kernel space, they are more accu-
rately described as “prevention” technology as opposed to “detection,” since they
restrict the actions of users and applications based on certain pre-defined access con-
trol lists. Some Linux kernel modules (such as StMichael and StJude – http://sourceforge.

net/projects/stjude) occupy an intermediate space: They can detect malicious kernel mod-
ules and can also prevent some of the damage caused by them.

The main distinction to be found in UNIX system log analysis tools is between real-
time tools (that read log records as soon as they are produced, i.e., written to disk) and

ups and downs of
UNIX/Linux
host-based security
solutions

by Anton
Chuvakin

Anton Chuvakin is a
senior security ana-
lyst with a major
information security
company. His areas
of infosec expertise
include intrusion
detection, UNIX
security, forensics,
and honeypots. In his
spare time he main-
tains his security por-
tal at http://www.
info-secure.org.

anton@netForensics.com

HOST-BASED SECURITY SOLUTIONS �

http://sourceforge

Vol. 28, No. 2 ;login:

cron-based tools (that run periodically and process accumulated log records). Some
commercial HIDS (such as Dragon Squire) also have capabilities to analyze system
logs. In addition, there are many freeware tools that can be used to detect intrusions
using log files. Swatch is the best-known real-time tool, while logcheck, logwatch, and
many others provide periodic log assessment.

Network IDSes that are used to monitor traffic only destined for a specific host (also
sometimes called hybrid IDS) will not be considered here since they are much closer to
network intrusion detection systems than to host security. However, if such a “hybrid”
IDS analyzes network traffic after processing by the host protocol stack (e.g., at the
application level), it can do many things that normal network IDS cannot do, such as
analyze encrypted traffic (SSH, SSL, IPSec VPN, etc.). In addition, many of the inser-
tion and evasion attacks described in the Ptacek and Newsham paper (“Insertion, Eva-
sion, and Denial of Service: Eluding Network Intrusion Detection”) will not work
against such IDS, since raw traffic processing is done by the target system stack and
not by some other host (with its own network stack peculiarities) sniffing the traffic.

HIDS Challenges
What are some of the advantages of host-based intrusion detection products? The key
difference is that while network IDS detects potential attacks (which are being sent to
the target), host IDS detects attacks that succeeded, thus having a lower false positive
rate. Although some might say that network IDS is thus more “proactive,” host IDS is
effective in the switched, encrypted, and high-traffic environments that present certain
difficulties to NIDS.

Now it’s time to turn to HIDS challenges.

First, at least some of the host IDS components are deployed on an attacked host. If
the attack succeeds, the intruder will usually have “root” access to the box and might
be able to disable or deceive the IDS. The usual countermeasures are “hide” (prevent
an intruder from seeing the IDS and continue operation), “run” (sound an alarm any-
way before being discovered), and “fight back” (attempt to thwart the attacker’s activ-
ity).

Second, even without total access to the host and without an ability to damage the IDS
itself, the intruder can influence the reporting channel. This is because a host-based
system must communicate the alerts to the outside parties: email, syslog, SNMP, or
other network connection are typically used. Some of these protocols can be disrupted
even without having complete access to a host.

Third, host IDS usually presents a bigger administrative and management challenge
than network intrusion detection. While it is sufficient to have one NIDS per network
segment, HIDS should be installed on every monitored host. That complicates both
system configuration and report/alert collection. In addition, having host IDS systems
of different classes and from different vendors usually complicates alert correlation
and aggregation. Security Information Management solutions can ease the load of
analyzing host intrusion detection output.

Fourth, some of the HIDS classes will incur a performance penalty on the protected
host. Some vendors report that their kernel-level HIDS incur an extra 5–10% CPU
load. Integrity checking is extremely CPU and I/O heavy (if only during the periodic
check) due to the underlying cryptographic algorithms.

58

Host IDS usually presents a

bigger administrative and

management challenge than

network intrusion detection.

It should be noted from our honeypot experience, that few of the less competent
attackers will bother to check for the presence of the host IDS and/or use any of the
above methods to disable it. While typical automated attack kits (autorooter + rootkit)
do disable standard UNIX system logging and (sometimes) process accounting, they
will not attempt to foil the operation of the integrity checker. One possible explana-
tion is that people who fall victim to such an unsophisticated attack are usually not the
users of system integrity checkers. However, in a recent case, the attacker did take steps
that accidentally disabled the integrity checking: He simply “rm -rf /”ed the whole
machine.

ATTACKS AGAINST INTEGRITY CHECKERS
Now let’s turn to integrity checkers (IC) and outline some attacks against them
together with countermeasures. As was outlined above, the typical IC program com-
putes the checksum and collects information about files (“initialize mode”). Then the
program will periodically check for changes (using the “check mode”). In addition, the
system admin can update the file signature after reconfiguring the system (“update
mode”). Depending on the implementation of the IC program, each of those modes
can be attacked.

ATTACKS AGAINST “CHECK MODE”

TROJAN BINARY

If an IC program uses a standard system binary to check the integrity (e.g., RPM’s
/usr/bin/md5sum), one can replace the binary to report the right checksum for certain
files. Using this simple method, the intruder can hide a small number of files from
checksumming, but not from other checks (such as location). For the Linux RPM-
based system case, replacing the RPM binary will work just as well.

COUNTERMEASURES

This attack is only provided as an example, since most IC programs use much more
than just a checksum and often implement their own MD5 algorithm.

KERNEL-LEVEL MODULE (LINUX, SOLARIS, *BSD)

An attacker can deploy a malicious loadable kernel module (LKM) to remap the sys-
tem calls. As a result the open() call to open a certain file for checking will be redirected
to another target. Thus the original file moved to a different location by an attacker
will be checksummed. Or, one can leave the open() call to open the original file left in
place, but instead redirect the execve() to run the malicious program stored elsewhere
(the approach used by twhack.c sample code in the “Bypassing Integrity Checking”
article in Phrack #51). In addition, remapping some system library (libc) calls can
accomplish the same task. The malicious system libraries for Linux and Solaris were
observed in the recent system breaches.

COUNTERMEASURES

Implementing more checks will require the attacker to remap more and more system
calls (which is a non-trivial programming challenge).

Example: Adore v.0.42 vs. AIDE and Tripwire

Adore LKM is a kernel-level backdoor for Linux and FreeBSD, featuring file, process,
and connection hiding. Adore remaps fork(), write(), open(), stat() (=get file informa-
tion), close(), clone() (=like fork()), kill(), mkdir(), and getdents() (=get directory entries)

59April 2003 ;login:

�
SE

C
U

RI
TY

HOST-BASED SECURITY SOLUTIONS �

Vol. 28, No. 2 ;login:

system calls. By default, if you know the filename and location of a file, you will be able
to look at it, but it will not show in the directory.

AIDE uses open() to query the files as shown in the above call trace excerpt (obtained
by “ltrace -S -f -r -C -s 1000 -o aide-trace aide –check”):

22015 0.000249 SYS_open("/etc/security", 67584, 027777753350) = 5
22015 0.000238 SYS_open("/etc/smrsh", 67584, 027777753350) = 5
22015 0.000241 SYS_open("/etc/locale", 67584, 027777753350) = 5

Thus, if Adore is configured to hide the presence of a file, AIDE check will not report
on the file. On the other hand, Tripwire will still catch the attacker, because it uses
read() in its integrity checking after doing an open() based on its own records (and not
the getdents() output which is also remapped):

22020 0.000075 SYS_read(3, "\177ELF\001\001\001", 1024) = 1024
22020 0.000075 SYS_read(3, "\177ELF\001\001\001", 1024) = 1024

It should be noted that by remapping more calls, even this can probably be circum-
vented.

FAKED REPORT

The attacker might be able to break the email sending functionality and then manually
send a faked “All OK” report, modeled after the original report. Admittedly, this attack
relies on the intruder’s ability to prevent the communication between integrity check-
ing and the reporting station. However, it might require fewer privileges than the full-
blown attack, such as “mail” group privileges vs. those of a “root” user. An even more
malicious variant of this attack involves replacing the integrity checker binary with an
“OK report generator” program, which sends the report to the sysadmin at specified
intervals. This involves having root access, but can present a more permanent solution
immune to any of the system changes.

If a different networked channel is utilized, it can also be attacked. Consider that hav-
ing complete control of the target machine, the attacker might initiate any connection
(even encrypted) or respond to any connection from an IDS management console. It
should be noted that attacks of this kind have not been observed “in the wild.”

COUNTERMEASURES

Use of secure channels for reporting will stop this attack. Signed email will be consid-
ered secure only if someone actually checks the signatures on the reports. Otherwise,
faking “signed” reports is just as easy as faking unsigned reports.

ATTACK BETWEEN CHECKS

While it sounds trivial, if an attacker manages to complete his activities between peri-
odic checks and then restore the system to its original state, the IC program will not
report an intrusion. It is impractical to expect hourly integrity checks for most envi-
ronments (and that would cause heavy CPU utilization for cryptographic checksum-
ming). However, if the original file is replaced, it will likely not be stored in the same
disk location and the crime may be discovered.

COUNTERMEASURES

Daemon integrity checkers (such as the somewhat obscure “Samhain,” available at
http://www.la-samhna.de/samhain/) do exist. Samhain is an impressive tool that boasts
powerful defenses such as an encrypted and compressed executable binary, cryptogra-

60

http://www.la-samhna.de/samhain/

phy support, steganographically shielded configuration files (can be merged with
innocent GIF or JPEG images), a deceptive command line, and its own kernel-level
hiding kit. These are in addition to secure reporting or information hiding in case the
reporting channel is cut off.

As a side note, while some of the crypto-protocols used for integrity checking (such as
MD5) were found to have collisions (i.e., different files having the same MD5 check-
sum), their impact on the security of real-world systems is minor, since it is likely not
the weakest link for the typical IC deployment scenario. Still, better integrity checkers,
such as Tripwire, use several different algorithms to eliminate this possibility.

ATTACKS AGAINST “UPDATE MODE”

For simple integrity checking programs, attackers will be able to run the “update
mode” after modifying the system. Similarly, the attacker can modify the signature
database directly. It will work only if the database is stored on the same system that is
being checked (not a good idea).

COUNTERMEASURES

Update mode should require a password, and the database should be encrypted (done
by some commercial integrity checkers) and, ideally, stored off-site on read-only
media (in-depth defense). That will also help to prevent some insider and physical
attacks.

ATTACKS AGAINST “INITIALIZE MODE”

The evident attack is that if the system is already trojaned, the initialize mode will cre-
ate a set of signatures that establish the “compromised baseline.” The deployed trojans
might also capture the password used for the database.

COUNTERMEASURES

Run the integrity checker right after installation and before connecting to the
untrusted network. After creating the database, copy it and store it away from the pro-
tected computer.

Now let’s consider kernel-level solutions. We will briefly look at Linux StMichael load-
able kernel module (LKM), designed to alert on the presence of malicious kernel mod-
ules (such as Adore). The module is also able to perform integrity checks on some of
the data structures inside the kernel and to detect tampering with various kernel calls.
StMichael also conceals itself (using the same tricks as adversaries such as Adore or
knark).

For example, if StMichael is loaded and some other kernel module attempts to load in
hidden mode and remap system calls, the malicious module will be revealed and
(optionally) the changes to a kernel call table will be reversed with the log message:

Apr 24 18:32:13 anton kernel: 0(STMICHAEL)
:Kernel Structures Modified. Attempting to Restore.

In case the rootkit was loaded before StMichael, the module might be able to perform
detection as well:

Apr 24 18:28:59 anton kernel: (STMICHAEL)
Possible LKM Rootkit Detected during Load.

61April 2003 ;login:

�
SE

C
U

RI
TY

HOST-BASED SECURITY SOLUTIONS �

Vol. 28, No. 2 ;login:

LOG DELETION/MODIFICATION
Now we are ready to briefly discuss log analyzers. Log analyzers are relatively easy to
foil. Most attackers disable system logging and/or wipe system logs and process
accounting records. Once root access is achieved, deleting or modifying system logs is
easy. Numerous tools (e.g., clean, from THC toolkit, and others) exist to cleanly delete,
log, and audit records from text and binary logs. Modern Linux/Solaris rootkits
include such tools, and they are automatically activated upon rootkit installation, eras-
ing all traces of log evidence. Now, if remote logging is enabled, the typical rootkit
might alert the owner about the fact, but there is nothing it can do about it if the
incriminating log messages were already shot across the network over UDP.

COUNTERMEASURES

Remote logging is the most commonly used and reliable measure against log tamper-
ing. Using a secure log server or a serial connection to drop off the logs is easy to
implement and adds a lot to security.

Cryptographically signed system logs (while they sound attractive) do not measure up
to a tried-and-true remote logging. However, it is well known that standard UNIX log
transport uses the unreliable UDP protocol. Tools exist to flood the log server with
messages and cause it to overflow, crash, or stop receiving messages. In addition, faked
data injection can present another risk for some environments. Log processing and
correlation engines can be made to reach the wrong conclusion if their correlation
logic is known to the attacker. For example, sending faked messages seemingly from
the FTP daemon might lead the log analysis program to believe that an FTP session
has ended, while in fact the message was crafted by the attacker.

Moreover, a bug in a log monitoring program can lead to a compromise. A recent criti-
cal bug in LogWatch enabled attackers to gain local “root” privileges simply by crafting
a simple shell script, which abuses temporary files created by LogWatch. More details
on the exploit are available at http://www.securiteam.com/exploits/5OP0S2A6KI.html.

The obvious conclusion is that to prevent this and other vulnerabilities, log analysis
IDS should be run on highly secured log aggregation servers and not on all production
machines.

Conclusion
UNIX host security, while somewhat vaguely defined, contributes a lot to maintaining
a secure computing environment. This paper introduced some of the issues that
should be considered before the deployment of host-based intrusion detection. Let us
also note that effective centralized reporting and audit trail analysis will significantly
increase the value of host-based intrusion detection. It is crucial to have a central point
for the HIDS to report to.

Another promising aspect of host security is application security. Ideally, host IDS
should be able to understand the audit trails produced not only by system resources,
but also by applications. In this case, a more comprehensive picture of security can be
achieved.

62

Cryptographically signed

system logs (while they sound

attractive) do not measure up

to a tried-and-true remote

logging.

http://www.securiteam.com/exploits/5OP0S2A6KI.html

63April 2003 ;login:

�

SY

SA
D

M
INFiltering Options Revisited

Over the past several years, we have all seen “Unsolicited Commercial

Email,”a.k.a.“spam,” grow from an annoyance primarily propagated

through Netnews to something that routinely lands in everyone’s mailbox.

The evolutionary path followed by anti-spam measures somewhat resem-

bles that of network security. Remember when firewalls were (allegedly)

optional?

Attempts to stem the rising tide of spam have had humorous consequences, at least to
observers, if not participants. Some articles from our friends across the water point
out the ruckus caused by unintended consequences of anti-spam software, ranging
from stifling discussions on certain bills in the UK Parliament to rejecting internation-
alized messages as “inappropriate content.” I realize that Welsh isn’t for everyone, but,
really, that’s a bit extreme.

The first-ever Spam Conference recently concluded at MIT and brought together both
cutting-edge research and authors of popular freeware and commercial packages.
Much good work continues to come out of the conference, and I look forward to see-
ing the next set of results. Of course, the “Spam Conference” was really about anti-
spam methods and the problem of spam, but that’s just the way conferences are
named.1

“Yes, the danger must be growing,
For the rowers keep on rowing,
And they’re certainly not showing
Any signs that they are slowing!”

— Willy Wonka

“Analysts believe inbound spam email for the corporation is
at least 30% now and will grow to 50% in the next two years.”

— Gartner, 2002

“Not on my watch!” — everyone to whom I’ve quoted the above

Tutorials like those provided by ServerWatch can compare and contrast commercial
systems, but we’ve chosen to focus largely on the freeware systems here. Obviously, the
best protection is not to get yourself on the lists in the first place, but, as Arlo Guthrie
said, “This is not a song about Alice.” It is worth mentioning that the spam/anti-spam
arms race shows no signs of slowing down. Techniques such as obfuscation with hedge
characters or HTML symbol encoding now offer spam-harvesting webbots without
the slightest hiccup. Embedding mailto links or email addresses in a protective bezoar
of JavaScript is good protection now but probably the next bit of digestive evolution
for the e-bots. Like server-side generation of text images, this is also an accessibility
issue, foiling conventional text-to-speech systems as well as address-harvesting ’bots.

As always, things will get worse before they get better. A recent MessageLabs report
shows that as filtering options improve, spammers (and virus writers!) are increasingly
targeting loopholes in our mail clients and mail-handling procedures. For example,
what if you get an attachment called our-new-house.jpg.exe.jpg?

To quote from the report, “The malware relies on especially crafted email headers, cre-
ating an attachment with three file-extensions. . . . The first extension . . . is visible to

not on my watch!
by Strata R.
Chalup

President, VirtualNet.
Starting as a Unisys
68K admin in 1983,
Strata Chalup is now
an IT project manag-
er but allegedly has
retained human qual-
ities. Her mixed
home network (Linux,
Solaris, Windows)
provides endless
opportunties to stay
current with hands-
on tech.

strata@virtual.net

1. I still haven’t seen a more unfortunate name
than that posted on a call for papers at the MIT
Psychology Department, where I once managed
systems: “(n)th Annual International Invita-
tional Traumatic Head Injury Conference.”
Ouch!

NOT ON MY WATCH! �

Vol. 28, No. 2 ;login:

the email user, and is intended to persuade them that the attachment is “safe.” The
final extension . . . is used by Outlook Express to set the icon to represent the applica-
tion for opening the attachment. . . . However, the unusual middle extension (.EXE) is
used by Outlook Express to determine how to launch the attachment; therefore an
.EXE file will be executed if a user double clicks on an infected attachment.” The next
generation of spam harvesting tools will probably include viruses which gather spam
directly from people’s address books, so the issues of anti-spam and anti-virus are
increasingly converging.

The more things change, the more they stay the same. Email anti-spam technology is
recapitulating the ontogeny of Usenet anti-spam technology. Aren’t we overdue for the
Breidbart Index Filtering on ISP mail gateways and email security products?
(http://www.stopspam.org/usenet/mmf/breidbart.html). Blacklists have been around
forever, and whitelists are gaining in popularity. Two years ago there were only one or
two freely available quasi-automated whitelisting systems, while now a double handful
can be found, and even a company or two staking its future on a special type of
whitelisting. Sophisticated pattern matching is being augmented by even more sophis-
ticated heuristic-based Bayesian modeling. Service providers are even attempting to
require authentication and/or control of accessible servers to try to stop spam at its
source. Let’s take a look!

Follow the White(list) Rabbit
One article mentioned that a favorite trick of randomizing spammers is to twiddle
with the comments in HTML-formatted spam. The message looks identical to the
unlucky recipient, but generates a different checksum. The author’s response was that
“No one I care to talk to sends mail as HTML” and that his practice is to “direct HTML
mail to my spambox.”

We should all be so lucky! The reality is that shunting HTML-formatted mail to a
spam box only works tolerably if accompanied by aggressive whitelisting of friends,
family, and coworkers. The primary disadvantage of whitelisting, of course, is the onus
on you, the recipient, to keep the whitelists updated as people change their addresses,
send mail from other accounts while traveling, and the like. Fortunately, there are a
plethora of options from which to choose, many of which are listed in this article’s list-
ing of links.

Taking the concept of whitelisting to perhaps its most extreme level is the Habeas sys-
tem. This unusual system rests on modern patent and trademark law and will be truly
useful only when large numbers of persons start using it. As you might thus expect, it
is currently free to individuals and service providers. Commercial entities must pay a
licensing fee but, more importantly, jump through some well-defined hoops. Habeas
has copyrighted a specific haiku, and it has a patent pending for their use of “pro-
tected” text, called a Warrant Mark, in message headers to provide authentication. It is
unclear from their Web site if the patent includes their specific blacklist of noncompli-
ant entities.

To be a Habeas-compliant entity, one must only send messages containing the special
text headers to recipients who have truly opted in to receiving the message. Spammers
who use the Warrant Mark in their mails are liable for prosecution under good old-
fashioned copyright and patent law. Habeas claims to have created a structure in which
a traditional legal framework is sufficient for prosecution, with no reliance on newfan-
gled and often confusing cyberlaws. If widely adopted, the system would provide a

64

The issues of anti-spam and

anti-virus are increasingly

converging.

http://www.stopspam.org/usenet/mmf/breidbart.html

combination of guaranteed marking of non-spam mail and a way to go after spam-
mers who abuse the Warrant Mark.

Why is this supposedly better than generic whitelisting? The company’s FAQ reminds
people that whitelists cannot detect spammers forging popular “From” addresses, such
as notification addresses from retailers. To be scrupulously fair, a forged set of headers
containing the Habeas Warrant Mark would also not be detected, unless sent by a
repeat offender already blacklisted. However, you may feel better about viewing it,
given that your complaint (to Habeas) will actually cause something to happen,
namely blacklisting and an aggressive legal pursuit of the spammers for infringement.

Down a Different Rabbit Hole: RFC 2476
Service providers, and an increasing number of corporations, are requiring authenti-
cation to internal mail servers and blocking access to port 25 of external servers.
Together these steps can certainly reduce the amount of spam generated at a typical
huge ISP, but they can also really cramp your style if you are traveling and would like
to preserve your email independence. “Hmm,” you say, “sounds like it’s time to find
another port.” Exactly so, but as an Upstanding Net Citizen you worry about sending
mail to Adam.West@WayneManor.org through a port other than the well-known ser-
vice port for SMTP. Holy protocol, Batman! Enter RFC 2476 to the rescue!

The issue is not really one of which port to use, although the RFC 2476 does define
port 587 as the WKS port for message submission. The primary focus of the RFC is to
distinguish between message transport, in which an MTA must not meddle with certain
aspects of the message, and message submission, where it may be useful or needful to
alter or add to a message. The first two reasons given in the RFC are extremely ger-
mane to this discussion, namely:

� Implement security policies and guard against unauthorized mail relaying or
injection of unsolicited bulk mail

� Implement authenticated submission, including off-site submission by authorized
users such as travelers

In his excellent series of articles, “RFCs for the Rest of Us,” Paul Boutin discusses RFC
2476 in detail, along with RFC 2554 (SMTP Authentication) and RFC 2505 (Anti-
Spam Recommendations).

Communities and Checksums
Vipul’s Razor (v2) is a checksum-based method of tagging messages as potential spam.
Netnews administrators may recognize this methodology from various NNTP filtering
systems. Razor has the familiar advantages of digest or checksum-based approaches
over pattern-matching rule-based systems, most notably lower computational over-
head and small data sets. Of course, there is a glaring disadvantage – that randomizing
a small part of the message body will change the checksum and let spam sneak in the
door.

A complex mesh network of hosts is aggregated under a DNS zone used by Razor
Agents to find Razor Discovery Servers. The Razor Agents query Razor Discovery
Servers to find the Razor Catalogue Servers (for razor-check(1)) and Razor Nomina-
tion Servers. The default is razor.cloudmark.com, but the appearance of a GPL’d version
of Razor called “Pyzor” and a separate initiative called the Distributed Checksum
Clearinghouse (DCC) now gives ET somewhere else to phone home. In practice,

65April 2003 ;login:

�

SY

SA
D

M
IN

NOT ON MY WATCH! �

Vol. 28, No. 2 ;login:

SpamNet probably represents the largest user community, and it is reporting solely to
Cloudmark. Spam Assassin would clearly be next in line, and while it offers reporting
checksums to all three services, it’s not clear how widely this has been adopted. For the
curious, there is a description of the Razor reporting protocol at http://www.stearns.

org/razor-caching-proxy/razor2-protocol.

Cloudmark’s SpamNet is one of those “good news, bad news, good news” deals. The
good news is that it’s free. The bad news, for many of us, is that the only currently sup-
ported client is Microsoft Outlook 2000/XP/2002. But the good news beyond that is
that SpamNet is essentially the pseudo-commercial arm of Vipul’s Razor, as Vipul is
one of Cloudmark’s founders. Cloudmark is the primary aggregator of Razor/Spam-
Net data, and it’s worth mentioning that a for-pay service, Cloudmark’s Authority,
leverages the data gathered by the free SpamNet community service.

Cloudmark has taken Razor’s data-gathering one step further – using Bayesian classifi-
cation, they turn the data into the somewhat loftily named “spamGenes” and
“spamDNA.” Their claim is that there are only 150 spamGenes and that their method
consumes vastly fewer resources at the gateway. Let’s see, there’s “free,”“v*g*r*a,”“mrs
mobuto sese seko,” and, um, 147 more. One clue emerges from aWall Street Journal

article on Authority – namely, that the software concentrates on “the marketing mes-
sage . . . it’s how they make money and it doesn’t change a lot.” Neither does Authority;
updates are made available every 30 to 60 days “in the form of spamDNA cartridges.”
Do those count as biohazards? Only if you’re a spammer, I guess.

As does its predecessor, Razor v2, the SpamNet client preserves individual user privacy
by generating a “fingerprint” or digest of a spam message and sharing only the finger-
prints among SpamNet users. However, Cloudmark’s Web site mentions the existence
of a “Truth Evaluation System (TES),” which apparently rates each SpamNet user
according to various factors, including volume, relevance, and accuracy. To quote the
site, “Simply, long-time, trusted-user reports carry more weight in spam identification
than new, untested reports. When a SpamNet member makes a good report, their trust
rating is increased.” If a user realizes that a spam that he or she marked as “Block” is
actually a legitimate email, the user may “Unblock” it and get back their good Spam-
Net karma. This is the same mechanism employed by Razor.

“Heterodyne Portable Claw: Use Only for Good.”
I have to put on my “virtual Peter Neumann hat” here and talk about some of the risks
of systems like SpamNet. A virtuous privacy policy is no guarantee that one’s data will
not be used for marketing. It is only a guarantee that the current corporate structure
will not use that data. I hope that Cloudmark has some stringent policies in place
about whether their TES is a “corporate asset” or not. Currently, Cloudmark appears to
be privately held, but I doubt that is their long-term strategy. If a less enlightened cor-
porate entity were to obtain control of Cloudmark’s assets through an acquisition, it
would be very easy for them to build a truly impressive marketing database.

They could use existing ways of mining personal data from Web sites in the context of
offering a SpamNet update or, perhaps, in the course of collecting the normal data
from a SpamNet client. They might be able to cross-correlate with an existing market-
ing database such as DoubleClick or MSN. Since a reputation system is employed in
the TES, each SpamNet client must have a unique identifier. User-reported spam fin-
gerprints could be correlated with full-text spam, which in turn could be demographi-
cally sorted as targets via conventional marketing analysis. One could certainly create

66

http://www.stearns

an interesting reverse-engineered demographic database with Cloudmark’s TES and a
sufficiently large sample space of spam, such as the Ciphertrust spam archive.

Sound far-fetched? Companies such as DoubleClick make their living doing very simi-
lar analysis, based on Web and email cookies. I am not saying that one should not use
SpamNet. I am saying that, in the spirit of RISKS-Digest, one should understand what
the technology enables. When this scenario was described to a highly-placed source
within Cloudmark, the danger was discounted as implausible. Then again, who
believed five years ago that someday all your old radical college Usenet postings would
be searchable, or that websites which you’ve never surfed before would greet you by
name based on shared marketing profiles?

Bayesing at the Moon
You can’t pick up an IT press article about anti-spam systems these days without
encountering the buzzwords “Bayesian,”“heuristics engine,” or something similar. Hey,
these were all around years ago on Usenet. So just how did we “forget” Bayesian filter-
ing for so long? Paul Graham provides an excellent summary in his report to the MIT
Spam Conference. Lack of acceptance of a “miss rate” of 92% with 1.16% false posi-
tives seems to have been the key factor. What Paul and others found is that the direct
application of the Usenet technique ignored the message headers, which can arguably
be said to be less meaningful in the NNTP context than in that of SMTP. When head-
ers were factored in, the miss rate dropped to 99.5% with less than 0.03% false posi-
tives, applying the identical techniques previously used by Pantel and Lin.

Two secondary factors were the adaptive, or learning, capability of the filters, and the
use of weighted tokens. The accuracy improves noticeably when the sample size is
increased. Getting the accuracy rate that high involved putting a great deal more spam
through the system, yielding impressive results. Additionally, by choosing the top 15 or
so tokens to weight most heavily, the system can better deal with spams that, as Gra-
ham puts it, “tell you their life story” in the course of getting to the punch line.

A radically different approach to Bayesian filtering involving regular expression
matching rather than tokenized input, the CRM114 system by Bill Yerazunis shows
that we haven’t even begun to run out of fire power to throw at the problem. The Con-
trollable Regex Mutilator, to quote its home page, “offers sparse binary polynomial
matching with a Bayesian Chain Rule. . . . Accuracy of the SBPH/BCR classifier has
been seen in excess of 99 per cent, for 1/4 megabyte of learning text. In other words,
CRM114 learns, and it learns fast.” Yow!

The Swiss Army Knife Approach
The interestingly disjoint lists of server-side anti-spam tools at various Web sites sug-
gest either an uninformed or highly opinionated general admin populace, or a highly
insoluble problem that fits everybody like a bad pair of shoes. Are anti-spam software
developers treading out their own Shoe Event Horizon?

One thing that many of these tools have in common is that they deploy mail through
procmail, and then let loose with a whole arsenal of techniques. Filtering FAQs
abound, but we won’t reinvent the wheel, we’ll just cite it in the references. Lately, even
procmail substitutes are cropping up – if you’re tired of procmail, try a substitute han-
dler such as Salmon, which wraps some basic setup tasks along with the procmail
functionality and an anti-spam engine.

67April 2003 ;login:

�

SY

SA
D

M
IN

LINKS
MPs discussions censored by protective filters:
http://www.theregister.co.uk/content/6/29175.
html

Filter woes continue for MPs:
http://www.theregister.co.uk/content/6/29199.
html

Triple (extension) threat:
http://www.messagelabs.com/viruseye/report.
asp?id=130

ServerWatch Tutorial and Product Comparison:
http://www.serverwatch.com/tutorials/article.
php/10825_1567361_2

O’Reilly article on spam harvest prevention:
http://www.macdevcenter.com/pub/a/mac/2002/
11/01/spam.html

RFC 2476: Message Submission:
http://www.faqs.org/rfc/rfc2476.txt

Paul Boutin’s “RFCs for the Rest of Us”:
http://www.sendmail.net/rfcintro.shtml

maildrop:
http://www.flounder.net/~mrsam/maildrop/

Habeas “Sender Warranted Email”:
http://www.habeas.com/faq/index.htm

Active Spam Killer (whitelist):
http://paganini.net/ask/

Tagged Message Delivery Agent (whitelist):
http://tmda.net/

Mail DeSpammer (reactive whitelist):
http://www.laas.fr/~felix/despam.html

The Infamous Big Brother Database
http://bbdb.sourceforge.net/
http://www.jwz.org/bbdb/

Filtering FAQ Fun for All and Sundry:
http://mip.ups-tlse.fr/~grundman/procmail/
faq.html

Salmon (procmail++ ? YMMV):
http://is.rice.edu/~wymanm/smn/index.html

Spambouncer:
http://www.spambouncer.org/

2003 Spam Conference at MIT:
http://spamconference.org/

Bill Yerazunis’ CRM114 system:
http://crm114.sourceforge.net/

Seriously technical goodies on filtering here:
http://www.paulgraham.com/bayeslinks.html

How Bayesian filtering evolved past Usenet:
http://www.paulgraham.com/better.html

Scads of clients for indiv & server ops:
http://email.about.com/cs/bayesianspamsw/

NOT ON MY WATCH! �

http://www.theregister.co.uk/content/6/29175
http://www.theregister.co.uk/content/6/29199
http://www.messagelabs.com/viruseye/report
http://www.serverwatch.com/tutorials/article
http://www.macdevcenter.com/pub/a/mac/2002/
http://www.faqs.org/rfc/rfc2476.txt
http://www.sendmail.net/rfcintro.shtml
http://www.flounder.net/~mrsam/maildrop/
http://www.habeas.com/faq/index.htm
http://paganini.net/ask/
http://tmda.net/
http://www.laas.fr/~felix/despam.html
http://bbdb.sourceforge.net/
http://www.jwz.org/bbdb/
http://mip.ups-tlse.fr/~grundman/procmail/
http://is.rice.edu/~wymanm/smn/index.html
http://www.spambouncer.org/
http://spamconference.org/
http://crm114.sourceforge.net/
http://www.paulgraham.com/bayeslinks.html
http://www.paulgraham.com/better.html
http://email.about.com/cs/bayesianspamsw/

Vol. 28, No. 2 ;login:

A good example of this kind of technology is John Hardin’s Email Sanitizer, as featured
on the Email Security Discussion list (Esd-l). Introduced in 1999, it’s a quiet example
of a mature, refined, and ultra-configurable procmail rule suite that lets you pick the
best of the best and apply it. Esd-l is also a good place to pick up breaking news about
new attacks, such as the triple-threat extension trick mentioned at the beginning of
this article.

One of the most popular tools, and one increasingly shipping quietly under the hood
of many commercial anti-spam software suites and appliances, is Spam Assassin. It is
truly the adaptive kitchen sink or Swiss Army knife of the cumulative filtering tools.
Spam Assassin filters spam using a combination of traditional methods, including
header and body checks, blacklists, and whitelists. On top of these metrics, it uses
Vipul’s Razor to score messages. Individual tests are weighted, as is the threshold at
which the system decides “OK, this is spam.”

Unlike the old Outer Limits TV show, you control the horizontal, you control the verti-
cal, since weighting and threshold are user-adjustable. For instance, Spam Assassin
now comes with a weighting for the Habeas Warranted Email service mentioned ear-
lier; defaults are set to award a Habeas-compliant message a more beneficial status.
Meanwhile, the Bayes system provided by the “sa-learn” facility keeps trying to predict
what you consider spam vs. messages you want to see.

Spam Assassin’s fans claim over 99% accuracy, but many first-time users report very
different results. The key seems to be aggressive whitelisting, especially of mailing lists
to which you have voluntarily subscribed. An unfortunate gap in the coverage results,
since one source of spam for many of us is non-technical hobby or interest lists which
may be spammed to reach subscribers. It might be worth experimenting with recursive
calling of differently configured Spam Assassin instantiations, or combining Spam
Assassin with some other program that will then sift your less well-behaved lists for
secondhand spam.

But Wait, There’s More!
A dizzying array of spam-prevention technologies exists to combat spam at the server
level, for your home, office, or whole organization. Rather than attempt an exhaustive
survey, I’ve included links to some of the more interesting ones. To save your cut-and-
paste macros some work, we’ll post the links on VirtualNet, so you can just bookmark-
and-go. http://www.virtual.net/Ref/resources.html contains a bibliography of all my
articles, and will be updated with this one.

One final note: To round out his contribution to spam fighting, the talented Vipul also
wrote a spam tracer and handler called Ricochet to deal with spam that successfully
runs the formidable gauntlet we’ve set up here. Enjoy!

68

The Shoe Event Horizon
http://www.csua.berkeley.edu/~dxu/econ/shoe.html

But wait, there’s more . . . :
http://dmoz.org/Computers/Software/Internet/
Servers/Mail/AntiSpam/

junkfilter:
http://junkfilter.zer0.org/

Usenet anti-spam resources – all your old bud-
dies like CleanFeed and SpamHippo and the
like:
http://www.exit109.com/~jeremy/news/
antispam.html

Cloudmark’s SpamNet client (free):
http://www.cloudmark.com/products/spamnet/
learnmore/spamnet.php

Cloudmark’s Authority server software ($):
http://www.cloudmark.com/products/authority/

Web log article on Cloudmark, with screen
shots:
http://www.emergic.org/archives/2003/01/10/

Girl Genius – Go Agatha!:
http://www.studiofoglio.com/girlgenius.html

Vipul’s Razor:
http://razor.sourceforge.net/

Spam Assassin:
http://spamassassin.org/
http://spamassassin.taint.org/

The Outer Limits:
http://www.innermind.com/outerlimits/info/olop
en.htm

Pyzor (Python, GPL version of Razor):
http://pyzor.sourceforge.net/

Distributed Checksum Clearinghouse:
http://www.rhyolite.com/anti-spam/dcc/

Email Sanitizer and Esd-l:
http://www.impsec.org/email-tools/
procmail-security.html
http://www.spconnect.com/mailman/listinfo/esd-l

Brian Hatch’s “Filtering Email with Postfix and
Procmail” series (includes code examples). Parts
1 & 2 are Postfix-specific; 3 & 4 cover procmail
and integration with various packages like
Razor and Spam Assassin:
http://online.securityfocus.com/infocus/1593
http://online.securityfocus.com/infocus/1598
http://online.securityfocus.com/infocus/1606
http://online.securityfocus.com/infocus/1611

Email on SOHO Networks:
http://www.unixreview.com/documents/s=7460/
uni1032893910897/ur0209o.htm

Ricochet Spam Handler:
http://vipul.net/ricochet/

http://www.virtual.net/Ref/resources.html
http://www.csua.berkeley.edu/~dxu/econ/shoe.html
http://dmoz.org/Computers/Software/Internet/
http://junkfilter.zer0.org/
http://www.exit109.com/~jeremy/news/
http://www.cloudmark.com/products/spamnet/
http://www.cloudmark.com/products/authority/
http://www.emergic.org/archives/2003/01/10/
http://www.studiofoglio.com/girlgenius.html
http://razor.sourceforge.net/
http://spamassassin.org/
http://spamassassin.taint.org/
http://www.innermind.com/outerlimits/info/olop
http://pyzor.sourceforge.net/
http://www.rhyolite.com/anti-spam/dcc/
http://www.impsec.org/email-tools/
http://www.spconnect.com/mailman/listinfo/esd-l
http://online.securityfocus.com/infocus/1593
http://online.securityfocus.com/infocus/1598
http://online.securityfocus.com/infocus/1606
http://online.securityfocus.com/infocus/1611
http://www.unixreview.com/documents/s=7460/
http://vipul.net/ricochet/

69April 2003 ;login:

�

SY

SA
D

M
IN

1. The servers used for this article were from the
Apache 1.3.x family.

by Stephen
Pierzchala

Stephen Pierzchala is
senior diagnostic
analyst for Keynote
Systems in San
Mateo, CA. He
spends his time
reminding Web
developers about the
need for Web perfor-
mance.

stephen@pierzchala.com

Web-page compression is not a new technology but has only recently

gained higher recognition in the minds of IT administrators and managers

because of the rapid return on investment it generates. Compression exten-

sions exist for most of the major Web server platforms, but in this article I

will focus on the Apache and mod_gzip solution.

The idea behind GZIP-encoding documents is very straightforward. Take a file that is
to be transmitted to a Web client and send a compressed version of the data rather
than the raw file as it exists on the file system. Depending on the size of the file, the
compressed version can run anywhere from 20% to 50% of the original file size.

In Apache, this can be achieved using a couple of different methods. Content negotia-
tion, which requires that two separate sets of HTML files be generated – one for clients
that can handle GZIP-encoding and one for those that can’t – is one method. The
problem with this solution should be readily apparent: There is no provision in this
methodology for GZIP-encoding dynamically generated pages.

The more graceful solution for administrators who want to add GZIP-encoding to
Apache is the use of mod_gzip. I consider it one of the overlooked gems for designing
a high-performance Web server. Using this module, configured file types – based on
file extension or MIME type – will be compressed using GZIP-encoding after they
have been processed by all of Apache’s other modules, and before they are sent to the
client. The compressed data that is generated reduces the number of bytes transferred
to the client, without any loss in the structure or content of the original, uncompressed
document.

mod_gzip can be compiled into Apache as either a static or dynamic module; I have
chosen to compile it as a dynamic module in my own server.1 The advantage of using
mod_gzip is that this method does not require anything to be done on the client side
to make it work. All current browsers – e.g., Mozilla, Opera, Internet Explorer –
understand and process GZIP-encoded text content.

On the server side, all the server or site administrator has to do is compile the module,
edit the appropriate configuration directives that were added to the httpd.conf file,
enable the module in the httpd.conf file, and restart the server. In less than 10 minutes,
you can be serving static and dynamic content using GZIP-encoding without the need
to maintain multiple code bases for clients that can or cannot accept GZIP-encoded
documents.

When a request is received from a client, Apache determines if mod_gzip should be
invoked by noting if the Accept-Encoding: gzip HTTP request header has been sent by
the client. If the client sends the header, mod_gzip will automatically compress the
output of all configured file types when sending them to the client.

This client header announces to Apache that the client will understand files that have
been GZIP-encoded. mod_gzip then processes the outgoing content and includes the
following server response headers:

compressing Web
output using
mod_gzip and
Apache

COMPRESSING WEB OUTPUT �

70 Vol. 28, No. 2 ;login:

Content-Type: text/html
Content-Encoding: gzip

These server response headers announce that the content returned from the server is
GZIP-encoded, but that when the content is expanded by the client application, it
should be treated as a standard HTML file. Not only is this successful for static HTML
files, but it can be applied to pages that contain dynamic elements, such as those pro-
duced by Server Side Includes (SSI), PHP,2 and other dynamic page-generation meth-
ods. You can also use it to compress your Cascading Style Sheets (CSS) and plaintext
files. My httpd.conf file sets the following configuration for the file types handled by
mod_gzip:

mod_gzip_item_exclude file \.js$
mod_gzip_item_exclude mime ^application/.*$
mod_gzip_item_exclude mime ^image/.*$
mod_gzip_item_include file \.html$
mod_gzip_item_include file \.shtml$
mod_gzip_item_include file \.php$
mod_gzip_item_include file \.txt$
mod_gzip_item_include mime ^text/.*$

I have had limited success compressing other file formats, mainly because Microsoft’s
Internet Explorer appears to examine the “Content-Type” header message before it
examines the “Content-Encoding” header message. So, say you configure your server
to GZIP-encode PDF files using the following mod_gzip directives:

mod_gzip_item_include file \.pdf$
mod_gzip_item_include mime ^application/pdf$

When downloaded by Mozilla and Opera, the PDF files are immediately decoded and
passed to the appropriate helper application. These browsers know to decode all GZIP-
encoded content before passing it along to the appropriate helper application.

However, Internet Explorer simply passes the GZIP-encoded content directly to the
PDF reader without first decoding it. A quick rummage through newsgroup archives
turned up evidence that this “feature” has been in Internet Explorer since at least 1997.
I chalk it up to the lingering integration of browser and operating system through the
Component Object Model (COM). This has a potentially detrimental impact on the
Web community as a whole range of additional file types could be compressed if this
bug was fixed.

How beneficial is sending GZIP-encoded content? In some simple tests I ran on my
Web server using WGET, GZIP-encoded documents showed that even on a small Web
server there is the potential to produce a substantial savings in bandwidth usage. For
http://www.pierzchala.com/bio.html, uncompressed file size was 3122 bytes, com-
pressed was 1578 bytes. And for http://www.pierzchala.com/compress/homepage2.html,
uncompressed file size was 56279 bytes, compressed was 16286 bytes.

Server administrators may be concerned that mod_gzip will place a heavy burden on
their systems as files are compressed on the fly. I argue against that, pointing out that
this does not seem to concern the administrators of Slashdot (http://slashdot.org/), one
of the busiest Web servers on the Internet, who use mod_gzip in their very high-traffic
environment.

The mod_gzip project page is located at SourceForge:
http://sourceforge.net/projects/mod-gzip/.

2. PHP can also be compressed using the inte-
gration with the native ZLIB compression
libraries. This integration can be built in at
compile time and activated through the php.ini
file.

http://www.pierzchala.com/bio.html
http://www.pierzchala.com/compress/homepage2.html
http://slashdot.org/
http://sourceforge.net/projects/mod-gzip/

71April 2003 ;login:

�

TH

E
W

O
RK

PL
A

C
EIn previous columns, I wrote that the best way to ensure that you retire in

style is to create a financial plan that enables it. This means calculating your
current income, taxes, expenses, and investments and estimating what
these might be for the future you want to live. Since very few people can
fund their retirement out of existing savings, almost all financial plans will
rely on investments to grow over time to cover future requirements.

No matter what you do with the money you are saving for retirement, you are taking
some risk. The risk may be due to corporate malfeasance, market fluctuation, inflation,
interest rates, or world events. Whatever the risks, the key to good investing is to mini-
mize the risks you take to get the return you need.

Isn’t Investing Just Like Gambling?
Given these risks, it is common to hear investing compared to gambling. While there
are some striking similarities, such as making money and losing one’s “investment,”
there are two important differences.

First, a gambling bet either pays off a specified amount or you forfeit your entire stake.
If you win, you end up with a known amount more than you started with. If you lose,
you’re left with nothing.

An investment, on the other hand, is seldom an all-or-nothing affair. It is rare when an
investment results in a total loss. Also, you don’t know at the beginning how much you
might get if you “win.” What’s more, there are lots of intermediate outcomes and you
can cash in an investment, winner or loser, whenever you choose.

In addition, many stocks and bonds make periodic payments in the form of interest or
dividends. Some investments are made primarily for these payouts. Dividends and
interest also help cushion any downward movement in the value of these investments.

Second, the underlying probabilities of a specific bet can be calculated precisely.
Because these probabilities identify long-term outcomes, a gambler relies on irregulari-
ties in the short-term distribution to achieve a “profit.”

Investment prices, however, are based on market forces that can be estimated but not
measured precisely. An investor relies on the belief that in the future the demand for a
specific investment will outstrip its supply and the price will rise, be it a share of stock,
the interest paid by a bond, or a piece of real estate. Unlike a dice game, where a die
always has six sides, the marketplace is constantly undergoing change. It is not possible
to say with any certainty what the price of an investment will be in the next few min-
utes, let alone months or years.

Quantifying Risk
The probabilities associated with two six-sided dice are known, so a gambler is aware
of the risks being taken when betting at a crap table. However, the risks of buying 100
shares of a company’s stock or a $1,000 bond are not quite so obvious. Since riskier
investments, like chancier bets, carry a higher possibility of loss, it makes sense that
they also should compensate by providing larger returns. But, without a way to quan-
tify risk, it is impossible to know if an investment’s risk justifies its return.

A great deal of theoretical work and data collection have been undertaken to define
investment risk. For the most part, this effort has focused on defining equations that

isn’t that a little risky?
by Ray Swartz

Ray Swartz ran his
own computer train-
ing and consulting
company for 20
years, until stepping
away from gainful
employment in 2000.
Watching the stock
market and his retire-
ment portfolio move
up and down like a
yo-yo has given him
a new appreciation
of his tolerance for
risk.

raybo@idiom.com

ISN’T THAT A LITTLE RISKY? �

Vol. 28, No. 2 ;login:72

Simply knowing how much

an investment’s value varies

is of limited use. More useful

is comparing an investment’s

volatility with that of the

overall market.

statistically fit the data collected and assigning Greek letters to various coefficients in
the results.

Since statistics are involved, some assumptions get made. This research assumes that
the past accurately predicts the future and that variations in investment values are nor-
mally distributed. Data seem to support these.

In the end, two values have emerged to represent an investment. One is the invest-
ment’s expected return, which is calculated as its average gain/loss over time. The sec-
ond measurement is the investment’s volatility: that is, how much its value varies,
calculated by taking the standard deviation of the investment’s gains/losses over time.

Simply knowing how much an investment’s value varies is of limited use. More useful
is comparing an investment’s volatility with that of the overall market. This ratio is
represented by the Greek letter beta (β). A β of 1.0 means that a stock investment is as
volatile as an underlying index (a 5% move in the index would mean a 5% move in
this stock). A β of 2.0 means the stock’s price moves twice as much as the index. An
investment with a β of 0.5 would move half as much as the market. A company’s β is
considered a measure of its risk.

Two stocks offering the same expected return at the same β could be considered equiv-
alent investments (though other factors would go into such a determination). Invest-
ments might offer the same expected return but have different betas, or the same βs
but different returns. A higher β means that an investment’s value will move around
more than one with a lower β.

Suppose your financial plan calls for a return of 8.25% on your retirement assets.
Knowing the return you need allows you to select how much risk you want to take in
order to get it. Let’s say that the market’s 50-year average return is 9.5% (it isn’t). Since
you only need an 8.25% return, you could seek investments with βs of less than 1.0
and have a portfolio with less volatility than the overall market.

You might also devise a strategy that combines investments of different risk levels to
further reduce the overall risk of your portfolio. For example, you might combine
some government bonds with a return of, say, 6.0% with a market index fund to
achieve your 8.25% return. βs for individual stocks and mutual funds are readily avail-
able from investment counselors (another source is http://www.morningstar.com).

Different Kinds of Risk
Total investment risk is a combination of different risks all acting together to create
volatility. There are many reasons why investment values go up and down: A company
is going through good or bad times (company risk); a company’s industry is having a
hard time, and all companies in that industry are affected (industry risk); the entire
stock market is moving up or down and stocks are doing the same regardless of their
individual merits (market risk).

A similar kind of analysis applies to bonds. Bonds are a loan of money to a company
or government in exchange for a preset rate of interest for a specified period of time.
Bonds are bought and sold on the open market just like shares of stock, except they
don’t confer ownership in the underlying company (or government :-). Since bond-
holders have no ownership stake in the company, any factor that affects the payment of
interest will move the price of the company’s bonded debt. To help guide buyers of
bonds, rating agencies such as Standard & Poor’s and Moody’s have devised scoring

http://www.morningstar.com

systems that evaluate a company’s ability to meet its bond obligations (default risk).
These ratings are equivalent to a stock’s β, and a bond’s value is greatly affected by the
company’s debt rating.

While the market value of a bond varies, there is no volatility to the return of a bond if
you hold it to maturity. As long as the company doesn’t default, you will continue to
get the same interest for the life of the bond. However, if you need to sell a bond before
it is due, you have to find a buyer in the open market.

What a buyer is willing to pay for a bond depends on several factors, such as the inter-
est the bond pays, the company’s bond rating, and the overall sentiment about interest
rates. In addition to these factors, the market price of a bond is greatly affected by the
current rate of interest for this type (length and quality) of debt.

Let’s suppose you own a $1,000 bond paying 5% interest. If the going rate for bonds
like yours is 6%, then a buyer will discount the value of your bond until it, too, is pay-
ing 6%. The discount is easy to calculate. Your bond pays $50 per year and $50 is 6% of
$833.33, which is what a buyer would be willing to pay for your bond. Because interest
rates rose (interest rate risk), you’ve lost $167.67 (assuming you bought the bond for
$1,000). Incidentally, this is why the value of a bond moves inversely to the interest
rate. If the interest rate falls, a buyer will pay a premium for your bond, instead of
demanding a discount!

Another problem that bondholders have to consider is inflation. As inflation rises
(inflation risk), the interest a bond pays buys less. Also, the return of the principal will
be in inflated dollars. Inflation risk is not such a problem with stocks, as companies
can raise prices to offset the impact of higher costs.

It might seem like a no-brainer to fund one’s retirement by buying bonds that yield
the interest rate required by your financial plan. But there is a catch. Your financial
plan assumes that you earn the specified return continuously. Thus, when you receive
a bond’s interest, you have to reinvest that interest in accordance with your plan. How-
ever, interest rates move every day (interest rate risk, again), and you might not be able
to reinvest that interest at the necessary percentage rate without taking on more risk.
An example may make this clearer. Your $1,000 bond paying 5% gets you $50 a year in
interest. Today, getting 5% interest requires either very long-term or high-risk bonds.
Interest rate and inflation risks make it hard for a portfolio 100% invested in bonds to
maintain a high rate of return over the long term.

Getting the Most for Your Risk
As I described above, not all risks are the same. Just because two investments have the
same amount of volatility doesn’t mean they have the same pattern of volatility.

Consider two stocks that are in the same industry – say, GM and Ford. Since they are
both in the same business, their stocks will likely move together. When one is up or
down, so is the other. If there is a slump in car buying (industry risk), both stocks will
go down. Note that due to company risk, these two stocks will not move in lockstep.

Now, consider stocks in different businesses, say GM and Levi Strauss. Since these
stocks are not in the same industry, there will be times when one is down but the other
is up. The end result for us is less overall volatility!

If Ford, GM, and Levi Strauss all have the same expected return and βs, a portfolio
containing both GM and Levi Strauss will have the same return but less overall volatil-

73April 2003 ;login:

�

TH

E
W

O
RK

PL
A

C
ENot all risks are the same.

Just because two investments

have the same amount of

volatility doesn’t mean they

have the same pattern of

volatility.

ISN’T THAT A LITTLE RISKY? �

Vol. 28, No. 2 ;login:

ity than a similar one containing Ford and GM or 100% of just one of the companies.
By buying two stocks instead of one, we lower company risk. By having stocks in dif-
ferent industries, we also lower industry risk.

By picking our investments wisely, we can reduce the overall risk of our retirement
portfolios without having to accept lower returns! In investment lingo, this is called
diversification. It is worth noting that the downside of diversification is that the com-
bined portfolios have less range, both high-end and low-end, than undiversified
investments. That is, the total upside and downside potential is less when you diversify
your risk. If your plan is solid, losing this bit of unlikely upside will have no impact on
your future.

How Do I Use This Information?
While all this sounds good, how does it work in the real world? Calculating how two
stocks vary means calculating the statistical covariance of their stock movements.1

This can be done if you have all the data and a good statistical package. However, there
are thousands of stocks, and building a complete covariance table for each one would
be way too much work. What is more common is for an investment’s covariance to be
calculated to some standard index, like the S&P500. This information is available from
financial advisors and from the Net (again, at http://www.morningstar.com, among
other sites).

If you invest in individual stocks, you need to be careful to compare the companies
you invest in by industry and covariance. Keep in mind, though, that buying shares in
just a few companies still exposes you to significant company risk, since a meaningful
percentage of your portfolio may be concentrated in a few stocks. To gain the benefit
of diversification, many commentators suggest holding at least 10 different stocks. The
most common way to minimize company risk is to invest in mutual funds. Since
mutual funds buy into many companies, your exposure to any single company is
greatly reduced.

There are other ways you might want to diversify. Common investment advice says to
diversify geographically by investing in the companies of different countries. This not
only allows you to lessen the impact of holding all your money in a single currency
(currency risk) but also takes advantage of covariance between the economies of dif-
ferent global areas. However, international investing has its own unique risks, such as
political instability, market manipulation, and outright fraud.

Another way to diversify is by the size of the companies you invest in. Typically, stocks
are divided into three classes: large-cap, mid-cap, and small-cap. The word “cap” is
short for “capitalization” and refers to the total value of a company, which is calculated
by multiplying the number of shares outstanding by the share price. Large-cap compa-
nies tend to be established, well-financed industry leaders, whereas small-cap compa-
nies are lesser known and often more vulnerable to the vagaries of the marketplace.
Stocks tend to be more highly correlated with others in their same class than with
stocks in different classes. As such, different classes of stocks don’t always move in the
same direction, so they offer further diversification opportunities. Mutual funds usu-
ally clearly identify what class of stocks they buy, so it is easy to determine the capital-
ization mix of your portfolio.

74

1. Covariance is a statistical calculation that
measures how two sets of values vary with one
another. For investment purposes, covariance
results range from +1 to -1, with +1 for two
investments that move together 100% of the
time and -1 representing two investments that
move exactly opposite to one another.

http://www.morningstar.com

Since stocks and bonds tend to move in opposite directions, another way to reduce
your portfolio’s volatility is to hold both stocks and bonds. In theory, in good times the
stocks go up, in bad times the bonds go up (and still pay interest)!

As a counterpoint to all this talk about diversification, it is possible to over-diversify. In
this case, your portfolio is spread around in so many different investments that you
can’t take advantage of a strong move in any one of them. Also, the more investments
you have, the more incidental costs you pay, which further decreases your return.

How can you know if your portfolio is taking too much risk for the return it is gener-
ating? The best advice is to talk with your investment advisor. Financial planners often
have software programs that can dissect your portfolio and compare its expected
return to its estimated risk.

Lastly, there is some risk that can’t be diversified away: market risk. Some events such
as natural disasters, terrorist attacks, war outbreaks, or economic meltdowns move all
markets down. However, the effect of such shocks is often short-lived, especially if the
underlying economies remain well-ordered and responsive. The only way to avoid
market risk is to hold cash or equivalents, such as bank CDs. But these investments
have risks, too, such as interest rate fluctuations and inflation.

In the end, no matter what you do with your investment dollars, you take some risks.
While risk can’t be avoided, it can be minimized.

75April 2003 ;login:

�

TH

E
W

O
RK

PL
A

C
E

ISN’T THAT A LITTLE RISKY? �

76

the bookworm

Vol. 28, No.2 ;login:

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Editorial
Director at Matrix.net.
He owns neither a dog
nor a cat.

peter@matrix.net

BOOKS REVIEWED IN THIS COLUMN

new edition of that book, now
Cheswick, Bellovin, and Rubin. When I
reviewed the first edition, I was full of
praise. The book is now nearly 150% of
what it was eight years ago. The new edi-
tion comprises 19 chapters in six sec-
tions. The fourth (“Firewalls and
VPNs”), fifth (“Protecting an Organiza-
tion”), and sixth (“Lessons Learned”)
are worth the price of admission. The
introduction to cryptography in the first
appendix is excellent.

Potter and Fleck’s volume on 802.11
security failed to reassure me. I still fear
that we’ve not reconciled the conven-
ience of wireless with confidentiality.
But it’s a solid presentation of the topic.

Knowledge
The concept of “knowledge manage-
ment” was extremely popular in the ’90s.
Typically, it referred to the ways in which
organizations could manage their intel-
lectual property. This meant that
“knowledge” was some sort of bankable
resource ready for transfer and reuse.

More recently, as demonstrated by Shar-

ing Expertise’s very title, knowledge
management has taken on aspects of
humanity – recognizing the human
components of knowledge work and
sharing, rather than merely storage and
retrieval.

This anthology, a truly interesting one,
exemplifies this approach.

Networking
If you work on or with the Internet, you
work with DNS, BIND, and BGP. Liu’s
DNS & BIND lives next to my computer.
His “cookbook” will live on my refer-
ence/how-to shelf. I found “How to pre-
vent Windows computers from trying to
update your zones” (pp. 106ff.) useful
just yesterday.

Iljitsch van Beijnum’s BGP is the best
thing I’ve looked at on the subject since

There are many books to talk about this
month, as well as two I’m shoving into
my “history” column. The holidays gave
me lots of time both to read and to
ignore football. In fact, not watching
football contributed to my time for
reading.

Security
I reported on the security symposium
last December. Little did I know that two
important volumes would overburden
my postman so soon.

The larger of these is Matt Bishop’s
monster.

In some ways, Computer Security is a
perfect book for me – that is, someone
interested in security but not involved in
the field professionally. Matt has pro-
duced 1,100 pages that will most likely
be the “standard” for a number of years.
If there are topics omitted from this
book, I haven’t located them. From
“Access Controls” to “Policies,”“Cryp-
tography” and “Malice” to “Auditing”
and well over a dozen other topics, Matt
has been there and done that. He has
called upon Elisabeth Sullivan to con-
tribute a section on “Assurance,” and he
concludes with chapters on “Network
Security” and “System Security.” Even if
Matt had not thanked me in his
acknowledgments, I would think this is
an important and masterful tome.

The 1994 book on firewalls by Bellovin
and Cheswick is in Bishop’s bibliogra-
phy; several of Bishop’s papers are in the

COMPUTER SECURITY:

ART AND SCIENCE

MATT BISHOP

Boston: Addison-Wesley, 2003. Pp. xli+1084.

ISBN 0-201-44099-7.

FIREWALLS AND INTERNET SECURITY

WILLIAM R. CHESWICK, STEVEN M. BELLOVIN,

AND AVIEL D. RUBIN

Boston: Addison-Wesley, 2003. Pp. 430.

ISBN 0-201-63466-X.

802.11 SECURITY

BRUCE POTTER AND BOB FLECK

Sebastopol, CA: O’Reilly, 2003. Pp. 176.

ISBN 0-596-00290-4.

SHARING EXPERTISE

MARK ACKERMAN ET AL., EDS.
Cambridge, MA: MIT Press. Pp. 438.

ISBN 0-262-01195-6.

BGP

ILJITSCH VAN BEIJNUM

Sebastopol, CA: O’Reilly, 2002. Pp. 272.

ISBN 0-596-00254-8.

DNS & BIND COOKBOOK

CRICKET LIU

Sebastopol, CA: O’Reilly, 2003. Pp. 222.

ISBN 0-596-00410-9.

C POCKET REFERENCE

PETER PRINZ AND ULLA KIRCH-PRINZ

Sebastopol, CA: O’Reilly, 2003. Pp. 134.

ISBN 0-596-00436-2.

PHP POCKET REFERENCE, 2D ED.

RASMUS LERDORF

Sebastopol, CA: O’Reilly, 2002. Pp. 132.

ISBN 0-596-00402-8.

ESSENTIAL SYSTEM ADMINISTRATION

POCKET REFERENCE

AELEEN FRISCH

Sebastopol, CA: O’Reilly, 2003. Pp. 137.

ISBN 0-596-00449-4.

WORD POCKET GUIDE

WALTER GLENN

Sebastopol, CA: O’Reilly, 2003. Pp. 143.

ISBN 0-596-00445-1.

77April 2003 ;login:

�

BO

O
K

RE
V

IE
W

S

book reviews
Stewart’s booklet five years ago. Really
useful.

A Handful of Useful Pocket
References
O’Reilly began producing pocket refer-
ences a few years ago. I find many of
them very handy. Three recent and valu-
able additions are those on C, PHP, and
system administration. I think they’re a
bargain at about $15 each. I also found
the Word Pocket Guide very useful (my
spouse uses Word at work and I was
clueless until Glenn’s book came my
way).

Sadly, this book doesn’t introduce the
idea that future processors might have
better capacity for secure programming
with such new technologies as the
upcoming Transmeta Crusoe chip.

My greatest dissatisfaction with this
book may be that I’m not the intended
audience. Someone with a great deal of
assembler experience and Windows pro-
gramming might be able to look at the
available assembler code snippets and
better understand what Mr. Cerven was
trying to communicate with this book.

I look forward to seeing alternate cover-
age of this topic, or a better edited ver-
sion of this book, since crackproofing
software remains an interesting but
underexamined subject.

EXTENDING AND EMBEDDING PERL

TIM JENNESS AND SIMON COZENS

Greenwich, CT: Manning Publications,
2002. Pp. 361. ISBN 1-930-110082-0.

Reviewed by Raymond M. Schneider
ray@securityfoo.net

Ever found yourself in need of some
added functionality in Perl? Ever found
yourself in need of an embedded lan-
guage in your application? Extending

and Embedding Perl attempts to help the
reader with just those situations.

Extending and Embedding Perl, like most
technical books, starts off by gearing the
reader up with the necessities for under-
standing the material covered.

The first three chapters are introductory,
covering the very basics of the C pro-
gramming language, the basics of XS
(eXternal Subroutines), and more
advanced C programming. The experi-
enced C programmer may safely, in my
humble opinion, “raid” the first three
chapters for any bits that they are either
unfamiliar with or in need of brief
review.

Chapter 4, “Perl’s Variable Types,” covers
things like how scalar variables map to C

CRACKPROOF YOUR SOFTWARE:

PROTECT YOUR SOFTWARE AGAINST

CRACKERS

PAVOL CERVEN

San Francisco, CA: No Starch Press,
2002. Pp. 250. ISBN 1-886-41179-4.

Reviewed by Jennifer Davis
sigje@sigje.org

At first glance Crackproof Your Software

appears to be an enlightening book on a
subject that hasn’t been sufficiently cov-
ered. Although security is a big topic,
most books cover securing your software
against attacks on the software itself and
on users of the software, data, and other
systems on the network that the software
is running on. This book hopes to illus-
trate how to prevent users from cracking
the protection of the licensing code on
your software.

As I began to read, however, I was
immediately disappointed by several
assumptions made by the author:

� Commercial software is written
only on the Windows platform.

� Visual Basic, Delphi, and assembly
language are the only programming
languages commercial software is
written in.

� Readers do not know what decom-
pilers or debuggers are, but they
know how to use them.

Other disappointments included useless
diagrams and snapshots, like the 1/4-
page size image of a window saying
“Please insert the Half Life CD”;
descriptions of good and bad securing
applications without detailed explana-
tion why a developer should use one and
not the other; repetitive comments
(“combine protection”); and overem-
phasis on the cracker’s point of view to
the detriment of the application devel-
oper’s perspective in securing applica-
tions from cracking.

This book would be more aptly titled
“How Crackers Crack Software on the
Windows Platform.”

BOOK REVIEWS �

Vol. 28, No. 2 ;login:78

structures under the covers. It provides a
nice overview that will help the reader
with all the typedefs that point to C
structures. On top of that, Perl wizards
will be happy to find more “magic” in
this chapter as the “magic variables”
SvPVMG are covered here.

Midway through the text, the authors
introduce the reader to the Perl API.
Chapter 5 contains an incredible
amount of information, with plenty of
example code followed by numbered
sections that step through the code and
provide explanations. The reader will
also find “tip” and “note” sections
throughout.

The next chapter builds on the basics of
XS and even discusses linking to Fortran
or C++.

There is more to Extending and Embed-

ding Perl than what the reader gets in the
bound book. There is a Web site for the
book: http://www.manning.com/jenness.
There, in an area called “Author Online,”
readers may interact with the authors in
a sort of question and answer situation.
It’s a quite interesting idea. I signed up
for it and posted a question. I have to
admit that after having to wait a month
and a half for a response I consider the
online forum a bit of a flop, especially if
the reader’s need for a response is in any
way urgent. In a month and a half most
people will have long since moved on,
especially in our industry.

I can, however, recommend this book to
anyone interested in extending or
embedding Perl. It is a quick read that
the professional programmer can
devour and the novice can understand.

Now that the reader has learned all
about XS, the authors present alterna-
tives. As is common with everything
relating to Perl, “there is more than one
way to do it.” The reader is introduced to
h2xs, SWIG, and the Inline module in
an effort to ease the use of XS.

At this point the book makes the transi-
tion to embedding, Chapter 8 talking
specifically about embedding Perl in C
applications, and Chapter 9 covering an
example of embedding Perl into an
application many of ;login:’s readers are
probably familiar with – Mutt.

The last two chapters of the book cover
Perl internals and Perl development as
the authors encourage the reader to par-
ticipate in the future of the Perl lan-
guage.

USENIX and SAGE Need You
People often ask how they can contribute. Here is a list of tasks for which we hope to find
volunteers.

The SAGEwire and SAGEweb staff are seeking:

� Interview candidates
� Short article contributors (see http://sagewire.sage.org)
� White paper contributors for topics like these:

Back-ups Emerging technology Privacy
Career development User education/training Product round-ups
Certification Ethics SAGEwire
Consulting Great new products Scaling
Culture Group tools Scripting
Databases Networking Security implementation
Displays New challenges Standards
Email Performance analysis Storage
Education Politics and the sysadmin Tools, system

� Local user groups: If you have a local user group affiliated (or wishing to affiliate) with USENIX and/or SAGE, please email
the particulars to kolstad@sage.org so they can be posted on the Web site.

;login: always needs conference summarizers for USENIX conferences. Contact Alain Hénon, ah@usenix.org, if you’d like to help.

http://www.manning.com/jenness
http://sagewire.sage.org

79April 2003 ;login:

news

�

U
SE

N
IX

 N
EW

SThe Decline of
Research:
Commentary and
Book Review

In March 1978, Bill Joy offered the first
“BSD” tape; in September 1983, BSD 4.3
was (finally) released; in June 1993, it
was BSD 4.4’s “turn.” The “B” tells it all:
They all emanated from Berkeley. But
UNIX came out of Murray Hill, New
Jersey.

Let me start with the tale of several
research labs whose results have had a
profound effect on the world as we
know it.

In 1925, AT&T and Western Electric set
up a separate company called Bell Labs.
Later in the 1920s, T.J. Watson Sr. set up
a “Research Lab” in a brownstone near
Columbia University. (In case you don’t
know, T.J. Watson was the founder of
IBM.)

Both Bell Labs and Watson’s Lab flour-
ished for 60 years. The divesture of 1984
made Bell Labs a part of AT&T, and the
breakup of 1996 caused a major fissure,
with the Labs becoming a part of
Lucent, but several groups are now part
of the “new” AT&T.

During this same period, IBM Research
first moved to Yorktown Heights, New
York, expanded to the nearby town of
Hawthorne, and then shrank dramati-
cally (with falling share prices) in the
1990s.

DEC’s labs grew, blossomed, and then
nearly died between 1960 and 1995. The
devastation wrought first by the Com-

paq merger and by the subsequent HP
merger has been catastrophic.

The Stanford Research Lab, now trans-
mogrified into SRI International, is still
functioning, though it is very different
from what it was in the 1960s; BBN is,
effectively, no more. Xerox PARC has
become an independent corporation,
and it has shifted its focus from technol-
ogy to content.

In effect, IBM’s facilities currently con-
stitute the sole functioning corporate
research lab in North America (NEC
Research Institute seems to be confined
to computing and communications sys-
tems).

These thoughts were initiated by the
arrival of two books, one by Narain
Gehani, who was at Bell Labs from 1978
to 2001, the other by Severo Ornstein,
one of the first engineers to work on the
ARPANET at BBN.

Reading them is an exciting experience:
Gehani started in the group producing
Programmer’s Workbench – PWB UNIX
– and went on to become a “distin-
guished member of staff”; head of the
Database Systems Department; vice
president; and research vice president of
Communications Software Research.

Ornstein, the son of a virtuoso pianist
and major composer, had a checkered
career but went to BBN in the late 1960s,
where he was Frank Heart’s hardware
ace. He went from BBN to the West
Coast, was fundamental in the forma-
tion of CPSR, and has remained active
on “social issues.” He still fears the con-
trol of technology by a small political
and military cadre.

With this overlong prelude, let me turn
to the actual books.

Gehani tells a good tale and makes a
number of very important points, but I
think the crux of the entire book comes
at the point where Shamim Naqvi is

USENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Association’s

magazine, published six times a year, featur-

ing technical articles, system administration

articles, tips and techniques, practical

columns on security, Tcl, Perl, Java, and

operating systems, book reviews, and sum-

maries of sessions at USENIX conferences.

ACCESS TO ;login: online from October 1997

to last month <www.usenix.org/

publications/login/login.html>.

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993

<www.usenix.org/publications/library/

index.html>.

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

OPTIONAL MEMBERSHIP in SAGE, the System

Administrators Guild.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

<http://www.usenix.org/membership/

specialdisc.html> for details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

<http://www.usenix.org/

membership/membership.html>

OR CONTACT

<office@usenix.org>

Phone: 510 528 8649

by Peter H. Salus

USENIX Historian

peter@usenix.org

THE DECLINE OF RESEARCH �

80 Vol. 28, No. 2 ;login:

required time to push forward the
research boundaries of AFS,” said Peter
Honeyman, Scientific Director of CITI,
University of Michigan. “The Council
will initially concentrate on bringing
AFS up to date with modern transport
and security, the first steps in fulfilling
the promise of AFS as a high-quality,
open source, wide-area distributed file
system.”

Pioneered at Carnegie Mellon University
and supported and developed as a prod-
uct by IBM Corporation, AFS offers
mid-sized businesses, large enterprises,
and universities a scalable, high-perfor-
mance, reliable, and secure file-sharing
system.

“USENIX has a long and proud history
of supporting technical development,”
said Ellie Young, Executive Director of
the USENIX Association. “Our donation
to the OpenAFS project expresses our
commitment to supporting important
technologies that offer potential benefits
to the entire computing community.”

a gem it had, and what had happened to
it.

A culture does not spring up overnight,
but it can be destroyed rather quickly.

BELL LABS:

LIFE IN THE CROWN JEWEL

NARAIN GEHANI

Summit, NJ: Silicon Press, 2002. Pp. 258.

ISBN 0-929-30627-9.

COMPUTING IN THE MIDDLE AGES:

A VIEW FROM THE TRENCHES

SEVERO ORNSTEIN

N.p.: 1st Books, 2002. Pp. 275.

ISBN 1-403-31517-5.

USENIX Pledges
$35,000 Matching
Fund for Advanc-
ing OpenAFS

USENIX has pleged a $35,000 matching
fund donation to the OpenAFS project,
an ongoing collaborative effort char-
tered with enhancing AFS, a widely used
distributed file system.

The USENIX donation, matched evenly
by Intel and Morgan Stanley, will be dis-
tributed to the OpenAFS Advisory
Council, which is responsible for the
overall direction of the OpenAFS proj-
ect. The OpenAFS Advisory Council is
comprised of representatives from
Carnegie Mellon University, MIT, the
University of Michigan, Intel Corpora-
tion, Morgan Stanley, and IBM Corpo-
ration.

“The support from USENIX will enable
the Advisory Council to devote the

appointed research vice president of
center 1138 and compensation in
research is reoriented to reward those
whose work is “useful for the Lucent
business,” as opposed to focusing on sci-
ence and the publication of papers.

Remember, this is the place that gave us
both the transistor and the radio tele-
scope, just to name two of its thousands
of inventions and patents. It’s the place
where George Stibitz built his calculator.
And it’s the place that created UNIX, C,
C++, troff, awk, Plan9, Inferno, etc., etc.
Gehani recounts the efforts of Penzias as
gradually moving the Labs “away from
science.”

It’s sad, but it’s true.

I happen to believe very strongly that
real research is vital. It doesn’t matter
what it is. We hardly ever know what’s
important and what isn’t. Who would
have dreamt that 40 years on that piece
of putty with some wires sticking out of
it would have been transmogrified into
the board with tens of thousands of cir-
cuits on it?

If you want to understand how crass
mercantilism has changed true research
for the worse, you must read Gehani.
Modern mercantilism corresponds pre-
cisely with a reshaping of almost all of
US industry in a manner that MBAs
would heartily approve of. The old “seed
corn” argument comes to mind.

Ornstein’s book reminds me of just
where that seed corn came from. BBN
was founded over half a century ago.
Starting in about 1994–95, it began to
wane. The magic of Ornstein and his
piano, of juggling in the hallways, of
“doing” acoustics and computer science
and inventing the ARPANET gave way to
a far more businesslike culture. After
nearly a decade in decline, the morale of
BBN may be improving: Someone at
Verizon seems to have learned just what

by Ellie Young

Executive Director

ellie@usenix.org

81April 2003 ;login:

news

�

SA

G
E

N
EW

Shelp to improve our financial position
and ability to offer services to our mem-
bers.

One of the programs hit hardest by the
financial cutbacks has, unfortunately,
been the SAGE certification program.
The existing contract with the testing
provider was allowed to expire in Janu-
ary, and we are currently considering
alternative test delivery plans that will
enable us to continue offering the pro-
gram in a more cost-effective manner.

In early February, a draft SAGE Code of
Ethics was posted on SAGEwire for pub-
lic comment. The results will be pre-
sented to the SAGE Committee at one of
its weekly telephone meetings for final
approval. Look for the results of this
process by April.

Rob Kolstad has been updating and
enhancing the annual SAGE Salary Sur-
vey and Sysadmin Work Profile, which
should be available online by the time
you read this. The salary survey has
always been a very useful tool for sysad-
mins, and we encourage you to partici-
pate and to spread the word to your
colleagues – the more the merrier (and
the better the resulting data)!

The LISA 2003 Call for Participation has
been issued with a submission deadline
of April 21 (see it online at http://www.

usenix.org/lisa03/). This year’s confer-
ence will be in late October in sunny San
Diego. Conference chair Æleen Frisch
and the rest of the program committee
are sure to put together an outstanding
program. Get involved and help make
this year’s LISA program the best ever!

Finally, I must mention that the SAGE
Committee exists to serve SAGE mem-
bers and to work to provide programs
and resources that reflect your needs
and interests. We would love to hear
from you as to your interests and your
suggestions for programs. If you’re inter-
ested in getting involved in SAGE pro-

grams and activities, many opportuni-
ties exist for you – just let us know that
you’re interested in being involved. We
welcome your feedback to the SAGE
Committee (sage-exec@sage.org) or to
individual members of the Committee.

New officers:

President: Geoff Halprin

Vice-President: Trey Harris

Secretary: John Sellens

Treasurer: Bryan Andregg

Member: Gabe Krabbe

Member: David Parter

Member: Peg Schafer

SAGE Update

The SAGE Executive Committee met in
Chicago on February 1 for a very pro-
ductive meeting. New SAGE Exec mem-
bers took office, and the Committee
officers were selected (as listed below).
Departing Committee members Tim
Gassaway and Josh Simon were thanked
for their service and contributions.

The Exec also reviewed the current sta-
tus of SAGE projects, in addition to
holding a productive brainstorming ses-
sion for plans, programs, and strategies
for the coming year. The Exec paid spe-
cial attention to optimizing member ser-
vices and projects in addition to
publicizing opportunities for SAGE
members to volunteer for projects that
interest them. Expect to see results of
this session in the coming months.

This year’s SAGE budget is very tight,
reflecting the general downturn in the
tech economy that we’ve all experienced.
The 2002 SAGE Committee, working
with its Executive Director, Rob Kolstad,
and the USENIX staff, pared the budget
for this year, ensuring that we don’t
overstep our financial reach. This
means, however, that many of our pro-
grams have been scaled back, and some
have been put on indefinite hold. We
are, however, working on a number of
fronts to increase our visibility, member-
ship, and fund-raising, all of which will

SAGE UPDATE �

by John Sellens,

SAGE Secretary

John Sellens is the
General Manager for
Certainty Solutions
(formerly GNAC) in
Canada, based in
Toronto, a long-time
system and network
administrator, SAGE
booklet author, and
he is proud to be hus-
band to one and
father to three.

jsellens@sage.org

82 Vol. 28, No. 2 ;login:

conference reports
example, a stock trading system may
have several redundant pathways for
entering a trade, to protect against
trades being lost before they have been
entered. For the IT infrastructure, this
means the redundant pathways need to
be synchronized at some point. This
type of problem is rarely considered by
researchers or product developers.

Third, error logging and reporting is
important. As an industry, we currently
support very primitive logging with no
mechanisms for root-cause analysis or
correlation of failures. Error messages
are often arcane or not useful, and “first-
failure” capture is impossible. This is
evidenced by a common, though unreal-
istic, request from support center staff:
“Turn logging on and recreate the fail-
ure.” Because logging events need to be
correlated, error tracking and logging
should be a basic service of the OS.

SESSION 2

Summarized by Wanghong Yuan

USING END-USER LATENCY TO MANAGE

INTERNET INFRASTRUCTURE

Bradley Chen, Michael Perkowitz,
Appliant

The problem addressed in this paper is
that distributed application perfor-
mance is important but hard to under-
stand. CDN selection and CRM systems
were offered as examples to illustrate the
problem. The basic approach proposed
is to use end-user latency analysis: (1)
content (e.g., an HTML Web page) is
tagged to collect data; (2) tagged data is
observed on the desktop (end-client sys-
tem); and (3) data is analyzed on the
management server.

The challenges for this approach include
(1) technique issues such as larger data
sets, heavy-tailed data, and the deriva-
tion of request properties, and (2) social
and economic issues such as privacy.
The results show that end-user latency
analysis can monitor relevant informa-
tion, which is obscured otherwise.

This issue’s reports focus on WIESS ‘02

and on OSDI ‘02.

OUR THANKS TO THE SUMMARIZERS:

Scott Banachowski

Richard S. Cox

Steven Czerwinski

Himanshu Raj

Cristian Tapus

Charles P. Wright

Praveen Yalagandula

Wanghong Yuan

Nickolai Zeldovich

Ben Zhao

Yutao Zhong

2nd Workshop on Industrial
Experiences with Systems
Software (WIESS ‘02)
BOSTON, MASSACHUSSETS
DECEMBER 9-11, 2002
KEYNOTE ADDRESS

Douglass J. Wilson, IBM

Summarized by Richard S. Cox

MIT’s Technology Review recently ran a
story titled “Why Software Is So Bad.”

The key is the problem of integration.
CIOs spend 35% of their budgets on
integration, because every new system
must work with the existing infrastruc-
ture. The complexity of integration is
driven up by the constraints of the busi-
ness environment as well as those of the
software.

Several lessons can be learned from
studying systems usage. First, standards
and componentization are proving inef-
fectual for complex systems. For exam-
ple, LDAP is a fine protocol, but no two
organizations use the same schema.
Making matters worse, interoperability
is poor due to differing interpretations
of standards, edge conditions, and ven-
dor-specific extensions. This is leading
to a change from creating solutions by
mixing “best-of-breed” products to
using a single “best-of-suite” package.
Unfortunately, much of the literature on
building component systems is aca-
demic, failing to deal with the scale of
large systems.

Second, systems will fail. Other indus-
tries have accepted this, but software
engineers are just now realizing that fail-
ure is hard. The recovery design must fit
the usage, which means the designer
must understand the failure modes in
practice. This may mean using less
sophisticated algorithms that are better
fitted to the purpose. It also means
accepting that business redundancy may
be at odds with IT redundancy. For

83April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SBUILDING AN “IMPOSSIBLE” VERIFIER

ON A JAVA CARD

Damien Deville, Gilles Grimaud, Uni-
versité de Science et Technologies de
Lille

The smart card device environment
imposes constraints on CPU, memory,
and I/O. As a result, Java Card Virtual
Machine needs to be adapted to the
smart card. The regular verification
approaches do not fit, since unification
is costly. The proposed approach
addresses the above problems via (1)
non-stressing encoding and (2) efficient
fixed points using a software cache pol-
icy.

ENHANCEMENTS FOR HYPER-THREADING

TECHNOLOGY IN THE OPERATING SYSTEM:
SEEKING THE OPTIMAL SCHEDULING

Jun Nakajima, Venkatesh Pallipadi, Intel

In this talk, Jun Nakajima first gave an
overview of Hyper-Threading (HT)
technology by comparing it with multi-
processors. The reason behind HT is
that CPU units are not fully utilized. To
fully utilize CPU units, the HT approach
is to use two architectural sets, thereby
executing two tasks simultaneously.

The HT approach requires the OS
scheduler to support HT-aware idle han-
dling, processor-cache affinity, and scal-
ability (per-package run queue). This
paper proposes a micro-architecture
scheduling assist (MASA) methodology
to address the above problems, thereby
achieving an optimal process placement.

INVITED TALK

SOFTWARE STRATEGY FROM THE

“1980 TIME CAPSULE”

John R. Mashey

Summarized by Yutao Zhong

John Mashey reused the slides from a
talk he gave 25 years ago titled “Small Is
Beautiful and Other Thoughts on Pro-
gramming Strategies.” It is interesting to
see from these old slides and the newly
added comments what has changed and
what hasn’t.

The previous talk was given in 1977,
when the main computer models were
IBM mainframes, coming VAX, and
PDP-11s, while C was taking the place of
ASM and structured programming
became the dominating idea. Three
approaches of building system software
were introduced and compared: “Do it
right,”“Do it over,” and “Do it small,
with tools.”“Do it right” emphasizes an
optimistic on-requirement analysis that
assumes “we know what we are doing.”
“Do it over” puts more emphasis on
early implementation by still starts from
scratch. The last approach, by contrast,
considers tools instead of systems and
builds small and fast so that, if neces-
sary, failures can happen quickly.

In order to see the effect of these strate-
gies, Mashey discussed different metrics
to qualitatively measure success and gave
statistics and observations of projects in
data processing. Figures and numbers
showed the low percentage of complete
success and indicated the larger a project
is, the higher overhead it has to pay.
Laws of program evolution also state
that the entropy of a project increases
with time and may result in a complex
program used to solve a simple problem.

Several principles were offered to coun-
teract these problems: “build it fast,”
“keep it small and simple,” and “build
for change.” Existing tools should be uti-
lized whenever possible. It would be
good to build tools and consider the
interfaces of connecting tools. Some
“small tactics,” including “lifeboat the-
ory,”“sinking lifeboat theory,” and other
considerations about people and consol-
idations, were also discussed.

Even after 25 years of work, we need to
keep these problems in mind, since sys-
tem complexity is much higher nowa-
days; fortunately, people are increasingly
aware of these issues.

Mashey ended the talk by saying, “We
have met the enemy and they are us.”

SESSION 4

Summarized by Cristian Tapus

AN EXAMINATION OF THE TRANSITION OF

THE ARJUNA DISTRIBUTED TRANSACTION

PROCESSING SOFTWARE FROM RESEARCH TO

PRODUCTS

M.C. Little, HP–Arjuna Labs; S.K.
Shrivastava, Newcastle University

Arjuna started in 1986 as a research
project at the University of Newcastle,
England. Arjuna was a “vehicle for get-
ting Ph.D. degrees.” The decision to use
C++ was a pragmatic one (expensive
Euclid vs. free C++ AT&T). Arjuna was
designed to be a toolkit for development
of fault-tolerant applications which
would provide persistence, concurrency
control, and replication. Modularity was
the key to the longevity of the system.

In 1994 Newcastle University asked
them to implement a student registra-
tion system because the “academic
researchers are cheap.” The system was
supposed to run on multiple platforms,
serve about 15,000 students over five
days, and could not tolerate failures.
There were problems, though. Assump-
tions were made about network parti-
tions and recovery that made the system
fail to identify dead machines vs. slow
connections. Intuition is not a good
approach to designing systems.

The year 1995 brought standards for
transactions: object transaction system
specifications (OTSS) from OGM. It
shared many similarities with Arjuna,
but it was only a two-phase commit pro-
tocol engine (persistence and concurrent
control where required from elsewhere).
At this time the OTSArjuna system was
developed. With only slight changes to
the interfaces between modules, the sys-
tem was complying with OTS. JTSAr-
juna followed just two years later as the
first Java transaction service.

In 1999 the Java and C++ transaction
service were marketed; only one year
later Bluestone took over Arjuna Solu-
tions Limited and was, in turn, acquired
by HP in 2001. When the system was

WIESS ‘02 �

acquired by Bluestone the need for real
testing became a reality. For the previous
decade only about 20 tests had been
used, but this was increased to over 4000
tests in order to stretch every feature of
the system. The previous method was to
get a release out to the users, and users
would then report problems back and
bugs would be fixed. Not anymore. The
industry method was different from
many perspectives: write manuals and
white papers and train other people. “I
used to laugh at white papers, but I real-
ized you need skills. An academic person
cannot do it. Academic people do tech-
nical reports, which are different,” Little
said.

Was it worth it? YES. But it was stressful
moving away from R&D. “If you have a
family don’t do it. If you are in the
industry and you feel you are stressed
up, move to academia.”

When asked what they would do differ-
ently, the reply was that they would (1)
get somebody else to do the failure
recovery and (2) make sure that they
would have more than 20 tests.

TREE HOUSES AND REAL HOUSES: RESEARCH

AND COMMERCIAL SOFTWARE

Susan LoVerso and Margo Seltzer,
Sleepycat Software

Susan talked about the process they fol-
lowed to make a commercial product
out of BerkeleyDB. The main argument
was that a research prototype is like a
tree house – it doesn’t last – while a
commercial product is the real house.
Sleepycat was founded in 1996 and
transformed DB1.85 into a real product.
It added transactions, utilities, and
recoverability while continuing to be
open source. Sleepycat is a “distributed”
company; with employees spread across
the world, it is hard for them to interact
with each other directly. But the hetero-
geneous environment makes the com-
pany more powerful. In order to
produce quality software, however,
Sleepycat must follow rigorous software
practices. Designs and reviews are sent

84 Vol. 28, No. 2 ;login:

to the entire engineering staff (one
advantage of being small), and there are
strict coding standards (it is the law).

The talk continued by describing tech-
niques used to obtain the final product.
When you hit bedrock, try to rethink
what you are doing; and observe the
“rule of holes – if you are in one, stop
digging.” In the end, certain lessons were
learned from the development process:
Designs and reviews are important, but
reviews are not perfect; there needs to be
a willingness to stop and change course
when necessary and to throw code away,
even if it works; and you need someone
nearby who’s close to the process but
objective.

JOINT WIESS/OSDI PANEL

RESEARCH MEETS INDUSTRY

Chair: Noah Mendelsohn; Panelists:
Ramon Caceres, ShieldIP; Mark Day,
Cisco Systems; Charles Leiserson, MIT;
Dick Flower, HP; Brian Bershad, Univer-
sity of Washington

Summarized by Nickolai Zeldovich

The joint panel discussed issues related
to the ridge between research and indus-
trial development and their correlation.
The discussion was entitled “Research
Meets Industry.”

Brian Bershad: Knowing how to teach
helps in the industry, as does having a
degree. You need to know how to man-
age and motivate people in academia.
Coming back to academia, you start ask-
ing questions like, “Who cares about this
project?”“Will it scale?” and so on.

Below are capsules of the discussion by
the panel and the audience

Someone Whose Name I Forgot: People
in academia are generally not interested
in details, testing, and usability, which
are needed to take something from
research to a product. The industry in
general is also not very interested in
research work, reading papers, and so
on.

Mark Day: More incentives are needed
to get industry and academia to interact.

Currently there are almost no such
incentives.

Andrew Hume: I do technology transfer
at AT&T. The problem is enticing
researchers, because you go for a while
without publishing papers. On the other
hand, you can then write a different kind
of paper, about the real aspects of sys-
tems. Academia should care more about
results having to do with real details.

Noah Mendelsohn: Academic papers
don’t line up with industrial interests. If
conferences did accept industry papers,
will companies write them?

Andrew Hume: Yes. Motivating factors
are satisfaction and recognition, perhaps
because this is rare.

Noah Mendelsohn: There’s also an
opportunity cost to writing a paper, of
losing developer time.

Charles Leiserson: Students going into
industry don’t understand company cul-
ture; they are used to the academic envi-
ronment.

Margo Seltzer: There needs to be moti-
vation for companies to write papers.
Engineers want to write papers, but need
to sell papers to managers, as a tool for
marketing, for example.

Brian Bershad: Often companies don’t
want intellectual property published.
Thus, commercial papers lack technical
detail.

Charles Leiserson: Writing papers is usu-
ally as useful internally as getting it pub-
lished. Papers help internal
communication.

Roblis(?), Intel: At Intel Labs, writing
papers is rewarded and expected. In the
product groups, however, it is viewed as
a net negative. It would be useful if con-
ferences could accept/reject rough drafts
to avoid wasted write-up efforts.

Anthropologists studied engineers and
found that usually there are a few “lead-
ers’’ in engineering groups that go to
conferences, lead things to turn some-

thing into a product, etc. Maybe we
don’t need people transfer, we just need
to market things to these “leaders’’?

Dick Flower(?): There are groups with-
out leading individuals. Having an
advanced development group of some
sort could be useful, though.

Brian Bershad: I think some companies
have reasonable expectations of the
research world, and some companies
don’t.

John(?): The HotChips conference, for
example, only produces presentations
and not papers. It’s much easier to get a
presentation, rather than a paper, from a
lead chip designer.

Mark T (MS Research): At PARC, of the
people who went to industry, none ever
came back for long. Can you ever come
back from the industry?

Brian Bershad: No, not possible to come
back and be the same. Your focus changes
to short-term goals.

Charles Leiserson: In my lab, lots of peo-
ple, including staff, did it OK. Doing so
colors your interest, though. You learn
about things like barriers to adoption,
etc.

Mark Day: Do you mean returning to
applied research or to academia?

Mark T (MS Research): PARC returnees
were successful in the industry and kept
going back to form new startups. Focus
on doing something with impact in the
world.

Noah Mendelsohn: Having gone to
industry before grad school gave me a
great perspective on reality, judging the
realism of projects, etc. It’s very hard to
do research part-time.

Bradley Chen (Appliant): What do you
think about requiring faculty to have
industrial experience?

Charles Leiserson: Depends on the qual-
ity of the experience. But yes, there are
things from industry to be taught to

85April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Suniversity people. Management, leader-

ship, motivation, educating about team-
work, working with each other.

Fred Douglis (IBM): Were there more
core industrial papers back when
USENIX took extended abstracts?

Chris Small: We seem to have a hangover
after the dot-com boom. There was a
huge flux of ideas from research to com-
merce.

Brian Bershad: The dot-com boom
shows what happens when the barriers
to adoption from research are removed.
The result wasn’t so great – too many
worthless ideas, no industrial experi-
ence. Doing a startup is easier the sec-
ond time around.

Someone from VMware: We were lucky
to have good timing to submit our paper
to OSDI – the submission deadline was
a few months after an internal deadline,
which gave us time to gather results. The
community should be more receptive to
papers about released or dead products;
they are valuable.

Jun Nakajima (Intel): In this economy,
R&D costs are being reduced and moved
to China. For the cost of one engineer
here you can get three to five engineers
in China. How do you justify the three-
to-five times cost?

Charles Leiserson: Education. Also loca-
tion – most other companies are located
here.

Erez Zadok (Stony Brook): Academia is
not preparing students for life in indus-
try. It’s difficult to convince universities
to create courses with practical aspects.

5th Symposium on Operating
Systems Design and
Implementation (OSDI ‘02)
TECHNICAL SESSIONS

DECENTRALIZED STORAGE SYSTEMS

Summarized by Himanshu Raj

FARSITE: FEDERATED, AVAILABLE, AND

RELIABLE STORAGE FOR AN INCOMPLETELY

TRUSTED ENVIRONMENT

Atul Adya, William J. Bolosky, Miguel
Castro, Gerald Cermak, Ronnie
Chaiken, John R. Douceur, Jon Howell,
Jacob R. Lorch, Marvin Theimer, Roger
P. Wattenhofer, Microsoft Research

The goal of this research was to make a
scalable serverless distributed file system
while maintaining security against mali-
cious attacks in untrusted systems.
Byzantine protocols are used to define
untrusted infrastructure. The FARSITE
solution is a virtual global file store of
encrypted data that is replicated to facil-
itate availability. Storage is divided into
two parts: file data and metadata. Meta-
data information is a hash-computed
form of actual file data. The system is
built around an infrastructure to store
file data and metadata separately, and
traditional Byzantine properties are
applied only for machines storing meta-
data.

Since Byzantine operations are costly,
they are not performed per file I/O.
Instead, a Byzantine operation is defined
valid for a period of lease. Various differ-
ent types of leases are available to suit
different consistency requirements.
Batching is another concept used to
reduce cost. The system is implemented
as a service in user level and as a kernel
mode driver that routes the actual file
system calls to NTFS. According to the
results reported, the system performs
better than a central file system, though
worse than bare-bones NTFS. The sys-
tem is not designed to address efficient
large-scale write sharing, database
semantics, or disconnected operations.
The project link is
http://research.microsoft.com/sn/Farsite/.

OSDI ‘02 �

TAMING AGGRESSIVE REPLICATION IN THE

PANGAEA WIDE-AREA FILE SYSTEM

Yasushi Saito, Christos Karamanolis,
Magnus Karlsson, Mallik Mahalingam,
HP Labs

Pangaea is a scalable distributed file sys-
tem targeted for the type of WAN infra-
structure characteristic of multinational
companies with overseas corporate
offices and a need to share data. Design
goals of Pangaea include hiding WAN
link latencies, availability in a high-
change environment, and network usage
efficiency. The system assumes the pres-
ence of an available secure infrastruc-
ture, such as VPN. The system also
provides eventual consistency, though
manual open/close-style consistency
could also be provided. The system
employs pervasive replication to dynam-
ically replicate each file/directory in the
system independently. Benefits drawn
from intensive replication are speed,
availability, and network efficiency. The
system is implemented in user space
based on SFS API. The NFS client at the
kernel level routes the I/O requests to
the Pangaea service at the user level. The
system uses graph-based replica man-
agement. A random graph is created for
every file/directory in the system, and
edges of this graph are used for update
propagation among replicas and for
replica discovery. Since the system does
not have a central lock manager, it uses a
technique called harbingers to compute
a spanning tree so that duplicate trans-
missions can be avoided. This technique
also helps reduce the propagation delay.
The project link is
http://www.hpl.hp.com/research/ssh.

IVY: A READ/WRITE PEER-TO-PEER FILE

SYSTEM

Athicha Muthitacharoen, Robert Morris,
Thomer M. Gil, Benjie Chen, MIT

The main goal of Ivy is to build a highly
available file system out of inexpensive
infrastructure that can scale to multiple
writers on the same data. The system
leverages DHT in the core, and provides
weaker consistency guarantees for meta-

86 Vol. 28, No. 2 ;login:

data for performance reasons. The main
idea behind the system is to use a log per
user and combine potentially multiple
logs to serialize the updates made on a
shared object. Serialization is based on a
version-vectoring scheme rather than
using a timestamp technique. The evalu-
ation compares Ivy’s performance with a
local file system to see the load charac-
teristics and runtime comparisons made
with NFS over WAN. Results show that
log operations tend to dominate the per-
formance of the system over WAN and
parallel fetching of log records can be
used to hide latency. The system
addresses sharing among only a small
number of writers and hence does not
address the scalability issues involved
with a large number of writers sharing
an object. Merging of logs is performed
later, as in the Coda file system, and con-
flict resolution is addressed then. The
way to provide effective read sharing in
Ivy is to use multiple file systems. The
project link is http://pdos.lcs.mit.edu/ivy.

ROBUSTNESS

Summarized by Ben Zhao

DEFENSIVE PROGRAMMING:
USING AN ANNOTATION TOOLKIT TO BUILD

DOS-RESISTANT SOFTWARE

Xiaohu Qie, Ruoming Pang, Larry
Peterson, Princeton University

Qie began by examining how typical
DoS attacks work. One attacks a Web
server, for example, by intentionally
slowing down TCP, faking packet loss,
and attempting to tie down as many
TCP connections at the server end as
possible. It is useful to classify resources
as renewable (CPU, network bandwidth,
disk bandwidth) and nonrenewable
(processes, file descriptors, memory
buffers). Renewable resources are vul-
nerable to “busy attacks,” which try to
request the resources faster than they
can be allocated. The corresponding
solution is protection via admission
control. Nonrenewable resources are
vulnerable to “claim-and-hold attacks,”
which attempt to request and hold on to

them. The corresponding solution
would be to recycle resources when they
are exhausted, reclaiming them from
certain applications. Combinations of
the two types of resource attacks are
harder to deal with. For example, when
file descriptors (nonrenewable) are recy-
cled to protect against claim-and-hold
attacks, they become a renewable
resource and therefore vulnerable to
busy attacks.

The proposal is to utilize a toolkit con-
taining “sensors” and “actuators” to pro-
tect both types of resources, with low
programming burden. The toolkit is a
combination of techniques from work in
protection, static analysis, anomaly
detection, and profiling. To protect
renewable resources, the approach is to
divide functionality into distinct services
and balance resources among them, such
that the impact of an attack on a single
service is limited to that service. To pro-
tect nonrenewable resources, they need
to be recycled when necessary. The algo-
rithm to choose the resource instance to
reclaim can be driven by a timer. The
timer can be set on idleness or on the
length of the service lifetime. The work
proposes a user-defined progress metric
(amount of data output or number of
state transitions) that will reclaim
resources from the “slowest” principal.

The toolkit is implemented as 11 C
macros and library functions. The
authors also modified gcc for auxiliary
code generation at compile time. The
evaluation contains case studies of a
flash Web server. The Web server is par-
titioned into 46 services; 60 annotations
were added to the code. Under a slash
attack, the annotated server response
time is 5.1 milliseconds, compared to a
normal response time of 4.3 millisec-
onds, and is significantly lower than a
non-annotated server under attack,
which has a response time of 25 seconds.
A possible limitation is that its effective-
ness depends on service granularity. The
project link is
http://www.cs.princeton.edu/nsg.

USING MODEL CHECKING TO DEBUG DEVICE

FIRMWARE

Sanjeev Kumar, Kai Li, Princeton
University

Device firmware is a piece of concurrent
software that achieves high performance
at the cost of software complexity. It
contains subtle race conditions that
make it difficult to debug using tradi-
tional debugging techniques. The prob-
lem is further compounded by the
lack of debugging support on the
devices. Model checking is a promising
approach. It can systematically explore
all possible scheduling orders and pro-
vide counter-examples of bugs found.
The general technique is to extract mod-
els from programs either manually or
via a compiler. The authors extracted
models for the Spin model from pro-
grams written in the ESP language. ESP
is a language for programmable devices
that the compilers use to generate tests.
In evaluation, the techniques are applied
to VMMC (high performance commu-
nication design that bypasses the OS for
data transfers). VMMC firmware was
reimplemented using ESP. Seven models
were found using abstract models,
despite the global nature of some bugs
(deadlock). These bugs would be hard to
find without using a model. Where a full
search of the state space is not possible,
partial searches can minimize resource
costs and still produce useful results.

CMC: A PRAGMATIC APPROACH TO MODEL

CHECKING REAL CODE

Madanlal Musuvathi, David Y.W. Park,
Andy Chou, Dawson R. Engler, David L.
Dill, Stanford University

Many system errors do not emerge
unless some intricate sequence of events
occurs. In practice, this means that most
systems have errors that only trigger
after days or weeks of execution. Model
checking is an effective way to find such
subtle errors. This work contributes the
C model checker, which links to code,
emulates a real system, captures the
states of the system, and analyzes the
results. CMC schedules threads to emu-

87April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Slate nodes in the network, where sched-

uling granularity is on the order of
entire even handlers. This means han-
dlers are treated atomistically, and syn-
chronization bugs can be missed. CMC
tries to search the entire space, but it can
checkpoint at decision points and
resume later where different states can
be generated. The work uses three opti-
mizations to reduce the search space:
hash compaction, downscaling, and state
canonicalization. Hash compaction is
the use of hashtables to store previously
seen states so they are not examined
again, and computing hashed signatures
for each state to reduce space require-
ments. Downscaling is the use of a small
number of nodes in order to reduce the
state space. Complex interaction bugs
can still be produced, but it might miss
bugs only seen on large-scale interac-
tions. State canonicalization is the sim-
plification of similar states down to a
single state, which is then evaluated.
When applied to AODV routing proto-
col implementations, the CMC checker
found 42 bugs (of which 34 are distinct,
and one is a bug in the specification).

KERNELS

Summarized by Charles P. Wright

PRACTICAL, TRANSPARENT OPERATING

SYSTEM SUPPORT FOR SUPERPAGES

Juan Navarro, Rice University and Uni-
versidad Católica de Chile; Sitaram Iyer,
Peter Druschel, and Alan Cox, Rice
University

Translation lookaside buffer (TLB) cov-
erage has decreased by a factor of 1000
in 15 years. In 1985 the TLB miss over-
head was less than 5%; today it is over
30%. This is primarily due to increases
in the size of working sets, yet TLB size
has remained constant. Many architec-
tures allow the creation of superpages. A
superpage TLB is like a normal TLB, but
a size field is added. Navarro presented a
practical implementation of superpages
for FreeBSD 4.3.

There are three major issues when
implementing superpages: (1) super-

pages require allocation of contiguous,
aligned memory; (2) a superpage can be
created out of several normal pages
(promoted) or broken into several pages
(demoted); and (3) the need to prevent
internal fragmentation. Each issue is
dealt with in an opportunistic manner.
For example, once an application
touches the first page of a memory
object it will quickly touch every page.
Each superpage is created as long as pos-
sible and at the earliest point. To do this,
reservation is employed, but it may be
broken if the memory is needed (the
oldest reservations are broken first). The
same type of opportunistic algorithm is
applied to promotion and demotion. To
keep fragmentation low the page demon
restores contiguity, and wired pages are
clustered. On the SPEC CPU 2000 inte-
ger and floating point operations, a per-
formance improvement of about 11%
was observed. For a large matrix trans-
position, an improvement of over 600%
was observed.

More information is available at http://

www.cs.rice.edu/~jnavarro/superpages/.

VERTIGO:
AUTOMATIC PERFORMANCE-SETTING FOR

LINUX

Krisztián Flautner, ARM Limited; Trevor
Mudge, University of Michigan

Flautner presented a software frame-
work to do energy management by set-
ting processor speed. The processor
consumes 32% of the power budget on
small devices (e.g., PDAs). Vertigo
focuses on power management when the
CPU is performing work, not when the
CPU is idle. The underlying principle is
to run just fast enough to meet dead-
lines, without using higher power con-
sumptions. An increase in performance
will create an exponential increase in
energy usage—it is better to use a
smaller amount of computing power for
a longer period of time than to use a
large amount of power over a short
period.

Vertigo is a Linux kernel module that
monitors system execution to determine

OSDI ‘02 �

how fast things need to go. There are five
hooks in the kernel (e.g., task switching,
some system calls, and swapping) that
are used to determine activity. A policy
stack combines multiple simple algo-
rithms to determine the best perfor-
mance level. Each algorithm can be
specified for a specific performance situ-
ation. For example, an interactive per-
formance algorithm may monitor X
server events.

Vertigo was compared to the Crusoe
LongRun on-chip power saving system.
Using application-specific knowledge
was very effective. For example, the Cru-
soe LongRun would cause spikes to full
power when the GNOME clock ticked.
When playing MPEG movies both Ver-
tigo and LongRun do not drop any
frames, but Vertigo used 52% of the
peak performance level and LongRun
used 80%. The conclusion is that the
kernel has lots of valuable information
that is lost on the chip.

COOPERATIVE I/O: A NOVEL I/O
SEMANTICS FOR ENERGY-AWARE

APPLICATIONS

Andreas Weissel, Bjorn Beutel, and
Frank Bellosa, University of Erlangen

Traditional operating system power
management assumes the timings of
disk operations by user applications are
unknown and cannot be influenced.
Additionally, transitioning to a low-
power mode will actually waste power if
the transition was unnecessary. Cooper-
ative I/O changes this assumption by
introducing three new system calls:
coop_read, coop_write, and coop_open.
Along with the standard parameters for
these calls, a timeout and an abortable
flag are passed (e.g., a MPEG player may
specify that I/O can be deferred until the
frame actually needs to be decoded).
This allows the operating system to
schedule I/O intelligently.

There are three components to coopera-
tive I/O: a modified IDE driver that
shuts down the disk after the break-even
point (the number of seconds required

88 Vol. 28, No. 2 ;login:

to reduce overall power consumption),
VFS modifications, and ext2 modifica-
tions. The goal of these modified com-
ponents is to cluster I/O operations into
batches, thus leaving the drive idle for
the longest period of time possible. For
the Amp MP3 player, 150 lines of code
were modified (the bit rate was used to
determine timeouts). While this modi-
fied Amp was running, an unmodified
mail client using write was used. Using
coop_read, a power consumption was
reduced to 210 joules from 373 joules.
This is a better energy savings than an
“Oracle” policy and one which always
makes the right power decision based
upon a previous trace, without modify-
ing the timing of the I/O.

PHYSICAL INTERFACE

Summarized by Charles P. Wright

TAG: A TINY AGGREGATION SERVICE FOR

AD-HOC SENSOR NETWORKS

Samuel Madden, Michael J. Franklin,
Joseph M. Hellerstein, University of
California, Berkeley; Wei Hong, Intel
Research

Sensor networks are a collection of
small, inexpensive battery-run devices
with sensors and RF interfaces. Pro-
gramming a sensor network is a difficult
task: It took two weeks for two experi-
enced students to program a vehicle-
tracking sensor network. TAG eliminates
the need to program sensor networks by
using an SQL-like declarative lan-
guage—using TAG, the same vehicle
position network was programmed in
two minutes. Sensor networks are
installed under harsh conditions (e.g., in
habitat- or earthquake-monitoring
applications). The primary metric used
for sensor networks is power consump-
tion. Berkeley “Mica Motes” run for only
two to three days when using full power
but can last up to six months at a 2%
duty cycle. Communication dominates
the power consumption cost, so they use
bytes sent as a metric.

To reduce the communications over-
head, TAG allows in-network processing

of aggregate queries (count, max, aver-
age, etc.). Madden asserts that most
common data-analysis operations are
aggregate operations. For example, the
average temperature over all the sensors
(or in a given sector) is a more interest-
ing indicator than the temperature at
each individual node.

There are several methods that can be
used to decrease communication. The
first method is to incrementally com-
pute values using partial state records
(PSRs). For example, an average can be
transmitted to a node’s parent as a sum
and a count, and the parent’s values can
be inserted into this PSR. Additionally,
snooping or guesses can improve perfor-
mance. If the desired aggregate is the
max, a node does not need to communi-
cate its own value if it hears a value
larger than its own. If the root knows the
max value is at least 50, then it can
reduce communication by communicat-
ing this value to other nodes.

More information can be obtained at
http://telegraph.cs.berkeley.edu/tinydb/.

FINE-GRAINED NETWORK TIME

SYNCHRONIZATION USING REFERENCE

BROADCASTS

Jeremy Elson, Lewis Girod, Deborah
Estrin, UCLA

To present a consistent view of informa-
tion, sensor networks need to have a
consistent view of time. This problem
has already been solved on the Internet
(e.g., NTP), but sensor networks do not
have the infrastructure available to
Internet hosts. Sensor applications also
have stronger time synchronization
requirements than the Internet (tracking
phenomena may require microsecond-
level synchronization).

Elson presented reference broadcast syn-
chronization (RBS). Traditional syn-
chronization methods have lots of
nondeterministic delay when sending
packets (e.g., backoff timers or link-level
retransmission). Receiving a packet that
a host sent has much less variation than
the time it takes to actually send a packet

(1 bit width for receive vs. 1000 for
send). Therefore, two hosts can make
note of the time they received a packet
sent by a third host. The two receivers
now know the difference between their
clocks. Clock skew perturbs this obser-
vation, however, so a best-fit line is used
to determine the difference.

RBS synchronized the clock on a Com-
paq iPaq to precisions of 6 microsec-
onds, whereas NTP is only able to obtain
a precision of 53 microseconds. The
clock resolution on the Linux platform
is only 1 microsecond; Elson believes
that a more accurate clock would yield
better results. The performance under a
6 Mbps load shows even better results:
RBS degrades to 8 microseconds, but
NTP degrades to 1542 microseconds.

RBS effectively removes sender nonde-
terminism from network time synchro-
nization. This facilitates a wide range of
applications, including acoustic ranging
and collaborative signal detection.

SUPPORTING TIME-SENSITIVE APPLICATIONS

ON A COMMODITY OS

Ashvin Goel, Luca Abeni, Charles Kra-
sic, Jim Snow, Jonathan Walpole,
Oregon Graduate Institute

Fast processors enable interactive real-
time applications in software: for exam-
ple, software radio, software modems,
voice over IP, video conferencing, and
accurate network traffic generators.
However, these applications need mil-
lisecond to microsecond timing guaran-
tees. It has long been accepted that to
provide such timing guarantees a special
real-time OS is required and that general
purpose OSes need a complete redesign.
Real-time operating systems have many
disadvantages (e.g., nonstandard inter-
faces and small user communities). Goel
presented time-sensitive Linux (TSL).
TSL aims to provide real-time perfor-
mance on commodity general-purpose
operating systems using an evolutionary
approach.

The requirements for TSL were fine-
grained timers, a responsive kernel, and

89April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
San accurate implementation of a good

scheduler. There are two types of kernel
timers: fine-grained (soft) or one-shot
timers (firm). There are two overheads
when evaluating timers: reprogramming
and interrupts. Reprogramming the
timer turns out to be inexpensive, but
the interrupts are expensive. However,
soft timers have a potentially
unbounded latency. TSL uses firm
timers. Firm timers insert checks into
kernel paths (e.g., system call entry/exit
to check the timer) but also use one-
shot timers that are configured to over-
shoot the required delay. This provides
some guarantee while, hopefully, reduc-
ing the number of interrupts.

Linux has already broken down the big
kernel lock, but some locks are still large.
TSL uses voluntary lock yielding to
increase kernel responsiveness. Finally,
TSL implements a proportional share
scheduler that provides a constant-speed
virtual machine. Even heavy-load soft-
ware modems (which require 4–16 mil-
lisecond guarantees) are supported. TSL
implements sub-millisecond-timing
guarantees on a general-purpose operat-
ing system. TSL imposes 1.5% overhead,
which is low for firm timers. For the
additional kernel preemption points, an
overhead of 0.5% was introduced.

PANEL

Summarized by Steven Czerwinski

SELF-ORGANIZING NETWORKS FROM SENSOR

NETS TO P2P: PANACEA OR PIPE-DREAM?

Co-Moderators: Peter Druschel, Rice
University; David Culler, University of
California, Berkeley/Intel; Panelists:
Hari Balakrishnan, MIT; Yaneer Bar-
Yam, NECSI; John D. Kubiatowicz,
University of California, Berkeley

Are self-organized networks superior to
traditionally engineered solutions and
are they necessary to solve today’s prob-
lems? In Culler’s opinion, self-organized
networks are necessary but require engi-
neering in order to build systems with
the desired predictable global behaviors.
They are necessary in sensor networks

because of the near impossibility of
administering and configuring millions
of sensor nodes; they must be able to
self-organize. However, as he showed
with several different self-organizing
methods to compute spanning trees,
designing the local rules that lead to cor-
rect global behavior is difficult. This is
where engineering needs to be applied.

Balakrishnan also advocated self-organ-
ized networks because they can elimi-
nate human misconfiguration from
distributed systems and allow such sys-
tems to adapt to errors and change. He
argued that distributed systems are all
about enabling autonomy at subsystems,
but with this autonomy come problems
with misconfiguration. Using traces, he
showed how a significant portion of
invalid DNS queries were caused by
human misconfiguration.

Kubiatowicz used a thermodynamics
analogy to argue the importance of self-
organizing networks. Large systems can
exhibit stability through statistics if they
possess replicated components that
interact and adjust to one another.
Energy could be injected into the system
through both passive and active correc-
tion mechanisms. He labeled such sys-
tems as “thermospective.” With Moore’s
Law enabling redundancy and with the
need to eliminate human configuration,
he saw these systems as being the future.

Druschel presented a spectrum of cur-
rent distributed systems, with decentral-
ized approaches on one end and self-
organizing ones on the other. He argued
that natural (biological) systems are the
only truly self-organizing systems, with
sensor networks being fairly close. Sys-
tems requiring ACID semantics have dif-
ficulties making it onto the
self-organized end. He also noted that
the systems we engineer are robust to
both mundane failures and malicious
attacks, while self-organizing ones are
only robust to mundane failures. They
would require (at the least) a trusted
certificate authority to be robust to
attacks.

OSDI ‘02 �

Bar-Yam used analogies from biology to
show that we already have the concep-
tual tools to demystify self-organizing
networks. It may be hard to understand
the progression of a mouse embryo
from a macroscopic perspective, but
that’s because we don’t understand the
local rules or patterns of behavior of the
smaller components. He showed how
different types of patterns of behavior
(such as local majority, two-dimensional
condensation, and local activation/long-
range inhibition) can lead to interesting
phenomena, such as the stripes on a
zebra’s back.

Audience members pointed out the dif-
ficulties of creating such a system from
an economic and business standpoint
(who pays for all of this?) along with
privacy concerns (do you really want
your data going anywhere and every-
where?). Some also cautioned against
the misuse of biology and other non-
computer science metaphors, which can
encourage similarities being drawn
where none exist.

VIRTUAL MACHINES

Summarized by Praveen Yalagandula

MEMORY RESOURCE MANAGEMENT IN

VMWARE ESX SERVER

Carl A. Waldspurger, VMware

This won the Best Paper award.

VMware ESX server is a thin kernel to
multiplex hardware resources among
virtual machines. The three main issues
that arise in memory resource manage-
ment are fairness, performance isolation
among virtual machines, and efficient
utilization of the available machine
memory.

To efficiently reclaim memory from a
virtual machine, Waldspurger proposes
the ballooning technique where a driver
inside the virtual machine allocates
some pages, forcing the guest OS to evict
pages not in use or to swap some pages.
Experimental results show that there is
only a small overhead of 1.4% to 4.4%
in using this technique.

90 Vol. 28, No. 2 ;login:

Efficient use of available machine mem-
ory is provided through memory shar-
ing, where a single page on the machine
is shared by multiple VMs (using copy-
on-write semantics). A background
process computes hashes of pages to
determine the duplicate pages. For “best
case” workloads, in which multiple
Linux VMs are run, about 60% memory
savings are observed. For real workloads,
the savings ranged from 7% to 32%.

For a memory allocation scheme that
provides fairness among virtual
machines while being efficient, the
author proposes the concept of “idle
memory tax,” where the idle pages are
charged more than active pages. This
new mechanism resulted in a 30%
throughput increase for the workload
considered in experiments.

SCALE AND PERFORMANCE IN THE DENALI

ISOLATION KERNEL

Andrew Whitaker, Marianne Shaw, and
Steven D. Gribble, University of
Washington

The goal of this work is to enable the
execution of untrusted code while pro-
viding isolation so that the untrusted
code does not interfere with any other
process on the system. The Denali “iso-
lation kernel” isolates untrusted software
services in separate protection domains.
The approach is to use virtual machines
to provide isolation with strategic modi-
fications for scalability, simplicity, and
performance.

Denali’s virtual machine architecture
achieves scalability and performance at
the cost of giving up backwards compat-
ibility. It omits rarely used features like
BIOS, protection rings, etc.; revises
interrupts and MMU; and simplifies
hardware I/O instructions. The resulting
core kernel is an order of magnitude
smaller than the bare-bones Linux
2.4.16 kernel.

For scalability, Denali employs the fol-
lowing techniques: (1) batched, asyn-
chronous interrupts – instead of
invoking a VM when interrupt arrives,

interrupts are batched together and
applied when the corresponding VM is
scheduled, thus reducing the overhead
of context switches; and (2) idle-with-
timeout instruction – this instruction
allows VM to specify how long it yields,
thus leading to better scheduling. The
first technique provided a 30% improve-
ment in performance in experiments,
and the second scheme yielded a 100%
throughput improvement.

REVIRT: ENABLING INTRUSION ANALYSIS

THROUGH VIRTUAL-MACHINE LOGGING

AND REPLAY

George W. Dunlap, Samuel T. King,
Sukru Cinar, Murtaza A. Basrai, and
Peter M. Chen, University of Michigan

The aim of this work is to provide a way
for post-mortem analysis of intrusions.
Typical system logs are subverted by the
intruder. The “CoVirt” project aims at
enhancing security by running the target
OS and all target services inside a Virtual
Machine (VM) and then adding security
services in the VM or host platform.
ReVirt aims at checkpointing and log-
ging a VM’s execution trace so that it
can be replayed later. The virtual
machine used is UMLinux, a Linux ker-
nel that can be run on any other Linux
machine.

To enable complete replay, checkpoint-
ing is done that covers the memory,
CPU, and disk states, and logging is
done that covers all keyboard, network
events, and interrupts, along with the
data corresponding to these events.
Replaying the interrupts is a hard prob-
lem, and the authors use tuple, as in the
Hypervisor project, to uniquely identify
the place in execution where interrupts
should happen.

The virtualization overhead ranged from
1% to 58% for different workloads. The
logging overhead on runtime is about
8%, and the log grew at a rate of
1.4GB/day in the worst case workload
and at 0.04GB/day in the best case.

CLUSTER RESOURCE MANAGEMENT

Summarized by Praveen Yalagandula

INTEGRATED RESOURCE MANAGEMENT FOR

CLUSTER-BASED INTERNET SERVICES

Kai Shen, University of Rochester;
Hong Tang,University of California,
Santa Barbara; Tao Yang, University of
California, Santa Barbara and Ask
Jeeves; Lingkun Chu, University of Cali-
fornia, Santa Barbara

The challenges involved in hosting large-
scale resource-intensive Internet services
on a server cluster are: (1) scalability
and robustness, (2) timely response,
(3) efficient resource utilization, (4)
adaptive resource management, and (5)
differentiated services. The goal of the
Neptune project is to provide program-
ming and run-time environment sup-
port for effective management of
services through partitioning, replica-
tion, and aggregation. Instead of using
monolithic metrics such as throughput,
mean response time, etc., the authors
define “quality-aware service yield” with
respect to a request as denoting the
amount of economic benefit resulting
from servicing this request in a timely
fashion, and then try to maximize the
aggregate service yield over all requests.

Service differentiation is done based on
service classes, where service accesses of
a particular service class obtain the same
level of service support. A service class
can be a set of client identities, service
types, or data partitions. In Neptune,
two-level request distribution and
scheduling is done: gateways do random
polling of the servers and try to achieve
load balancing, and service differentia-
tion is done at the servers. This two-level
architecture provides scalability and
robustness at the cost of less isolation
and fairness. Within a server, a request
scheduler schedules requests from the
queues belonging to different classes to
several worker threads such that the
aggregate yield is maximized. The offline
optimal scheduling problem is NP-com-
plete, and, hence, the authors use heuris-
tics such as Earliest Deadline First

91April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
S(EDF), Yield-Inflated Deadline (YID),

Greedy, and Adaptive techniques. The
experimental results show that Adaptive
outperforms all other heuristics on a 16-
node cluster.

RESOURCE OVERBOOKING AND APPLICATION

PROFILING IN SHARED HOSTING PLATFORMS

Bhuvan Urgaonkar, Prashant Shenoy,
University of Massachusetts; Timothy
Roscoe, Intel

The goal of this work is to maximize the
number of hosted applications on a
server cluster while providing resource
guarantees to the applications. Taking a
worst-case load and assigning those
amounts of resources is not efficient,
since the average load of an application
is typically an order of magnitude less
than the worst case. So the authors pro-
pose to use the scheme of overbooking
resources and show that this scheme is
feasible and maximizes the revenue gen-
erated by the available resources.

The authors define “capsules” as the
components of an application that runs
on a node. To determine the resource
requirements of a capsule, the authors
perform “application profiling” using
Linux Trace Toolkit (for CPU and mem-
ory requirements) with well known
traces. From typical application profiles,
the authors conclude that these capsules
exhibit different degrees of burstiness
and use “Token Buckets” to represent the
resource requirements. A Token Bucket
of a capsule with two parameters s and p
states that the resource usage of that
capsule over any time period t has to be
<= s*t + p. Each capsule specifies an
overbooking tolerance parameter, O, to
denote the probability with which the
resource requirements of that capsule
can be violated. Once capsules’ resource
requirements are estimated, these are
mapped to nodes using a simple algo-
rithm that uses a greedy technique. A
capsule can be mapped to a node only if
the resource requirements of the capsule
can be satisfied by the node. The experi-
mental results show that there is a 100%
improvement with just 1% overbooking.

AN INTEGRATED EXPERIMENTAL

ENVIRONMENT FOR DISTRIBUTED SYSTEMS

AND NETWORKS

Brian White, Jay Lepreau, Leigh Stoller,
Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and
Abhijeet Joglekar, University of Utah

Typically, network experiments are done
through simulation, emulation, or on
live networks. While simulation is
repeatable but not accurate, live network
experimentation is realistic but not
repeatable. The emulation method of
experimentation is a hybrid approach
that creates a synthetic network environ-
ment but requires tedious manual con-
figuration. Netbed complements existing
experimental environments by spanning
simulation, emulation, and live experi-
mentation, integrating them into a com-
mon framework. The integration allows
ease of use while being realistic. About
2176 experiments were done on the
Netbed within the last 12 months by
about 365 users.

The Netbed uses a virtual machine
approach for network experimentation.
Configuration time is improved through
automation by two orders of magnitude.
Network nodes are emulated using vir-
tual machines on a cluster of nodes.
Links including WAN links are emulated
using VLANs and tunnels. The network
topology to be emulated can be specified
either using a ns-type Tcl-based specifi-
cation or in a Java-based GUI. A global
resource allocator scheme assigns local
cluster resources to different components
of the network topology requested.

Configuring a six-node dumbbell net-
work took just 3 minutes on Netbed, in
comparison to a 3.5-hour effort by a
student with significant Linux system
administration experience.

For more information, see
http://www.netbed.org.

OSDI ‘02 �

PEER-TO-PEER INFRASTRUCTURE

Summarized by Scott Banachowski

SCALABILITY AND ACCURACY IN A

LARGE-SCALE NETWORK EMULATOR

Amin Vahdat, Ken Yocum, Kevin Walsh,
Priya Mahadevan, Dejan Kostic, Jeff
Chase, David Becker, Duke University

Yocum discussed a network traffic emu-
lator designed to provide realistic sce-
narios for complex systems such as the
Internet. Using the emulator, called
ModelNet, has advantages over simula-
tion because it allows execution of real
code while still providing control over
network conditions not possible with
live deployment. The goals when devel-
oping ModelNet included support for
10K nodes with a 10Gbps bisection
bandwidth, and realistic emulation of
network failures and cross-traffic.

The emulator organizes networks into
two types of nodes: (1) edge nodes that
run the code being tested and connect
through (2) core nodes that run Model-
Net emulation code. A technique called
“distillation” is the key for providing the
scalability necessary for handling large
numbers of nodes. Distillation trans-
forms the topology of core nodes, which
represent the Internet, into a smaller
subset of nodes that preserve only inter-
esting links, including the first and last
hops of the edge nodes. In this
approach, instead of injecting packets
that incur processing overhead for an
emulator, cross-traffic is simulated by
changing the characteristics of the con-
nections through the core nodes.

The ModelNet emulator was verified by
reproducing experiments from a previ-
ously published study of the CFS storage
system layered on the Chord distributed
hashtable. Running Chord/CFS on the
edge nodes and substituting ModelNet
for the network, the throughput of data
transfers closely matched the previously
published results. Yocum concluded
with the assertion that ModelNet is
effective for studying how your code
behaves in a large-scale network running

92 Vol. 28, No. 2 ;login:

on its native OS. Questions from audi-
ence members revealed that it was not
known yet exactly how far ModelNet
scales, and that it does require a lot of
storage.

More information is available at
http://issg.cs.duke.edu/modelnet.html.

PASTICHE:
MAKING BACKUP CHEAP AND EASY

Landon P. Cox, Christopher D. Murray,
Brian B. Noble, University of Michigan

Users rarely, if ever, make backups of
their personal systems, because it is
expensive and time-consuming. Capital-
izing on the trend that many disks are
often less than half-full, Pastiche is a sys-
tem for peer-to-peer backups of files on
others’ computers. Recognizing that
many of the binaries on a disk are iden-
tical to the binaries of other users, much
of the cost of transferring data is elimi-
nated. The goal of Pastiche is efficient,
cost-effective backup, while preserving
individual privacy.

As its name implies, Pastiche is assem-
bled from already existing technologies.
Pastiche uses content-based indexing of
data, the same techniques employed by
LBFS. Data is fingerprinted and divided
into chunks, and a hash function
uniquely identifies each chunk. Using
only a subset of fingerprints from a disk
– for example, a fingerprint from a Win-
dows distribution – Pastiche can identify
redundant copies of the data on other
machines. To locate machines for back-
ing up data, or “backup buddies,” Pas-
tiche uses two overlay networks deter-
mined by Pastry, a peer-to-peer routing
infrastructure. A mechanism called
“lighthouse sweep” was added to Pastry
to ensure a geographically diverse set of
nodes.

When participating in Pastiche, your
system may contain information that
also backs up your peers’ systems, so the
file system must ensure that this data is
not deleted or modified. The Chunk-
store file system views all data as chunks

and assembles files for users in objects
called “container files.” When data from
a container is modified, it is written to a
new chunk, preserving the older ver-
sions of the data. The performance of
backup and restore operations is compa-
rable to VFS copies.

The talk generated enough controversy
that there were long lines at the ques-
tioning microphones, mostly people
interested in more in-depth compar-
isons with other backup methods.

SECURE ROUTING FOR STRUCTURED

PEER-TO-PEER OVERLAY NETWORKS

Miguel Castro, Microsoft Research;
Peter Druschel, Rice University; Ayal-
vadi Ganesh, Antony Rowstrom,
Microsoft Research; Dan S. Wallach,
Rice University

While peer-to-peer overlay networks are
scalable, self-organizing, and robust with
respect to node failure, they are suscepti-
ble to malicious participants. The talk
presented several attacks on these over-
lays followed by a discussion of defenses.

Castro began with an overview of the
Pastry routing overlay and then
described several attacks on this tech-
nique. In one type of attack, a node can
choose its node ID so that, instead of
being random, it is positioned to control
another node’s network access or pre-
vent availability of objects. A defense
against this attack would be to certify
node IDs using keys from a trusted
source. To prevent users from obtaining
a large number of node IDs, certificates,
it was suggested, might require purchas-
ing. Other attacks on overlays affect
routing: for example, supplying peers
with fake proximity information or bad
routing table information to increase the
probability that messages travel through
a malicious node. A defense for attacks
on routing is to maintain a fallback
table, with constrained and more verifi-
able routing for use when the perfor-
mance-based routing table fails. Finally,
a malicious node may drop or misroute
messages. A solution is to incorporate a

routing test, and if it fails, rely on a
redundant route.

Using these security techniques, peer-to-
peer protocols may still work even when
up to a quarter of the nodes of an over-
lay network are malicious, and they pro-
vide efficiency when the actual number
of compromised nodes is small. In the
question period, one audience member
quipped that the idea of charging for
certificates was the work of the presen-
ter’s employer and suggested that the
alternative of using a real-world authen-
tication based on a user’s identity is
more viable.

WORK-IN-PROGRESS REPORTS

Summarized by Scott Banachowski

DISCOVERING BOTTLENECKS IN DISTRIBUTED

SYSTEMS

Athicha Muthitacharoen, MIT; Jeffrey
C. Mogul, Janet L. Wiener, HP Labs

Contact: Athicha Muthitacharoen,
athicha@amsterdam.lcs.mit.edu

In large, distributed systems it is not
always possible to investigate causes of
performance bottlenecks created by
internal, proprietary components,
because discovering problems often
requires instrumenting these compo-
nents to measure statistics. MIT is devel-
oping a tool to identify critical paths
using a passive trace of messages. Using
the relationships between messages, the
tool automatically infers the source of
bottlenecks.

WITNESS: LEADER ELECTION WITHOUT

MAJORITY

Haifeng Yu and Amin Vahdat, Duke
University

Contact: Haifeng Yu, yhf@cs.duke.edu

The title must have been inspired by the
last presidential election. Many distrib-
uted algorithms require a node be
elected as leader, but under some kinds
of failures it is impossible to guarantee
that the elected leader is unique. The
new election algorithm provides proba-
bilistic guarantees of a unique leader,

93April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sand is based on choosing a random

set of witnesses to participate in the
protocol.

CONFIDENTIAL BYZANTINE FAULT-TOLERANCE

Jian Yin, Jean-Philippe Martin, Arun
Venkataramani, Lorenzo Alvisi, Mike
Dahlin, University of Texas, Austin

Contact: Arun Venkataramani,
arun@cs.utexas.edu

As replication systems add more servers
and heterogeneity, they become increas-
ingly vulnerable to attack, so providing
confidentiality for replicated data is a
difficult problem. This system increases
the intrusion-tolerance of a set of repli-
cation servers when a number of the
servers fail.

INCREASING FILE SYSTEM BURSTINESS FOR

ENERGY EFFICIENCY

Athanasios E. Papathanasiou, Michael
L. Scott, University of Rochester

Contact: Athanasios Papathanasiou,
papathan@cs.rochester.edu

This report describes a method to create
longer idle times in disk traffic so that
these idle periods may be exploited for
power saving. The key is to increase the
burstiness of access using aggressive
prefetching combined with new disk-
scheduling algorithms. Trace experi-
ments show the energy reduction using
this technique during an MP3 playback
reached 55%.

FAB: FEDERATED ARRAY OF BRICKS

Yasushi Saito, Svend Frolund, Arif Mer-
chant, Susan Spence, Alastair Veitch,
HP Labs

Contact: Yasushi Saito,
ysaito@hpl.hp.com

The talk described a logical disk system
that uses low-cost commodity CPU and
disks and is intended to replace high-
end disk arrays. The decentralized sys-
tem software, based on Petal, achieves
high-performance and fail-over ability
by replicating disk blocks throughout
the cluster.

NCRYPTFS: A SECURE AND CONVENIENT

CRYPTOGRAPHIC FILE SYSTEM

Charles P. Wright, Michael C. Martino,
and Erez Zadok, Stony Brook University

Contact: Charles P Wright,
cwright@ic.sunysb.edu

NCryptfs is a stackable file system based
on CryptFS from FiST. The low-level file
system is transparent to applications. An
attach maps an accessed directory to its
associated encrypted directory (which
stores the actual data in cipher form).
Each attach keeps its own data and
authorizations private, and on-exit call-
backs purge the clear-text data from the
kernel.

SUPPORTING MASSIVELY MULTIPLAYER

GAMES WITH PEER-TO-PEER SYSTEMS

Wei Xu and Honghui Lu, University of
Pennsylvania

Contact: Honghui Lu,
hhl@cis.upenn.edu

A massively multiplayer game supports
up to 200,000 players. Traditionally,
games use a client-server architecture,
but Wei Xu proposes using peer-to-peer
protocols. The talk describes a mapping
of players to subsets of multicast groups.
By trading consistency for performance,
only “nearby” players need to synchro-
nize their environments using P2P mul-
ticast groups. A prototype game was
developed using Scribe.

KELIPS: A FAT BUT FAST DHT

Indranil Gupta, Prakash Linga, Dr. Ken-
neth Birman, Dr. Al Demers, Dr. Rob-
bert Van Renesse, Cornell University

Contact: Indranil Gupta,
gupta@cs.cornell.edu

Kelips is a peer-to-peer probabilistic
protocol for group discovery, in which
the lookup cost of a file is reduced by
enabling the address of any file to be dis-
covered within a single hop. This is
achieved by increasing the size of file
index tables on each peer and using
background communication, or “gossip-
ing,” between nodes to keep state
updated.

OSDI ‘02 �

IMPROVISED NETWORK: AUTONOMOUSLY

RECONFIGURABLE MOBILE NETWORK

Nobuhiko Nishio, Keio University, Japan

Contact: Nobuhiko Nishio,
vino@sfc.keio.ac.jp

New applications are emerging that use
a combination of wireless networks and
distributed sensor nodes, as in cellular
phones. In such an ad hoc network, both
sensors and sink nodes may be mobile,
so the research is developing ways to
adapt to the changing environment
without hurting performance.

PROBABILISTIC ENERGY SAVING IN SENSOR

NETWORKS

Santashil PalChaudhuri and David B.
Johnson, Rice University

Contact: Santashil PalChaudhuri,
santa@cs.rice.edu

On mobile devices, idle and receive peri-
ods use about the same amount of
energy, so if idle periods may be
replaced with inactivity, the device
stands to save a lot of energy. According
to the “birthday paradox,” a relatively
small number of people can ensure a
high probability that two of them share
the same birthday. Applying this princi-
ple to communication, only a small
number of nodes is needed to ensure
that a sender and receiver are active
simultaneously. Using a probabilistic-
based protocol, the device pre-chooses
its waking and sleeping periods, intro-
ducing some increase in communication
latency but drastically reducing power
consumption.

SOLAR: SUPPORTING CONTEXT-AWARE

MOBILE APPLICATIONS

Guanling Chen and David Kotz,
Dartmouth University

Contact: Guanling Chen,
glchen@cs.dartmouth.edu

The goal of this research is to provide
flexible and scalable pervasive comput-
ing. Solar is an infrastructure for context
computation. An example is a mobile
device that subscribes to a set of inter-
esting events; in Solar, by moving the

94 Vol. 28, No. 2 ;login:

processing of these events to the infra-
structure (called “planets”), applications
that subscribe to the events remain
lightweight. Sharing the computation
among several applications reduces both
development and network costs.

THE EXNODE DISTRIBUTION NETWORK

Jeremy Millar, University of Tennessee

Contact: Jeremy Millar,
millar@cs.utk.edu

exNode is a content distribution net-
work. It is developed to provide access to
time-limited data, such as the release of
a software product, and is currently used
by RedHat. The exNode architecture is
effective at distributing load by imple-
menting a highly distributed wide-area
RAID system.

SCALABLE CONSTRAINED ROUTING IN

OVERLAY NETWORKS

Xiaohui Gu and Klara Nahrstedt, Uni-
versity of Illinois, Urbana-Champaign

Contact: Xiaohui Gu, xgu@cs.uiuc.edu

This system is a step toward value-added
service overlays. In overlay networks,
such as those used by peer-to-peer
applications, it is desirable to satisfy
some end-to-end constraints – for
example, establishing a level of quality of
service between endpoints. Qualay is a
proposed overlay network designed to
provide QoS constraints over paths. In
the setup phase, service paths are chosen
by probing nodes, and in the runtime
phase, faults are detected and paths
rerouted to maintain QoS.

REVERSE FIREWALLS IN DENALI

Marianne Shaw and Steve Gribble,
University of Washington

Contact: Marianne Shaw,
mar@cs.washington.edu

Shaw presented a way to introduce poli-
cies and mechanisms to protect the
Internet from bad services. The system
allows untrusted code to run in the net-
work infrastructure on a virtual
machine, with a reverse firewall that pre-
vents the Internet from malicious traffic

generated by the VM. The flexible
framework allows policies to be added
on the fly, and in the example provided
in the talk, Shaw focused on a “don’t
speak unless spoken to” policy for con-
tainment of client-server code.

IMPROVING APPLICATION PERFORMANCE

THROUGH SYSTEM CALL COMPOSITION

Amit Purohit, Joseph Spadavecchia,
Charles Wright, Erez Zadok, Stony
Brook University

Contact: Amit Purohit,
purohit@cs.sunysb.edu

A problem with application perfor-
mance is overhead incurred by system
calls that move data across the kernel
boundary. This system provides a solu-
tion that removes user-level bottlenecks
by moving user code into the kernel.
Using a tool called Cosy, combined with
the gcc compiler, designated code is
compiled into special code segments
that can be loaded into the kernel at
runtime. Static and dynamic checks
ensure that kernel security is not vio-
lated, and adding preemption to the ker-
nel protects against user segments
monopolizing the CPU.

PERFORMANCE OF MACH-KERNEL

Igor Shmukler, OS Research

Contact: Igor Shmukler,
shmukler@mail.ru

Shmukler spoke about enhancements to
the Mach kernel aimed at increasing its
attractiveness to the user community.
Although Mach introduced many good
ideas, it didn’t really catch on because it
was never fine-tuned for the common-
case performance. Shmukler tried to
clear Mach’s bad name by discussing
proposed improvements, including
changing the memory management sub-
system, optimizing the RPC implemen-
tation, adding new synchronization
primitives, and stomping on a slew of
bugs.

ELASTIC QUOTAS

Ozgur Can Leonard, Jason Nieh, Erez
Zadok, Jeffrey Osborn, Ariye Shater,
Charles P. Wright, Kiran-Kumar
Muniswamy-Reddy, Stony Brook Uni-
versity

Contact: Jeffrey R. Osborn,
jrosborn@ic.sunysb.edu

“Elastic quotas” for disks are aimed at
shared file servers, such as those used by
university students, where each user
receives a quota of space. By implement-
ing elastic quotas, extra space may be
allocated to users for their temporary
use, but this space may later be
reclaimed. The elastic quota service sets
both global and user-assigned policies
for how the space occupied by files des-
ignated as elastic will be reclaimed, using
information such as size or creation
time. The next step in their research is to
determine if users will embrace such a
system.

A MAIL SERVICE ON OCEANSTORE

Steven Czerwinski, Anthony Joseph,
John Kubiatowicz, University of
California, Berkeley

Contact: Steven Czerwinski,
czerwin@eecs.berkeley.edu

The Mail Service uses the OceanStore
file system to provide low-latency access
to email, independent of a user’s loca-
tion. Goals of the system include data
durability and relaxed consistency by
allowing application-specific conflict
resolution. Following this session, mem-
bers of the project gave a demo of
OceanStore.

NETWORK BEHAVIOR

Summarized by Kenneth Yocum

AN ANALYSIS OF INTERNET CONTENT

DELIVERY SYSTEMS

Stefan Saroiu, Krishna P. Gummadi,
Richard J. Dunn, Steven D. Gribble,
Henry M. Levy, University of Washing-
ton

There’s a lot more than just Web content
being served across the Internet. Now we
have CDNs and peer-to-peer systems

95April 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sserving up audio, video clips, and

movies. The authors studied HTTP Web
traffic, Akamai CDN, and Kazaa and
Gnutella nets. The basic result of the
authors’ trace, conducted at the Univer-
sity of Washington, is that peer-to-peer
traffic constitutes a large fraction of the
bytes, and it’s very different from the
Web. For example, it may be possible to
cache 80–90% of the outbound traffic
and 60% of the inbound traffic. But it
takes a long time to warm up the cache
(about a month). In both directions P2P
objects are three orders of magnitude
larger than Web objects. A small number
of objects account for most of the bytes
in P2P systems.

TCP NICE: A MECHANISM FOR

BACKGROUND TRANSFERS

Arun Venkataramani, Ravi Kokku, Mike
Dahlin, University of Texas, Austin

TCP NICE, a building block for back-
ground transfers, finds and uses spare
bandwidth in the Internet to improve
availability, reliability, latency, and con-
sistency. As a “new” variant on TCP con-
gestion control, TCP NICE is similar to
TCP VEGAS monitor RTT but provides
three changes: a more sensitive conges-
tion detector, multiplicative reduction in
response to increasing RTT, and the pos-
sibility of having a congestion window
less than one. With NICE you can
bound the interference caused by back-
ground flows. One use is prefetching.
The authors found that NICE could
improve performance by a factor of
three, where using old-style TCP hurt
performance by a factor of six.

THE EFFECTIVENESS OF REQUEST

REDIRECTION ON CDN ROBUSTNESS

Limin Wang, Vivek Pai, Larry Peterson,
Princeton University

We now use replication across geo-
graphic distance to deliver content.
Client requests are delivered to the
“best” candidate based on server load,
server closeness, and cache. This work
describes current schemes and intro-
duces a new one to balance locality, load,

and nearness (proximity). This new
scheme was shown through simulation
to improve system capacity by 60–90%
while maintaining low request latencies
for clients. One dynamic algorithm, Fine
Dynamic Replication (FDR), is espe-
cially promising. It keeps fine-grained
information on URL popularity to
adjust the number of replicas. They’re
trying to deploy it on PlanetLab.

MIGRATION

Summarized by Richard S. Cox

THE DESIGN AND IMPLEMENTATION OF ZAP:
A SYSTEM FOR MIGRATING COMPUTING

ENVIRONMENTS

Steven Osman, Dinesh Subhraveti,
Gong Su, and Jason Nieh, Columbia
University

Zap supports the transparent migration
of unmodified applications. The migra-
tion of network applications is sup-
ported without loss of connectivity.
Zap-migrated processes leave no resid-
ual state behind on the previous system.
Implementing Zap involves minimal
changes to a commodity operating sys-
tem and requires low overhead.

Three problems must be solved to
migrate processes: resource consistency,
resource conflicts, and resource depen-
dency. Zap’s solution to all three is the
process domain (pod). A pod is a private
virtual space that may contain a single
process, a process group, or a whole user
session. As a private space, processes in a
pod cannot interact with processes out-
side a pod. Pods are migrated as a unit.
Zap contains pods by introducing a thin
layer in the Linux kernel, virtualizing
process IDs, IPC, memory, the file sys-
tem, network, and devices. The overhead
of this approach is minimal, and the pod
images are small.

More information can be found at
http://www.ncl.cs.columbia.edu/research/

migrate.

OSDI ‘02 �

OPTIMIZING THE MIGRATION OF VIRTUAL

COMPUTERS

Constantine P. Sapuntzakis, Ramesh
Chandra, Ben Pfaff, Jim Chow, Monica
S. Lam, Mendel Rosenblum, Stanford
University

By virtualizing the x86 architecture, the
VMware GSX server enables an entire
virtual machine’s (VM) hardware state
to be easily suspended and captured.
Once saved, the state can be sent to
another machine and resumed. How-
ever, capturing the entire state generates
machine images, or capsules, that are
gigabytes in size. This work applies sev-
eral optimizations to reduce the capsules
to a size that can be transferred over a
DSL link in under 20 minutes, enabling
applications such as user mobility and
software updates. The two largest com-
ponents of a capsule are the disk and
memory images.

Using standard copy-on-write tech-
niques, VMware can track the changes to
a disk image and transfer only the differ-
ences if the target machine already has
an old version of the disk image. By
hashing each disk block, and searching
for a block with matching hash value on
the target system, the server can avoid
transferring pages whose contents
already exist on the target system. Much
of a VM’s memory may not be in active
use; thus, if VMware could request that
the guest OS de-allocate inactive pages,
the size of the memory image could be
greatly reduced. This is the idea behind
ballooning, which utilizes a driver added
to the guest OS to reclaim low-priority
pages prior to suspending the VM.
Finally, by demand-paging the disk
images, the time to resume the VM on
the target can be reduced. Demand-pag-
ing takes advantage of the disk-latency
tolerance already built into modern
OSes. Several macro-benchmarks show
that the combination of these tech-
niques is effective in reducing the total

96 Vol. 28, No. 2 ;login:

data transferred to migrate a capsule as
well as the time-to-start.

LUNA: A FLEXIBLE JAVA PROTECTION SYSTEM

Chris Hawblitzel, Dartmouth College;
Thorsten von Eicken, Expertcity

Extensible applications require protec-
tion schemes that can isolate extensions
while permitting lightweight communi-
cation. Java uses language-based approaches
to enforce domain separation, enabling
cheap communication because of the
single address space. However, systems
with Java extensions lack clear domain
boundaries; all code and objects are
stuck together. The resources used by an
extension cannot be reclaimed if the
extension is terminated, because they
may be referenced by other parts of the
system.

By introducing a task abstraction, exten-
sions in a Java system can be strongly
isolated. Tasks contain all the objects,
threads, and code for an extension. All
cross-task communication is explicit. In
Luna, regular (local) pointers are not
allowed to reference objects in other
tasks. Remote pointers, a new type of
reference that is allowed to point to
objects in other tasks, are Luna’s mecha-
nism supporting intertask communica-
tion. Remote pointers may be revoked at
any time; if a revoked remote pointer is
used, an exception is raised. This allows
an entire extension to be removed from
the system cleanly, without dangling ref-
erences in other tasks. Remote pointers
are implemented with a two-word struc-
ture. The first word is just the memory
address of the object. The second word
is a pointer to the permit, which con-
tains a revocation flag and is checked
before each use. As an optimization that
removes most checks in common cases,
Luna can generate loop code that does
not contain any checks. On revocation,
threads using the object are suspended,
and a breakpoint is placed where the
check would have been. If and when the

breakpoint is reached, an exception is
raised, simulating the effect of the check.
Micro-benchmarks, as well as an imple-
mentation of an extensible Squid Web-
cache, confirm that Luna’s isolation
imposes low overhead.

	motd
	geer
	sivonen
	mccluskey
	flynt
	turoff
	farrow
	darmohray
	chuvakin
	chalup
	pierzchala
	swartz
	bookreviews
	usenixnews
	sagenews
	conf

