
;login:
V O L . 3 9 , N O . 5O C T O B E R 2 0 1 4

Operating Systems
& Linux Containers

James Bottomley and Pavel Emelyanov

& Rump Kernels
Antti Kantee and Justin Cormack

& Push on Green
Dan Klein, Dina Bester, and Mathew Monroe

& Parables for Sysadmins
Andy Seely

Columns
Health Checks for LDAP Servers
David N. Blank-Edelman

Python: Pathname Parsing with Path
David Beazley

iVoyeur: The Lying Mean
Dave Josephsen

For Good Measure: Testing
Dan Geer

/dev/random: The Internet of Insecure Things
Robert G. Ferrell

Conference Reports
ATC ’14: 2014 USENIX Annual Technical Conference

HotCloud ’14: 6th USENIX Workshop on Hot Topics
in Cloud Computing

HotStorage ’14: 6th USENIX Workshop on Hot Topics
in Storage and File Systems

U P C O M I N G E V E N T S

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

OSDI ’14: 11th USENIX Symposium on Operating Systems
Design and Implementation

October 6–8, 2014, Broomfield, CO, USA
www.usenix.org/osdi14

Co-located with OSDI ’14 and taking place October 5, 2014

Diversity ’14: 2014 Workshop on Supporting Diversity
in Systems Research
www.usenix.org/diversity14

HotDep ’14: 10th Workshop on Hot Topics in System
Dependability
www.usenix.org/hotdep14

HotPower ’14: 6th Workshop on Power-Aware
Computing and Systems
www.usenix.org/hotpower14

INFLOW ’14: 2nd Workshop on Interactions of NVM/
Flash with Operating Systems and Workloads
www.usenix.org/inflow14

TRIOS ’14: 2014 Conference on Timely Results in
Operating Systems
www.usenix.org/trios14

LISA14
November 9–14, 2014, Seattle, WA, USA
www.usenix.org/lisa14

Co-located with LISA14

URES ’14 West: 2014 USENIX Release Engineering
Summit West
November 10, 2014
www.usenix.org/ures14west

UCMS ’14 West: 2014 USENIX Configuration
Management Summit West
November 10, 2014
www.usenix.org/ucms14west

SESA ’14: 2014 USENIX Summit for Educators
in System Administration
November 11, 2014
USENIX Journal of Education in System Administration (JESA)
Published in conjunction with SESA
www.usenix.org/jesa

SaTCPI ’15: National Science Foundation Secure and
Trustworthy Cyberspace Principal Investigators’
Meeting (2015)

January 5–7, 2015, Arlington, VA
Sponsored by the National Science Foundation
Presented by USENIX

FAST ’15: 13th USENIX Conference on File and Storage
Technologies

February 16–19, 2015, Santa Clara, CA, USA
www.usenix.org/fast15

NSDI ’15: 12th USENIX Symposium on Networked
Systems Design and Implementation

May 4–6, 2015, Oakland, CA
www.usenix.org/nsdi15

HotOS XV: 15th Workshop on Hot Topics in Operating
Systems

May 18–20, 2015, Kartause Ittingen, Switzerland
Submissions due: January 9, 2015
www.usenix.org/hotos15

USENIX ATC ’15: USENIX Annual Technical Conference
July 8–10, 2015, Santa Clara, CA, USA

Co-located with ATC ’15 and taking place July 6–7, 2015

HotCloud ’15: 7th USENIX Workshop on Hot Topics
in Cloud Computing

HotStorage ’15: 7th USENIX Workshop on Hot Topics
in Storage and File Systems

USENIX Security ’15: 24th USENIX Security Symposium
August 12–14, 2015, Washington, D.C., USA

LISA15
November 8–13, 2015, Washington, D.C., USA

Do you know about the USENIX Open Access Policy?
USENIX is the � rst computing association to o� er free and open access to all of our conferences proceed-
ings and videos. We stand by our mission to foster excellence and innovation while supporting research
with a practical bias. Your membership fees play a major role in making this endeavor successful.

Please help us support open access. Renew your USENIX membership and ask your colleagues to join or
renew today!

www.usenix.org/membership

E D I T O R
Rik Farrow
rik@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N M A N A G E R
Michele Nelson

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2014 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designations
used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designations
appear in this publication and USENIX is aware
of a trademark claim, the designations have
been printed in caps or initial caps.

O C T O B E R 2 0 1 4 V O L . 3 9 , N O . 5

E D I T O R I A L
2 Musings Rik Farrow

O P E R AT I N G S Y S T E M S
6 Containers James Bottomley and Pavel Emelyanov
11 Rump Kernels: No OS? No Problem! Antti Kantee and Justin Cormack

P R O G R A M M I N G
18 Sirius: Distributing and Coordinating Application Reference Data

Michael Bevilacqua-Linn, Maulan Byron, Peter Cline, Jon Moore,
and Steve Muir

S Y S A D M I N
26 Making “Push on Green” a Reality Daniel V. Klein, Dina M. Betser,

and Mathew G. Monroe
34 /var/log/manager: Parables of System Administration Management

Andy Seely
36 Educating System Administrators Charles Border and Kyrre Begnum

D I V E R S I T Y
40 CRA-W Grad Cohort: Guiding Female Graduate Students Towards

Success Dilma Da Silva

C O L U M N S
42 Practical Perl Tools: Get Your Health Checked David N. Blank-Edelman
47 A Path Less Traveled David Beazley
52 iVoyeur: Lies, Damned Lies, and Averages Dave Josephsen
56 For Good Measure: Testing Dan Geer
60 /dev/random: The Internet of Things Robert Ferrell

B O O K S
62 Book Reviews Rik Farrow and Mark Lamourine

N O T E S
66 USENIX Association Financial Statements for 2013

C O N F E R E N C E R E P O R T S
68 ATC ’14: 2014 USENIX Annual Technical Conference
82 HotCloud ’14: 6th USENIX Workshop on Hot Topics

in Cloud Computing
91 HotStorage ’14: 6th USENIX Workshop on Hot Topics

in Storage and File Systems

2  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve often rambled on about the future of operating systems, imagining

something completely different and new. Of course, there are loads of
practical issues with that path, like the inability to run any existing

software on the spanking new OS. And it turns out there are still things about
existing operating systems that can surprise me.

I speculated that a future operating system might not look at all like Linux, today’s favorite
OS for servers and for OS research projects too. Linux is large, complex, and difficult when
it comes to incorporating large changes into it because of its history and design. While the
BSD kernels are more modularly designed, they are less popular, and thus not as interesting,
or even as well-known. And both are enormous, with many millions of lines of code. While
Minix3 is much smaller and actually takes a new approach, it too suffers from the “not as
popular as Linux” issue, like the BSDs.

I’ve watched the OS space for a while, curious to see if some of the less popular directions
taken will pick up a lot of interest. And that interest generally comes from providing features
that users, whether they are running servers in some cluster or researchers looking to add the
next neat feature or improvement, just can’t live without.

Size Is Not Everything
Today’s OSes are huge. When I worked with Morrow Designs in the ’80s, I actually put
together a set of two, double-density, floppy disks that contained a bootable kernel and utili-
ties you needed to recover an unbootable system. That was a total of less than 800 kilobytes
of code for the equivalent of a rescue CD, which should sound ridiculous in this day and age.
But is it really?

The Internet of Things (IoT) already includes inexpensive devices, and that means slower
CPUs, small memories, and sometimes relatively generous amounts of flash. With small
memories, these devices won’t be booting a generic kernel but one trimmed down to the bare
essentials. In one sense, that’s easy enough: You can build a kernel without support for file
systems and devices you will never use in a diskless system on chip (SoC) device. Popular
examples of this include the Raspberry Pi and the BeagleBone Black.

But even these devices are overkill for many IoT applications. Another popular example is the
Arduino family, which does not run *nix but may still include networking. Even simpler (and
slower with less memory) are the Peripheral Interface Controllers (PICs), favored not just
by hobbyists but also by device designers. These devices have really tiny amounts of RAM
(really just RAM as registers), yet are more than adequate for many household and industrial
devices. They do not run *nix, or even what could ever be called an operating system.

Let’s head to the opposite extreme and consider IBM’s Sequoia (Blue Gene/Q) that was
installed at Lawrence Livermore National Labs in 2011. Like others in this series, the
Sequoia’s compute nodes (some 98,000 of them) run the Compute Node Kernel (CNK). The
CNK operating system is just 5000 lines of C++, just enough to communicate with I/O nodes
and launch applications that have been compiled just for the CNK environment. The con-
cept behind CNK is simple: the bare minimum of memory and processing required so that

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 3

EDITORIAL
Musings

most of the CPU and memory can be devoted to computation.
And it works, as the Sequoia was the world’s fastest computer
for a while, as well as using 37% less energy than the computer
(BG/K) it replaced.

So, the Sequoia runs a more sophisticated version of what runs
on Arduinos on its compute nodes. There is no memory manage-
ment or thread scheduler: Applications are single threaded and
run in physical rather than virtual memory.

Stripped Down
The same stripped down to bare essentials approach can be found
in rump kernels. The brainchild of Antti Kantee, rump kernels
provide just those portions of an operating system needed to run a
single application in physical memory, with no scheduler. Kantee
refactored the NetBSD kernel into a base and three modules that
allow the rump kernel to support applications that can run on
bare metal or on top of a hypervisor. Not that rump kernels are
the only game in town: OSv, MirageOS, and Erlang-on-Xen all
are designed to remove the need for a full operating system and
its environment when running on top of a hypervisor.

There’s yet another way to stop layering operating systems over
a hypervisor operating system, and it has been around for many
years. You may have heard of LXC, a project that has been used
for years as a way of providing the illusion of having your own
hosted system. With LXC, and related technology like Solaris
Zones, there is only one operating system. LXC, or other con-
tainer software, provides the illusion of being the master, root,
of your own system, when what you really are running is a group
of processes in a jail. Just as the BSD jail has evolved over time,
so has the Linux container. James Bottomley discusses Linux
containers in an article in this issue, and he and his co-author
have left me feeling like real progress has been made in making
containers both secure and efficient.

Still in the theme of “stripped down,” but not related to operating
systems, I had hoped to get Ben Treynor (Google) to write about
the concept of the error budget. Treynor introduced this idea
during his keynote at the first SREcon, and I will try to cover it
concisely here. Imagine that you are running software-as-a-ser-
vice (SaaS) on an immense scale, that you must do so efficiently
(no operators, just skilled SREs) but do not want to violate your
service level agreement of five 9s, or 99.999% uptime. At the
same time, you continually need to update your client-facing
software. Your error budget includes some tiny fraction of your
total capacity for providing SaaS for testing. And the better job
you do of testing, the further your error budget, that .001%, can
stretch. Read Dan Klein’s article and perhaps you will see how
Google’s approach to updating software fits into this concept of
the error budget.

I still hope that Ben Treynor will have the time to write for us
someday.

The Lineup
We begin this issue with two operating systems-related articles.
When I met Kirill Korotaev (Parallels) during Linux FAST
’14, I was already interested in Linux container technology. I
caught up with Kirill during a break, and asked him to write
about Linux containers. Kirill suggested James Bottomley, and
James agreed to write, working with Pavel Emelyanov. They’ve
produced both a history and an excellent description of Linux
containers for this issue.

Greg Burd (Amazon) had suggested that I publish an article
about rump kernels in 2013, but I didn’t think the technology was
ready. When Antti Kantee volunteered to write about rump ker-
nels this summer, I took another look. Kantee actually wrote his
PhD dissertation about refactoring the NetBSD kernel to support
the concept of rump kernels: a method of supplying the parts
of an OS you need for a particular application, and no more. He
and Justin Cormack continue to work at making rump kernels
easier to use, and their article in this issue explains the concept
in detail.

I met Steve Muir during ATC ’14. While Steve presented the
paper, four other people from Comcast were involved in the
research. Their goal was to create an in-memory database for a
read-only service that could be transparently updated. Their use
of Paxos as a means of managing updates between a hierarchy of
servers got me interested, plus their software is open source.

A student of John Ousterhout, Diego Ongaro, presented a Best
Paper at ATC ’14, “In Search of an Understandable Consensus
Algorithm,” which the researchers offer as a replacement for
Paxos. Although the subject is not covered in this issue, Raft is
focused on applications like the one the Comcast people wrote,
and on RAMCloud (of course). You can find the Ongaro paper
on the USENIX Web site, as well as videos explaining how Raft
works, by searching online.

Dan Klein, Dina Betser, and Mathew Monroe have written about
the process they use within Google to push software updates.
While the process is quite involved, I had heard about parts of it
before Dan volunteered to write for ;login: from various sources.
And it both makes sense and realizes a cautious yet realistic
approach to upgrading software without causing catastrophic
failures—perhaps just small-scale ones within the error budget.
Klein’s article covers not only updating but also a further optimi-
zation that will make the process more efficient, involving less
human interaction.

Andy Seely continues his series of columns about managing
system administrators. In this contribution, Andy relates a set
of three parables he uses as guides and stories he can share to
motivate co-workers.

4  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

EDITORIAL
Musings

Charles Border and Kyrre Begnum introduce a workshop and a
new journal. The Summit for Educators in System Administra-
tion had its first official meet at LISA ’13, and will occur again
at LISA14. The Journal of Education in System Administration
(JESA) provides a mechanism for publishing research about
educating system administrators year round.

Dilma Da Silva has written her second article about CRA-W, the
organization devoted to helping woman PhD candidates in the
fields of computer science and engineering. Dilma discusses the
Grad Cohort, a yearly gathering of grad students and mentors
focused on providing useful information about both completing
grad school successfully and planning beyond grad school. And
right now (late 2014) is the time to be making plans, and apply-
ing for support, to attend Grad Cohort 2015.

David Blank-Edelman claims that this time he is going to be
totally practical about his chosen topic. I would claim David
is always practical and pragmatic. David has been working on
health checks for a small cluster of LDAP servers, and he takes
us through both aspects of what a health check requires and Perl
support for querying LDAP servers.

Dave Beazley considers Python’s problems with paths. It’s not
so much that Python can’t manipulate pathnames. It’s just that
the ways of doing so have been disjointed, involving multiple
OS modules. Well, things have gotten more elegant with a new
module, pathlib, available as part of Python 3.4.

Dave Josephsen continues on his mission of evangelizing for the
proper design and use of monitoring systems. In this column,
Dave rails against the arithmetic mean, showing just how badly
the mean works when used to summarize/compress time series
data. And, of course, Dave offers alternatives.

Dan Geer has written a concise article clearing up the confusion
surrounding terms like false positive and true negative. Dan not
only does this, but also provides an example for determining the
most efficient ordering of tests for sensitivity and specificity.

Robert Ferrell, having recently retired from being a badge-
carrying Fed (bet you didn’t suspect that), has decided to poke
fun at the Internet of Things. Even as people rush to connect
their cars and thermostats up to the Internet, Robert points out
that the security of these devices is about on par with that of the
Internet—in 1994.

I’ve written a review of the new edition of the Design and
Implementation of the FreeBSD Operating System. It’s not the
first time I’ve taken a look at similar volumes, as past USENIX
president Kirk McKusick has been part of writing about BSD
operating systems for over 20 years. This edition, the first in 10
years, contains several new chapters as well as much updated
material.

Mark Lamourine, while technically a system administrator,
continues to write excellent reviews of books on programming
topics. This time, he covers books on when and how to use Bayes-
ian statistics, understanding when refactoring an imperative
program to use functional programming features can help, and
an experimental work called the Go Developer’s Notebook.

We have lots of summaries: ATC ’14, HotCloud ’14, HotStorage
’14, WiAC ’14, and ICAC ’14. Most are incomplete, as there were
too many sessions to cover and not enough volunteers—with the
exception of the WiAC summary, which was thoroughly covered
by Amy Yin. If you are planning on attending LISA14, and
want to be certain a favorite session gets covered, contact me to
volunteer.

The first time I attended the OSDI conference, I asked someone
I knew why there weren’t any papers about new OS designs. His
answer was simple: It’s hard. Designing a new OS takes many
years and is also a risky endeavor. That’s why I now look more
closely at important but incremental changes, like unified con-
tainer support for Linux, and at work like Kantee’s, where he has
converted a complete kernel into a more modular form. And, I
continue to watch seL4, which just went open source (July 2014),
Arrakis, and Minix3.

EARLY BIRD DISCOUNT
REGISTER BY OCT. 2O

www.usenix.org/lisa14

More Craft. Less Cruft.
Wednesday Keynote Speaker:

Ken Patchett, Director of Data Center
 Operations, Western region, Facebook

Thursday Keynote Speaker:
Gene Kim, former CTO and founder, Tripwire,

co-author of The Phoenix Project:
A Novel About IT, DevOps, and

Helping Your Business Win

Closing Plenary:
Janet Vertesi, Princeton University

Featuring talks and training from:
Michael “Mikey” Dickerson
Caskey Dickson, Google

Garrett Honeycutt, LearnPuppet.com
Dinah McNutt, Google

Laura Thomson, Mozilla
James Turnbull, Docker

Avleen Vig, Etsy
Mandi Walls, Chef

Nov. 9–14, 2014 | Seattle

6  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

OPERATING SYSTEMSContainers
J A M E S B O T T O M L E Y A N D P A V E L E M E L Y A N O V

James Bottomley is CTO
of server virtualization at
Parallels where he works on
container technology and is
Linux kernel maintainer of the

SCSI subsystem. He is currently a director
on the Board of the Linux Foundation and
chair of its Technical Advisory Board. He
went to university at Cambridge for both his
undergraduate and doctoral degrees after
which he joined AT&T Bell Labs to work on
distributed lock manager technology for
clustering. In 2000 he helped found SteelEye
Technology becoming vice president and CTO.
He joined Novell in 2008 as a Distinguished
Engineer at Novell’s SUSE Labs and Parallels in
2011. jbottomley@parallels.com

Pavel Emelyanov is a principal
engineer at Parallels working
on the company’s cloud server
projects. He holds a PhD in
applied mathematics from the

Moscow Institute of Physics and Technology.
His speaking experience includes talks about
container virtualization at LinuxCon 2009,
at the joint memory management, storage
and file-system summit in 2011, and about
checkpoint-restore on LinuxCon Europe 2012
and Linux Conf AU 2013. xemul@parallels.com

Today, thanks to a variety of converging trends, there is huge interest
in container technology, but there is also widespread confusion about
just what containers are and how they work. In this article, we cover

the history of containers, compare their features to hypervisor-based virtu-
alization, and explain how containers, by virtue of their granular and specific
application of virtualization, can provide a superior solution in a variety of
situations where traditional virtualization is deployed today.

Since everyone knows what hypervisor-based virtualization is, it would seem that compari-
sons with hypervisors are the place to begin.

Hypervisors and Containers
A hypervisor, in essence, is an environment virtualized at the hardware level.

In this familiar scenario, the hypervisor kernel, which is effectively a full operating system,
called the host operating system, emulates a set of virtual hardware for each guest by trap-
ping the usual operating system hardware access primitives. Since hardware descriptions
are well known and well defined, emulating them is quite easy. Plus, in the modern world,
CPUs now contain special virtualization instruction extensions for helping virtualize hard-
to-emulate things like paging hardware and speeding up common operations. On top of this
emulated hardware, another operating system, complete with unmodified kernel (we’re
ignoring paravirtual operating systems here for the sake of didactic simplicity), is brought
up. Over the past decade, remarkable strides have been made in expanding virtualization
instructions within CPUs so that most of the operations that hardware-based virtualization
requires can be done quite efficiently in spite of the huge overhead of running through two
operating systems to get to real hardware.

Containers, on the other hand, began life under the assumption that the operating system
itself could be virtualized in such a way that, instead of starting with virtual hardware, one
could start instead with virtualizing the operating system kernel API (see Figure 2).

In this view of the world, the separation of the virtual operating systems begins at the init
system. Historically, the idea was to match the capabilities of hypervisor-based virtualiza-
tion (full isolation, running complete operating systems) just using shared operating system
virtualization techniques instead.

In simplistic terms, OS virtualization means separating static resources (like memory or
network interfaces) into pools, and dynamic resources (like I/O bandwidth or CPU time) into
shares that are allotted to the virtual system.

A Comparison of Approaches
The big disadvantage of the container approach is that because you have to share the kernel,
you can never bring up two operating systems on the same physical box that are different at
the kernel level (like Windows and Linux). However, the great advantage is that, because a
single kernel sees everything that goes on inside the multiple containers, resource sharing

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 7

OPERATING SYSTEMS

and efficiency is greatly enhanced. Indeed, although the con-
tainer stack is much thinner than the hypervisor stack by virtue
of not having to run two kernels, most of the container improve-
ments in density in fact come from the greater resource effi-
ciency (in particular, sharing the page cache of the single kernel).
The big benefit, of course, is that the image of what’s running in
the container (even when it’s a full operating system) is much
smaller. This means that containers are much more elastic
(faster to start, stop, migrate, and add and remove resources,
like memory and CPU) than their hypervisor cousins. In many
ways, this makes container technology highly suited to the cloud,
where homogeneity is the norm (no running different operating
systems on the same physical platform) and where elasticity is
supposed to be king.

Another great improvement containers have over hypervisors is
that the control systems can operate at the kernel (hence API)
level instead of at the hardware level as you have to do with
hypervisors. This means, for instance, that the host operating
system can simply reach inside any container guest to perform
any operation it desires. Conversely, achieving this within a
hypervisor usually requires some type of hardware console
emulating plus a special driver running inside the guest operat-
ing system. To take memory away from a container, you simply
tune its memory limit down and the shared kernel will instantly
act on the instruction. For a hypervisor, you have to get the
cooperation of a guest driver to inflate a memory balloon inside
the guest, and then you can remove the memory from within
this balloon. Again, this leads to greatly increased elasticity for
containers because vertical scaling (the ability of a virtual envi-
ronment to take over or be scaled back from the system physical
resources) is far faster in the container situation than in the
hypervisor one.

The History of Containers
In many ways, the initial idea of containers goes back to Multics
(the original precursor to UNIX) and the idea of a multi-user
time-sharing operating system. In all time-sharing systems, the
underlying operating system is supposed to pretend to every user
that they’re the sole owner of the resources of the machine, and
even impose limits and resource sharing such that two users of a
time-sharing system should not be able materially to impact one
another.

The first real advance was around 1982 with the BSD chroot()
system call leading to the Jail concept, which was founded in
the idea of logically disconnecting the Jail from the rest of the
system by isolating its file-system tree such that you could not
get back out from the containerized file system into the host
(although the host could poke about in the Jailed directory to its
heart’s content).

In 1999, SWsoft began the first attempts at shared operating
system virtualization, culminating with the production release
of Virtuozzo containers in 2001. Also in 2001, Solaris released
Zones. Both Virtuozzo and Zones were fully isolating container
technology based on capabilities and resource controls.

In 2005, an open source version of Virtuozzo (called OpenVZ)
was released, and in 2006 an entirely new system called process
containers (now CGroups) was developed for the Linux kernel.
In 2007, Google saw the value of containers, hired the CGroups
developers, and set about entirely containerizing the Googleplex
(and making unreleased additions to their container system
in the meantime), and in 2008, the first release of LXC (LinuX
Containers) based wholly on upstream was made. Although
OpenVZ was fully open source, it was never integrated into the
Linux mainstream (meaning you always had to apply additional

Figure 1: Hypervisor diagram Figure 2: Container diagram

8  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

OPERATING SYSTEMS
Containers

patches to the Linux kernel to get these container systems),
which by 2011 led to the situation in which there were three
separate Linux container technologies (OpenVZ, CGroups/
namespaces, and the Google enhancements). However, at the
fringes of the 2011 Kernel Summit, all the container parties
came together for a large meeting, which decided that every
technology would integrate upstream, and every out-of-Linux
source tree container provider would use it. This meant select-
ing the best from all the out-of-tree technologies and integrating
them upstream. As of writing this article, that entire program
is complete except for one missing CGroups addition: the kernel
memory accounting system, which is expected to be in Linux by
kernel version 3.17.

The VPS Market and the Enterprise
In Web hosting parlance, VPS stands for Virtual Private Server
and means a virtual instance, sold cheaply to a customer, inside
of which they can run anything. If you’ve ever bought hosting
services, the chances are what you bought was a VPS. Most
people buying a VPS tend to think they have bought a hypervi-
sor-based virtual machine, but in more than 50% of the cases the
truth is that they’ve actually bought a container pretending to
look like a hypervisor-based virtual machine. The reason is very
simple: density. The VPS business is a race to the bottom and
very price sensitive (the cheapest VPSes currently go for around
$10 US a month) and thus has a very low margin. The ability to
pack three times as many virtual container environments on
a single physical system is often the difference between profit
and loss for hosters, which explains the widespread uptake of
containers in this market.

Enterprises, by contrast, took to virtualization as a neat way of
repurposing the excess capacity they had within datacenters as
a result of mismatches between application requirements and
hardware, while freeing then from the usual hardware manage-
ment tasks. Indeed, this view of virtualization meant that the
enterprise was never interested in density (because they could
always afford more machines) and, because it built orchestration
systems on varied virtual images, the container disadvantage
of being unable to run operating systems that didn’t share the
same kernel on the same physical system looked like a killer
disadvantage.

Because of this bifurcation, container technology has been
quietly developing for the past decade but completely hidden
from the enterprise view (which leads to a lot of misinformation
in the enterprise space about what containers can and cannot
do). However, in the decade where hypervisors have become the
standard way of freeing the enterprise datacenter from hard-
ware dependence, several significant problems like image sprawl
(exactly how many different versions of operating systems do
you have hidden away in all your running and saved hypervisor

images) and the patching problem (how do you identify and add
all the security fixes to all the hypervisor images in your entire
organization) have lead to significant headaches and expensive
tooling to solve hypervisor-image lifecycle management.

Container Security and the Root Problem
One of the fairly ingrained enterprise perceptions is that con-
tainers are insecure. This is fed by the LXC technology, which,
up until very recently, was not really secure, because the Linux
container security mechanisms (agreed upon in 2011) were just
being implemented. However, if you think about the require-
ments for the VPS market, you can see that because hosting
providers have to give root access to most VPS systems they sell,
coping with hostile root running within a container was a bread-
and-butter requirement even back in 2001.

One of the essential tenets of container security is that root
(UID 0 in UNIX terms) may not exist within the container,
because if it broke out, it would cause enormous damage within
the host. This is analogous to the principle of privilege separa-
tion in daemon services and functions in a similar fashion. In
upstream Linux, the mechanism for achieving this (called the
user namespace) was not really functional until 2012 and is
today only just being turned on by the Linux distributions, which
means that anyone running a distribution based on a kernel older
than 3.10 likely doesn’t have it enabled and thus cannot benefit
from root separation within the container.

Containers in Linux: Namespaces and CGroups
In this section, we delve into the Linux specifics of what we use
to implement containers. In essence, though, they are exten-
sions of existing APIs: CGroups are essentially an extension of
Resource Limits (POSIX RLIMITs) applied to groups of pro-
cesses instead of to single processes. Namespaces are likewise
sophisticated extensions of the chroot() separation system
applied to a set of different subsystems. The object of this section
is to explain the principles of operation rather than give practical
examples (which would be a whole article in its own right).

Please also bear in mind as you read this section that it was writ-
ten when the 3.15 kernel was released. The information in this
section, being very Linux specific, may have changed since then.

CGroups
CGroups can be thought of as resource controllers (or limiters)
on particular types of resources. The thing about most CGroups
is that the control applies to a group of processes (hence the inte-
rior of the container becomes the group) that it’s inherited across
forks, and the CGroups can actually be set up hierarchically. The
current CGroups are:

◆◆ blkio—controls block devices
◆◆ cpu and cpuacct—controls CPU resources

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 9

OPERATING SYSTEMS
Containers

◆◆ cpuset—controls CPU affinity for a group of processes
◆◆ devices—controls device visibility, effectively by gating the

mknod() and open() calls within the container
◆◆ freezer—allows arbitrary suspend and resume of groups of

processes
◆◆ hugetlb—controls access to huge pages, something very Linux

specific
◆◆ memory—currently controls user memory allocation but soon

will control both user and kernel memory allocations
◆◆ net_cls and net_prio—controls packet classification and priori-

tization
◆◆ perf_event—controls access to performance events

As you can see from the brief descriptions, they’re much more
extensive than the old RLIMIT controls. With all of these con-
trollers, you can effectively isolate one container from another in
such a way that whatever the group of processes within the con-
tainer do, they cannot have any external influence on a different
container (provided they’ve been configured not to, of course).

Namespaces
Although, simplistically, we’ve described namespaces as being
huge extensions of chroot(), in practice, they’re much more
subtle and sophisticated. In Linux there are six namespaces:

◆◆ Network—tags a network interface
◆◆ PID—does a subtree from the fork, remapping the visible PID to

1 so that init can work
◆◆ UTS—allows specifying new host and NIS names in the kernel
◆◆ IPC—separates the system V IPC namespace on a per-contain-

er basis
◆◆ Mount—allows each container to have a separate file-system

root
◆◆ User—does a prescribed remapping between UIDs in the host

and container

The namespace separation is applied as part of the clone() flags
and is inherited across forks. The big difference from chroot()
is that namespaces tag resources and any tagged resources may
disappear from the parent namespace altogether (although
some namespaces, like PID and user are simply remappings of
resources in the parent namespace).

Container security guarantees are provided by the user
namespace, which maps UID 0 within the container (the root
user and up, including well known UIDs like bin) to unused UIDs
in the host, meaning that if the apparent root user in the con-
tainer ever breaks out of the container, it is completely unprivi-
leged in the host.

Containers as the New Virtualization Paradigm
One of the ironies of container technology is that, although it
has spent the last decade trying to look like a denser hypervisor

(mostly for the VPS market), it is actually the qualities that set
it apart from hypervisors that are starting to make container
technology look interesting.

Green Comes to the Enterprise
Although the enterprise still isn’t entirely interested in density
for its own sake, other considerations besides hardware cost
are starting to be felt. In particular, green computing (power
reduction) and simply the limits imposed by a datacenter sited
in a modern city—the finite capacity of a metropolitan location
to supply power and cooling—dictate that some of the original
container differentiators now look appealing. After all, although
the hosting providers primarily demand density for cost reasons,
the same three times density rationale can also be used to justify
running three times as many applications for the same power
and cooling requirements as a traditional hypervisor and, thus,
might just provide the edge to space-constrained datacenters in
downtown Manhattan, for example.

Just Enough Virtualization
The cost of the past decade of hypervisor-based virtualization
has been that although virtual machine images mostly perform
a specific task or run a particular application, most of the man-
agement software for hypervisor-based virtualization is con-
cerned with managing the guest operating system stack, which
is entirely superfluous to the running application. One of the
 interesting aspects of containers is that instead of being all or
nothing, virtualization can be applied on a per-subsystem basis.
In particular, because of the granularity of the virtualization, the
amount of sharing between the guest and the host is adjustable
on a continuous scale. The promise, therefore, is that container-
based virtualization can be applied only to the application, as
shown in Figure 3 where a traditional operating system con-
tainer is shown on the left-hand side and a new pure-application

Figure 3: Containerizing just the application

10  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

OPERATING SYSTEMS
Containers

container is shown on the right. If done correctly, this type of
application virtualization can make management of the sup-
port operating system a property of the host platform instead of
being, as it is today with hypervisors, a property of every virtual
machine image.

This new “just enough virtualization” world promises to greatly
reduce the image sprawl problem by making sure that the vir-
tualized image contains only enough elements to support the
application or task itself instead of being a full-fledged operating
system image in its own right.

Solving Current Problems with Containers
As an illustration of the way containerization can solve exist-
ing problems in a new way, consider the problem of tenancy
in the cloud: Standard enterprise applications are designed to
serve a single tenant. What this means in practice is that one
overall administrator for the enterprise application administers
the application for all users. If this application is transferred
to the cloud, in its enterprise incarnation, then each consumer
(or tenant) wants to designate an administrator who can only
administer users belonging to the tenant. The tenancy prob-
lem can be solved by running the application inside a virtual
machine with one VM per tenant, but it can be solved much
more elegantly by adding a small amount of containerization to
the application. A simple recipe to take a single tenant applica-
tion and make it multi-tenant is to fork the application once for
each tenant; to each fork, add a new network namespace so that
it can have its own IP address, and a new mount namespace so
that it can have a private datastore. Because we added no other
containerization, each fork of the application shares resources
with the host (although we could add additional containerization
if this becomes a concern), so the multi-tenant application we
have created is now very similar to a fleet of simple single tenant
applications. In addition, because containers are migratable,
we can even scale this newly created multi-tenant application
horizontally using container migration techniques.

Enabling a Containerized Future
The multi-tenant example above shows that there might be
a need for even applications to manipulate container proper-
ties themselves. Thus, to expand the availability and utility of
container technologies a consortium of companies has come
together to create a library for manipulating basic container
properties. The current C version of this library exists on GitHub
(https://github.com/xemul/libct), but it will shortly be combined
with a GO-based libcontainer to provide bindings for C, C++,
Python, and Go. Although designed around the Linux container
API, the library nevertheless has flexibility to be used as a
backend to any container system (including Solaris Zones or
Parallels Containers for Windows). This would mean, provided
the portability works, that the direct benefits of containerizing
applications would be exported to platforms beyond Linux.

Conclusions
Hopefully, you now have at least a flavor of what containers are,
where they came from, and, most importantly, how their differ-
ences from hypervisors are being exploited today to advance vir-
tualization to the next level of usability and manageability. The
bottom line is that containers have a new and interesting con-
tribution to make; they’ve gone from being an expense- reducing
curiosity for Web applications to the enterprise mainstream,
and they hold the possibility of enabling us to tailor container
virtualization to the needs of the application, and thus give
 applications interesting properties that they haven’t been able
to possess before.

Resources
The subject of varied uses of containers is very new, so there are few articles to refer to. However, here are some useful Web refer-
ences on the individual technologies that have been used to create containers on Linux.

Michael Kerrisk of Linux Weekly News did a good online seven-part write-up of what namespaces are and how they work:
http://lwn.net/Articles/531114/.

Neil Brown as a guest author for Linux Weekly News has done a good summary of CGroups: http://lwn.net/Articles/604609/.

This blog post on network namespaces is a useful introduction to using the separated capabilities of namespaces to do interesting
things in tiny semi-virtualized environments: http://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/.

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 11

OPERATING SYSTEMS

Rump Kernels
No OS? No Problem!

A N T T I K A N T E E , J U S T I N C O R M A C K

In the modern world, both virtualization and plentiful hardware have
created situations where an OS is used for running a single application.
But some questions arise: Do we need the OS at all? And by including an

OS, are we only gaining an increased memory footprint and attack surface?
This article introduces rump kernels, which provide NetBSD kernel drivers
as portable components, allowing you to run applications without an operat-
ing system.

There is still a reason to run an OS: Operating systems provide unparalleled driver support,
e.g., TCP/IP, SCSI, and USB stacks, file systems, POSIX system call handlers, and hardware
device drivers. As the name rump kernel suggests, most of the OS functionality not related to
drivers is absent, thereby reducing a rump kernel’s footprint and attack surface.

For example, a rump kernel does not provide support for executing binaries, scheduling
threads, or managing hardware privilege levels. Yet rump kernels can offer a complete
enough environment to support unmodified POSIXy applications on top of them (Figure
1). In this article, we explain how rump kernels work and give you pointers on how you can
benefit from them in your projects.

Antti Kantee got bitten by the
OS bug when he was young,
and is still searching for a
patch. He has held a NetBSD
commit bit for fifteen years and

for the previous seven of them he has been
working on rump kernels. As a so-called day
job, Antti runs a one-man “systems design and
implementation consulting” show.
pooka@fixup.fi

Justin Cormack accidentally
wandered into a room full of
UNIX workstations at MIT in
the early 1990s and has been
using various flavors ever since.

He started working with rump kernels last year
and recently acquired a NetBSD commit bit. He
is generally found in London these days.
justin@myriabit.com

Figure 1: Rump kernels provide file system, network, and other driver support and run on bare metal sys-
tems or hypervisors by making use of a hypercall interface. In the depicted case, rump kernels provide the
support necessary for running applications without requiring a full OS.

12  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

OPERATING SYSTEMS
Rump Kernels: No OS? No Problem!

If you are building an OS-less system, why use rump kernels as
your drivers? Rump kernels consist of a pool of roughly one mil-
lion lines of unmodified, battle-hardened NetBSD kernel drivers
running on top of a documented interface. The implementation
effort for the interface, should your given platform not already
be supported, is approximately 1,000 lines of C code. As the old
joke goes, writing a TCP/IP stack from scratch over the weekend
is easy, but making it work on the real-world Internet is more
difficult. A similar joke about porting an existing TCP/IP stack
out of an OS kernel most likely exists. Furthermore, the TCP/
IP stack is only one driver, so you need plenty of spare weekends
with the “roll your own” approach. The, we daresay, magic of
rump kernels working in the real world stems from unmodified
code. Driver bugs in operating systems have been ironed out over
years of real-world use. Since rump kernels involve no porting or
hacking of individual drivers, no new bugs are introduced into
the drivers. The more unmodified drivers you use, the more free
maintenance of those drivers you get. We are not suggesting
that OS kernel drivers are optimal for all purposes but that it is
easy to start with profiling and optimizing a software stack that
works right off the bat.

In related work, there are a number of contemporary projects
focusing on avoiding the overhead and indirection of the OS layer
in the cloud: for example, MirageOS, OSv, and Erlang-on-Xen.
But our goal with rump kernels is different. We aim to provide
a toolkit of drivers for any platform instead of an operating
environment for cloud platforms. In that sense, rump kernels
can be thought of being like lwIP [1], except the scope is beyond
networking (and the TCP/IP stack is larger). That said, we do
also provide complete support for rump kernels on a number of
platforms, including POSIXy user space and Xen. We also inte-
grate with a number of other frameworks. For example, drivers
are available for using the TCP/IP stack offered by rump kernels
with user space L2 packet frameworks such as netmap, Snabb
Switch, and DPDK.

The beef of rump kernels, pun perhaps intended, is allowing
third-party projects access to a pool of kernel-quality drivers,
and Genode OS [2] has already made use of this possibility.
Although there are other driver toolkits (e.g., DDEKit [3]), we
claim that rump kernels are the most complete driver kit to date.
Furthermore, support for rump kernels is directly included in
the NetBSD source tree. One example of the benefit of in-tree
support is that in case of an attractive new driver hitting the
NetBSD tree, there is no waiting for someone to roll the driver kit
patches forwards, backwards, and sideways. You can simply use
any vintage of NetBSD as a source of rump kernels.

We will avoid going into much technical detail in this article.
The book [4] provides more detailed descriptions for interested
parties.

History
Rump kernels started in 2007 as a way to make debugging and
developing NetBSD kernel code easier. Developing complex ker-
nel code usually starts out by sketching and testing the central
pieces in the comfort of user space, and only later porting the
code to the kernel environment. Despite virtual machines and
emulators being plentiful in this age, the user space approach is
still used, suggesting that there is something which makes user
space a simpler platform to work with.

Even though rump kernels started out as running kernel code
in user space, they were never about running the full OS there,
because a user space OS is fundamentally not different from
one running in a virtual machine and introduces unnecessary
complexity for development purposes. From the beginning, rump
kernels were about bringing along the minimum amount of bag-
gage required to run, debug, examine, and develop kernel drivers.
Essentially, the goal was to make developing drivers as easy as in
user space, but without having to port kernel code to user space
and back. From that desire a very significant feature of the rump
kernel arose: It was necessary that exactly the same driver code
ran both in debug/development mode and in the NetBSD kernel,
and hacks like #ifdef TESTING were not permitted.

Problems related to development, testing, and debugging with
rump kernels were more or less addressed by 2011, and the fun-
damental concepts of rump kernels have remained unchanged
since then. Then a new motivation for rump kernels started
emerging. The effort to make kernel drivers run in user space
had essentially made most kernel drivers of NetBSD portable
and easy to integrate into other environments. Adding support
for platforms beyond user space was a simple step. The goal of
development shifted to providing reusable drivers and a support-
ing infrastructure to allow easy adaptation. Testing, of course,
still remains a central use case of rump kernels within NetBSD,
as does, for example, being able to run the file system drivers as
user-space servers.

Making Rump Kernels Work
Rump kernels are constructed out of components. The drivers
are first built for the target system as libraries, and the final run-
time image is constructed by linking the component-libraries
together, along with some sort of application, which controls the
operation of the drivers (see Figure 1 for an example). Notably,
the application does not have to be a POSIXy user-space appli-
cation. For example, when using rump kernels as microkernel-
style user space file servers, the “application” is a piece of code
that reads requests from the FUSE-like user space file systems
framework and feeds them into the rump kernel at the virtual
file system layer.

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 13

OPERATING SYSTEMS
Rump Kernels: No OS? No Problem!

The starting point for coming up with the components was a
monolithic kernel operating system. The problem is that we
want to use drivers without bringing along the entire operating
system kernel. For example, let us assume we want to run a Web
server serving dynamically created content, perhaps running on
an Internet-of-Things device. All we need in the rump kernel is
the TCP/IP stack and sockets support. We do not need virtual
memory, file systems(!), or anything else not contributing to the
goal of talking TCP. As the first step, we must be able to “carve”
the TCP/IP stack out of the kernel without bringing along the
entire kitchen-sinky kernel, and give others an easy way to
repeat this “carving.” Second, we must give the rump kernel
access to platform resources, such as memory and I/O device
access. These issues are solved by the anykernel and the rump
kernel hypercall interface, respectively.

Anykernel
The enabling technology for rump kernels in the NetBSD code-
base is the anykernel architecture. The “any” in “anykernel” is a
reference that it is possible to use drivers in any configuration:
monolithic, microkernel, exokernel, etc. If you are familiar with
the concept of kernel modules, you can think of the anykernel
roughly as an architecture which enables loading kernel modules
into places beyond the original OS.

We realize the anykernel by treating the NetBSD kernel as
three layers: base, factions, and drivers. Note, this layering is
not depicted in Figure 1, although one might replace the “rump
kernel” box with such layers. The base contains fundamental
routines, such as allocators and synchronization routines, and
is present in every rump kernel. All other kernel layers are
optional, although including at least some of them makes a rump
kernel instance more exciting. There are three factions and they
provide basic support routines for devices, file systems, and
networking. The driver layer provides the actual drivers such as
file systems, PCI drivers, firewalls, software RAID, etc. Notably,
in addition to depending on the base and one or more factions,
drivers may depend on other drivers and do not always cleanly
fit into a single faction. Consider NFS, which is half file system,
half network protocol. To construct an executable instance of a
rump kernel supporting the desired driver, one needs the neces-
sary dependent drivers (if any), a faction or factions, and the base.

Let us look at the problem of turning a monolithic kernel into
an anykernel in more detail. Drivers depend on bits and pieces
outside of the driver. For example, file system drivers generally
depend on at least the virtual file system subsystem in addi-
tion to whichever mechanism they use to store the file system
contents. Simply leaving the dependencies out of the rump kernel
will cause linking to fail, and just stubbing them out as null func-
tions will almost certainly cause things to not work correctly.

Therefore, we must satisfy all of the dependencies of the drivers
linked into the rump kernel.

Popular myth would have one believe that a monolithic kernel is
so intertwined that it is not possible to isolate the base, factions,
and drivers. The myth was shown to be false by the “come up
with a working implementation” method.

Honestly speaking, there is actually not much “architecture” to
the anykernel architecture. One could compare the anykernel
to an SMP-aware kernel, in which the crux is not coming up
with the locking routines, but sprinkling their use into the right
places. Over the monolithic kernel, the anykernel is merely a
number of changes that make sure there are no direct references
where there should not be any. For example, some source mod-
ules that were deemed to logically belong to the base contained
references to file system code. Such source modules were split
into two parts, with one source module built into the base and
the split-off source module built into the file system faction. In
monolithic kernel mode, both source modules are included.

In addition, cases where a rump kernel differs from the full-blast
monolithic kernel may require glue code to preserve correct
operation. One such example revolves around threads, which we
will discuss in the next section; for now, suffice it to say that the
method the monolithic kernel uses for setting and fetching the
currently running thread is not applicable to a rump kernel. Yet
we must provide the same interface for drivers. This is where
glue code kicks in. The trick, of course, is to keep the amount
of glue code as small as possible to ensure that the anykernel is
maintainable in NetBSD.

The anykernel does not require any new approaches to indirec-
tion or abstraction, just plain old C linkage. Sticking with regular
C is dictated by practical concern; members of an operating sys-
tem project will not like you very much if you propose indirec-
tions that hurt the performance of the common case where the
drivers are run in the monolithic kernel.

Hypercalls
To operate properly, the drivers need access to back-end
resources such as memory and I/O functions. These resources
are provided by the implementation of the rump kernel hyper-
call interface, rumpuser [5]. The hypercall interface ties a rump
kernel to the platform the rump kernel is run on. The name
hypercall interface is, you guessed it, a remnant of the time when
rump kernels ran only in user space.

We assume that the hypercall layer is written on top of a plat-
form in a state where it can run C code and do stack switching.
This assumption means that a small amount of bootstrap code
needs to exist in bare-metal type environments. In hosted envi-
ronments, e.g., POSIX user space, that bootstrap code is implic-
itly present.

14  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

OPERATING SYSTEMS
Rump Kernels: No OS? No Problem!

Very recently, we learned about the Embassies project [6], where
one of the goals is to come up with a minimal interface for run-
ning applications and implement a support for running POSIX
programs on top of that minimal interface. This is more or less
what rump kernels are doing, with the exception that we are
running kernel code on top of our minimal layer. POSIX applica-
tions, then, run transitively on top of our minimal interface by
going through the rump kernel. Interestingly, the rump ker-
nel hypercall interface and the Embassies minimal interface
for applications are almost the same, although, at least to our
knowledge, they were developed independently. The convenient
implication of interface similarity is the ability to easily apply
any security or other analysis made about Embassies to the
rump kernel stack.

Fundamental Characteristics
We present the fundamental technical characteristics of rump
kernels in this section. They are written more in the form of a
dry list than a collection of juicy anecdotes and use cases. We
feel that presenting the key characteristics in a succinct form
will give a better understanding of both the possibilities and
limitations of the rump kernel approach.

A rump kernel is always executed by the host platform.
The details, including how that execution happens, and how
many concurrent rump kernel instances the platform can sup-
port, vary on the platform in question. For user space, it’s a mat-
ter of executing a binary. On Xen, it’s a matter of starting a guest
domain. On an embedded platform, most likely the bootloader
will load the rump kernel into memory, and you would just jump
to the rump kernel entry point.

The above is in fact quite normal; usually operating systems are
loaded and executed by the platform that hosts them, be it hard-
ware, virtual machine, or something else. The difference comes
with application code. A kernel normally has a way of executing
applications. Rump kernels contain no support for executing
binaries to create runtime processes, so linking and loading the
application part of the rump kernel software stack is also up to
the host. For simplicity and performance, the application layer
can be bundled together with the rump kernel (see, e.g., Figure
1). In user space, it is also possible to run the rump kernel in one
process, with one or more applications residing in other pro-
cesses communicating with the rump kernel (so-called “remote
clients”). In both cases the applications are still linked, loaded,
and executed by the host platform.

The notion of a CPU core is fictional. You can configure the
number of “cores” as you wish, with some restrictions, such as
the number must be an integer >0. For a rump kernel, the number
of cores only signifies the number of threads that can run con-

currently. A rump kernel will function properly no matter what
the mapping between the fictional and physical cores is. How-
ever, if performance is the goal, it is best to map a rump kernel
instance’s fictional cores 1:1 to physical cores, which will allow
the driver code to optimize hardware cache uses and locking.

Rump kernels do not perform scheduling. The lack of
thread scheduling has far-reaching implications, for example:

◆◆ Code in a rump kernel runs on the platform’s threads—nothing
else is available. Rump kernels therefore also use the platform’s
thread-scheduling policy. The lack of a second scheduler makes
rump kernels straightforward to integrate and control, and also
avoids the performance problems of running a thread sched-
uler on top of another thread scheduler.

◆◆ Synchronization operations (e.g., mutex) are hypercalls
because the blocking case for synchronization depends on
invoking the scheduler. Notably, hypercalls allow optimizing
synchronization operations for the characteristics of the plat-
form scheduler, avoiding, for example, spinlocks in virtualized
environments.

A less obvious corollary to the lack of a scheduler is that rump
kernels use a “CPU core scheduler” to preserve a property that
code expects: no more than one thread executing on a core.
Maintaining this property in rump kernels ensures that, for
example, passive synchronization (e.g., RCU, or read-copy-
update) and lock-free caches continue to function properly.
Details on core scheduling are available in the book [4].

Since core scheduling is not exposed to the platform scheduler,
there are no interrupts in rump kernels, and once a rump kernel
core is obtained, a thread runs until it exits the rump kernel or
blocks in a hypercall. This run-to-completion mode of opera-
tion is not to be confused with a requirement that the platform
scheduler must run the thread to completion. The platform
scheduler is free to schedule and unschedule the thread running
in a rump kernel as it pleases. Although a rump kernel will run
correctly on top of any thread scheduler you throw under it, there
are performance advantages to teaching the platform scheduler
about rump kernels.

Rump kernels do not support, use, or depend on virtual
memory. Instead, a rump kernel runs in a memory space
provided by the platform, be it virtual or not. The rationale is
simplicity and portability, especially coupled with the fact that
virtual memory is not necessary in rump kernels. Leaving out
virtual memory support saves you from having to include the
virtual memory subsystem in a rump kernel, not to mention
figuring out how to implement highly platform-dependent page
protection, memory mapping, and other virtual memory-related
concepts.

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 15

OPERATING SYSTEMS
Rump Kernels: No OS? No Problem!

The more or less only negative effect caused by the lack of virtual
memory support is that the mmap() system call cannot be fully
handled by a rump kernel. A number of workarounds are pos-
sible for applications that absolutely need to use mmap(). For
example, the bozohttpd Web server uses mmap() to read the files
it serves, so when running bozohttpd on top of a rump kernel,
we simply read the mmap’d window into memory at the time the
mapping is made instead of gradually faulting pages in. A perfect
emulation of mmap() is hard to achieve, but one that works for
most practical purposes is easy to achieve.

Machine (In)Dependencies
Rump kernels are platform-agnostic, thanks to the hypercall
layer. But can rump kernels be run literally anywhere? We will
examine the situation in detail.

One limitation is the size of the drivers. Since NetBSD drivers
are written for a general purpose OS, rump kernels are limited to
systems with a minimum of hundreds of kB of RAM/ROM. One
can of course edit the drivers to reduce their size, but by doing
so one of the core benefits of using rump kernels will be lost: the
ability to effortlessly upgrade to later driver versions in order to
pick up new features and bug(fixe)s.

As for the capabilities of the processor itself, the only part of the
instruction set architecture that permeates into rump kernels
is the ability to perform cache-coherent memory operations on
multiprocessor systems (e.g., compare-and-swap). In a pinch,
even those machine-dependent atomic memory operations can
be implemented as hypercalls—performance implications not-
withstanding—thereby making it possible to run rump kernels
on a generic C machine.

To demonstrate their machine independence, rump kernels were
run through a C->Javascript compiler so that it was possible to
execute them in Web browsers. Running operating systems in
browsers previously has been accomplished via machine emula-
tors written in Javascript, but with rump kernels the kernel
code went native. If you have always wondered what the BSD
FFS driver looks like when compiled to Javascript and wanted
to single-step through it with Firebug, your dreams may have
come true. The rest of us will probably find more delight in being
amused by the demo [7] for a few minutes. And, no, the NetBSD
kernel did not and still does not support the “Javascript ISA,” but
rump kernels do.

So, yes, you can run rump kernels on any platform for which you
can compile C99 code and which has a minimum of some hun-
dreds of kilobytes of RAM/ROM.

Virtual Uniprocessor and Locking
Avoiding memory bus locks is becoming a key factor for perfor-
mance in multiprocessor environments. It is possible to omit
memory bus locks almost entirely for rump kernels configured to
run with one fictional core, regardless of the number of physi-
cal cores visible to the platform. This optimization is based on
the property of the rump kernel CPU core scheduler. Since there
can be at most one thread running within the rump kernel, there
is no need to make sure that caches are coherent with other
physical cores, because no other physical core can host a thread
running in the same rump kernel. Appropriate memory barriers
when the rump kernel core is reserved and released are enough.
The fastpath for locking becomes a simple variable check and
assignment that can fully be handled within the rump kernel.
Only where the lock is already held does a hypercall need to be
made to inform the scheduler.

This locking scheme can be implemented in a single file without
touching any drivers. In the spirit of the project, the name of the
Uniprocessor locking scheme was decided after careful consid-
eration: locks_up. A scientific measurement of a POSIXy applica-
tion creating and removing files on a memory file system showed
a more than 30% performance increase with locks_up. The
actual benefit for real-world applications may be less impressive.

From Syscalls to Application Stacks
First, we introduce some nomenclatural clarity. Since there are
no hardware privilege levels or system traps in rump kernels,
there are strictly speaking no system calls either. When we use
the term “system call” or “syscall” in the context of rump kernels,
we mean a routine which performs the service that would nor-
mally be executed via a kernel trap.

From nearly the beginning of this project, rump kernels have
supported NetBSD-compatible system call interfaces. Compat-
ibility exists for both API and ABI, apart from the distinction
that rump kernel syscalls were prefixed with “rump_sys” to
avoid symbol collisions with libc when running in user space.
ABI compatibility meant that in user space it was possible to
LD_PRELOAD a hijacking library so that most system calls were
handled by the host, but some system calls—e.g., ones related to
sockets—could be handled by rump kernels.

On a platform without an OS, this approach of course does not
work: There is no OS that can handle a majority of the system
calls. The solution was simple (see Figure 1): we took NetBSD’s
libc and built it without the syscall bits that caused kernel traps.
We then removed the “rump_sys” prefix for the rump kernel
syscall handlers, because there was no host libc to conflict with.
Regular user-space libraries—i.e., everything apart from libc and
libpthread—and applications require no modification to func-
tion on top of a rump kernel; they think they are running on a full
NetBSD system.

16  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

OPERATING SYSTEMS
Rump Kernels: No OS? No Problem!

Among the three factions, rump kernels currently support
roughly two-thirds, or more than 200, of the system calls offered
by NetBSD. Some examples of applications tested to work out-
of-the-box on top of a rump kernel include thttpd, the LuaJIT
compiler, and wpa_supplicant.

Interestingly, getting the full application stack working in user
space required more effort than getting it to work in an environ-
ment without a host OS. This is because user space gets crowded:
The rump kernel stack provides a set of symbols that can, and
almost certainly will, conflict with the hosting OS’s symbols.
However, it turns out that with judicious symbol renaming and
hiding it is possible to avoid conflicting names between the host
OS and the rump kernel stack. Having the full application stacks
work in user space allows you to compile and run NetBSD-
specific user space code (e.g., ifconfig) against rump kernels on
other operating systems. Listing 1 illustrates this in more detail.

Trying It Out
The easiest way to familiarize yourself with rump kernels is
to do it in the comfort of user space by using the buildrump.sh
script. Clone the repository at http://repo.rumpkernel.org/build-
rump.sh.git and, on a POSIXy open source operating system, run:

./buildrump.sh

When executed without parameters, the script will fetch the
necessary subset of the NetBSD source tree and build rump
kernel components and the POSIXy user space implementation
of the hypercall interface. Follow the build by running a handful
of simple tests that check for example file system access, IPv4/
IPv6 routing, and TCP termination. Running these tests under
GDB in the usual fashion—buildrump.sh builds everything with
debugging symbols by default—and single-stepping and using
breakpoints is an easy way to start understanding how rump
kernels work.

Since rump kernel stacks work the same way in user space as
they do on an embedded IoT device, once you learn one platform
you’ve more or less learned them all. The flipside of the previous
statement also applies: When you want to debug some code for
your embedded device, you can just debug the code in user space,
presence of hardware devices notwithstanding.

Also make sure to note that if your host is running on desktop/
server hardware of a recent millennium, the bootstrap time of a
rump kernel is generally on the order of 10 ms.

Listing 1 offers an idea of the component-oriented quality of
rump kernels and shows how easily you can configure them
as long as you are familiar with standard UNIX tools. Further
up-to-date instructions targeting more specific use cases are
available as tutorials and how-tos on wiki.rumpkernel.org.

Run a rump kernel server accepting remote requests, set up client
programs to communicate with it, and check the initial network
configuration.

rumpremote (NULL)$ rump_server -lrumpnet_netinet
 -lrumpnet_net -lrumpnet unix://ctrlsock
rumpremote (NULL)$ export RUMP_SERVER=unix://
 ctrlsock
rumpremote (unix://ctrlsock)$ ifconfig -a

lo0: flags=8049 mtu 33648

 inet 127.0.0.1 netmask 0xff000000

Oops, we want IPv6, too. Let’s start another rump kernel with
IPv6, listening to requests at a slightly different address.

rumpremote (unix://ctrlsock)$ rump_server -lrumpnet_
 netinet6 lrumpnet_netinet -lrumpnet_net
 -lrumpnet unix://ctrlsock6

rumpremote (unix://ctrlsock)$ export RUMP_SERVER=
 unix://ctrlsock6

rumpremote (unix://ctrlsock6)$ ifconfig -a

lo0: flags=8049 mtu 33648

 inet6 ::1 prefixlen 128

 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1

 inet 127.0.0.1 netmask 0xff000000

Better. We check that the original is still without IPv6, and see
which file systems are mounted in the new one.

rumpremote (unix://ctrlsock6)$ env
 RUMP_SERVER=unix://ctrlsock ifconfig -a

lo0: flags=8049 mtu 33648

 inet 127.0.0.1 netmask 0xff000000

rumpremote (unix://ctrlsock6)$ mount
mount: getmntinfo: Function not implemented

Oops, we did not include file system support. We will halt the sec-
ond server and restart it with file system support.

rumpremote (unix://ctrlsock6)$ halt
rumpremote (unix://ctrlsock6)$ rump_server -lrumpnet_
 netinet6 -lrumpnet_netinet -lrumpnet_net
 -lrumpnet -lrumpvfs unix://ctrlsock6

rumpremote (unix://ctrlsock6)$ mount
rumpfs on / type rumpfs (local)

rumpremote (unix://ctrlsock6)$

Listing 1: Example of rump kernels running in user space. The process
rump_server contains kernel components. The utilities we use contain the
application layers of the software stack. In user space, the two can com-
municate via local domain sockets. This model allows for very natural use.
The output was captured on Ubuntu Linux. $PATH has been set so that
NetBSD utilities that are running on top of the rump kernel stack are run.

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 17

OPERATING SYSTEMS
Rump Kernels: No OS? No Problem!

Conclusion
We present rump kernels, a cornucopia of portable, componen-
tized kernel-quality drivers such as file systems, networking
drivers, and POSIX system call handlers. Rump kernels rely on
the anykernel architecture inherent in NetBSD, and can be built
from any vintage of the NetBSD source tree. The technology
is stable, as far as that term can be used to describe anything
related to operating system kernel internals, and has been devel-
oped in NetBSD since 2007.

Everything we described in this article is available as BSD-
licensed open source via rumpkernel.org. Pointers to usual
community-type elements for discussing use cases and contri-
butions are also available from rumpkernel.org. We welcome
your contributions.

References
[1] lwIP, a lightweight open source TCP/IP stack: http://
savannah.nongnu.org/projects/lwip/.

[2] Genode Operating System Framework: http://genode.org/.

[3] DDEKit and DDE for Linux: http://os.inf.tu-dresden.de
/ddekit/.

[4] The Design and Implementation of the Anykernel and
Rump Kernels: http://book.rumpkernel.org/.

[5] Rump kernel hypercall interface manual page: http://man
.NetBSD.org/cgi-bin/man-cgi?rumpuser++NetBSD-current.

[6] Embassies project: https://research.microsoft.com/en-us
/projects/embassies/.

[7] Javascript rump kernel: http://ftp.NetBSD.org/pub
/NetBSD/misc/pooka/rump.js/.

Calling All ;login: Readers!

We’re looking for:
* Programmers * Testers
* Researchers * Tech Writers
* Anyone Who Wants to Get Involved

Find out more by:

-- Checking out our Web site:
http://www.freebsd.org/projects/newbies.html

http://www.freebsd.org/where.html

We’re a welcoming community looking for
people like you to help continue developing this
robust operating system. Join us!

FreeBSD is internationally recognized as an innovative leader in
providing a high-performance, secure, and stable operating system.

Not only is FreeBSD easy to install, but it runs a huge number of
applications, offers powerful solutions, and cutting edge features.
The best part? It’s FREE of charge and comes with full source code.

Did you know that working with a mature, open source project is an
excellent way to gain new skills, network with other professionals,
and differentiate yourself in a competitive job market? Don’t miss
this opportunity to work with a diverse and committed community
bringing about a better world powered by FreeBSD.

proudly supported by:

Help Create the Future
Join the FreeBSD Project!

18  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

PROGRAMMINGSirius
Distributing and Coordinating Application Reference Data

M I C H A E L B E V I L A C Q U A - L I N N , M A U L A N B Y R O N , P E T E R C L I N E , J O N M O O R E ,
A N D S T E V E M U I R

Michael Bevilacqua-Linn is
a Distinguished Engineer at
Comcast. He’s worked on
their next generation IP video
delivery systems as an architect

and engineer for the past several years, and
is interested in functional programming and
distributed systems. He currently resides in
Philadelphia. 
Michael_Bevilacqua-Linn@comcast.com

Maulan Byron is passionate
about making software
scalable, fast, and robust. He
has spent the majority of his
career building and delivering

mid-size to large-scale projects in the
telecommunication and financial industries.
His interests are in making things scale and
perform better and finding solutions that make
it easier to operationalize software products.
Maulan_Byron@cable.comcast.com

Peter Cline is a senior software
engineer at Comcast. In the past
two years there, his work has
focused on distributed systems,
hypermedia API design, and

automated testing. Prior to Comcast, he
worked in search and digital curation at the
University of Pennsylvania. 
Peter_Cline2@comcast.com

S irius is an open-source library that provides developers of applica-
tions that require reference data with a simple in-memory object
model while transparently managing cluster replication and consis-

tency. We describe the design and implementation of Sirius in the context of
TV and movie metadata, but Sirius has since been used in other applications
at Comcast, and it is intended to support a broad class of applications and
associated reference data.

Many applications need to use reference data-information that is accessed frequently but not
necessarily updated in-band by the application itself. Such reference data sets now fit com-
fortably in memory, especially as the exponential progress of Moore’s Law has outstripped
these data sets’ growth rates: For example, the total number of feature films listed in the
Internet Movie Database grew 40% from 1998 to 2013, whereas commodity server RAM
grew by two orders of magnitude in the same period.

Consider the type of reference data that drove the design and implementation of Sirius: meta-
data associated with television shows and movies. Examples of this metadata include facts
such as the year Casablanca was released, how many episodes were in Season 7 of Seinfeld, or
when the next episode of The Voice will be airing (and on which channel). This data set has
certain distinguishing characteristics common to reference data:

It is small. Our data set is a few tens of gigabytes in size, fitting comfortably in main
memory of modern commodity servers.

It is relatively static, with a very high read/write ratio. Overwhelmingly, this data is
write-once, read-frequently: Casablanca likely won’t get a different release date, Seinfeld
won’t suddenly get new Season 7 episodes, and The Voice will probably air as scheduled.
However, this data is central to almost every piece of functionality and user experience in
relevant applications—and those applications may have tens of millions of users.

It is asynchronously updated. End users are not directly exposed to the latency of
updates, and some propagation delay is generally tolerable, e.g., in correcting a misspelling of
“Cassablanca.” However, if a presidential press conference is suddenly called, schedules may
need to be updated within minutes rather than hours.

Common service architectures separate the management of reference data from the applica-
tion code that must use it, typically leveraging some form of caching to maintain low latency
access. Such schemes force developers to handle complex interfaces, and thus may be dif-
ficult to use correctly.

Sirius keeps reference data entirely in RAM, providing simple access by the application,
while ensuring consistency of updates in a distributed manner. Persistent logging in con-
junction with consensus and “catch up” protocols provides resilience to common failure
modes and automatic recovery.

Sirius has been used in production for almost two years, and it supports a number of cloud
services that deliver video to Comcast customers on a variety of platforms. These services
must support:

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 19

Multiple datacenters. We expect our services to run in multiple locations, for both geo-
locality of access and resilience to datacenter failures.

Low access latency. Interactive, consumer-facing applications must have fast access to
our reference data: service latencies directly impact usage and revenue [3].

Continuous delivery. Our services will be powering products that are constantly evolving.
Application interactions with reference data change, and we aim to be able to rapidly deploy
code updates to our production servers. Hence, easy and rapid automated testing is essential.

Robustness. In production we expect to experience a variety of failure conditions: server
crashes, network partitions, and failures of our own service dependencies. The application
service must continue operating—perhaps with degraded functionality—in the face of these
failures.

Operational friendliness. Any system of sufficient complexity will exhibit emergent
(unpredictable) behavior, which will likely have to be managed by operational staff. Sirius
must have a simple operational interface: It should be easy to understand “how it works,”
things should fail in obvious but safe ways, it should be easy to observe system health and
metrics, and there should be “levers” to pull with predictable effects to facilitate manual
interventions.

This article describes how the design and implementation of Sirius satisfies these require-
ments. Further technical details, additional performance evaluation results, and in-depth
consideration of related work are covered in the associated full-length paper [1].

Approach
As we have seen, our reference data set fits comfortably in RAM, so we take the approach of
keeping a complete copy of the data (or a subset) on each application server, stored in-process
as native data structures. This offers developers ultimate convenience:

◆◆ No I/O calls are needed to access externally stored data, and thus there is no need to handle
network I/O exceptions.

◆◆ Automated testing and profiling involving the reference data only requires direct interaction
with “plain old Java objects.”

◆◆ Developers have full freedom to choose data structures directly suited to the application’s
use cases.

◆◆ There are no “cache misses” since the entire data set is present; access is fast and predictable.

Of course, this approach raises several important questions in practice. How do we keep each
mirror up-to-date? How do we restore the mirrors after an application server restarts or fails?

Update Publishing
We assume that external systems manage the reference data set and push updates to our
server, rather than having our server poll the system of record for updates. This event-driven
approach is straightforward to implement in our application; we update the native data
structures in our mirror while continually serving client requests. We model this interface
after HTTP as a series of PUTs and DELETEs against various URL keys.

Replication and Consistency
To run a cluster of application servers, we need to apply the updates at every server. The sys-
tem of record pushes updates through a load balancer, primarily to isolate it from individual
server failures, and members of the cluster are responsible for disseminating those updates
to their peers in a consistent manner.

Jon Moore, a technical fellow
at Comcast Corporation,
runs the Core Application
Platforms group, which
focuses on building scalable,

performant, robust software components
for the company’s varied software product
development groups. His current interests
include distributed systems, hypermedia APIs,
and fault tolerance. Jon received his PhD
in computer and information science from
the University of Pennsylvania and currently
resides in West Philadelphia.
Jonathan_Moore@comcast.com

Steve Muir is a senior director,
Software Architecture, at
Comcast. He works on a broad
range of cloud infrastructure
projects, with a specific focus

on system architectures and environments that
support highly scalable service delivery. He
has a broad background in operating systems,
networking, and telecommunications, and
holds a PhD in computer science from the
University of Pennsylvania.
Steve_Muir@cable.comcast.com

PROGRAMMING
Sirius: Distributing and Coordinating Application Reference Data

20  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

PROGRAMMING
Sirius: Distributing and Coordinating Application Reference Data

The CAP theorem dictates that in the event of a network parti-
tion, we will need to decide between availability and consistency.
We need read access to the reference data at all times and will
have to tolerate some windows of inconsistency. That said, we
want to preserve at least eventual consistency to retain opera-
tional sanity, and can tolerate some unavailability of writes dur-
ing a partition, as our reference data updates are asynchronous
from the point of view of our clients.

To achieve this, our cluster uses a variant of the Multi-Paxos [2]
protocol to agree on a consistent total ordering of updates and
then have each server apply the updates in order. A general con-
sensus protocol also allows us to consistently order updates from
multiple systems of record. We provide more detail in the section
on Replication.

Persistence
As with many Paxos implementations, each server provides
persistence by maintaining a local transaction log on disk of the
committed updates. When a server instance starts up, it replays
this transaction log to rebuild its mirror from scratch, then
rejoins the replication protocol described above, which includes
“catch up” facilities for acquiring any missing updates.

Library Structure
Finally, Sirius is structured as a library that handles the Paxos
implementation, persistence, log compaction, and replay. The
hosting application is then conceptually separated into two
pieces (Figure 1); its external interface and business logic, and
its mirror of the reference data. This approach allows full flex-
ibility over data structures while still offering an easy-to-under-
stand interface to the developer.

Programming Interface
As we just described, Sirius’ library structure divides an applica-
tion into two parts, with Sirius as an intermediary. The applica-
tion provides its own interface: for example, exposing HTTP
endpoints to receive the reference data updates. The application
then routes reference data access through Sirius.

After taking care of serialization, replication, and persistence,
Sirius invokes a corresponding callback to a request handler
provided by the application. The request handler takes care of
updating or accessing the in-memory representations of the
reference data. The application developers are thus completely in
control of the native, in-memory representation of this data.

The corresponding programming interfaces are shown in Figure
2; there is a clear correspondence between the Sirius-provided
access methods and the application’s own request handler. As
such, it is easy to imagine a “null Sirius” implementation that
would simply invoke the application’s request handler directly.

This semantic transparency makes it easy to reason functionally
about the reference data itself.

The primary Sirius interface methods are all asynchronous; the
Sirius library invokes request handlers in such a way as to pro-
vide eventual consistency across the cluster nodes. The overall
contract is:

◆◆ The request handlers for PUTs and DELETEs will be invoked
serially and in a consistent order across all nodes.

◆◆ Enqueued asynchronous updates will not complete until suc-
cessful replication has occurred.

◆◆ An enqueued GET will be routed locally only, but will be serial-
ized with respect to pending updates.

◆◆ At startup time, Sirius will not accept new updates or report
itself as “online” until it has completed replay of its transaction
log, as indicated by the isOnline method.

Sirius does not provide facilities for consistent conditional
updates (e.g., compare-and-swap); it merely guarantees consis-
tent ordering of the updates. Indeed, in practice, many appli-
cations do not use Sirius on their read path, instead reading
directly from concurrent data structures in the mirror.

Replication
Updates passed to Sirius via enqueuePut or enqueueDelete are
ordered and replicated via Multi-Paxos, with each update being
a command assigned to a slot by the protocol; the slot numbers
are recorded as sequence numbers in the persistent log. Our
implementation fairly faithfully follows the description given by
van Renesse [9], with some slight differences:

Stable leader. First, we use the common optimization that
disallows continuous “weak” leader elections; this limits vote
conflicts, and resultant chattiness, which in turn enhances
throughput.

End-to-end retries. Second, because all of the updates are
idempotent, we do not track unique request identifiers, as
the updates can be retried if not acknowledged. In turn, that
assumption means that we do not need to store and recover the
internal Paxos state on failures.

Figure 1: Architecture of a Sirius-based application

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 21

PROGRAMMING
Sirius: Distributing and Coordinating Application Reference Data

Similarly, we bound some processes, specifically achieving
a quorum on the assignment of an update to a particular slot
number, with timeouts and limited retries. During a long-lived
network partition, a minority partition will not be able to make
progress; this limits the amount of state accumulated for incom-
plete writes. Sirius thus degrades gracefully, with no impact on
read operations for those nodes, even though their reference data
sets in memory may begin to become stale.

Write behind. Nodes apply updates (“decisions” in Paxos
terminology) in order by sequence number, buffering any out-
of-order decisions as needed. Updates are acknowledged once a
decision has been received, but without waiting for persistence
or application to complete; this reduces system write latency and
prevents “head-of-line” blocking.

However, this means that there is a window during which an
acknowledged write can be lost without having been written
to stable storage. In practice, since Sirius is not the system of
record for the reference data set, it is possible to reconstruct lost
writes by republishing the relevant updates.

Catch-up Protocol
Because updates must be applied in the same order on all nodes,
and updates are logged to disk in that order, nodes are particu-
larly susceptible to lost decision messages, which delay updates
with higher sequence numbers. Therefore, each node periodi-
cally selects a random peer and requests a range of updates
starting from the lowest sequence number for which it does not
have a decision.

The peer replies with all the decisions it has that fall within the
given slot number range. Some of these may be returned from a
small in-memory cache of updates kept by the peer, especially if
the missing decision is a relatively recent one. However, the peer
may need to consult the persistent log for older updates no longer
in its cache (see the section on Persistence). This process contin-
ues until no further updates need to be transmitted.

The catch-up protocol also supports auxiliary cluster members
that do not participate in Paxos. Primary cluster members know
about each other and participate in the consensus protocol
for updates. Secondary cluster members periodically receive
updates from primary nodes using the catch-up protocol. In
practice, this allows a primary “ingest” cluster to disseminate
update to dependent application clusters, often within seconds of
each other and across datacenters.

In turn, this lets us keep write latencies to a minimum: Paxos
only runs across local area networks (LANs). Different clusters
can be activated as primaries by pushing a cluster configuration
update, which the Sirius library processes without an applica-
tion restart.

This leads to a large amount of topology flexibility: Figure 3
shows how four clusters A–D can be given different configura-
tion files in order to control distribution of updates. Only A par-
ticipates in the Paxos algorithm, while B and C directly follow A,
and D follows both B and C.

Persistence
As updates are ordered by Paxos, Sirius also writes them out to
disk in an append-only file. Each record includes an individual
record-level checksum, its Paxos sequence number, a timestamp
(used for human-readable logging, not for ordering), an operation
code (PUT or DELETE), and finally a key and possibly a body
(PUTs only). This creates variable-sized records, which are not
ordinarily a problem: The log is appended by normal write pro-
cessing and is normally only read at application startup, where it
is scanned sequentially anyway.

However, there is one exception to this sequential access pattern:
While responding to catch-up requests, we need to find updates
no longer cached, perhaps because of a node crash or long-lived
network partition. In this case, we must find a particular log
entry by its sequence number.

public interface Sirius {

 Future<SiriusResult>

 enqueueGet(String key);

 Future<SiriusResult>

 enqueuePut(String key, byte[] body);

 Future<SiriusResult>

 enqueueDelete(String key);

 boolean isOnline();

}

public interface RequestHandler {

 SiriusResult handleGet(String key);

 SiriusResult handlePut(String key,

 byte[] body);

 SiriusResult handleDelete(String key);

}

Figure 2: Sirius interfaces. A SiriusResult is a Scala case class representing
either a captured exception or a successful return, either with or without a
return value.

22  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

PROGRAMMING
Sirius: Distributing and Coordinating Application Reference Data

This is accomplished by creating an index structure during the
process of reading the update log at startup time. The index is
small enough to be stored in memory and can thus be randomly
accessed in an efficient manner, permitting use of binary search
to locate a particular update by sequence number.

Sirius can compact its log file: because the PUTs and DELETEs
are idempotent, we can remove every log entry for a key except
the one with the highest sequence number. Because the overall
reference data set does not grow dramatically in size over time,
a compacted log is a relatively compact representation of it; we
find that the reference data set takes up more space in RAM
than it does in the log once all the appropriate indices have been
created in the application’s mirror. This avoids the need for the
application to participate in creating snapshots or checkpoints,
as in other event-sourced systems [2].

Early production deployments of Sirius took advantage of rolling
application restarts as part of continuous development to incor-
porate offline compaction of the persistent log. However, frequent
restarts were required to prevent the log from getting unwieldy.

Therefore, we developed a scheme for live compaction that Sirius
manages in the background. The log is divided into segments
with a bounded number of entries, as in other log-based systems
[7, 8]. Sirius appends updates to the highest-numbered segment;
when that segment fills up, its file is closed and a new segment is
started.

Compaction is accomplished by using the most recent log seg-
ment to create a set of “live” key-value pairs and deleted keys.

Prior log segments can then be pruned by removing updates
that would be subsequently invalidated, while updates to other
keys are added to the live set. After compaction of an individual
segment, the system combines adjacent segments when doing so
does not exceed the maximum segment size.

Live compaction in Sirius is thus incremental and restartable
and does not require a manual operational maintenance step
with a separate tool. Since the logs are normal append-only files,
and compaction is incremental, copies can be taken while the
application is running without any special synchronization. We
have taken advantage of this to bootstrap new nodes efficiently,
especially when seeding a new datacenter, or to copy a produc-
tion data set elsewhere for debugging or testing.

Experimental Evaluation
The optimized read path for an application bypasses Sirius to
access reference data directly, so we are primarily interested in
measuring write performance. In practice Sirius provides suf-
ficient write throughput to support our reference data use cases,
but here we present experimental analysis.

The Sirius library is written in Scala, using the Akka actor
library. All experiments were run on Amazon Web Services
(AWS) Elastic Computer Cluster (EC2) servers running a stock
64-bit Linux kernel on m1.xlarge instances, each with four
virtual CPUs and 15 GB RAM. These instances have a 64-bit
OpenJDK Java runtime installed; Sirius-based tests use version
1.1.4 of the library.

Write Throughput
For these tests, we embed Sirius in a reference Web application
that exposes a simple key-value store interface via HTTP and
uses Java’s ConcurrentHashMap for its mirror. Load is gener-
ated from separate instances running JMeter version 2.11. All
requests generate PUTs with 179 byte values (the average object
size we see in production use).

We begin by establishing a baseline under a light load that estab-
lishes latency with minimal queueing delay. We then increase
load until we find the throughput at which average latency
begins to increase; this establishes the maximum practical oper-
ating capacity. Our results are summarized in Figure 4.

This experiment shows write throughput for various cluster
sizes; it was also repeated for a reference application with a
“null” RequestHandler (Sirius-NoBrain) and one where disk
persistence was turned off (Sirius-NoDisk). There are two main
observations to make here:

Throughput degrades as cluster size increases, primarily due to
the quorum-based voting that goes on in Paxos: In larger clusters
there is a greater chance that enough machines are sporadically
running “slow” (e.g., due to a garbage collection pause) to slow

Figure 3: Flexible replication topologies with Sirius

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 23

PROGRAMMING
Sirius: Distributing and Coordinating Application Reference Data

down the consensus algorithm, as reported by Hunt et al. for
ZooKeeper [4].

Throughput is not affected by disabling the persistence layer or
by eliminating RequestHandler work; we conclude that the Paxos
algorithm (or our implementation of it) is the limiting factor.

Operational Concerns
In addition to providing a convenient programming interface,
we designed Sirius to be operationally friendly. This means that
major errors, when they occur, should be obvious and noticeable,
but it also means that the system should degrade gracefully and
preserve as much functionality as possible. Errors and faults are
expected, and by and large Sirius manages recovery on its own;
however, operations staff may intervene if needed.

For example, operational intervention is helpful but not required
in bringing a server online, either as a new cluster member or
after recovering from a failure. The server may be far behind its
active peers, and may have a partial or empty log. The catch-up
protocol can be used to fetch the entire log, if necessary, from
a peer, which can be accomplished in a few minutes for several
gigabytes of log. However, operators can accelerate the process
by copying an active node’s log files, thus “seeding” the new
server’s state.

To support debugging and operations, we distribute a command-
line tool along with Sirius. This tool reads and manipulates the
Sirius log, providing functionality, including: format conversion,
pretty printing log entries, searching via regular expression,
and offline compaction. It also allows updates to be replayed as
HTTP requests sent to a specific server.

Updates in the index and data files are checksummed. When
corruption occurs and is detected Sirius will refuse to start. Cur-

rently, recovery is manual, albeit straightforward: Sirius reports
the point at which the problematic record begins. An operator
can truncate the log at this point or delete a corrupted index, and
Sirius can take care of the rest, rebuilding the index or retrieving
the missing updates as needed.

Conclusions and Future Work
Sirius has been deployed in support of production services for
approximately two years, with very few operational issues. The
library’s simple and transparent interface, coupled with the ease
and control of using native data structures, have led multiple
independent teams within Comcast to incorporate Sirius into
their services, all to positive effect. Nevertheless, we have identi-
fied some opportunities for improvements.

◆◆ The current Multi-Paxos-based consensus protocol limits
write throughput to the capacity of the current leader; this
could be alleviated by an alternative protocol, such as Egalitar-
ian Paxos [5].

◆◆ Cluster membership updates are not synchronized with the
consensus protocol. Consensus protocols like RAFT [6] that
integrate cluster membership with consensus could simplify
operations.

◆◆ WAN replication currently piggybacks on our cluster catch-up
protocol, requiring one-to-one transfers of updates. A topology-
aware distribution of updates could be beneficial in reducing
bandwidth usage.

◆◆ Replaying write-ahead logs synchronously and serially at
startup takes a significant time; hence a mechanism for safely
processing some updates in parallel is desirable.

All things considered, the design and implementation of Sirius
has been very successful. We would like to acknowledge the CIM
Platform/API team at Comcast, Sirius’ first users and develop-
ment collaborators; Sirius would not have been possible without
your help and hard work.

Sirius is available under the Apache 2 License from http://
github.com/Comcast/sirius.

Figure 4: Sirius write throughput

24  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

PROGRAMMING
Sirius: Distributing and Coordinating Application Reference Data

References
[1] M. Bevilacqua-Linn, M. Byron, P. Cline, J. Moore, and
S.  Muir, “Sirius: Distributing and Coordinating Applica-
tion Reference Data,” in Proceedings of the USENIX Annual
Technical Conference (Berkeley, CA, USA, 2014), USENIX
Association.

[2] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos
Made Live: An Engineering Perspective,” in Proceedings of
the Twenty-sixth Annual ACM Symposium on Principles of
Distributed Computing (New York, NY, USA, 2007), PODC ’07,
ACM, pp. 398-407.

[3] T. Hoff, “Latency Is Everywhere and It Costs You Sales—
How to Crush It,” High Scalability blog, July 2009: http://
highscalability.com/latency-everywhere-and-it-costs-you
-sales-how-crush-it, accessed January 20, 2014.

[4] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zoo-
keeper: Wait-Free Coordination for Internet-Scale Systems,”
in Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference (Berkeley, CA, USA, 2010),
 USENIX ATC ’10, USENIX Association, pp. 145–158.

[5] I. Moraru, D. G. Andersen, and M. Kaminsky, “There Is
More Consensus in Egalitarian Parliaments,” in Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2013), SOSP ’13, ACM,
pp.  358-372.

[6] D. Ongaro and J. K. Ousterhout, “In Search of an Under-
standable Consensus Algorithm,” October 2013: https://
ramcloud.stanford.edu/raft.pdf, accessed January 13, 2014.

[7] M. Rosenblum and J. K. Ousterhout, “The Design and
Implementation of a Log-Structured File System,” ACM
Trans. Comput. Syst., vol. 10, no. 1 (Feb. 1992), 26–52.

[8] J. Sheehy, and D. Smith, “Bitcask: A Log-Structured Hash
Table for Fast Key/Value Data”: http://downloads.basho.com
/papers/bitcask-intro.pdf, accessed January 16, 2014.

[9] R. van Renesse, “Paxos Made Moderately Complex”: http://
www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf, March
2011, accessed January 13, 2014..

www.usenix.org/ucms14west

November 10, 2014 • Seattle, WA

At UCMS ’14 West, we will continue to bring the configuration management community together
to advance the state of configuration management, discuss its problems and solutions, and con-
nect the community of this growing field.

2014 USENIX Configuration Management
Summit West (UCMS ’14 West)

SAVE THE DATE!

At the second 2014 USENIX Release Engineering Summit (URES ‘14 West), we will bring members
of the release engineering community together to advance the state of release engineering,
discuss its problems and solutions, and provide a forum for communication for members of this
quickly growing field.

www.usenix.org/ures14west

2014 USENIX Release Engineering
Summit West (URES ’14)
Accelerating the Path from Dev to Dev Ops

SAVE THE DATE!

November 10, 2014 • Seattle, WA

26  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

SYSADMINMaking “Push on Green” a Reality
D A N I E L V . K L E I N , D I N A M . B E T S E R , A N D M A T H E W G . M O N R O E

Daniel Klein has been a Site
Reliability Engineer at Google’s
Pittsburgh office for 3.5 years.
His goal is to automate himself
out of a job, so that he can get

on with the work of looking for new things to
do at Google. Prior to Google, he bored more
easily and did a myriad different things (look
on the Web for details). dvk@google.com

Dina Betser is a Site Reliability
Engineer who has worked
on projects such as Google
Calendar and Google’s large
machine learning systems that

maintain high quality ads. As an SRE, she
often works on ensuring that products behave
reliably with as little manual intervention as
possible. She studied computer science as an
undergraduate and master’s student at MIT.
dinabetser@google.com

Mathew Monroe is a Site
Reliability Engineer who has
worked on both the payments
and anti-malvertising systems
at Google. When not trying to

make the Internet a safer and better place,
he is trying to make running Internet services
a magical experience. He has a master’s in
software engineering from Carnegie Mellon
University and worked in distributed file
systems and computer security before coming
to Google. onet@google.com

Updating production software is a process that may require dozens, if
not hundreds, of steps. These include creating and testing new code,
building new binaries and packages, associating the packages with

a versioned release, updating the jobs in production datacenters, possibly
modifying database schemata, and testing and verifying the results. There
are boxes to check and approvals to seek, and the more automated the pro-
cess, the easier it becomes. When releases can be made faster, it is possible to
release more often, and, organizationally, one becomes less afraid to “release
early, release often” [6, 7]. And that’s what we describe in this article—mak-
ing rollouts as easy and as automated as possible. When a “green” condition
is detected, we can more quickly perform a new rollout. Humans are still
needed somewhere in the loop, but we strive to reduce the purely mechanical
toil they need to perform.

We, Site Reliability Engineers working on several different ads and commerce services at
Google, share information on how we do this, and enable other organizations to do the same.
We define “Push on Green” and describe the development and deployment of best practices
that serve as a foundation for this kind of undertaking. Using a “sample service” at Google
as an example, we look at the historical development of the mechanization of the rollout pro-
cess, and discuss the steps taken to further automate it. We then examine the steps remain-
ing, both near and long-term, as we continue to gain experience and advance the process
towards full automation. We conclude with a set of concrete recommendations for other
groups wishing to implement a Push on Green system that keeps production systems not
only up-and-running, but also updated with as little engineer-involvement and user-visible
downtime as possible.

Push on Green
A common understanding of Push on Green is “if the tests are good, the build is good, go push
it!” but we define Push on Green in three distinct ways:

1. A pushmaster says “this build is ready to go—push it.” The criteria for this judgment may
be based on a predefined push/freeze schedule, may have political or compliance-related
considerations, may need to be coordinated with other projects, etc. Automated testing may
occur, but the human is the ultimate arbiter.

2. In a continuous-build system (also known as “continuous deployment” or “continuous de-
livery”), a collection of smoke tests (simple tests that examine high-level functionality) and
regression tests for a current build all pass at a given revision. That revision is “green” and
may be pushed to production. The testing framework is the ultimate arbiter.

3. A change to a configuration file is made (which may enable or disable an existing feature, al-
ter capacity or provisioning, etc.). This rollout may likely reuse an already green build, so the
incremental tests and approvals are substantially simpler, and the reviewers and the testing
framework are together the arbiters.

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 27

SYSADMIN
Making “Push on Green” a Reality

Other definitions are certainly possible (including the cur-
rent state of the production system, so that we can consider a
green-to-green transition), but above are the three that we use in
this article. In all cases, we consider a system supported by Site
Reliability Engineers (SRE) who are responsible for both the
manual steps and the construction of the automated processes
in the rollout.

Development and Deployment Best Practices
With the complexity and interconnectedness of modern systems,
some development/rollout best practices have evolved which
attempt to minimize problems and downtime [2, 3]. To better
understand the issues involved in creating a Push on Green
system, an outline of a typical Google development environment
and deployment process provides a useful introduction.

Development
All code must be peer reviewed prior to submitting to the main
branch to ensure that changes make sense, adhere to the overall
project plan, and that bug fixes are sanely and reasonably imple-
mented. All changes must be accompanied by tests that ensure
the correct execution of the code both under expected and unex-
pected conditions [5]. As new libraries, APIs, and standards are
introduced, old code is migrated to use them. To provide as clean
and succinct an interface as possible for developers, libraries are
updated and old APIs are removed as new ones are introduced
[8]. The next push after a library update, then, has the same
chance of breaking production as a local developer change.

The at-times draconian review process can slow down release
of new code, but it ensures that whatever code is released is as
likely as possible to perform as desired. And, because we live in
the real world, we also extensively test our code.

Tests
Everyone at Google uses tests—the developers have unit-level,
component-level, and end-to-end tests of the systems they
write in order to verify system correctness. SREs have deploy-
ment tests and may call upon other tests to ensure that the
newly rolled-out production system behaves the same way as
it did in a testing environment. Occasionally, tests are simply a
human looking at the graphs and/or logs and confirming that the
expected behavior is indeed occurring. Running a production
service is a compromise between an ideal world of fully test-
able systems and the reality of deadlines, upgrades, and human
 failings [7].

When developing code, all of the existing tests must continue
to pass, and if new functional units are introduced, there must
also be tests associated with them. Tests should guarantee that
not only does the code behave well with expected inputs, but also
behaves predictably with unexpected inputs.

When a bug is found, the general rule is that test-driven develop-
ment is favored. That is, someone first crafts a test that triggers
the buggy behavior; then the bug is fixed, verifying that the pre-
viously failing test no longer fails. The notion of “fixing the bug”
may simply mean “the system no longer crashes,” but a better,
more laudable behavior is “appropriately adjusts for the errone-
ous input” (e.g., logging the problem, correcting or rejecting the
data, reporting the problem back to the developers for further
debugging, etc.).

We acknowledge that mistakes happen and that they happen all
the time. When someone makes a mistake that adversely affects
production, it becomes their responsibility to lead the postmor-
tem analysis to help prevent future occurrences. Sometimes, a
fix can be made that checks for mistakes before they happen,
and at other times, changes to the underlying assumptions or
processes are put into effect. For example, it was assumed that
adding a column to a certain database would be harmless. A
postmortem discovered that a rollback of software also required
a rollback of that database, which lost the data in the new com-
pliance-required column. This resulted in a change in procedure,
where schema changes were made visible in the release prior to
the one in which the code changes are visible, making rollbacks
separable.

Monitoring
At Google, we extensively monitor our services. Using monitor-
ing data, we continually strive to make our services better and to
notice, through alerting, when things go wrong.

The most effective alerting looks for symptoms (and not their
causes), allowing the human in the loop to diagnose the problem
based on symptoms. While extensive monitoring provides great
insights into the interrelation of various components of the
system, ultimately all alerting should be performed in defense of
a service level agreement (SLA), instead of trying to predict what
may cause a service level failure [1]. Real world failures have a
way of setting their own terms and conditions, and by setting
(and monitoring) appropriate SLAs, it is possible to notify on
“failure to meet expectations.” After SLA-based alerting has
been triggered, extensive monitoring enables drill-down and
detailed root-cause analysis.

When this style of monitoring and alerting is in place, then not
only is it possible to alert under extraordinary circumstances
(e.g., surges in activity or failure of a remote system), but it is also
possible to alert quickly when a new version of the software is
unable to meet the demands of ordinary circumstance. Thus, an
automated rollout procedure can easily incorporate monitoring
signals to determine whether a rollout is good or whether the
system should be rolled back to a previous version.

28  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

SYSADMIN
Making “Push on Green” a Reality

Updates and Rollbacks
Rolling out a new version of software is often coordinated
under the supervision of a pushmaster, and may involve updat-
ing a single job, a single datacenter, or an entire service. Where
possible, canaries are used to test proper functioning of revised
software. Named for the proverbial canary in a coal mine, the
canary instances are brought up before the main job is updated,
in one last pre-rollout test of the software. The canary typically
receives only a small fraction (perhaps 1% or 0.1%) of production
traffic; if it fails or otherwise misbehaves, it can be quickly shut
off, leaving the rest of the code as-yet not updated, and returning
the service to normal operation for all users. Canarying can also
be done in stages, per job, by orders of magnitude, by datacenter,
or by geographic region served.

Services handle updates in a few different ways. Disparate code
changes must be integrated into “builds” (where the binaries
are created from various sources and libraries), and the timing
of the release of these builds is often planned well in advance. A
production binary not only comprises the directly edited code
of the team, but also those libraries released by teams that run
supporting services utilized by the service. Many .jar/.so files
are statically associated into a binary package, and there is no
universally followed release cycle; each team produces new ver-
sions on their own timetable. Therefore, whenever a new binary
is built for release, the changes that comprise it may come from
far and wide.

Configuration changes are also considered rollouts. These may
be in the form of runtime flags specified on the command line,
or in configuration files read on startup; both require a job to be
restarted to take effect. There may also be database updates or
changes that impact the behavior of a system without restart-
ing it. Configuration changes have the same potential to induce
failure, but they also benefit from the same types of automation.

Safely Introducing Changes
Consider how you would add a new feature to a service. One
common practice incorporates the following steps:

1. Create a new runtime configuration directive for a new feature,
with the default value set to “disabled.” Write the code that uses
the new feature, and guard that code with the new directive (so
that the new code is present but is disabled by default).

2. Release the new binaries with no references to the new
directive in any configuration file. The feature should remain
inactive, and failed rollout requires a rollback to the previous
version of the binaries.

3. Update the configuration files to include the presence of the
new directive (but explicitly specify that it is disabled), and
restart the current system. The feature should continue to

remain inactive, and a failed rollout simply requires a rollback
to the previous version of the configuration files.

4. Update the system configuration files to enable the new direc-
tive in the canary jobs only, and restart the current version of
the binaries in the canaries. A failed rollout simply requires
turning off the canaries and later rolling back to the previous
version of the configuration files.

5. Update the remainder of the jobs with the directive enabled.
Failures are less likely at this stage since the canaries have not
died or caused problems, but failure simply requires a rollback
to the previous version of the configuration files. At this point,
the new feature is enabled.

6. In a subsequent release, alter the code so that the directive
is now enabled by default. Because the directive is currently
enabled in the configuration file, changing the default flag value
to match the specified configuration value should have no ef-
fect on behavior, so rolling out this change is usually deferred
to occur along with a collection of other changes. However, a
failed rollout requires a rollback to the previous version of the
binaries.

7. Update the system configuration files to make no further refer-
ence to the directive—it is “live” by default. A failed rollout
simply requires a rollback to the previous version of the con-
figuration files.

8. Edit all conditional execution of code to always execute, since
that is now the implicit behavior. A failed rollout requires a
rollback to the previous version of the binaries.

9. Delete the now-unused definition of the directive in the code. A
failed rollout at this stage is almost certainly due to a configura-
tion file error, because the directive itself should not have been
used since step 7—so a binary rollback is probably not needed.

Requiring nine steps to fully add a new feature may seem like
overkill, but it ensures the safe release of new code. Addition-
ally, the steps involved can take place over many months and
many disparate releases. Complicating this process is the fact
there may be dozens of such changes occurring in parallel, some
simultaneously in-flight but starting and ending at widely differ-
ent times. Automating as much of the rollout process as possible
can help mitigate the overhead of keeping track of changes.

Types of Configuration Changes
We consider two kinds of configuration changes:

1. Changes to configuration directives that require job restart.

2. Changes to configuration directives that are automatically
picked up by jobs.

There are advantages and disadvantages to both. When job-
restart is required, one type of job can be updated with the
configuration directive, regardless of which other jobs have the

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 29

SYSADMIN
Making “Push on Green” a Reality

directives available to them. This yields fine-grained control, but
also requires that all restarts be tightly coordinated, so that an
unrelated job restart does not pick up unintended configuration
changes.

When jobs automatically pick up changes, configuration changes
are more global in scope. While this has the advantage of easily
automating changes on a large scale, it also means that greater
care must be taken in hierarchically specified configuration-
files to ensure that only the intended jobs are changed. In a real-
world system with thousands of options across hundreds of jobs,
it is easy for the hierarchy to break down or become unmanage-
able, riddled with special cases.

In both cases, great care must be taken to restrict the inadver-
tent propagation of unintended changes. Simplicity and flex-
ibility are at odds using either scheme, while reliability and
configurability are the goal of both.

Towards Push on Green
Much of the danger in releasing new code can be mitigated, but
the process still has a large amount of mechanical human over-
sight, and the purpose of the Push on Green project is to mini-
mize as much of this toil as possible.

Historical State of the Practice
We begin by examining a “sample service” at Google. The rollout
process starts with a push request being filed against the cur-
rent on-call, detailing the parameters of the rollout (the version
number, people involved, and whether the push is for canary,
production, or some other environment).

Previously, this service had a largely manual rollout process,
comprising a collection of scripts that were manually invoked
following a rollout run-book. The first step towards Push on
Green was to replace this with a more automated process that
effectively performed the same steps.

For the production jobs, the following steps are executed for
binary pushes or command-line flag changes. The automated
rollout procedure updates the push request at each step.

1. Silence alerts that will be known to fire during a rollout (for
example, warnings about “mixed versions in production”).

2. Push the new binaries or configuration changes to the canary
jobs in a datacenter currently serving traffic.

3. Run the smoke tests, probers, and verify rollout health.

a. If the tests fail, notify the on-call, who may initiate a
canary rollback or bring down the canaries.

b. Some health-check failure conditions are the result of an
accumulation of errors, so some services require that tests
can only pass after a sufficient amount of time is allowed
for the binary to “soak.”

4. Push the binaries to the remainder of the jobs in that
 datacenter.

5. Unsilence the previously silenced alerts.

6. Rerun smoke tests (step 3); if the tests pass, repeat steps 2–5
for each of the other datacenters.

This process still entails a lot of manual work. A push request
must be filed for each rollout, and the binaries for each of the jobs
must be built. The binary packages must be tagged, annotated, or
accounted for in some way (so that the rollout pushes the correct
binaries), and there are assorted handoffs between the release
engineer, test engineers, and Site Reliability Engineers that
limit the number of rollouts per day to only one or two. Although
alerting in case of problems is largely automated, the entire push
process must still be baby-sat to ensure correct functioning.

State of the Art—Recent Developments
Once the rollout process was made to be a largely push-button
operation, steps were taken to make it more automated with even
fewer buttons to push. These steps included:

RECURRING ROLLOUTS FOR INFRASTRUCTURE JOBS
Our services consist of jobs that are specific to the operation
of the service and jobs and software packages that are main-
tained by other teams but that we configure for our service. For
example, the monitoring and alerting jobs are standardized jobs
that are custom-configured. The monitoring teams update the
binaries that are available to use, but it is the responsibility of
each service to periodically restart their jobs with new binaries
at a time that is safe for the service involved.

Our recurring rollout updates those jobs maintained by other
teams on a daily basis, keeping them current, even when there
are service-specific production freezes. This recurring rollout
was the first step to Push on Green automation.

ROLLOUT LOCKING
Some rollout steps have the potential to interfere with other
rollouts. For example, if we are doing a production rollout, we do
not want to simultaneously do an infrastructure rollout, so that
we know which rollout to blame in case of a problem. With inter-
rollout locking, we can also provide an inter-rollout delay, so that
the effects of each rollout are clearly delineated from each other.

ROLLOUT REDUNDANCY
Reliability of the rollout system is just as important as reliabil-
ity of the system being supported. A rollout that fails part way
through due to a failure in the rollout automation can leave a pro-
duction service in an unstable and unknown state. As such, the
rollout systems should run in a replicated production configura-
tion to guard against failure.

30  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

SYSADMIN
Making “Push on Green” a Reality

TIME RESTRICTIONS
We have on-call teams spanning multiple continents and sepa-
rated by anywhere between five and ten time zones. The next
step towards Push on Green was to provide a rollout schedule
that took into account waking hours, weekends, and holidays
(with different cultural norms). The software that recognizes
these holidays was made to be easily configurable so other
teams could reuse it for similar automation that includes other
countries.

ROLLOUT MONITORING
The on-call must often consult a collection of logs to determine
when a rollout started and ended, and attempt to correlate that
data with problems that are reflected in latency and availability
graphs.

Push on Green avoids manual searches of disparate sources
of information, so another automation component was creat-
ing variables in the rollout system that could be queried by the
monitoring and alerting system. This has enabled us to overlay a
graph that visually displays the start and end of rollout compo-
nents on top of the latency and availability graphs, so it is easy to
see whether an inflection point in a graph exactly corresponds to
a rollout.

AUTOMATIC ROLLOUT OF CONFIGURATION CHANGES
Adding a new configuration option requires nine discrete steps,
and half of these are manual processes. The next step in automa-
tion is to have a single recurring rollout simply look for changes
in the revision control system which match two specific criteria:

◆◆ Affect a specific set of files

◆◆ Have approvals from the right people

The rollout then automatically creates and annotates a new push
request, and processes the rollout steps. When this is combined
with rollout locking and time restrictions, we have an automatic
Push-On-Green system (according to our third definition in
“What is Push on Green”), dramatically reducing engineer toil.
This cautious first step does not eliminate the human compo-
nent of arbitration but, instead, removes much of the checklist
labor that needs to be done.

State of the Art—Future Plans
Some of what follows is work in progress, and some of it is still
in the planning stages, but all of it logically follows the work that
has been accomplished so far in that it advances the automation
of our rollout processes.

◆◆ Rollback-feasibility rollout step: use the testing environment
to roll out a new binary, then roll it back after some traffic has
been routed to the new jobs. If the smoke and regression tests
still confirm job health, then the rollout can safely proceed in
production jobs.

◆◆ Continuous delivery: automatically create push requests for
versioned builds that pass the required tests, taking the “push
early, push often” philosophy to its logical extreme. We can then
use the monitoring data in the staging environment to ascer-
tain which builds we believe are safe to push to production.

◆◆ Rollout quotas: we may want to limit the number of rollouts
per day, or limit the number of rollouts that a single user can
initiate, etc.

◆◆ Pushing Green-on-Green: perform a correlative analysis of a
collection of indicators to determine overall system health be-
fore performing a new push. The system may not be out of SLA,
but it might be dangerously close to the edge. Unless a service is
currently green, it is a bad idea to automatically perform a new
rollout.

We Still Need Manual Overrides!
Regardless of how much we want to automate everything, some
processes will stay manual for now:

◆◆ We will always need the ability to do a manually induced
 rollback.

◆◆ Some tests are flaky. It may be the case that a build is not green
due to a flaky test or that the system is healthy but the tests say
otherwise. We need to be able to manually override the require-
ment for “green”; sometimes we believe that the problem being
reported does not exist, or the problem exists but the rollout
will fix it.

◆◆ Every automated system needs a big red button to halt execution.
If we have the required means of switching off automatic roll-
outs, then we still need a way to do manual rollouts of any kind.

Real Numbers, Real Improvement
Since introduction of Push on Green, the on-calls in our service
have experienced the improvements seen in Table 1.

We have increased the number of rollouts by an order of magni-
tude in two years, while at the same time saving almost a whole
SRE FTE (and freeing the developers from much of their involve-
ment in rollouts). Once our rollout system begins automatically
detecting green conditions, we expect that the number of rollouts
will increase even more, and the level of engineer engagement
will continue to decrease.

Towards Push on Green: Recommendations
The fundamental components of an automated rollout system
are as follows:

Monitoring and Alerting
If you don’t know how your system is behaving in a measurable
way, you only have assumptions to deal with. While naked-eye
observation can tell you the gross symptoms (“the page loads

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 31

SYSADMIN
Making “Push on Green” a Reality

slowly” or “that looks better”), you need automated monitor-
ing at a fine-grained component level to give you insights as to
why problems are happening or whether changes have had the
desired effect.

◆◆ Monitoring needs to be performed on production systems, and
monitoring is different from profiling. Profiling helps you find
hotspots in your code with canned data; monitoring tracks the
responsiveness of a running system with live data.

◆◆ Monitoring needs to be combined with alerting so that ex-
ceptional conditions are rapidly brought to the attention of
production staff. Although it is possible to eyeball a collection
of graphs [4], a well-monitored system has far more variables
than any human can reasonably scan by eye (in a Google pro-
duction service, it is not unusual to monitor millions of condi-
tions with tens of thousands of alerting rules).

◆◆ The state of monitored variables and resulting alerts must be
available in a form that allows programmatic queries, so that
external systems can determine the current and previous state.
Both these data points are needed to make determinations as to
whether things have improved or degraded.

◆◆ If at all possible, separately monitor canary versions of jobs
and their non-canary production counterparts. If all other
things are equal (traffic, load, data sets, etc.), then it is possible
to assess the health and quality of a canary job relative to the
previous version of production.

Builds and Versions
A repeatable mechanism for building new binary releases must
be part of the overall release cycle. Static builds ensure that what
you build and test today is exactly the same as what you push
next week. While different components may have different build
procedures, they all must be regularized into some standard
format.

◆◆ Versions must be tracked, preferably in a way that makes it
easy for both the developers and release engineers to correlate
a given build with a specific production service. Rather than

sequential version numbers (like v3.0.7.2a), we recommend ver-
sions that incorporate the date and some other distinguishing
nomenclature (such as tool_20140402-rc3) so that a human
can readily correlate versions.

◆◆ Versions should be tagged, annotated, or otherwise consis-
tently accounted for. This means that rather than “push version
X to production,” you should “mark version X with the produc-
tion tag” and then “push the current production version.” This
allows for separation of responsibilities (developers build
releases, release engineers tag them, and production engineers
update the jobs) while still maintaining a coherent view of the
service.

◆◆ Builds should be tested at a number of levels, from unit tests
through to end-to-end tests and live production tests. Finding
problems earlier in the process helps eliminate them faster.

Scripted and Parameterized Rollouts and Rollbacks
A systematized and regularized rollout procedure must exist. If
automated steps are interspersed with manual steps, there must
also be checks to ensure that all of the manual steps have been
properly performed.

◆◆ As many steps in the rollout process as possible should be fully
automated. If customizations need to be done on a per-rollout
basis, these should be specified in a configuration file so that
nothing is left to the memory of the person starting the rollout.
This is especially important when rolling back to some previ-
ous version.

◆◆ Rollouts steps (and thus the entire rollout) should be idempo-
tent. A rollout should not suffer from any step being performed
twice. If a rollout fails, rerunning the rollout should either fail
in the same way or cure the problem.

◆◆ A rollback should be the same as a rollout to a previous version.
This is more of an ideal goal than a practical reality—there will
always be some special case where a schema change cannot be
rolled back. However, the more regular the rollout process, the
less likely this will happen, and the more likely it is that devel-
opers will avoid changes that cannot be rolled back.

Process Automation and Tracking
Once the basic infrastructure is in place for scripted rollouts,
you can contemplate automatically detecting and rolling out new
versions.

◆◆ Once the process of versioning has been regularized, you can
query the build system to determine when a new version is
available, and roll it out when the appropriate preconditions
have been met (i.e., build and tests are green, the version num-
ber is incrementally larger, production is green, etc.).

◆◆ When a new version is rolled out, the monitoring and alerting
should be queried at various stages in the rollout to ascertain

Original
(manual)

rollouts 2012
Mechanized

rollouts 2013

Semi-
automated

rollouts 2014

Rollouts/
month

12–20 60 160

Time
saved for
on-call/
month

0 hours
(baseline)

20 hours 50–60 hours

Table 1: Rollouts have increased by an order of magnitude over two years,
while time spent on them has decreased.

32  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

SYSADMIN
Making “Push on Green” a Reality

whether there are any problems. If any anomalous behavior is
detected, the rollout should be paused at whatever state it is
in until a determination of overall rollout health can be made
(since rollouts should be idempotent, it is also valid to abort the
rollout, with the expectation that it can be restarted later).

◆◆ An anomaly in your monitored data may be the responsibility of
your just-pushed system, but it may also be the result of some
dependent system having been coincidentally just pushed.
Coordinating rollouts with dependent teams can avoid this
problem.

Conclusions
Building our Push on Green rollout system has been an evolu-
tionary process. It has worked well because of the great degree of
caution that we have exercised in incrementally adding func-
tionality and automation. Although we are all in favor of having
computers do our jobs for us, we are also averse to the disasters
that mindless automation can bring.

We are only one of many teams at Google who are automating
their rollout process. The needs of the project and the con-
straints of the production environments influence how each
of these teams perform their jobs. However, regardless of the
particulars, each group has addressed the same concerns and
exercised the same degree of caution in handing over the reins
to an automated system. With apologies to Euripides, “The mills
of process automation grind exceedingly slow, but grind exceed-
ingly fine…” Anyone can do it—just be prepared for a long haul.

References
[1] Alain Andrieux, Karl Czajkowski, Asit Dan et al., “Web
Services Agreement Specification (WS-Agreement),” Sep-
tember 2005: http://www.ogf.org/documents/GFD.107.pdf.

[2] J. R. Erenkrantz, “Release Management within Open
Source Projects,” in Proceedings of the 3rd Workshop on Open
Source Software Engineering, Portland, Oregon, May 2003.

[3] J. Humble, C. Read, D. North, “The Deployment Produc-
tion Line,” in Proceedings of the IEEE Agile Conference, July
2006.

[4] D. V. Klein, “A Forensic Analysis of a Distributed Two-
Stage Web-Based Spam Attack,” in Proceedings of the 20th
Large Installation System Administration Conference,
December 2006.

[5] D. R. Wallace and R. U. Fujii, “Software Verification and
Validation: An Overview,” IEEE Software, vol. 6, no. 3 (May
1989), pp. 10, 17.

[6] H. K. Wright, “Release Engineering Processes, Their
Faults and Failures,” (Section 7.2.2.2) PhD Thesis, Univer-
sity of Texas at Austin, 2012.

[7] H. K. Wright and D. E. Perry, “Release Engineering Prac-
tices and Pitfalls,” in Proceedings of the 34th International
Conference on Software Engineering (ICSE ‘12) (IEEE, 2012),
pp. 1281-1284.

[8] H. K. Wright, D. Jasper, M. Klimek, C. Carruth, Z. Wan,
“Large-Scale Automated Refactoring Using ClangMR,” in
Proceedings of the 29th International Conference on Software
Maintenance (IEEE, 2013), pp. 548–551.

Sponsored by USENIX, the Advanced Computing Systems Association May 18–20, 2015, Kartause Ittingen, Switzerland

15th Workshop on Hot Topics
in Operating Systems (HotOS XV)

Important Dates
• Paper submissions due (no extensions): Friday, January 9, 2015,

11:59 p.m. GMT/UTC
• Notification to authors: Monday, March 16, 2015
• Revised papers due: Monday, April 20, 2015
• Workshop: Monday, May 18–Wednesday, May 20, 2015

Workshop Organizers
Program Chair
George Candea, École Polytechnique Fédérale de Lausanne (EPFL)

Program Committee
Marcos K. Aguilera, Microsoft Research
Peter Druschel, Max Planck Institute for Software Systems (MPI-SWS)
Michael Freedman, Princeton University
Shyam Gollakota, University of Washington
Steve Hand, Microsoft Research
Butler Lampson, Microsoft
Shan Lu, University of Chicago
Petros Maniatis, Intel Labs
David Mazières, Stanford University
Bianca Schroeder, University of Toronto
Margo Seltzer, Harvard University and Oracle Labs
Emmett Witchel, The University of Texas at Austin
Nickolai Zeldovich, Massachusetts Institute of Technology

Steering Committee
Armando Fox, University of California, Berkeley
Casey Henderson, USENIX
Petros Maniatis, Intel Labs
Matt Welsh, Google

Overview
The 15th Workshop on Hot Topics in Operating Systems will bring together
researchers and practitioners in computer systems, broadly construed.
Continuing the HotOS tradition, participants will present and discuss new
ideas about systems research and how technological advances and new
applications are shaping our computational infrastructure.

Computing systems encompass both traditional platforms—smart-
phones, desktops, and datacenters—and new technologies like implant-
able embedded devices, geographically distributed stream processing
systems, and autonomous flight control. In this context, a deluge of
personal, corporate, sensitive, ephemeral, or historical information being
produced, transmitted, processed, and stored poses interesting systems
challenges. Systems are expected to guard this information, and do so
 better, faster, and using less energy.

We solicit position papers that propose new directions of systems
research, advocate innovative approaches to long-standing systems prob-
lems, or report on deep insights gained from experience with real-world
systems. HotOS areas of interest include operating systems, storage, net-
working, distributed systems, programming languages, security, depend-
ability, and manageability. We are also interested in systems contributions

influenced by other fields such as hardware design, machine learning,
control theory, networking, economics, social organization, and biological
or other nontraditional computing systems.

To ensure a vigorous workshop, attendance is by invitation only. Authors
will be invited based on their submission’s originality, topical relevance,
technical merit, and likelihood of leading to insightful technical discussions
that will influence future systems research. We will heavily favor submis-
sions that are radical, forward-looking, and open-ended, as opposed to
mature work on the verge of conference publication.

Paper Submission Instructions
Position papers must be received by the paper submission deadline men-
tioned above. This is a hard deadline, and no extensions will be granted.

Submissions must be no longer than 5 pages including figures
and tables, plus as many pages as needed for references. Text should be
formatted in two columns on 8.5 x 11-inch paper using 10-point Times
Roman font on 12-point (single-spaced) leading, 1-inch margins, and a 0.25-
inch gutter (separation between the columns). The title, author names,
affiliations, and an abstract should appear on the first page. Pages should
be numbered. Figures and tables should not require magnification for
viewing; they may contain color, but should be legible when printed or dis-
played in black and white. Submissions not meeting these criteria will be
rejected without review, and no deadline extensions will be granted for
reformatting. Papers should be submitted as PDF files via the Web submis-
sion form, which will be available soon on the Call for Papers Web site.

Revised versions of all accepted papers will be available online to
registered attendees before the workshop. After the workshop, accept-
ed papers will be made available on the USENIX Web site, along with slides
of the presentation, and a summary of the discussion at the workshop.
Registered users of the USENIX Web site will have the ability to comment
and/or ask questions, and the authors will be able to respond online, as
well as expand their ideas and produce new versions of their papers. This
online discussion will constitute an active history of how the idea or system
evolves from the “hot idea” stage to mature work published in conferences
and eventually released into the real world.

Simultaneous submission of the same work to multiple venues, submis-
sion of previously published work, or plagiarism constitutes dishonesty or
fraud. USENIX, like other scientific and technical conferences and journals,
prohibits these practices and may take action against authors who have
committed them. See the USENIX Conference Submissions Policy, www.
usenix.org/conferences/submissions-policy, for details.

Questions? Contact the program chair, hotos15chair@usenix.org, or the
USENIX office, submissionspolicy@usenix.org.

Papers accompanied by nondisclosure agreement forms will not be
considered. Accepted submissions will be treated as confidential prior to
publication on the USENIX HotOS XV Web site; rejected submissions will be
permanently treated as confidential.

Announcement and Call for Papers

www.usenix.org/hotos15/cfp

34  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

SYSADMIN

/var/log/manager
Parables of System Administration Management

A N D Y S E E L Y

I’ve managed intelligent, educated, certified, opinionated, strong-willed,
hard-working, and brilliant system administrators across many dif-
ferent companies, industries, states, and countries. Over the years I’ve

found different approaches to connect with and motivate people. Sometimes
people need to be directly told to do something, sometimes they need to be
left alone to figure things out, and sometimes it’s helpful to give them a story
that they can use to cope with and overcome challenges. I call these stories
my “Parables of Sysadmin.”

Dealing with Difficult People: The Parable of Camping
We’re colleagues, co-workers, friends. We work hard together and we like each other and
we get along well. So if I just sucker-punched you right now, what would you do? You’d have
two reactions: First, you’d fight back. Punch, pow, crash! Once the dust settled, you’d have a
second reaction: You’d be offended. We’re colleagues, co-workers, friends; why would you just
attack me like that?

Now, imagine we’re in the Ocala National Forest campground. It’s a beautiful night. We’re
camping by the lake. It’s a moonlit night, stars, campfire. S’mores. And, suddenly, out of the
lake, a giant alligator jumps out and attacks you. You’d have two reactions: First, you’d fight
back. Punch, pow, crash! Once the dust settled, and assuming you’re still alive, you’d have a
second reaction: You’d adjust your campsite to be less susceptible to attack. But you wouldn’t
be “offended.” Why not? Because that gator is just an animal, it’s not acting with malicious
intent.

So now, when we’re camping in the Workplace National Forest and the animals come out of
the cubicle farm to attack you, why do you get so offended? Just adjust your campsite to be
less susceptible to the attack and get back to camping.

Understanding Real Prioritization: The Parable of the Fireman
It’s December and you’re going to buy a new calendar for the coming year. You want an excit-
ing calendar to hang in your cubicle, and you’re looking at all the calendars with pictures of
firemen. What do they look like? Sweaty, muscle-bound, wearing a helmet, holding an ax in
one hand and a rescued kitten in another, with a five-alarm fire behind them. Heroic and sexy.

Did you ever realize that each fireman in this scene represents failure? Every fire that gets
put out is a fire that wasn’t prevented, which means that the checks and balances of the
fire prevention system failed. We didn’t conduct safety inspections. We didn’t understand
the limitations of our internal controls. We didn’t have sufficient alerting and suppression
systems in our environment. We had to call in some heroes to perform heroic acts to save the
day, just like we do every day in our operational environment: We lionize, fetishize even, the
heroic act of getting the SAN or the server back online. We recognize people in their annual
performance reviews for heroic acts, effectively putting them on the sexy fireman calendar
as a reward for saving our kittens.

Andy Seely is the Chief Engineer
and Division Manager for an IT
enterprise services contract,
and an adjunct instructor in the
Information and Technology

department at the University of Tampa. His
wife Heather is his PXE Boot and his sons
Marek and Ivo are always challenging his thin-
provisioning strategy. andy@yankeetown.com

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 35

SYSADMIN
/var/log/manager: Parables of System Administration Management

Let’s think about what’s really effective. It’s the old fire marshal,
driving around in a boring old car, carrying a clipboard and
walking into places to check sprinkler systems, verify extin-
guisher charge levels, and validate training plans. No one ever
notices this person, yet if the job is done right, there’s never a
fire. No need for the heroics. No loss incurred. No downtime
suffered. Sometimes heroes are necessary, but the truly impact-
ful effort is prevention, monitoring, and fixing the little things.
We never give an annual salary bonus to someone for just
monitoring a system and reporting on syslog anomalies, since
that’s someone just “doing their job.” Done right, that simple job
prevents the need for all the heroics, and it should be rewarded,
if not with salary bonuses then at least with a sexy calendar with
pictures of syslog files and kittens who never needed rescuing.

Understanding True Root Causes:
The 10-Layer OSI Model
We all know the Seven-Layer OSI model: physical, data link,
network, transport, session, presentation, application. This is
a great tool for understanding the layered, encapsulated nature
of network communications. If the model is going to be truly
useful for understanding complexity and solving problems in
complex environments, it must be flexible and account for all the
complexity. In the spirit of flexibility in changing times and with
recognition of the debt we owe to Evi Nemeth’s original expan-
sion [1], I propose an updated expansion of the model from seven
to 10 layers.

Most sysadmins unconsciously extend the seven-layer model
to an eighth layer: the user. That element just on the other side
of the application. The space between the chair and the key-
board. Sometimes referenced with the codes 1D-10-T. PEBCAK.
L-User. Or, as I call it, “layer eight,” the type of problem caused
by lack of attention, lack of training, lack of discipline, or lack of
patience on the part of the user.

Layer nine is the naturally occurring condition of groups of
people, organizations, hierarchies, and how they interact with
each other. When a technical problem is caused, propagated,
or expanded due to organizational conflicts, disagreements
between executives, or people refusing to do something because
of something going on in another part of an organization, this is
layer nine: the political layer.

Large organizations can introduce major system problems, like
significant software purchased for non-existent or incompatible
systems, due to misinformed and overly excited executives and
senior leaders. Any time an environment is made too complex to
manage due to a decision that was not vetted by technical staff,
the problem is in layer 10 of the expanded model: the religious
layer. Something was done because a true-believer took action
without facts, and now we have to live with it.

Motivating Sysadmins to Be Effective and
 Relevant
These parables are stories that I tell every day. They’re not the
only tools in my manager’s kit, but they’re fun ways to help peo-
ple. We hear people say the old cliché, “work smarter, not harder,”
but that’s usually as effective as saying, “I want to cure world
hunger” or “Let’s hire consultants to tell us what to do.” What
does “working smarter” actually mean to a professional sysad-
min? Does it mean to know more about the operating system?
Does it mean to take another certification exam? Does it mean
agreeing with the manager until the manager goes away and the
sysadmin can get back to what he was doing?

Working smarter means maximizing the specific work activities
that provide the most benefit to the company’s primary business
goals. It’s a management challenge to understand those goals and
keep top technical people on the tasks that make the whole team
more effective at supporting those goals. Time spent complain-
ing about others is wasteful (parable of camping), time spent
with “all-hands-on-deck” heroic actions is inefficient (parable
of the fireman), and time spent trying to solve people-politics-
religion problems with more technology just makes things worse
in the end (parable of the 10-layer OSI model). I’m the manager,
and helping smart sysadmins be effective in big teams is my job.

References
[1] As cited by Avi Deitcher in “The Challenges of Open
Source in the Enterprise”: http://www.linuxjournal.com
/article/10726.

36  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

SYSADMIN

Educating System Administrators
C H A R L E S B O R D E R A N D K Y R R E B E G N U M

If you are a long-time attendee of LISA conferences, you will be very
familiar with the educators groups that have met either as part of LISA
or just before the LISA conference. The Summit for Educators in System

Administration (SESA) had its first official meeting in 2013 under the guid-
ance of Kyrre Begnum from Oslo University College and Caroline Rowland
from the USENIX Board and NIST. The meeting was a big success with more
than 30 academics and others interested in the education of the next gen-
eration of system administrators in attendance. Later in 2014, the USENIX
Board decided to embrace SESA as a new group under the USENIX banner.

During meetings around SESA, we decided to petition the USENIX Board to form a journal,
separate from but affiliated with SESA, called the Journal of Education in System Adminis-
tration (JESA). Our vision for SESA and JESA is to give academics and others interested in
the education of the next generation of system administrators a place to discuss their efforts
and to share best practices.

The reason it makes sense to do this under the USENIX banner, rather than the other
academic computing organizations such as the ACM or the IEEE, relates to our vision of
system administration and operations as a very applied field within computing that has
not received its fair share of respect within the more theoretical computing organizations.
As academics, we feel more at home in the USENIX community and feel that it is a better
home for our vision of what system administrators do in the world of work. The professional-
ism of the USENIX community fits better with our vision of what we want to instill in our
students, and we look forward to working with the community to help us advance our shared
profession.

The Future of Computing
Computing, as an academic discipline, has just hit its fiftieth birthday and is undergoing a
period of introspection something like what many of us go through around mid-life. Since its
inception, the idea that computer science was really a “science” has been an item for debate [1].
One of the main concepts behind the idea that computer science was not a “science” was the
notion that, unlike the other three branches of science (physical, life, and social sciences),
computer science dealt with an “artificial” environment. This is becoming less persuasive as
we start to gain a better understanding of the similarities between the computation that we do
with computers and the computation involved with some of the most basic life processes such
as evolution, natural selection, chemistry, gene regulatory systems, and neuronal networks [2].

There is another way to look at computing as “the union of three disparate perspectives: the
mathematical perspective, the scientific perspective, and the engineering perspective.” [2]
From this perspective, computing as a discipline derives its use of various formalisms from
mathematics, its drive for continuous improvements from engineering, and its desire to
make empirical predictions from the small and simple to the very large and complex from all
the sciences.

Charles Border teaches
networking and system
administration classes in the BS
and MS programs in networking
and system administration

in the Department of Information Science
and Technology at the Rochester Institute
of Technology in Rochester, NY. He is an
active international educator offering classes
at RIT Dubai and in partner programs in the
Dominican Republic. His areas of research
include system administration education,
international higher education, enhancing
the innovation and creativity in professional
master’s degrees, cloud computing, and
teaching in the cloud. Mr. Border earned a PhD
in higher education administration in 2000
and an MBA in 1993, both from the University
at Buffalo. He lives in South Wales, NY, with
his wife Kathleen and their three children.
cbbics@rit.edu

Kyrre Begnum, PhD is an
associate professor at Oslo
and Akershus University
College of Applied Sciences in
the Department of Computer

Science, and is an adjunct professor at Gjøvik
University College in Oslo, Norway, where he
teaches primarily systems-related courses. Dr.
Begnum has published extensively in the field
of cloud computing and virtualization.
Kyrre.Begnum (at) hioa.no

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 37

SYSADMIN
Educating System Administrators

As computing has evolved from its emphasis on engineering
and the initial development of systems in the early days to our
current situation of very large and complex systems, the question
still remains: What is the future of computing? Frustrated with
all the other names (e.g., the science of computation, or the sci-
ence of computer science), Richard Snodgrass has proposed an
entirely new term to describe the future of computing, ergalics.
“The goal of Ergalics is to express and test scientific theories of
computational tools and of computation itself and thus to uncover
general theories and laws that govern the behavior of these tools
in various contexts. The challenge now before the CS discipline
is to broaden its reliance upon the mathematical and engineer-
ing perspectives and to embrace the scientific perspective.” [3]

This matters for us as we begin to think of working to define cur-
ricula around system administration, because we need to have a
better understanding of what the goals and outcomes should be
for our programs. One of the biggest changes that has happened
to higher education in the last decade or two has been a growing
demand from our stakeholders for an increase in accountability
for the resources that we consume. This has been instantiated
through the rise of the assessment movement.

Measuring the Performance
Assessment requires that each program approach the measure-
ment of the success of the program from a three-step process.
Each institution defines a mission statement that defines who
the institution serves and the relationship of the institution to
the world around it. Based on this mission statement, each pro-
gram defines a set of broad program educational outcomes that
define the characteristics of the graduates of the program three
to five years after graduation. The idea behind having this time
lag is that we do not want to educate our students to just be able
to get that first job; we feel that educating students properly pre-
pares them to be lifelong learners. Measurement of a program’s
educational outcomes is a problematic thing. A lot of important
things can happen to a person between the ages of 22 and 27, and
just contacting our graduates can be difficult. Our attempts to
measure program educational outcomes are imperfect at best
and rely on the use of surveys and our other contacts with our
graduates. Lastly, each program defines its student outcomes,
which are the things that students should be able to do when
they graduate. Through our assessment process we measure
the results of our programs, and we feed back the results of our
assessment into program changes to make the program better
over time.

Student outcomes are generally measured in individual courses
that all students are required to take. The actual means of mea-
surement depends on the type of outcome. If an outcome relates
to a student’s ability to communicate effectively, we might
measure this by grading student writing assignments against

a rubric that breaks down the grade for the assignment into
several categories, with a score assigned to each category. If the
outcome relates to the ability of a student to do something (e.g.,
configure a BIND DNS server), we might have a standard lab
assignment that all our students need to complete that is graded
against a rubric.

In the old days prior to assessment, we asked our constituencies
to trust us about how good a job we were doing. Now we have
a process in place to measure the contribution each program
makes toward the institution’s ability to live up to its mission
statement and find ways to make the program better over time.
From the perspective of a teaching faculty member, a couple of
the most important points about this process are that we develop
our own set of program educational outcomes, student outcomes,
and a process by which we use metrics to improve the program.
This may sound very bureaucratic, but in the end it is very
much a faculty developed and led process through which we can
improve our programs.

From a day-to-day perspective, assessment, in essence, asks
us to define a set of program goals, break those goals down into
outcomes, align those outcomes with specific courses, and find
ways to measure the ability of each course to contribute to the
overall success of the program. If a course does not enhance the
ability of students to satisfy the program outcomes, it should be
removed from the curriculum. If students successfully accom-
plish the goals we have set out for them, we acknowledge that
and move on, and if they do not, we examine what we do and try
to find ways to do a better job in the individual courses.

To make assessment work effectively, we need to have the right
program outcomes, and this is the area where a curriculum
that concentrates on the applied skills of a professional system
administrator should be very different from the more theoretical
skills of a computer science program. If system administration
and computer science program outcomes were the same, there
would be no reason to have a separate system administration
program.

Program Outcomes
There are two dimensions to the design of new program out-
comes. The first dimension concerns the window of time that
students are in our programs. What can we teach students when
they are fresh out of high school that will be meaningful to a
career that does not begin for four years? A relevant way to think
about this is to reflect on the systems practices that we were
pursuing four years ago. What has changed since then and what
has stayed the same? A related issue is the amount of time that
we have with the students. If we are to add things to an already
busy curriculum, what can we take out? If we add configura-
tion management because we decide that every systems person
should have a working knowledge of how to maintain the consis-

38  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

SYSADMIN
Educating System Administrators

tency of the configuration of many machines, can we remove a
semester of Java? Tradeoffs must be made, and the place that we
make them is in the program outcomes.

A second dimension of the development of program outcomes
relates to what we determine are the main things that you
want an entry-level system administrator to be able to do. Is
programming in a specific language such as Perl or Python the
most important thing, or is it more important to have a general
understanding of, for example, troubleshooting skills or ser-
vice deployment architectures? When we work to develop the
educational outcomes associated with programs, we have to
be very careful, because you might get what you ask for. If we
lean too heavily on the needs of the moment will we have a very
narrowly skilled employee who is unable to adapt to changes in
the demands placed on him? Even though many organizations
are relying heavily on Puppet for configuration management
and EMC for large scale storage architectures, should we design
our curriculum around these specific technologies or should we
concentrate on developing a more generalist curriculum that
stresses things like Bash scripting, Web services, and storage
area networks and networking?

There is a difference between developing lab exercises that
require students to use specific technologies (deploy this Web
service on this Web server, running on this operating system)
and building context around basic technologies by discussing the
general concepts involved with the technologies. The concepts
last, but the specific technologies change very rapidly. The same
distinction applies when we develop the outcomes associated
with our programs. If our outcomes are too specific and technol-
ogy-focused, we run the risk of having to change our outcomes
with each iteration in technology, and of having students whose
education loses its relevance before they even graduate.

Student Recruitment
We have heard from many of you that it is very difficult to recruit
the right new employees for your businesses, and we in higher
education have heard you and we want to help. But we also have
a problem. The kind of very bright, hardworking, and creative
students that you want to recruit to run your systems have many
options when they choose a major and very little understanding
of what the different majors and the careers they lead to actually
consist of once they graduate. Many students show up at college
not knowing about different careers, but knowing that they
want to major in something related to computing. While this
is fine, it presents a problem for those of us seeking to recruit
them into a specialized field such as system administration that
they may never have even heard of. Although this generation of
students is just as rebellious as we were (which is good), par-
ents play a larger role in the student’s decision-making than we
usually give them credit for. But the same problem remains: The

parents may not know what a system administrator is either.
The current growth in computer science enrollments may be
a response to the uncertainty that many people feel about jobs
(let alone careers) these days, with students opting to major in
the more well known, generalist computer science degree rather
than a specific career path that they don’t understand and that
might (so they fear) be outsourced, leaving them in debt and
unemployed.

This is particularly a problem as we try to recruit a more diverse
student body. Just as industry is being asked more pointed ques-
tions about the diversity of their employees, we are also receiv-
ing the same types of questions. It is very important for us to
expand the pool of students interested in systems, educate all
the students, and create an environment where all students can
succeed.

To successfully recruit the kind of students that you will want to
recruit as employees, we need to create an interesting curricu-
lum that allows students to gain an understanding of the field of
system administration and, at the same time, excites their inter-
est, creativity, and problem-solving skills. Our goal in developing
a system administration curriculum should be to develop our
students into employees who feel empowered to be creative and
find their work engaging, interesting, and worth concentrating
their efforts on.

The Future of System Administration and
 Operations Education
With only a very few exceptions, computing programs in higher
education are dominated by computer science programs based
on a more theoretical understanding of what computing is all
about. While this might be sufficient for many careers in com-
puting we don’t feel that it is the right approach for all careers in
computing and all organizations. The goal of SESA and JESA is
to create a venue where people interested in a different side of
computing can exchange ideas and information relevant to the
development of new curricula in system administration. These
new curricula may come in many different flavors, with some
being more programming focused and others more focused on
hardware/service deployment issues. And they may rely on dif-
ferent phrases to describe their curriculum (operations seems to
be a bigger concept than system administration, but if students
don’t know what system administration means, they certainly
don’t know what operations means) and/or rely more on busi-
ness concepts (operations management is an interesting topic to
many people) than strictly on computing, but we want to provide
a place for all of them.

For the academics reading this article, we want to provide a
place to discuss your plans for the future and goals for your
curriculum. For the industry people reading this, we want to
encourage you to become involved both in our new group and

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 39

SYSADMIN
Educating System Administrators

especially with your local colleges and universities. They need
your input into the curriculum design process, and they need
your talents as an instructor. If you have never taught a college
course, you may find it to be a very interesting change of pace for
you that puts you in contact with some very bright and hard-
working students and gives the students an opportunity to ben-
efit from your experience. At SESA we also need your thoughts
and experience as we try to distill from our rapidly changing
industry those things that will last and that can form the basis
for an interesting and challenging curriculum.

References
[1] Peter J. Denning, “The Science in Computer Science,” Com-
munications of the ACM, vol. 56, no. 5 (May 2013), pp. 35–38.

[2] Richard Snodgrass and Peter Denning, “The Science
of Computer Science: Closing Statement,” Ubiquity Sym-
posium: The Science of Computer Science (June 2014),
DOI=10.1145/2633608.

[3] Richard Snodgrass, Ergalics: A Natural Science of Compu-
tation (University of Arizona, 2010).

Do you have a USENIX Representative on your
university or college campus?
If not, USENIX is interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association information to
students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX is always looking for academics to
participate. The program is designed for faculty who directly interact with students. We fund one representative from a campus at a time.
In return for service as a campus representative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX publications
at your university for student use

■ Distributing calls for papers and upcoming event brochures, and
re-distributing informational emails from USENIX

■ Encouraging students to apply for travel grants to conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas of the USENIX
Web site, free conference registration once a year (after one full year of service as a Campus Representative), and electronic conference
proceedings for downloading onto your campus server so that all students, staff, and faculty have access.

www.usenix.org/students

■ Providing students who wish to join USENIX with information
and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions
on how the organization can better serve students

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four year accredited university ■ Have been a dues-paying member of USENIX for at least one
full year in the past

For more information about our Student Programs, contact Julie Miller, Marketing Communications Manager, julie@usenix.org

40  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

DIVERSITYCRA-W Grad Cohort
Guiding Female Graduate Students Towards Success

D I L M A D A S I L V A

Dilma Da Silva is professor
and department head of the
Department of Computer
Science and Engineering at
Texas A&M University. She

is also director for the Computer Science
and Engineering Division of the Texas A&M
Engineering Experiment Station (TEES). She
previously worked at Qualcomm Research
in California, IBM Research in New York,
and University of Sao Paulo in Brazil. She
received her PhD from Georgia Tech in 1997.
She has published more than 80 technical
papers and filed 14 patents. Dilma is an ACM
Distinguished Scientist, an ACM Distinguished
Speaker, a member of the board of CRA-W and
CDC, co-founder of Latinas in Computing, and
treasurer for ACM SIGOPS.
dilmamds@gmail.com

I enjoy attending conferences such as OSDI, USENIX ATC, VEE, and
SOSP because I get exposed to exciting technical ideas as I discuss great
research results with colleagues whom I cherish. But, by far, my favorite

event is the annual CRA-W Grad Cohort Workshop.

Grad Cohort is a two-day workshop where 300+ female graduate students interact with 25+
senior women in computing research. Grad Cohort accepts students in their first, second, or
third year of graduate school in computer science or engineering. Senior women come from
academia, industry research, and national labs, covering a diverse set of computing disci-
plines; in 2014, three of them were active members of the USENIX community.

The program includes a mix of formal presentations and informal discussions and social
events. Some presentations cover mentoring advice such as how to become more effective
in professional networking, improve communication skills, and balance graduate school
and personal life. These are traditional mentoring topics, but at Grad Cohort they come
alive as presenters include more personal information and insights about their experiences
in handling the specific opportunities and challenges they faced in their research careers.
Every year that I attended such sessions, I planned to half-listen to them as I tackled work
on my laptop, but I found myself mesmerized by the relevant and fresh perspectives being
presented.

The program also includes information on graduate school survival skills, organized in parallel
tracks targeting first year, second year, and third year students. Sessions include: master’s
versus PhD programs; strategies for finding an advisor, research topic, and financial support;
thesis proposal preparation; dissemination of research results; internships; and job search
and interview tips for academic and industry jobs. Panels covering topics such as building
self-confidence and a professional persona are very popular with attendees. The program
ends with direct feedback sessions, such as a resume writing clinic and individual advis-
ing. You can find the slides from presentations for the 11 editions of the event at cra-w.org/
gradcohort.

Beyond the strength of the program, Grad Cohort is special to me because of the unique
atmosphere emanating from a group of 300+ women discussing their experiences as gradu-
ate students in computer science. Attendees have commented that the welcoming and
supportive environment in the workshop leaves them feeling more empowered to handle
challenges back in school and eager to deploy what they learned in the workshop to make the
best out of the opportunities they have. And, yes, after dinner on Friday evening, we dance
our hearts out.

CRA-W carries out extensive data collection and analysis to demonstrate that Grad Cohort
is effective in improving the success and retention of women in computing research. Infor-
mation on how the 2014 edition of the workshop impacted attendees is available on the
evaluation report [1]. Another report [2] from the CRA Center for Evaluating the Research
Pipeline contrasts data from Grad Cohort participants and non-participants.

According to the Taulbee Survey [3], in 2014 only 292 out of the 1475 (19.8%) PhDs in
computer science or computer engineering were awarded to women. Grad Cohort can have

U S E N I X W O M E N I N
A D VA N C E D CO M P U T I N G

Presented by

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 41

DIVERSITY
Guiding Female Graduate Students Towards Success

an even bigger impact on the computing research pipeline if
expanded to meet actual demand. Generous funding from indus-
try, nonprofit associations, university computer science depart-
ments, and individual donors covers all participant travel and
workshop expenses. In 2014, the funding allowed the workshop
to accept only 304 of the 503 applicants. The participant selec-
tion process maximizes the number of schools represented in
the group. With more funding, we can get more women prepared
to excel in computer science research. If your institution is in a
position to sponsor a few students (or many!), please contact me
so that I can provide you with detailed information about the
Grad Cohort initiative.

As I write this article, the 2015 dates for Grad Cohort have
not been defined yet, but by the time you read this we may be
approaching the application deadline. Usually, the workshop
happens in April and student applications are due in late Novem-
ber. If you are a female graduate student, I encourage you to con-
sider applying to the workshop. If you work with female graduate
students who may not be aware of this program, please advise
them to check out the CRA-W Web site, cra-w.org.

References
[1] J. L. Cundiff, J. G. Stout, and H. Wright, CRA-W Grad
Cohort 2014: Pretest/Posttest Evaluation Report, May 2014
(Computing Research Association: Washington, DC):
http://cra.org/cerp/evaluation-reports.

[2] J. G. Stout and J. L. Cundiff, CRA-W Grad Cohort:
Comparative Evaluation Report of 2011-2012 Participants,
 February 2014 (Computing Research Association: Washing-
ton, DC): http://cra.org/cerp/evaluation-reports.

[3] S. Zweben and B. Bizot, 2013 Taulbee Survey, Computing
Research News, vol. 26, no. 5, May 2014: http://www
.cra.org/uploads/documents/resources/crndocs/2013
-Taulbee-Survey.pdf.

Do you know about the USENIX Open Access Policy?

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our
conferences proceedings and videos. We stand by our mission to foster excellence and
innovation while supporting research with a practical bias. Your financial support plays a
major role in making this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX
Annual Fund, renew your membership, and ask your colleagues to join or renew today.

42  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

COLUMNSPractical Perl Tools
Get Your Health Checked

D A V I D N . B L A N K - E D E L M A N

Every once in a while I like to inject a little reality into this column,
more specifically my reality. This month, instead of writing about
some abstract technology or documenting a done deal, I thought it

might be fun to work together on a small project that is actually in flight as
I write this. This will give you a chance to listen in on my current thoughts
(such as they are), and together we can examine some rough code that imple-
ments these ideas.

The project I have in mind revolves around a new LDAP cluster that we are currently install-
ing. LDAP stands for Lightweight Directory Access Protocol and is basically the de facto
standard for talking to a directory server. Directory servers are used to provide the backbone
for most authentication/authorization setups. For example, if you log into a machine that
uses some sort of central authentication scheme, chances are the client is doing an LDAP
operation at some point as part of the process. This is truly cross-platform (e.g., if you log into
a Windows network, you’ll be talking LDAP at some point to your ActiveDirectory server(s)).

If you’ve never dealt with LDAP before, never fear, we won’t be assuming much knowledge
of it nor will we go very deep. There’s a lot that can be written about it (and, indeed, I have a
whole chapter and an appendix on it in my book). For the purpose of this column, I’ll try to
provide enough context so the code makes sense. And, actually, if you take a step back and
squint at this column from a little distance away, you’ll find that LDAP is just a small detail
in the larger picture of health checks, the true subject for today.

So what’s a health check and why do I (and maybe you) care? In my case, the LDAP cluster we
have set up consists of four LDAP servers that are “behind” a load balancer (actually a pair of
them, but that’s another story for another column). The load balancer’s job is to transparently
take in LDAP requests and parcel them out to the actual servers in a balanced way so the
load is spread evenly amongst the operational machines. The key word for this column has
just been spoken: “operational.” One other key purpose for using a load balancer is to make
sure that if a machine in a cluster becomes dysfunctional, the clients of that cluster don’t
notice because the load balancer has cleverly removed that machine from the list of servers
it is sending traffic to. If and when that machine returns to service, the load balancer may
decide to bring it back into the fold.

Here comes the rub: A load balancer has to know which machines it stands in front of are
working and which are not. The way this is typically done is to have the load balancer con-
tinuously perform a “health check” on each of the cluster members. Health checks can be
simpleminded and naive or fiendishly clever. Right now our current health checks are barely
the former, and that’s the problem. At the moment, the load balancing software (keepalived,
if you are curious) is just checking to see if it can connect to the LDAP port on each of the
servers. That’s not good enough—we can do much better. Let’s rough out a few ways we can
improve the situation.

David N. Blank-Edelman is the
director of technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ’05 conference and one of the LISA
’06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010. dnb@ccs.neu.edu

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 43

COLUMNS
Practical Perl Tools: Get Your Health Checked

Do What I Do
Being able to connect to the server is great and all that, but LDAP
clients connect for a reason. They expect to be able to talk to
the server and perform LDAP operations. When writing health
checks for almost any service, you’ll be off to a great start if your
checks mimic even a minimal set of operations a client would
be expected to perform. In the case of LDAP this set includes an
LDAP bind operation (think of it as “logging into the server”), an
LDAP search operation, and an LDAP unbind (which the RFC
describes as “the ‘quit’ operation…the client, upon transmission
of the UnbindRequest, and the server, upon receipt of the Unbin-
dRequest, are to gracefully terminate the LDAP session.”). Let’s
look at a little Perl code that does all three things:

use strict;

use Net::LDAP;

my ($server, $binddn, $bindpw, $lookup) = @ARGV;

my $ldap = Net::LDAP->new($server) or die “Can’t connect: $!”;

print “connected.\n”;

my $res = $ldap->bind($binddn, password => $bindpw);

$res->code && die “Can’t bind: “ . $res->error;

print “bound to server.\n”;

$res = $ldap->search(

 base => ‘ou=people,dc=example,dc=edu’,

 scope => ‘one’,

 filter => $lookup,

);

$res->code && die “Search failed: “ . “$res->error”;

print “entries found “ . $res->count . “\n”;

$res = $ldap->unbind;

$res->code && die “Unbind failed: “ . “$res->error”;

print “unbound to server.\n”;

To quickly walk you through the code, we create an Net::LDAP
object that connects us to the server. We then bind() (login) to it.
At this point, we execute a search that starts at a particular place
in the tree (base), looks at only the part of the tree one level down
under that place (one), and filters the result. Lastly, we unbind()
to the server. Here’s what happens when we run the code:

$ ldap.pl localhost ‘managerdn’ ‘managerpw’ ‘(sn=smith)’

connected.

bound to server.

entries found 11

unbound to server.

Here you can see we’re testing just a few LDAP operations. There
are definitely others (compare and modify come to mind) that we
should add to this test. More on that last one later. I should also
note that this is very simple code that doesn’t take into account

slow or hung servers (ideally, we should build timeouts into the
script to cause it to abort if operations take too long).

If we wanted to be a little cooler, we could go to the logs of a run-
ning version of the service and pull a representative slice of the
live workload and use it to form the basis of an even better test.
Note I said “basis,” because we probably don’t want to replay it
verbatim to our servers, especially if it contains write opera-
tions. It would be more than a little embarrassing to have our
health checks repeatedly overwrite live data in our directory,
though it wouldn’t surprise me if this has happened before.

Ah, But How Fast Did I Do It?
Once we know how to pretend to be a client of the server and
perform the same operations it might perform, a logical step for-
ward is to model another thing we can expect from our clients:
impatience.

In the last section we concerned ourselves with whether our
service would answer the phone, reply to our request, and then
hang up properly. LDAP clients care about all of these things, but
they also care about how long those things take. In many cases
a server that replies too slowly might as well be down (“you are
dead to me”). Our health check needs to catch this case as well.
The first step towards this is timing how long each operation
takes. We can do that with code that looks a bit like this:

use Net::LDAP;

use Time::HiRes qw(time);

my $start = time();

my $ldap = Net::LDAP->new($server) or die “Can’t connect: $!”;

my $end = time();

print “connected: “ . ($end - $start) . “\n”;

$start = time();

my $res = $ldap->bind($binddn, password => $bindpw);

$end = time();

$res->code && die “Can’t bind: “ . $res->error;

print “bound to server: “ . ($end - $start) . “\n”;

In the above sample we are using the module Time::HiRes
because the Perl’s native time resolution is seconds (i.e., time()
returns the number of seconds since the epoch). In this break-
neck world we live in, we expect response times in less than a
second. Time::HiRes gives us the extra resolution we need. Take
a look at the difference between what time() returns without and
with Time::HiRes loaded:

$ perl -e ‘print time(),”\n”’

1406570529

$ perl -e ‘use Time::HiRes qw(time);print time(),”\n”’

1406570567.63434

44  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

COLUMNS
Practical Perl Tools: Get Your Health Checked

Once we know how fast an operation is, we can then enforce a
standard in our health check. Something easy like:

($bind_time < 1.0) ? ‘up’ : ‘down’;

Now, on my unloaded server, that standard is far too generous.
Here’s what the new code that prints how long each operation
takes shows when I run it against an unloaded server:

connected: 0.00156688690185547

bound to server: 0.00202512741088867

entries found 11: 0.0248799324035645

unbound to server: 0.000317096710205078

Oversimplification Alert! Taking a server out of service based on
just a single slow operation sounds both draconian and ineffi-
cient. It’s more likely you would be better served if you did some
math to determine whether the server is consistently reporting
back times within a reasonable range. This requires some sort
of persistent state be kept around between health checks, a topic
we’re not going to touch on in this column.

Yup, Still Me in the Mirror
The previous mention of the LDAP modify operation (and
write operations in general) brings up another useful aspect
to consider when writing health checks. One important way to
test a service that includes write operations is through “round
trip” tests. Sure, we could write code that performs an LDAP
modify of the data and then believe the server if it reports back a
successful modification, but it would be far better if we actually
did another read to confirm it worked. As the Russian proverb
says, “trust, but verify.” The idea of round-trip verification comes
in handy in many places. For example, when health-checking a
mail system, it would be great to have the health check send mail
to the system and then attempt to retrieve it a few moments later.

In our case, we can do something like this:

my $testdn = ‘uid=canaryuser,ou=people,dc=example,dc=edu’;

...connect and bind as usual, then

$start = time();

my $res = $ldap->modify($testdn,

 replace => { ‘displayName’ => $start });

$res->code && die “Can’t modify: “ . $res->error;

$res = $ldap->search(

 base => $testdn,

 scope => ‘base’,

 filter => “(displayName=$start)”,

);

$end = time();

$res->code && die “Search failed: “ . $res->error;

print “entries found “ . $res->count . “: “ .

 ($end - $start) . “\n”;

In this code we modify the value of the displayName attribute in
a test user’s LDAP entry—we set it to be a timestamp. The next
code section attempts to search for that user with a filter that
should only return back an entry if the displayName is set to that
timestamp correctly. If we return an entry, success. If not, sad
trombone.

By the way, a more efficient way to check whether the
displayName value has been set to the desired timestamp
would be to use a compare operation instead of a search:

use Net::LDAP::Constant qw(LDAP_COMPARE_TRUE

 LDAP_COMPARE_FALSE);

$res = $ldap->compare($testdn,

 attr => ‘displayName’,

 value => $start);

print “compare succeeded”

 if ($res->code == LDAP_COMPARE_TRUE);

In this section we’ve seen one very simple round-trip test. I’ll
mention a slightly more sophisticated one related to this test at
the end of this column.

Tell Me How You Feel
A piece of well-instrumented server software has a way of
reporting its internal sense of health. In the case of the LDAP
server we are using (OpenLDAP), it provides a special LDAP
suffix we can query to return all kinds of internal counters and
statistics. Here’s some code that dumps one interesting set:

use Net::LDAP;

my ($server, $binddn, $bindpw) = @ARGV;

my $monitordn = ‘cn=Operations,cn=Monitor’;

my $ldap = Net::LDAP->new($server) or die “Can’t connect: $!”;

my $res = $ldap->bind($binddn, password => $bindpw);

$res->code && die “Can’t bind: “ . $res->error;

$res = $ldap->search(

 base => $monitordn,

 scope => ‘one’,

 filter => ‘(objectClass=*)’,

 attrs => [‘monitorOpInitiated’, ‘monitorOpCompleted’],

);

$res->code && die “Search failed: “ . $res->error;

my @operations = $res->entries;

foreach my $operation (@operations) {

 my $dn = $operation->dn;

 my ($opname) = $dn =~ /cn=(\w+),/;

 print “$opname: “

 . $operation->get_value(‘monitorOpInitiated’)

 . “ initiated, “

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 45

COLUMNS
Practical Perl Tools: Get Your Health Checked

 . $operation->get_value(‘monitorOpCompleted’)

 . “ completed\n”;

}

$res = $ldap->unbind;

$res->code && die “Unbind failed: “ . $res->error;

When run on a pretty fresh server, we get results that look like
this:

Bind: 34 initiated, 34 completed

Unbind: 25 initiated, 25 completed

Search: 29 initiated, 28 completed

Compare: 3 initiated, 3 completed

Modify: 3 initiated, 3 completed

Modrdn: 0 initiated, 0 completed

Add: 0 initiated, 0 completed

Delete: 0 initiated, 0 completed

Abandon: 0 initiated, 0 completed

Extended: 0 initiated, 0 completed

Once you can figure out just which statistics are important to
you, it is easy to write a health check that uses them as an indica-
tor of health (with or without the kind of math we discussed in
the timing section above). Perhaps you consider a server healthy
if it has a small ratio of Modify to Search operations; too many
writes could indicate a problem. A query like the one above can
determine whether this condition is being met. One last note
before we move on: If your server isn’t well-instrumented, get a
better server (if you can).

Happy Family
For the last section, let’s pull the camera back a little further. In a
multiple server setup where the servers keep themselves in sync
with each other like we have, replication status (i.e., is the data in
all of the servers in sync) can be pretty important. So important,
we should have a health check for that. OpenLDAP provides a
fairly simple mechanism for this. Each time a replication takes
place, the server sets an operational attribute called contextCSN
with data about the most recent entry that this server contains
(it can also keep track of the latest entries it has seen from its
replication partners). We can compare contextCSN in two serv-
ers to determine whether they are in sync. The structure of this
attribute (as per the docs) is:

GT ‘#’ COUNT ‘#’ SID ‘#’ MOD

GT: Generalized Time with microseconds resolution,

without timezone/daylight saving:

YYYYmmddHHMMSS.uuuuuuZ

YYYY: 4-digit year (0001-9999)

mm: 2-digit month (01-12)

dd: 2-digit day (01-31)

HH: 2-digit hours (00-23)

MM: 2-digit minutes (00-59)

SS: 2-digit seconds (00-59; 00-60 for leap?)

.: literal dot (‘.’)

uuuuuu: 6-digit microseconds (000000-999999)

Z: literal capital zee (‘Z’)

COUNT: 6-hex change counter (000000-ffffff); used to

distinguish multiple changes occurring within the same time

quantum.

SID: 3-hex Server ID (000-fff)

MOD: 6-hex (000000-ffffff); used for ordering the modifications

within an LDAP Modify operation (right now, in OpenLDAP it’s

always 000000)

Here’s a sample set of them from one of my servers:

$ ldapsearch -x -LLL -H ldap://localhost

 -s base -b ‘dc=example,dc=edu’ ‘contextCSN’

dn: dc=example,dc=edu

contextCSN: 20140729211439.000593Z#000000#001#000000

contextCSN: 20140514223302.072724Z#000000#002#000000

contextCSN: 20140514224132.047675Z#000000#003#000000

contextCSN: 20140514231128.299773Z#000000#005#000000

We could parse this in Perl either with a regular expression
like the following (which I found in the Nagios plugin at
ltb-project.org):

m/(\d{14})\.?(\d{6})?Z#(\w{6})#(\w{2,3})#(\w{6})/g;

or by using unpack(), as in:

unpack(“A14 A1 A6 A1 A1 A6 A1 A3 A1 A6”);

Parsing these values gives us the time of the latest entry on this
server and the latest entry this server has seen from the other
servers. If we then go query the other servers, we can start to
compare the contextCSN values and get a sense of how in sync
they are. On a busy cluster with lots of write activity, you would
expect the numbers to drift apart some.

For health check purposes, the question then becomes: How
big a difference between servers is acceptable to you before
you declare a server “not in sync”? Calculating the difference
between times is just a matter of subtraction (perhaps wrapped
in an abs() to get the absolute number). As we did before with the
timing question, we can then compare it against an acceptable
range (or at least an acceptable upper bound).

The key thing here is we are now determining health of a server
by its relationship to other servers, a pretty big leap in our
thinking. That leap might lead you to revisit the round trip idea
from an earlier section. It’s not hard to envision a round-trip

46  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

COLUMNS
Practical Perl Tools: Get Your Health Checked

test where you attempt to see how quickly a write made to one
server appears on another (or several, or perhaps all?) replicated
server(s). Hopefully, this idea shows you there are a ton of direc-
tions we could continue to explore around the simple idea of a
health check.

Take care and I’ll see you next time.

Endnote: Lest you think this isn’t a true reflection of my reality,
while working on the section about inter-server synchroniza-
tion, I realized much to my chagrin that the servers in the LDAP
cluster I was building were not properly keeping themselves in
sync (they were constantly doing a full synchronization, which is
not the way they are supposed to work). Two days of blood, sweat,
and tears later, I now have a much better understanding of the
role contextCSN plays in replication and how it is supposed to
work. (Oh, and the cluster is fixed, too.) Thanks ;login: column!

NSDI ’15 will focus on the design principles, implementation, and practical evaluation
of networked and distributed systems. Our goal is to bring together researchers from
across the networking and systems community to foster a broad approach to address-
ing overlapping research challenges.

NSDI provides a high-quality, single-track forum for presenting results and discussing
ideas that further the knowledge and understanding of the networked systems com-
munity as a whole, continue a significant research dialog, or push the architectural
boundaries of network services.

www.usenix.org/nsdi15

12th USENIX Symposium on
Networked Systems
Design and Implementation

SAVE THE DATE!

May 4–6, 2015 • Oakland, CA

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 47

COLUMNS

A Path Less Traveled
D A V I D B E A Z L E Y

If you’re like me, you’ve probably written a Python script or two that
had to manipulate pathnames. For that, you’ve probably used the much
beloved os.path module—and perhaps the glob module. And let’s not for-

get some of their friends such as fnmatch, shutil, subprocess, and various bits
of functionality in os. Aw, let’s face it, who are we kidding here? Pathname
handling in Python is an inexplicable mess, has always been a mess, and will
always continue to be a mess. Or will it?

In this installment, I take a look at the new pathlib standard library module added to Python
3.4 [1]. More than 10 years in the making, it aims to change the whole way that you manipu-
late files and pathnames—hopefully, for the better.

Classic Pathname Handling
In programs that need to manipulate files and pathnames, certain tasks seem to arise over
and over again. For example, splitting pathname components apart, joining paths together,
dealing with file extensions, and more. To further complicate matters, POSIX and Windows
systems don’t agree on basic features such as the path separator (/ vs. \) or case sensitivity.
So if you try to write all of the code yourself, it quickly becomes a mess. For these tasks, the
os.path module is usually the recommended solution. It mainly provides common operations
that you might apply to strings containing file names and does so in a platform-independent
manner. For example:

 >>> filename = ‘/Users/beazley/Pictures/img123.jpg’
 >>> import os.path

 >>> # Get the base directory name

 >>> os.path.dirname(filename)
 ‘/Users/beazley/Pictures’

 >>> # Get the base filename

 >>> os.path.basename(filename)
 ‘img123.jpg’

 >>> # Split a filename into directory and filename components

 >>> os.path.split(filename)
 (‘/Users/beazley/Pictures’, ‘img123.jpg’)

 >>> # Get the filename and extension

 >>> os.path.splitext(filename)
 (‘/Users/beazley/Pictures/img123’, ‘.jpg’)

 >>>

 >>> # Get just the extension

 >>> os.path.splitext(filename)[1]
 ‘.jpg’

 >>>

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,

2009). He is also known as the creator of Swig
(http://www.swig.org) and Python Lex-Yacc
(http://www.dabeaz.com/ply.html). Beazley
is based in Chicago, where he also teaches a
variety of Python courses dave@dabeaz.com

48  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

COLUMNS
A Path Less Traveled

In practice, using these functions gets a bit a more messy. For
example, suppose you want to rewrite a file name and change its
extension. To do that, you might write code like this:

 >>> filename
 ‘/Users/beazley/Pictures/img123.jpg’

 >>> dirname, basename = os.path.split(filename)
 >>> base, ext = os.path.splitext(basename)
 >>> newfilename = os.path.join(dirname, ‘thumbnails’,
base+’.png’)
 >>> newfilename

 ‘/Users/beazley/Pictures/thumbnails/img123.png’

 >>>

Actually, all of that code is probably embedded inside some sort
of larger task. For example, processing all of the images in an
entire directory:

 import os.path

 import glob

 def make_thumbnails(dirname, pat):

 filenames = glob.glob(os.path.join(dirname, pat))

 for filename in filenames:

 dirname, basename = os.path.split(filename)

 base, ext = os.path.splitext(basename)

 newfilename = os.path.join(dirname, ‘thumbnails’,

 base+’.png’)

 print(‘Making thumbnail %s -> %s’ % (filename, newfilename))

 out = subprocess.check_output([‘convert’, ‘-resize’,

 ‘100x100’, filename, newfilename])

 # Example

 make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

Here’s a more complicated example that recursively walks an
entire directory structure, making directories, and launching
subprocesses:

 import os

 import os.path

 import subprocess

 from fntmatch import fnmatch

 def make_thumbnails(topdir, pat):

 for path, dirs, files in os.walk(topdir):

 filenames = [filename for filename in files

 fnmatch(filename, pat)]

 if not filenames:

 continue

 newdirname = os.path.join(path, ‘thumbnails’)

 if not os.path.exists(newdirname):

 os.makedir(newdirname)

 for filename in filenames:

 base, _ = os.path.splitext(filename)

 newfilename = os.path.join(newdirname, base+’.png’)

 origfilename = os.path.join(path, filename)

 print(‘Making thumbnail %s -> %s’ % (origfilename,

 newfilename))

 out = subprocess.check_output([‘convert’, ‘-resize’,

 ‘100x100’, origfilename, newfilename])

 if __name__ == ‘__main__’:

 make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

Again, if you’ve written any kind of Python code that manipu-
lates files, you’re probably already pretty well familiar with this
sort of code (for better or worse).

Past Efforts to Improve Path Handling
Complaints about Python’s pathname handling in os.path are
varied but tend to focus on a couple of common themes. First,
there is the fact that the interface doesn’t really match other
parts of Python, which are usually more object-oriented. Second,
a lot of the useful functionality concerning files tends to be
spread out over many different standard library modules. As
such, file-name handling code becomes more messy than it prob-
ably needs to be.

Efforts to improve Python’s path handling apparently go back
nearly 15 years. To be honest, this is not an aspect of Python that
has garnered much of my own attention, but the rejected PEP
355 cites discussions about the matter going as far back as 2001
[2]. The third-party path module, created by Jason Orendorff,
may be the best-known attempt to clean up some of the mess
[3]. With path, you create path objects and manipulate them in a
more object-oriented manner:

 >>> from path import path

 >>> filename = path(‘/Users/beazley/Pictures/img123.
jpg’)

 >>> # Get the base directory name

 >>> filename.parent

 path(u’/Users/beazley/Pictures’)

 >>> # Get the base filename

 >>> filename.name
 path(u’img123.jpg’)

 >>> # Get the base filename without extension

 >>> filename.namebase

 u’img123’

 >>> # Get the file extension

 >>> filename.ext u’.jpg’

 >>>

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 49

COLUMNS
A Path Less Traveled

path objects can be joined together using the / operator in a way
that mimics its use on the file system itself. For example:

 >>> filename.parent / ‘thumbnails’ / (filename.
namebase + ‘.png’)
 path(u’/Users/beazley/Pictures/thumbnails/img123.png’)

 >>>

path objects include a large variety of other methods related to
manipulating files, including globbing, reading, writing, and
more. For example:

 >>> # Read the file as bytes

 >>> data = filename.bytes()
 >>>

 >>> # Remove the file

 >>> filename.remove()
 path(u’/Users/beazley/Pictures/img123.jpg’)

 >>>

 >>> # Check for existence

 >>> filename.exists()
 False

 >>>

 >>> # Walk a directory tree and produce .JPG files

 >>> for p in path(‘/Users/beazley/Pictures’).walk(‘*.
JPG’):
 ... print(p)
 ...
 /Users/beazley/Pictures/Foo/IMG_0001.JPG

 /Users/beazley/Pictures/Foo/IMG_0002.JPG

 /Users/beazley/Pictures/Foo/IMG_0003.JPG

 ...

 /Users/beazley/Pictures/Bar/IMG_1024.JPG

 /Users/beazley/Pictures/Bar/IMG_1025.JPG

Here is a revised version of the image thumbnail code that uses
path.

 from path import path

 import subprocess

 def make_thumbnails(topdir, pat):

 topdir = path(topdir)

 for filename in topdir.walk(pattern=pat):

 newdirname = filename.parent / ‘thumbnails’

 if not newdirname.exists():

 newdirname.mkdir()

 newfilename = newdirname / (filename.namebase + ‘.png’)

 print(‘Making thumbnail %s -> %s’ % (filename,

 newfilename))

 out = subprocess.check_output([‘convert’, ‘-resize’,

 ‘100x100’, filename, newfilename])

 if __name__ == ‘__main__’:

 make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

For various reasons, the path module was never incorporated
into the standard library. The main reason may have been the
kitchen-sink aspect of the whole implementation. Under the
covers, the path object inherits directly from the built-in string
type and adds more than 120 additional methods. As a result,
it’s a kind of “god object” that combines all of the functional-
ity of strings, pathnames, files, and directories all in one place.
To emphasize this point, there is the potential for confusion
between string and path methods. For example:

 >>> # A string method

 >>> filename.split(‘/’)
 [u’’, u’Users’, u’beazley’, u’Pictures’, u’img123.jpg’]

 >>> # A path method

 >>> filename.splitpath()
 (path(u’/Users/beazley/Pictures’), u’img123.jpg’)

 >>>

There are even methods for features you might not expect such
as cryptographic hashing:

 >>> filename.read_md5()
 ‘\x98\x05\xdd\x97\xe0\xd3\x1f\xedH*xb\x179\xbf\x18’

 >>>

It’s a legitimate concern to wonder whether it’s appropriate for a
single object to contain every possible operation that one might
think to do with a file—probably not.

Introducing pathlib
Starting in Python 3.4, a new standard library module pathlib
was added to manipulate paths. It is the work of Antoine Pitrou
and is described in some detail in PEP 428 [4]. As with previous
efforts, it takes an object-oriented approach as before by defining
a Path class. However, this class no longer derives from built-in
strings. It’s also much more refined in that it only focuses on
functionality related to paths, and not everything that someone
might want to do with a file in general.

To illustrate, here are some earlier examples redone using pathlib:

 >>> from pathlib import Path
 >>> filename = Path(‘/Users/beazley/Pictures/img123.
jpg’)

 >>> # Get the base directory name

 >>> filename.parent
 PosixPath(‘/Users/beazley/Pictures’)

 >>> # Get the base filename

 >>> filename.name
 ‘img123.jpg’

50  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

COLUMNS
A Path Less Traveled

 >>> # Get the file extension

 >>> filename.suffix
 ‘.jpg’

 >>> # Get the file stem

 >>> filename.stem
 ‘img123’

 >>> # Get the parts of the filename

 >>> filename.parts
 (‘/’, ‘Users’, ‘beazley’, ‘Pictures’, ‘img123.jpg’)

 >>>

Path also allows the / operator to be used to easily form new
pathnames:

 >>> filename.parent / ‘thumbnails’ / (filename.stem +
‘.png’)
 PosixPath(‘/Users/beazley/Pictures/thumbnails/img123.png’)

 >>>

Common operations for replacing/changing parts of the file
name are also provided:

 >>> filename.with_suffix(‘.png’)
 PosixPath(‘/Users/beazley/Pictures/img123.png’)

 >>> filename.with_name(‘index.html’)
 PosixPath(‘/Users/beazley/Pictures/index.html’)

 >>>

You will notice that in these examples an object of type Posix-

Path is created. This is system dependent—on Windows an
object of type WindowsPath is created instead. Differences in the
path implementation are used to support features such as case-
sensitivity on the file system. For example, on Windows, you’ll
find that path comparison works as expected even if the file
names have varying case:

 >>> # Windows case-insensitive path comparison (only works on

Windows)

 >>> a = Path(‘pictures/img123.jpg’)
 >>> b = Path(‘PICTURES/IMG123.JPG’)
 >>> a == b

 True

 >>>

Last, but not least, pathlib provides a few basic functions for
querying, directory walking, and other similar operations. For
example, you can test whether a file matches a glob pattern as
follows:

 >>>> filename.match(‘*.jpg’)
 True

 >>>

Here is a recursive glob over a directory structure:

 >>> topdir = Path(‘/Users/beazley/Pictures’)
 >>> for filename in topdir.rglob(‘*.JPG’):
 ... print(filename)
 ...
 /Users/beazley/Pictures/Foo/IMG_0001.JPG

 /Users/beazley/Pictures/Foo/IMG_0002.JPG

 /Users/beazley/Pictures/Foo/IMG_0003.JPG

 ...

 /Users/beazley/Pictures/Bar/IMG_1024.JPG

 /Users/beazley/Pictures/Bar/IMG_1025.JPG

 ...

Putting this all together, here is an example of the thumbnail
script using pathlib.

 from pathlib import Path

 import os

 import subprocess

 def make_thumbnails(topdir, pat):

 topdir = Path(topdir)

 for filename in topdir.rglob(pat):

 newdirname = filename.parent / ‘thumbnails’

 if not newdirname.exists():

 print(‘Making directory %s’ % newdirname)

 newdirname.mkdir()

 newfilename = newdirname / (filename.stem + ‘.png’)

 out = subprocess.check_output([‘convert’, ‘-resize’,

 ‘100x100’, str(filename), str(newfilename)])

 if __name__ == ‘__main__’:

 make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

On the whole, I think you’ll find the script to be bit cleaner than
the original version using os.path. If you’ve used the third-party
path module, there are a few potential gotchas stemming from
the fact that Path objects in pathlib do not derive from strings. In
particular, if you ever need to pass paths to other functions such as
the subprocesss.check_output() function in the example, you’ll
need to explicitly convert the path to a string using str() first.

Final Words
I’ll admit that I’ve always been a bit bothered by the clunky
nature of the os.path functionality. Although this annoyance
has been minor (in the grand scheme of things, there always
seemed to be bigger problems to deal with), pathlib is a welcome
addition. Now that I know it’s there, I think I’ll start to use it. If
you’re using Python 3, it’s definitely worth a look. A backport to
earlier versions of Python can be found at https://pypi.python
.org/pypi/pathlib/.

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 51

COLUMNS
A Path Less Traveled

References
[1] pathlib documentation: https://docs.python.org/3/library/pathlib.html.

[2] PEP 355: http://legacy.python.org/dev/peps/pep-0355/.

[3] path.py package: https://pypi.python.org/pypi/path.py.

[4] PEP 428: http://legacy.python.org/dev/peps/pep-0428/.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you
 promote your organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we
offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our
multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation
in neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholar-
ships for students, equal representation of women and minorities in the computing research community,
and the development of open source technology.

Learn more at:
www.usenix.org/supporter

52  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

COLUMNS

iVoyeur
Lies, Damned Lies, and Averages

D A V E J O S E P H S E N

Dave Josephsen is
the sometime book-
authoring developer
evangelist at Librato.
com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

Y ou know that movie where the guy takes hostages and duct-tapes
them together and/or makes them wear gauche vests laden with
random assortments of electronic components, and then demands all

sorts of zany things like millions of dollars and a helicopter capable of flying
him to Tahiti?

Sometimes I fantasize about being that guy. Not because I want to scare or harm anyone, and
I certainly wouldn’t wish those terrible vests on my worst enemy, but it would be fun to make
zany commands over a bullhorn to a group of confused, yet eager to please, FBI agents.

Just think of the fun we could have. We could establish a holiday for things that are pickled.
We could demand that every law-enforcement-related uniform and vehicle in the nation,
regardless of jurisdiction, be painted pink (especially the drones, tanks, and mobile com-
mand-center RVs). We could bring back Firefly, banish Michael Bay AND George Lucas,
force Starbucks to admit that granulated sugar really is sweeter than raw sugar…we could
outlaw tactical vests.

You know, while we’re on the subject, there is something that’s been bothering me. Some-
thing for which I’d like to demand a fix. There’s some talk going around lately about how
we collect and persist metrics from systems and applications in the wild (a good thing) [1].
If I could strap ugly vests to people and demand something today, it might be a fix for one
of my own metrics pet peeves that, for whatever reason, doesn’t seem to have entered the
discussion.

Metrics data is deceptively large because it’s composed of such disarmingly innocuous little
date/value tuples. It just seems unlikely that such harmless little measurements could possi-
bly strain the storage device of even a respectable smartphone much less a grandiose server.

They add up, though. Every one of those little metrics, stored as a float, measured every
five seconds, and persisted for a year, takes up around 400 MB of space. Two metrics from
a single source, stored in their raw format, therefore, requires almost a gigabyte of storage.
This modest storage conundrum is the primary hurdle to overcome in time-series data sys-
tems. We simply don’t have the space to store thousands of measurements from hundreds of
systems in their raw form, for periods of a year or more.

Enter Consolidation Functions
Most contemporary databases that are designed to store time-series data begin with a
fundamental observation, namely, the older the data is, the less we care about it. If this is
true, it means we don’t actually need to store the raw measurements forever. Instead, we can
keep the raw measurements for a short time and consolidate the older data points to form a
smaller set of samples that adequately summarizes the data set as a whole.

This is usually accomplished automatically inside the datastore with a series of increasingly
drastic data consolidations. You can think of the datastore itself as a series of time buckets.
High-resolution, short-term buckets are very large. They can keep a bunch of data points in

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 53

COLUMNS
iVoyeur: Lies, Damned Lies, and Averages

them, but longer-term buckets are smaller. As the data comes
in, it’s passed from bucket to bucket on a set interval; first into
the now bucket, then into the five seconds ago bucket, and so on.
Eventually, when the data points reach the 24-hours ago bucket,
they’ll find that it’s too small to fit them all. So they need to elect
a representative to continue on for them, and so a means of car-
rying out this election must be chosen (this is not at all how they
actually work internally, but it’s a useful mental model).

As a user of these databases, you’ll commonly need to configure
a storage layout like the one laid out above, which, for example,
stores raw measurements for the first 24 hours, then keeps one
consolidated data point for each hour for the next two weeks, and
then keeps one data point for every five hours, for six months,
and etc. This summarization is a critically important piece of
every time-series database. In a practical sense, it’s what makes
storing time-series data possible.

The databases that do automatic data summarization also
expect you to control the method they use to consolidate the
individual data points into summarized data points. Usually
called the “summarization function” or “consolidation function,”
this is the means by which the database will decide who keeps
going when the buckets get too small. You commonly need to
configure this when you first create the datastore, and once set,
it cannot be changed. This is dangerous, because your choice of
consolidation function has a dramatic impact on the quality of
your stored measurements over time, and although computing
the arithmetic mean (AM) of all the data points in a period is a
terribly destructive way to accomplish this, it’s also by far the
most commonly used consolidation function.

Averages Produce Below-Average Results
Using AM in this context is bad for two reasons. First, averages
are horribly lossy. In the graph in Figure 1, for example, I’ve plot-
ted the same data twice. The spiky line is the raw plot, while the
smooth line is a five-minute average of the same data.

Second, averages are not distributive, which is to say, you start to
get mathematically incorrect answers when you take the average
of already averaged data. Both of these effects are detrimental in
the context of monitoring computery things, because they have
a tendency to smooth the data, when the peaks and valleys are
often what we’re really interested in.

Every time you create an RRD [2] with an RRA set to AVER-
AGE, or fail to modify the default storage-schemas.conf in Whis-
per [3], you’re employing AM to consolidate your data points over
time. These effects corrupt your data whenever you scale a graph
outside the raw window or call a function that includes already
averaged data.

Yes, even if your raw-window is 24 hours and your graph is
displaying 24.5 hours, the entire data set you’re looking at is
averaged. If your raw-window is 24 hours, and you’re calling a
function to compare last week’s data to this week’s data, your
entire data set has been averaged.

Worst of all, if your raw-window is 24 hours, and you’re doing
something like pulling a week’s worth of data and running a
function on it to depict it as thingies per hour instead of its native
resolution (like for the marketing team or whatever), then you’re
looking at the average of already averaged data (once averaged
for the rollup consolidation, and then again in the function to
re-summarize it at a different scale). What you’re seeing in this
case is almost certainly mathematically incorrect.

Figure 1: The effect of consolidating individual data points (the spiky line) using the arithmetic mean (the smooth line)

54  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

COLUMNS
iVoyeur: Lies, Damned Lies, and Averages

To be sure, sometimes using the arithmetic mean is the best all
around option, but if we all took a moment to fully understand
the storage layer, and think about what we’re measuring on a per-
metric basis before we committed to the consolidation function,
I think we’d pretty commonly choose one of the alternatives.

When I check the weather at wunderground.com, I don’t get the
average temperature for the day because that would be meaning-
less and silly. Instead, I get the max and min temperature for the
day, and usually, because I’m a Texan, the max is the only value I
care about.

Likewise, if I’m measuring 95th percentile inter-service latency,
I want the max, which is an alternative consolidation function
to average that drops all values in the period except the largest.
This way, I preserve an accurate representation of the maximum
95th percentile latency value for that hour, or day, or week. In
fact, in this example (like many others), the older the data gets,
the more irrelevant the average becomes (and the more relevant
the max).

Many of my day-to-day metrics are incrementor counters. That
is, they’re just +1s, adding up to some value that I don’t actu-
ally care about, because I’m turning around and computing the
derivative of that number to make it into a rate metric. So I don’t
even need to know the value of these metrics (because their
value is always “1”), I really only need to know how many of them
there are. For these, a consolidation function that just counts
the number of measurements in each interval equates to lossless
data compression.

Amazon.com shows me the average customer review score on
every item I look at, but they can also give me a histogram of
that data. Unfortunately, there is no sum-of-squares consolida-
tion function in RRDtool or Whisper, but if there were, I could
compute a statistical distribution from that value at display time.

Spread Data to the Rescue
So if it were me in the movie strapping vests to frightened extras,
here would be my unreasonable demand this week: Let’s store
spread data in lieu of date/value tuples.

Imagine for a moment that you were building a system that needed
to record and display at a one-second resolution of a metric that
was being measured 400 times per second. In this example,
there isn’t a huge difference between just keeping the first
metric that arrived in every one-second interval, or averaging
all 400 together. No single measurement within the one-second
is more important than any other. If the first measurement was
extremely aberrant, I would probably choose to keep it over the

average. The point is, even though we don’t know what we’re mea-
suring, and even though we have 400 samples to average, the aver-
age of them still isn’t as interesting as any single point in the set.

But it’s a shame to throw away all of that wonderful data, even if
you only strictly need 1/400th of it. I think most of us would like
to have some idea of how it’s distributed, some way of meaning-
fully combining those 400 measurements into something that is
more significant than any single measurement alone. I think this
is why it “feels” like taking the AM is the right thing to do. What
if, instead of just storing a date/value tuple for this set, we stored
something like this instead:

◆◆ date: What’s the timestamp on this set?

◆◆ count: How many data points make up this set?

◆◆ sum: What’s the sum of all data points in the set?

◆◆ min: What was the smallest value in the set?

◆◆ max: What was the largest value in the set?

◆◆ sos: What’s the sum of squares for the set?

If we stored a struct like this instead of date/value, we wouldn’t
need to make the user choose a consolidation function when they
created the datastore, because these data points self-summarize.
When you need to consolidate them over a period of time, you
compute the sum and sos, record the max, min, and count, and
slap a new timestamp on it.

Even better, when the user wants a graph of this data, then you
can ask them what they would like displayed. Do they want you
to display the average value for the set? No problem, divide the
sum by the count (this, by the way, ensures that you never aver-
age already averaged data). Do they want a min, max, sum, or
count? No problem, display those things.

Notice that this struct doesn’t even contain a variable to hold
the original value of the measurement. That’s because value is
superseded for single measurements by sum, min, and max; all
of those summarizations yield the correct value for an individual
measurement (value/1 == value for averages, etc.), so you don’t
need to detect that case, it’ll just work with the user-provided
consolidation function at display time.

The drawback, of course, is that this struct is roughly 3x the
size of a date/value tuple (assuming six floats instead of two),
but I think fat data points are worth the stretch for a number of
reasons. First, we could use fat data points as a better default
consolidation function than arithmetic average. If the end-user
wants to hard-code a consolidation function up front and gain a
3x reduction in storage requirements, that’s a win for everyone,
otherwise they get fat data points.

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 55

COLUMNS
iVoyeur: Lies, Damned Lies, and Averages

Second, some of the more modern data stores, like OpenTSDB,
are eschewing consolidation entirely by making metrics col-
lection a big data problem. I think fat data points fit very well
between classic time/value stores like RRDtool and something
like OpenTSDB that’s going to require Hadoop infrastructure.

Finally, the future of metrics persistence is in purpose-specific
data-handling layers built atop general-purpose databases like
Cassandra, LMDB, and LevelDB. Graphite is moving in this
direction with the Cyanite [4] project, and InfluxDB [5] was
designed that way from the get-go. This trend is largely driven
by the requirement to horizontally scale the persistence layer,
and with that in place, the price of using fat data points is vastly
reduced.

So let’s all adopt fat data points before something happens to the
imaginary hostages in my head. I think I speak for all of them
when I say it’s an easy fix that will simplify your time-series
persistence layer while helping you preserve the integrity of your
time series data.

Take it easy.

References
[1] Metrics 2.0: http://metrics20.org/.

[2] RRDtool: http://oss.oetiker.ch/rrdtool/.

[3] Graphite, Whisper: graphite.wikidot.com/whisper.

[4] Cyanite: https://github.com/pyr/cyanite.

[5] InfluxDB: http://influxdb.com/docs/v0.8/advanced
_topics/sharding_and_storage.html.

XKCD

xkcd.com

56  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

COLUMNS

More than the act of testing, the act of designing tests is one of the best bug
preventers known. The thinking that must be done to create a useful test can
discover and eliminate bugs before they are coded; indeed, test-design thinking
can discover and eliminate bugs at every stage in the creation of software, from
conception to specification, to design, coding and the rest.—Boris Beizer

Testing for the presence of a characteristic is commonplace in all sorts
of arenas including cybersecurity. In its simplest form, a test either
returns True or False for a state of nature that is likewise either True

or False. This leads to the classic 2x2 table:

Truth

Test + -

+ a b

- c d

Using medical terms for the moment,
true positives
 a = patients who do have disease and test positive
true negatives
 d = patients who are without disease and test negative
false positives
 b = patients who are without disease but test positive
false negatives
 c = patients who do have disease but test negative

Expanding the table with row and column totals,

Truth

Test + -

+ a b a+b

- c d c+d

a+c b+d t

we now have:
prevalence
 (a+c)/t = fraction of population that has disease

For Good Measure
Testing

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 57

COLUMNS
For Good Measure: Testing

sensitivity
 a/(a+c) = fraction of those with disease who test positive
specificity
  d/(b+d) = fraction of those without disease who test

negative
predictive value positive
  a/(a+b) = fraction of positive testers who actually have

disease
 predictive value negative
  a/(a+b) = fraction of negative testers who are without

disease

That collection of terms describe the nature of the test and
what it is good for. Those working in information retrieval will
know sensitivity as “recall” and predictive value positive as
“precision.”

If you have a highly sensitive test, then a negative test result is
likely to be a true negative, and you can “rule out” disease in the
patient. If you have a highly specific test, then a positive test
result is likely to be a true positive, and you can “rule in” disease
in the patient. Predictive value depends on the prevalence of
the condition, while sensitivity and specificity do not. In other
words, we can describe how good the test is without knowing
prevalence, but we cannot say what an individual test result
predicts without prevalence estimates. Specificity and sensitiv-
ity of a test are characteristics of the test independent of the
population on which that test is used, while the predictive values
positive and negative are dependent on those populations. Put
differently, a test of constant specificity and constant sensitiv-
ity will have a different predictive value when the true rates of
disease change (see below).

If a false negative is serious, such as when the treatment is pain-
less and cheap but the disease is serious, you might favor a test
with high sensitivity; re-imaging a virtual machine when there
is any doubt about its integrity, say. If a false positive is serious,
such as when the treatment is painful or costly while the disease
is mild, you might favor a test with high specificity; skipping
emergency patch rollout just to correct a spelling error, say.

A single test that is, at the same time, highly sensitive and highly
specific is harder to engineer than you might think. As a rule
of thumb, you cannot increase sensitivity and specificity at
the same time. A multi-stage test is one where different tests
are done sequentially. As such, the results of any one stage are
conditional on the results of the previous stage. This can have
significant economic impact.

For a reasonably rare disease, non-cases will strongly outnum-
ber cases; hence, a negative test result is more likely. Working
with that, you have a first stage (S1) that confirms negative
status—i.e., it is highly sensitive resulting in false positives but,
in turn, low false negatives. In other words, the first test releases

as many as possible (and no more) from further work-up. The
second stage (S2) wants no false negatives, so it is highly specific
and, if indeed most subjects were rejected in the first stage, that
second stage test can be quite expensive (and definitive). You can
call Stage 1 “screening” and Stage 2 “confirmation” if you like.
We have many parallels of this in cybersecurity:

◆◆ Router logs (S1) post-processed by log-analysis tools (S2)
◆◆ Anomaly detection (S1) reviewed by human eyes (S2)
◆◆ SIGINT traffic analysis (S1) to sieve which crypto is worth

breaking (S2)
◆◆ Anti-virus heuristic scans with low detection threshold (S1)

followed by direct malware process analysis (S2)

A worked example may make this clearer. Suppose you have
a million people, lines of code, or whatever to screen, and the
prevalence of what you are looking for is 1%—i.e., you want to
cost-effectively find the 10,000 buried in the 1,000,000. This is
what we know:

Truth

Test + -

+

-

10,000 990,000 10^6

We begin with a test that is sensitive but not especially specific—
i.e., which misses few true positives at the cost of a meaningful
number of false positives, and for which a negative result is not
enormously meaningful. Let’s say sensitivity is 99.99% and
specificity is 90%,

Truth

Test + -

+ 99.99% 10%
- .01% 90%

10,000 990,000 10^6

meaning we now have:

Truth

Test + -

+ 9,999 99,000 108,999

- 1 891,000 891,001

10,000 990,000 10^6

The predictive value negative is .999999 while the predictive
value positive is .09. In other words, with a sensitivity of 99.99%,
we get one false negative and we can forget about 89% of the pop-

58  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

COLUMNS
For Good Measure: Testing

ulation. Combined with the prevalence of 1%, a negative result
is .999999 likely to be correct. Now we take just the remaining
108,999 and use a second test that has, for convenience, the
reverse sensitivity and specificity, that is to say 90% sensitivity
and 99.99% specificity. S2 thus returns:

Truth

Test + -

+ 8,999 10 9,009

- 1,000 98,990 99,990

9,999 99,000 108,899

With a predictive value positive of .9989 and a predictive value
negative of .99, we can forget an additional 99,990 test subjects.
The big picture of S1 followed by S2 is therefore:

Truth

Test + -

+ 8,999 10 9,009

- 1,001 989,990 990,991

10,000 990,000 10^6

We now have a compound result in which the predictive value of
the compound test is high both for positives and for negatives—
which is arguably what we would want, although debate may
ensue on the downstream cost of a false negative versus a false
positive.

89.99% sensitivity with 10 false positives
99.999% specificity with 1,001 false negatives

To further illustrate the cost-effectiveness of combining tests,
let’s say the cost of S1 is 30¢ while the cost of S2 is two orders of
magnitude higher at $30.00. Everybody has to be tested in some
way, but the question is by which protocol. Here are our four
choices, with the results displayed graphically in Figure 1:

only S1 @ 30¢/test => $0.3M & 99,001 wrong
only S2 @ $30/test => $30M & 1,099 wrong
S1|S2 => $3.6M & 1,011 wrong
S2|S1 => $30M & 1,011 wrong

where “S1|S2” means S1 then S2 for only those which S1 did not
rule out (and similarly for “S2|S1”). The calculation works like
this for the S1-only line: Apply the 30¢ S1 test one million times
costing $0.3M. That test will tell you that there are 108,999
cases to treat, so the cost of finding one “case” is $2.75, but you
also get 99,000 false positives plus one false negative for a total
of 99,001 that are wrong. The calculation for the S2-only line is
parallel: Apply the $30 S2 test one million times costing $30M.
That test will tell you that there are 9,099 cases to treat, so the

cost of finding one case is $3,297.07, but you also get 99 false posi-
tives plus 1,000 false negatives for a total of 1,099 that are wrong.

Neither of the S1-only nor the S2-only testing protocols is attrac-
tive. If you do the S1 testing first and then the S2 testing on just
those who tested positive with S1, then you’ve spent 30¢ one
million times for the S1 stage plus $30 108,999 times for the S2
stage. The overall cost of finding one case, therefore, is $396.27

0.4

3.5

2.6

3.5

5.0

3.0 3.0 3.0

0

1

2

3

4

5

S1 alone S2 alone S1|S2 S2|S1

log(cost/case found)

log(errors)

Figure 1: Cost and error rates for the four options, where the prevalence
rate is 1%

0

1.7
1.5

1.7

4.5

4.8 4.8 4.8

0

1

2

3

4

5

S1 alone S2 alone S1|S2 S2|S1

log(cost/case found)

log(errors)

Figure 2: Same as Figure 1, but where the prevalence is 70%

0.5

4.7

3.9

4.8
5.0

2.2

1.8 1.8

0

1

2

3

4

5

S1 alone S2 alone S1|S2 S2|S1

log(cost/case found)

log(errors)

Figure 3: Same as Figure 1, but where the prevalence is 0.05%

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 59

COLUMNS
For Good Measure: Testing

and you get 10 false positives plus 1,001 false negatives, for a
total of 1,011 that are wrong. This is an improvement in cost-
effectiveness, and that improvement is dependent on the order of
testing: If you do the S2 testing first then the S1 testing on just
those who tested positive with S2, then you’ve spent $30 one mil-
lion times for the S2 stage plus 30¢ 9,009 times for the S2 stage.
This means that the cost of finding one case is $3,331.01 and you
still get those 10 false positives plus 1,001 false negatives, for a
total of 1,011 that are wrong—i.e., the same total error rate but a
lot poorer cost-effectiveness than the S1-then-S2 version.

Suppose the prevalence is not 1% but rather 70%. Then Figure 2
is what we have, and the decision on testing strategy is harder.
On the other hand, if the prevalence is neither 1% nor 70% but
rather 0.05%, then Figure 3 captures the situation. Comparing
1% prevalence to 70% prevalence to 0.05% prevalence high-
lights the choices to be made, and how they are dependent on the

prevalence of the disease. Or, as we said above, a test of constant
specificity and constant sensitivity will have a different predic-
tive value when the true rates of disease change.

In summary, testing, including multi-stage testing, already has
obvious roles in cybersecurity,

◆◆ AVS signature finding

◆◆ IDS anomaly identification

◆◆ Automated code analyses

◆◆ Firewall packet inspection

◆◆ Patch management performance

and we perhaps should know more about the terms and tech-
niques used elsewhere rather than inventing new ones.

USENIX Member Benefits

Members of the USENIX Association receive the follow-
ing benefits:

Free subscription to ;login:, the Association’s bi-monthly
print magazine. Issues feature technical articles, system
administration articles, tips and techniques, practical
columns on such topics as security, Perl, networks, and
 operating systems, book reviews, and reports of sessions
at USENIX conferences.

Access to new and archival issues of ;login:
www.usenix.org/publications/login.

Discounts on registration fees for all USENIX
conferences.

Special discounts on a variety of products, books,
software, and periodicals: www.usenix.org/
member-services/ discounts

The right to vote on matters affecting the Association,
its bylaws, and election of its directors and officers.

For more information regarding membership or benefits,
please see www.usenix.org/membership/ or contact
office@usenix.org. Phone: 510-528-8649

P R E S I D E N T
Brian Noble, University of
Michigan
noble@usenix.org

V I C E P R E S I D E N T
John Arrasjid, VMware
johna@usenix.org

S E C R E T A R Y
Carolyn Rowland, National
 Institute of Standards and
 Technology (NIST)
carolyn@usenix.org

T R E A S U R E R
Kurt Opsahl, Electronic
Frontier Foundation
kurt@usenix.org

D I R E C T O R S
David Blank-Edelman,
Northeastern University
dnb@usenix.org

Cat Allman, Google
cat@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

Hakim Weatherspoon,
Cornell University
hakim@usenix.org

E X E C U T I V E D I R E C T O R
Casey Henderson
casey@usenix.org

USENIX Board of Directors

60  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

COLUMNS

/dev/random
The Internet of Things

R O B E R T F E R R E L L

A s you read this, I will be a retired US federal government special
agent, a job that I have for the most part studiously avoided mention-
ing over the past eight and a half years in these pages as a condition

of being permitted herein to abide. I worked for the Department of Defense,
which should really be called the Department of Unbridled Spending Except
When it Comes to Employee Welfare, but that’s a story over scotch and soda,
or rather several scotch and sodas leading to straight scotch.

From this point on, I will consider myself solely a professional writer, at which pronounce-
ment the less charitable among you will think, and perhaps even convey to the nearest editor,
“When are you going to learn to write, then?” To this snide jab I have no answer, because I
never read the “Letters to the Editor” for that very reason. Not that ;login:, mercifully, fea-
tures such an abomination formally. I know the editor pretty well, and he generally spares
me the details of said missives, merely mentioning in passing that not everyone is a fan of
/dev/random. To those malcontents I can only reply, in the concise and direct manner of my
Gaelic ancestors, póg mo thóin. I expect, incidentally, that you will see a blank space or some
innocuous phrase after the word “ancestors” in the preceding sentence, as the aforemen-
tioned editor will be horrified when he looks up what the phrase I wrote in Gaeilge means.

Today is a good day to di…I mean address the next spasm in the prolonged tetanic demise of
the once noble TCP/IP, the Internet of Things™. Don’t correct me if I’m wrong, but haven’t
we been fighting the SCADA security wars for a number of years now? Have we learned abso-
lutely nothing from the threat of having our dams, factories, and traffic lights manipulated
at will by a 14-year-old in a Minsk basement? Shall we now allow said juvenile delinquent
access to our refrigerators, home security systems, and aquarium heaters? Have I used up my
question mark quota for October yet?

Looking at the network source code for many of the devices on the IoT, it’s as though we’ve
regressed to 1990 and the ubiquity of Telnet. Plaintext authentication credentials (when
there are any at all), no respect for egress filters, and rampant strcpy()-esque code flaws drag
the IoT down security-wise to the point that it is more accurate to refer to it as the Internet of
Targets. I’ve struggled through some dense and esoteric debates on the fridge-as-spam-relay
topic, with respected infosec pundits asserting that this particular manifestation of embed-
ded processor insecurity is not significant in the larger picture. Perhaps they’re right, but if
my household appliances are going to forward 419 scams and the expressions of interest by
foreign women in a fictitious profile I never posted, I should at the very least be given options
in that process.

For example, I would want some form of load balancing in place. If my refrigerator’s proces-
sor is devoted to dispensing advertisements for erectile dysfunction treatments, it won’t be
very efficient at dispensing ice from the ice-maker or keeping my frozen yogurt from melting
and leaking from the carton to coat the contents of my freezer in an uneven layer of crème
fraîche. That computing task needs to be shared with, say, the smoke detector, while the
thermostat and light dimmer can alternate pumping out pleas from friends and relatives who

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist for the
2011 Robert Benchley Society

Humor Writing Award. rgferrell@gmail.com

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 61

COLUMNS
/dev/random: The Internet of Things

had all their belongings stolen while on a sudden trip overseas
and need some money wired to them.

Priorities need to be taken into consideration, as well. If the day’s
tasks consist of sending out notifications of huge lottery wins
by random email addresses, scatter-gunning phishing attempts
containing malicious links to everyone in some harvested
database, and stock tips for non-existent securities, my appli-
ances need to know in what order these tasks are to be carried
out. There should be a master scheduler—perhaps the microwave
or immersion blender—ensuring that the day’s work is accom-
plished on time and in the most efficient manner. There’s little
worse than finding out your leased botnet took longer than it
should have to distribute those 100,000 cheap wristwatch and
generic drug spams because it had to cook dinner, turn on the
sprinklers, or wash a load of grody old dishes.

I can see malware coming that, when installed on your domestic
IoT, considers the functions for which the system was designed
to be nuisance processes and kills them whenever they try to
start. You might notice that you’ve lost control of your home
appliances...or you might not. The second alternative is more
intriguing, in the bleak dystopian world view that seems to be
popular in the entertainment media these days. Any universe
where Archie is murdered trying to stop the assassination of a gay
senator is not a world I would choose to inhabit. Reggie, maybe.

Imagine, if you will, the White House of the relatively near
future: filled with IoT gadgets to make the lives of the President,
the First Family, and the White House staff more productive,
efficient, and less cluttered. The Secret Service and Executive
Office of the President have a squad of certificate-laden cyber-
stars in charge of firewalling the bejeezus out of the internal net-
work to keep those pesky hackers from taking control over the
Royal Household. Sadly, like most canned “experts” born of boot
camps rather than boots on the ground, they are ill-equipped for
the task and miss some rather important entry points. One fine
morning, the staff come to work to discover that not a single IoT
device on the premises is functioning as expected.

At first, it’s just annoying: Devices turn on or off when they
aren’t supposed to, settings change themselves, and so on. At
some point, however, it escalates into something more sinister
and intrusive, until at last the very lives of the people involved
are at stake. The situation nosedives, spinning out of control
until the President, who is currently airborne aboard Air Force
One, can’t even trust his own plane or pilots. Nothing is as it
seems. World stability hangs in the balance, and you have to take
the book into the bathroom with you because it’s just that hard to
put down.

Look for my future novel Cybergeist if you want to find out what
happens. Man, I love being a writer.

The 13th USENIX Conference on File and Storage Technologies (FAST ‘15) brings together storage-system
researchers and practitioners to explore new directions in the design, implementation, evaluation, and
deployment of storage systems.

JUST ANNOUNCED! The FAST ’15 Keynote Presentation will be given by Dr. Marshall Kirk McKusick.

www.usenix.org/fast15

SAVE THE DATE!

February 16–19, 2015 • Santa Clara, CA

15
13th USENIX Conference on
File and Storage Technologies
Sponsored by USENIX in cooperation with ACM SIGOPS

62  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

BOOKSBook Reviews
R I K F A R R O W A N D M A R K L A M O U R I N E

The Design and Implementation of the FreeBSD
Operating System (2nd Edition)
Marshall Kirk McKusick, George V. Neville-Neil, and
Robert N. M. Watson
Addison-Wesley Professional, 2014; 928 pages
ISBN 978-0-321-96897-5
Reviewed by Rik Farrow

This book comes out of a lineage of books about the BSD operat-
ing system, starting with The Design and Implementation of
4.3BSD UNIX in 1989. While its focus on FreeBSD sets this book
apart from other operating systems books, where the focus is
Linux, that’s not all that sets it apart.

Kirk McKusick has been involved in key design decisions that
still have bearing on UNIX-related systems since he was a
graduate student sharing an office with Bill Joy. And this book
reflects not only McKusick’s influence on the designs of file
systems and virtual-memory systems, but also that of its two
other authors.

Whereas a book like Robert Love’s Linux Kernel Development
dives into getting, building, and examining kernel code, Design
and Implementation stays at a higher level. Algorithms and data
structures are explained, but so are the design decisions behind
why a particular algorithm or design was chosen.

Soft updates provide a particularly contentious example. Early
Linux file systems could create and delete files much faster
than the 4.3 BSD fast file system (FFS), because the authors of
ext2 had decided to do away with ordered, synchronous writes
of file-system metadata. The FreeBSD developers’ response, led
by McKusick, was to create a process called soft updates, which
allows metadata updates to occur asynchronously, but still in an
ordered manner. In the Linux world, soft updates are spurned
as too complicated. In this book, they are explained in clear and
concise text, both why they are considered necessary and how
they need to work. Approaches that log metadata updates are
considered in the following section (the approach used in ext3).

Like operating systems books in general, the book begins with a
history of UNIX (but written by one of its participants), followed
by an overview of the kernel. Process management follows, then
a completely rewritten chapter on security. If you are seriously
interested in operating system security features, this chapter
provides an excellent overview of the many mechanisms that
have appeared, and been implemented, over the past 25 years.
While the Linux security module and the related SELinux and
type enforcement get only brief mention, there are thorough

discussions of access control lists, mandatory access control,
the new NFSv4 ACLs, security event auditing, cryptographic
services, random number generator, jails, and the Capsicum
capabilities model—a recent addition to FreeBSD.

The next chapter, on memory management, is just as long as the
security chapter, and just as detailed. The next part of the book
covers the I/O system, starting with overview, then devices in
general, moving to FFS, then a new chapter on the Zettabyte
File System. Again, this chapter would be useful to anyone who
wants a deep understanding of ZFS, whether you are using Free-
BSD, Linux, or Solaris descendants like illumos. The I/O section
ends with a chapter on NFS, including NFSv4.

Part four covers Interprocess Communication, which begins
with IPC and continues with chapters on network layer proto-
cols, like IPv4 and IPv6, and transport layer protocols. The book
concludes with a chapter on system startup and shutdown and a
glossary.

Each chapter ends with exercises and one or more pages of
references. The exercises cover ideas from each chapter and help
the dedicated reader to think about potential solutions that go
beyond what’s covered in each chapter.

I did what I usually do with large technical books: I jumped
around, after reading all of the introductory material, focusing
on the parts I found most interesting. The writing makes this
easy to do, in that I rarely found myself referred to another sec-
tion in the book. This is not unlike the design of FreeBSD itself,
which tends to be more modular than Linux.

In a world, especially an OS research world, dominated by Linux,
you might really wonder why you would take the time to read
a book on FreeBSD. The real reason is that there is a wealth of
experience, a record of different approaches taken, written by
three FreeBSD committers, all with stellar records. It would
be a shame to miss out on all of this knowledge because of
parochialism.

Think Bayes
Allen B. Downey
O’Reilly Media, Inc., 2013; 190 pages
ISBN 978-1-449-37078-7
Reviewed by Mark Lamourine

If you’ve read my previous reviews of Allen Downey’s books, you’ll
know I’m a fan. His first three books covered Python program-
ming, statistics, and complexity. His most recent is a practical
exploration of Bayesian statistics, and I like this one as well.

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 63

BOOKS

Downey’s purpose in all of his books is to set the reader on an
exploration of the topic rather than to sit her down in a lecture
hall. In each chapter or section, he introduces a real-world prob-
lem and then shows the reader the toolbox that will be needed
to solve it. This usually includes external references to more in-
depth treatments and often to primary source online data sets.
His tone and style are very easy going, but this sometimes belies
the difficulty and significance of the subject matter.

In Think Bayes, as in his other books, Downey aims to achieve
something that might seem oxymoronic: applied theory. Bayes’
theorem is derived in the first three pages of the first chapter.
Everything else in the book is aimed at helping the reader learn
what it means. You won’t even see a lot of the hairiest statistical
code. Downey provides a set of libraries that implement the tool
set of statistical analysis: distributions and their characteristics.
The code in the book illustrates how to use those libraries to
model and then solve the problem at hand.

Downey displays a sense of lightness and humor in his selec-
tion of many of the problems and his approach to the solutions
(though the Kidney Tumor problem was rather more somber).
The problems include calculating the best solution to the Monty
Hall problem, finding where a hidden paint-ball opponent is
located using scatter of the paint ball hits on the walls of an
arena, and estimating the number of bacterial species that
inhabit the human belly button, the last from a real survey
of human microfauna. If nothing else, the set of questions he
addresses will provide hours of fun for curious geeks like me.

The real lesson in Think Bayes is how to recognize problems that
are suited to Bayesian analysis and then how to model them.
Building the model in code leads to a computable solution. This
makes it relatively easy to understand the characteristics of the
problem by tweaking the model or the inputs and observing how
that affects the output. Downey uses the notation of continuous
math when it is useful to describe a problem, but he concentrates
on discrete solutions that are susceptible to computational solu-
tion. In the end, the reader (and experimenter) will come away
with a deep practical understanding of this increasingly com-
mon set of analytical tools.

Becoming Functional
Joshua Backfield
O’Reilly Media, Inc., 2014; 135 pages
ISBN-13 978-144936817-3
Reviewed by Mark Lamourine

The proponents of functional programming have been gaining
strength in recent years. Pure functional languages like Haskell
are being used in production environments. Erlang, while not
100% functional, has strong functional traits and is heavily used
in the telco industry. Functional features are being added to

existing imperative languages such as Java, and these are giving
the champions of functionality more room to play. Even Scheme
and Lisp, the most venerable of functional languages, have had
an academic niche for decades but are finding wider use.

Backfield isn’t trying to claim you should use a pure functional
language like Scheme or Haskell, or even adopt strict functional
style in all cases. Rather, his goal is to demonstrate the tenets
of functional programming using a mixture of imperative
languages with some functional features (Java 7) as well as a
couple of more functional languages (Groovy and Scala). Java 8
is getting full functional features like lambdas and closures, but
Backfield avoids giving more than one or two examples in Java 8
because the Java 7 user base is well established and will have a
long life even after 8 is released. His method is to introduce each
concept in the context of refactoring some existing imperative
code. This is in fairly stark contrast to some other books that
teach functional programming using only formal lambda calcu-
lus and a pure functional language.

In the first chapter Backfield introduces the major techniques
of functional programming. In each of the following chapters he
details these techniques and contrasts them to the equivalent
imperative code to do the same job. He also presents a chapter
called “Functional OOP,” showing how objects can still be used
to contain related data while using class methods to provide
namespacing for the related functions. In the final chapter,
he offers an outline of a refactoring plan, first recognizing the
imperative patterns and then applying the appropriate func-
tional transformation.

The book is pretty slim for the depth of the content. Backfield
doesn’t spend any time on language syntax or constructs except
as he applies them to the example at hand. This book probably is
not a good choice for a beginning coder. Someone with multiple-
language experience shouldn’t have any problem though. I’m
familiar with Java but not with either Groovy or Scala. The
syntax is clear enough that this did not get in the way of under-
standing the point of each example.

I must say I’m not yet sold on the idea that functional program-
ming is universally superior to traditional imperative style.
Clearly, each has value. People don’t naturally think in a func-
tional style. It takes significant training and practice to do
it well. Functional programming techniques like statement
chaining quickly become clever obscurities unless they are well
commented.

That said, Becoming Functional provides a good introduction to
functional programming technique without going too deeply into
theory. It’s a book that I will probably keep nearby to help me rec-
ognize and exploit opportunities to use functional programming
constructs where they seem to be the best solution to a problem.

64  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

BOOKS

A Go Developer’s Notebook
Eleanor McHugh
Lean Publishing, 2014; 84 pages (and counting)
https://leanpub.com/GoNotebook
Reviewed by Mark Lamourine

Some interesting things are happening in the publishing world.
Publishers large and small are experimenting with alternate
ways of writing and distributing books. One recent trend is the
release of “rough cuts” or “beta versions” of technical manuals.
The maturation of the ebook and e-readers has made this pos-
sible and even easy. Some publishers have found that offering
early access to new texts and inviting comment both drums up
interest and improves the final result. There is even a new breed
of publishers that uses this public development model as their
core business. Lean Publishing is one of these, and Lean is where
Eleanor McHugh is writing A Go Developer’s Notebook.

I first encountered A Go Developer’s Notebook in an announce-
ment in the Go+ community on Google Plus. The book has its
own community now as well, where readers make comments and
Eleanor posts updates and progress reports.

McHugh starts off typically with the Go version of “Hello
World,” but she dwells on it as something more than a cliché.
Through the first chapter, she enhances the simple CLI pro-
gram until it’s a small Web server that can respond with a
customized hello based on the queries it receives. It can serve
both HTTP and HTTPS running in concurrent routines, and
it includes a signal handler to shut down the services cleanly
when the process is interrupted. This is rather a lot to pack into
an introductory chapter. The second chapter, entitled “Echo,” is
just as packed, covering CLI and environment input and string
management.

The writing style and progression of examples are engaging and
interesting. They don’t always follow a traditional sequence, but
they are coherent and introduce useful concepts. They also serve
as an introductory survey of commonly useful standard pack-
ages and modules.

Part way through Chapter 2 is where the nature of the writ-
ing and publishing process becomes evident. This really is
McHugh’s notebook. She’s clearly got an outline, but the chapter
kind of peters out. The next chapter on Types picks up strong
again. You’re seeing the mind of the writer at work. Several of the
chapters just have heading skeletons while others have sparse
content.

There are only two more chapters that have significant content.
The first provides examples of looping constructs in Go. The
other is entitled “Software Machines” and seems to be about
techniques of using goroutines to create simple machines like

stacks, queues, and processor simulations. Neither one contains
any of the normal explanatory texts yet. The code provides
examples of more complex behaviors and usage. It takes some
work to understand what it is meant to do, but they are definitely
interesting to read.

A Go Developer’s Notebook wouldn’t be a bad introduction to Go
syntax for an experienced coder. It’s not nearly a complete text
but what is there promises to become something good.

In a previous decade, this review would have been an indictment,
not a recommendation, but then you would have only gotten
one copy in paper with no possibility of getting updates or giv-
ing feedback. The author would have had to do a lot of up-front
writing or pitch an idea to a publisher before getting any sense of
whether readers would be interested.

With a service like Leanpub, the authors can put incomplete but
promising ideas and the text in front of readers directly. They
can “test” text and get responses from readers. They can do
incremental updates to approach a working document.

This is the way software development works. Writing for
humans too, but until recently it was always hidden behind
editors and publishers. In traditional publishing, it would be
unacceptable to let the reader pay for something that was flawed
and incomplete.

The way Leanpub works, the author registers and creates the
template for her book, sets the title, and uploads the content
in whatever state it is in. She sets pricing and can also offer a
preview chapter. When someone purchases a book, he gets a copy
in the current state. He also gets email notifications of updates
as they come. The author gets 90% of the payment and retains all
of her rights. She is free to take the text to a traditional publisher
at any time.

The pricing model is also flexible. The author sets a minimum
price but can also suggest a retail price. McHugh has posted
a minimum price of $6 US and a retail request of $22 US. The
buyer decides how much the book (and updates) are worth. The
author is paid a “royalty” of 90% after a base transaction fee of
$0.50 US on the actual amount paid. That is, on each transac-
tion, Leanpub keeps $0.50 US plus 10% of the remainder. This
ensures that Leanpub gets something substantial from each
transaction and encourages the authors to set a reasonable mini-
mum price, low enough to feel reasonable to the buyer, but high
enough to see some return for each sale.

Leanpub and other ebook self-publishing sites offer a good place
for budding authors to float ideas and practice their writing.
They also look like a good place to fish for new and different
takes on all kinds of subjects, as long as you’re aware of what
you’re looking at: the seeds, not the trees.

Buy the Box Set!
Whether you had to miss a conference or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the technical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 USENIX Security ’14: 23rd USENIX Security Symposium
 3GSE ’14: 2014 USENIX Summit on Gaming, Games, and Gamification in Security Education
 FOCI ’14: 4th USENIX Workshop on Free and Open Communications on the Internet
 HealthTech ’14: 2014 USENIX Summit on Health Information Technologies
 WOOT ’14: 8th USENIX Workshop on Offensive Technologies
 URES ’14: 2014 USENIX Release Engineering Summit
 USENIX ATC ’14: 2014 USENIX Annual Technical Conference
 UCMS ’14: 2014 USENIX Configuration Management Summit
 HotStorage ’14: 6th USENIX Workshop on Hot Topics in Storage and File Systems
 HotCloud ’14: 6th USENIX Workshop on Hot Topics in Cloud Computing
 NSDI ’14: 11th USENIX Symposium on Networked Systems Design and Implementation
 FAST ’14: 12th USENIX Conference on File and Storage Technologies
 LISA ’13: 27th Large Installation System Administration Conference
 USENIX Security ’13: 22nd USENIX Security Symposium
 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies
 WOOT ’13: 7th USENIX Workshop on Offensive Technologies
 UCMS ’13: 2013 USENIX Configuration Management Summit
 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems
 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing
 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit
 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation
 FAST ’13: 11th USENIX Conference on File and Storage Technologies
 LISA ’12: 26th Large Installation System Administration Conference

Learn more at: www.usenix.org/boxsets

66  O C TO B ER 20 14 VO L . 3 9, N O. 5 www.usenix.org

USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2013
The following information is provided as the annual report of the USENIX Association’s finances. The accompanying statements have
been reviewed by Michelle Suski, CPA, in accordance with Statements on Standards for Accounting and Review Services issued by the
 American Institute of Certified Public Accountants. The 2013 financial statements were also audited by McSweeney & Associates, CPAs.

Accompanying the statements are charts that illustrate the breakdown of the following: operating expenses, program expenses, and general
and administrative expenses. The operating expenses for the Association consist of the following: program expenses, management and gen-
eral expenses, and fundraising expenses, as illustrated in Chart 1. The operating expenses include the general and administrative expenses
allocated across the Association’s activities. Chart 2 shows the breakdown of USENIX’s general and administrative expenses. The program
expenses, which are a subset of the operating expenses, consist of conferences and workshops, programs (including ;login: magazine) and
membership, student programs and good works projects, and the LISA Special Interest Group; their individual portions are illustrated in
Chart 3.

The Association’s complete financial statements for the fiscal year ended December 31, 2013, are available on request.

Casey Henderson, Executive Director

www.usenix.org O C TO B ER 20 14 VO L . 3 9, N O. 5 67

68  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTSConference Reports

USENIX ATC ’14: 2014 USENIX Annual
Technical Conference
June 19–20, 2014, Philadelphia, PA
Summarized by Daniel J. Dean, Rik Farrow, Cheng Li, Jianchen Shan,
Dimitris Skourtis, Lalith Suresh, and Jons-Tobias Wamhoff

Opening Announcements
Summarized by Rik Farrow (rik@usenix.org)

Garth Gibson (CMU) opened the conference by telling us that
245 papers were submitted, a record number. Of these, 49 were
short papers. Thirty-six papers got accepted right from the start
of reviews, and 11 papers were sent back to authors for revisions,
resulting in eight more accepted papers for an 18% acceptance
rate. Overall, there were 834 reviews by the 32-person PC, along
with 16 additional reviewers. To fit 44 papers into two days,
there were no keynotes or talks, just 20-minute paper presenta-
tions each crammed into two-hour sessions.

Nickolai Zeldovich (MIT), the co-chair, took over the podium
and announced two best paper awards. The first was “In Search
of an Understandable Consensus Algorithm,” by Diego Ongaro
and John Ousterhout, Stanford University. The other best paper
award went to “HACK: Hierarchical ACKs for Efficient Wireless
Medium Utilization,” by Lynne Salameh, Astrit Zhushi, Mark
Handley, Kyle Jamieson, and Brad Karp, University College
London.

Brian Noble, the president of the USENIX Board, presented two
of the three annual awards. Tom Anderson, Mic Bowman, David
Culler, Larry Peterson, and Timothy Roscoe received the Soft-
ware Tools User Group (STUG) award for PlanetLab. Quoting
Brian as he made the presentation to Tom Anderson, “PlanetLab
enables multiple distributed services to run over a shared, wide-
area infrastructure. The PlanetLab software system introduced
distributed virtualization (aka ‘slicing’), unbundled manage-
ment (where management services run within their own slices),

and chain of responsibility (mediating between slice users and
infrastructure owners). The PlanetLab experimental platform
consists of 1186 machines at 582 sites that run this software to
enable researchers to evaluate ideas in a realistic environ-
ment and offer long-running services (e.g., content distribution
networks) for real users.”

Almost as soon as he had sat down, Tom Anderson was on
his way back to the podium to receive the USENIX Lifetime
Achievement award, also known as the Flame Award. Again,
quoting Brian as he read the text accompanying the award,
“Tom receives the USENIX Flame Award for his work on men-
toring students and colleagues, constructing educational tools,
building research infrastructure, creating new research com-
munities, and communicating his substantial understanding
through a comprehensive textbook.”

This year’s ATC featured a second track, the Best of the Rest,
where the authors of award-winning systems papers were invited
to present their papers a second time. Eight out of the 11 people
invited came to the conference, providing an alternate track.

Big Data
Summarized by Cheng Li (chengli@mpi-sws.org)

ShuffleWatcher: Shuffle-aware Scheduling in Multi-
tenant MapReduce Clusters
Faraz Ahmad, Teradata Aster and Purdue University; Srimat T. Chakradhar,
NEC Laboratories America; Anand Raghunathan and T. N. Vijaykumar,
Purdue University

Faraz Ahmad presented his work on improving the performance
of the resource utilization in multi-tenant MapReduce clusters.
In these clusters, many users simultaneously submit MapReduce
jobs, and these jobs are often running in parallel. The most time-
consuming phase is to shuffle data from the finished map tasks
to the scheduled reduce tasks. For example, 60% of jobs at Yahoo!
and 20% of jobs at Facebook are shuffle-heavy. These jobs have
negative impacts on the other jobs since they often run longer
and incur high network traffic volume. Many related works
tried to ensure fairness among jobs and often focused on how to
improve throughput. In this work, the authors wanted to improve
latency and throughput without loss of fairness.

Their main solution is to shape and reduce the shuffle traffic.
To do so, they designed a tool called ShuffleWatcher, which con-
sists of three different policies. The first policy is network-aware
shuffle scheduling (NASS). NASS specifies that shuffle may
be delayed if the communication and computation from differ-
ent concurrent jobs are overlapping. Second, the Shuffle-Aware
Reduce Placement (SARP) policy assigns reduce tasks to racks
containing more intermediate data to make cross-rack shuffle
traffic lower. Third, Shuff le-Aware Map Placement (SAMP)
leverages the input data redundancy to locate map tasks to fewer
racks to reduce remote map traffic.

In this issue:
68 USENIX ATC ’14: 2014 USENIX Annual Technical

 Conference
 Summarized by Daniel J. Dean, Rik Farrow, Cheng Li, Jianchen Shan,

Dimitris Skourtis, Lalith Suresh, and Jons-Tobias Wamhoff

82 HotCloud ’14: 6th USENIX Workshop on Hot Topics in
Cloud Computing

 Summarized by Li Chen, Mohammed Hassan, Robert Jellinek, Cheng Li,
and Hiep Nguyen

91 HotStorage ’14: 6th USENIX Workshop on Hot Topics in
Storage and File Systems

 Summarized by Rik Farrow, Min Fu, Cheng Li, Zhichao Li, and
Prakash Narayanamoorthy

The reports from ICAC ’14: 11th International Conference on Autonomic
Computing and WiAC ’14: 2014 USENIX Women in Advanced Computing
Summit are available online: www.usenix.org/publications/login.

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 69

REPORTS

To demonstrate the effectiveness of the joint work of these three
policies, they evaluated the MapReduce jobs running with their
tool and compared them to a baseline policy, the fair scheduler.
They deployed all their experiments in Amazon EC2 with 100
nodes, each of which had four virtual cores. The results show
improved latency and throughput and reduced cross-rack traffic.

Peng Wu (Huawei) wanted to know more about related and
similar work in Google or Facebook. Faraz answered that some
previous work also targets improvement in throughput and fair-
ness, but they didn’t optimize the map or reduce phases. He also
said that he didn’t know any public results from either Google
or Facebook. The session chair, Anthony Joseph (UCB), asked
about the interference introduced by longer jobs. Faraz replied
that if the policy allows the jobs to run longer or to use more
resources, then that is fine.

Violet: A Storage Stack for IOPS/Capacity Bifurcated
Storage Environments
Douglas Santry and Kaladhar Voruganti, NetApp, Inc.

Douglas presented their work on persistent in-memory data
structures. He said in-memory computing is important because
applications like OLAP and OLTP, and ERP jobs cannot tolerate
disk and network latencies. In addition to the in-memory com-
puting, one still needs to store the data (e.g., memory state
or transactions) on disk. There are two conventional solutions:
(1) using a database to manage data and specifying your own
table schema; and (2) designing new data structures and explic-
itly making state persistent. However, if memory is persistent,
then developers don’t need to map the memory state back to disk.
It would be great if there were a persistence layer that divorced
data structure selection and implementation from persistence.

Douglas et al. designed Violet, which introduces the notion of a
named heap and replicates updates to memory or to persistent
storage at the granularity of a byte. It also automatically enforces
ordering and consistent image, and supports snapshot creation.
There are two core parts in Violet: (1) a Violet library defines a
set of data structures that will be automatically replicated to
the memory and stored in disks; (2) Violet exposes to develop-
ers an interface which can be used to express memory updates
and to group multiple updates into a transaction. To use Violet,
developers only have to instrument their code with a few Violet
keywords. The experimental results show that the instrumenta-
tion overhead is not significant. The asynchronous replication
improves throughput numbers. The restore time decreases if the
number of machines increases.

Somebody asked for a comparison between levelDB and Violet.
Douglas replied that they are completely different, since levelDB
is a key-value store. Developers can use Violet to build such a
data store. The second question regarded what would happen
while restoring data from disk if the virtual address is already
taken. Douglas replied that Violet always maps the physical
address to the same virtual address.

ELF: Efficient Lightweight Fast Stream Processing
at Scale
Liting Hu, Karsten Schwan, Hrishikesh Amur, and Xin Chen,
Georgia Institute of Technology

Liting Hu explained that buying things from Amazon involves
other applications running to serve micro-promotions, likes,
and recommendations. Besides these applications, there will
also be data mining, for example, to predict games that will
become popular. Liting Hu then displayed data flows for these
various applications, where some flows are best processed in
batches, others require more frequent processing as streams,
and still others, like user queries, require immediate processing
and millisecond response times. To provide this level of flexibil-
ity, the authors developed ELF.

Typically, data gets collected, using tools like Facebook’s Flume
or Kafka, into storage systems, like HBase. Instead, ELF runs
directly on the Web server tier, skipping the just-mentioned data
flow. ELF also uses a many master-many worker structure, with
a peer-to-peer overlay using a distributed hash table to locate
job masters. Job masters aggregate data from workers, then
broadcast answers. ELF provides an SQL interface for program-
mers for reducing data on masters and workers. ELF also uses
aggregation and compressed buffer trees (CBTs). In evaluations,
ELF outperforms Storm and Muppet for large windows (more
than 30 seconds) because of the ability to flush the CBTs.

Chuck (NEC Labs) asked whether they are running the ELF
framework on the Web server itself, and Liting answered that
yes, they run ELF as agents on Web servers. Chuck then asked
whether they were concerned with fault-tolerance issues. Liting
said that, yes, their DHT handled failure by finding new masters
quickly. Derek Murray (Microsoft Research) asked how they
do the streaming, sliding window for connecting components.
Liting answered that the flush operation of CBTs allows them
to adjust the size of the window, fetch pre-reduced results. Derek
said he had a couple of more questions but would take them offline.

Exploiting Bounded Staleness to Speed Up Big Data
Analytics
Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee,
Abhimanu Kumar, Jinliang Wei, Wei Dai, and Gregory R. Ganger, Carnegie
Mellon University; Phillip B. Gibbons, Intel Labs; Garth A. Gibson and
Eric P. Xing, Carnegie Mellon University

Henggang presented this work on how to trade data freshness for
better performance in big data analytics. Big data like Web pages
and documents constitutes a huge amount of data. Analytics
often have to perform computation over data iteratively. To speed
up the computation, developers normally make iterative jobs run
in parallel. However, to ensure the correctness, the sync opera-
tion is called periodically, and this pattern slows down the com-
putation. The goal of this work is to reduce the sync overhead.

Henggang described their three core approaches to improve
performance. The first approach is called Bulk Synchronous
Parallel (BSP), in which every iteration is an epoch, and paral-
lel jobs must synchronize with each other at the end of each

70  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

epoch. Arbitrarily-Sized BSP is a variant that allows developers
to decide the size of epochs to do the synchronization. The last
solution is called Stale Synchronous Parallel (SSP) and is more
powerful than the previous two solutions. SSP could tune the
number of epochs to call sync and also could allow different
jobs to synchronize at different speeds.

They evaluated their approaches by running Gibbs Sampling
on LDA jobs in eight machines, with the NY Times data sets as
input. The results show that performance gets better if staleness
increases. SSP performs better than BSP. Regarding conver-
gence, more iterations are required if staleness increases.

The first question concerned the bound on the slowness of strag-
glers. Henggang replied that they have techniques to try to help
stragglers catch up. Some people asked whether they checked
the quality of results. He replied that they use the likelihood to
measure the quality. In other words, if the likelihood is the same
or close, then the generated models are qualified. The last ques-
tion was about examples. He answered that they built the model
to discover possible cancers, and compared the experimental
results to a doctor’s decision.

Making State Explicit for Imperative Big Data Processing
Raul Castro Fernandez, Imperial College London; Matteo Migliavacca,
University of Kent; Evangelia Kalyvianaki, City University London; Peter
Pietzuch, Imperial College London

Raul presented work on how to explore parallelism in programs
written in imperative languages. He started his talk by show-
ing that it is challenging to make imperative big data process-
ing algorithms run in parallel and be fault tolerant, since the
algorithms are stateful. On the other hand, many platforms like
MapReduce, Storm, and Spark achieve good performance and
manage fault tolerance by assuming there is no mutable state.
The downside of using these platforms is that developers must
learn new programming models.

This work aims to run legacy Java programs with good perfor-
mance while tolerating faults. The key idea is to have a stateful
data flow graph (SDG). In this graph, there are three elements:
state element, data flow, and task element. The state element is
often distributed, and has two abstractions: partitioned state
and partial state. Partitioned state can be processed by a local
task element, and partial state may be accessed by a local or
global task element. Additionally, the partitioned state requires
application-specific merge logic to resolve conflicts. To figure
out which state is partitioned or partial requires programmers
to provide annotations. To make the computation tolerate faults,
they also implemented asynchronous snapshot creation and
distributed recovery mechanisms.

Following his talk, some people asked about the size of their data
sets used for experiments. Raul answered that the size of data
sets varies from a few GBs to 200 GBs. The second question was
about the principles used to specify either partitioned or partial.
He answered that programmers need to know.

Virtualization
Summarized by Jianchen Shan (js622@njit.edu)

OSv—Optimizing the Operating System for Virtual
Machines
Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti,
and Vlad Zolotarov, Cloudius Systems

Nadav Har’El presented their research on OSv, which is a new
OS designed specifically for cloud VMs. The goal of OSv is to
achieve better application performance than traditional Linux.
The OSv is small, quick booted, and not restricted to a specific
hypervisor or platform. Nadav Har’El claimed that OSv was
actively developed as open source so that it could be a platform
for further research on VM OSes. OSv is developed using C++11
and fully supports SMP guests.

Nadav Har’El pointed out that the key design of OSv is to run
a single application within a single process, multiple threads
within a single address space, because the hypervisor and guest
are enough to isolate the application just like the process is
isolated in traditional OSes. There is no protection between user
space and kernel space such that system calls are just function
calls, which means less overhead. Nadav Har’El also emphasized
that OSv entirely avoids spinlock by using a lock-free scheduler,
sleeping mutex, and paravirtual lock. Basically speaking, there
is no spinlock in OSv, so serious problems such as lock holder
preemption are avoided. OSv takes advantage of network stack
redesign proposed by Van Jacobson in 2006. OSv provides a
new Linux API with lower overhead such as zero-copy lockless
network APIs. Nadav Har’El suggested that we can improve
performance further with new APIs and modifying the runtime
environment (JVM), which can benefit all unmodified JVM
applications.

Beside the evaluations that can be found in the paper, Nadav
Har’El also showed some unreleased experimental results. For
the Cassandra stress test (READ, 4 vCPUs, 4 GB RAM), OSv
is 34% better. For Tomcat (servlet sending fixed response, 128
concurrent HTTP connections, measure throughput, 4 vCPUs,
3 GB), OSv is 41% better. Finally, Nadav Har’El invited people to
join the OSv open source project: http://osv.io/.

Because there is no protection between user space and kernel
space, the first questioner worried that if something evil is done
in the user space, this could cause some security issues. Nadav
Har’El answered that one VM would only run a single applica-
tion, so only the application itself would be affected, and no
damage would be made to other applications or the underlying
hypervisor.

Gleaner: Mitigating the Blocked-Waiter Wakeup Problem
for Virtualized Multicore Applications
Xiaoning Ding, New Jersey Institute of Technology; Phillip B. Gibbons
and Michael A. Kozuch, Intel Labs Pittsburgh; Jianchen Shan, New Jersey
Institute of Technology

Xiaoning Ding addressed the Blocked-Waiter Wakeup problem
(BWW) and proposed its solution, Gleaner. As the number of

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 71

REPORTS

vCPUs in a virtual machine keeps increasing, Xiaoning Ding
said that the mismatch between vCPU abstraction and pCPU
behavior could prevent applications from effectively taking
advantage of more vCPUs in each VM. Xiaoning Ding explained
that vCPUs are actually schedulable execution entities, and
there are two important features of a vCPU: First, when a vCPU
is busy, it may be suspended without notification; second, when
vCPU is idle, it needs to be rescheduled to continue computation,
not like the physical CPU that can be available immediately for
ready computation. For the synchronization-intensive applica-
tions that use busy waiting lock, the first feature would cause
the Lock Holder Preemption problem (LHP). The vCPU holding
the spinlock may be preempted, which makes other vCPU spend
a long time waiting for the lock. For those applications that use
blocking locks, the second feature would cause the BWW prob-
lem: Waking up blocked threads takes a long time on idle vCPUs.
Through experiments, Xiaoning Ding showed that waking up a
thread on pCPU only takes 8s, but waking up a thread on vCPU
takes longer than 86s, which is also variable. The major source
of overhead and variation comes from the vCPU switch. So that’s
why BWW would increase execution time and incur unpredict-
able performance and reduced overall system performance.

Xiaoning Ding pointed out that the LHP problem has been well
studied. So their team focused on the solution to the BWW
problem. Generally, the goal is to reduce harmful vCPU switch-
ing, and there are two main methods to deal with this. First is
resource retention: preventing an idle vCPU from being sus-
pended by letting it spin instead of yielding hardware resources,
although this may cause resource under-utilization. Second
is consolidation scheduling: consolidating busy periods and
coalescing idle periods on vCPUs. This method activates some
vCPUs to avoid vCPU switching and suspends other vCPUs to
save resources. However, the problem is that the active vCPUs
may be overloaded. Some active vCPUs may undertake too heavy
a workload because some workloads cannot be evenly distrib-
uted among active vCPUs. Gleaner basically takes advantage of
both of these two methods. At the same time, Gleaner provides
a solution to the overloading problem, gradually consolidating
workload threads only if the following conditions are satis-
fied: vCPU utilization would not be too high after consolidation
and workloads can be evenly distributed among active vCPUs.
Also, Gleaner stops consolidation when the throughput tends to
decrease. Xiaoning Ding concluded that the evaluations prove
that Gleaner can improve application performance by up to 16x
and system throughput by 3x.

Someone was interested in whether Gleaner could also per-
form well in other hypervisors like Xen. Xiaoning Ding replied
that the current evaluation was only done in KVM, so further
experiments may need to be done across different hypervisors.
Xiaoning Ding was also asked why there is still some slowdown
relative to bare-metal performance in the current experimental
results. He answered that this slowdown may still be caused by
the overloading problem, which cannot be entirely prevented.

HYPERSHELL: A Practical Hypervisor Layer Guest OS
Shell for Automated In-VM Management
Yangchun Fu, Junyuan Zeng, and Zhiqiang Lin, The University of Texas
at Dallas

Yangchun Fu explained that current cloud services or datacen-
ters usually host tens of thousands of virtual machines, which
require large scale and automated management tools. Tradi-
tional management tools are placed in the user space of the host
OS and work with the management utilities installed in the
guest OS. Although the management is centralized, each VM
is required to install the client utilities, and the user-space tool
also needs the admin password to access the VM, which is pain-
ful when dealing with large scale. Hence Yangchun Fu’s team
proposed the HYPERSHELL, a practical hypervisor layer guest
OS shell tool for automated in-VM management, which only
installs the management utilities at the hypervisor layer.

Yangchun Fu stated that the system call is the only interface to
request OS service, so HYPERSHELL introduces the reverse
system call to achieve the guest OS management. The main
contribution of the reverse system call is bridging the semantic
gap for the hypervisor layer program between the guest and host
OS so that the hypervisor can interpret semantic information
about the guest OS. The reverse system call technique would
dispatch the system call from the host library space program.
To differentiate the host and guest system call, Yangchun Fu’s
solution would add an extra value to the file descriptor, since it is
just an index and has a limited maximum value. The system call
is arranged to execute by hypervisor. The hypervisor along with
a helper process inside the guest OS’s user space would inject
the transferred guest system call. Yangchun Fu explained that
the helper process is created by the hypervisor layer program
and would inject the guest system call right before entering the
kernel space or exiting to the user space. And because the system
call data is saved and exchanged in shared memory, many of the
current guest OS management utilities can be directly reused in
HYPERSHELL without any modification.

Yangchun Fu said they evaluated about a hundred management
utilities and demonstrated that HYPERSHELL has relatively
little slowdown and overhead on average compared to their
native in-VM execution. More detailed information could be
found in the paper. Yangchun Fu concluded that HYPERSHELL
will circumvent all existing user logins and the system audit
for each managed VM, so it cannot be used for security-critical
applications unless special care is taken for these uses. HYPER-
SHELL requires both OSes running in the host OS and VM to
have a compatible system-call interface. But, if further work
can be done in additional system-call translation, the HYPER-
SHELL can work with more kinds of OSes.

Someone asked whether there is any extra overhead when
HYPERSHELL is used for monitoring. Yangchun Fu replied
that there is no extra overhead.

72  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

XvMotion: Unified Virtual Machine Migration over Long
Distance
Ali José Mashtizadeh, Stanford University; Min Cai, Gabriel Tarasuk-Levin,
and Ricardo Koller, VMware, Inc.; Tal Garfinkel; Sreekanth Setty, VMware, Inc.

Ali José Mashtizadeh explained that previous live virtual
machine migration only happened between the machines that
shared local shared storage, such as a cluster with a storage
array, and only the memory is migrated. But faster networks and
current VM deployment, which usually hosts VMs on tens of
thousands of physical machines over sites far away from each
other, have made necessary a reliable and efficient wide area
virtual machine migration technique. Current ad hoc solutions
are often complex and fragile, however, so Ali José Mashtizadeh
and his team have proposed a solution called XvMotion, which
is an integrated memory and storage migration system that
does end-to-end migration between two physical hosts over the
local or wide area. XvMotion offers performance and reliability
comparable to that of a local migration and has been proven to be
practical for moving VMs over long distances, such as between
California and India, over a period of a year.

Ali José Mashtizadeh said that the architecture of XvMotion
contains the live migration and I/O Mirroring modules in ESX.
Between the source and destination, the Streams layer handles
the large data transfer, including memory pages and disk blocks
on top of the TCP network. The live migration module would be
responsible for regular tasks as found in local live migration. The
I/O Mirroring would record any changes during the copy, which
is asynchronously implemented with Streams and the disk
buffer. This process can reduce the impact on the source VM
from high and unstable network latency. Ali José Mash tizadeh
pointed out that in long distance memory migration, if the
network transferring rate were slower than the VM’s workload
changing page rate, then there would be an inconsistency issue
and convergence would not occur. In traditional local networks,
the VM would be halted and transfer all remaining dirty pages
during downtime. This solution is not acceptable, because
long distance incurs long latency, which would lead to longer
 downtime.

XvMotion’s solution is Stun During Page Send, which can inject
latency in page writes operation to throttle the page dirtying
rate to a desired level when it is faster than the network trans-
mit rate. In terms of disk buffer congestion control, Ali José
Mashtizadeh refers listeners to the paper for details. The evalu-
ation of XvMotion showed it provides stable migration time and
downtime (atomic switchover) less than one second even for
latencies as high as 200 ms and data loss up to 0.5%. Downtime
only has a small linear time increase with distance. In addition,
the guest workload performance penalty is nearly constant with
respect to latency, and only varies based on workload intensity.

GPUvm: Why Not Virtualizing GPUs at the Hypervisor?
Yusuke Suzuki, Keio University; Shinpei Kato, Nagoya University; Hiroshi
Yamada, Tokyo University of Agriculture and Technology; Kenji Kono, Keio
University

Yusuke Suzuki described GPUvm, a technique to fully virtual-
ize GPU at the hypervisor. Currently, GPUs are used not only
for graphics but also for massively data-parallel computations.
GPGPU applications are now widely accepted for various use
cases. However, the current GPU is not virtualized, and we
cannot multiplex a physical GPU among virtual machines or
consolidate VMs that run GPGPU applications. Yusuke Suzuki
said that GPU virtualization is necessary. There are now three
virtualization approaches: I/O pass-through, API remoting, and
paravirtualization. I/O pass-through assigns a physical GPU to
VM dedicatedly. The problem is that multiplexing is impossible.
API remoting can multiplex GPUs because it forwards API calls
from VMs to the host’s GPUs. But API remoting needs host’s and
VM’s API and its version to be compatible. The paravirtualiza-
tion approach provides an ideal GPU device model to VMs. But
each VM uses PV-drivers, which must be modified to follow the
ideal GPU device model. The goal of GPUvm is to allow multiple
VMs to share a single GPU without any driver modification. At
the same time the performance bottlenecks of full virtualiza-
tion are identified and optimization solutions are accordingly
provided in GPUvm.

Yusuke Suzuki explained that there are three major components
in a GPU: GPU computing cores, GPU channels, and GPU mem-
ory. The GPU channel is a hardware unit to submit commands to
GPU computing cores. Memory accesses from computing cores
are confined by GPU page tables. GPU and CPU memory spaces
are unified. GPU virtual address (GVA) is translated into CPU
physical addresses as well as GPU physical addresses (GPA).
So the basic idea of GPUvm is to virtualize these three major
components. The GPU memory and channels are logically par-
titioned to virtual ones. And time sharing is employed to make
GPU cores shared by several VMs. As a result, each VM would
have a set of isolated resources. GPUvm works as a hypervisor,
which exposes a virtual GPU device model to each VM. Hence
the guest GPU driver needn’t be modified.

In GPUvm, the GPU shadow page table isolates GPU memory.
GPU shadow channel isolates GPU channels. And GPU fair-share
scheduler isolates performance on GPU computing cores. Mem-
ory accesses from GPU computing cores are confined by GPU
shadow page tables. Since DMA uses GPU virtual addresses, it
is also confined by GPU shadow page tables, which guarantees
that DMA requested from one VM cannot gain access to CPU
memory regions assigned to other VMs. For the GPU channels,
mapping tables are maintained to partition the physical chan-
nels. Finally, for equitable use of GPU cores, the BAND schedul-
ing algorithm [Kato et al. ’12] is used, since the GPU command
execution is non-preemptive and BAND is aware of this feature.
Their evaluation showed that for long non-preemptive tasks,
BAND can provide better fairness compared to some traditional

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 73

REPORTS

scheduling algorithms. Yusuke Suzuki said the raw full GPU
virtualization may incur large overhead.

Besides describing the architecture of GPUvm, Yusuke Suzuki
also introduced some optimization techniques. First, GPUvm
allows the direct BAR accesses to the non-sensitive areas from
VMs. This reduces the cost of intercepting MMIO operations.
Second, GPUvm delays the updates on the shadow table, since
this operation is not needed until the channel is active. Third,
GPUvm provides a paravirtualized driver to further reduce
the overhead of the shadowing table. The evaluation used Gdev
(open-source CUDA runtime) and Nouveau (open-source device
driver for NVIDIA GPUs) on Xen. The paravirtualized version
performed best but is still 2–3x slower than Native execution.
Also, GPUvm would incur large overhead in cases involving four
and eight VMs without paravirtualization, since page shadowing
locks GPU resources.

Yusuke Suzuki and an attendee discussed the pros and cons
of GPU hardware virtualization and software virtualization.
Yusuke Suzuki pointed out that changing scheduling cannot be
supported in hardware virtualization. Someone also suggested
methods like killing long tasks to achieve preemption, so that the
traditional scheduling algorithm can also provide good fairness
in GPU hardware virtualization.

A Full GPU Virtualization Solution with Mediated
Pass-Through
Kun Tian, Yaozu Dong, and David Cowperthwaite, Intel Corporation

Kun Tian presented their work on GPU virtualization and began
with GPU virtualization’s three requirements: native GPU accel-
eration performance, full features with consistent visual experi-
ence, and sharing among multiple virtual machines. Among
existing methods, API forwarding can share a single GPU for
several VMs, but the overhead and API compatibility problem
limits its performance and the features supported. Another
method for VMs to use a GPU is direct pass-through. It provides
100% native performance and full features, but no sharing at all.
To meet the above three requirements, Kun Tian proposed their
team’s solution called gVirt, which supports full GPU virtualiza-
tion and combines mediated pass-through with a performance
boost. gVirt can provide full-featured vGPU to VM and avoid
VM modifying the native graphics driver. gVirt can also achieve
up to 95% native performance and scale up to seven VMs.

Kun Tian said that gVirt is open source and the current imple-
mentation is based on Xen, codenamed XenGT, with KVM
support coming soon. gVirt supports Intel Processor Graphics
built into fourth-generation Intel Core processors. But Kun
Tian mentioned that the principles behind gVirt can also apply
to different GPUs, since most modern GPUs only have major
differences in how graphics memory is implemented. gVirt
is trademarked as Intel GVT-g: Intel Graphics Virtualization
Technology for virtual GPU. Kun Tian said the main challenges
of GPU virtualization are complexity in virtualizing, efficiency
when sharing the GPU, and secure isolation among the VMs. In

terms of efficiency when sharing the GPU, gVirt takes advantage
of mediated pass-through, which passes through performance-
critical operations but traps and emulates privileged operations.
Trap-and-emulation can provide a full-featured vGPU device
model to VMs and use the shadow GPU page table.

In terms of sharing, gVirt partitions the GPU memory and avoids
address translation by employing address space ballooning.
In terms of secure isolation, among many problems Kun Tian
gave an example of the most important one: the vulnerability
from direct execution. Although the direct command needs to
be audited when using mediated pass-through, after gVirt has
received, audited, and submitted the command to the GPU, the
GPU may execute the modified command where something evil
happens. The solution is smart shadowing: lazy shadowing the
statically allocated ring buffer and write protection of the batch
buffer, which is allocated on-demand. These two methods can
prevent the modification of command’s content or prevent the
modified command from being executed. At last, Kun Tian said,
they found the overhead mainly comes from the power manage-
ment register’s accesses operation, which is unnecessary in
VM. So gVirt removed these operations and added more com-
mands submitted in some benchmarks, which led to improved
 performance.

Someone asked about the progress of the project. Kun Tian said
that many more small changes have been included in the newest
version. He also provided the publicly available patches for
further reference: (1) https://github.com/01org/XenGT-Preview-
xen; (2) https://github.com/01org/XenGT-Preview-kernel;
(3) https://github.com/01org/XenGT-Preview-qemu.

Best of the Rest I
Summarized by Cheng Li (chenglii@cs.rutgers.edu)

Naiad: A Timely Dataflow System
Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martin Abadi, Microsoft Research

Derek Murray said that a new programming model is required
for new applications. A timely dataflow system should be able
to handle batch processing, stream processing, and graph
processing applications. For example, how would one build a
system to handle large social networks that minimizes latency
for coordination?

Murray revisited a number of dataflows such as parallelism and
iteration. Then he showcased and contrasted the two systems
using batching and streaming applications. Batching systems
require coordination but need to support aggregation. Streaming
systems do not require coordination but aggregation is difficult.

Naiad is different because it is tightly coupled with the execution
mode and uses batch processing, stream processing, and graph
processing. The timely framework will update results in real-
time, minimizing the latency through coordination of events.
The timely system supports asynchronous and fine-grained
 synchronous execution. To achieve low latency, three techniques

74  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

were used: a programming model, a distributed progress
tracking protocol, and system performance engineering were
proposed.

The programming model is event based. Each operation cor-
responds to an event. Messages are delivered asynchronously.
Notifications will support batching. These programming frame-
works leverage a timely dataf low API to run programs in a
distributed manner. To achieve low latency, Naiad proposes a
distributed progress tracking protocol that assigns a timestamp
to each event. Sometimes, an event may depend on its own out-
put. So a structured timestamps-in-loops solution was proposed.
One challenge of performance engineering in Naiad is to reduce
micro-stragglers that negatively impact the overall performance.

The evaluation results showed that Naiad can achieve the design
goals with low overheads. Murray demonstrated PageRank,
interactive graph analysis, and query latency. His conclusion was
that Naiad achieved the performance of specialized frameworks
and provided the flexibility of a generic framework.

One question was whether the generic programming model,
in providing a fair share in a multi-tenant environment, ran
into resource competition problems. Murray answered no.
Someone asked how to do fault tolerance. Murray said query
and log the state.

Towards Optimization-Safe Systems: Analyzing the
Impact of Undefined Behavior
Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, Armando Solar-Lezama,
MIT CSAIL

Xi Wang used an example (digit overflow) to demonstrate that
compiler optimization flags may optimize aggressively or dis-
card some of the sanity checks and change the accuracy of the
results. Then he used a table to show that it is a common error for
widespread GCC versions.

The notion of undefined behavior refers to the behaviors that
are not defined by the specifications. The original goal is to emit
efficient code, but it allows the compilers to assume a program
never invokes undefined behaviors. So this ambiguity causes
many undefined behaviors. Therefore, there is a need for a sys-
tematic approach to study and control undefined behavior.

The methodology is to use a precise flag to annotate unstable
code and compare the two versions with or without the unstable
code. A Boolean satisfaction table is used to justify the behavior
of two programs when unstable code is enabled or disabled.
A framework, STACK, is proposed to identify unstable code.
STACK makes the compute assumption as no undefined behav-
ior. Then STACK will run the two versions and compare the
diffs. The limitation is missing unstable code and false warn-
ings. The presenter addressed these issues separately.

The evaluation shows STACK is robust to find unstable code and
scales to large code bases. The presenter also made suggestions
on how to avoid unstable code.

Storage
Summarized by Daniel J. Dean (djdean2@ncsu.edu)

vCacheShare: Automated Server Flash Cache Space
Management in a Virtualization Environment
Fei Meng, North Carolina State University; Li Zhou, Facebook; Xiaosong Ma,
North Carolina State University and Qatar Computing Research Institute;
Sandeep Uttamchandani, VMware Inc.; Deng Liu, Twitter

Fei Meng began by describing how SFC can be used to accelerate
I/O performance, reduce I/O disk load, and reduce contention.
Fei then discussed how current SFC management techniques,
including static partitioning and globally shared SFC space.
Both have issues. To address these challenges, Fei introduced
vCacheShare, which can dynamically resize the cache as
needed. He also described how vCacheShare takes both the
long term and short term into account when deciding the cache
size. The four modules of vCacheShare are: (1) a cache module,
responsible for cache management; (2) a monitor, responsible
for tracing cache usage; (3) an analyzer, responsible for analyz-
ing cache usage based on the traces from the monitor; and
(4) an optimizer, responsible for optimizing cache usage. Finally,
Fei discussed the results of micro- and macrobenchmarks they
ran that demonstrated the effectiveness of their tool.

The first question was whether the number of VMs affects the
system. Fei answered that the number of VMs does not affect
the system. Someone else asked whether context switches
affect the system, to which Fei answered they do not.

Missive: Fast Application Launch From an Untrusted
Buffer Cache
Jon Howell, Jeremy Elson, Bryan Parno, and John R. Douceur, Microsoft
Research

In this talk, Jon Howell described how to quickly launch rela-
tively large applications from an untrusted buffer cache. The
authors based their work on the Embassies system, which uses
an ultra-lightweight client to ensure applications are isolated
and self-contained. By making the client small, however, a large
amount of application data will need to be sent over the network,
causing applications to take a long time to launch.

To address this issue, Jon described how they collected and ana-
lyzed 100 “best-of” applications in order to find ways to speed up
the launch process. They found that there was a lot of common-
ality among the applications, which they could exploit to launch
applications faster. Specifically, they used zar files and Merkle
trees to only send what was absolutely necessary to launch the
application in an efficient way. Some of the details Jon empha-
sized were how zarfile packing works. Specifically, large files
are packed first and smaller files are packed in between, leading
to very little wasted space. By using this approach, Jon then
showed how it was possible to launch relatively large applica-
tions in hundreds of milliseconds.

Someone asked whether they tried to optimize anything. Jon
answered that they had not yet optimized anything and wanted
to first show a proof that the idea could be done.

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 75

REPORTS

A Modular and Efficient Past State System for Berkeley DB
Ross Shaull, NuoDB; Liuba Shrira, Brandeis University; Barbara Liskov,
MIT/CSAIL

Ross Shaull described Retro, a system for snapshotting and past
state analysis for Berkeley DB. He began by describing why it is
useful to know the past states of the DB, using several examples
such as auditing, trend analysis, and anomaly detection. The
problem is that saving past states is difficult, and not all data
stores provide the ability to do it. Ross then described Retro, a
low overhead snapshot system for Berkeley DB.

Ross discussed how Retro was designed with simplicity in mind,
making choices such as extending existing Berkeley DB proto-
cols instead of creating new protocols. He then described how
Retro snapshots are consistent, global, named, and application-
declared. Retro works by tagging which pages to save, which
pages are part of a query, and which pages to recover when a
crash occurs. Ross also described how recovery with Retro
works. Specifically, Retro saves pre-states during Berkeley DB
recovery, then reads a page from disk and applies redo records to
it. Finally, Ross showed that Retro is non-disruptive, imposing
4% throughput overhead. He also conceded, however, that Retro
does require a separate disk for good performance.

The first question was how has this advanced the state of the
art. Ross replied that the past-state system is integrated into a
different system layer, which can be inserted into the database
near the page cache.

SCFS: A Shared Cloud-backed File Systems
Alysson Bessani, Ricardo Mendes, Tiago Oliveira, and Nuno Neves, Faculdade
de Ciências and LaSIGE; Miguel Correia, INESC-ID and Instituto Superior
Técnico, University of Lisbon; Marcelo Pasin, Université de Neuchâtel; Paulo
Verissimo, Faculdade de Ciências and LaSIGE

Alysson Bessani described SCFS, a shared cloud-backed file
system that is designed to provide reliability and durability
guarantees currently lacking in existing systems. Alysson began
by describing the two main classes of shared storage: local soft-
ware, which interacts with a backend (e.g., Dropbox), and direct
access-based systems (e.g., BlueSky). While these systems work
well, they do not make any reliability or durability guarantees
and instead offer a best effort approach.

To address this challenge, the authors designed SCFS. Alysson
discussed a key idea behind their approach: always write and
avoid reading; in cloud-backed storage systems, writes are
essentially free while reading is typically more expensive. To do
this, they use a consistency anchor in order to make sure every-
thing done locally is consistent with whatever is in the cloud.
They use a consistency service to ensure the correct version of
a file is obtained initially, they then perform all operations on
the file locally, and finally push it to the cloud when the file is
closed. Another point Alysson discussed was how SCFS can use
multiple backends in order to ensure data is available even when
faced with data-corruption or service unavailability. Finally, the
experiments they conducted demonstrated the pros and cons of

their approach under various modes of operation (e.g., blocking
vs. non-blocking).

Someone asked whether they compared FS Cache to their work.
Bessani answered that the files are only sent to the cloud when
calls close. The questioner also wondered what files were cached,
to which Bessani answered that all locally modified files were
cached, with the master version being on the cloud.

Accelerating Restore and Garbage Collection in
Deduplication-based Backup Systems via Exploiting
Historical Information
Min Fu, Dan Feng, and Yu Hua, Huazhong University of Science and Tech-
nology; Xubin He, Virginia Commonwealth University; Zuoning Chen, National
Engineering Research Center for Parallel Computer; Wen Xia, Fangting Huang,
and Qing Liu, Huazhong University of Science and Technology

Min Fu described how to accelerate the restore and garbage
collection process in deduplication-based systems. He began
by describing how fragmentation is a major problem for these
systems and how it can negatively affect garbage collection and
restoration. Specifically, Min discussed how sparse and out-of-
order containers cause problems.

To address this problem they have developed a history-aware
rewriting algorithm that reduces sparse containers. Min said
that the idea of taking history into account is based on the fact
that two consecutive backups are very similar; the data con-
tained in the previous backup is useful for the following backup.
Min then described two optimization approaches to their new
algorithm that can reduce the negative impact of out-of-order
containers. Finally, the results shown demonstrated the effec-
tiveness of their approach in terms of performance versus vari-
ous commonly used approaches.

The first question was how the merge operation would be
handled by their garbage collection algorithm. The answer Min
gave was that they don’t need to merge with their scheme.

Hardware and Low-level Techniques
Summarized by Jons-Tobias Wamhoff (jons@inf.tu-dresden.de)

The TURBO Diaries: Application-controlled Frequency
Scaling Explained
Jons-Tobias Wamhoff, Stephan Diestelhorst, and Christof Fetzer, Technische
Universität Dresden; Patrick Marlier and Pascal Felber, Université de
Neuchâtel; Dave Dice, Oracle Labs

Jons-Tobias Wamhoff proposed that multithreaded applications
should gain control over the frequency of the underlying processor
cores such that they can expose their possibly asymmetric prop-
erties and improve performance. Traditionally, dynamic voltage
and frequency scaling (DVFS) is used to save energy by reduc-
ing the voltage and frequency if there is only low load on the
system and to boost a subset of the cores to speed up sequential
bottlenecks or peak loads. Instead of relying on the transparent
solution by the operating system and processor, he introduced a
user-space library that allows programmatical control of DVFS.

In his talk, Jons-Tobias first gave an overview of DVFS imple-
mentations on current AMD and Intel x86 multicores and a

76  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

study of their properties regarding frequency transition latencies
and power implications. The study shows when frequency scal-
ing improves the efficiency and uses a benchmark that continu-
ously tries to execute critical sections on all cores. The results
indicate that blocking locks using the futex syscall are preferred
over spinning locks if the critical section has a length of at least
1.5M cycles (500s) to outweigh the overhead of halting the
cores and boosting the frequency. With manual DVFS control,
all cores can remain active at a low voltage while one core can
boost its frequency. This allows reducing the break-even point of
DVFS to boosted sections with at least 200k cycles (50s). After
presenting the DVFS cost, an overview of the TURBO library
followed as well as a teaser for the use cases in the paper that
apply the library to real-world applications.

After the talk, someone asked how frequency scaling is limited
by accesses to the last level cache. Jons-Tobias replied that the
L3 cache is not part of the core’s frequency domain and can limit
the performance when the instructions per cycle depend on the
core frequency.

Implementing a Leading Loads Performance Predictor
on Commodity Processors
Bo Su, National University of Defense Technology; Joseph L. Greathouse,
Junli Gu, and Michael Boyer, AMD Research; Li Shen and Zhiying Wang,
National University of Defense Technology

Joseph L. Greathouse started his presentation by asking how
fast applications will run at different CPU frequencies. He
highlighted that applications are affected by DRAM accesses,
which hinder the scaling of performance to higher frequencies.
Therefore, a good estimate of the memory time is required to be
able to reason about the speed of the remaining CPU time. Many
estimates are based on the last level cache misses, but those are
not a good indicator because memory accesses can be processed
in parallel. In such situations, the CPU time overlaps with the
memory accesses and can still scale with the frequency.

The proposed solution focuses on leading loads, which are the
first in a series of parallel cache misses to leave the CPU core.
The remainder of the talk explained how leading loads can be
estimated using existing performance counters with an average
error of 2.7%. AMD processors maintain a miss address buffer,
a list of L2 cache misses that will be served from the L3 cache
or memory in the order they were requested. The event of a new
entry in the first provision of the buffer demarks a new parallel
memory access period. A hardware performance counter makes
the event available. Together with the timestamp counter, this
can be used to estimate the portion of the execution time that is
spent waiting for data that is not available within the frequency
domain (core, L1 & L2 cache).

Afterwards, someone noted that (1) the error is only slightly
affected by the frequency, (2) no matching performance counter
on Intel processors is known, and (3) the impact of the memory
throughput becomes visible if the memory runs out of bandwidth
and the latency increases.

HaPPy: Hyperthread-aware Power Profiling Dynamically
Yan Zhai, University of Wisconsin; Xiao Zhang and Stephane Eranian, Google
Inc.; Lingjia Tang and Jason Mars, University of Michigan

Yan Zhai addressed the power accounting on servers at indi-
vidual job granularity with the goal of allowing billing based
on power and power capping. The focus of power accounting is
on the processor because it is responsible for the biggest part of
the power draw. Unfortunately, the simple approach of estimat-
ing the power draw linearly to the CPU usage does not work
for hyperthreading systems because the processor cores are a
shared resource.

The talk introduced a hyperthreads-aware power profiler, which
first maps the socket power to the processor cores and then from
the core’s power to the hyperthreads. The solution is based on
finding a factor that gives a ratio of the core’s power to the active
hyperthreads. This is done by weighting the cycles: The cycles
for each hyperthread are captured and used to map the core’s
power to the hyperthreads. The approach allows reducing the
prediction error to 7.5%.

After the talk, Yan Zhai clarified that the approach also works
for power cores in large SMT systems and that finding the factor
is based on samples that allow an adaption when the load or the
application characteristics change.

Scalable Read-mostly Synchronization Using Passive
Reader-Writer Locks
Ran Liu, Fudan University and Shanghai Jiao Tong University; Heng Zhang
and Haibo Chen, Shanghai Jiao Tong University

Ran Liu started the talk with an overview of the synchronization
evolutions to highlight that the mechanisms trade semantic guar-
antees for performance. By allowing readers and a writer to pro-
ceed in parallel, RCU removes the reader side memory barrier.
Prior research reveals that the efficiency of reader- dominant
synchronization would improve significantly if no barrier was
required on the reader side. However, RCU adds considerable
constraints to programming due to its weaker semantic com-
pared to reader-writer locks.

While active locks keep the state always consistent using
adequate barriers, passive reader-writer locks remove the barri-
ers on the reader side by making the state only consistent if the
writer becomes active. However, the writer can only wait for the
readers to report their state but it cannot directly check it. The
period a writer has to wait is bounded by enforcing the readers to
report using IPI. The algorithm only works if TSO is guaranteed
because it implicitly enforces that readers see the latest state
from the writer. Ran Liu reported that passive reader-writer
locks can be implemented and applied to the address space
management in Linux with trivial effort. The evaluation showed
scalable results similar to RCU while maintaining the reader-
writer locks semantic.

There was no time for questions at the end.

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 77

REPORTS

Large Pages May Be Harmful on NUMA Systems
Fabien Gaud, Simon Fraser University; Baptiste Lepers, CNRS; Jeremie
Decouchant, Grenoble University; Justin Funston and Alexandra Fedorova,
Simon Fraser University; Vivien Quéma, Grenoble INP

Baptiste Lepers’ talk was about the efficiency of large pages
on NUMA systems. Since a TLB miss is expensive (43 cycles),
applications that need large amounts of memory typically
increase the page size from 4 KB to 2 MB to reduce the address
translation overhead and have fewer TLB misses. Unfortunately,
large pages may lead to a bad placement of memory on a NUMA
system and hurt the performance by up to 43%. Existing memory
management algorithms are not able to solve the performance
decrease. The talk identifies two effects that explain bad perfor-
mance: (1) hot pages, i.e., a single page that concentrates most of
the memory accesses and creates contention (such a page is far
more likely with 2 MB pages than with 4 KB pages); and (2) “page
level false sharing,” i.e., when different threads allocate distinct
data that unfortunately end up being allocated on the same page—
this is bad for locality if the two threads are on different nodes.
These two effects can lead to a bad locality and high contention
on the interconnect.

The performance bottlenecks are addressed by (1) splitting hot
pages, (2) improving the locality by migrating pages to the core
that accesses it most frequently, and (3) enabling 2 M pages only
if the TLB miss rate is very high. The evaluation showed that the
approach can lead to a performance improvement of up to 50%
while introducing only 3% overhead.

Someone asked if this works for datacenter-scale applications.
Lepers answered by stating the evaluation included benchmarks
that use up to 20 GB memory but showed sometimes mixed results.

Efficient Tracing of Cold Code via Bias-Free Sampling
Baris Kasikci, École Polytechnique Fédérale de Lausanne (EPFL); Thomas
Ball, Microsoft; George Candea, École Polytechnique Fédérale de Lausanne
(EPFL); John Erickson and Madanlal Musuvathi, Microsoft

Baris Kasikci said his team’s goal is to efficiently sample cold
code because such code is not known a priori and is typically not
well tested. Existing code instrumentation techniques are inef-
ficient or do not scale: static instrumentation has high overheads
and existing dynamic instrumentation frameworks do not work
well for multithreaded applications, because they need to stall all
program threads before instrumenting the program.

The proposed solution is based on leveraging breakpoints. The
code is assigned one breakpoint per basic block that can be
removed when the block is sampled, incurring no subsequent
overhead. Insertion and deletion of a breakpoint are atomic in
modern hardware and hence do not require synchronization.
This way, there is no need for a separate program build (easier
maintenance), and threads are better supported. The remain-
ing challenge is the effective and efficient handling of the high
volume of breakpoints that fire.

The bias-free sampling approach samples code independent of
the execution frequency of its individual instructions, and it

takes only a specific number of samples from all basic blocks.
This way, tasks such as measuring code coverage or periodically
sampling instructions can be performed with an overhead of
only 1–6%.

During the discussion, Kasikci clarified that it is necessary
to stall the threads when inserting or removing multi-shot
 breakpoints.

Distributed Systems
Summarized by Rik Farrow (rik@usenix.org)

Gestalt: Fast, Unified Fault Localization for Networked
Systems
Radhika Niranjan Mysore, Google; Ratul Mahajan, Microsoft Research; Amin
Vahdat, Google; George Varghese, Microsoft Research

Radhika Mysore worked on Gestalt when she was a grad student
at UCSD. They used Lync, an enterprise communication system
within MS that already has a monitoring infrastructure as one
data source. But Lync needed an automated fault localization
system, because manual localization took hours or days. They
started with three existing tools: Score, Pinpoint, and Sherlock,
but the diagnostic ranks of Score were terrible, better for Pin-
point, while Sherlock had a good diagnostic rank but took too
long to complete. They also tried the same algorithms on an
Exchange installation and found that Score was both extremely
fast and very accurate. Sherlock was as accurate but still very slow.

Their first contribution was to establish a framework to explain
why different algorithms behave differently for different sys-
tems, and they built Gestalt based on this framework. For com-
paring different algorithms, they found that each had a model of
system operation, a state space explorer to generate root-cause
hypotheses, and finally a scoring function for choosing the most
likely causes. Radhika then explained models as ways of encod-
ing systems organization: for example, a deterministic model
that is a graph where all edges are equally likely, and a proba-
bilistic model where probabilities are assigned to each edge.
Given a model, the state space explorer traverses the model in
an attempt to determine which edges may have lead to a failure.
Then the scoring function chooses the most likely root-cause.

Radhika focused on one aspect that compounds successful local-
ization: observation noise, or information that falsely reports
success or failure of a transaction. This aspect helps to explain
why certain algorithms performed poorly. When greedy set cover
is used as a space explorer, it performs well when faced with
noise, but is slow. Radhika then described how greedy set cover
failed when there is noise with an example. Gestalt works better
by including a noise factor—and by expecting the real culprit
will explain noise—time observations, and fewer observations,
and that is how Gestalt achieves better recall. Gestalt performed
with high accuracy and low diagnostic time in their testing with
data from real systems.

Steve Neil (Comcast) asked, if noise is critical, whether that is
something that they determined by looking at all the data they

78  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

had. Radhika replied that they looked at a history of failures,
looked at these observations, compared these observations with
actual data, and came up with the actual value of noise. In addi-
tion, she chose noise for the presentation, when there were actu-
ally five issues that can confuse automatic fault detection. Neil
asked whether this is automated. Radhika responded yes.

Insight: In-situ Online Service Failure Path Inference in
Production Computing Infrastructures
Hiep Nguyen, Daniel J. Dean, Kamal Kc, and Xiaohui Gu, North Carolina State
University

Hiep Nguyen explained that they examined an online service,
a VCL lab with 8000 users, similar to EC2, where students can
make requests for VMs. They focused their study on the reserva-
tions servers. There were many non-crashing failures in online
services, as many as 1813 in one year, which often go unnoticed,
like HTTP server threads dying. On top of this, replicating these
failures offline is difficult because they are lacking the correct
environment, don’t want to use record and play, or perform
diag nosis directly on a production server. But production environ-
ments provide lots of clues—inputs, configuration, logs, and sys-
tem call traces—that they can use to limit search scope. Finally,
they can use dynamic VM cloning to create shadow components
so that they can diagnose failure on non-production systems.

Analysis is still difficult because they are using a binary-based
approach, want to have low overhead (no intrusive recording),
and are analyzing both compiled and interpreted programs.
Their solution is to use guided binary execution exploration,
which leverages the production environment data and runtime
outputs as guidance to search the potential failure paths. They
allow the dynamically created clone to receive input data and
perform reads, but no writes, to prevent side effects on the pro-
duction system. The guided binary execution exploration com-
bines both input and console logs as constraints in the search
for the cause of a fault. They also include system call records
to guide the search. Their existing implementation currently
supports Perl and C/C++ programs, but with a modified Perl
interpreter, and uses the Pin tool for C/C++ programs. Combin-
ing all three (input, console log, and system calls) provides the
best method to uncover the root cause of faults.

There were no questions.

Automating the Choice of Consistency Levels in Replicated
Systems
Cheng Li, Max Planck Institute for Software Systems (MPI-SWS); Joao
Leitão, NOVA University of Lisbon/CITI/NOVA-LINCS; Allen Clement,
Max Planck Institute for Software Systems (MPI-SWS); Nuno Preguiça and
Rodrigo Rodrigues, NOVA University of Lisbon/CITI/NOVA-LINCS; Viktor
Vafeiadis, Max Planck Institute for Software Systems (MPI-SWS)

Cheng Li began by saying that developers often choose to use
replication to speed up performance, but then need to decide
when strong consistency, which weakens performance, is
required. Three years ago, they wrote RedBlue consistency
(OSDI ’12), which builds replicated systems that are fast and
 correct. Blue means local and fast but with weak consistency,

and red operations are globally slow but strongly consistent.
To choose between red and blue, you choose red for operations
that are not commutative and may break invariants, or you
can use the faster blue. You want to maximize the blue state by
encoding the side effects. Cheng Li used the example of making
deposits and receiving interest in parallel. They created a tool,
called Sieve, which classifies side effects into fast/weak and
strong/slow operations.

They examined several example applications and noticed that
most are divided into two tiers, the application servers and the
database. They decided to use commutative replicated data types
(CRDT). They transformed each database statement into one or
more database transactions. Programmers only need to annotate
the schema with a CRDT annotation to have encoded side effects
into shadow operations. Cheng Li next explained how to classify
operations accurately and efficiently. Sieve statically defines the
weakest precondition for the corresponding shadow operation
to be invariant preserving. At run time, Sieve classifies shadow
operations by evaluating the corresponding weakest precondi-
tion. By using path analysis, they can determine which paths
might lead to invariants by creating templates.

The programmer’s notations guide the path analysis. When
evaluated, Sieve using programmer annotations was almost as
accurate as manually choosing weak and strong consistency
issues, and incurred a very small hit to performance.

Someone from Google asked how much memory their technique
added, and Cheng Li answered that they hadn’t checked that.
Someone else asked about selecting which types of CRDT they
should use. Cheng Li answered that they have a table about how
to choose CRDT types, as that research had already been done.
There was a third questioner who was cut off by the session chair.

Sirius: Distributing and Coordinating Application
Reference Data
Michael Bevilacqua-Linn, Maulan Byron, Peter Cline, Jon Moore, and Steve
Muir, Comcast Cable

Jon Moore began by explaining that reference data means a
read-only relationship with the data, and also that the rate of
update to the data is not very high. For Comcast, reference data
means TV and movie metadata, and, with main memory capac-
ity growing, the authors hoped to be able to fit all the reference
data into memory. But there is an impedance issue, because the
application wants the data and the data is stored in a database.
Object-relational mappers can be used to perform the conver-
sion, and then application developers are dealing with data
structures, algorithms, unit tests, and profilers.

They use the system of reference to publish updates to the
ver sion stored in RAM, which does not have to be that fresh.
They created Sirius to do this, with just two operations, put
and delete, using Paxos for accuracy and a transaction log for
persistence. The application, rather than the database, handles
these updates. On the read path, applications read directly from

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 79

REPORTS

the data structures in RAM, meaning that they have eventual
consistency. They have a set of ingest servers, and client servers
just pull updates from the ingest servers. Since the data includes
a version, they use compaction to compress past transactions to
the most recent value for each key. They use Scala and work from
a paper (Paxos made moderately complex) to implement this; Jon
displayed the code they used.

Sirius is currently being used at Comcast and has been run-
ning in production for almost two years. Since they want their
programmers focused on the user experience, not the plumb-
ing, this has been very important for them. The library handles
persistence and replay. Sirius is available as open source at
comcast.github.io/sirius.

Fred Douglis (EMC) asked about related work and Jon answered
that the paper does include a long related-work section. As good
engineers, they wanted to build on the shoulders of giants. There
is a lot of related work, but most is in external processes. They
did look around, but a key difference is not just holding data in
memory, but rather the convenience to developers. Dave Presotto
(Google) wondered why they ended up with Paxos, given their
two-layer structure. Jon replied that their work predates Raft
[the next paper], and they were looking at lots of work on distrib-
uted databases. Paxos was also easy to reason about. Someone
pointed out that given their constraints, it was easy to see how
they came up with this design. But with a higher update rate, this
wouldn’t be applicable. Jon replied that he absolutely agreed with
the questioner.

In Search of an Understandable Consensus Algorithm
Diego Ongaro and John Ousterhout, Stanford University

Awarded Best Paper!

Diego Ongaro presented Raft as a replacement for Paxos. Con-
sensus requires an agreement about shared state, and while
Paxos is synonymous with consensus, it is also hard to under-
stand and hard to implement. When they tested CS students,
most tested better using Raft and would prefer to use it.

Raft is broken into three parts: leader election, log replication,
and safety. The leader takes commands from clients and appends
them to its log, then the leader replicates its logs to other servers.
The leader sends out RPCs with updates and gets back replies
from clients. The leader gets elected when the previous leader
times out. Each server uses a randomized timeout to prevent
split votes on leader elections.

The leader’s job is to send out logs, and clients maintain two
indices: match and next indices. The next index is where the
next update goes, and match index is the latest update. The
leader doesn’t mark an update committed until a majority has
responded to a log replication update. If a client server has old
data, it accepts updates to overwrite that old data from the
current leader. When a candidate server starts an election, but
has an out-of-date log, no other servers will vote for it. So safety
means the server with the latest log will always win the election.

Consensus is widely regarded as difficult, and Raft is easier to
teach in classrooms, with dozens of implementations available
on their Web site or at raftconsensus.github.io.

Fred Douglis said that this was a great talk and should have
won best presentation, too. Diego pointed out that they could
watch the student study on YouTube. Fred then asked if you
could wind up with more divisions and split votes. Diego replied
that you might need to scale the timeouts to be wider, to prevent
split votes from occurring. Someone noted that for reverting
logs, they must keep a lot of version information, and wondered
whether this created a lot of overhead compared to Paxos. Diego
responded that it depends on which Paxos variant you use, but
the overhead is comparable. Someone else asked about log com-
paction, and Diego said that Raft uses a snapshotting approach;
it doesn’t snapshot the tail, just committed prefixes. Garth
Gibson (CMU) wondered why they hadn’t tried using Emulab for
large-scale testing. Diego replied that the motivation for his work
was RAMCloud, which is why he wasn’t focused on wide area
issues. In the worse case, they may have to change the leader
algorithm. Garth Gibson responded that in the worse case, time-
outs mean not making progress. Diego replied that Paxos takes
10 message types to do the same thing. A questioner wondered
whether they had formalized the algorithm to prove its correct-
ness. Diego said he had, and there was more work ongoing.

Networking
Summarized by Lalith Suresh (lsuresh@inet.tu-berlin.de)

GASPP: A GPU-Accelerated Stateful Packet Processing
Framework
Giorgos Vasiliadis and Lazaros Koromilas, FORTH-ICS; Michalis
Polychronakis, Columbia University; Sotiris Ioannidis, FORTH-ICS

Giorgos Vasiliadis presented GASPP, a framework for leveraging
GPUs to perform network traffic processing. The premise of the
work is that network packet processing is both computationally
and memory intensive, with enough room for data parallelism.
However, this presents many challenges, such as the fact that
the nature of traffic processing presents poor temporal locality
since each packet is mostly processed only once.

GASPP presents a modular and flexible approach to expressing
a broad range of packet-processing operations to be executed
on the GPU. It presents a purely-GPU-based technique for flow
state management and TCP stream reconstruction. Since real
traffic is very dynamic with different rates and varying packet
sizes within and across flows, it becomes a challenge to ensure
that GPU threads are sufficiently load balanced and occupied.
Thus, GASPP also implements an efficient packet-scheduling
mechanism to keep GPU occupancy high. In the evaluation, the
authors present the tradeoff between latency and throughput,
which is inherent to the design of GASPP.

Steve Muir (Comcast) asked whether the authors performed
any comparisons versus Packet Shader. Giorgos answered
that they haven’t done so yet, but expect GASPP to outperform

80  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

Packet Shader. Someone from IBM Research asked how Intel’s
DPDK compares to GASPP. Another author answered that the
main difference is that Intel DPDK uses polling and keeps the
CPU cores utilized (potentially up to 100%) with the benefit of
low-latency packet processing, whereas GASPP offloads packet
processing to the GPU. Garth Gibson (CMU) asked how fast the
CPU implementation used as a baseline was, and whether any
low-level hardware features were used. Giorgos responded that
only a single CPU core was used for the CPU-based baseline, but
the point they wanted to make was to use both the CPU and GPU
together to perform packet processing.

Panopticon: Reaping the Benefits of Incremental SDN
Deployment in Enterprise Networks
Dan Levin, Technische Universität Berlin; Marco Canini, Université
catholique de Louvain; Stefan Schmid, Technische Universität Berlin and
Telekom Innovation Labs; Fabian Schaffert and Anja Feldmann, Technische
Universität Berlin

Dan Levin presented Panopticon, an architecture to allow opera-
tors to reap the benefits of software-defined networking (SDN)
without having to replace all of their legacy network switches
with SDN-enabled switches. He argued that while SDN presents
operators with a plethora of benefits, performing a full fork-lift
upgrade to SDN is impractical for most network operators.

Panopticon thus presents operators with a solution that allows
them to incrementally upgrade a network to a partial-SDN
network, and then treat this as a logical SDN. The gist of the idea
is to replace some legacy switches with SDN switches and then
have all the traffic in the network cross at least one SDN switch
using VLANs, which then presents a vantage point for control-
ling the network as an SDN. The Panopticon planning tool takes
as input the network topology, estimates of how much traffic is
to flow through the network, and performance constraints (such
as bandwidth requirements). It applies these inputs against
a planning strategy, and then provides an output hybrid SDN
deployment that satisfies the necessary constraints. The authors
evaluated the work through simulations, emulations, and a real
testbed. Their simulations run against the topology of a large
enterprise network demonstrate that with upgrading as few as
10% of distribution switches to SDN-capable switches, most of
the considered enterprise network can be operated as a single
logical SDN.

Steve Muir (Comcast) asked how one positions Panopticon
with respect to the trend towards the use of SDN overlays
and soft-switch technologies such as OVS and VXLAN. Dan
answered that if and when a network can be managed as an
SDN by deploying soft switches on hypervisors at servers, then
it should be done. But he repeated the point that there are many
legacy networks where that cannot be done, as their survey of
enterprise networks has shown, and what they are stressing in
their work is how to reason about the network during the transi-
tion phase to an SDN. Nick Feamster (Georgia Tech) asked how
related is the underlying physical network to the logical network
when attempting to assert different guarantees. Dan answered

that that is indeed a challenge and it is difficult to make strong
guarantees when presented with a logical SDN as in Panopticon,
which is why they say they can reap the benefits of a nearly full
SDN as opposed to a full SDN.

Pythia: Diagnosing Performance Problems in Wide Area
Providers
Partha Kanuparthy, Yahoo Labs; Constantine Dovrolis, Georgia Institute
of Technology

Partha Kanuparthy presented Pythia, a system for automatic
and real-time diagnosis of performance problems in wide area
providers, which. Wide area providers are a set of sites that are
deployed in different geographic regions connected by wide
area links (such as ISPs or content providers). In practice, they are
con nected by wide area paths with transient providers, which are
essentially black boxes. In these scenarios, network upgrades or
changes to the traffic matrix can introduce performance problems.

Wide area providers use monitoring infrastructure that essen-
tially runs measurements (such as ping). This infrastructure
can provide a time series of end-to-end measurements of delays,
packet reorderings, and network paths being used. Pythia,
leverages such infrastructure for near real-time network diag-
nosis, problem detection, and localization by having lightweight
agents run at the different monitors in the network. At the heart
of Pythia is a pathology-specification language, which would
allow operators to add and remove def initions of what consti-
tutes a performance problem, allowing incremental diagnosis
deployment. Each pathology is expressed as a mapping of an
observation to a logical expression constituting a set of symp-
toms. Using this specification, Pythia generates diagnosis code
as a forest of decision trees. The system then matches the
recorded observations from the monitoring infrastructure (such
as delays, losses, reorderings) against the decision trees in order
to diagnose any detected problems, wherein a problem is defined
as a significant deviation from a baseline. An interesting discus-
sion was also presented on how bugs with the monitors them-
selves complicate the diagnosis of short-lived problems, since
the measurements themselves are potentially contaminated.

There were no questions after the talk.

BISmark: A Testbed for Deploying Measurements and
Applications in Broadband Access Networks
Srikanth Sundaresan, Sam Burnett, and Nick Feamster, Georgia Institute
of Technology; Walter de Donato, University of Naples Federico II

Sam Burnett presented their experience deploying BISmark,
a world-wide measurement infrastructure comprising modi-
fied home routers. The objective of this infrastructure was to
study questions regarding whether or not ISPs are performing
as advertised, how home network usage varies across differ-
ent parts of the world, and how network troubleshooting can be
improved. This presents many challenges, since studying home
networks is difficult because of network address translation, the
fact that these networks are largely unmanaged and unmoni-

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 81

REPORTS

tored, and, lastly, the need to involve actual home users in order
to deploy such an infrastructure.

To reliably and consistently measure how fast an ISP is or how
a wireless access point affects a user’s performance, the home
router was a natural candidate to be a vantage point. This
allowed the authors to study what traffic was coming from the
home network, what devices were causing this traffic (mobile
phones, home entertainment devices, laptops?), and so under-
stand where the bottlenecks were. BISmark home routers were
deployed in more than 30 countries. Sam then discussed the
practical challenges involved in making such a project work,
since these home routers are on the critical path of a user’s
network. This challenge extends to issues regarding automatic
updates to the software on the routers and ensuring that the
routers are running even when the research team cannot access
the router. Although the advantage is that the home router is an
ideal vantage point for the kind of problems the authors set out
to study, there are disadvantages as well. Users naturally have
privacy concerns. Furthermore, establishing trust also proved
to be difficult. Sam lastly also discussed interesting statistics
regarding the deployment effort, including attrition rates, the
time it took for each user to turn on their router after receiving
it, and so forth.

Steve Muir (Comcast) asked the degree to which path measure-
ments would have sufficed to study the kind of problems the
BISmark project was targeting. Sam answered that that there
are classes of problems which you cannot see using path mea-
surements. Someone asked whether there was any relationship
between the discussed trust issues and human behaviors that
can be inferred from studying the usage patterns. Sam acknowl-
edged that as an issue.

Programmatic Orchestration of WiFi Networks
Julius Schulz-Zander, Lalith Suresh, Nadi Sarrar, and Anja Feldmann,
Technische Universität Berlin; Thomas Hühn, DAI-Labor and Technische
Universität Berlin; Ruben Merz, Swisscom

Julius Schulz-Zander discussed Odin, a software-defined net-
working (SDN) framework for WiFi. The motivation for the work
is that most of the benefits of SDN have been geared towards
wired networks and have not benefitted WiFi as much, whereas
WiFi networks are becoming increasingly more complex to man-
age. In order to design an SDN for WiFi and to programmatically
manage WiFi networks, new abstractions need to be designed.

Core to how Odin functions is the light-virtual access point
(LVAP) abstraction. An LVAP is a per-client virtual access
point, which is spawned on physical access points. Every client
is assigned an LVAP when it attempts to connect to the network.
LVAPs can be migrated quickly between physical access points
such that clients do not have to reassociate to the network and do
not notice any breakage at the link layer. Using this mechanism,
an Odin-managed network can control clients’ attachment points
to the network. A logically centralized controller manages LVAPs
and exposes the programming API with which network applica-

tions can orchestrate the underlying network. Using LVAPs, a
network can be divided into slices, where each slice is defined
as a set of physical APs, network names, and network applica-
tions that operate upon it. An application can control only those
clients that are connected to the network names of the slice that
it belongs to, and thus, applications cannot control LVAPs from
another slice. Using these building blocks, the authors built six
typical enterprise services on top of Odin.

Nick Feamster (Georgia Tech) asked how Odin compares to com-
mercial offerings such as those from Meru, Cisco, and Meraki.
Julius responded that Odin exposes more low-level hooks to
write applications such as mobility managers than the commer-
cial offerings do.

HACK: Hierarchical ACKs for Efficient Wireless Medium
Utilization
Lynne Salameh, Astrit Zhushi, Mark Handley, Kyle Jamieson, and Brad Karp,
University College London

Awarded Best Paper!
Lynne Salameh discussed how they overcame a limitation with
WiFi’s medium acquisition overhead and its ramification on
TCP’s end-to-end throughput. Since every two data packets in
TCP require one TCP ACK, this overhead restricts performance
as data rates increase, even in the presence of 802.11 frame
aggregation and link-layer block ACKs.

The proposed cross-layer solution is named TCP/HACK (Hier-
archical ACKnowledgment), which eliminates medium accesses
for TCP-ACKs in unidirectional TCP f lows by encapsulating
TCP-ACKs within WiFi ACK frames. An important design con-
sideration here is that devices using TCP/HACK should coexist
with stock 802.11 devices. Furthermore, block ACKs have a hard
deadline in that they must be sent within the short interframe
spacing duration (SIFS). Given that TCP ACKs may not be ready
in time, the block ACKs cannot be delayed since other senders
will then acquire the medium. Since TCP ACKs do not have hard
deadlines themselves, the TCP ACKs can be appended to the
next link layer ACK. Lastly, since a client does not know whether
there will be an ACK to send out soon, the access point notifies
clients if the access point has any packets destined to them in its
transmit queue. This allows clients to not have to guess whether
there will be any ACK to be transmitted soon. An implementa-
tion of the technique was tested on a software radio platform as
well as using simulations with ns-3.

Someone asked whether there are any metrics that worsen when
using TCP/HACK. Lynne answered that aggregation makes
TCP ACKs bursty anyway, and if you delay TCP ACKs to be
encapsulated within the next link layer ACK, you will increase
the round-trip time (RTT). Garth Gibson (CMU) asked about the
ramifications of breaking modularity, since TCP/HACK is tied
to a lower level protocol. Lynne answered that there is always
a danger in breaking the layering structure. The final question
was on whether there was a performance cost incurred from the

82  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

fact that 802.11 ACKs have to be sent at the basic rate of 1 mbps.
Lynne responded that 802.11n ACKs are sent at higher data rates.

Best of the Rest III
Summarized by Dimitris Skourtis (skourtis@soe.ucsc.edu)

Securing Computer Hardware Using 3D Integrated Circuit
(IC) Technology and Split Manufacturing for Obfuscation
Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh Tripunitara,
University of Waterloo

The manufacturing of digital integrated circuits (ICs) is being
outsourced to multiple teams and external foundries in different
locations. Such outsourcing can lead to security threats as soon as
any of those foundries inserts a malicious modification to the IC.

The presenter described a threat model where an insider at an
external foundry makes a malicious modification. The author
then described an example of an attack, where the malicious
party attaches a hardware trojan allowing the attacked to be
treated as a super user. Next, the presenter gave an example of a
modified circuit, where a gate and a trigger were added to allow
the malicious party to control when the attack happens. The pre-
senter mentioned that if a malicious modification happens, all IC
instances will carry that. Also, whereas with software viruses a
patch could be released, this is not true for hardware.

Next, the presenter described how the above problem can be
solved by obfuscating the logic of the IC, that is, by hiding certain
wires from the view of the third parties. In practice, the IC is
split into two or more tiers. The top tier is fabricated in-house
and implements the wires that have to remain hidden. The
obfuscated circuit is outsourced and is fabricated on other tiers.

The presenter next described a formalization of the level of secu-
rity provided by circuit obfuscation. In particular, the presenter
defined the k-secure gate as one that is indistinguishable from
at least k-1 other gates in the circuit. If all gates are k-secure,
then the circuit provides k-security. This makes it hard for the
attacker to identify a particular gate, because they would have to
attack k gates as opposed to a single one.

Next, it was mentioned that it is computationally expensive to
find the minimum number of wires that can be hidden while
guaranteeing a k-secure circuit. There is a tradeoff between the
number of hidden wires and the amount of security. A greedy
algorithm was then presented to manage that tradeoff, and was
shown to be more effective than randomized selection.

Bill Walker (Fujitsu) asked about detecting malicious modi-
fications. The presenter noted that attackers can disable the
attack during testing so that it remains undetected and only be
activated afterwards.

Control Flow Integrity for COTS Binaries
Mingwei Zhang and R. Sekar, Stony Brook University

Mingwei first introduced control-flow integrity (CFI), a low-
level security property that raises a strong defense against many

attacks such as return-oriented programming. Previous work
requires compiler support or symbol information to apply CFI.
Instead, Mingwei mentioned that their work applies to stripped/
COTS binaries, with comparable performance to that of existing
implementations.

Mingwei talked about the key challenges: disassembling and
instrumenting the binary without breaking the low-level code,
and applying their technique to libraries. With respect to disas-
sembling, Mingwei mentioned they are using a mixture of linear
and recursive disassembling to mark gaps between pieces of code.

To maintain the correctness of the original executable as well
as all the dynamically loaded libraries, they maintain a global
translation table (GTT), which gets updated as modules are
loaded. Update to GTT is performed by a modified dynamic
linker and, in particular, the loader (ld.so).

To evaluate the correctness of their implementation, they suc-
cessfully applied their method to binaries of over 300 MB (240
MB being libraries). Moreover, Mingwei presented benchmarks
(SPEC) to evaluate the runtime overhead (4.29% for C programs),
as well as the space (139%) and memory (2.2%) overhead.

Zhiqiang Lin (UT Dallas) asked whether they had encountered
any false positives. Mingwei answered that so far they had not,
but if there were any, they would discover them.

HotCloud ’14: 6th USENIX Workshop on
Hot Topics in Cloud Computing
June 17–18, 2014, Philadelphia, PA
Summarized by Li Chen, Mohammed Hassan, Robert Jellinek, Cheng Li, and
Hiep Nguyen

Note: The first two sessions of HotCloud ’14 were joint sessions
with HotStorage ’14, and the summary of the keynote can be found
in the HotStorage ’14 summary on page 91.

Systems and Architecture
Summarized by Li Chen (lchenad@ust.hk)

Academic Cloud Computing Research: Five Pitfalls and
Five Opportunities
Adam Barker, Blesson Varghese, Jonathan Stuart Ward, and Ian Sommerville,
University of St Andrews

Adam Barker described five pitfalls and five opportunities in
academic cloud research in this talk. He argued that academia
is pursuing the wrong class of problems and should instead
conduct research with higher risk. The core of the problem is
the scale of low-level infrastructure that academia has access
to is limited, and therefore the research conducted is of lesser
value to the cloud computing community.

The first pitfall lies in infrastructure at scale. With more than
hundreds of thousands of servers in big cloud computing ser-
vices, academics can only recreate a small subset of the network,

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 83

REPORTS

and cannot replicate the scale. Therefore research may have less
value if the researcher does not have access to or partnership
with large clouds. The second pitfall is with abstraction, a key
feature of cloud computing. Academics see no value in “black
box” abstractions, and often need to reimplement the low-level
infrastructural components for comparison or prototypes,
without support from cloud providers. The third pitfall is with
unreproducible results from network simulators, simulations
with real-world trace data, and custom evaluation setups. Repro-
ducing the results in papers using these evaluation schemes is
nearly impossible. The fourth pitfall is about rebranding cluster/
grid computing research as cloud computing. Research on lower
levels cannot be tested by academic peers, and research on
higher levels may actually have a longer-term effect. The last
pitfall is about industrial relations. Current research programs
provided by the industry do not address the problem of not being
able to access low-level infrastructure.

Researchers should exploit the opportunities in user driven
problems. The properties of cloud computing can help solve a
number of problems in other domains such as scientific prob-
lems. Minimizing cloud resource usage given user derived
requirements is also an interesting area. Programming models
other than MapReduce should also be investigated, because
MapReduce does not fit for all computation tasks. Debugging
large-scale applications is very difficult due to the inherent
 complexity, scale, and high level of abstraction. This area does
not receive enough attention from academia. The fourth oppor-
tunity lies in Platform-as-a-Service environments. Building
environments on multiple cloud infrastructure and providing
a high-level interface for users pose interesting challenges.
 Elasticity is the last opportunity that Adam pointed out.
Dynamic provisioning is what differentiates cloud computing
from cluster/grid computing.

The first questioner pointed out that there is a huge concern
with intellectual property (IP) issues and legal issues. Adam
replied that the industry does not feel confident about sharing
their facilities because of IP issues. It’s really a chicken-and-egg
problem: Academia does not have the necessary IP to guaran-
tee deliverables, and industry does not want to share for the
same reason. A unified model that resolves these issues in the
industrial-academic relationship may be necessary. Another
attendee stated that datacenters are drastically different when
scaled up, so raising the level of abstraction actually hinders
the improvement that can be made by academia. Adam replied
that cloud computing and datacenter networking are not the
same and require different levels of abstraction. It is important
to question all layers in improving datacenter performance, and
for cloud computing, a higher abstraction level in fact provides
academics with more freedom.

Towards a Leaner Geo-distributed Cloud Infrastructure
Iyswarya Narayanan, The Pennsylvania State University; Aman Kansal,
Microsoft Corporation; Anand Sivasubramaniam and Bhuvan Urgaonkar,
The Pennsylvania State University; Sriram Govindan, Microsoft Corporation

Aman Kansal started by reviewing the factors affecting the
capacity implications of geo-distribution. Latency is the most
compelling argument for geo-distribution, as users all over
the world would like to be serviced by the nearest datacenters.
Another advantage of geo-distribution is failure recovery in case
of disasters, but the availability gains come at the cost of excess
capacity. Geo-distribution can also exploit regional differences
in energy cost.

Aman emphasized the problem of excess capacity, and continued
to examine what is the least capacity required. He formulated
a linear programming problem with the goal of minimizing the
sum of capacities in geo-distributed datacenters. The con-
straints include latency and capacity to service demand, before
and after failures. Aman also identified the trade-off between
latency requirement and capacity requirement—tighter latency
constraints lead to higher capacity requirements. He showed an
interesting result that the excess capacity required by latency
and availability jointly is similar to that of latency alone. He also
pointed out that routing to the nearest datacenter is not always
efficient, especially after a disaster.

Aman went on to describe the open challenges in two aspects:
infrastructure and software design. For infrastructure, the
previous optimization problem needs to be further examined to
consider more factors. Another issue is the fine-grained control
of latency and availability for different applications. Lastly,
spatial-temporal variations of failures and demands should be
exploited to achieve better capacity provisioning.

For software design, Aman emphasized request routing to
ensure that the demand is routed to the correct datacenter for
efficient capacity provisioning. Placing copies of states and data
for efficient user access in geo-distributed infrastructure is
another interesting challenge. It is also important for the soft-
ware to automatically scale the computation with the demand.
In the end, Aman came to virtualization, and mentioned that the
applications in the cloud should be able to exploit the flexibility
of geo-distributed virtualized datacenters.

The first questioner asked: If distribution of clients with differ-
ent latency classes will affect their formulation, what would be
the impact? Aman replied that adding more latency classes can
be addressed by small modifications to the formulation, and that
they plan on studying the impact in future work. The second
questioner asked how their geo-distributed model is affected
when the number of servers increases or decreases. Aman
answered that depends on the capacity of the infrastructure and
how the demand grows over time. In practical cases, land is more
important, so the number of servers will not vary significantly.
A third person asked about data consistency in distributed data-

84  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

centers. Aman replied that their model makes the assumption
that the consistency is handled already.

A Way Forward: Enabling Operating System Innovation
in the Cloud
Dan Schatzberg, James Cadden, Orran Krieger, and Jonathan Appavoo, Boston
University

Dan Schatzberg pointed out that the OSes used in the cloud are
often general purpose and not optimized for the cloud. A general
purpose OS supports multiple users and applications concur-
rently, while entire virtual machines in the cloud are often dedi-
cated to a single application. Dan argued for a reduced role for
the OS in cloud computing and presented the MultiLibOS model,
which enables each application to have its own customized OS.

Dan started by reviewing the unnecessary or relaxed require-
ments of general purpose OSes in the cloud: support for multiple
concurrent users, resource balancing and arbitration, and identi-
cal OS (symmetric structure) for all the nodes.

Dan described the MultiLibOS model as combining a general
purpose OS with a specialized OS. With this model, applica-
tions have flexibility in choosing their own OS’s functionalities,
from a full legacy OS to a lean customized library. In this way,
providing an application with a feature is simple and intuitive,
as one need not to go through the labyrinth of a legacy OS. Dan
also noted that MultiLibOS makes application and hardware
specialization easy, and allows for elasticity and full backward-
compatibility.

Dan discussed a few research questions for MultiLibOS. Library
development has many known issues, such as configuration,
compatibility, “versionitis,” fragmentation, reliability, and secu-
rity. Dan suggested language-level techniques to deal with these
issues and noted the importance of efficiently reusing libraries
when customizing for different applications; otherwise, a major
advantage of MultiLibOS is lost. Lastly, the improvement of a
specialized OS needs to justify the cost of development.

The first questioner asked about Dan’s intuition of how this was
going to work in a virtualized environment. Dan replied that
depends on how isolation is implemented in physical hardware;
they think it is a good match for virtualized settings. Another
attendee wondered whether there’s enough headroom to make
this work well. Dan replied that their preliminary results show
there is a gap, and their design does make improvement to
decrease this gap. The final questioner wondered how this is
 different from RAMCloud. Dan answered that it is along the
same line of research, but they focus on giving every application
its own customized system.

Software Defining System Devices with the “Banana”
Double-Split Driver Model
Dan Williams and Hani Jamjoom, IBM T. J. Watson Research Center;
Hakim Weatherspoon, Cornell University

With a botany analogy, Dan Williams showed us that there
can be a clean separation of Spike (backend driver) and Corm

 (hardware driver) in the virtualized cloud, and that the spike and
corm do not have to be on the same physical machine.

Dan first identified the incomplete decoupling of system devices
in the cloud. The virtual devices are dependent on the physical
hardware, which limits the flexibility of the cloud resource man-
agement. The split driver model in Xen, while enabling flexibility
to multiple access to hardware, fails to provide location inde-
pendence. To design a generic, software-defined mechanism for
device decoupling, he proposed the Banana Double-Split Driver
model (Banana for short).

Banana splits the backend driver in Xen into two parts, Corm
and Spike. Corm handles multiple accesses to the hardware, and
Spike handles the guest OS. Corm and Spike are connected by
wire that can be switched in local memory or network connec-
tions. Wires are controlled by the Banana controller, which is
software-defined and can create on-the-fly reconfigurations.

Dan demonstrated the Banana model by providing an alternative
approach to virtualize NICs in Xen, noting that Xen can cur-
rently support device-specific complete decoupling of NICs. The
management and switching of wires is achieved by integrating
the endpoint controller with the hypervisor. Dan mentioned that
they augmented the existing Xen live migration mechanism to
enable migration of wires and endpoints.

The experimental setup showed the Banana Double-Split model
works, but the overhead is large. It is exciting to see that they
can live migrate VMs from local cloud to Amazon EC2 without a
complex network setup. Dan showed that VM migration is sim-
plified with Banana, but the downtime is increased.

The first questioner pointed out that the guest VM does not have
as much detail about the hardware driver. Dan replied that if you
want a general framework/API, you will lose some flexibility.
The second questioner pointed out that their design requires a
taxonomy of all the types of hardware, and wondered whether
they had done this work. Dan answered that they had focused on
the dependency issues, and their proof-of-concept improves on
NICs for now. The final question was about the design’s sensi-
tivity to different devices. Dan replied that they had designed
something general for all devices. Different devices need to be
treated differently, but the authors feel that their model is the
way to do it.

Building a Scalable Multimedia Search Engine Using
Infiniband
Qi Chen, Peking University; Yisheng Liao, Christopher Mitchell, and
Jinyang Li, New York University; Zhen Xiao, Peking University

In this talk, Qi Chen delivered a key insight on how to scale
multimedia search in datacenter networks: With low-latency
networking, computation time is reduced by using more round-
trips to perform searches in a large media collection.

Vertical partitioning is known for its potential scalability for
multimedia search engines, yet the large number of indexed

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 85

REPORTS

features results in huge communication cost per search query.
Therefore it is impractical to implement on Ethernet.

But with high performance networking technologies like
Infiniband, vertical partitioning becomes viable, as the round-
trip time is only a few microseconds, as opposed to hundreds of
microseconds in Ethernet. In this work, they demonstrated the
practicality of vertical partitioning by building a distributed
image search engine, VertiCut, on Infiniband.

Qi described the two key optimizations in VertiCut. First,
 VertiCut performs an approximation of k-nearest-neighbor
search by stopping early (after getting enough good results). This
helps to reduce the number of hash tables read per query. Second,
VertiCut keeps a local bitmap at each server to avoid looking up
non-existent keys.

For the evaluation, Qi mainly described the comparison with
traditional horizontal cutting, dispatch, and aggregate schemes.
Qi showed that, with higher network cost (in terms of bytes sent
per query), vertical cutting is faster than horizontal cutting on
Infiniband. Qi also discussed the effects of the optimizations,
concluding that the first optimization results in an 80x speed-
up, and the second 25x.

The first questioner asked how the data is stored. Qi answered
that their workload is stored in a single DHT table, not on serv-
ers. The next questioner noticed a similarity to a previous work
on optimal aggregation of middleware and wondered whether
they plan to extend their applications. Qi said that in addition to
multimedia search, they will have more types of applications in
the future. Finally, someone asked whether they have a formal
treatment to deal with LSH randomness. Qi said that they have
analysis to back up the early stops, and have other approximation
methods that they are evaluating.

Mobility and Security
Summarized by Mohammed Hassan (mhassanb@masonlive.gmu.edu)

POMAC: Properly Offloading Mobile Applications to Clouds
Mohammed A. Hassan, George Mason University; Kshitiz Bhattarai, SAP Lab;
Qi Wei and Songqing Chen, George Mason University

Mohammed Hassan showed how computation-intensive mobile
applications can be offloaded to the cloud more efficiently. He
presented a framework that proposed a transparent approach for
an existing mobile application to be offloaded. In addition, the
authors suggested when the computation should be offloaded
and when it should be executed on the mobile device.

Hassan explained that mobile applications are getting more and
more resource hungry, but mobile devices are constrained by a
limited power supply and resources. Offloading computation
to the cloud can mitigate the limitations of the mobile devices.
But the current research either requires the applications to be
modified or requires a full clone image running on the cloud to
be offloaded. Hassan claims that their first contribution is to
provide a transparent mechanism for the existing applications

to be offloaded without modification. On the other hand, Hassan
also emphasized the timing of the offloading decision, which
depends on the network bandwidth and latency between the
mobile device and the server, and on the server-side load as
well. To make the offloading decision more efficiently, Has-
san showed that a learning-based classifier would make a more
accurate decision for offloading.

Chit-Kwan Lin (UpShift Lab) asked how the bandwidth and
latency between the mobile device and the server is measured.
Hassan replied that they are monitoring previous values and
using a moving average to predict the future bandwidth and
latency. He also explained that bandwidth and latency can be
well predicted by monitoring the network the mobile is con-
nected to. Michael Kozuch (Intel Labs) suggested that consider-
ing remaining battery power in making the offloading decision
can help more. Phillip Gibbons (Intel Labs) asked whether the
energy consumption is considered here for making the offload-
ing decision. Hassan replied that in future work they are plan-
ning to consider the tradeoff between energy consumption and
response time for making offloading decisions.

Mobile App Acceleration via Fine-Grain Offloading to
the Cloud
Chit-Kwan Lin, UpShift Labs, Inc.; H. T. Kung, Harvard University

Chit-Kwan Lin proposed a novel compression technique that can
boost mobile device performance by offloading. Lin included some
promising findings about the performance gain of the offloaded
performance.

Lin presented the importance of cloud computing for emerging
resource-intensive mobile applications. While offloading can
augment the computation power of the mobile devices, the band-
width and latency between the mobile devices and cloud impacts
the offloading overhead. With these circumstances, fine-grained
offloading may provide more performance gain.

To offload mobile computation, it is necessary to have a replica-
tion of the application in the cloud side to execute the offloaded
application there, and to synchronize the server-side replica-
tion’s memory blocks. Lin showed a novel technique to minimize
the synchronization data transfer overhead by compression.
In short, the change in the mobile device’s state is compressed
and sent to the server side. The server side synchronizes by
uncompressing the changes and thus updating itself. In this way,
offloading can be done without object marshaling and with less
overhead. At the end, the presenter demonstrated the effective-
ness with a handwriting recognition application.

Someone asked how change is sent to the server. Lin responded
that the changes are sent continuously. Another person asked
how the server side was executing the offloaded application. Lin
said that same exact application was running off the server side.
Ymir Vigfusson asked about overhead if there are lots of writes
and the mobile device state changes a lot. Lin replied that in

86  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

that case the compression technique might not help that much
because there would be a lot of overhead.

Leveraging Virtual Machine Introspection for
Hot-Hardening of Arbitrary Cloud-User Applications
Sebastian Biedermann and Stefan Katzenbeisser, Technische Universität
Darmstadt; Jakub Szefer, Yale University

Sebastian Biedermann proposed an architecture to improve
security settings of network applications in a cloud computing
environment. Biedermann proposed a technique to locate and
access memory locations of another VM for runtime analysis of
applications on VM.

Biedermann introduced his presentation by citing related work,
“hot-patching,” which enables runtime analysis of another VM
from the virtual machine introspection (VMI) by accessing
the VM’s memory. Hot-hardening is a similar approach that
continuously and transparently improves the security-related
configuration of running apps in a VM. At first the security or
configuration setting (it may be a file in the memory or storage)
of the target VM is identified and located. Then the VM is cloned
for inspection. After the VM is cloned, the settings of the cloned
VM are replaced or written with a different configuration to
see its impact on applications. Finding an application’s settings
file in the VM’s memory or storage is challenging. Biedermann
showed that the setting file can be found by searching for certain
settings’ patterns in the VM’s memory. Biedermann finally
showed the framework’s effectiveness with some real-world
applications (e.g., MySQL and OpenSSH).

The first questioner asked how the configuration files were
detected. Biedermann answered that they were using some
heuristics to look for the setting’s pattern. The second questioner
wondered about the latency of VM cloning. Biedermann replied
that it takes only few seconds to clone, which is acceptable. The
last questioner wanted to know how the settings changes are
injected in the cloned VM. Biedermann replied that it was done
by changing the memory/page of the target VM.

Practical Confidentiality Preserving Big Data Analysis
Julian James Stephen, Savvas Savvides, Russell Seidel, and Patrick Eugster,
Purdue University

Julian James Stephen proposed a framework to encrypt data for
MapReduce work in the cloud. Security and data confidentiality
are big concerns for cloud computing, where users have to trust
third-party cloud providers with private data. The proposed
framework showed that computation can be conducted in the
cloud over the encrypted data while the server side is not aware
of the actual content.

Stephen started his presentation by stating that the cloud has
a big potential for carrying computation, but it also comes with
the potential for security breaches like a data leak. But data can
be encrypted with fully homomorphic encryption (FHE) so that
the server side may carry the computation without knowing the
actual content. But FHE is associated with high overhead, while

partial homomorphic encryption (PHE) can keep the encryption
overhead acceptable and is capable of performing certain opera-
tions. Stephen proposed a framework, Crypsis, that transfers Pig
Latin script for MapReduce to accept encrypted data for compu-
tation. With an example, he demonstrated how a simple Pig Latin
script can be transferred to work with encrypted data. Here the
data is encrypted by a different encryption technique, and the
original operations are transformed to operate on encrypted data
by a user defined file (UDF). Stephen then compared the time
to execute original and encrypted scripts and observed a three
times overhead for the encrypted operations. The presentation
also included some limitations: namely, the proposed framework
does not support iterations; the UDF has to be defined by the
user; and although the data is encrypted, the data access pattern
is exposed when computation is carried in the cloud.

In the question and answer session, Phillip Gibbons (Intel Labs)
asked how encrypted data is read on the client side. Stephen
answered that the client side decrypts the data to find the result.

Keynote Address
Summarized by Cheng Li (chengli@mpi-sws.org)

Programming Cloud Infrastructure
Albert Greenberg, Director of Development, Microsoft Azure Networking

Albert Greenberg presented the framework they built inside
Microsoft to allow developers to easily manage the large-scale
cloud system. He started his talk by showing that the cloud
system has grown very fast in Microsoft. In the past four years,
computation and storage have doubled every six months, and a
significant number of customers have signed up to use the Azure
services. In addition, applications are not running in separated
environments; instead, they are concurrently sharing resources
within a single datacenter or across multiple datacenters.

All these trends urgently require an efficient and easy-to-use
management application, which should provide an unambiguous
language for architects to describe intent, codify design, and
generate full details of the design, and allow different applica-
tions to consume data. To achieve this goal, Albert’s team pro-
posed NetGraph, an abstract graph model of network, to specify
arbitrary network topology and state in an XML-like fashion.
To be more specific, he showed a few adaptations of the graph
model: physical network graph, data plane graph, control plane
graph, and even the overlayed network graph.

Without the graph model, in the conventional buildout scenarios,
a group of engineers played a very important role in transform-
ing the high-level design into a deployed and configured sys-
tem. PDFs and spreadsheets that described the design and are
often in vendor-specific formats were exchanged among them
to justify and debug the design. The obvious drawback of this
approach is that it is really impossible to automate. To ease the
developers’ work and make the design highly dependable, they
built a network graph generator and a network graph service
to make the best use of the graph model. Developers could use

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 87

REPORTS

the reusable and extensible plugin modules in the generator to
enforce the design principles. Additionally, the generator could
produce both human-readable and machine-readable description
files. The graph service stores the detailed design information in
an in-memory graph database, and offers APIs for fetching and
updating the information.

In addition to the automation, Greenberg mentioned the prob-
lems they found while managing the large-scale systems, such
as unexpected states, interference, dependencies, and so on.
To resolve these problems, they chose a state driven approach,
where they could model dynamic network changes in a network
state service (NSS). NSS knows all target states (good states)
and all observed states (maybe bad), and periodically checks the
difference between these two types of states to figure out and
reconcile unexpected behaviors.

Following the talk, many interesting questions arose. The first
was about the purpose of maintaining versioned objects. Green-
berg replied that all objects in the graph database are versioned
since they have to be able to roll back. The second question
concerned the quiescent point before applying updates. Green-
berg said that it is not practical to identify the quiescent point.
Instead, they could roll back if any mistakes had been made.
They also try to make the updates fast and incremental. The last
question was about access control (ACL). Albert pointed out that
ACL can conflict and overlap, so they designed a few automated
methods to constantly check ACL (e.g., set comparison) and flag
conflicts for an admin to investigate/resolve.

Diagnostics and Testing
Summarized by Hiep Nguyen (hcnguye3@ncsu.edu)

A Novel Technique for Long-Term Anomaly Detection in
the Cloud
Owen Vallis, Jordan Hochenbaum, and Arun Kejariwal, Twitter Inc.

Owen began by noting that existing work in anomaly detection
does not work well when dealing with long-term anomalies such
that just using the median is not good due to pronounced trend.
Owen described the observation with Twitter production data
that the underlying trend often becomes prominent when they
look for a longer time span (i.e., more than two weeks) using
time series data.

Owen then described the experience with exploring two approaches
to extract the trend component of a long-term time series using
STL Trend (seasonal, trend, and irregular components using
Loess) and Quantile Regression. Neither of these two worked
well in their experiments. He then introduced a technique called
Piecewise Median to fix the limitations of these approaches.
This technique computes the trend as a piecewise combination
of short-term medians.

Someone asked whether this technique is used in the real pro-
duction system and how the author would apply it. Owen said
they tested the technique with the production data, and they are
working with the team to deploy it in a real production system.

Another questioner asked whether the authors consider the
medians of nearby windows. Owen said it would be definitely
helpful to consider those medians.

PerfCompass: Toward Runtime Performance Anomaly
Fault Localization for Infrastructure-as-a-Service Clouds
Daniel J. Dean, Hiep Nguyen, Peipei Wang, and Xiaohui Gu, North Carolina
State University

Daniel started with describing the common problem with multi-
tenant cloud systems where the observed problem may come
from external sources such as resource contention or interfer-
ence or because of the software itself. If the admin can deter-
mine whether the performance anomaly is from an external
fault, system administrators can simply migrate the VM to
another physical node to fix the problem.

Daniel then introduced a system named PerfCompass that uses
a system call trace analysis technique to identify whether the
root cause of a performance anomaly is an external fault or is
an internal fault. The main idea of the technique is based on the
observation that the external fault will have a global effect on
the application, meaning most of the threads will be affected.
On the other hand, if the performance anomaly is caused by an
internal fault, only a subset of the threads is affected. Finally,
he described the results on testing the system with a set of real
internal faults and typical external faults, showing that the sys-
tem performed well with those tested faults.

John Arrasjid (VMware) asked whether the authors consider the
arguments of system calls. Daniel said that it would be definitely
helpful to consider that. He also mentioned that the way the
system does segmentation helps in grouping system calls with
similar arguments. Someone from VMware commented that
the authors may want to look at the console log because it might
be difficult to enable system call tracing in the real production
systems. Daniel said that not all applications generate a console
log, and system call tracing is lightweight.

MrLazy: Lazy Runtime Label Propagation for MapReduce
Sherif Akoush, Lucian Carata, Ripduman Sohan, and Andy Hopper, University
of Cambridge

Sherif described MrLazy, a system that relies on lineage (i.e.,
origin information for a piece of data) to ensure that potentially
sensitive data is checked against sharing policies applied to the
data when it is propagated in the cloud. The motivation for the
work is that existing work has various deployment challenges
and runtime overhead issues. Sherif stated that checking data
within a given trust domain continuously is not necessary and is
the main source of the overhead. MrLazy delays the enforcement
of data dissemination policies to the point where data crosses a
trust boundary.

Sherif then described the results that the authors performed on
a MapReduce framework. The results showed that MrLazy can
significantly improve the job running time.

There were no questions.

88  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

Mechanisms and Architectures for Tail-Tolerant System
Operations in Cloud
Qinghua Lu, China University of Petroleum and NICTA; Liming Zhu,
Xiwei Xu, and Len Bass, NICTA; Shanshan Li, Weishan Zhang, and
Ning Wang, China University of Petroleum

No presentation, paper only.

The Case for System Testing with Swift Hierarchical
VM Fork
Junji Zhi, Sahil Suneja, and Eyal de Lara, University of Toronto

Junji started by stating that software testing is challenging
because there are a lot of test cases that need to be executed,
which may take a very long time if performed sequentially. He
then gave an example of testing MySQL software. Junji then
motivated his work with the observation that multiple steps
 during testing are shared, the test cases share the same code
base, and a lot of test cases need to reuse the state of another test
case; the authors concluded that if they could reuse the state of
test cases, they could speed up the testing process.

Junji then described the idea of using VM fork to clone the VM
that has the state of the finished test case available to use for
multiple other test cases, thus allowing reuse and parallel test-
ing. He went on to describe how this would improve the testing
time in the MySQL example.

Someone asked whether the authors needed to assume that test
cases are deterministic and whether they had any thoughts on
applicability to non-deterministic test cases. Junji said that they
need to assume test cases are deterministic. Someone else asked
whether they can use OS fork instead of VM fork. Junji replied
that running multiple processes might end up not working
because of resource-sharing.

Economics
Summarized by Robert Jellinek (jellinek@cs.wisc.edu)

BitBill: Scalable, Robust, Verifiable Peer-to-Peer Billing
for Cloud Computing
Li Chen and Kai Chen, Hong Kong University of Science and Technology

Li Chen presented work on BitBill, a system that ensures verifi-
able accounting of billable events in the cloud. He noted that
more companies are using cloud computing, but that verifiable
billing is still an issue for both providers and tenants.

In particular, providers may have trouble accounting precisely
for all resource usage, which may in fact be detrimental to them
since they can undercharge. Tenants, on the other hand, cannot
perform an audit to verify that they are being billed correctly,
because the actual physical resource consumption is behind a
layer of abstraction. Tenants cannot trust providers under the
current model.

Chen said that the lack of trust is currently impeding a wider
adoption of cloud computing, and he presented several trust
models: two existing models, and the authors’ proposed model.
The first model is that of unconditional trust, which is currently
used in practice by commercial cloud providers. In this model,

the tenant trusts the provider to accurately record tenants’
resource usage and to bill accordingly. The tenants have no way
to verify that they are billed accurately. The second model—the
third-party trust model—uses a trusted third party to verify that
resource accounting and billing are accurate. One problem with
this model is that it introduces a central point of failure: the third
party. Furthermore, the third party must itself have enough
resources to perform accurate resource accounting, which could
turn out to be a bottleneck.

Chen then introduced a third model, the authors’ public trust
model, where trust is distributed across all nodes in a network.
The nodes maintain a single global history of billable events,
which the authors implemented using a peer-to-peer (p2p)
network to maintain resource accounting information across
all participating nodes. Here, the only assumption is that
the majority of nodes in the network are honest (i.e., will not
introduce false events to the global log, or omit true ones). This
is reinforced by the fact that all nodes share the same physical
resource pool, and so one primitive resource, such as a CPU
cycle on a single core, cannot be billed to two tenants.

The authors’ implementation of this public trust model uses
the Bitcoin-like solution to the Byzantine Generals Problem to
ensure they have a trustworthy distributed log of billable events,
even in the presence of untrustworthy individual nodes. Here,
every billable event is broadcast to all nodes and is signed by
the announcing party. To avoid false announcements, they use
a simpler version of the proof-of-work (PoW) technique used in
Bitcoin, where any announcing party must solve a computation-
ally intensive problem to send along with the announcement.
These PoW problems are NP-hard, so that they are easy for
nodes to verify but hard for them to forge, ensuring that double
billing announcements do not occur.

Chen then briefly explained the implementation of BitBill, which
uses a Merkle tree so that every non-leaf node is labeled with the
hash of the labels of its children nodes. Once a node finishes the
PoW problem, it broadcasts its block to all other nodes, which
then verify that block and use it to construct the next block. This
yields the important property that the existence of an item in the
log means that a network node has accepted it, and the blocks
subsequently added to the log further affirm its validity. Ties are
broken such that a given node works on the longest chain it sees,
and nodes add any blocks they’ve missed by pulling them from
future announcements they receive.

Chen noted that in their evaluation so far, BitBill appears to be
much more scalable than the third-party-verifier model, and
they are continuing evaluation. He then discussed deployment,
resource monitoring, and security, saying that BitBill can be dis-
tributed by providers for users to install as a package or included
in the user’s VM, that BitBill can be used as the basis to extend
existing work on verifiable resource accounting, and that due
to the PoW approach, BitBill is secure as long as the majority of
participating nodes are honest.

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 89

REPORTS

Michael Kozuch (Intel Labs) asked how often verification needs
to happen, and what a standard policy would look like. Chen
answered that it would depend on how the provider would want
to charge the tenants, and that sampling and verification could
happen at varying granularities.

A Day Late and a Dollar Short: The Case for Research on
Cloud Billing Systems
Robert Jellinek, Yan Zhai, Thomas Ristenpart, and Michael Swift, University
of Wisconsin-Madison

Robert Jellinek presented work on cloud billing systems, focus-
ing on existing systems’ lack of transparency, long update delays,
unpredictability, and lack of APIs.

Jellinek began by noting that despite the fact that much attention
has been paid to performance, reliability, and cost studies of the
cloud, there has been no study of the billing systems themselves.
The predominant pay-as-you-go pricing model relies upon com-
plex, large-scale resource-accounting and billing systems that
are not fully understood by cloud computing consumers.

The main question the authors considered was how one can
track resource usage in real time and at fine granularity while
maintaining accuracy and not hurting performance. They inves-
tigated Amazon Web Services (AWS), Google Compute Engine
(GCE), and Rackspace public cloud. Jellinek noted that they
were able to reverse-engineer the timestamps corresponding to
various billing events, uncover several bugs in the providers’ bill-
ing systems, detect systematic undercharging due to aggregation
or caching, and characterize the performance of billing latency,
which turned out to be substantial across all platforms.

Jellinek then described the methodology for their measurement
study, which involved instrumenting providers’ API calls to col-
lect timestamps of all important instance lifetime events, largely
by polling the APIs for instances’ state. They would then launch
an instance, execute a workload to test compute-time billing
thresholds, storage, or network usage, fetch instance-local data
related to the workload in question, terminate the instance,
and then poll providers’ various billing interfaces to check for
updates. Billing latency, which they define as the time between
when a resource is consumed and when the corresponding
charge becomes available on a given billing interface, is recorded
when a billing update is registered.

Jellinek then described various billing interfaces, including
the Web-based GUI interfaces available for all three providers,
and the additional CSV interfaces and Cloudwatch monitoring
service available on AWS. Collecting information from the GUI
interfaces required screen scraping, and none of the interfaces
were particularly user-friendly. No providers offered billing APIs.

The authors found that billing updates would not necessarily
occur atomically and that they occurred with high and unpre-
dictable latency. Among other things, this made experiments
difficult, since it was necessary to wait for longer than the great-
est observed latency to be sure all updates had been registered.

AWS, GCE, and Rackspace updated with average latencies of
6 hours 41 minutes, 22.5 hours, and 2.2 days, respectively, and
with high variance. This shows that billing updates are both
slow and unpredictable, which he claimed is bad for consumers
who wish to optimize their deployment decisions.

Jellinek then described their experiments to measure when
billing for an instance begins and ends, noting that this is
ambiguous since most providers are not specific enough in their
documentation or in the timestamps they provide. This means
that, if a user thinks she has only run an EC2 instance for 3590
seconds, she may in fact get charged for two hours of usage,
depending on how she measures an instance hour. The authors
found that, despite the fact that they were able to determine
what timestamps correspond to the start and end of billing for
the three providers, they were not able to measure this precisely.
This is due to the semantic gap between the providers’ knowl-
edge of their billing timestamps and the customers’ knowledge.
If the provider does not report its record of the relevant time-
stamps, a customer cannot know them precisely since they have
to poll the provider’s APIs for updated instance-state informa-
tion. This is subject to jitter from variable network latency,
server response time, and polling granularity. He then described
a bug they found in EC2 that would yield two minutes on average
of free compute time under certain conditions relating to when
the instance was terminated.

In the rest of the talk, Jellinek described results on storage and
network tests. The authors found a bug in Rackspace persistent
storage volumes that led to overcharges when volumes became
stuck in an intermediate stage, unusable but still being billed. He
then noted that the authors found that billing for IOPS in EC2
was subject to a substantial amount of aggregation on sequential
reads and writes, which leads to underbilling for the customer.
While this may seem good, the downside is that billing for IOPS in
EC2 is still opaque and ultimately unpredictable to the customer.
Finally, he noted the authors’ discovery that billing for network-
ing is also systematically slightly undercharged in EC2, and that
they discovered a bug in Rackspace’s network billing that led to
more severe but less common undercharges.

In concluding, Jellinek suggested that providers should offer a
billing API in which they expose key parts of their internal bill-
ing-related data and metadata (billing start/stop timestamps,
network and storage billing data, etc.). He closed by noting that
important future work could be done to better understand the
tradeoffs inherent in implementing transparent, real-time bill-
ing interfaces, and how we could optimize billing interfaces,
and the underlying resource-accounting mechanisms, in light
of these tradeoffs.

An attendee from IBM asked whether they had tried testing
from different locations other than from the university. Jellinek
responded that they had not, but that that was definitely a good
idea to pursue in verifying the results.

90  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

A second attendee asked whether they had tried creating a small
cloud environment and polling it to see whether the actual
resource consumption by the guest OS matched the cloud envi-
ronment’s measurements. Jellinek responded that they had not
done that, but that it sounded like another good idea to pursue to
verify their results.

A representative from VMware asked whether the authors had
considered viewing billing as a statistical process, rather than as
a process of exact resource accounting. Jellinek responded that,
from the conversations he’s had, it seemed that cloud providers
are aware that exact resource accounting is a hard engineering
problem that requires a significant amount of engineering effort
and hardware. In practice, it is definitely conceivable that behind
the scenes there is a certain amount of sampling and rounding
down, such that any inconsistencies are in favor of the consumer,
but ultimately allow the provider to conserve costs associated
with exact resource accounting. This is speculation though,
since to really know, one would have to understand the underly-
ing mechanisms, which are proprietary.

A Case for Virtualizing the Electric Utility in Cloud
Datacenters
Cheng Wang, Bhuvan Urgaonkar, George Kesidis, Uday V. Shanbhag, and
Qian Wang, The Pennsylvania State University

Cheng Wang presented work on virtualizing the electric utility
in cloud datacenters. He began by discussing how expensive it is
to power a datacenter; the cost of building the IT infrastructure
is often comparable to building the power infrastructure that is
needed to keep the servers powered. The same is true for the util-
ity bill that is used to power the servers each month. These are
both on the same order as the IT investment itself.

Wang then discussed how a datacenter currently recoups operat-
ing expenses from tenants, and how it should actually be done.
Today, operating expenses are recouped by charging for virtual-
ized IT resources such as compute time, storage, and network
resources. However, electricity is billed in a very different way.
One common way it’s billed is “peak-based pricing,” which dif-
fers from how we consume electricity at home. Home consumers
spend a certain amount per kilowatt-hour (kWh) of electricity
consumed, and that’s it. But for large consumers such as data-
centers, they pay this charge as well as an additional charge that
is connected with their pattern of consumption. Essentially, they
pay more if their consumption is more bursty. So they may pay
$0.05/kWh for usage up to some point, but would then pay $12/
kWh for peak power consumption drawn above some wattage at
a given point in time. The takeaway, says Wang, is that there is
a peak-to-average pricing ratio of 3:1, and this ratio affects the
economics of cloud computing. The question is how this gets
passed on to the consumer.

Wang claims that it is passed on to consumers unfairly, in a way
that does not accurately reflect cloud consumers’ share of the
peak-power consumption costs incurred by the cloud provider.
In particular, he noted two shortcomings: a lack of fairness in

how tenants get charged and a loss of cost-efficacy for both cloud
tenants and providers.

To understand the unfairness, Wang encouraged the audience to
consider two tenants that consume the same amount, but where
tenant T1 has low variance, and T2 has extremely high variance,
including consumption at peak times. In the current model,
both tenants are charged the same amount because they pay
fixed prices for virtualized compute resources, but T2 imposes
a higher cost on the cloud provider than T1, because T2 contrib-
utes to peak-power demand that is three times more expensive
than non-peak power.

The solution, Wang claims, is to virtualize the utility so that the
energy costs a tenant incurs are passed on to them and not redis-
tributed unfairly across all tenants. In essence, this means pass-
ing on the pricing structure of electricity to tenants themselves,
so that these prices reflect the value the tenants derive from
using that power. Wang related this to building exokernels and
letting applications carry out their own resource-management
solutions. Here, with a virtualized utility, tenants will be incen-
tivized to use their resources more efficiently and will manage
their usage more carefully based on those new incentives.

In practice, Wang says that this approach should be used with
large, long-lasting tenants. It will be more difficult for them to
take this extra factor into account and to optimize for cost, but
will ultimately let them feel like they are really operating within
the datacenter, with all its associated concerns, and provide a
more equitable distribution of costs.

Phillip Gibbons (Intel Labs) noted that the main challenge
seemed to lie in the peak pricing model itself. Passing on prices
according to that structure means that you never want to be
the customer who contributes to peak power, but you want to be
right after them. Gibbons said that this seems like an artificial
artifact of that pricing model. Wang responded that peak power
is just determined by the behavior of the consumer, not time of
day or anything else. Gibbons responded that it’s so easy to game
the system then, by just avoiding contributing to peak power
consumption.

An attendee from Boston University noted that Wang had made
a comparison to exokernels, and that one of the main challenges
exokernels faced was that of aggregation: When you lower the
level of abstraction, it makes it harder to perform aggregation.
He asked whether cloud computing would similarly lose out on
the benefits of aggregation if this layer of abstraction is removed.
Wang replied that he did not suggest that the existing inter-
face should be replaced but, rather, augmented. In his proposed
interface, tenants would access their normal interface but also
see metrics about how much they’re contributing to peak power
consumption.

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 91

REPORTS

HotStorage ’14: 6th USENIX Workshop on
Hot Topics in Storage and File Systems
June 17–18, 2014, Philadelphia, PA
Summarized by Rik Farrow, Min Fu, Cheng Li, Zhichao Li, and
Prakash Narayanamoorthy

Keynote Address
Summarized by Rik Farrow (rik@usenix.org)

The Berkeley Data Analytics Stack, Present and Future
Michael Franklin, Thomas M. Seibel Professor of Computer Science,
University of California, Berkeley

Franklin began by explaining that, in the Algorithms, Machines,
and People Lab (AMPLab), they have been building the Berkeley
Data Analytics Stack (BDAS), pronounced Bad Ass. BDAS is
composed of many elements that were introduced at past Hot-
Cloud workshops, and Franklin told us he would walk us through
the stack, what it is and why they built it. The reason for BDAS is
that there are cascades of data being generated: logs, user gener-
ated, scientific computing, and machine to machine (M2M)
communication. Instead of defining big data, Franklin provided
the example of Carat, an application that collects data on apps
and power use on smartphones, sends it to be processed using
AWS and a BDAS framework called Spark, and then provides
personal recommendations to the users of the apps about any
energy hogs they may be running. What’s interesting about big
data is that you can see things that you can’t with less data.

In order to make a decision, you have the envelope of time,
money, and answer quality. You want to stay within that enve-
lope, and the first thing researchers and programmers do is
increase performance. When they hit the wall, they can trade
off for less quality, or pay more for better quality. Another way
to think about this is via algorithms, machines (warehouse
computing), and people. In AMPLab, they want to use these
resources to solve the big data problem.

MapReduce is a batch processing algorithm that proceeds
through grouping and analysis, but there are a lot of other things
that people do with databases. MapReduce can be specialized
for streaming, working with graphs, or targeted for some other
design point. The BDAS approach is to generalize, rather than
specialize, MapReduce by adding general task DAGs (directed
acyclic graphs) and data sharing, making streaming, SQL,
and machine learning not just possible but faster than the
specialized versions of Hadoop MapReduce. Spark, the BDAS
core execution engine, is smaller than Hadoop, Storm (stream
processing), Impala (SQL), Giraph (Graph), and Mahout (ML).
And even with other modules added to handle machine learning,
graph processing SQL, and streaming, Spark is still smaller than
any of the other popular tools that can do just one of these activi-
ties. Like these other tools, Spark is open source, which meant,
among other things, that students had to decide to produce qual-
ity code instead of producing more papers.

Franklin went on to describe several other projects, starting
with MESOS, a system that allows sharing a cluster with dif-
ferent frameworks, like Hadoop, Storm, and Spark. Tachyon is
an in-memory, fault-tolerant storage system that can be shared
across different frameworks. Spark is now Apache Spark, and
Hadoop may fade away, replaced by Spark or something else, not
bad for a student project (Matei Zaharia’s, who wrote about his
creation for ;login:).

RDD (Resilient Distributed Datasets), a key part of Spark,
came out of a desire to improve the performance of Hadoop for
machine learning. RDD caches results in memory rather than
on disk, as Hadoop does, taking disk processing out of the critical
path. RDDs maintain fault tolerance by including the transfor-
mations needed to recreate immutable stores of data. RDD also
works well for SQL (Shark), which allows Hive queries to run
without modification 10x to 100x faster. SparkSQL is inside of
Spark 1.0, and Shark will be ported to run within Spark. BlinkDB
provides a SQL interface that provides approximate answers,
the benefit being speed by using sampling and displaying the
error range. Future work will add the ability to perform online
transaction processing (OLTP), which will require modifica-
tions to the way that RDD works to support frequent, concurrent
updates. Graph processing (GraphX) is another ongoing project.

Franklin ended his talk with reflections and trends. While “Big
Data” has the word “Big” in it, the real breakthrough isn’t scal-
ability—it’s really about flexibility. With a traditional database,
you begin a process called ETL (extract, transform, load), and
import the data in a vault where you get a promise that your data
will be reliably stored. In this type of database, there is one way
in and one way out, but the price you pay is you lose access to that
data except via SQL. In Hadoop, you split that up into storage
and multiple methods of accessing that data. Another type of
flexibility is that there is no schema: data can be unstructured.
It can be structured (SQL schema), semi-structured (XML), and
unstructured (Hadoop and others).

Also, in big data, people have ignored single node performance.
That needs to change, because for small clusters, a single node
is more efficient: Distributed systems are hard. In the AMPLab,
they want to make BDAS work better for uses that require ran-
dom write and random read, neither of which Spark and RDD are
good at. These are the directions AMPLab is going.

Franklin finished a bit after his allotted time, and so Q&A was
limited to a single question. Steve Muir (Comcast) pointed
out that Franklin didn’t talk about programming languages or
traditional systems stuff, and wondered whether that has been a
difficult change. While the Enterprise has adopted Java, Spark
was written in Scala. Are there benefits from abandoning C++?
Franklin replied that Steve is right, particularly with single node
performance. Where you need to pay attention to low-level stuff
is when you start benchmarking. Cloudera Impala (SQL) is writ-
ten in C++. But there are things you can do to avoid JVM issues.

92  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

Money, Batteries, and Shingles
Summarized by Min Fu (fumin@hust.edu.cn)

qNVRAM: quasi Non-Volatile RAM for Low Overhead
Persistency Enforcement in Smartphones
Hao Luo, Lei Tian and Hong Jiang, University of Nebraska, Lincoln

Hao Luo argued that since smartphones equipped with irremov-
able batteries have become more popular, it is time to rethink the
memory volatility in smartphones. Luo proposed qNVRAM to
reduce performance overhead without decreasing persistency
level to less than traditional journaling and double-write persis-
tency mechanisms.

Luo first introduced existing persistence enforcement mecha-
nisms (including journaling and double-write schemes) in
smartphones, which result in significant overhead due to addi-
tional I/Os. Luo then introduced four failure modes in Android
smartphones, including application crashes, application hangs,
self-reboots, and system freezes. All four modes could result in
loss of application data. Given that more and more smartphones
are equipped with irremovable batteries, the DRAM can be
considered as a quasi NVRAM. Luo then proposed qNVRAM,
an easy-to-use memory allocator. When one of the four failure
modes happens, the application data in the qNVRAM pool can
be restored. qNVRAM significantly speeds up the insert, update,
and delete transactions in the SQLite use case.

Someone asked how to ensure data integrity in physical memory.
Luo answered that ECC is implemented in the kernel and check-
sums are used in the database. Xiaosong Ma (Qatar Computing
Research Institute) asked about the energy consumption. Luo
answered that qNVRAM can reduce energy consumption. Some-
one asked, what if I dropped my phone on the floor? Luo answered
that this rarely occurs. Dai Qin (University of Toronto) asked
whether the data would be lost if the battery has died. Hao’s
answer was no.

Novel Address Mappings for Shingled Write Disks
Weiping He and David H.C. Du, University of Minnesota, Twin Cities

Weiping He proposed several novel static logical block address
to physical block address mapping schemes for in-place update
Shingled Write Disks (SWD). By appropriately changing the
order of space allocation, the new mapping schemes improve
the write amplification overhead significantly.

He started by describing SWD. He explained that in-place SWD
requires no garbage collection and complicated mapping tables
of out-of-space SWD, but suffers from the write amplification
problem. He observed that a simple modification of the writing
order of the tracks can reduce the write amplification, such as
writing tracks 1 and 4 first. He then presented three novel map-
ping schemes, including R(4123), 124R(3), and 14R(23). These
mapping schemes could improve update performance signifi-
cantly when SWD space usage is less than 75%.

The first question was whether there are any workloads that
revert the advantage of the new address mapping schemes. He

replied that general workloads won’t revert the advantage. The
second question was whether the new address mapping schemes
are designed to take advantage of temporal localities. He’s
answer was no. Nitin Agrawal (NEC Lab) asked about the age of
the disk model used in the experiments. He replied that it’s about
10 years old but is the newest they can get. Lots of researchers
are still using it.

On the Importance of Evaluating Storage Systems’ $Costs
Zhichao Li, Amanpreet Mukker, and Erez Zadok, Stony Brook University

Zhichao Li argued that evaluating storage systems from a
monetary cost perspective becomes increasingly important. Li
built a cost model, and evaluated both tiering and caching hybrid
storage systems.

Li started by describing two kinds of hybrid storage systems:
tiering and caching architectures. Li said performance alone is
not enough to evaluate a hybrid system and dollar cost matters.
An empirical TCO (total cost of ownership) study is also lacking
when systems deploy SSD. Li then presented a cost model for
hybrid systems, including upfront purchase as well as TCO. Li
compared the two architectures of hybrid storage systems in
terms of monetary cost. The results are workload-dependent.
Li also said the cost model has several limitations, such as not
including computer hardware, air-conditioning, and so on.

Three people asked questions about the cost model, including
someone from Red Hat, Xiaosong Ma (Qatar Computing Research
Institute), and Peter Desnoyers (Northeastern University).

A Brave New World (of Storage System Design)
Summarized by Zhichao Li (lzcmichael@gmail.com)

Towards High-Performance Application-Level Storage
Management
Simon Peter, Jialin Li, Doug Woos, Irene Zhang, Dan R. K. Ports, Thomas
Anderson, Arvind Krishnamurthy, and Mark Zbikowski,University of
Washington

Simon Peter proposed a novel architecture to move the operat-
ing system storage stack off the data path for optimized perfor-
mance. The idea is based on the observation that the operating
system storage stack is becoming the bottleneck in the I/O path.

Simon began the presentation by stating that file system code is
expensive to run. He illustrated the transition from today’s stor-
age stack to their storage architecture where the storage stack
(block management and cache) is moved to user-level. Simon
then discussed the proposed architecture in more detail. In their
storage hardware model, the kernel manages virtual storage
devices and virtual storage areas (VSA). The VSA maps from
virtual storage extents to physical storage extents, and it is guar-
anteed that there is at least one VSA per application. The VSA
also handles the global file name resolution and uses persistent
data structures for high-level APIs.

They implemented a case study system using FUSE based on
the idea illustrated above. Evaluation against Redis showed

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 93

REPORTS

that their system cut SET latency by 81%, from 163 s to 31 s.
Simon then summarized their study by stating that leveraging
application-level storage eliminates I/O bottleneck and achieves
a 9x speedup compared with Redis, and it scales with CPUs and
storage hardware performance.

Someone from VMware asked for the statistics of context
switches in the system. Simon replied that there was basically
no context switch since only library calls were involved. The
attendee then asked whether it is possible to just modify OS
for the same purpose. Simon said no and stated that doing so
increases the attack space within the kernel and will only make
the complex system even more complex. Geoff Kuenning (Har-
vey Mudd College) asked how the system scales when there are
millions of files being accessed. Simon replied that it is possible
that some applications will slow down, but other applications
can access millions of files efficiently. Peter Desnoyers (North-
eastern University) asked what the authors think of customizing
OS functionality for different applications either in kernel or in
user-level. Simon replied that it is hard to answer and continued
by stating that user space is easy to experiment with and work-
ing with the kernel is complex, and so they choose to go with
user-level. Steve Swanson (UCSD) asked about the fundamental
difference between file access and block access. Simon replied
that this is a good question and files have names associated
with them. Margo Seltzer (Harvard School of Engineering and
Applied Science and Oracle) asked whether Simon could com-
ment on Exokernel since Exokernel appears similar to Arrakis.
Simon replied that the difference lies in the fact that hardware is
now different, which matters more for storage.

NVMKV: A Scalable and Lightweight Flash Aware
Key-Value Store
Leonardo Mármol, Florida International University; Swaminathan
Sundararaman and Nisha Talagala, FusionIO; Raju Rangaswami, Florida
International University; Sushma Devendrappa, Bharath Ramsundar, and
Sriram Ganesan, FusionIO

The idea that Leonardo Mármol presented for a f lash aware
key-value store is to examine the Flash Translation Layer (FTL),
instead of the upper-level key-value software, to leverage SSD in
an optimal way.

Leonardo began by introducing key-value stores and then dis-
cussing the limitations of existing solutions—for example, better
performance only on HDD and older SSDs, requiring compac-
tion/garbage collection and introducing a write amplification
problem, from 2.5x to 43x in one example. Leonardo then took a
look at FTL, which manages data in a way similar to a key-value
system, and proposed to move almost everything (except the
key-value hashing mechanism) to the FTL for optimal effi-
ciency. This is a new approach by cooperative design with FTL
to minimize auxiliary write amplification, maximize application
level performance, and leverage FTL for atomicity and durability
by extending the interface. Leonardo then discussed the classes
of key-value store: disk optimized and SSD optimized.

Leonardo next talked about the design: Sparse address mapping
(LBA = hash(key)) leads to FTL sparse mapping, and trans-
lates logical to physical addresses. This is made possible by
the extended FTL interface (i.e., atomic write and atomic trim;
iterate, query an address). Leonardo further stated that hashing
and collision is achieved by polynomial probing: Their software
tries eight positions before failing. In their evaluation, microben-
chmark results are generally positive and beat LevelDB even at
low thread counts and without FS cache; the YCSB benchmark
shows that their system beats LevelDB in all conditions as well.
Leonardo concluded by proposing FTL cooperative design for
simple key-value store design and implementation for high per-
formance and constant amounts of metadata.

Michael Condit (Red Hat) asked why LBA and PBA are two to
three times larger in space. Leonardo replied that it is because
of a more efficient caching implementation. Margo Seltzer
asked why they only compared with LevelDB when there are
lots of other available key-value stores. Leonardo replied that
there is no particular reason why they chose LevelDB and it is
future work to compare against other key-value stores. Margo
also commented that there is paper from FAST ’14 that looks
into the cooperative file system design with SSD, and suggested
Leonardo look into that. Leonardo agreed. One attendee from
VMware asked about operations for key lookup. Leonardo replied
that it depends on the hashing and the key being looked up. In
most cases, Leonardo continued, there is only one I/O for key
lookup, and under other cases, it may need multiple operations.
They have set a limit of eight lookups before giving up.

FlashQueryFile: Flash-Optimized Layout and
Algorithms for Interactive Ad Hoc SQL on Big Data
Rini T. Kaushik, IBM Research—Almaden

Rini Kaushik introduced FlashQueryFile: a flash-optimized lay-
out and algorithm for interactive ad hoc SQL queries on big data.
The idea is to optimize the data format in consideration of the
underlying SSD characteristic for optimized big data analysis
usage of flash.

Rini started the talk with the motivation that there are many use
cases for ad hoc SQL queries, and storage plays an important role
in ad hoc big data queries. Flash in a big data stack is faster and
cheaper than DRAM, is non-volatile, and incurs lower energy
and better total cost of ownership. Rini then discussed the chal-
lenges in flash adoption: Systems are currently HDD optimized;
suboptimal performance/dollar on flash; flash sequential band-
width is only 2–7x faster than HDD; flash is popular in OLTP, but
not so much in OLAP or SQL data processing. Rini then took a
look at the opportunity for data reduction in OLAP by looking at
TPC-H Query 6. For selectivity, there are lots of irrelevant data
reads. Rini then talked about flash optimized FlashQueryFile
(FQF) challenges: Skipping data is intuitive in the projection
phase as row IDs of interest are already known; simple random
accession of data is not feasible; the same layout does not work
across various column cardinalities.

94  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

Rini then introduced selection-optimized columnar data layout
and projection-optimized columnar data layout in FQF. In the
evaluation, Rini talked about the experimental setup. In terms of
results, FQF achieved 11x–100x speedup and achieved a 38% to
99.08% reduction in data read compared with ORCFile on flash.

Margo Seltzer asked what happens when OLTP, instead of OLAP,
is made flash aware. Rini replied that scalability is one issue and
another issue is that the majority data of OLTP is read-only and
no update is required in this case.

Hotpourri
Summarized by Cheng Li (chenglii@cs.rutgers.edu)

Assert(!Defined(Sequential I/O))
Cheng Li, Rutgers University; Philip Shilane, Fred Douglis, Darren Sawyer,
and Hyong Shim, EMC Corporation

Cheng Li presented his research on revisiting the definition of
sequential I/O. He first motivated the work by addressing the
importance of the concept of sequential I/O, because many opti-
mizations were made based on the concept of sequentiality to
improve performance of disk or tapes. Many applications lever-
age sequential I/O such as caching and prefetching. In addition,
many non-rotational devices such as SSDs favor sequential I/O
because writes with large I/O size can reduce the number of SSD
erasures, which improves SSD lifespan. Finally, a clear defini-
tion of sequential I/O helps classify workload characteristics,
which will benefit the system researcher, trace analysis, and
synthetic I/O generation.

Cheng showed a few definitions of sequential I/O and did a live
survey with the audience, asking them which definition best
matched their intuition. More people from the audience pre-
ferred the second definition of sequential I/O, but there was no
consensus. Cheng suggested that sequentiality is heavily used
in literature but rarely defined, and defined in an inconsistent
way. Cheng used a big-data driven approach to compare different
sequentiality metrics.

Cheng reviewed several definitions of sequentiality and proper-
ties of sequential I/O that might impact the sequentiality defini-
tion. First, he showed the canonical definition of sequentiality,
the consecutive access ratio, defined as the fraction of consecu-
tive accesses. Then he presented another way of measuring
sequentiality, the consecutive bytes accessed. The consecutive
bytes accessed incorporates the I/O size so it captures more
properties compared to the simple consecutive access ratio.
Then Cheng presented a strided range property that allows gaps,
small backward seeks, and re-access continuations to be consid-
ered as sequential accesses. This property improves the strict
definition of sequentiality. Cheng presented the multi-stream
property that leverages application information to separate out
mixed I/O streams and an inter-arrival property that defines
consecutive I/O requests with long intervals as non-sequential.

Cheng presented the methodology of this study. He looked at
the different combinations of the sequentiality properties in the

definition. Then he tried to use different metrics to measure
sequentiality of storage traces. He compared a ranked list pro-
duced by different metrics. If all metrics provide the same view
towards sequentiality, then it doesn’t matter which definition to
use; otherwise, it’s necessary to pick metrics that best align with
the use case and study the correlation of different metrics.

Cheng presented several interesting results. The primary find-
ings are: (1) Different sequentiality metrics provide different
views towards sequentiality; (2) the metrics that incorporate
I/O size show a more consistent view when quantifying access
patterns; (3) many sequentiality metrics are negatively corre-
lated, which means the results can change completely depending
on which metrics to use; (4) although there might not be a global
metric for sequentiality, system researchers should pick one that
best aligns with the use case and state which definition to use.

Peter Desnoyers (Northeastern University) asked about what
if the same application uses different metrics. Cheng answered
that he looked at caching as an example, and different metrics
indeed produce diverse different sequentiality values, which
makes it hard to make a conclusion based on different metrics.

Towards Paravirtualized Network File Systems
Raja Appuswamy, Sergey Legtchenko, and Antony Rowstron, Microsoft
Research, Cambridge

Sergey Legtchenko motivated the work by comparing VHD and
NFS with emerging hardware. Then he asked, what are the trad-
eoffs in choosing one versus the other? Are current mechanisms
sufficient with emerging hardware?

Sergey quantified the VHD overhead in the datacenter today and
contrasted this with the VHD overhead in emerging datacenters.
VHD causes high overhead but is fully compatible with other fea-
tures. NFS incurs low overhead but is incompatible with other
features. Clearly, there is a need for a new data access mecha-
nism that can avoid nesting like NFS, and also enable hypervisor
interception like VHD. So this work proposed a paravirtualiza-
tion scheme.

The paravirtualized NFS client performs first-level DRAM
caching and passes through cache misses to the hypervisor
that acts as a proxy, while the hypervisor NFS client achieves
second-level caching with flash or memory. Existing protocols,
like SMB, can be used for forwarding requests to the NAS server.
It is non-invasive, backward-compatible data access. There is no
revisiting the guest-host division of labor.

There are several paravirtualization tradeoffs. The advantages
of paravirtualized NFS client shows performance similar to
NFS, feature compatibility similar to VHDs. In addition, it sup-
ports end-to-end semantic awareness. So clients can use NFS
protocols for accessing and sharing data. And unlike VHD, files
stored within an NFS server can be shared.

www.usenix.org OCTOBER 2014 VOL. 39, NO. 5 95

REPORTS

There are still challenges: e.g., implementing the low-overhead
guest-host file I/O bypass, implementing file-level protocols.
Still, there is a lack of full-system virtualization.

In conclusion, storage hardware is changing quickly; there
is more low-latency RDMA-based access to storage class
memory. There is a need for flexible, overhead-free data-access
mechanisms. NFS is overhead free but incompatible with other
features. VHD is compatible, but suffers from overhead due to
translations. The proposed paravirtualizing NFS client is as fast
as NFS, compatible as VHD. Paravirtualized NFS is non-inva-
sive and builds on well-established protocols and interfaces.

The first question was for a clarification to avoid the confu-
sion between the term NFS that the talk used referring to the
general concept of network file systems and the NFS protocol.
Sergey answered that they were using NFS to refer to a network
file system, not the NFS protocol. The second question was on
the experimental setup: Which version of the SMB protocol
were they using and were all stacks Microsoft-based? Sergey
answered that they are using SMB 3.0, which enables direct
access over RDMA (SMBd), the host runs Hyper-V and the
guest runs Windows Server 2012.

Evaluation of Codes with Inherent Double Replication
for Hadoop
M. Nikhil Krishnan, N. Prakash, V. Lalitha, Birenjith Sasidharan, P. Vijay
Kumar, Indian Institute of Science, Bangalore; Srinivasan Narayanamurthy,
Ranjit Kumar, and Siddhartha Nandi, NetApp Inc.

Prakash first compared the triple replication of data in Hadoop
with double replication. The Hadoop replication, while achieving
high data protection, increases storage overhead significantly.
Another useful scheme is the RAID6 + mirroring, which uses
two parity blocks to ensure adequate resiliency.

The challenge to address was to apply inherent double replica-
tion coding schemes to improve locality for Hadoop. Prakash
introduced the Heptagon-local code (HLC), which is an alterna-
tive code with inherent double replication. The HLC has reduced
overhead for the desired resiliency but there is an issue relating
to data locality. Clearly, it’s important to leverage data locality to
ensure computation is completed locally. The way they address
the locality is to modify the HDFS to permit coding across files.

Prakash used several slides to explain how to build the Hepta-
gon code, providing some insights on the Heptagon codes as a
rearrangement of RAID+m. The resiliency of Heptagon code can
tolerate two out of five node failures, recovered by parity. How
to extend the code to a Heptagon code and how to recover from
two/three node erasures and overhead/resiliency results were
discussed next. Finally, Prakash discussed data locality for the
Heptagon code and showed MR performance in Hadoop.

Someone asked about making a comparison with a class of error-
correcting codes known as Fountain codes.

SSDelightful
Summarized by Prakash Narayanamoorthy (prakashnarayanamoorthy@
gmail.com)

The Multi-streamed Solid-State Drive
Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho, Samsung
Electronics Co.

Jeong-Uk Kang presented a multi-stream-based approach for
improving the efficiency of garbage collection (GC) in solid
state drives (SSDs). She started off by saying that SSDs share a
common interface with HDDs, which facilitated faster adoption
of SSDs. However, since rotating media and NAND-based SSDs
are very different, such a common interface is enabled by the use
of a Flash Translation Layer (FTL) in the SSDs. The FTL has
two purposes; one is logical mapping of blocks and the other is
to do bad-block management performed via GC, which serves to
reclaim space and to erase blocks. However, in the current imple-
mentations, GC is an expensive operation and it highly affects
the SSD life.

The authors presented a new approach for improving the
efficiency of GC. Their idea is to create streams while writing
data into SSD. The various streams are chosen based on the life
expectancy of the data that is being written. Kang argued that
the best performance is obtained when the lifetime of data being
written is determined by the host system itself and passed on to
the SSD, which then determines the stream ID. In this approach,
GC can be done in a targeted manner, on the blocks correspond-
ing to the individual streams. The idea was tested in Cassan-
dra, using a new interface that implements up to four different
streams and by using the YCSB benchmark. Performance with
the “TRIM on” feature was also evaluated. The test-case with
four streams showed the best performance.

Someone asked whether the approach was specific to f lash,
to which Kang remarked this to be general to all SSDs. As to
whether modifications to Cassandra were necessary, Kang
replied in the negative. Someone asked whether the SSD block
layer had to be modified. Once again, Kang noted this as being
not necessary.

Accelerating External Sorting via On-the-Fly Data Merge
in Active SSDs
Young-Sik Lee, Korea Advanced Institute of Science and Technology (KAIST);
Luis Cavazos Quero, Youngjae Lee, and Jin-Soo Kim, Sungkyunkwan
University; Seungryoul Maeng, Korea Advanced Institute of Science and
Technology (KAIST)

Young-Sik Lee presented a new architecture for improved in-
storage processing in SSDs, which seeks to improve I/O per-
formance and hence the life of the SSD. The idea was to use an
active SSD architecture, which will perform external sorting
algorithms more efficiently. Lee started off by stressing the
importance of I/O in data-intensive computing and the need
to migrate to SSDs to improve the I/O performance. Although
in traditional SSDs, the storage and the host processor remain
separate, in active SSDs, there is room for in-storage process-
ing, which can further improve the I/O performance of the SSD.

96  OCTOBER 2014 VOL. 39, NO. 5 www.usenix.org

REPORTS

Lee said that although there are existing architectures for active
SSDs, they only perform aggregate functions (like min, max,
count). However, given the increased processing power of active
SSDs, more complex functions can be performed in-storage.

The new architecture considered by the authors would allow
computation of non-aggregate functions. Specifically, the
focus was on an operation referred to as the active-sort, which
improves the efficiency of external sorting algorithms. Lee
remarked that such algorithms played a major role in the Hadoop
MapReduce framework. In the traditional way of sorting, the
SSD stores partially sorted chunks, which are read out by the
host to do the final merge. This merged output is then written
back to the SSD to be used by the next stage of processing. In
active sorting, the SSD simply keeps the partially sorted chunks,
and when the next stage of processing demands the merged data,
the merging happens inside the SSD itself; this result is fed to the
next stage. Thus there are significant savings in write band-
width, since the host need not write back the merged data to the
SSD. There is, however, a small increase in read bandwidth to
perform the in-storage merging. An implementation was carried
out on an open SSD platform, consisting of four channels, each of
32 GB. The SORT benchmark was run on the new architecture,
and measured quantities include read/write bandwidth and
elapsed-time for the sort operation. A comparison was per-
formed against the NSORT and QSORT algorithms, and gains
were demonstrated, especially when the host memory was small
compared to the size of the data being sorted. Lee concluded by
saying that their next plan was to integrate this architecture
with that of Hadoop MapReduce.

In the question and answer session, someone felt that even
though there are savings in I/O for the SSDs, there might not
be an improvement in its lifetime, since there are other factors
affecting longevity. Another questioner wondered whether the
proposed architecture could be applied in situations other than
the MapReduce framework. Lee noted that this was also one of
the points that they were actively thinking about.

Power, Energy, and Thermal Considerations in
SSD-Based I/O Acceleration
Jie Zhang, Mustafa Shihab and Myoungsoo Jung, The University of Texas
at Dallas

Jie Zhang generated a considerable amount of conversation
among the audience around the topic of whether multi-resource
SSDs that promise high I/O can deliver it at a reduced power
and energy consumption, as is commonly believed, or whether
they needed to consume energy to deliver the improved I/O
performance. Zhang started off by noting that a single SSD chip
has a very limited I/O rate, and it is common to use many chips
to match the PCI-Express bandwidth. Modern SSDs also come
with many channels and many controllers and cores to handle
multiple tasks in parallel. The number of components integrated
into these many-resource SSDs have increased by more than
62 times with respect to what was seen during the early 2000s.

While all these new components were added for improved I/O
and latency performance, Zhang highlighted the lack of studies
on the power, energy, and thermal considerations for these new
many-resource SSDs.

Zhang presented many measurements to show that, contrary
to popular beliefs, power, energy, and thermal properties of the
new SSDs are much worse than traditional SSDs. Measure-
ments revealed that while single-purpose SSDs measure around
95–120 degrees Fahrenheit (operating temperature), multi-
purpose SSDs could go up to 180 degrees Fahrenheit during their
operation. It was also demonstrated that the improved latency
of the multi-purpose SSDs comes with an overhead of around
seven times increased dynamic power consumption. Zhang
also pointed out that due to such enormous power consumption,
the internal mechanism of the SSD automatically reduces the
performance in response to the heat generated. Zhang concluded
that the overheating problem and power throttling issues are
holding back state-of-the-art SSDs.

Someone asked whether making the SSDs byte-addressable
and providing them with direct access to the memory bus would
eliminate some of these power consumption issues. Zhang said
that the current results may be affected by the suggested modi-
fications. Another questioner wondered about profiling heat
generation patterns of the various components and suggested
studying which of the many components present in the multi-
purpose SSDs contributed to the increased power consumption.
Zhang noted that more measurements are needed in that direc-
tion and reserved that for future work.

Shop the Shop shop.linuxnewmedia.com

Sure you
know Linux...
 but do you know GiMP?

▪ Fix your digital photos

▪ Create animations

▪ Build posters, signs, and logos

order now and become an
expert in one of the most
important and practical
open source tools!

 GIMP
Handbook

For WindoWs, Mac os, and Linux users!

On newsstands now or order online!
shop.l inuxnewmedia.com/specials

ad_Login_Special_GIMP_05_2014.indd 1 4/21/14 2:22:28 PM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

14 More craft.
Less cruft.

Nov. 9 – 14, 2014 | Seattle

SPEAKERS INCLUDE

Gene Kim
on DevOps patterns

Michael “Mikey” Dickerson
on saving Healthcare.org

Caskey Dickson
on metric design

Laura Thomson
on engineering management

Sponsored by USENIX in cooperation with LOPSA

Where IT operations professionals, site-reliability engineers, system administrators, architects,
software engineers and researchers come together, discuss, and gain real-world knowledge
about designing, building, and maintaining the critical systems of our interconnected world.

EARLY BIRD
DISCOUNT
REGISTER BY OCT. 20

Dinah McNutt
on package managers

Janet Vertesi
on robotic spacecraft missions

Ken Patchett
on open source datacenters

Brendan Gregg
on Linux performance analysis

