

;login:
V O L . 3 8 , N O . 5O C T O B E R 2 0 1 3

sysadmin
&On Leadership

Tom Limoncelli

& Synnefo, Cloud Management
System
Vangelis Koukis, Constantinos
Venetsanopoulos, and Nectarios Koziris

&Log Filtering with Rsyslog
David Lang

& Clientside SSD and Network
Storage
David Holland, Elaine Angelino, Gideon
Wald, and Margo Seltzer

Columns
Practical Perl Tools: Domain-specific Parsers
David Blank-Edelman

Python: Using Context Managers
David Beazley

Hearsay Among Monitoring Systems
Dave Josephsen

For Good Measure: Annual Cyber Security
Report
Dan Geer and Mukul Pareek

/dev/random: Job Hunting
Robert Ferrell

Conference Reports
HotOS XIV: 14th Workshop on Hot Topics
in Operating Systems

HotPar ’13: 5th USENIX Workshop on Hot Topics
in Parallelism

U P C O M I N G E V E N T S

LISA ’13: 27th Large Installation System
Administration Conference
November 3–8, 2013, Washington, D.C., USA
www.usenix.org/conference/lisa13

SESA ’13: 2013 USENIX Summit for Educators in
System Administration
C O - L O C AT E D W I T H L I S A ’ 1 3

November 5, 2013, Washington, D.C., USA
www.usenix.org/conference/sesa13

FAST ’14: 12th USENIX Conference on File and
Storage Technologies
February 17–20, 2014, Santa Clara, CA, USA
www.usenix.org/conference/fast14

2014 USENIX Research in Linux File and Storage
Technologies Summit
I N C O N J U N C T I O N W I T H F A S T ’ 1 4

February 20, 2014, Mountain View, CA, USA
www.usenix.org/conference/linuxfastsummit14
Submissions due: January 17, 2014

NSDI ’14: 11th USENIX Symposium on Network
Systems Design and Implementation
April 2–4, 2014, Seattle, WA, USA
www.usenix.org/conference/nsdi14

2014 USENIX Federated Conferences Week
June 17–20, 2014, Philadelphia, PA, USA

USENIX ATC ’14: 2014 USENIX Annual Technical
Conference

HotCloud ’14: 6th USENIX Workshop on
Hot Topics in Cloud Computing

WiAC ’14: 2014 USENIX Women in Advanced
Computing Summit

HotStorage ’14: 6th USENIX Workshop
on Hot Topics in Storage and File Systems

UCMS ’14: 2014 USENIX Configuration
Management Summit

ICAC ’14: 11th International Conference on
Autonomic Computing

USENIX Security ’14: 23rd USENIX Security
Symposium
August 20–22, 2014, San Diego, CA, USA
Submissions due: February 27, 2014

EVT/WOTE ’14: 2014 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections

USENIX Journal of Election Technology
and Systems (JETS)
Published in conjunction with EVT/WOTE
www.usenix.org/jets
Submissions for Volume 2, Issue 2, due: December 5, 2013
Submissions for Volume 2, Issue 3, due: April 8, 2014

HotSec ’14: 2014 USENIX Summit on Hot Topics
in Security

FOCI ’14: 4th USENIX Workshop on Free and Open
Communications on the Internet

HealthTech ’14: 2014 USENIX Workshop on Health
Information Technologies
Safety, Security, Privacy, and Interoperability of
Health Information Technologies

CSET ’14: 7th Workshop on Cyber Security
Experimentation and Test

WOOT ’14: 8th USENIX Workshop on Offensive
Technologies

OSDI ’14: 11th USENIX Symposium on Operating
Systems Design and Implementation
October 6–8, 2014, Broomfield, CO, USA

Diversity ’14: 2014 Workshop on Diversity
in Systems Research
C O - L O C AT E D W I T H O S D I ’ 1 4

LISA ’14: 28th Large Installation System
Administration Conference
November 9–14, 2014, Seattle, WA, USA

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Rikki Endsley
rikki@usenix.org

C O P Y E D I T O R
Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N
Arnold Gatilao
Casey Henderson
Michele Nelson

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738
www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2013 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designations
used by manufacturers and sellers to distinguish
their products are claimed as trademarks.
USENIX acknowledges all trademarks herein.
Where those designations appear in this
publication and USENIX is aware of a trademark
claim, the designations have been printed in
caps or initial caps.

O C T O B E R 2 0 1 3 V O L . 3 8 , N O . 5

E D I T O R I A L
2 Musings Rik Farrow

C L O U D
6 Synnefo: A Complete Cloud Stack over Ganeti

Vangelis Koukis, Constantinos Venetsanopoulos,
and Nectarios Koziris

11 vPipe: One Pipe to Connect Them All
Sahan Gamage, Ramana Kompella, and Dongyan Xu

16 Hyper-Switch: A Scalable Software Virtual Switching Architecture
Kaushik Kumar Ram, Alan L. Cox, and Scott Rixner

S Y S A D M I N
20 Technical Leadership Is Something We Can All Do

Tom Limoncelli

23 Log Filtering with Rsyslog
David Lang

30 Flash Caching on the Storage Client
David A. Holland, Elaine Angelino, Gideon Wald, and Margo I. Seltzer

P R O G R A M M I N G
36 Valerie Aurora on File Systems and the Ada Initiative

Rikki Endsley and Valerie Aurora

40 Modular SDN Programming with Pyretic
Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and
David Walker

48 Drilling Network Stacks with packetdrill
Neal Cardwell and Barath Raghavan

C O L U M N S
54 Practical Perl Tools: Parse Me, Amadeus David N. Blank-Edelman

59 Python: With That: Five Easy Context Managers David Beazley

64 iVoyeur: Hearsay Dave Josephsen

68 For Good Measure: Trending North Dan Geer and Mukul Pareek

72 /dev/random Robert G. Ferrell

74 Book Reviews Elizabeth Zwicky, Mark Lamourine, and Melissa Gray

C O N F E R E N C E R E P O R T S
80 14th Workshop on Hot Topics in Operating Systems (HotOS XIV),

5th USENIX Workshop on Hot Topics in Parallelism (HotPar ’13)

EDITORIAL

2  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

Musings
R I K F A R R O W

Like last issue, I can still see clouds on the horizon. But this time the
clouds are white and puffy, not the dark stormy ones of August. These
clouds are elastic, growing in the afternoons and shrinking at night.

Sort of like, well, the clusters of VMs we call clouds.

If we go back to the decade of the nineties, cluster computing was the big thing: you could
build a Beowulf cluster and “have a supercomputer in your den” [1]. People are still building
Beowulf clusters today, but instead of building supercomputers, some are using Raspberry
Pi’s and lots of blinking lights [2]. Beowulf clusters required identical computers, running
open source software including libraries for parallel processing, like MPI.

By the end of the nineties, something else was happening. A small company had built a clus-
ter designed with one purpose in mind: checking backlinks to determine page rank. Google
needed to search billions of Web pages quickly and cheaply so that they could return search
results quickly. Other companies also began building clusters, and these clusters, like the
mainframes that came before them, ran two types of jobs: interactive services and batch jobs.

Taking a parallel path through history, VMware also began in the late nineties, and was
selling a hypervisor by 2001. While virtual machines had started out as a way of running
multiple copies of single-user operating systems (CP/CMS) on expensive mainframes [3],
the clouds we talk about today are ones that run VMs on top of hypervisors on clusters of
computers.

Elastic Clouds
And that’s where the fluffiness of clouds that I started off with comes in. I was listening to
Eric Brewer’s keynote at HotPar ’13 [4] as he explained some key issues with clusters and
clouds. Brewer pointed out that latency matters a lot, and making potential customers wait
even a few hundred milliseconds was bad for business. As companies like Google and Ama-
zon realized this, they focused on improving the customer experience through tiered, parallel
systems, and caching. As parallelism increases, so does latency, where the slowest response
to a client request results in the entire response appearing slow. At this point, Brewer
suggested that if you want to know whether a service is running on virtualized servers, just
measure tail latency, a measure of the number of requests that fall beyond 99% of the desired
latency window. I’ll have more to say about this later.

Brewer then explained that with public facing services, peak demand can be six or ten times
as much as average demand. Because you can’t let your customers wait, even for an extra half
second, you need to allocate resources for servicing that peak demand. And that suggests
that you will be idling 84–90% of your servers most of the time. The way beyond this waste-
ful state leads us to clouds.

By being able to sell or use compute servers off-peak, you can soak up that idle time. For com-
panies like Amazon, you offer spot prices which can be 10% of on-demand prices for compute
servers. If you are Google (or eBay, Yahoo!, and dozens of other companies), you use your non-
peak resources to run batch jobs. Either way, your goal is to get the maximum utilization out
of your servers, all the time.

Rik is the editor of ;login:.
rik@usenix.org

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 3

EDITORIAL
Musings

For internal clusters, you not only control the load from batch
jobs, you also control the software that is running on your clus-
ter. For compute services that are publicly offered, you have some
control over the load, and little over the software that is being
run (the main exception being noticing and killing off VMs that
are scanning, spamming, and DoSing the Internet). As a pro-
phylactic, publicly available servers all rely on virtual machines,
as they provide a degree of isolation between the host and the
software that someone has loaded and is running on it.

Virtually True
In many ways, clouds based on the ability to run virtual ma-
chines are a wonderful invention. They allow sharing of pre-
cious resources that otherwise would be idle. They support the
use of familiar interfaces, so programmers aren’t faced with an
unfamiliar environment. And they do provide some real isolation
between the hosted OS and the host and the rest of the cloud. But
there’s the rub.

We can’t have all the wonderful things that clouds provide
with out paying a price. And that price comes in terms of both
per formance and latency. Applications in VMs must cross pro-
tection rings twice, once from the hosted VM into the VMM,
then again when accessing devices in any driver domain (not-
ing that not all VMMs require this). Another performance cost
comes from sharing resources: if a VM is not scheduled when
a net work packet or disk block arrives, it must wait. This is a
large source of the tail latency that Brewer was speaking about,
which I said I’d get to later. And, finally, the use of VMs means
that the underlying VMM loses information that operating
systems have traditionally used to improve performance, such
as disk block caching.

Brewer went on to describe a research operating system, Akaros
[5], that is “made for the cloud.” Akaros supports both provision-
ing and allocation of resources. Services that require low latency
guarantees get provisioned, which means they can always have
enough resources, even during peak load. Other applications
receive allocations that can be revoked within two or three
microseconds. Akaros supports Linux libc, so it does provide
a familiar programming environment. And they are designing
Akaros so clouds are no longer necessary for many jobs. In the
Akaros model, each application runs on bare metal. But the isola-
tion properties of VMs are not part of Akaros, so clouds will not
be banished with this design for public-facing compute servers.

Techniques for improving the performance of VM I/O have been
the topic of many papers, and several articles in this magazine as
well. I have long had the intuition that virtualization was neither
the best performing nor most secure path we could take—even
if it was an easier one than starting over with other OS models
designed with principals like Akaros’ provisioning and alloca-
tion, as well as the isolation that it currently lacks.

The Lineup
We start off this issue with an article about Synnefo. Synnefo
is a cloud stack that runs on top of Ganeti clusters, and is also
open source software, sporting both command-line and attrac-
tive GUI interfaces, and has been in use for years in Greece. The
three lead developers of Synnefo, Vangelis Koukis, Constantinos
Venetsanopoulos, and Nectarios Koziris, have written a wonder-
fully clear description of the parts that form Synnefo, as well as
explaining how it fits in with Ganeti [6] and OpenStack.

Next, we have an article by Gamage et al. about a technique they
have been working on to improve VM I/O. vPipe fixes some of
the issues I just wrote about by passing more information to the
VMM (Xen in this case) so that a VM can hand off some of the
tasks that are more efficiently done within the VMM, such as
copying a file to a network socket.

Ram et al. have developed Hyper-Switch, a virtualized switch
designed to improve network switching performance. Also
working in Xen, Hyper-Switch moves the control plane out of the
device domain and into the hypervisor, which knows which VMs
are currently scheduled, and can wake up VMs when it makes
the most sense to do so, showing a large improvement in switch-
ing performance.

Tom Limoncelli has written a relevant (and short) article about
leadership. At first, I wondered just where he was going. But
once I got the point, I was sure I would remember his point about
leadership, and try to practice it.

David Lang has written about ryslog. David is both a committer
and a user of rsyslog, which he mentioned in his first article
about enterprise logging in the June 2013 issue. In this article,
David provides examples of the many ways that rsyslog can filter,
modify, and even store log messages.

David Holland et al. decided to take a careful look at whether the
client-side flash cache helps servers that use network file serv-
ers. The good news is that for applications with a large working
set, a flash cache can help a lot. While a type of client-side flash
cache is already available from NetApp, it’s something we may
be seeing more of in the future.

Rikki Endsley, the USENIX Community Manager, interviewed
Val Aurora. Aurora had been a Linux kernel committer, with a focus
on file systems. More recently, she has started the Ada Initiative,
a nonprofit dedicated to promoting women in open tech/culture.

Josh Reich et al. have written about Pyretic, software for creat-
ing policies for OpenFlow hardware. OpenFlow has become
increasingly important for datacenter networks, but OpenFlow’s
programming interface, according to these authors, is closer to
assembler than an API. Pyretic allows you to compose policies
and apply them to multiple OpenFlow devices, and this article
explains both OpenFlow and Pyretic.

4  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

EDITORIAL
Musings

Neal Cardwell and Barath Raghavan wrote about packetdrill, a
tool for troubleshooting network protocols and stacks. Although
most of us will not be writing network stacks, packetdrill seems
like a tool that may be useful to anyone who is having problems
with a networked application and wondering exactly what went
wrong where.

David Blank-Edelman decided to explore domain-specific lan-
guages through the use of Perl parsing modules. Although you
may not be planning on making recipe parser, understanding the
tools for parsing your own language may help you someday.

David Beazley explores context managers in Python. For ex-
ample, you can have files closed automatically or locks acquired
and released using context managers, and David explains how
this works and how to create your own.

Dave Josephsen decided to scratch an itch: how to get different
monitoring systems talking to each other. Well, not so much
talking to each other—Nagios, Collectd, Ganglia, and Splunk can
do that already—as talking via a centralized, simplified service.
Dave is building that service, called Hearsay, and wants your
input and help.

Dan Geer and Mukul Pareek share their Index of Cyber Security
findings. The ICS is based on monthly surveys of professionals
who work in large organizations and with security, and the goal
of ICS is to provide current trends in security. Some things do
change, such as which component risks are higher each month,
while other things stay the same.

Robert Ferrell takes us on a strange adventure: job hunting.
Well, many people wouldn’t find job hunting quite as unusual or
interesting as Robert does. And if you’ve ever wanted to write
the perfect job description for that best system administrator
you’ll never be able to hire, you need to read his column.

Elizabeth Zwicky has reviewed four books this month. She
starts off with Peopleware, an old favorite of hers that has been
revised, successfully. Elizabeth then read Adaptive Software
Development, a book that never mentions “Agile” yet does discuss
development for rapidly changing environments. Elizabeth next
covers The Practice of Network Security Monitoring by Richard
Bejtlich, who is certainly an old pro when it comes to monitor-
ing. She ends with Graph Databases, a book that explains how
databases can cover objects and relationships—for example,
Facebook friends or LinkedIn people.

Mark Lamourine kept very busy this time, starting off with a
review of Stevens and Rago’s updated Advanced Programming in
the UNIX Environment (third edition). Rago has added more op-
erating systems (FreeBSD, Linux, MacOS, and Solaris 10), while
the style remains classic Stevens, thorough and comprehensible.
Mark continues with The Go Programming Language Phrase-
book, a book that provides examples of Go features, which means
going pretty deep into details such as structures in memory. Fi-
nally, Mark read The Realm of Racket, and wondered whether the
game-centric approach would really help someone understand a
language based on Scheme, but he does have some help from an
intern, Melissa Gray, who provided her perspective.

The October issue also includes summaries for six workshops
as well as the Annual Technical Conference. These summaries
will all appear online, and we will print as many as we can while
staying within our environmentally conscious page limit.

Since I began writing, those fluffy, white clouds have become
gray and even a bit stormy. Perhaps I need to be more careful
about what I have to say about clouds. But I really do believe that
while cloud technology is going to be with us for a long time,
there are other alternatives that we should be researching and
learning about.

References
[1] D. Spector, “Building Your Own Beowulf Cluster”:
http://www.wired.com/wired/archive/8.12/beowulf.html.

[2] M. Szczys, “33 Node Beowulf Cluster Built with Raspberry
Pi”: http://hackaday.com/2013/05/21/33-node-beowulf
-cluster-built-with-raspberry-pi/.

[3] CP/CMS: http://en.wikipedia.org/wiki/CP/CMS.

[4] E. Brewer, “Parallelism in the Cloud”: https://www.usenix
.org/conference/hotpar13/parallelism-in-the-cloud.

[5] Akaros, a research OS made for the cloud: http://akaros.cs
.berkeley.edu.

[6] G. Trotter and T. Limoncelli, “Ganeti: Cluster Virtuali-
zation Manager,” ;login:, vol. 38, no. 3 (June 2013): https://
www.usenix.org/publications/login/june-2013-volume-38
-number-3/ganeti-cluster-virtualization-manager.

If You Use Linux, You Should Be
Reading LINUX JOURNAL

�� In-depth information
providing a full 360-
degree look at featured
topics relating to Linux

�� Tools, tips and tricks you
will use today as well as
relevant information for
the future

�� Advice and inspiration for
getting the most out of
your Linux system

�� Instructional how-tos will
save you time and money

Subscribe now for instant access!
For only $29.50 per year—less
than $2.50 per issue—you’ll have
access to Linux Journal each
month as a PDF, in ePub & Kindle
formats, on-line and through our
Android & iOS apps. Wherever you
go, Linux Journal goes with you.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE

™

6  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

CLOUDSynnefo: A Complete Cloud Stack over Ganeti
V A N G E L I S K O U K I S , C O N S T A N T I N O S V E N E T S A N O P O U L O S ,
A N D N E C T A R I O S K O Z I R I S

Vangelis Koukis is the technical
lead of the ~okeanos project
at the Greek Research and
Technology Network (GRNET).
His research interests include

large-scale computation in the cloud, high-
performance cluster interconnects, and shared
block-level storage. Koukis has a Ph.D. in
Electrical and Computer Engineering from
the National Technical University of Athens.
vkoukis@grnet.gr

Constantinos Venetsanopoulos
is a cloud engineer at the Greek
Research and Technology
Network. His research interests
include distributed storage

in virtualized environments and large-scale
virtualization management. Venetsanopoulos
has a diploma in Electrical and Computer
Engineering from the National Technical
University of Athens. cven@grnet.gr

Nectarios Koziris is a Professor
in the Computing Systems
Laboratory at the National
Technical University of
Athens. His research interests

include parallel architectures, interaction
between compilers, OSes and architectures,
OS virtualization, large-scale computer
and storage systems, cloud infrastructures,
distributed systems and algorithms, and
distributed data management. Koziris has a
Ph.D. in Electrical and Computer Engineering
from the National Technical University of
Athens. nkoziris@cslab.ece.ntua.gr

Synnefo is a complete open source cloud stack that provides Compute,
Network, Image, Volume and Storage services, similar to the ones
offered by AWS. Synnefo manages multiple Ganeti [2] clusters at the

backend for the handling of low-level VM operations. Essentially, it pro-
vides the necessary layer around Ganeti to implement the functionality of
a complete cloud stack. This approach enforces clear separation between
the cluster management layer and the cloud layer, a distinction that is cen-
tral to Synnefo’s design. This separation allows for easier upgrades without
impacting VM stability, improves scalability, and simplifies administration.
To boost third-party compatibility, Synnefo exposes the OpenStack APIs to
users. We have developed two stand-alone clients for its APIs: a rich Web UI
and a command-line client.

In this article, we describe Synnefo’s overall architecture, its interaction with Ganeti, and
the benefits of decoupling the cloud from the cluster layer. We focus on Synnefo’s handling of
files, images, and VM volumes in an integrated way and discuss advantages when choosing
Synnefo to deliver a private or public cloud. We conclude with our experiences from running
a real-world production deployment on Synnefo.

Layers
Before describing Synnefo itself in more detail, we will talk about the five distinct layers we
recognize in building a complete cloud stack, from the lowest level, closest to the machine, to
the highest level, closest to the user:

The VM-hypervisor layer is a single VM as created by the hypervisor. The node layer repre-
sents a number of VMs running on a single physical host. The software on this layer man-
ages the hypervisor on a single physical node and the storage and network visible by the node
and sets them up accordingly for each VM. The cluster layer is responsible for managing a
number of physical nodes, with similar hardware configuration, all managed as a group.
The software on this layer coordinates the addition/removal of physical nodes, allows for
balanced allocation of virtual resources, and handles live VM migration. The cloud layer
manages a number of clusters and also brings the user into the picture. The software on this
layer handles authentication, resource sharing, ACLs, tokens, accounting, and billing. It also
implements one or more APIs and decides how to forward user requests to potentially mul-
tiple clusters underneath. The API layer is not an actual software layer but rather is the API
specification that should be used by the clients of the cloud platform. Finally, at the highest
level, we have the UI layer that speaks to the platform’s APIs.

Building a cloud stack is a difficult engineering problem because it spans many distinct
domains. The task is complicated because it involves two distinct mindsets that meet at the
cloud↔cluster boundary. On one side is traditional cluster management: low-level virtual-
ization and OS concepts, processes, synchronization, locking, scheduling, block storage man-
agement, network switches/routers, and knowledge that there is physical hardware involved,
which fails frequently. On the other side lies the fast-paced world of Web-based development,
Web services, rich UIs, HTTP APIs, REST, JSON, and XML.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 7

CLOUD
Synnefo: A Complete Cloud Stack over Ganeti

These two sides are served by people with different mindsets
and different skill sets. We argue it also is most efficient to be
served by different software, keeping a clear separation between
the cloud and the cluster layers. Synnefo sits at the cloud layer.
We wear a different hat when implementing Synnefo at the cloud
layer than when implementing components at the cluster layer
that integrate it with Ganeti, or when contributing to Ganeti itself.

Overall Architecture
An overview of the Synnefo stack is shown in Figure 1. Synnefo
has three main components:

◆◆ Astakos is the common Identity/Account management service
across Synnefo.

◆◆ Pithos is the File/Object Storage service.

◆◆ Cyclades is the Compute/Network/Image and Volume service.

Table 1 provides an explanation for the names we used.

These components are implemented in Python using the Django
framework. Each service exposes the associated OpenStack
APIs to end users. The service scales out on a number of work-
ers, uses its own private DB to hold cloud-level data, and issues
requests to the cluster layer, as necessary.

Synnefo has a number of smaller components that plug into
Ganeti to integrate it into a Synnefo deployment.

In the following, we describe the functionality of each main
component.

Astakos (Identity)
Astakos is the Identity management component, which provides
a common user base to the rest of Synnefo. Astakos handles user
creation, user groups, resource accounting, quotas, and projects,
and it issues authentication tokens used across the infrastruc-
ture. Astakos supports multiple authentication methods: local
username/password pairs; LDAP/Active Directory; SAML 2.0
(Shibboleth) federated logins; and login with third-party creden-
tials, including Google, Twitter, and LinkedIn. Users can add

Figure 1: An overview of the Synnefo architecture including all layers

Synnefo
Greek for “cloud,” which seemed good for a cloud
platform.

 ~okeanos
Greek for “ocean,” an abundant resource pool for
life on Earth.

Astakos
Greek for “lobster,” a crustacean with big claws
and a hard exoskeleton.

Pithos
Ancient Greek name for storage vessels, e.g., for
oil or grains.

Cyclades The main island group in the Aegean Sea.

Kamaki
Greek for “harpoon”; if VMs are fish in the ocean,
a harpoon may come handy.

Archipelago
Greek for “a cluster of islands,” which seemed
good for a distributed storage system.

Table 1: The story behind the names of Synnefo and its components. Many
of the names follow a sea theme, as Synnefo’s origins are in the ∼okeanos
service.

8  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

CLOUD
Synnefo: A Complete Cloud Stack over Ganeti

multiple login methods to a single account, according to config-
ured policy.

Astakos keeps track of resource usage across Synnefo, enforces
quotas, and implements a common user dashboard. Quota han-
dling is resource-type agnostic: resources (e.g., VMs, public IPs,
GBs of storage, or disk space) are defined by each Synnefo com-
ponent independently, then imported into Astakos for account-
ing and presentation.

Astakos runs at the cloud layer and exposes the OpenStack Key-
stone API for authentication, along with the Synnefo Account
API for quota, user group, and project management.

Pithos (Object/File Storage)
Pithos is the Object/File Storage component of Synnefo. Users
upload files on Pithos using either the Web UI, the command-
line client, or native syncing clients. Pithos is a thin layer
mapping user-files to content-addressable blocks that are then
stored on a storage backend. Files are split in blocks of fixed size,
which are hashed independently to create a unique identifier
for each block, so each file is represented by a sequence of block
names (a hashmap). This way, Pithos provides deduplication of
file data; blocks shared among files are only stored once. The
current implementation uses 4 MB blocks hashed with SHA256.
Content-based addressing also enables efficient two-way file
syncing that can be used by all Pithos clients (e.g., the “kamaki”
command-line client or the native Windows/Mac OS clients).
Whenever someone wants to upload an updated version of a
file, the client hashes all blocks of the file and then requests
the server to create a new version for this block sequence. The
server will return an error reply with a list of the missing blocks.
The client may then upload each block one by one, and retry file
creation. Similarly, whenever a file has been changed on the
server, the client can ask for its list of blocks and only download
the modified ones.

Pithos runs at the cloud layer and exposes the OpenStack Object
Storage API to the outside world, with custom extensions for
syncing. Any client speaking to OpenStack Swift can also be
used to store objects in a Pithos deployment. The process of map-
ping user files to hashed objects is independent from the actual
storage backend, which is selectable by the administrator using
pluggable drivers. Currently, Pithos has drivers for two storage
backends: files on a shared file system (e.g., NFS, Lustre, or GPFS)
or objects on a Ceph/RADOS [3] cluster. Whatever the storage
backend, it is responsible for storing objects reliably, without any
connection to the cloud APIs or to the hashing operations.

Cyclades (Compute/Network/Image/Volume)
Cyclades is the Synnefo component that implements the Com-
pute, Network, Image, and Volume services. Cyclades exposes
the associated OpenStack REST APIs: OpenStack Compute,

Network, Glance, and, soon, Cinder. Cyclades is the part that
manages multiple Ganeti clusters at the backend. Cyclades
issues commands to a Ganeti cluster using Ganeti’s Remote
API (RAPI). The administrator can expand the infrastructure
dynamically by adding new Ganeti clusters to reach datacenter
scale. Cyclades knows nothing about low-level VM management
operations, e.g., handling of VM creations, migrations among
physical nodes, and handling of node downtimes; the design
and implementation of the end-user API is orthogonal to VM
handling at the backend.

We strive to keep the implementation of Cyclades independent
of Ganeti code. We write around Ganeti, and add no Synnefo-
specific code inside it. Whenever the mechanism inside Ganeti
does not suffice, we extend it independently from Synnefo, and
contribute patches to the official upstream for review and even-
tual inclusion in the project.

There are two distinct, asynchronous paths in the interac-
tion between Synnefo and Ganeti. The effect path is activated
in response to a user request; Cyclades issues VM control
commands to Ganeti over RAPI. The update path is triggered
whenever the state of a VM changes, due to Synnefo- or admin-
istrator-initiated actions happening at the Ganeti level. In the
update path, we exploit Ganeti’s hook mechanism to produce
notifications to the rest of the Synnefo infrastructure over a
message queue.

Tying It All Together
Synnefo’s greatest strength lies in the integrated way it handles
its three basic storage entities: Files, named pieces of user data;
Images, the static templates from which live VM instances are
initialized; and Volumes, the block storage devices, the virtual
disks on which live VMs operate. In this section, we describe the
duality between Files and Images (an Image is a file on Pithos that
has specific metadata), and the duality between Images and Vol-
umes (a Volume is a live VM disk that originates from an Image).

Images as Files on Pithos
Synnefo uses Pithos to store both system and user-provided
Images in the same way it stores all other files. Because Images
of the same OS share many identical blocks, deduplication comes
in handy. Assume a user has created a “golden” VM Image on her
own computer, and has customized it to her liking. When she is
ready to deploy it, she uploads it as a file to Pithos, registers it as
an Image with Cyclades, then spawns new VMs from it. When
she needs to update her Image, she just repeats the process.
Every upload uses the Pithos syncing protocol, which means
the client will only need to upload the blocks changed since
the previous time. Pithos features a file-sharing mechanism,
which applies to Image files too: users can attach custom ACLs
to them, share them with other users or closed groups, or make
them public.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 9

CLOUD
Synnefo: A Complete Cloud Stack over Ganeti

Image Deployment Inside Ganeti
To support the secure deployment of user-provided, untrusted
images with Ganeti, we have developed a Ganeti OS definition
called snf-image. Image deployment entails two steps: (1) Vol-
ume initialization—the Image is fetched from backend storage
and copied to the block device of the newly created instance,
and (2) optional Image customization. Customization includes
resizing the root file system, changing passwords for root or
other users, file injection (e.g., for SSH keys), and setting a cus-
tom hostname. All Image customization is done inside a helper
VM, in isolation from the physical host, enhancing robustness
and security.

For Volume initialization, snf-image can fetch Image data from
a number of storage backends. Volume initialization can use a
shared file system (e.g., NFS), perform an HTTP or FTP down-
load, or, in the Synnefo case, contact a Pithos storage backend
directly. snf-image can deploy most major Linux distributions
(Debian, Ubuntu, CentOS, Fedora, Arch, openSUSE, Gentoo),
Windows Server 2008R2 and 2012, as well as FreeBSD.

Archipelago: Integrated Handling of Volumes and
Images
Synnefo supports all different storage options (“disk templates”)
offered by Ganeti to back the virtual disks used by VMs (“Vol-
umes”). Each storage backend has different redundancy and per-
formance characteristics; Synnefo brings the choice of storage
backend all the way up to the user, who can select based on the
intended usage of the VM.

The Ganeti-provided disk templates are good options for long-
running, persistent VMs (e.g., a departmental file server run-
ning on the cloud); however, they are not a good fit when the
usage scenario needs thin VM provisioning: for example, when
the user wants to spin up a large number of short-lived, identical
VMs (e.g., from a custom golden Image), run a parallel program
for a few hours or days, then shut them down. In this case, the
time and space overhead of copying Image data to all Volumes is
significant.

Archipelago is a block storage layer developed with Synnefo,
which integrates VM Images with Volumes. Archipelago enables
thin creation of Volumes as copy-on-write clones of Images, with
zero data movement, as well as making snapshots of a Volume
at a later time to create VM Images. Archipelago plugs into
Ganeti and acts as one of its disk templates. Cyclades then uses
Archipelago for fast provisioning of VMs from Images stored on
Pithos, with minimal overhead. To implement clones and snap-
shots, Archipelago keeps track of VM block allocation in maps,
initialized from Pithos files (hashmaps). Maps are stored along
with actual data blocks. Archipelago can use various storage
backends to store data, similarly to Pithos. Archipelago has plug-
gable drivers, currently for file system-backed block storage, or
Ceph/RADOS, so clone and snapshot functionality is indepen-
dent of the underlying backend. Figure 2 shows how Archipelago
is integrated into a Synnefo deployment. In such a scenario,
Archipelago shares its storage backend with Pithos. This enables
a workflow as follows: a user uploads the contents of an Image as
a file on Pithos, with efficient syncing, registers it as an Image

Figure 2: Integrated storage for Images and Volumes with Archipelago

10  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

CLOUD
Synnefo: A Complete Cloud Stack over Ganeti

with Cyclades, then spawns a large number of thinly provisioned
VMs from this Image. Because Archipelago shares the storage
backend with Pithos, it creates one new volume per VM without
copying the data. The actual 4 MB blocks of data that make up
the Image remain as blocks in the storage backend, after being
uploaded to Pithos by the user. Archipelago will create one map
per VM, with all maps referencing the original Pithos blocks for
the Image. Whenever a VM modifies data on its volume, Archi-
pelago allocates a new block for it and updates the map for its
volume accordingly.

Synnefo Advantages
The decoupled design of Synnefo brings the following
advantages:

◆◆ Synnefo combines the stability of Ganeti with the self-service
provisioning of clouds. This allows it to run workloads that do
not fit the standard model of a volatile cloud, such as long-
running servers in fault-tolerant, persistent VMs. Archipelago-
backed storage covers the need for fast provisioning of short-
lived, computationally intensive worker VMs.

◆◆ In a Synnefo deployment, Synnefo and Ganeti follow distinct
upgrade schedules, with software upgrades rolled out gradually,
without affecting all of the stack at once.

◆◆ The Ganeti clusters are self-contained. The administrator has
complete control (e.g., to add/remove physical nodes or migrate
VMs to different nodes via the Ganeti side path) without Syn-
nefo knowing about it. Synnefo is automatically notified and
updates user-visible state whenever necessary. For example, a
VM migration happening at Ganeti level is transparent to Syn-
nefo, whereas a VM shutdown by the admin will propagate up
to the user.

◆◆ The system scales dynamically and linearly by adding new
Ganeti clusters into an existing installation. Heterogeneity
across clusters allows Synnefo to provide services with differ-
ent characteristics and levels of QoS (e.g., virtual-to-physical
CPU ratio).

◆◆ Two-level allocation policy for VMs with different criteria:
at the cloud layer, Synnefo selects a Ganeti cluster according
to high-level criteria (e.g., QoS); at the cluster layer, Ganeti
selects a physical node based on lower-level criteria (e.g., free
RAM on node).

◆◆ There is no single database housing all VM configuration data.
Low-level state is handled separately in each Ganeti cluster.
Physical nodes have no access to the Cyclades database at the
cloud layer. This minimizes the possible impact of a hypervisor
breakout and simplifies hardening of DB security.

◆◆ Out–of-the-box integration with different storage backend
technologies, including File, LVM, DRBD, NAS, or Archipelago
on commodity hardware.

Running in Production
Synnefo has been running in production since 2011, powering
GRNET’s ~okeanos [1] public cloud service. Synnefo’s develop-
ment team has grown to more than 15 people in the past three
years. As of this writing, ~okeanos runs more than 5,000 active
VMs, for more than 3,500 users. Users have launched more than
100,000 VMs and more than 20,000 virtual networks.

Using Synnefo in production has enabled:

◆◆ Rolling software and hardware upgrades across all nodes. We
have done numerous hardware and software upgrades (kernel,
Ganeti, Synnefo), many requiring physical node reboots, with-
out user-visible VM interruption.

◆◆ Moving the whole service to a different datacenter, with cross-
datacenter live VM migrations, from Intel to AMD machines,
without the users noticing.

◆◆ On-the-fly syncing of NFS-backed Pithos blocks to RADOS-
backed storage, and integration with Archipelago for thin VM
provisioning.

◆◆ Scaling from a few physical hosts to multiple racks with dy-
namic addition of Ganeti backends.

◆◆ Overcoming limitations of the networking hardware regarding
number of VLANs. Ganeti provides for pluggable networking
scripts, which we exploit to run thousands of virtual LANs over a
single physical VLAN with MAC-level filtering, in a custom con-
figuration. We have also tested VXLAN-based network encapsu-
lation, again with no code modifications to Ganeti or Synnefo.

◆◆ Preserving the ability to live migrate while upgrading across in-
compatible KVM versions, by maintaining the virtual hardware
configuration independently.

Synnefo is open source. Source code, distribution packages,
documentation, many screenshots and videos, as well as a test
deployment open to all can be found at http://www.synnefo.org.

References
[1] Vangelis Koukis, Constantinos Venetsanopoulos, and
Nectarios Koziris, “~okeanos: Building a Cloud, Cluster by
Cluster,” IEEE Internet Computing, vol. 17, no. 13, May-June
2013, pp. 67-71.

[2] Guido Trotter and Tom Limoncelli, “Ganeti: Cluster Vir-
tualization Manager,” USENIX ;login:, vol. 38, no. 3, 2013.

[3] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and
 Carlos Maltzahn, “RADOS: A Scalable, Reliable Storage
Service for Petabyte-Scale Storage Clusters,” Proceedings
of the 2nd International Workshop on Petascale Data Stor-
age, PDSW ’07, held in conjunction with Supercomputing ’07
(ACM, 2007), pp. 35-44.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 11

vPipe: One Pipe to Connect Them All
S A H A N G A M A G E , R A M A N A K O M P E L L A , A N D D O N G Y A N X U

Sahan Gamage is a Ph.D.
candidate in the Computer
Science Department at Purdue
University and is advised by
Professors Dongyan Xu and

Ramana Kompella. His research focuses on
improving I/O performance in virtual machines
in cloud environments. Sahan received an M.S.
in Computer Science from Purdue University
and a B.S. in Computer Science from University
of Moratuwa, Sri Lanka. sgamage@purdue.edu

Ramana Kompella is an
Associate Professor in the
Computer Science Department
at Purdue University. He directs
the Systems and Networking

(SYN) Lab at Purdue, conducting research
on various networking research problems in
cloud computing, virtualization, datacenter
networking, and software-defined networking.
Before coming to Purdue, he obtained his Ph.D.
from UCSD. rkompella@purdue.edu

Dongyan Xu is a Professor and
University Faculty Scholar in the
Computer Science Department
at Purdue University. He
leads the FRIENDS Lab at

Purdue, conducting research in virtualization
technologies, cloud computing, and computer
systems security and forensics. He received a
Ph.D. in Computer Science from the University
of Illinois at Urbana-Champaign in 2001.
dxu@cs.purdue.edu

Many enterprises use the cloud to host applications such as Web
services, big data analytics, and storage, which involve significant
I/O activities, moving data from a source to a sink, often with-

out even any intermediate processing; however, cloud environments tend to
be virtualized, which introduces a significant overhead for I/O activity as
data needs to be moved across several protection boundaries. CPU sharing
among virtual machines (VMs) introduces further delays into the overall
I/O processing data flow. In this article, we present an abstraction called
vPipe to mitigate these problems. vPipe introduces a simple “pipe” that can
connect data sources and sinks, which can be either files or TCP sockets, at
the virtual machine monitor (VMM) layer. Shortcutting the I/O at the VMM
layer achieves significant CPU savings and avoids scheduling latencies that
degrade I/O throughput.

Cloud computing platforms such as Amazon EC2 support a large number of real businesses
hosting a wide variety of applications. For instance, several popular companies (e.g., Pinterest,
Yelp, Netflix) host large-scale Web services on the EC2 cloud. Many enterprises (e.g., Four-
square) also use the cloud for running analytics and big data applications using the MapRe-
duce framework. Companies such as Dropbox also use the cloud for storing customers’ files.
While these applications are quite diverse in their functionality and the services they offer,
they share one common characteristic: they all involve a significant number of I/O activities,
moving data from one I/O device (source) to another (sink). The source or sink can be either
the network or the disk and typically varies across applications (see Table 1). Although an
application may sometimes process or modify data after it reads from the source and before
it writes to the sink, in many cases it may merely relay the data without any processing.

Meanwhile, cloud environments use virtualization to achieve high resource utilization and
strong tenant isolation. Thus, cloud applications/services are executed in virtual machines
that are multiplexed over multiple cores of physical machines. Further, there is a lot of
variety in the CPU resources offered to individual VMs. For instance, Amazon EC2 supports
small, medium, large, and extra large instances, which are assigned 1, 2, 4, and 8 EC2 com-
pute units, respectively, with each EC2 unit roughly equivalent to a 1 GHz core [1]. Because
modern commodity cores run at 2–3 GHz, a core may be shared by more than one instance.

Now, imagine running the above I/O-intensive applications in such CPU-sharing instances
in the cloud. As an example, let us focus on a simple Web application that receives an HTTP
request from a client that results in reading a file from the disk and then writing it to a net-
work socket. The flow of data, as shown in Figure 1(a), involves reading the file’s data blocks
into the application after they cross the VMM and the guest kernel boundaries, and then
writing them into the TCP socket, causing the data to pass again through the same protec-
tion boundaries before reaching the physical NIC.

There are two main problems with this simple data flow model. First, transferring data
across all the protection layers incurs significant CPU overhead, which affects the cloud
provider (provisions more CPU for hypervisor) as well as the tenant (costs more for the job).

12  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

CLOUD
vPipe: One Pipe to Connect Them All

Using zero-copy system calls such as mmap() and sendfile()
in the guest VM, as shown in Figure 1(b), would clearly reduce
the copy overhead to some extent, but not by much, because the
major portion of the overhead (e.g., virtual interrupts, protection
domain switching) is actually incurred when data crosses the
VMM-VM boundary. Second, and perhaps more importantly,
because of CPU sharing with other VMs, this VM may not
always be scheduled, which will introduce delays in the data
flow, resulting in significant degradation of performance. For
more information about how VM scheduling affects TCP, refer
to [5] and [3].

With vPipe, we propose a new abstraction to address both of
these problems—i.e., eliminate CPU overhead and reduce I/O
processing delay—in virtualized clouds with CPU sharing.
The key idea of vPipe is to empower the VMM to “pipe” data
directly from the source to the sink without involving the guest
VM. As shown in Figure 1(c), vPipe incurs fewer copies across
protection boundaries, and completely eliminates the more
costly VMM-VM data transfer overhead, thereby reducing CPU
usage significantly, which in turn saves money for both the
cloud provider and the tenant. Furthermore, because the VMM
is often running in a dedicated core, any scheduling latencies
experienced by the guest VM due to CPU sharing have virtually
no impact on I/O performance.

Although our idea of vPipe makes intuitive sense, realizing it is
not that straightforward because the meta-information regard-
ing the source and sink of a “vPipe” resides in the VM context.
We need to create a new interface to enable the application to,
with support of the guest kernel, pass this information to the
VMM and instruct it to create the source-sink pipe. For example,
the VM needs to identify the physical block identifiers of the file
and establish the TCP socket, which can then be passed down
to the VMM layer for establishing the pipe. For applications
that insert new data into the data stream, there also must be
sufficient flexibility in vPipe to allow the VMM and VM to take
control of the pipe. For example, HTTP responses are typically
preceded by an HTTP response header; so the Web server first
needs to write the HTTP header to the sink (i.e., TCP socket),

call vPipe to transfer control to the VMM layer to pipe the file to
the TCP socket, and then transfer the control back (e.g., to keep
the connection alive for persistent HTTP).

We describe how vPipe works and show the effectiveness of
vPipe using a proof-of-concept implementation of a simple disk-
to-network vPipe in Xen/Linux with the example of a Web server
serving static files to clients.

Creating an I/O Shortcut at VMM
The key idea behind vPipe is to create an I/O data “shortcut” at
the VMM layer when an application needs to move data from
one I/O device to another. We essentially expose a set of new
library calls (e.g., vpipe_file() similar to the UNIX sendfile())
to enable applications to create and manage this I/O shortcut.
Implementing these new calls (shown in Figure 2) requires sup-
port at the guest kernel and the VMM layer, which are provided
by two main components: (1) vPipe-vm for support in the guest
kernel; and (2) vPipe-drv for support in the driver domain (VMM
layer). Coordination across the driver domain-VM boundary
is achieved with the help of a standard inter-domain channel
(e.g., Xen uses ring buffers and event channels) that exist in any
virtualized host.

Initially, when we activate vPipe from inside the VM, the vPipe-
vm module registers a special device in the system, /dev/vpdev,
that facilitates communication between the user process and the
guest kernel via ioctl() function. This step is designed to prevent
introducing a new system call, which would in turn require
modifications to the guest kernel.

There are four main steps involved in vPipe-enabled I/O. First,
the application running inside the VM invokes the correspond-
ing vPipe call with source and sink file/socket descriptors and
blocks (we can also implement a non-blocking version of this)
until it is completed. Second, the vPipe-vm component validates
the file/socket descriptors and dereferences them to obtain the
corresponding information about them (e.g., block IDs, socket
structures) that is then passed on to the driver domain. Third,
the vPipe-drv component uses this information and performs

Application Data Source Data Sink

Web server hosting
static files

Disk TCP socket

User uploading a file to
cloud storage

TCP socket Disk

File backup service Disk Disk

Web proxy server or a
load balancer

TCP socket TCP socket

Table 1: I/O sources and sinks for typical cloud applications Figure 1: I/O data flow for a Web server

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 13

CLOUD
vPipe: One Pipe to Connect Them All

the actual “piping” operation. Finally, upon completion, the
driver domain component notifies the guest OS with informa-
tion about the data transfer through the inter-domain channel.
The guest OS then passes the notification back to the application
unblocking the call.

Offloading a TCP Connection
If the vPipe source/sink is an established TCP connection,
we offload the entire TCP connection to the driver domain by
supplying essential socket details (such as IP addresses, ports,
and sequence numbers) and letting the TCP stack at the driver
domain perform TCP processing as long as vPipe exists. Most
VMMs have a fully functional TCP stack to carry out manage-
ment tasks, and we use this for our offloaded TCP sockets.

When a TCP socket is used as either end of a vPipe, we first
use the guest OS virtual file system (VFS) to translate the file
descriptor to the kernel socket structure and collect the socket
information (TCP 4-tuple, sequence numbers, and congestion
control information). We reuse congestion control information
from the VM’s socket to initialize the vPipe socket at the driver
domain, instead of restarting it from slow start. This informa-
tion is then passed on to vPipe-drv.

Upon receiving this information, vPipe-drv creates a TCP
socket using the driver domain’s TCP stack; however, we do not
use system calls such as connect() on this socket; we instead
instantiate the kernel socket structure of the new socket using
the original connection’s metadata from vPipe-vm. There is an
additional issue we need to address: the need to add a static route
entry in the driver domain’s IP routing table to route the packets
to the local TCP/IP stack if the packets match the 4-tuple
described above, otherwise they will go directly to the guest VM.

Finally, we mark the socket as “established,” which informs the
driver domain’s TCP stack that the socket is ready to receive
packets. vPipe-drv can then perform standard socket operations
such as send() and recv() on this socket.

Offloading a File I/O Operation
If the vPipe source/sink is a file, similar to the socket, we use
VM’s file system to obtain metadata about the file data blocks
and transfer this information to the driver domain where either
the reading or writing of the data blocks is carried out. Unlike
TCP packets, file metadata is stored separately from the actual
data, in the form of separate disk blocks (e.g., inode blocks).
Once the metadata is passed on from the VM level, for the driver
domain to access the corresponding file by simply using the
physical block identifiers is straightforward.

When the source of a vPipe is a file, vPipe-vm will first locate
the file’s inode using the file descriptor. Then vPipe-vm uses
file system-specific functions and device information from the
inode to obtain the file’s physical data block identifiers. This
information is then encapsulated in a vPipe custom data struc-
ture, along with number of bytes to read and offset of the first
byte to transfer, and passed to the driver domain via the commu-
nication channel.

Once vPipe-drv receives this information, it prepares a set of
block I/O operation descriptors using a preallocated set of pages
and the block identifiers supplied by vPipe-vm and submits them
to the emulated block device.

Writing to a file involves either creating a new file, appending to
an existing file, or overwriting an existing file. When overwrit-
ing a file, we can use the same method as reading the file to get
the file block identifiers. But when we are creating a new file or
appending to an existing file, we need to request the guest’s file
system to create new block identifiers for new data. This is done
by vPipe-vm requesting the guest file system to create or update
the inode for the new data blocks with an empty set of data
blocks. This will generate a new set of block identifiers that will
be transferred to vPipe-drv, where the actual writing of the data
blocks will be performed.

Connecting the Dots
When vPipe-drv receives a vPipe request from the VM, it creates
a “pipe descriptor” associated with that operation. This descrip-
tor contains metadata describing each source/sink and two
functions: a read function that implements one of the above read
strategies, and a write function that implements one of the write
strategies depending on the source and the sink. A free thread is
picked up from the thread pool, and this thread will call the read
function using the source’s metadata. As data returns from the
source, the thread will call the write function to output the data
using the metadata of the sink.

Figure 2: vPipe architecture

14  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

CLOUD
vPipe: One Pipe to Connect Them All

Sharing the Driver Domain
vPipe poses one more challenge: because the actual I/O opera-
tions are performed by vPipe-drv, we should “charge” the work
done by the worker threads in the driver domain (Figure 2) to
the VMs requesting vPipe-enabled I/O. Lack of driver domain
access accounting and control will lead to unfairness among the
requesting VMs. To address this problem, we propose a simple
credit-based system. Each VM-specific thread pool in the driver
domain is allocated a certain amount of credits based on the pri-
ority (weight) of the VM. As the threads execute, they consume
the allocated credits based on the number of bytes transferred.
When the credits run out, the corresponding worker threads will
block until a timer task adds more credits to them.

vPipe on Xen/Linux
We implemented a prototype of vPipe on Xen 4.1 as the virtu-
alization platform and Linux 3.2 as the kernel of VMs and the
driver domain. vPipe-vm is implemented as a loadable kernel
module. Because it uses standard Linux VFS functions already
exposed to kernel modules to manipulate file descriptors and
sockets, vPipe-vm requires no changes to the guest kernel. This
makes vPipe-vm attractive for customers, because no kernel
recompilation is required for using vPipe.

We add a similar loadable kernel module in Xen’s driver domain
to implement vPipe-drv; however, we must make a few small
changes in the main kernel code, such as adding special func-
tions to create offloaded sockets and adding static routes.

We implement the driver domain-VM communication channel
as a standard Xen device with a ring buffer and an event channel.

Improved lighttpd Throughput
lighttpd [2] is a highly scalable lightweight Web server that
we adapt to vPipe. To do so, we just replaced “sendfile()” with
“vpipe_file()” in the lighttpd source code and recompiled it.
Figure 3 shows the average I/O throughput reported by httperf for
different file sizes, when the VM running lighttpd is co-located
with two other VMs. Whereas lighttpd using vPipe shows
throughput improvement for all file sizes tested, improvement
for larger files tends to be greater (up to 3.4×). For smaller files,
the overhead of offloading the connection and the file block
information to the driver domain affects the overall time, and
hence the throughput improvement is comparatively less than
that for large files.

CPU Savings by vPipe
Figure 4 shows the overall average CPU utilization of both the
driver domain and the VM when transferring a 1 GB file. As
expected, the VM’s CPU utilization for read-write mode is the
highest because it requires copying data across all layers. The
sendfile() system call eliminates the kernel to userland copying
and, hence, its VM CPU utilization is less than that of the read-
write mode. vPipe incurs the least CPU utilization at VM level
because there is no work to be done in the VM context once the
operation is offloaded to the driver domain.

With vPipe offloading the I/O processing task to the driver
domain, we would expect that the driver domain CPU utilization
for vPipe mode would be the highest. (Somewhat) surprisingly,
this is not the case, as shown in Figure 4. This is because, with
vPipe, we eliminate the data processing by the device emulation

Figure 3: lighttpd throughput improvement

Figure 4: CPU savings by vPipe

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 15

CLOUD
vPipe: One Pipe to Connect Them All

layer at the driver domain, which is required to transfer disk
blocks and network packets to and from the VM in the other
two modes.

Wrapping Up
vPipe is a new I/O interface for applications in virtualized
clouds, which mitigates virtualization-related performance
penalties by shortcutting I/O operations at the VMM layer. Our
experiments with the vPipe prototype shows that vPipe can
improve lighttpd I/O throughput while reducing CPU utilization.
vPipe also requires minimal modifications to existing applica-
tions, such as Web servers, and facilitates a simple deployment.
You can find more information about vPipe in [4].

References
[1] Amazon EC2 instance types: http://aws.amazon.com/
ec2/instance-types/.

[2] lighttpd Web server: http://www.lighttpd.net/.

[3] S. Gamage, A. Kangarlou, R. R. Kompella, and D. Xu,
“Oppor tunistic Flooding to Improve TCP Transmit
 Performance in Virtualized Clouds,” ACM SOCC (2011).

[4] S. Gamage, R. R. Kompella, and D. Xu, “vPipe: One
Pipe to Connect Them All!” USENIX HotCloud (2013):
https://www.usenix.org/conference/hotcloud13/
vpipe-one-pipe-connect-them-all.

[5] A. Kangarlou, S. Gamage, R. R. Kompella, and D. Xu,
“vSnoop: Improving TCP Throughput in Virtualized
 Environments via Acknowledgement Offload,” ACM/
IEEE SC (2010).

USENIX Member Benefits
Members of the USENIX Association receive the following benefits:

Free subscription to ;login:, the Association’s bi-monthly print magazine, and ;login: logout,
our Web-exclusive bi-monthly magazine. Issues feature technical articles, system ad-
ministration articles, tips and techniques, practical columns on such topics as security,
Perl, networks, and operating systems, book reviews, and reports of sessions at USENIX
 conferences.

Access to ;login: online from October 1997 to the current month:
www.usenix.org/publications/login/

Discounts on registration fees for all USENIX conferences.

Special discounts on a variety of products, books, software, and periodicals:
www.usenix.org/member-services/ discounts

The right to vote on matters affecting the Association, its bylaws, and election of its
 directors and officers.

For more information regarding membership or benefits,
please see www.usenix.org/membership-services
or contact office@usenix.org.
Phone: 510-528-8649

16  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

Hyper-Switch: A Scalable Software
Virtual Switching Architecture
K A U S H I K K U M A R R A M , A L A N L . C O X , A N D S C O T T R I X N E R

Kaushik Kumar Ram recently
graduated from Rice University
with a Ph.D. in Computer
Science. In his graduate
research work, he explored new

mechanisms and architectures for the network
subsystem in virtualized systems. He likes to
build systems software to solve interesting
problems in the areas of operating systems
and networking. He received his B.Tech in
Computer Science and Engineering from
Indian Institute of Technology in Guwahati,
India. kaukum@gmail.com

Alan L. Cox is an Associate
Professor of Computer Science
at Rice University and a
long-time contributor to the
FreeBSD project. Over the

years, his research has sought to address
fundamental problems at the intersection of
operating systems, computer architecture, and
networking. Prior to joining Rice, he earned
his B.S. at Carnegie Mellon University and his
Ph.D. at the University of Rochester. 
alc@rice.edu

Scott Rixner is an Associate
Professor of Computer Science
at Rice University. His research
focuses on the interaction
between operating systems,

runtime systems, and computer architectures;
memory controller architectures; and hardware
and software architectures for networking. He
works with both large server-class systems
and small embedded systems. Prior to joining
Rice, he received his Ph.D. from MIT.
rixner@rice.edu

In virtualized datacenters, the last hop switching happens inside a
server. In this article we describe the Hyper-Switch, a highly efficient
and scalable software-based network switch that works alongside driver

domains. Hyper-Switch outperforms existing virtual switches used in Xen
and KVM, especially for inter-VM network traffic, and this performance will
soon be critical in datacenters.

Machine Virtualization in Datacenters
Machine virtualization has become a cornerstone of modern datacenters; it enables server
consolidation as a means to reduce costs and increase efficiencies. Many cloud-based service
infrastructures use machine virtualization as one of their fundamental building blocks.
Further, it is also being used to support the utility computing model where users can “rent”
time in a large-scale datacenter. These benefits of machine virtualization are now widely
recognized. Consequently, the number of virtual servers in production is rapidly increasing.

The use of machine virtualization has led to considerable change to the datacenter network.
In particular, the communication endpoints within the datacenter are now virtual machines
(VMs), not physical servers. Consequently, the datacenter network now extends into the
server, and last hop switching occurs inside the physical server. In other words, a virtual
switch within the server is ultimately responsible for demultiplexing and forwarding packets
to their destinations.

Communication between servers within the same datacenter already accounts for a signifi-
cant fraction of a datacenter’s total network traffic [3]. Moreover, a recent study of multiple
datacenter networks reported that 80% of the traffic originating at servers in cloud data-
centers never leaves a rack [1]. Further, the number of cores on a chip is predicted to grow to
64 in a few years and to 256–512 by the end of the decade [2]. If this prediction comes to pass,
then a rack of servers may be replaced by VMs in a single physical server, and the network
traffic that today never leaves a rack may instead never leave a server. These datacenter
trends necessitate the need for a high-performance virtual switch to support efficient com-
munication—especially between VMs—in virtualized servers.

Software Virtual Switching Solutions
There are many I/O architectures for network communication in virtualized systems. Of
these, software device virtualization is most widely used. This preference for software over
specialized hardware devices is due in part to the rich set of features—including security,
isolation, and mobility—that the software solutions offer. The software solutions can be
further divided into driver domain and hypervisor-based architectures. Driver domains are
dedicated VMs that host the drivers used to access the physical devices; they provide a safe
execution environment for the device drivers.

Arguably, hypervisors that support driver domains are more robust and fault tolerant, as
compared to the alternate solutions that locate the device drivers within the hypervisor. This
is becoming an important requirement, especially as servers in datacenters move toward
multi-tenancy; however, this reliability comes at a price because the use of driver domains

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 17

CLOUD
Hyper-Switch: A Scalable Software Virtual Switching Architecture

leads to significant software overheads that not only reduce the
achievable I/O performance but also severely limit I/O scalabil-
ity [8]. Specifically, the sharing of I/O buffers between the driver
domain and guest VMs is expensive because it requires hypervi-
sor intervention to maintain memory isolation.

There are fundamental problems with traditional driver domain
architectures. Essentially, the driver domain must be scheduled
to run whenever packets are waiting to be processed. As a result,
scheduling overheads are incurred while processing network
packets. Further, the driver domain must be scheduled in a
timely manner to avoid unpredictable delays in the processing of
network packets, which is very hard to achieve for all workloads.

In real-world virtualization deployments , dedicating proces-
sor cores to the driver domain is standard practice . This avoids
scheduling delays but often leaves cores idle. In fact, dedicat-
ing CPU resources for backend processing is not limited to just
driver domain-based architectures (e.g., SplitX [4]); however,
this can lead to underutilization of these cores. This goes against
one of the fundamental tenets of virtualization: to enable the
most efficient utilization of the server resources.

Hyper-Switch
We explored the virtual switching design space to see whether
we could achieve both high-performance and fault tolerance
at the same time. If you look at existing I/O architectures, the
virtual switch is implemented inside the same software domain
where the virtual devices are implemented and the device driv-
ers are hosted. For instance, all these components are imple-
mented inside a driver domain in Xen and the host OS in KVM.
This colocation is purely a matter of convenience because pack-
ets must be switched when they are moved between the virtual
devices and the device drivers.

We introduce the Hyper-Switch [7], which challenges the exist-
ing convention by separating the virtual switch from the domain

that hosts the device drivers. The Hyper-Switch is a highly
efficient and scalable software switch for virtualization plat-
forms that support driver domains. In particular, the hypervisor
includes the data plane of a flow-based software switch, while
the driver domain continues to safely host the device drivers.

Figure 1 illustrates the Hyper-Switch architecture. In Hyper-
Switch, the hypervisor implements just the data plane of the
virtual switch that is used to forward network packets between
VMs. The switch’s control plane is implemented in the manage-
ment layer. Incoming external network traffic is initially han-
dled by the driver domain because it hosts the device drivers, and
then is forwarded to the destination VM through Hyper-Switch.
For outgoing external traffic, these two steps are reversed. So
the virtual switch implementation is distributed across virtu-
alization software layers with only the bare essentials imple-
mented inside the hypervisor. The separation of control and data
planes is achieved using a flow-based switching approach. This
is similar to how switching is performed using OpenFlow [5].

Basic Design
Packet processing by Hyper-Switch begins at the transmitting
VM (or driver domain) where the packet originates and ends at
the receiving VM (or driver domain) where the packet has to be
delivered. Packet processing proceeds in four stages:

1. Packet transmission. In the first stage, the transmitting VM
pushes the packet to the Hyper-Switch for processing. Packet
transmission begins when the guest VM’s network stack
forwards the packet to its paravirtualized network driver. Then
the packet is queued for transmission by setting up descriptors
in the transmit ring.

2. Packet switching. In the second stage, the packet is switched
to determine its destination. Switching is triggered by a hyper-
call from the transmitting VM and begins with reading the
transmit ring to find new packets. Each packet is then pushed
to Hyper-Switch’s data plane where it is switched using the
flow-based approach. The data plane must be able to read the
packet’s headers in order to switch it. Because the data plane is
located in the hypervisor, which has direct access to every VM’s
memory, it can read the headers directly from the transmitting
VM’s memory.

3. Packet copying. In the third stage, the switched packet is cop-
ied into the receiving VM’s memory. By default, the destination
VM is responsible for performing packet copies. Once switch-
ing is completed, the destination VM is notified via a virtual
interrupt. Subsequently, that VM issues a hypercall. While in
the hypervisor, the VM copies the packet into its memory. Note
that the packet is copied directly from the transmitting VM’s
memory to the receiving VM’s memory.

Figure 1: The Hyper-Switch architecture

18  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

CLOUD
Hyper-Switch: A Scalable Software Virtual Switching Architecture

4. Packet reception. In the fourth and final stage, the paravirtu-
alized network driver in the destination VM pushes the newly
received packet into its network stack, where the packet is pro-
cessed and eventually handed to some application. Note that
the destination VM is already notified in the previous stage. So
packet reception can happen as soon as the hypercall for copy-
ing the packet is complete.

Optimizations
Another important contribution of this work is a set of optimiza-
tions that increase performance. They enable Hyper-Switch to
support both bulk and latency sensitive network traffic effi-
ciently. They include:

◆◆ Preemptive packet copying. Packet copies are performed
by default in a receiving VM’s context; however, delivering a
notification to a VM already requires entry into the hypervisor.
So packet copy is performed preemptively when the receiving
VM is being notified. In essence, the packet copy operation
is combined with the notification to the receiving VM. This
optimization avoids one hypervisor entry for every packet that
is delivered to a VM.

◆◆ Batching hypervisor entries. In the Hyper-Switch archi-
tecture, as described thus far, the transmitting VM enters the
hypervisor every time there is a packet to send. Moreover, the
receiving VM is notified every time there is a packet pending
in the internal receive queue. To mitigate these overheads,
we use VM state-aware batching, which amortizes the cost of
entering the hypervisor across several packets. This approach
to batching shares some features with the interrupt coalescing
mechanisms of modern network devices. Typically, in network
devices, the interrupts are coalesced irrespective of whether
the host processor is busy or not. But, unlike those devices,
Hyper-Switch is integrated within the hypervisor, where it can
easily access the scheduler to determine when and where a VM
is running. So a blocked VM can be notified immediately when
there are packets pending to be received by that VM. This en-
ables the VM to wake up and process the new packets without
delay. On the other hand, the notification to a running VM may
be delayed if it was recently interrupted.

◆◆ Offloading packet processing. In Hyper-Switch, by default,
packet switching is performed in the transmitting VM’s context
and packet copying is performed in the receiving VM’s context.
As a result, asynchronous packet switching does not occur
with respect to the transmitting VM, and asynchronous packet
copying does not occur with respect to the receiving VM;
however, concurrent and asynchronous packet processing can
significantly improve performance.

Concurrent packet processing can be achieved by polling all
the internal receive queues for packets waiting to be copied

and polling all the transmit rings for packets waiting to be
switched. This can be performed by processor cores that are
currently idle. In this scheme, packet copying is prioritized
over switching because packet copying is typically the more
expensive operation, and a receiving VM is more likely to be
performance bottlenecked than a transmitting VM.

The idle cores are woken up just when there is work to be
done. On the receive side, this can be ascertained precisely
when switched packets are pending to be copied at a VM.
Then one of the idle cores is chosen and woken up to per-
form the packet copies. A low-overhead mechanism is used
to offload work to the idle cores. Note that this mechanism
neither involves the scheduler nor requires any context-
switching; instead, it uses a simple interprocessor messag-
ing facility to directly request a specific idle core to copy
packets to the VMs. Also, this mechanism attempts to spread
the work across many idle cores to increase concurrency.
Further, the offload mechanism is tuned to take advantage of
CPU cache locality.

These optimizations enable efficient packet processing, better
utilization of the available CPU resources, and higher concur-
rency. In particular, they take advantage of Hyper-Switch data
plane’s integration within the hypervisor and its proximity to the
scheduler. As a result, Hyper-Switch enables much improved and
scalable network performance, while maintaining the robustness
and fault tolerance that derive from the use of driver domains.

Evaluation
We built a prototype of the Hyper-Switch architecture in the
Xen virtualization platform. Here the switch’s data plane was
implemented by porting parts of Open vSwitch [6] to the Xen
hypervisor. Open vSwitch’s control plane was used without
modification. We also developed a new paravirtualized network
interface for the guest VMs to communicate with the data plane.
The same interface was also used by the driver domain to for-
ward external network traffic.

Figure 2: Pairwise performance scalability results

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 19

CLOUD
Hyper-Switch: A Scalable Software Virtual Switching Architecture

Then we evaluated Hyper-Switch using this prototype in Xen.
The primary goal of this evaluation was to compare Hyper-
Switch with existing architectures that implement the virtual
switch either entirely within the driver domain or entirely
within the hypervisor. To achieve this, the end-to-end per-
formance under Hyper-Switch was compared to that under
Xen’s default driver domain-based architecture and KVM’s
hypervisor-based architecture. The evaluation showed that
Hyper-Switch’s performance was superior in terms of absolute
bandwidth as well as scalability as the number of VMs and
traffic flows were varied. Figure 2 shows the results from the
pairwise scalability experiments, where the number of VM pairs
was scaled up. Here, on a 32-core AMD machine, Hyper-Switch
achieved a peak net throughput of ~ 81 Gbps as compared to
only ~ 31 Gbps and ~ 47 Gbps under Xen and KVM, respectively.
Interested readers are referred to our USENIX publication that
includes more results from the evaluation [7].

Conclusion
In this work, we designed Hyper-Switch, which combines the
best of the existing last hop virtual switching architectures. It
hosted the device drivers in a driver domain to isolate any faults
and the last hop virtual switch in the hypervisor to perform
efficient packet switching. In particular, the hypervisor imple-
mented just the fast, efficient data plane of a flow-based soft-
ware switch. The driver domain was needed only for handling
external network traffic.

We also implemented several carefully designed optimizations
that enabled efficient packet processing, better utilization of
the available CPU resources, and higher concurrency. As a
result, the Hyper-Switch enabled much improved and scalable
network performance, while maintaining the robustness and
fault tolerance that derives from the use of driver domains. We
believe that these optimizations should be a part of any virtual
switching solution that aims to deliver high performance. The
Hyper-Switch architecture demonstrates that it is feasible to
switch packets between VMs at high-speeds without sacrificing
reliability.

References
[1] T. Benson, S. Akella, and D. A. Maltz, “Network Traffic
Characteristics of Data Centers in the Wild,” IMC (2010).

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaral-
ingam, and D. Burger, “Dark Silicon and the End of Multi-
core Scaling,” Proceedings of the 38th Annual International
 Symposium on Computer Architecture, ISCA ’11 (ACM, 2011),
pp. 365-376.

[3] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The
Cost of a Cloud: Research Problems in Data Center Networks,”
SIGCOMM Computer Communication Review, vol. 39, no. 1
(2009), pp. 68-73.

[4] A. Landau, M. Ben-Yehuda, and A. Gordon, “SplitX: Split
Guest/Hypervisor Execution on Multi-Core,” WIOV ’11:
 Proceedings of the 4th Workshop on I/O Virtualization
(May 2011).

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:

Enabling Innovation in Campus Networks,” SIGCOMM
 Computer Communication Review, vol. 38, no. 2 (April 2008),
pp. 69-74.

[6] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker, “Extending Networking into the Virtualization
Layer,” HotNets-VIII: Proceedings of the Workshop on Hot
Topics in Networks (October 2009).

[7] K. K. Ram, A. Cox, M. Chadha, and S. Rixner, “Hyper-Switch:
A Scalable Software Virtual Switching Architecture,” ATC
’13: Proceedings of the USENIX Annual Technical Conference
(June 2013).

[8] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner,
“Achieving 10 Gb/s Using Safe and Transparent Network
Interface Virtualization,” VEE ’09: Proceedings of the ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (March 2009), pp. 61-70.

20  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

SYSADMINTechnical Leadership Is Something
We Can All Do
T O M L I M O N C E L L I

Tom is an internationally
recognized author, speaker,
and system administrator.
His best known books include
Time Management for System

Administrators (O’Reilly) and The Practice
of System and Network Administration
(Addison-Wesley). In 2005 he received the
SAGE Outstanding Achievement Award.
He is an SRE at StackExchange.com.
www.EverythingSysadmin.com is his blog.
tal@everythingsysadmin.com

You don’t have to be a team lead or manager to demonstrate leadership.
Everyone on a sysadmin team can and should be a technical leader. To
me, the children’s game “Follow the Leader” exhibits the two essential

qualities that are required to be a technical leader.

“Follow the leader” is a game that young children play. One child is selected to be “the leader”
and walks as everyone else follows the leader in a single file line.

The leader might walk around the yard or playground, under a swing, between two big rocks.
Everyone follows. If the leader takes a big leap over a big rock, everyone else leaps over it the
same way. If the leader hops on one foot across a patio, everyone else hops on one foot across
the patio. If there is a low-hanging branch obstructing the path, the leader lifts the branch up
and walks under, then hands it to the next person, who hands it to the person behind them,
and so on.

The leader is doing two essential things. These two things are the most essential parts of
being a leader.

1. Go first.

2. Make it easy for others to follow.

They go first. There they are at the front of the line. The game doesn’t work if they aren’t.

They make it easy for others to follow. When coming to the low-hanging branch they might
crawl under it, brush up against it, or lift it out of the way. The leader decides to lift it out of
the way. By demonstrating how it is done, the leader makes it easy for others to follow. By
making it easy, others can and do follow.

This is a powerful lesson about leadership. If you want to lead, you can’t just “encourage”
others to do things, you have to do that thing. You have to show that it is possible through
action. If you want to lead, you have to make it easy for others to follow. You have to provide
the training, the knowledge. You have to clear the path.

If you only do one of those things and not the other, things fall apart. If you aren’t willing to
go first, people will not follow. If you don’t make it easy for others to follow, they’ll do some-
thing else that is easier instead.

When I was a little boy I was told it was polite to let guests go first. That was true for serving
food, but nobody told me it wasn’t true for everything else. Trying to lead without going first
is a disaster. When leading a group of guests through the house, I’d let the guests go through
a door first. Now they’re in front and don’t know where to go and I’m trying to catch up. It is
chaos. The leader must go first, even through a door, to keep leading the group.

Sometimes we forget to make it easy to follow. “I was willing to do it the hard way,
shouldn’t others?” In a perfect world everyone would be as passionate about an issue as you
are, but the truth is that they aren’t. We get discouraged because other people aren’t step-
ping up like you did. The truth is that if others aren’t following, we haven’t taken the time
to understand the obstacles they see and help to eliminate them. Often the biggest obstacle
is “I don’t know how.”

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 21

SYSADMIN
Technical Leadership Is Something We Can All Do

Getting five people to show up for a protest is easy. You plus four
others who are equally passionate will show up.

What if you want 100 people to show up? It must be considerably
easier for people who aren’t as passionate to show up. You have
to make it easy enough for people who aren’t “passionate” but
are just “concerned” to show up. They might need more detailed
directions how to get there, where to park, how much walking
will be involved. All those things are obvious to you but not to the
larger group.

What if you want 1,000 people to show up? You still need to
appeal to those who are passionate and concerned, but at this
level you also have to make it easy to attend for someone who is
just “curious.” At this level, you need to have a celebrity or enter-
tainer. That would give people two reasons to show up.

That’s leadership. What, then, is technical leadership? Techni-
cal leadership is when someone paves the way to do things differ-
ently than they’ve been done before. It is when a person makes
innovation happen.

Don’t confuse technical leadership with “management.” Man-
agement is a position on an org chart that specific people fulfill.
Management is about setting priorities, providing resources, and
removing roadblocks.

Technical leadership is different because it is something we can
all do; in fact, it is something we all must do if our IT department
is to be successful.

Technical leadership is about going first and making it easy for
others to follow.

Technology is constantly changing and, therefore, an IT depart-
ment must constantly be trying new things. For that to happen,
someone must go first. Someone must be the first to try some-
thing. To transition to the new technology successfully, others
must adopt it, too. To get others to adopt the new technology, you
have to make it easy for people to adopt it who aren’t as passion-
ate as you.

For some of us, trying new things is easy. We’re always trying
new things!

Sometimes the problem is that there are too many things to
try. Which to try first? We have to be selective. What are the
three biggest problems in this department? What keeps you
up at night? What does our boss complain about the most? Are
there new products or services that will fix or alleviate those
problems?

On the other hand, trying new things in an IT department is
often a luxury. We’re too busy to take a day to go through all the
trouble to get the thing, learn the thing, evaluate it against other
things, and demonstrate that this thing would be worth adopt-

ing in your department; however, if we invest the time required
to try a new thing, we can save time for everyone else by sharing
what we learned. More importantly, we can make it easy for oth-
ers to follow in our footsteps. We do this by doing the ground-
work, setting up the basic system, and finally creating a way that
makes it easy for others to build on it.

Suppose your team is burdened with manually configuring
machines. There are automated solutions out there but nobody
has time to evaluate them all. Each evaluation means learning
the system, deciding how it would fit into your environment, and
so on. You take the time to evaluate a few, pick one, and set it up.
Maybe it only maintains the configuration on three machines,
and the configuration that it controls is modest: just keeping a
few files in /etc properly configured. After you’ve done the hard
work, it is time to make it easy for others to follow in your foot-
steps: you create a wiki page that explains how they can add new
machines or start controlling additional aspects of the system.
That’s technical leadership.

Similar projects:

◆◆ Creating a repository for sysadmin scripts instead of having
them scattered in people’s home directories. You document
how to add new scripts, update existing ones, and replicate the
scripts to a new machine.

◆◆ Adopting a request ticket system instead of using email. You set
it up with some basic categories and document for the rest of
the team how to add/change/delete categories, FAQs, and get
the most out of the system.

◆◆ Having a wiki for the team. You give a “brown bag” talk during
lunch to teach people how to use it.

◆◆ Setting up a monitoring system so that you know what is
broken before your users notice. Setting it up is difficult. Once
that is done, configuring it to monitor new machines or services
is easy. You document basic add/change processes with clear
examples.

Technical leaders don’t ask for permission. They may ask for
feedback. They may ask for suggestions; however, people tend to
dislike change. If you were to propose any of the above projects
and ask, “Should I do it?” you’ll probably be given 100 reasons
why you shouldn’t. On the other hand, if you do any of those
projects and then give a demo about how it saves them time or
improves their life, they will adopt it (especially if you’ve pro-
vided really good documentation: how to get started, how to add/
change/delete items in the system, and so on).

The old-fashioned way to make yourself powerful within a
company was to hoard information. You are the only person who
knows how to do something, and if someone wants it done they
must come to you and ask for your good graces. You hide infor-
mation so that you can control it. You are the great and powerful

22  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

In return for being our “eyes and ears” on campus, representatives receive a complimentary membership in
 USENIX with all membership benefi ts (except voting rights), and a free conference registration once a year
(after one full year of service as a campus rep).

To qualify as a campus representative, you must:

■ Be full-time faculty or sta� at a four year accredited university

■ Have been a dues-paying member of USENIX for at least one full year in the past

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

www.usenix.org/students

Professors, Campus Staff, and Students—
do you have a USENIX Representative on your campus?

If not, USENIX is interested in having one!
The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide
Association information to students, and encourage student involvement in USENIX. This is a volunteer program,
for which USENIX is always looking for academics to participate. The program is designed for faculty who directly
interact with students. We fund one representative from a campus at a time. In return for service as a campus
representative, we o� er a complimentary membership and other benefi ts.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX
publications at your university for student use

■ Distributing calls for papers and upcoming event
brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

■ Providing students who wish to join USENIX with
information and applications

■ Helping students to submit research papers to
 relevant USENIX conferences

■ Providing USENIX with feedback and suggestions
on how the organization can better serve students

SYSADMIN
Technical Leadership Is Something We Can All Do

wizard that everyone must respect. That is the old way. The new
way is to gain power by giving away information. You are the
technical leader who set up the new repository, ticket system,
wiki, or monitoring system. You went first and made it easy for
others to follow. Now your power comes from teaching others
to use that system. You are powerful because everyone in the
organization remembers that you were the person who taught
them how to do that thing and the other thing. You are power-
ful because your influence extends throughout the company
because of all the people you’ve helped.

Technical leadership is something we can all do. For a modern
company to survive, technical leadership is something we all
must do. In fact, for the greater system administration commu-
nity to survive we all must be technical leaders.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 23

Log Filtering with Rsyslog
D A V I D L A N G

David Lang is a Staff IT Engineer
at Intuit, where he has spent
more than a decade working
in the Security Department
for the Banking Division. He

was introduced to Linux in 1993 and has been
making his living with Linux since 1996. He
is an Amateur Extra Class Radio Operator
and served on the communications staff of
the Civil Air Patrol California Wing, where his
duties included managing the statewide digital
wireless network. He was awarded the 2012
Chuck Yerkes award for his participation on
various open source mailing lists.
david@lang.hm

In my first ;login: article [1], I provided an overview of how to build an
enterprise-class logging system and recommended using rsyslog as the
transport. For those who are not familiar with modern syslog daemons,

this may seem like a strange recommendation. In this article I will provide an
overview of rsyslog’s capabilities, with the focus on its filtering capabilities.
Where a traditional syslog limited you to filtering on the facility and severity
reported by the application writing the logs, rsyslog lets you filter anything in
the log message, as well as several things that are not.

Traditional Syslog
Traditional syslog messages have a facility value (the type of log it is) and a severity value
(the importance of the message). These are combined to create the priority (PRI) of the
 message, which is a decimal number: PRI = Facility * 8 + Severity.

The log messages are sent between machines in the format:

<PRI>timestamp hostname syslogtag message

Normally, when the messages are written to a file, the <PRI> header is left off, so what shows
up in the file is:

timestamp hostname syslogtag message

Syslog filters (located in /etc/syslog.conf) are in the form of:

facility.severity[,facility.severity] <whitespace> action

The possible actions are

◆◆ Write to a file

◆◆ Send to a named pipe

◆◆ Send to a remote machine via UDP

◆◆ Write to a terminal/console

◆◆ Send to users

The PRI value for a message is completely determined by the application that’s creating the
message, with no protection preventing any user from writing a message claiming to be from
the kernel with a severity level of “emergency.” This allows you to use some of the predefined
system facilities for your application (say, news or UUCP), at the cost of confusing newcom-
ers to your environment. Most people expect that all non-system applications are going to
use one of the local* facilities.

An example /etc/syslog.conf file:

mail.* /var/log/mail.log

auth,authpriv.* /var/log/auth.log

. /var/log/messages

. @192.168.1.6

24  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

SYSADMIN
Log Filtering with Rsyslog

Almost every program that writes to syslog allows you to specify
what facility to use, and almost none of them prevent you from
configuring anything you want. With scripts, you can use the
/usr/bin/logger command to log whatever you want.

$ logger -p kernel.emerg -t kernel -s “The system is on fire!!!”

results in a log that looks like the following and is tagged with
the facility “kernel” and the severity “emergency”:

Jul 21 19:55:43 myhostname kernel: The System is on fire!!!

Rsyslog
Rsyslog has a rapid development cycle compared to Linux
distros. As of the time of writing, most Linux distros ship with
 rsyslog 5.x, while RHEL versions 6.3 and earlier ship with
 rsyslog 3.22 as the default. Rsyslog 5.x became an option in
RHEL 5.9 and became the default in RHEL 6.4. Meanwhile, the
current supported version is rsyslog 7.4. As can be expected,
the current upstream versions include many features that are
not available in older versions. Adiscon, the primary sponsor of
rsyslog, development hosts repositories for the newest versions
for both RHEL/CentOS and Ubuntu packages, and several other
people maintain current packages for other systems [2].

Among the many changes in rsyslog 6.x there was a new config
syntax added. Unless stated otherwise, all examples provided in
this article have been tested with rsyslog 3.x or newer.

Rsyslog has a modular design and, in addition to the capabilities
of traditional syslog, supports many other modules that offer
many additional functions.

Input Modules accept input into rsyslog:

im3195, imdiag, imfile, imgssapi, imjournal, imklog, imkmsg,

immark, impstats, imptcp, imrelp, imsolaris, imtcp, imttcp, imudp.

imuxsock, imzmq3

Stackable Parser Modules parse or modify the data the input
modules accepted:

pmrfc3164, pmrfc5424, pmaixforwardedfrom, pmcisconames,

pmlastmsg, pmrfc3164sd, pmsnare

Message Modification Modules modify the parsed message or
create variables from the message:

mmanon, mmaudit, mmcount, mmfields, mmjsonparse, mmnormalize,

mmsnmptrapd

Output Modules deliver the message to a destination:

omelasticsearch, omgssapi, omhdfs, omhiredis, omjournal,

omlibdbi, ommail, ommongodb, ommysql, omoracle, ompgsql,

omprog, omrabbitmq, omrelp, omruleset, omsnmp, omstdout,

omtesting, omudpspoof, omuxsock, omzmq3, omfwd (tcp/udp

network delivery), omdiscard, omfile, ompipe, omshell, omusrmsg

String Generation Modules provide predefined templates such
as the following built-in templates:

RSYSLOG_DebugFormat, RSYSLOG_FileFormat,

RSYSLOG_ForwardFormat, RSYSLOG_SysklogdFileFormat,

RSYSLOG_SyslogProtocol23Format,

RSYSLOG_TraditionalFileFormat,

RSYSLOG_TraditionalForwardFormat

Compatibility with Traditional Syslog
Rsyslog supports the traditional PRI-based filtering syntax, so
if your current usage fits within this syntax, you can continue to
use it.

At startup, rsyslog needs a little more information in its config
file to tell it which input modules to load and how to configure
them, but the filtering lines can be identical.

An example /etc/rsyslog.conf equivalent to the /etc/syslog.conf
shown earlier would be:

$ModLoad imuxsock

$ModLoad imklog

$ModLoad imudp

$UDPServerRun 514

mail.* /var/log/mail.log

auth,authpriv.* /var/log/auth.log

. /var/log/messages

. @192.168.1.6

Because rsyslog has an include function, the /etc/rsyslog.conf
could be simplified to:

$ModLoad imuxsock

$ModLoad imklog

$ModLoad imudp

$UDPServerRun 514

$IncludeConfig /etc/rsyslog.conf

Several Linux distros use the line:

$IncludeConfig /etc/rsyslog.d/*.conf

to let you manage the configurations for different applications in
separate application-specific files, without having all configu-
ration information collected in the same file. There is a bug in
rsyslog 6.x and 7.0 (fixed in 7.2) that caused the included files to
be processed in reverse order. One caution with included files:
rsyslog includes all the files and then evaluates the resulting
config. This means that if you set a configuration value in one
included file, it will still be in effect for later included files.

Modification of the Outbound Message
Rsyslog also allows you to change the log message that it sends
out to any destination. You can create a format template [3] with
a config entry like:

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 25

SYSADMIN
Log Filtering with Rsyslog

$template strangelog,”text %hostname:::lowercase% %msg% more\n”

where the items between ‘%’ are variables (with formatting
options).

Then in your action, you can tell rsyslog to use a specific tem-
plate instead of the default template:

. /var/log/messages;strangelog

Rsyslog even lets you create a template for the filename, so you
could use a configuration like:

$template sortedlogs=”/var/log/messages-%fromhost-ip%”

. ?sortedlogs;strangelog

to write the messages to different files, with filenames in the for-
mat specified by the “sortedlogs” template, based on the source
IP address.

Variables Available
Rsyslog provides different flavors of variables for use in config
files: message property variables, trusted property variables,
message content variables, and user-defined variables.

Message Property Variables
These are items derived from the message or the connection
information, such as the timestamp within the message, the
timestamp when the message was received on the local system,
the hostname in the message, the hostname/IP of the system
that delivered the message to the local box, PRI info, etc. [4].
For rsyslog version 5 and earlier, these were the only variables
available.

Trusted Properties
Late in the 5.x series, rsyslog implemented the ability to query
the kernel to get information about the process on the other end
of the /dev/log socket (UID, PID, name of binary, command line,
etc.), so that it could log information that normal non-root user
processes cannot forge (processes running as root can still forge
this information). In rsyslog 5.x, the information could only be
appended to the log message, but with 6.x and newer, this infor-
mation can be turned into variables.

Variables Parsed from Message Content
Rsyslog version 6 introduced “message modification” modules.
These modules are allowed to modify a message after it has
been parsed, and they can be invoked as the result of a filter test.
In addition to modifying the message, these modules can also
set variables that can be used the same way that the properties
defined above are used.

The two most significant message modification modules for
creating variables are mmjsonparse and mmnormalize.

Mmjsonparse will parse a JSON-formatted message and create
a tree of variables for you to use. This was implemented to sup-
port the CEE logging standard, and requires that the JSON start
with @cee:.

These rsyslog.conf additions are needed to use this module:

$ModLoad mmjsonparse

. :mmjsonparse:

This supports multiple levels of structure: $!root!level1!level2!
etc. refers to an individual item, $! refers to the entire tree, and
$!root!level1 refers to a partial subtree.

Mmnormalize [5] lets you define a rule set for parsing messages,
and it will do a very efficient parse of the log message, creating
variables.

For example, starting with this example log message:

Jul 21 19:55:03 kernel: [1084540.211910] Denied: IN=eth0 OUT=

MAC=00:30:48:90:cc:a6:00:30:48:da:48:e8:08:00 SRC=10.10.10.10

DST=10.10.10.11 LEN=60 TOS=0x10 PREC=0x00 TTL=64 ID=28843

DF PROTO=TCP SPT=44075 DPT=444 WINDOW=14600 RES=0x00 SYN

URGP=0

and the rule file normalize.rb:

rule=: %kerntime:word% Denied: IN=%in:word% OUT=

MAC=%mac:word% SRC=%src-ip:ipv4% DST=%dst-ip:ipv4%

LEN=%len:number% TOS=%tos:word% PREC=%prec:word%

TTL=%ttl:number% ID=%id:number% %DF:word% PROTO=%proto:word%

SPT=%src-port:number% DPT=%dst-port:number%

WINDOW=%window:number% RES=%res:word% %pkt-type:word%

produces this log message:

Jul 21 19:55:49 myhostname json_msg: @cee:{ “urgp”: “0”,

“pkt-type”: “SYN”, “res”: “0x00”, “window”: “14600”, “dst-

port”: “444”, “src-port”: “51954”, “proto”: “TCP”, “DF”: “DF”,

“id”:”31890”, “ttl”: “64”, “prec”: “0x00”, “tos”: “0x10”, “len”:

“60”, “dst-ip”:”10.10.10.10”, “src-ip”: “10.10.10.11”, “mac”:

”00:30:48:90:cc:a6:00:30:48:da:48:e8:08:00”, “in”: “eth0”,

“kerntime”:”[1152127.460873]” }

You do need to add the following lines to rsyslog.conf to use this
module:

$ModLoad mmnormalize

$mmnormalizeUseRawMSG off

$mmnormalizeRuleBase /rsyslog/rulebase.rb

. :mmnormalize:

$template json_fmt,”%timereported% %hostname% json_msg: @

cee:%$!%\n”

. /var/log/test;json_fmt

26  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

SYSADMIN
Log Filtering with Rsyslog

User-Defined Variables
Rsyslog versions 7 and later allow you to define your own vari-
ables in the config file in addition to the ones created by the
message modification modules. In rsyslog 7.6 there will be three
flavors of variables that you can create:

◆◆ Normal variables, which can be created by “message modifi-
cation modules” or by config statements. These are addressed
as “$!name”.

◆◆ Local variables, which cannot be set by message modification
modules. These are addressed as “$.name”.

◆◆ Global variables, which cannot be set by message modifi-
cation modules, but will persist across log messages (other
variables are cleared after every message is processed). These
are addressed as “$/name”.

Here are some examples of defining variables. Unlike other con-
fig statements, set and unset require a trailing ‘;’:

set $!user!level1!var1=”test”;

set $!user!level1!var1=$!something + 1;

unset $!user!level1;

Using Variables
One common problem that people run into when using variables
is the fact that the different types of variables were added to
rsyslog at different times, and as a result there are different ways
they are named.

The traditional message property variables have just the variable
name, such as “timereported” or “fromhost-ip”.

Other properties, mostly referring to the runtime environment
(rather than the log message), have names like “$myhostname”
or “$now”:

◆◆ Variables parsed from the message with mm modules have
names like “$!name”.

◆◆ Local variables have names like “$.name”.

◆◆ Global variables have names like “$/name”.

◆◆ When using variables, the examples usually have the classic
properties, so you see things like:

◆◆ %msg% in a template

◆◆ :msg, in a property-based filter

◆◆ $msg in a script-style config

But when you are using the other variable types, you must be
aware that the variable prefix (‘$’ ‘$!’ ‘$.’ ‘$/’) is considered part
of the variable name, not a reference to it, so you would use some-
thing like:

◆◆ * %$!portnumber% in a template

◆◆ * :$!portnumber in a property-based filter

But you only use “$!portnumber” not “$$!portnumber” in a
script-style filter or new-style config statement.

You can use “$$!portnumber” without syntax errors in some
cases, but this results in an indirect reference to something.

New Filtering Capabilities
Use Last Match
The simplest and fastest “filter” to use is the ‘&’ filter; It isn’t
really a filter because it just tells rsyslog to use the result of the
last test. If that last test matched, the ‘&’ will match as well.

This is extremely useful for cases in which you want to do sev-
eral things if a condition is met.

A common example is when you want to log all messages of
a particular type in one place, and send them off to another
system.

mail.* /var/log/mail.log

& @mailanalysis

With rsyslog version 6 and later you can use {} to group multiple
actions together, and as a result ‘&’ isn’t needed as much as it
used to be.

Mail.* { /var/log/mail.log

 @mailanalysis }

Stop Processing This Log Action
When you know that you don’t want to process a log message any
longer, you can tell rsyslog to stop and not waste time checking
any further rules. This is commonly used in conjunction with
the & filter or a block of actions to prevent rsyslog from trying to
match any other filter rules after you have done what you want
with a message. Without a stop, the message will get sent to
every output that has a matching filter:

mail.* /var/log/mail.log

& @mailanalysis

& ~

Or with the rsyslog version 6+

Mail.* { /var/log/mail.log

 @mailanalysis

stop }

and rsyslog will stop processing this message and no other rules
will be checked. Be careful—using included config files as a stop
in one file may have an unexpected impact on the processing of
another file.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 27

SYSADMIN
Log Filtering with Rsyslog

“Always” Filter
In rsyslog version 7, the config optimizer is able to identify
actions that have no filter in front of them. So instead of writing
lines like:

. /var/log/messages

. @loghost

you can just write:

/var/log/messages

@loghost

The optimizer will optimize away “always match” filters in any
case, so there is no performance penalty to continuing to write
things the traditional way.

Property-Based filters
rsyslog has long supported property-based filters [6], which are
formatted as:

:variable, [!]compare-operation, “value”

Examples of the different types are:

:programname, isequal, “sendmail” /var/log/mail.log

:msg, contains, “(root) CMD)” ~

:msg, startswith, “pam_unix” /var/log/auth.log

With property-based filters, you are no longer limited to filtering
on the PRI value that was defined in the message. You can now
filter based on the program name, or anything else in the log
message. As a result, seeing rsyslog config files that have few (if
any) PRI-based filters is common, and even those tend to be *.* or
*.severity type filters, completely ignoring the facility.

For example, to file different types of logs into different output
files, the following type of config is common:

:programname, startswith, “%ASA” /var/log/cisco-messages

& ~

:programname, startswith, “postfix” /var/log/postfix-messages

& ~

:programname, isequal, “snmpd” /var/log/snmpd-messages

& ~

:programname, isequal, “sendmail” /var/log/sendmail-messages

& ~

Script-Based Filters
Property filters can only test one thing, so rsyslog also includes
script-based filters. These are familiar looking if-then conditions.
Prior to the config optimizer that was added in rsyslog version 7,
these were slow compared to PRI filters and significantly slower
than property-based filters. In rsyslog version 7, the optimizer
makes all the different formats equivalent in speed.

Script-based filters look like [7]:

IF test THEN action [ELSE action]

where test can be an arbitrarily complex expression, with normal
precedence of operations, Boolean short-cutting, and built-in
functions.

Action can be just about any block of config statements (includ-
ing nested IF statements). Not all config items can be put into
the “then” section of a test. In general, setup type commands
(template definitions, input definitions, config parameters that
change rsyslog internals) are not allowed. Commands that do
some sort of action (set a variable, send the message to an output,
invoke message modification modules) are allowed.

The equivalent to the property filter example would be:

if $programname startswith(“%ASA”) then /var/log/cisco-messages

else if $programname startswith(“postfix”) then

 /var/log/postfix-messages

else if $programname startswith(“snmpd”) then

 /var/log/snmpd-messages

else if $programname startswith(“sendmail”) then

 /var/log/sendmail-messages

else {

 <rest of rules>

}

Array Matches
Starting in rsyslog 7.2, repeated similar tests can be greatly opti-
mized with “array” matches. Rather than having tests for many
possible matches formatted like:

if $programname == “postfix” or $programname==”exim”

 or $programname==”sendmail” then /var/log/mail.log

rsyslog now supports what it calls Array Matches.

This allows you to write the test as:

if $programname == [“postfix”,”exim”,”sendmail”] then

 /var/log/mail.log

This can be extremely powerful when you combine it with
dynamic file templates:

$template maillogs,”/var/log/mail-%programname-%severity%”

if $programname == [“postfix”,”exim”,”sendmail”] then ?maillogs

This will split the log files for mail apps into separate files for
each type of program and severity level.

28  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

SYSADMIN
Log Filtering with Rsyslog

New Config Syntax
The old syntax will continue to be supported, and you can freely
mix and match between the different config syntaxes within
the same file (or included files) so you don’t have to change your
config files when you upgrade. For some of the newer functional-
ity, though, you must use the new syntax.

In the old config syntax, you must set up options and then
execute the function, while the new format looks like function
calls with many parameters.

This example is in the old syntax:

$mmnormalizeUseRawMSG off

$mmnormalizeRuleBase /rsyslog/rulebase.rb

. :mmnormalize:

Here is the equivalent config using the new syntax:

action(type=”mmnormalize” UseRawMsg=”off”

 ruleBase=”/etc/rsyslog.d/normalize.rb”)

Here’s another example using the old syntax for a more complex
action (sending a SNMP trap):

$actionsnmptransport udp

$actionsnmptarget 192.168.1.100

$actionsnmptargetport 162

$actionsnmpversion 1

$actionsnmpcommunity testtest

$actionsnmptrapoid 1.3.6.1.4.1.19406.1.2.1

$actionsnmpsyslogmessageoid 1.3.6.1.4.1.19406.1.1.2.1

$actionsnmpenterpriseoid 1.3.6.1.4.1.3.1.1

$actionsnmptraptype 2

$actionsnmpspecifictype 0

. :omsnmp:

With the new syntax, the same config appears in a much more
compact format:

action(type=”omsnmp” transport=”udp” server=”192.168.1.1”

 trapoid=”1.3.6.1.4.1.19406.1.2.1” port=”162” version=”1”

 messageoid=”1.3.6.1.4.1.19406.1.1.2.1” community=”testtest”

 enterpriseoid=”1.3.6.1.4.1.3.1.1” traptype=”2” specifictype=”0”)

On the other hand, some things are simpler with the old config.

$template strange,”some text %variable% %variable:modifiers%\n”

is significantly longer using the new syntax:

template(name=”strange” type=string

 string=”some text %variable% %variable:modifiers%\n”)

Even this simple rule in the old syntax:

. /var/log/messages;templatename

becomes longer, although a bit more obvious as to what it does,
using the new syntax:

. action(type=”omfile” File=”/var/log/messages”

 Template=”templatename”)

Choosing which syntax to use is completely up to you— use
whichever you find easier for the task at hand. Most configura-
tions will include a mix of old and new, but in general, the more
complex the configuration, the more likely you are to benefit
from the new config syntax. Prior to the config optimizer added
in rsyslog v7, PRI-based filters were by far the fastest type of
filter to use.

Example
In the first article, I recommended using recent versions of
rsyslog on the Aggregator and Analysis farm machines, so that
you can take advantage of the greatly expanded capabilities and
performance of the newer versions. One of the recommendations
that I made was to use JSON-structured messages for the trans-
port so that additional metadata could be added. The following
config files are an example of what you may want to use.

Note that in these examples, I mix old and new config styles and
make use of the “always” filter.

On all “normal” systems (app-servers, routers, switches, etc.),
deliver all messages to the Edge Aggregation servers. On *nix
systems, add an entry like the following to /etc/syslog.conf or
/etc/rsyslog.conf:

. @edge-server-for-local-network

Here is an example /etc/rsyslog.conf for an Edge Aggregator.
Note that rsyslog treats newlines as whitespace, so no line con-
tinuation characters are necessary. The exception to this is the
$template command, which needs to be on one line (but is split
here for printing):

module(load=”imuxsock” SysSock.Annotate=”on”

 SysSock.ParseTrusted=”on”)

module(load=”imklog”)

module(load=”imudp”)

input(type=”imudp” port=”514”)

module(load=”imtcp” MaxSessions=”1000”)

input(type=”imtcp” port=”514”)

module(load=”mmjsonparse”)

action(type=”mmjsonparse”)

if $fromhost-ip != “127.0.0.1” then {

 # if the log is being received from another machine,

 # add metadata to the log

 set $!trusted!origserver = $fromhost-ip;

 set $!trusted!edge!time = $timegenerated;

 set $!trusted!edge!relay = $$myhostname;

 set $!trusted!edge!input = $inputname;

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 29

SYSADMIN
Log Filtering with Rsyslog

} else {

 set $!trusted!local!input = $inputname;

}

set this to reflect the environment that this Edge server is

servicing

set $!trusted!environment = “Dev network”;

note the template must be on a single line

wrapping is for display only

$template structured_forwarding,

 “<%pri%>%timereported% %hostname% %syslogtag% @cee:%$!%\n”

/var/log/messages;structured_forwarding

@@core-server

#send to the core server via TCP consider using RELP instead

And here is an example configuration for the Analysis Farm
systems:

module(load=”imuxsock” SysSock.Annotate=”on”

 SysSock.ParseTrusted=”on”)

module(load=”imklog”)

module(load=”imtcp” MaxSessions=”1000”)

input(type=”imtcp” port=”514”)

module(load=”mmjsonparse”)

action(type=”mmjsonparse”)

if $fromhost-ip == “127.0.0.1” then {

 #if this is a local log, send it to an edge relay.

 set $!trusted!local!input = $inputname;

 @edge-server

 stop }

$template std,”%timereported% %hostname% %syslogtag%%$!msg%\n”

/var/log/messages;std

To demonstrate how this works, on an app-server I executed:

logger testtest

which produced this message in /var/log/messages:

Jul 24 14:51:42 app-server dlang: testtest

On the Edge Aggregator server, the log message is reformatted
and metadata is added to produce the following log entry that is
sent to the Core Aggregator (which then relays the message to all
Analysis Farms):

<13>Jul 24 14:51:42 app-server dlang: @cee:{ “msg”: “testtest”,

“trusted”: { “origserver”: “10.1.2.9”, “edge”: { “time”:

“Jul 24 21:51:42”, “relay”: “edge-server”, “input”: “imudp” },

“environment”: “Dev network” } }

Note that with the app-server set to Pacific time and the edge
server set to GMT, the timestamp when the log was created
doesn’t match when it’s received.

And, finally, on the Analysis Farm systems, the following mes-
sage will be produced in /var/log/messages:

Jul 24 14:51:42 app-server dlang: testtest

This threw away all the metadata, resulting in a message that
looks identical to what was originally generated, but the meta-
data was available for filtering decisions up to this point. And a
slightly different format on the Analysis Farm server could make
any of the metadata available to the analysis tools.

As a second demonstration, on an Edge Aggregator I again
executed:

logger testtest

Because this adds trusted properties to the message, it sends the
following log entry to the Core Aggregator:

<13>Jul 24 21:53:39 edge-server dlang: { “pid”: 4346, “uid”:

1000, “gid”: 1000, “appname”: “logger”, “cmd”: “”, “msg”:

“testtest”, “trusted”: { “local”: { “input”: “imuxsock” },

“environment”: “sending network” } }

Again, the Analysis Farm server will throw away the extra meta-
data and reformat the log to be:

Jul 24 21:53:39 edge-server dlang: testtest

But this time there was more metadata available about the process
that created the log message available prior to the final output.

In conclusion, rsyslog has tremendous flexibility in processing
your log messages. You can filter on just about anything that you
care about, and you can modify messages as you send them out to
any of the many different supported outputs.

References
[1] David Lang, “Enterprise Logging,” ;login:, vol. 38,
no. 4: https://www.usenix.org/publications/login/
august-2013-volume-38-number-4/enterprise-logging.

[2] http://www.rsyslog.com/doc/rsyslog_packages.html.

[3] http://www.rsyslog.com/doc/rsyslog_conf_templates.html.

[4] http://www.rsyslog.com/doc/property_replacer.html.

[5] http://www.rsyslog.com/doc/mmnormalize.html.

[6] http://www.rsyslog.com/doc/rsyslog_conf_filter.html.

[7] http://www.rsyslog.com/doc/rainerscript.html.

30  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

Flash Caching on the Storage Client
D A V I D A . H O L L A N D , E L A I N E A N G E L I N O , G I D E O N W A L D ,
A N D M A R G O I . S E L T Z E R

David A. Holland is a researcher in software
systems at Harvard. His core research interest
is figuring out how to write better software,
which covers a broad range of projects and
applications. He wrote the OS/161 instructional
operating system. dholland@eecs.harvard.edu

Elaine Angelino is a Ph.D.
student in Computer Science
at Harvard SEAS. Her advisor
is Professor Margo Seltzer.
elaine@eecs.harvard.edu

Gideon Wald is an entrepreneur
living and working in San
Francisco. He was a product
manager at Google for three
years on Search and Chrome

before leaving to co-found a nascent company
in the enterprise software space.
gideon.wald@gmail.com

Margo Seltzer is the Herchel
Smith Professor of Computer
Science at Harvard’s School
of Engineering and Applied
Sciences, an architect at Oracle

Corporation, and the current USENIX board
President. Her research and commercial
activities revolve around all sorts of systems:
operating systems, database systems, file
systems, learning systems, etc.
margo@eecs.harvard.edu

Most use of flash memory for caching so far has been on the storage
server side. Using a trace-driven simulator we examined the use of
flash as a large client-side cache. We found that the benefit of such

a cache derives chiefly from its size, not the persistence of flash; but persis-
tent caches offer additional benefits. We also found that the cache can be
write-through without harming performance, and that for some workloads it
allows freeing up system RAM that would otherwise be needed for caching.

In recent years, flash memory has gained attention not only as a medium for storage but
also as a component of storage system caches. Most such uses have been on the server side:
flash deployed in direct combination with disks. Our study [1] examined the use of flash on
the client side of a network, such as on the compute nodes in a cluster. This arrangement
reduces access latency and network load at the cost of requiring a flash device on each node.
For shared storage, it can also introduce cache consistency problems. We ran simulations to
examine the range of possible designs of this type and their various costs and benefits.

In our system model (Figure 1), an application performs I/O into a RAM cache (the ordinary
operating system disk cache), which connects in turn to a flash cache. These components
access a file server across a network. Many scenarios, ranging from Web application servers
to render-farm nodes, share this basic structure.

We treat the flash cache as a SATA-attached solid-state drive. PCI flash devices that behave
like SATA-attached drives should give similar results. We also modeled the file server as a
“smart” enterprise-grade filer with lots of fancy prefetching and caching logic. The flash
cache will help plain disk arrays more as they are slower.

Design Space
We examined the tradeoffs that arise when designing a client-side flash cache. We asked
four key questions: whether the flash cache can/should be write-through or write-back, the
degree of integration with the operating system required, the cost/benefit of cache persis-
tence, and the need for cache consistency management.

The motivating question for this study was whether the flash cache can be write-through.
With a write-through cache, managing crash recovery and maintaining cache consistency is
easier; however, write-back caches generally perform better. We wanted to know the magni-
tude of this effect.

Another question was whether the flash cache must be integrated with the operating system
and the operating system’s disk cache. An implementation that operates as an independent
layer will be much easier to build and deploy; however, an integrated implementation might
potentially perform much better, so we wanted to know what the tradeoffs would be.

The third question was whether the flash cache needs to survive crashes. A persistent cache
must store recoverable cache metadata in the flash, as opposed to just using RAM; this cre-
ates additional overhead. On the other hand, as (re)filling a 64 GB cache to full effectiveness
can take hours or even days, not making the cache persistent can lead to substantial periods

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 31

SYSADMIN
Flash Caching on the Storage Client

of reduced performance. We wanted to find out how much the
performance would be reduced, and for roughly how long.

Finally, we wanted to know what the consequences would be
for cache consistency management. We were chiefly concerned
with serving private disk images, but shared storage volumes are
also important.

As the design space produced from these questions is enormous,
we chose to do a simulator-based study that would allow us to
explore these tradeoffs relatively inexpensively.

Our simulator reads a trace of I/O events, where each event is a
read or write access to a particular region of a file, done by a spe-
cific thread on one of perhaps many hosts. The traces we used for
our study were statistically generated using a tool we wrote for
the purpose. We did use some real traces to validate the simula-
tor against an existing implementation (NetApp’s Mercury); this
allowed us to be reasonably confident that the simulator was
producing plausible results.

Results
Our first result was not the answer to a design question but a
rather more basic issue: whether a client-side flash cache is a
win. It is; a client-side flash cache provides a fairly substantial
benefit, both for medium-sized workloads that fit into the flash
but do not fit into RAM and for large workloads that do not fit
into even a large flash device.

Figure 2 shows the average latency seen by the application for
read operations (per 4096-byte block) for a range of workload
sizes and four different flash sizes. This is with an 8 GB RAM
cache; the workloads are 30% writes and 70% reads. At the
bottom left where the workload fits into the cache, a large flash
cache offers in-cache performance for much larger workloads
than possible without it; on the right where the workload is 5x to
10x the flash size there is still a substantial benefit.

In this environment the file server’s prefetching performance
is critical. The application’s read latency is dominated by reads
that have to go all the way to disk. (This takes milliseconds and
everything else is measured in microseconds.) If—by inserting
a large cache in front of the filer—we hamper the filer’s ability
to prefetch, we can easily lose most or all of the flash cache’s
performance gain. We believe that adjusting the filer’s internal
tuning can avoid this effect; however, deploying client-side flash
caches in front of an old filer that does not know how to cope may
not provide the benefit that one might expect.

The flip side of this issue is that the ability of a plain disk array
to prefetch is negligible under all circumstances compared to a
filer. So when the backend is a plain disk array, the flash cache
offers a much greater benefit.

Our first design question above was whether the flash cache
could be write-through or whether this hampers performance.
Also, the RAM cache needs to write data back to the flash cache;
policies that work well for disks might not be appropriate in this
environment. To investigate this we implemented four simple
cache write-back policies:

◆◆ Synchronous write-through: block the app until the write to
the next layer is complete.

◆◆ Asynchronous write-through: start writing to the next layer
 immediately, but do not block on it.

◆◆ Periodic: every so often a background thread writes out modi-
fied blocks.

◆◆ None: let the cache fill and write updates back only when evict-
ing old blocks.

Trying four different time periods for the periodic policy gives
seven settings each for the RAM and flash caches, making forty-
nine cases in total.

Figure 1: System model Figure 2: Application read latency as a function of working set size

32  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

SYSADMIN
Flash Caching on the Storage Client

The obviously silly policies, such as synchronously writing
from the RAM cache while the application waits, perform badly.
(“None” turns into “synchronous” once the cache fills and also
performs badly.) Otherwise, we found (somewhat to our sur-
prise) that all other policies perform identically. The flash is
large enough that as long as changes get written in some reason-
able way, there is plenty of room for new incoming data.

Consequently, we did not try anything more complicated. The
conclusion is that the flash cache can be write-through without
hurting performance. This makes dealing with cache consis-
tency for shared volumes much easier.

The second design question we addressed was whether the flash
cache needs to be integrated with the operating system buffer
cache. We compared the “naive architecture,” in which the flash
appears as an independent layer underneath the RAM cache
with no integration whatsoever, and the “unified architecture,”
where the flash and RAM are fully integrated into a single cache
framework. We found that the unified cache performed better
for reads and worse for writes.

The chief difference between these models is that in the naive
architecture the contents of the RAM cache become duplicated
in the flash. The unified cache can avoid this and as a result
becomes effectively larger. By tinkering with timings and set-
tings, we ascertained that the improved read performance of
the unified cache was exactly due to this effect. Given the price
of flash compared to the assorted costs of implementing and
deploying a unified cache, buying more flash is much cheaper.

Meanwhile, the worse write performance arose from an imple-
mentation issue: writes go to the next available block. With 8
GB of RAM and 64 GB of flash, 8/9 of the blocks are flash; the
average write latency seen by the application was 8/9 of the flash
write latency. A smarter implementation could hide this latency.

Persistence
Much of the benefit of using flash for caching comes simply from
its size and speed; however, because flash is persistent, an obvi-
ous question is whether the flash cache should be persistent as
well. As discussed earlier, this has both benefits and costs.

To approximate the performance overhead, we doubled the
 simulated time for writing to the flash: one write for the data
and another write for metadata. This is pessimistic: in practice
one can get away with much less metadata write traffic. There
was no visible effect whatsoever on the application: given a
reasonable policy for writing from the RAM cache to the flash
cache, these writes happen in the context of the kernel’s back-
ground processes and are fully hidden from the application.

To investigate the benefit, we ran the same workloads on warmed
and unwarmed caches. Normally we use the first half of each
generated I/O trace to warm up the cache and collect timing data
on the second half. For the unwarmed case, which is equivalent
to crashing right before starting the workload, we skipped the
first half instead.

The results are shown in Figure 3. This graph requires some
explanation. It shows application read latency for three cases:
no flash cache, an unwarmed flash cache, and a warmed flash
cache. In our study we pegged the total run size of our traces
to the working set size; each trace pushes through a volume
of twice the working set size during the measurement phase.
Therefore, for the smallest workloads (left side of the graph) the
trace finishes long before the flash cache fills, and the behavior
shown on the graph is the performance seen during the warming
phase. Moving to the right, the traces become far larger than a 64
GB flash, and the average behavior over the whole trace con-
verges to the behavior with a warm cache.

What this shows is that the performance with a cold cache
is considerably worse than with a warm cache, but the cache

Figure 3: Effect of persistence on application read latency Figure 4: Invalidations required as a function of working set size

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 33

SYSADMIN
Flash Caching on the Storage Client

warms rapidly enough that having it is still better for all but the
very shortest and smallest workloads. In simulator time, the
smallest workload in this graph completed in less than ten min-
utes; the largest took about a day. The cross-over point between
the no-flash and cold-flash lines corresponds to roughly 20–25
minutes. How simulator time corresponds to real time in real-
life workloads is not so clear. Twenty minutes of simulator time
might correspond to several hours of real time, depending on the
intensity and concurrency of the workload.

The conclusion, however, is that while making the cache persis-
tent offers significant and noticeable performance gains, unless
you plan to be crashing regularly it isn’t necessary to realize
much of the cache’s performance gain.

Cache Consistency
As mentioned above we were primarily looking at serving private
disk images; however, shared data is also important and cache
consistency is a significant issue when handling it. This is a
complex problem with complex solutions; we did not implement
any particular cache consistency protocol in our simulator.
Instead we used a simple scheme where the simulator took
advantage of its own global knowledge to automatically invali-
date stale blocks wherever they appeared. The results we have,
therefore, do not take into account the network traffic generated
by a cache consistency protocol; but they do take into account
the overhead caused by needing to re-fetch blocks that have
become obsolete.

Figure 4 shows the percentage of writes that incurred an invali-
dation over a range of working set sizes. This is for two hosts
sharing the same working set (a fairly adverse situation); as
elsewhere, this is with an 8 GB RAM cache and 30% of the I/Os
are writes.

For workloads that fit into the flash cache, upwards of 90% of
write operations cause an invalidation. This is much higher than
without the flash, even for the smallest workloads that fit into
RAM. And for larger workloads, the invalidation rate drops off
much more slowly.

This effect is potentially enough to affect the performance or
scalability of existing cache consistency protocols. An additional
problem arises for persistent caches of shared data: a host that
is offline and rebooting cannot participate in an online cache
consistency protocol and would need to be able to catch up
afterwards.

Our study and our materials do not really examine consistency
issues in detail; further work, including a detailed implementa-
tion of one or more specific protocols, is probably indicated. But
we can tentatively conclude that with shared data, particularly
broadly shared data and particularly for write-heavy workloads,
consistency management overhead may erase most or all of the
benefit of the client-side cache.

No RAM Cache
We came across an additional unexpected phenomenon: in at
least some cases, it appears that cutting back the amount of
RAM used for caching to (almost) zero makes sense. Figure 5
shows the read and write latency seen by the application as the
RAM size is reduced (moving right to left) from the default 8 GB
down to 64 KB and then all the way to zero. For all points the
flash size is 64 GB; the RAM-to-flash writeback policy has been
changed to asynchronous write-through.

Notice that the write latency remains the same all the way
down to 256 KB of RAM . . . and the read latency is effectively
unchanged. The read latency is slightly worse compared to the
largest RAM sizes, but this effect is negligible (around 2%).

Figure 5: Application read and write latencies with small RAM sizes and
60 GB working set

Figure 6: Application read and write latencies with small RAM sizes and 5
GB working set

34  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

SYSADMIN
Flash Caching on the Storage Client

Upon reflection one might expect this result, because the work-
ing set is much larger than the RAM size and the hit rate in the
RAM cache is miserably low. (With 8 GB of RAM the hit rate is
about 14%; the flash hit rate is over 85%.) The effect appears to
a surprising extent even in small workloads. Figure 6 shows the
same thing, but for a 5 GB workload. The far right point is for 8
GB of RAM, in which the working set fits completely. The pen-
alty here is about 25–30%. This is substantial, but it is not neces-
sarily fatal. There are almost certainly workloads where a 30%
reduction in read performance is worth being able to repurpose
8 GB of RAM; for example, there are many applications where an
extra 8 GB will more than offset this penalty.

This tradeoff is made possible by the flash cache; without the
flash, the cost of shrinking the RAM cache is not merely 25–30%;
reads become some five times slower.

One of the less obvious reasons for this effect is that in our work-
loads, like most real workloads, some accessed data is outside the
working set. These I/Os tend to miss in normal-sized caches; the
flash is large enough to help with them.

We should also stress that this is something of a preliminary
result, in that we are not yet sure how well it will translate to
real-life workloads in real-life situations. But it certainly bears
consideration.

Conclusions
The results of our simulations show that even the simplest form
of client-side flash caching provides significant benefits to
applications. We also identified a number of points that simplify
the space of designs worth pursuing. First, it is perfectly fine
from a performance standpoint for the flash cache to be write-
through, or to use any other reasonable write-back policy. Sec-
ond, there is no need to integrate the flash cache tightly with the
operating system; the benefit of doing so is purely that the cache
becomes slightly larger, but it is much cheaper to buy more flash.
Third, much of the benefit of the flash cache can be gained with-
out making it persistent; however, persistence offers additional
benefits, incurs little or no overhead in practice, and is probably
worthwhile. Fourth, cache consistency becomes a serious issue
with caches of this size if multiple hosts are actively modifying
overlapping working sets. Even with a write-through cache, such
workloads cause substantially more invalidation traffic than we
see with traditional RAM-based caches. Traditional cache con-
sistency protocols may also not be able to cope with a persistent
cache being offline during a reboot.

Acknowledgments
This work was supported by NetApp. Additionally, James Len-
tini, Keith Smith, and Chris Small, all of NetApp, were tremen-
dously helpful in providing us with the means and expertise to
validate our simulator.

References
[1] D. A. Holland et al., “Flash Caching on the Storage Client,”
Proceedings of the 2013 USENIX Annual Technical Confer-
ence (San Jose, CA, 2013).

NOVEMBER 3-8, 2013 • WASHINGTON, D.C.

27th Large Installation System Administration Conference

Keynote Address: “Modern Infrastructure: The Convergence of Network,
Compute, and Data” by Jason Hoffman, Founder, Joyent

Join us for 6 days of practical training on topics
including:

 SRE Classroom: Non-Abstract Large
 System Design for Sysadmins by John
 Looney, Google

 Root Cause Analysis by Stuart Kendrick,
Fred Hutchinson Cancer Research Center

 PowerShell Fundamentals by Steven
 Murawski, Stack Exchange

 Introduction to Chef by Nathen Harvey,
Opscode

The 3-day Technical Program includes:

 Plenaries by Hilary Mason, bitly, and
Todd Underwood, Google

 Invited Talks by industry leaders such
as Ariel Tseitlin, Netflix; Jeff Darcy, Red
Hat; Theo Schlossnagle, Circonus; Matt
Provost, Weta Digital; and Jennifer Davis,
Yahoo!

 Paper presentations, workshops, vendor
exhibition, posters, Guru Is In sessions,
BoFs, and more!

Sponsored by in cooperation with LOPSA

Register by October 15 and save. Additional discounts are available!
www.usenix.org/lisa2013

New for 2013: The LISA Lab Hack Space!

36  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMINGValerie Aurora on File Systems and
the Ada Initiative
An Interview

R I K K I E N D S L E Y A N D V A L E R I E A U R O R A

Rikki Endsley is the Managing
Editor of ;login: and the USENIX
Association’s Community
Manager. rikki@usenix.org

In July, Valerie Aurora received a 2013 O’Reilly Open Source Award for
her long-time contributions to the Linux community and for advocating
new developments in Linux file systems. Valerie’s expertise in the area

of file systems dates back to 2002, when she worked as a software engineer
on ZFS at Sun Microsystems. She went on to design and implement chunkfs,
union mounts, fsck parallelization, and relative access time (relatime). In
January 2011, Valerie announced the launch of the Ada Initiative [1], which
helps women get into and stay involved in free and open source projects.
Valerie also has a long history with the USENIX Association and our confer-
ences. She has been on the committee for USENIX events, including FAST
’09 and the 2007 Linux Storage & Filesystem Workshop, which was co-
located with the 5th USENIX Conference on File and Storage Technologies
(FAST ’07). At HotDep ’06, Valerie and her co-authors presented a paper on
chunkfs [2].

I’ve followed Valerie’s career and her efforts to help open source communities become more
inviting to women since I ran across her “HOWTO Encourage Women in Linux” document
during my thesis research in 2006. The document played a huge part in my research into how
I, as a tech journalist, could help women in tech by covering their projects and careers. Today
the howto is still a thorough, practical resource for encouraging women in IT and reads as
if it were written recently. On one hand, “HOWTO Encourage Women in Linux” shows Val-
erie’s forethought on the topic; on the other hand, it shows how much more work needs to be
done to make IT more inviting to women.

In this interview, Valerie discusses her work with Linux file systems, conferences, and the
Ada Initiative.

Rikki: In 2011, you left your Linux kernel developer position at Red Hat and helped launch the
Ada Initiative, but you still do consulting work. What kind of consulting work are you doing?

Valerie: Well, if you look at my consulting Web site, I’m obviously not doing Web design. I do
short-term contracts mainly in the area of Linux storage and file systems, usually things like
debugging silent data corruption, analyzing performance, and prototyping new features. My
favorites are finding the root cause of data corruption and debugging race conditions.

Rikki: Are you doing any Linux/UNIX development right now?

Valerie: Not at the moment. My most recent contracts were all performance tuning or fixing
data corruption. My last mainstream kernel patch was to fix a kernel configuration error,
and before that a bug fix for a file system freeze locking problem.

Rikki: You were a Linux kernel developer. The kernel team doesn’t have a reputation for being
particularly inviting. What was your experience like working on the Linux kernel and work-
ing with other kernel developers?

Valerie Aurora (formerly Val
Henson) is the Executive
Director and co-founder of
the Ada Initiative, a nonprofit
dedicated to promoting women

in open tech/culture. She is an experienced
software engineer and was a leading file
systems developer, researcher, and consultant
for more than a decade. She invented several
new file systems concepts, including a widely
used power-saving feature in file systems
called relative atime, and co-founded the Linux
Storage and File Systems Summit.
valerie@adainitiative.org

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 37

PROGRAMMING
Valerie Aurora on File Systems and the Ada Initiative

Valerie: The vast majority of Linux kernel developers I worked
with were incredibly kind, thoughtful, intelligent people who
just wanted to make Linux better. Unfortunately, it only takes
a few jerks to make a working environment terrible, especially
when they are in leadership positions. In my experience, at
least 95% of kernel developers I know wish they didn’t have to
be humiliated and mocked in order to contribute to Linux. But
like them, I felt helpless to change a system that condones and
rewards nasty behavior, starting from the top. I hope that the
work I do in the Ada Initiative will someday help change the
Linux kernel development culture, because there were a lot of
things I enjoyed about working in the kernel community and I
would love to return.

Rikki: Linux Software Engineer at Intel and Linux kernel con-
tributor Sarah Sharp recently called out Linus Torvalds (and
others) for…um…less than professional communication on the
kernel list. I assume you followed that whole exchange [3]?
What are your thoughts on the incident? Do you agree with
Sarah’s request for everyone to “Keep it professional on the
mailing lists”? And what do you think about how Linus handled
the situation?

Valerie: I’m one of hundreds of Linux kernel developers, past
and present, who agree with Sarah Sharp’s request—she’s just
the person brave enough to directly call for change from Linus
Torvalds and other community leadership. I was a little horri-
fied to see how many top-notch kernel developers spoke up to
say that this is one reason why they dropped out of kernel devel-
opment. So I’m thrilled to hear this will be a topic of discus-
sion at the next Linux Kernel Summit. I hope that other kernel
developers will join her in standing up for a working environ-
ment without abuse.

I think Linus responded based on the information he has. For
example, he’s probably not aware of research showing that
people’s intuition that performance improves after severely
criticizing someone is wrong: any improvement in performance
is due to random chance, what many people are familiar with as
“regression to the mean.” It turns out that when you evaluate the
effect of criticism vs. praise on performance scientifically, praise
is the clear winner [5]. We as computer programmers should use
the same scientific logical approach to community management
as we do for software development.

Rikki: Let’s talk file systems. Are you still working on union
mounts?

Valerie: No, I already have one full-time job at the Ada Initiative!
David Howells is continuing work on union mounts and doing
a great job. Sometimes I wonder if the main use of the union
mounts project is to find and fix lurking bugs in the VFS code.
Certainly working on union mounts is a great way to understand
the design and rules of the VFS.

Rikki: Are you working on any other file system-related projects?
What’s “next” for file systems?

Valerie: At this point, I just applaud from afar whenever Linux
file systems hit another milestone. Getting btrfs stable and
ready for production is in my mind the top priority for now. I
sympathize with their main showstopper bug right now because
when I left ZFS development, we were working on the same prob-
lem. With a copy-on-write file system, you have to be sure that
there is enough space on disk to write out all the changes in the
current transaction, before you free the blocks with the original
data. It is hard to predict how much space you’ll need to do this,
so the default is to overestimate the space. (If you underestimate
the space, the file system gets wedged and you’ll probably have
to reboot.) The problem with overestimation, of course, is that
writes fail with ENOSPC (out-of-space error) when there is
really plenty of disk space left. That’s better than crashing but
not good. I don’t know what the ZFS solution was, but perhaps it
could be shared with the btrfs developers.

Rikki: You’ve been on several USENIX conference committees,
including the 2007 Linux Storage & Filesystem Workshop.
More recently, you’ve helped launch the AdaCamps and Allies
workshops under the Ada Initiative umbrella. Tell us about those
events. What inspired you to start them, and do you think they’ve
been successful? Is an AdaCon in the works?

Valerie: I organized the first Linux File Systems Workshop in
2006 because it was clear that Linux file systems development
was stalled, and I wanted it to get moving again. It worked—the
formal ext4 development branch was announced two weeks
after the 2006 workshop, and the first btrfs announcement came
three months after the 2007 summit. Chris Mason explicitly
credited that meeting with inspiring btrfs. This meeting contin-
ues being useful today, under the ungainly but accurate name of
Linux Storage, File Systems, and Memory Management Summit.

AdaCamp is a medium-sized—about 200 people—unconference.
My co-founder Mary Gardiner and I started AdaCamp with
the goal of increasing women’s commitment to open technol-
ogy and culture. Women are excited by and want to be part of
open source or Wikipedia or what have you, but then get more or
less subtle “Get out, you don’t belong here” messages from their
communities. AdaCamp brings women together to support each
other in their enthusiasm and commitment to open tech/culture.
I thought it would be hard to tell whether AdaCamp worked, but
it’s been pretty easy. AdaCampers email us regularly to tell us
they landed an open source internship, or started women’s edit-
a-thons in India, or learned how to solder. Our post-AdaCamp
surveys show that 85% of attendees thought that AdaCamp
increased their commitment to open tech/culture; we’re not sure
if the other 15% were just already highly committed.

38  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Valerie Aurora on File Systems and the Ada Initiative

The Allies Workshop was inspired by a workshop taught by
Caroline Simard at Grace Hopper Celebration. Her workshop
taught men how to support women in tech by role-playing
through common scenarios, like having a woman’s idea credited
to a man in a meeting. We changed it to be short discussions
about scenarios in which men could intervene to make women
feel more welcome: how to introduce yourself to a woman at
a conference, how to respond to harassment on IRC, how to
respond to a sexist argument on a Wikipedia talk page. The most
interesting success of the Allies Workshop was unexpected: it
gave co-workers an opportunity to talk candidly and safely about
their experiences with sexism. People who had worked together
for years would discover for the first time that their female col-
leagues were regularly harassed online or propositioned in the
lunch room. It gives people a chance to learn and ask questions in
a non-judgmental setting.

We’re not sure how to do an AdaCon yet but we’d like to have the
chance. AdaCon would be a much larger (400?) person confer-
ence with more structure and a lower bar to entry. Some of the
features of AdaCamp that people love are hard to scale. For
example, AdaCamp’s open application/invitation-only selection
process is an overwhelming amount of work for 200 attendees,
but it also creates a safe, welcoming, productive environment
that attendees love.

Rikki: The Ada Initiative anti-harassment work seems to be
gaining traction, with more than 100 conferences adopting anti-
harassment policies in the past few years. Obviously, adopting
a policy doesn’t “fix” everything. What’s next for conferences?
What else should conference organizers be doing to make their
events inviting and safe for a diverse group of attendees?

Valerie: PyCon US 2013, Open Source Bridge, and AdaCamp are
three conferences that show what the next steps are in concrete
form. PyCon US did “all the things”: anti-harassment policy;
outspokenly pro-women community leaders; travel scholarships;
inviting women to speak personally; organizing women’s events;
free booths for women’s groups; and explicitly women-friendly
spaces, like the Women’s Office Hours room and the Ada Initia-
tive Feminist Hacker Lounge. They had 20% women speakers
and attendees at a 3000+ person conference.

Open Source Bridge is an explicitly social justice oriented open
source conference in Portland, Oregon. The organizers are
themselves fairly diverse, and that is reflected in the breadth of
topics they cover and the speakers they attract. Like many open
source conference organizers, they view their conference as
an opportunity to promote social justice and diversity in open
source, and spend time and money to accomplish that. This year
they improved the accessibility of their conference by adding
“travel lanes” with blue tape on the floor, which let people who
use mobility devices or have vision impairment move more easily

around the conference and around everyone else, too. I hear
estimates that attendees are around 30% women and speakers
are around 40%.

AdaCamp has a pretty good record of being diverse in a number
of dimensions, relative to most open tech/culture events: age,
race, place of origin, first language, etc. Being mostly women, we
were actually not that diverse in gender per se, though more so in
gender identification and expression.

From my experience, the general principles of attracting a
diverse audience are:

1. Have a diverse organizing committee.

2. Ask for, listen to, and implement suggestions ASAP.

3. Communicate early and often how much you appreciate
 diversity of attendees.

For example, a surprisingly effective way to improve diversity
is by having a variety of food that caters to people’s dietary
requirements. At the last AdaCamp, we had people who were
vegan, gluten-free, fructose-intolerant, celiac, and allergic to
mushrooms, soy, and lettuce, to name a few. We had to fight with
the caterers for weeks to get food that had something edible for
everyone, tasted great, and was cheap enough for a nonprofit
budget. It wasn’t easy to accomplish, but that’s kind of the point:
the fact that we cared enough to go to the effort to make sure
everyone could eat lunch together was a signal to our attendees
that we cared about their needs. Think about it—if you have to
leave the conference to get lunch or snacks, what kind of slap
in the face does that feel like? And once you get used to putting
in the time and effort to meet people’s food needs, it becomes a
habit to do so in other ways.

Rikki: Your work with the Ada Initiative has allowed you to meet
a variety of interesting people. Has anyone stood out as being
particularly effective or innovative when it comes to encourag-
ing women in technology? Which organizations or events do
you think are standing out when it comes to encouraging women
in tech?

Valerie: Wow, hard question. How do I mention just a few? I
apologize to everyone I left out in this answer—I assume :login;
can’t publish a novella!

The Outreach Program for Women [4] (formerly GNOME Out-
reach Program for Women) has been a stellar success for train-
ing and recruiting women developers in open source. OPW is the
product of many people’s hard work, with Marina Zhurakhinskaya
currently leading the project. Increasingly, whenever I meet a
new woman open source developer, it turns out she got her start
through an OPW internship. Thanks to the Linux Foundation
and Sarah Sharp, this year the OPW awarded seven Linux kernel
internships [5].

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 39

PROGRAMMING
Valerie Aurora on File Systems and the Ada Initiative

The Geek Feminism Wiki and blog have been around for years,
but are starting to reach their full potential as tools to support
women in tech. In the past year, the Geek Feminism Wiki has
been cited by several mainstream media outlets, such as The
New Yorker, as supporting evidence for stories on women in tech.
In particular, the “Timeline of Incidents” has been crucial sup-
porting evidence in many discussions of whether or not women
in tech face systemic discrimination. Geek Feminism is the work
of many people, but two of the most prolific contributors and
founders are Alex “Skud” Bayley and Mary Gardiner. Without
the Geek Feminism Wiki, the Ada Initiative and many other
groups could not have made the progress we have over the past
few years.

Rikki: What else is the Ada Initiative focusing on right now?

Valerie: We’d like to expand the use of the Allies Workshop as
corporate training for technology companies. Many corpora-
tions want to hire more women in tech, but aren’t aware of the
ways their internal culture are off-putting or frankly hostile
to women. If companies succeed in hiring women despite their
culture, those women often end up fighting an uphill battle to
change the internal culture, and often end up leaving out of
exhaustion. With the Allies Workshop, we teach men how to
fight these battles and change their culture to be more welcom-
ing to women and many different kinds of people. It’s fun, too;
after one Allies Workshop, an attendee asked HR if they could
get “more training like that.”

We’d like to contribute to the trend of community-wide codes of
conduct going on in open source, Wikipedia, and similar online
communities. This is not as easy as banging out an example
anti-harassment policy like we did for conferences—at heart,
conferences have much more in common with each other than
open tech/culture communities. For example, conferences usu-
ally have clear-cut leadership who can kick people out of a clearly
defined physical space. Online communities are much more
varied in governance and structure, so there’s no one-size-fits-
all way of effectively implementing a code of conduct.

Rikki: Did you know that I referenced your “HOWTO Encourage
Women in Linux” [6] article in my Master of Science in Journal-
ism thesis? Even though you wrote the document back in 2002,
it passed the test of time and you covered topics that are still
relevant today. If you were to update the document now, what (if
anything) would you add or change?

Valerie: No, I had no idea—thanks for letting me know! Dozens of
people helped me write that HOWTO, mostly other LinuxChix
members, and I’m glad so many people found it useful. That
HOWTO showed me how powerful the written word could be,
and I’ve never forgotten that lesson.

For years, I had “Update HOWTO Encourage Women in Linux”
on my to-do list, but the thought of reading something I’d written
that long ago made me cringe. I did finally bring myself to reread
it a couple of years ago and was pleasantly surprised with how
much of it I still agreed with, enough that I stopped planning
to update it. I’d improve some language, I’d replace the example
of sexism in the introduction with a link to the Geek Feminism
Wiki, and maybe add a few more items. But overall, I think my
time is better spent on new projects than in bikeshedding one
that is successful enough.

Rikki: Can you tell us about your interest in labyrinths? I know
that a lot of developers are also runners. When I interviewed
Nick Lang and Jacob Kaplan-Moss about the PyCon 2012 5k [7],
Nick told me that running helps him figure out programming
problems he’s stuck on. Do you feel that way about labyrinths?

Valerie: As a programmer, I’m deeply interested in ways to
encourage that unconscious intuitive leap that shows you the
bug fix or the solution to the design problem. A common theme
in people’s stories about “Aha!” moments is that they were
doing something else at the time that didn’t take up all of their
concentration. In my experience, that something else is often
walking—but also showering, driving, falling asleep, etc. For me,
any kind of walking helps me come up with creative solutions or
new insights. Labyrinths are neat both because they let you walk
without needing a destination, but also because they have so
much history tied up in them.

References
[1] Ada Initiative: http://adainitiative.org/.

[2] Val Henson et al., “Chunkfs: Using Divide-and-Conquer
to Improve File System Reliability and Repair”: https://www
.usenix.org/conference/hotdep-06/chunkfs-using-divide
-and-conquer-improve-file-system-reliability-and-repair.

[3] Linux-kernel list email exchange: http://marc.info/
?l=linux-kernel&m=137390362508794&w=2.

[4] Outreach Program for Women: https://wiki.gnome.org/
OutreachProgramForWomen.

[5] Linux Kernel Internships 2013: http://sarah.thesharps.us/
2013/05/23/%EF%BB%BF%EF%BB%BFopw-update/.

[6] Val Henson, “HOWTO Encourage Women in Linux”: http://
tldp.org/HOWTO/Encourage-Women-Linux-HOWTO/.

[7] Rikki Endsley, “How to Pound the Pavement with
 Programmers at PyCon” (PyCon 2012 5K), Network World,
Mar. 6, 2012: http://www.networkworld.com/community/
blogs/pycon5k.

40  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

Modular SDN Programming with Pyretic
J O S H U A R E I C H , C H R I S T O P H E R M O N S A N T O , N A T E F O S T E R ,
J E N N I F E R R E X F O R D , A N D D A V I D W A L K E R

Joshua Reich is an NSF/CRA
Computing Innovation Fellow
at Princeton University’s
Department of Computer
Science. He designs and builds

systems to utilize networks more effectively—
currently focusing on SDNs. His work on
Pyretic received the NSDI Community Award
(shared with this article’s co-authors). 
jreich@cs.princeton.edu

Christopher Monsanto is a
Ph.D. candidate at Princeton
University, advised by David
Walker. His research interests
include programming languages

and distributed computing. chris@monsan.to

Nate Foster is an Assistant
Professor of Computer
Science at Cornell University.
His research focuses on
abstractions and tools for

building reliable systems.
jnfoster@cs.cornell.edu

Jennifer Rexford is the
Gordon Y.S. Wu Professor of
Engineering in the Computer
Science Department at
Princeton University. She

previously worked at AT&T Research,
where she designed network-management
techniques that were deployed in AT&T’s
backbone network. jrex@cs.princeton.edu

David Walker is a Professor of
Computer Science at Princeton
University. His research focuses
on the theory, design, and
implementation of programming

languages. dpw@cs.princeton.edu

Software-Defined Networking (SDN) enables innovation in network
management by giving a programmable controller direct control over
the underlying switches through an open, standard API, like Open-

Flow. However, existing SDN controllers offer programmers a low-level
programming interface akin to assembly language. In this article, we pres-
ent Pyretic, a programming platform that raises the level of abstraction and
enables the creation of modular software, allowing programmers to create
sophisticated SDN applications.

Managing today’s computer networks is a complex and error-prone task. These networks
consist of a wide variety of devices, from routers and switches to firewalls, network-address
translators, load balancers, and intrusion-detection systems. Network administrators must
express policies through tedious box-by-box configuration, while grappling with a multitude
of protocols and baroque, vendor-specific interfaces.

In contrast, Software-Defined Networking (SDN) is redefining the way we manage networks.
In SDN, a controller application uses a standard, open interface, such as OpenFlow [1], to
specify how network elements or switches should handle incoming packets. Programmers
develop their own new controller applications on top of a controller platform, which pro-
vides a programming API built on top of OpenFlow. Separating the controller platform and
applications from the network elements allows anyone—not just the equipment vendors—to
program new network control software.

In just a few years, SDN has enabled a wealth of innovation, including prominent commercial
successes such as Nicira’s network virtualization platform and Google’s wide-area traffic-
engineering system. Most of the major switch vendors support the OpenFlow API, and many
large information-technology companies are involved in SDN consortia, such as the Open
Networking Foundation and the Open Daylight initiative.

SDN is creating exciting new opportunities for network-savvy software developers and soft-
ware-savvy network practitioners alike. But how should programmers write these controller
applications? The first generation of SDN controller platforms offer programmers a low-level
API closely resembling the interface to the switches. This forces programmers to program
in “assembly language,” by manipulating bit patterns in packets and carefully managing the
shared rule-table space.

In the Frenetic Project [2], we are designing simple, reusable, high level abstractions for
programming SDNs; and efficient runtime systems that automatically generate and install
the corresponding low-level rules on switches [3–7]. Our abstractions cover the main facets
of managing a network-specifying packet-forwarding policy, monitoring network conditions,
and dynamically updating policy to respond to network events. In this article, we describe
Pyretic, our Python-based platform that embodies many of these concepts, and enables sys-
tems programmers to create sophisticated SDN applications.

Pyretic is open-source software that offers a BSD-style license compatible with the needs of
both commercial and research developers. Both the source code for, and a pre-packaged VM

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 41

PROGRAMMING
Modular SDN Programming with Pyretic

containing, Pyretic’s core policy language, libraries, and runtime
are available on the Pyretic home page [8], along with documen-
tation, video tutorials, links to our email discussion list, and
more. Feel free to download and run any of the Pyretic examples
covered in the article.

OpenFlow
Pyretic is both a response to the shortcomings of OpenFlow as a
programmer API, and a client of OpenFlow in its role as an API
to network switches. As such, we begin with a brief review of
OpenFlow.

OpenFlow Switches
An OpenFlow switch has a rule table, where each rule includes:

◆◆ a bit pattern: including wildcards, for matching header fields—
for example, MAC and IP addresses, protocol, TCP/UDP port
numbers, physical input port, etc.;

◆◆ a priority: to break ties between overlapping patterns;

◆◆ a list of actions: for example, forward out a port, flood, drop,
send to controller, assign a new value to a header field, etc.;

◆◆ optional hard and soft timeouts to evict stale rules;

◆◆ byte and packet counters that collect information about how
much traffic is flowing through each rule.

Upon receiving a packet, the switch finds the highest-priority
matching rule, applies each action, and updates the counters.
Newer versions of OpenFlow support additional header fields
and multiple stages of tables.

OpenFlow Controllers
The OpenFlow protocol defines how the controller and switches
interact. The controller maintains a connection to each switch
over which OpenFlow messages are sent. The controller uses
these OpenFlow messages to (un)install rules, query the traffic
counters, learn the network topology, and receive packets when
the switch applies the “send to controller” action. Most existing
controller platforms offer programmers an API that is a thin
“wrapper” around these operations. Applications are expressed
as event handlers that respond to events such as packet arrivals,
topology changes, and new traffic statistics.

Controller Applications
OpenFlow has enabled a wealth of controller applications, includ-
ing flexible access control, Web server load balancing, energy-
efficient networking, billing, intrusion detection, seamless
mobility and virtual-machine migration, and network virtu-
alization. As an example, consider “MAC learning”—an appli-
cation designed to detect the arrival of new hosts, discover
their MAC addresses, and route packets to them. To begin, the
application starts by installing a default rule in each edge switch
that matches all packets and sends them to the controller. Upon
receiving a packet, the application learns the location (i.e., the
switch and input port) of the sender. If the receiver’s location is
already known, the application installs rules that direct traffic
in both directions over a shortest path from one to the other; oth-
erwise, the application instructs the switch to flood—broadcast-
ing the packet to all possible receivers. If a host moves to a new
location, the default rule at the new switch sends the next packet
to the controller, allowing the application to learn the host’s new
location and update the paths that carry traffic to and from the
host. Consequently, hosts can continue communicating without
disruption, even when one or both hosts move.

Pyretic Language
Pyretic encourages programmers to focus on how to specify a
network policy at a high level of abstraction, rather than how to
implement it using low-level OpenFlow mechanisms. In particu-
lar, instead of implementing a policy by incrementally installing
physical rule after physical rule on switch after switch, a Pyretic
policy is specified for the entire network at once, via a function
from an input located packet (i.e., a packet and its location) to
an output set of located packets. The output packets can have
modified fields and usually end up at new locations—this is how
packet forwarding occurs. The programmer does not need to
worry about which OpenFlow rules are used to move packets
from place to place.

One of the primary advantages of Pyretic’s policies-as-abstract-
functions approach to SDN programming is that it helps support
modular programming. In traditional OpenFlow programming, the
programmer cannot write application modules independently

Figure 1: Software Defined Network (SDN)

42  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Modular SDN Programming with Pyretic

without worrying that they might interfere with one another.
Rather than forcing programmers to carefully merge multiple
pieces of application logic by hand, a Pyretic program can com-
bine multiple policies together using one of several policy com-
position operators, including parallel composition and sequential
composition.

On existing SDN controller platforms, monitoring is merely a
side-effect of installing rules that send packets to the controller,
or accumulate byte and packet counters. Programmers must
painstakingly create rules that simultaneously monitor network
conditions and perform the right forwarding actions. Instead,
Pyretic integrates monitoring into the policy function and sup-
ports a high level query API. The programmer can easily combine
monitoring and forwarding using parallel composition. Pyretic
also provides facilities for creating a dynamic policy whose
behavior will change over time, as specified by the programmer.
Composition operators can be applied to these dynamic policies
just as easily as fixed static ones.

Finally, Pyretic offers a rich topology-abstraction facility that
allow programmers to apply policy functions to an abstract view
of the underlying network. This facility is particularly note-
worthy in that it is actually an application built on top of Pyretic
using the other abstractions in the language.

In this section, we illustrate the features of the language using
examples. Along the way, we build toward a single-switch
Pyretic application that dynamically splits incoming traffic
across several server instances. We conclude by using topology
abstraction to distribute this single-switch application across a
network of many switches.

Network Policy as a Function
A controller application determines the policy for the network
at any moment in time. A conventional OpenFlow program
includes explicit logic that creates and sends rule-installation
messages to switches (logic that includes defining the low-level
bit-match patterns, priorities, and actions for these rules) and
that registers callbacks that poll traffic counters and handle
packets sent to the controller.

In contrast, Pyretic hides these low-level details by allowing
programmers to express policies as compact, abstract functions
that take a packet (at a given location) as input, and return a set
of new packets (at potentially different locations). Returning
the empty set corresponds to dropping the packet. Returning
a single packet corresponds to forwarding the packet to a new
location. Returning multiple packets corresponds to multicast.

The simplest possible Pyretic policy is one where every switch
floods each packet out all ports on the network spanning tree. In
conventional OpenFlow programming, the controller application
would, for each switch, install the rule whose pattern is “don’t

care” on all bits, with a single action “flood” (if that action is
even supported by the switch). In contrast, in Pyretic, the pro-
grammer simply writes one line:

flood()

where flood() is interpreted as a function that takes a packet
located at any port on any switch in the network as an input and
outputs zero, one, or more copies of the same packet at the output
ports of the switch it arrived at—one packet for each port on the
network’s spanning tree. Hence, this simple policy will allow
any collection of hosts to broadcast information to one another
over a network. Moreover, the policy no longer depends upon
specific switch features. The switches used need not implement
a “flood” primitive themselves as the runtime system can choose
to implement flooding behavior using other OpenFlow actions—
a good thing because the “flood” action is an optional feature in
OpenFlow 1.0.

Of course, Pyretic programmers will typically write much more
sophisticated policies. Here’s a fragment of a policy that uses
several more Pyretic features to route a packet with destination
IP 10.0.0.1 across switches A and B.

(match(switch=A) & match(dstip=’10.0.0.1’) >> fwd(6)) +

(match(switch=B) & match(dstip=’10.0.0.1’) >> fwd(7))

Here, we use predicate policies (including match and conjunction)
to disambiguate between packets based on their location in the
network as well as their contents; we use modification policies
(such as fwd) to change the header content or location of packets;
and we use composition operators (such as +, parallel compo-
sition and >>, sequential composition) to put together policy
components. Each of these features, as well as others, will be
explained in the upcoming sections; Table 1 lists several of the
most common basic Pyretic policies.

In this slightly more elaborate policy, there are components that
look somewhat like OpenFlow rules—they match different kinds
of packets and perform different actions; however, as the simpler
flood example shows, these policies do not necessarily map to
OpenFlow rules in a one-to-one fashion. Consequently, Pyretic
programmers must discard the rule-based mental program-
ming model and adopt the functional one. We believe doing so
encourages programmers to focus their minds entirely on the
essential problem: determining the fundamental, high-level logic
required to implement the application properly, not the low-level
encoding of that logic in terms of hardware abstractions and a
series of controller-level event handlers. This also leads to much
more concise code, avoids replicating related functionality, and
reduces the risk of accidental inconsistencies between different
parts of the application.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 43

PROGRAMMING
Modular SDN Programming with Pyretic

From Bit Patterns to Boolean Predicates
An OpenFlow rule matches packets based on a bit pattern in the
header fields, where each bit is a 0, 1, or “don’t care”; however,
expressing a policy in terms of bit patterns is tedious. For
example, matching all packets except those with a destina-
tion IP address of 10.0.0.1 requires two rules. The first, higher-
priority rule matches all packets destined to 10.0.0.1, so that all
remaining packets “fall through” to the second, lower-priority
rule that has a wildcard in each bit position. Similarly, match-
ing either 10.0.0.3 or 10.0.0.4 requires two rules, one for each IP
address (as there is no single bit-pattern that matches both).

Instead of bit patterns in packet-header fields, Pyretic allows
programmers to write basic predicates of the form match(f=v),
demanding that a field f match an abstract value v (such as an IP
address). They can then construct more complicated predicates
using standard Boolean operators such as and (&), or (|), and not
(~). Intuitively, all these predicates act as filters: If the incom-
ing packet satisfies the predicate, the packet passes through the
filter untouched, presumably to be processed in some interest-
ing way by some subsequent part of the policy. If the incoming
packet does not satisfy the predicate, it is dropped (i.e., the empty
set of packets is generated as a result). For example, the Pyretic
programmer simply writes

~match(dstip=’10.0.0.1’)

or

match(switch=A) &

 (match(dstip=’10.0.0.3’) | match(dstip=’10.0.0.4’))

and the runtime system ensures that packets are filtered
accordingly.

Virtual Packet Header Fields
A policy function in Pyretic can match on a packet-header field
(using match(f=v)), and can assign a new value to a header field
(using modify(f=v)). As we have seen, the fields available to the
programmer include the standard physical OpenFlow packet

header fields, such as source and destination IP; however, unlike
OpenFlow packets, Pyretic packets provide a single unified
abstraction for both the packet and its associated metadata. To
this end, Pyretic packets also include standard virtual fields
switch and port that together specify a packet’s location in the
network. In fact, the fwd policy we saw previously is actually just
a special case of modify! Reassigning the value of port simply
“moves’’ the packet from the port on which it arrived to the port
on which it will be sent. The burden of managing all the details
needed to ensure that each packet is forwarded out the correct
hardware port is left to the Pyretic runtime.

Finally, Pyretic programmers are free to define their own, new
virtual fields and use them however they choose, treating each
Pyretic packet as if it were a Python dictionary. For example,
a programmer may want to assign a packet to one of several
paths through a network. Tagging the packet with the chosen
path makes it easier to direct the packet over each of the hops
in the path. In Pyretic, the programmer could create a new
path field and assign it a particular path identifier. Here again,
the burden of realizing this falls to the Pyretic runtime, which
might, under the hood, represent the appropriate informa-
tion using a conventional packet tagging mechanism such as
VLANs or MPLS labels.

Parallel and Sequential Composition
A controller application often needs to perform multiple tasks
(e.g., routing, server load balancing, monitoring, and access con-
trol) that affect handling of the same traffic. Rather than writing
one monolithic program, programmers should be able to combine
multiple independently written modules together. In traditional
OpenFlow programming, different modules could easily inter-
fere with each other. One module might overwrite the rules
installed by another, or drop packets another module expects to
see at the controller. Instead, Pyretic offers two simple composi-
tion operators that allow programmers to combine policies in
series or in parallel.

SEQUENTIAL COMPOSITION
Sequential composition (>>) treats the output of one policy as the
input to another. Consider a simple routing policy:

match(dstip=’2.2.2.8’) >> fwd(1)

In this policy, the match predicate filters out all packets that do
not have destination 2.2.2.8. The >> operator places this filter in
sequence with the forwarding policy fwd(1). Hence any packets
that pass through the filter are forwarded out port 1. Likewise,
the programmer may write

match(switch=1) >> match(dstip=’2.2.2.8’) >> fwd(1)

to specify that packets located at switch 1 and destined to IP
address 2.2.2.8 should be forwarded out port 1. This code uses

Syntax Summary

identity returns original packet

drop returns empty set

match(f=v) identity if field f matches v, drop otherwise

modify(f=v) returns packet with field f set to v

fwd(a) modify (port=a)

flood()
returns one packet for each local port on
the network spanning tree

Table 1: Selected policies

44  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Modular SDN Programming with Pyretic

sequential composition to compose three independent policies.
The first two policies happen to be filters (though they may be
arbitrary policies). Of course, filtering packets first by one condi-
tion and then by a second condition is equivalent to filtering
packets by the conjunction (&) of the two conditions.

PARALLEL COMPOSITION
Parallel composition (+) applies two policy functions on the same
packet and combines the results. For example, a routing policy R
could be expressed as

R = (match(dstip=’2.2.2.8’) >> fwd(1)) +

 (match(dstip=’2.2.2.9’) >> fwd(2))

Those packets destined to 2.2.2.8 will be forwarded out port 1,
while those destined to 2.2.2.9 will be forwarded out port 2.

As another example, consider a server load-balancing policy
that splits request traffic directed to destination 1.2.3.4 over
two backend servers (2.2.2.8 and 2.2.2.9), depending on the first
bit of the source IP address (packets with sources starting with
0 fall under IP prefix 0.0.0.0/1 and are routed to 2.2.2.8). This
results in the policy:

L = match(dstip=’1.2.3.4’) >>

 ((match(srcip=’0.0.0.0/1’) >> modify(dstip=’2.2.2.8’)) +

 (~match(srcip=’0.0.0.0/1’) >> modify(dstip=’2.2.2.9’)))

This policy happens to adhere to a particularly common pat-
tern: a clause matching one predicate is immediately followed
by a clause matching its negation. Of course, in conventional
programming languages, such patterns are just if statements. In
Pyretic, if_ is an abbreviation that makes policies easier to read:

L = match(dstip=’1.2.3.4’) >>

 if_(match(srcip=’0.0.0.0/1’),

 modify(dstip=’2.2.2.8’),

 modify(dstip=’2.2.2.9’))

CODE REUSE
One final example highlights the power of Pyretic’s composition
operators to enable modular programming. In just one line, the
programmer can write

L >> R

producing a new policy that first selects a server replica and then
forwards the traffic to that chosen replica. As simple as it seems,
this kind of composition is impossible to achieve when program-
ming directly against the OpenFlow API.

Traffic Monitoring
In traditional OpenFlow programs, collecting traffic statistics
involves installing rules (so that byte and packet counters are
available), issuing queries to poll these counters, parsing the

responses when they arrive, and combining counter values
across multiple rules.

In Pyretic, network monitors are just another simple type of
policy that may be conjoined to any of the other policies seen so
far. Table 2 shows several different kinds of monitoring policies
available in Pyretic, including policies that monitor raw pack-
ets, packet counts, and byte counts. The forwarding behavior of
these policies is the same as a policy that drops all packets.

For example, a programmer may create a new query for the first
packet arriving from each unique source IP

Q = packets(limit=1,group_by=[‘srcip’])

and restrict it to Web-traffic requests (i.e., packets destined to
TCP port 80):

match(dstport=80) >> Q

To print each packet that arrives at Q, the programmer registers
a callback routine to handle Q’s callback,

def printer(pkt):

 print pkt

Q.register_callback(printer)

The runtime system handles all of the low-level details of sup-
porting queries—installing rules, polling the counters, receiving
the responses, combining the results as needed, and composing
query implementation with the implementation of other policies.
For example, suppose the programmer composes the example
monitoring query with a routing policy that forwards packets based
on the destination IP address. The runtime system ensures
that the first TCP port 80 packet from each source IP address
reaches the application’s printer routine, while guaranteeing
that this packet (and all subsequent packets from this source) is
forwarded to the output port indicated by the routing policy.

Syntax Summary

packets(

 limit=n,

 group_by=[f1,f2,...])

callback on every packet received
for up to n packets identical
on fields f1,f2,...

count_packets(

 interval=t,

 group_by= [f1,f2,...])

count every packet received
callback every t seconds
providing count for each group

count_bytes(

 interval=t,

 group_by=[f1,f2,...])

count every byte received
callback every t seconds
providing count for each group

Table 2: Query policies

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 45

PROGRAMMING
Modular SDN Programming with Pyretic

Writing Dynamic Policies
Query policies are often used to drive changes to other dynamic
policies. These dynamic policies have behavior (defined by self.

policy) that changes over time, according to the programmer’s
specification.

For example, the routine round_robin takes the first packet
from a new client (source IP address) and updates the policy’s
behavior (by assigning self.policy to a new value), so all future
packets from this source are assigned to the next server in the
sequence (by rewriting the destination IP address); packets from
all other clients are treated as before. After updating the policy,
round_robin also moves the “currently up” server to the next
server in the list.

def round_robin(self,pkt):

 self.policy = if_(match(srcip=pkt[‘srcip’]),

 modify(dstip=self.server),

 self.policy)

 self.client += 1

 self.server = self.servers[self.client % m]

The programmer creates a new “round-robin load balancer’’
dynamic policy class rrlb by subclassing DynamicPolicy and
providing an initialization method that registers round_robin
as a callback routine:

class rrlb(DynamicPolicy):

 def __init__(self,s,servers):

 self.switch = s

 self.servers = servers

 ...

 Q.register_callback(self.round_robin)

 self.policy = match(dstport=80) >> Q

 def round_robin(self,pkt):

 ...

Note that here the query Q is defined as in the previous subsec-
tion; the only difference is that the programmer registers round_

robin as the callback, instead of printer. The programmer then
creates a new instance of rrlb (say, one running on switch 3 and
sending requests to server replicas at 2.2.2.8 and 2.2.2.9) in the
standard way

servers = [‘2.2.2.8’,’2.2.2.9’]

rrlb_on_switch3 = rrlb(3,servers)

producing a policy that can be used in exactly the same ways as
any other. For example, to compose server load balancing with
routing, we might write the following:

rrlb_on_switch3 >> route

Topology Abstraction
In traditional OpenFlow programming, a controller application
written for one switch cannot easily be ported to run over a dis-
tributed collection of switches, or be made to share switch hard-
ware with other packet-processing applications. In the case of
our load balancer example, we may well want to use it to balance
load coming in from many different hosts connected to many
different switches in a complex network. And yet, we would
prefer to avoid conflating the relatively simple functionality of
the load balancer with the logic needed to route the traffic across
the network. A good solution to this problem is to use topology
abstraction to partition the application into two pieces: one that
does the load balancing as before, as if the balancer was imple-
mented on one big switch that could connect all hosts together,
and one that decides on the lower level routes that implement it.
This also serves a secondary purpose: the load balancer is reus-
able and can operate over any network of switches.

To develop this kind of modular program, Pyretic offers a library
for topology abstraction that can represent multiple underlying
switches as a single derived virtual switch, or, alternatively, one
underlying switch as multiple derived virtual switches.

For example, to produce a policy that applies the client policy
rrlb_on_switch3 to a derived (i.e., virtual) switch 3 that
abstracts switches 1, 2, and 3 as a single merged switch, the pro-
grammer simply uses Pyretic’s virtualize function, inputting the
desired policy function and the topology transformation:

virtualize(rrlb_on_switch3,

 merge(name=3,

 from_switches=[1,2,3]))

Here, the merge topology transformation takes the name of a
single virtual switch and a list of underlying switches that used
to create it. Inside, the merge transformation applies shortest-
path routing to direct packets from one edge link to another over
the underlying switches. merge encodes this transformation in
three auxiliary policies—one that handles incoming traffic, one
that handles traffic passing through the derived switch, and one
that handles traffic leaving the switch.

The virtualize policy then implements a transformation of the
written policies (the client policy and three auxiliary poli-
cies) using virtual header fields and sequential composition to
produce a single new policy written for the underlying network
[6]. The resulting policy is exactly the same as any other Pyretic
policy, and can be both composed with other policies, or used as
the basis for yet another layer of virtualization.

46  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Modular SDN Programming with Pyretic

Pyretic Runtime
Of course, high level programming abstractions are only useful
if they can be implemented efficiently on the switches. This
section provides a brief overview of the Pyretic runtime system,
focusing on the backend interface to the OpenFlow switches and
policy evaluation.

Backend Interface
Pyretic’s runtime is designed to be used atop a variety of differ-
ent OpenFlow controller backends. The Pyretic runtime con-
nects via a standard socket to a simple OpenFlow client that could
be written on top of any OpenFlow controller platform. The run-
time manipulates the network by sending messages to the client
(e.g., to inject packets, modify rules, and issue counter reads).
Likewise messages from the client keep Pyretic updated regard-
ing network events (e.g., packet ins, port status events, counter
values read). This design enables Pyretic to take advantage of
the best controller technology available, and allows the system
to be entirely self-contained. The current Pyretic runtime comes
packaged with an OpenFlow client written on the popular POX
controller platform.

Policy Evaluation
The Pyretic runtime implements an interpreter that evaluates
an input packet against the current policy. In its simplest mode
of operation, all packets are initially evaluated by this inter-
preter. Concurrently, the runtime keeps track of currently active
queries, updates to dynamic policies, and modifications to the
network topology. On its general setting, when it is safe to do so,
the runtime proactively installs rules on switches before they
are needed, to avoid unnecessary switch-controller latency.
For more information on the current runtime implementation,
please see the Pyretic home page [8].

Conclusions
Pyretic lowers the barrier to creating sophisticated SDN applica-
tions and comes with several example of common enterprise
and datacenter network applications (e.g., hub, MAC-learning
switch, traffic monitor, firewall, ARP server, network virtual-
ization, and gateway router). Since the initial release of Pyretic
in April 2013, the community of developers has grown quickly.

Some have built new applications from scratch, while others
have ported systems originally written on other platforms.

In one case, the Resonance [9] system for event-driven control was
rewritten in Pyretic, taking approximately one programmer-day
and resulting in a six-fold reduction in code size over an earlier
version written on the NOX controller platform. These savings
were realized thanks to Pyretic’s declarative design and power-
ful yet concise policy language. Short expressions involving
basic policies, such as match and fwd, combined with composi-
tion operators to replace complex code specifying various packet
handlers and the logic they contained: packet matching, modifi-
cation and injection, as well as OpenFlow rule construction and
installation. In fact, Pyretic’s focus on modular design enabled
the Resonance team to encode more sophisticated policies than
had been available in the NOX version.

Pyretic has also been featured in Georgia Tech’s SDN Coursera
course [10] where it was used as the platform for one of the
course’s three programming assignments.

In addition to enhancing our runtime system with enhanced
compilation support, in our ongoing work we are also making
extensions to the language and runtime system to support new
features, such as quality-of-service mechanisms and parsing
of packet contents. Additionally, we are creating more sophis-
ticated applications, including RADIUS and DHCP services
(to authenticate end hosts and assign them IP addresses) and
wide-area traffic-management solutions for Internet Service
Providers at SDN-enabled Internet Exchange Points.

We welcome newcomers to our community, whether they are
interested in using Pyretic or in contributing to its development.
Please visit our Web site, join our discuss list, or email us.

Acknowledgments
Our work is supported in part by ONR grant N00014-09-1-
0770 and NSF grants 1111698, 1111520, 1016937, 1253165,
and 0964409, a Sloan Research Fellowship, and a NSF/CRA
Computing Innovation Fellowship. Any opinions, findings, and
recommendations are those of the authors and do not neces-
sarily reflect the views of the NSF, CRA, ONR, or the Sloan
Foundation.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 47

PROGRAMMING
Modular SDN Programming with Pyretic

References
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
Enabling Innovation in Campus Networks,” SIGCOMM CCR,
vol. 38, no. 2 (2008), pp. 69-74.

[2] The Frenetic Project: http://www.frenetic-lang.org.

[3] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker, “Frenetic: A Network
 Programming Language,” ACM ICFP, Sept. 2011.

[4] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A
 Compiler and Run-Time System for Network Programs,”
POPL, Jan. 2012.

[5] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D.
Walker, “Abstractions for Network Update,” ACM SIGCOMM,
Aug. 2012.

[6] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing Software-Defined Networks,” USENIX NSDI,
2013.

[7] N. Foster, M. J. Freedman, A. Guha, R. Harrison, N. P.
Katta, C. Monsanto, J. Reich, M. Reitblatt, J. Rexford, C.
Schlesinger, A. Story, and D. Walker, “Languages for Software-
Defined Networks,” IEEE Communications, vol. 51 (Feb 2013),
pp. 128-134.

[8] Pyretic home page: http://www.frenetic-lang.org/pyretic.

[9] Resonance Project: http://resonance.noise.gatech.edu.

[10] Coursera course on SDN: https://www.coursera.org/
course/sdn.

Do you know about the USENIX Open Access Policy?

USENIX is the first computing association to offer free and open access
to all of our conferences proceedings and videos. We stand by our mis-
sion to foster excellence and innovation while supporting research with
a practical bias. Your membership fees play a major role in making this
endeavor successful.

www.usenix.org/membership

Please help us support open access.
Renew your USENIX membership

and ask your colleagues to join or renew today!

48  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

Drilling Network Stacks with packetdrill
N E A L C A R D W E L L A N D B A R A T H R A G H A V A N

Neal Cardwell received an M.S.
in Computer Science from the
University of Washington, with
research focused on TCP and
Web performance. He joined

Google in 2002. Since then he has worked
on networking software for google.com, the
Googlebot web crawler, the network stack in
the Linux kernel, and TCP performance and
testing.  neal@google.com

Barath Raghavan received a
Ph.D. in Computer Science from
UC San Diego and a B.S. from
UC Berkeley. He joined Google
in 2012 and was previously a

Senior Researcher at ICSI in Berkeley, CA.
His work has focused on network protocol
design, applied cryptography, and sustainable
computing. barath@google.com

Testing and troubleshooting network protocols and stacks can be
painstaking. To ease this process, our team built packetdrill, a tool
that lets you write precise scripts to test entire network stacks, from

the system call layer down to the NIC hardware. packetdrill scripts use a
familiar syntax and run in seconds, making them easy to use during develop-
ment, debugging, and regression testing, and for learning and investigation.

Have you ever had the experience of staring at a long network trace, trying to figure out what
on earth went wrong? When a network protocol is not working right, how might you find the
problem and fix it? Although tools like tcpdump allow us to peek under the hood, and tools
like netperf help measure networks end-to-end, reproducing behavior is still hard, and know-
ing when an issue has been fixed is even harder.

These are the exact problems that our team used to encounter on a regular basis during
kernel network stack development. Here we describe packetdrill, which we built to enable
scriptable network stack testing. packetdrill allows a user to specify a sequence of inter-
actions with the network stack in a short script and then execute the script to verify the
network stack’s behavior.

packetdrill has a range of applications that we have been using it for on a daily basis:

◆◆ Regression testing a network stack: we have a suite of hundreds of packetdrill scripts that
are run by all developers on our team before submitting a patch for review.

◆◆ Test-driven development of network protocols: we have developed several new features for
Linux TCP using packetdrill.

◆◆ Reproduction of bugs seen in production network traces: we have used packetdrill to isolate
hard-to-reproduce bugs seen in complex real traces.

We also believe that packetdrill can have significant value for

◆◆ self-directed learning of a network protocol, by writing scripts to elicit various behaviors
from the network protocol in question;

◆◆ as a tool for teaching about network protocols in a university setting; and

◆◆ with minor extensions, scriptable testing of network applications that live above core net-
work protocols.

packetdrill currently enables the user to test the correctness, performance, security, and
general behavior of core network protocols—TCP, UDP, and ICMP—running on IPv4 and
IPv6, and runs on Linux, FreeBSD, NetBSD, and OpenBSD. The tool is primarily for black-
box testing, though it provides some support for examining internal network protocol state
when supported by the OS.

packetdrill is released under version 2 of the GNU Public License (just like the Linux kernel),
and we encourage patches, which you can send to the packetdrill email list (packetdrill@
googlegroups.com), to extend the tool. For example, adding support for other IP-based proto-
cols, such as DCCP or SCTP, would be straightforward, and we welcome patches to support
these and other protocols.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 49

PROGRAMMING
Drilling Network Stacks with packetdrill

The packetdrill Scripting Language
The packetdrill scripting language provides all the basic build-
ing blocks needed to set up a detailed, reproducible scenario
for black-box testing of a network stack. The tool supports four
types of statements: packets, system calls, shell commands, and
Python scripts. Each statement is timestamped and is executed
by the interpreter in real time, verifying that events proceed as
the script expects. We discuss each type of statement in turn.

Packets
Arguably the most essential building block of any networking
scenario is the packet. packetdrill allows the user to specify
both inbound packets to inject into the system under test and
outbound packets to expect the system to send. To keep the
tests succinct and easy to both write and read, we use a syntax
like that of tcpdump, which is familiar to most developers and
system administrators who troubleshoot networking issues on
UNIX systems. Modeled after UNIX shell input/output redirec-
tion operators, < denotes an input packet to construct and inject
and > denotes an output packet to sniff and verify.

Here’s an example of a TCP SYN packet, which packetdrill cre-
ates and injects into the network stack under test 100 ms after
the start of the test:

0.100 < S 0:0(0) win 32792 <mss 1000,nop,nop,sackOK,nop,wscale 6>

Here’s an example of an outbound UDP packet expected to be
sent immediately after a prior event (denoted by +0), which
packetdrill sniffs for and then verifies for matching specification
(e.g., length, headers, etc.):

+0 > udp (1472)

System Calls
System calls are the other essential building block of a black-box
network stack test scenario, since they express the application’s
intent and the work the kernel is supposed to perform. To specify
a system call in packetdrill, the user only needs to provide the
call’s salient inputs, the duration for which the call is expected
to block (if at all), and the expected outputs. The syntax mir-
rors that of strace, which we chose because it is familiar to most
Linux users and is clear to any C programmer. In addition, in
most cases it provides a quick one-line summary of both the
inputs and outputs of a system call.

Here’s an example of a bind() system call invocation in packet-
drill notation:

+0 bind(3, ..., ...) = 0

In this example, 3 denotes the file descriptor number to pass
in, and the = 0 denotes the expected return value (i.e., the user
expects the system call to succeed). The ellipsis (…) here in
place of the traditional addr and addrlen parameters is not to

simplify the presentation in this article; rather, packetdrill
supports this notation, again borrowed from strace, to allow
scripts to omit irrelevant details. Under the hood, packetdrill
fills in a sockaddr for bind and connect using an IP address
and port number from command line options (with defaults for
those options chosen to be appropriate for the address family
involved—e.g., RFC 1918 private IPv4 address spaces). Hid-
ing these details simplifies scripts and makes them quicker
and easier to write and read. Just as important, it allows most
scripts to be run without modification using IPv4, IPv6, or
dual-mode (AF_INET6 socket with IPv4 traffic), depending on
the command line arguments to packetdrill.

Shell Commands
packetdrill also allows scripts to specify arbitrary shell com-
mand sequences to execute, typically to configure the machine
under test (e.g., with sysctl) or to assess the state of the machine
(e.g., with netstat or ss). packetdrill implements this, as you
would imagine, using a simple invocation of the C library’s
system() call. To enclose the commands, packetdrill borrows the
backtick syntax used in shells and Perl.

Here’s a typical example, which disables TCP timestamps in
order to test TCP behavior without them:

+0 `sysctl -q net.ipv4.tcp_timestamps=0`

Python Commands
Finally, packetdrill allows inline Python code snippets to print
information and to make assertions about the internal state of a
TCP socket using the TCP_INFO getsockopt() option supported
by Linux and FreeBSD. Users can enclose such snippets between
%{ and }% tokens, a nod to lex/flex and yacc/bison syntax for
embedding inline C snippets.

The following Linux-based example asserts that the sender’s
congestion window is 10 packets:

+0 %{ assert tcpi_snd_cwnd == 10 }%

In this example, under the hood packetdrill will make a TCP_
INFO getsockopt() call for the socket under test and then stash
the output tcp_info struct in memory. Then, when the test
finishes execution, packetdrill emits a Python script encoding
the contents of the tcp_info struct, followed by the Python code
snippet that can print or make assertions about any interesting
values.

An Example packetdrill Script
Next we give a short example. Suppose that you want to verify
that your TCP stack correctly validates incoming TCP RST
packets (see RFC 5961, Improving TCP’s Robustness to Blind
In-Window Attacks). Listing 1 shows a script (targeted at Linux)

50  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Drilling Network Stacks with packetdrill

that verifies that a TCP endpoint ignores a RST whose sequence
number is just beyond the offered window.

// Create a listening TCP socket.

0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3

+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

+0 bind(3, ..., ...) = 0

+0 listen(3, 1) = 0

// Establish a new connection.

+0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>

+0 > S. 0:0(0) ack 1 win 29200 <mss

 1460,nop,nop,sackOK,nop,wscale 6>

+.1 < . 1:1(0) ack 1 win 257

+0 accept(3, ..., ...) = 4

// sequence number out of window!

+.010 < R. 29202:29202(0) ack 1 win 257

// verify that the connection is OK

+.010 write(4, ..., 1000) = 1000

+0 > P. 1:1001(1000) ack 1

Listing 1: Validating handling of out-of-window RSTs

packetdrill’s Design
Execution Model
packetdrill parses an entire test script, and then executes each
timestamped line in real time—at the pace described by the
timestamps—to replay and verify the scenario. The packet-
drill interpreter has one thread for the main flow of events and
another for executing any system calls that the script expects to
block (e.g., poll()).

For convenience, scripts use an abstracted notation for packets.
Internally, packetdrill models aspects of TCP and UDP behavior;
to do this, packetdrill maintains mappings to translate between
the values in the script and those in the live packet. The trans-
lation includes IP, UDP, and TCP header fields, including TCP
options such as SACK and timestamps. Thus we track each
socket and its IP addresses, port numbers, TCP sequence num-
bers, and TCP timestamps.

Local and Remote Testing
packetdrill enables two modes of testing: local mode, using a TUN
virtual network device, or remote mode, using a physical NIC.

In local mode, packetdrill uses a single machine and a TUN
virtual network device as a source and sink for packets. This
tests the system call, sockets, TCP, and IP layers, and is easier
to use because there is less timing variation, and users need not
coordinate access to multiple machines.

In remote mode, users run two packetdrill processes, one of
which is on a remote machine and speaks to the system under
test over a LAN. This approach tests the full networking system:
system calls, sockets, TCP, IP, software and hardware offload
mechanisms, the NIC driver, NIC hardware, wire, and switch;
however, due to the inherent variability in the many components
under test, remote mode can result in larger timing variations,
which can cause spurious test failures.

The packet plumbing is, naturally, a bit different in local and
remote modes. To capture outgoing packets we use a packet
socket (on Linux) or libpcap (on BSD-derived OSes). To inject
packets locally we use a TUN device; to inject packets over the
physical network in remote mode we again use a packet socket
or libpcap. To consume test packets in local mode we use a TUN
device; remotely, packets go over the physical network and the
remote kernel drops them, because it has no interface with the
test’s remote IP address.

Local Mode
Local mode is the default, so to use it you need no special com-
mand line flags; you only need to provide the path of the script to
execute:

./packetdrill foo.pkt

Remote Mode
To use remote mode, on the machine under test (the “client”
machine), you must specify one command line option to enable
remote mode (acting as a client) and then a second option to
specify the IP address of the remote server machine to which the
client packetdrill instance will connect. Only the client instance
takes a packetdrill script argument, which can be the path of any
ordinary packetdrill test script:

client# ./packetdrill --wire_client --wire_server_ip=<server_ip>

foo.pkt

On the remote machine, on the same layer 2 broadcast domain
(e.g., same Ethernet switch), run the following to have a pack-
etdrill process act as a “wire server” daemon to inject and sniff
packets remotely on the wire:

server# ./packetdrill --wire_server

How does this work? First, the client instance connects to the
server (using TCP), and sends the command line options and the
contents of the script file. Then the two packetdrill instances
work in concert to execute the script and test the client
machine’s network stack.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 51

PROGRAMMING
Drilling Network Stacks with packetdrill

Timing Models
Because many protocols are sensitive to timing, we added sup-
port for significant timing flexibility in scripts. Each statement
has a timestamp, enforced by packetdrill: if an event does not
occur at the specified time, packetdrill flags an error and reports
the actual time. Table 1 shows the packetdrill timing models.

Protocol Features
IPv4 and IPv6
packetdrill supports IPv4, IPv6, and dual-stack modes. The user
specifies which mode to use when executing a test by using the
--ip_version command line flag: AF_INET sockets with IPv4
traffic (--ip_version=ipv4), AF_INET6 sockets with IPv6 traffic
(--ip_version=ipv6), and AF_INET6 sockets with IPv4 traffic
(--ip_version=ipv4-mapped-ipv6).

To enable running the same script unmodified in any of the three
modes, scripts omit IP-version-specific aspects of packets and
system calls. For example, scripts do not specify the local and
remote IP addresses of packets inside the script itself. Likewise,
scripts do not specify a domain (AF_INET or AF_INET6) in a
socket() call, nor do they specify the address and address length
in a bind() call. As a result, getting a local test originally used for
AF_INET sockets and IPv4 to work in other addressing modes
is easy.

To run the test using AF_INET6 sockets with IPv4 traffic, use:

./packetdrill --ip_version=ipv4-mapped-ipv6 foo.pkt

To run the test using AF_INET6 sockets with IPv6 traffic, you’ll
need to specify both --ip_version and an MTU that is 20 bytes
larger than the typical 1500-byte MTU, to accommodate the
IPv6 header, which is 20 bytes larger than the IPv4 header:

./packetdrill --ip_version=ipv6 --mtu=1520 foo.pkt

With these small adjustments to the packetdrill command line,
you can test all three addressing modes with a single script, with
no extra development work.

Note that to get FreeBSD and NetBSD to allow using ipv4-
mapped-ipv6 mode you must first tell the kernel you want to
enable this mode of operation with:

sysctl -w net.inet6.ip6.v6only = 0

Also note that OpenBSD does not support ipv4-mapped-ipv6
mode because it explicitly disallows AF_INET6 sockets from
handling IPv4 traffic.

Path MTU Discovery
packetdrill allows testing of Path MTU Discovery, which most
TCP senders use to dynamically find an Internet path’s maxi-
mum transmission unit (MTU), the biggest packet size that can
safely traverse the path without suffering a performance hit due
to IP-layer fragmentation and reassembly. Path MTU Discovery
is described in RFC 1191 for IPv4 and RFC 1981 for IPv6. The
basic idea is that senders mark the “Don’t Fragment” (DF) bit
in all outgoing IP headers. If a router along the path sees that it
needs to fragment the packet but the DF bit is set, then the router
sends an ICMP message saying “unreachable - fragmentation
needed and DF set,” with the MTU that the sender should use.
When the sender receives this ICMP message, it retransmits any
outstanding data and uses smaller packets in the future.

Listing 2 shows a simple Path MTU scenario (this script passes
on Linux):

// Send a data segment.

+0 write(4, ..., 1460) = 1460

+0 > P. 1:1461(1460) ack 1

// ICMP says that segment was too big.

+0.100 < [1:1461(1460)] icmp unreachable frag_needed mtu 1200

// TCP retransmits with smaller packet size.

+0 > . 1:1161(1160) ack 1

+0 > P. 1161:1461(300) ack 1

Listing 2: TCP Path MTU Discovery example

Model Syntax Example Description

Absolute 0.75 The specific time at which an event should occur.

Relative +0.2 The interval after the last event at which an event should occur.

Wildcard * Allows an event to occur at any time.

Range 0.750~0.900 The absolute time range in which the event should occur.

Relative Range +0.1~+0.2 The relative time range after the last event in which the event should occur.

Loose --tolerance_usecs=800 Allows all events to happen within a range (from the command line).

Blocking 0.750...0.900 Specifies a blocking system call that starts/returns at the given times.

Table 1: Timing models supported by packetdrill

52  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Drilling Network Stacks with packetdrill

Explicit Congestion Notification
packetdrill supports Explicit Congestion Notification, or ECN
(see RFC 3168), a standard protocol that allows routers to
explicitly signal to Internet transports (typically TCP) that there
is congestion in the network by setting bits in the IP header.
The ECN approach has several advantages over the traditional
congestion signaling mechanism of dropping packets, but it is
not yet widely deployed.

Any packet can have an ECN clause following the direction (< or
>) field. Tests that do not care about ECN (and most tests do not)
can simply omit the ECN clause. The supported ECN clauses
allow tests to directly specify the injected or expected values of
the two ECN bits; they are:

◆◆ [noecn] The IP ECN field is 00; sender transport (e.g., TCP)
 does not support ECN

◆◆ [ect1] The IP ECN field is 01, ECT(1), indicating
 “ECN-Capable Transport”

◆◆ [ect0] The IP ECN field is 10, ECT(0), indicating
 “ECN-Capable Transport”

◆◆ [ce] The IP ECN field is 11, set by a router to say
 “Congestion Experienced”

One interesting aspect of ECN is that ECN-capable senders
(such as ECN-savvy TCP stacks) can set the ECN bits to either
the ECT(0) or ECT(1) codepoints to indicate that they “speak
ECN.” This allows the sender and receiver to collaborate to
detect whether some network element or receiver is corrupt-
ing or lying about the ECN bits, which would disrupt conges-
tion signaling and potentially allow senders to grab an unfair
share of bandwidth (see RFC 3540, Robust Explicit Congestion
Notification (ECN) Signaling with Nonces). To cope with this
potential variation, packetdrill also allows outgoing packets to
use a fourth type of ECN clause, which specifies that an outgoing
packet should have either the ECT(0) or ECT(1) codepoint:

◆◆ [ect01] The (outgoing) IP ECN field should be 10 or 01

Future Work
packetdrill can be used at present for testing not only funda-
mental network protocols that it supports natively (TCP, UDP,
and ICMP on IPv4/IPv6) but also applications that use these
protocols (e.g., a Web application that runs over TCP); however,
because packetdrill has no knowledge of application-level data-
grams, its ability to mimic, in script form, specific higher-layer
protocols and application interactions is limited. We hope to
make it easier for users to specify application-level payloads to
be sent or received.

Also, packetdrill currently only supports testing a single connec-
tion at a time. We hope to extend it to support testing multiple
concurrent connections. Furthermore, although packetdrill cur-
rently supports local (stand-alone) and on-the-wire (two-host)
operations, it does not yet support multi-host operation or testing
a remote machine that is not itself running packetdrill. These
may be useful in some cases, and they should be straightforward
to add to the current framework.

We welcome patches from the community, both for bug fixes and
new features.

References
[1] Neal Cardwell, et al, “packetdrill: Scriptable Network
Stack Testing, from Sockets to Packets,” USENIX ATC 2013:
 https://www.usenix.org/conference/atc13/packetdrill
-scriptable-network-stack-testing-sockets-packets.

[2] packetdrill open source project home and git repository:
https://code.google.com/p/packetdrill/.

[3] packetdrill email list, for questions, discussion, and
patches: http://groups.google.com/group/packetdrill.

xkcd

xkcd.com

Buy the Box Set!
Whether you had to miss a conference, or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the te chnical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at:
www.usenix.org/boxsets

Buy the Box Set!
Whether you had to miss a conference, or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the te chnical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at:
www.usenix.org/boxsets

54  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNSPractical Perl Tools
Parse Me, Amadeus

D A V I D N . B L A N K - E D E L M A N

In past columns we’ve had the pleasure of looking at configuration file
processing of all sorts. We’ve discussed ways to work with simple file
formats like .ini files and more complex formats like XML, YAML, and

JSON. But what if you find you need something even more sophisticated?
What if you find you need a config that is actually a mini-language (some
would call it a DSL, or domain specific language)? In cases like that you’ll
have to write code that can parse this language so your program can work
with the directives you’ve specified. This column is about one of the more
popular and more powerful modules for this work.

The Basics
I should note that when you start to say words like “parse” the computer scientists in the
room perk up their ears because they’ve all had the pleasure of studying compiler design
at some point in their academic career. I personally haven’t cracked open the canonical
but actually really good tome on the subject (“the Dragon Book,” aka Compilers: Principles,
 Techniques, and Tools) in quite a few years. My apologies if I am playing faster and looser
with terminology around parsing than perhaps I should as a graduate of that august field.
But let’s talk about a few key ideas before actually seeing any code. The key things I want to
get into are the “how” and the “what” of the process. But warning: we’re going to only skim
the surface of all of the subjects mentioned in this column.

Typically, a parser’s job is to take in a set of “tokens” and decide if it makes sense in terms of
some language definition (and if it does, the parser hands the program back some sort of data
structure that contains the results of the parse). Let’s see a simple language so I can show
you what I mean by token. Most parsing tutorials start out with a calculator example (the
tokens are “numbers” and “operators” where one of the operations might be “plus”), but let’s
use something slightly more interesting:

recipe strawberry lemonade popsicle

ingredient frozen lemonade - 12 ounces

ingredient cold water - 3 cups

ingredient frozen sliced strawberries - 16 ounces

direction stir lemonade + water

direction blend strawberries

direction stir strawberries + lemonade

direction freeze

In this case, I could say the first line above was made up of “recipe” followed by a NAME. The
second line has “ingredient” an ingredient NAME, and a QUANTITY. Later on we see “direc-
tion,” an ACTION and a set of OBJECTS. All of these things can be considered tokens.

As a related aside (if just to satisfy some of the other CS majors who are jumping up and
down on the sidelines with their hands in the air waiting to point this out): there is a process
that takes place before parsing, namely changing the plain stream of incoming text to tokens
(r..e..c..i..p..e..<space>.. gets turned into “recipe” which is a RECIPE_LABEL token). That is

David N. Blank-Edelman is the
Director of Technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ‘05 conference and one of the LISA
‘06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010.  dnb@ccs.neu.edu

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 55

COLUMNS
Practical Perl Tools: Parse Me, Amadeus

typically handled by lexer code. The Perl module we’ll be using
has a lexer built in so we won’t need to explicitly do much lexing,
but it is good to know what is going on when we get to that point.

Grammars Rock
We just discussed a bit of the “how” parsing works; now let’s look
into the “what” we are parsing. We need a way to tell a parser
“here’s the definition of the language to parse.” More often than
not, that definition takes the form of a grammar. Here’s a simple
grammar that matches the recipe language example we see above:

NAME INGREDIENT+ DIRECTION+

NAME: ‘recipe’ name

INGREDIENT: ‘ingredient’ name ‘-’ amount UNIT

UNIT: ‘ounces’ | ‘cups’ | ‘pounds’

DIRECTION: ‘direction’ action | ‘direction’ action name ‘+’ name

Let’s walk through this grammar one line (“rule”) at a time. The
first rule says a line consists of a NAME line followed by one or
more INGREDIENT lines and then by one or more DIRECTION
lines. Subsequent rules define what those kinds of lines contain.
A NAME line starts off with the literal string ‘recipe’ followed
by the name of the recipe. An INGREDIENT line starts with
‘ingredient’ followed by the name, a literal dash, and the amount
of the ingredient in one of several possible units (as specified in
the subsequent rule). Finally, we provide a DIRECTION line that
can either specify just an action or an action that takes place
between two of the ingredients.

One thing that may be a bit surprising about this grammar is the
first line. You might be tempted to write it like this (as I did at
first when writing this article):

NAME | INGREDIENT+ | DIRECTION+

because it might seem like we’ll be parsing a recipe name line or
some number of ingredient lines, or some number of direction
lines. And indeed, we will be parsing one of those kinds of lines
at a time. But if we want to specify that we are parsing one of
those, followed by the next, followed by the next thing, we won’t
be specifying them as alternatives. If we do, then the parser can
say, “Okay, let’s match the first rule. The first rule says I need to
find just one of those alternatives from the list. Found one. Okay,
that rule has matched so I must be done parsing.” Instead, we say
we’ll need to say we expect one thing after another.

Bring on the Perl
Now that we have a grammar that specifies what we want
to parse and a sample document to parse, let’s put tab A into
slot B. There are a number of Perl modules for parsing gram-
mars, but the one we’re going to look at is Parse::RecDescent.
Parse::RecDescent has been around since 1997 and is one of
the grand dames of the Perl parsing world at this point. We’ll

turn everything we’ve seen so far into a Perl program using that
module:

use Parse::RecDescent;

my $grammar = q {

 startrule: recipename ingredient(s) direction(s)

 recipename: ‘recipe’ name

 ingredient: ‘ingredient’ name ‘-’ amount unit

 unit: ‘ounces’

 | ‘cups’

 | ‘pounds’

 direction: ‘direction’ action name ‘+’ name

 | ‘direction’ action name

 | ‘direction’ action

 action: /\w+/

 amount: /\d+/

 name: /[a-zA-Z0-9]+/

};

my $heredoc = <<END;

recipe strawberry lemonade popsicle

ingredient frozen lemonade - 12 ounces

ingredient cold water - 3 cups

ingredient frozen sliced strawberries - 16 ounces

direction stir lemonade + water

direction blend strawberries

direction stir strawberries + lemonade

direction freeze

END

my $parser = new Parse::RecDescent($grammar);

print defined $parser->startrule($heredoc) ? ‘OK’ : ‘NOT OK’, “\n”;

The major parts of this program are pretty simple: first we list
the grammar we’re going to use (more on this in a moment), fol-
lowed by the sample document we’re going to parse. We request
a Parse::RecDescent object that we next used to start the parse
at the rule marked ‘startrule’ and perform a parse, printing the
results.

Now that we’re looking at actual code (finally!) it would probably
be useful to compare the code to the previous grammar in our
text because the differences will be illustrative. The first differ-
ence is our first line gets marked “startrule” so we know where to
begin a parse. It would be reasonable to have a convention that a
parse starts at the first rule listed, but no such convention exists
for the module. This makes more sense if there could be two
potential starting places for a parse, for example a “debug rule”
and the real “start rule.” The only problem with this explanation
is I’m making this reason up. I’ve never seen people actually do
this, but it sure sounds plausible, doesn’t it?

56  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS
Practical Perl Tools: Parse Me, Amadeus

 1 |startrule |Trying subrule: [recipename] |

 2 |recipename |Trying rule: [recipename] |

 2 |recipename |Trying production: [‘recipe’ name] |

 2 |recipename |Trying terminal: [‘recipe’] |

 2 |recipename |>>Matched terminal<< (return value: [recipe]) |

 2 |recipename | |

 2 |recipename | |” strawberry lemonade

 | | |popsicle\ningredient frozen

 2 |recipename | |lemonade - 12

 | | |ounces\ningredient cold

 2 |recipename | |water - 3 cups\ningredient

 | | |frozen sliced strawberries -

 2 |recipename | |16 ounces\ndirection stir

 | | |lemonade + water\ndirection

 2 |recipename | |blend

 | | |strawberries\ndirection stir

 2 |recipename | |strawberries +

 | | |lemonade\ndirection

 2 |recipename | |freeze\n”

 2 |recipename |Trying subrule: [name] |

 3 | name |Trying rule: [name] |

 3 | name |Trying production: [/[a-zA-Z0-9]+/] |

 3 | name |Trying terminal: [/[a-zA-Z0-9]+/] |

 3| name |>>Matched terminal<< (return value: [strawberry lemonade popsicle]) |

 3 | name | |

 3 | name | |”\ningredient frozen

 | | |lemonade - 12

 3 | name | |ounces\ningredient cold

 | | |water - 3 cups\ningredient

 3 | name | |frozen sliced strawberries -

 | | |16 ounces\ndirection stir

 3 | name | |lemonade + water\ndirection

 | | |blend

 3 | name | |strawberries\ndirection stir

 | | |strawberries +

 3 | name | |lemonade\ndirection

 | | |freeze\n”

 3 | name | |

 3 | name |>>Matched production: [/[a-zA-Z0-9]+/]<< |

 3 | name | |

 3 | name |>>Matched rule<< (return value: [strawberry lemonade popsicle]) |

 3 | name | |

 3 | name |(consumed: [strawberry lemonade popsicle]) |

 3 | name | |

 2 |recipename |>>Matched subrule: [name]<< (return value: [strawberry lemonade popsicle] |

 2 |recipename | |

 2 |recipename |>>Matched production: [‘recipe’ name]<< |

 2 |recipename | |

 2 |recipename |>>Matched rule<< (return value: [strawberry lemonade popsicle]) |

 2 |recipename | |

 2 |recipename |(consumed: [recipe strawberry lemonade popsicle]) |

 2 |recipename | |

Figure 1: If you set $::RD_TRACE variable in Parse::RecDescent to 1, you will get debugging output like this when parsing the first line in our example.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 57

COLUMNS
Practical Perl Tools: Parse Me, Amadeus

The second and perhaps more important difference between the
grammar versions is the stuff at the bottom of the grammar. In
the first appearance of our grammar we mentioned things like
“name,” “amount,” and “action” without ever saying just what
those things are (or more importantly, how the parser would
know one if it bumped into one in a dark alley). If we left out
those lines from our grammar, our program would throw the
following errors:

Warning: Undefined (sub)rule “action” used in a production.

Warning: Undefined (sub)rule “name” used in a production.

Warning: Undefined (sub)rule “name” used in a production.

Warning: Undefined (sub)rule “name” used in a production.

Warning: Undefined (sub)rule “amount” used in a production.

Parse::RecDescent makes defining these parts of the grammar
easy; we just need to provide a Perl regular expression that will
match that part. We say a name can be a letter/number (plus a
space if desired), an action is a single word, and an amount is one
or more digits. And, yes, we are actually providing direction to
the Parse::RecDescent lexer so it knows how to construct those
tokens.

One last thing to point out is that Parse::RecDescent has a
very legible (for English speakers) way of saying, “One or more
of these rules.” We see that in action in the grammar where
it uses this English pluralization idiom when it mentions
“ingredient(s)” and “direction(s)” to indicate it is standing in
for one or more of those things.

With all of this build up, what happens if we run this program?
It outputs (oh, the suspense is delicious):

OK

If we changed the sample document so it said:

ingredient frozen lemonade - 12 bounces

it would print:

NOT OK

instead. Okay, maybe not so exciting, but actually this is useful.
Now you know how to write a program that validates a document
based on your mini-language. We’ll see how to actually capture
the info in the document in just a second. Before we do, I want to
mention a super- helpful Parse::RecDescent feature that you may
find yourself using during development. If you add the following
line to your code:

$::RD_TRACE = 1;

it spits out a ton of really useful debugging information about
the parse. In the interest of space, let me show you a very small
excerpt of the debug output.

In Figure 1, you can see the parse began with its start rule trying
to match the subrule about the recipe name. The rule it is trying
to match is found in the second column. In the trace in Figure
1, we can see that the parser looks for the literal string ‘recipe’,
finds it, and then sees whether it can find the input it needs to
collect a recipe name from the input it has available (shown in
the third column). It succeeds, showing you the result of the
matches and what part of the input it was able to consume.

So how do we use the information that Parse::RecDescent
presumably could gather as it parses merrily along? To do
that we have to discuss what the module calls “actions.” With
Parse::RecDescent, you can specify what should happen at each
step in the parse. For example, you might want to have the parser
return the values it matched along the way so you can construct
a data structure that the rest of your program will traverse. The
simplest way to get into the action game is to use a feature called
autoactions that lets you set a single action to automatically take
place after every rule has been parsed. It gets specified some-
thing like this:

$::RD_AUTOACTION = q { [@item] };

(or you can sneak it into the grammar itself using a special tag).
The @item array in an action holds info on the items that are
being matched ($item[0] is the actual name of the rule that is
being matched; the rest of the array specifies the other parts
of what is found). There are other magic variables that can be
referenced; see the doc for more information. If we took our
previous program and added that autoaction line (plus loading
Data::Dumper) and said instead:

my $parseresults = $parser->startrule($heredoc);

print Dumper $parseresults,”\n”;

we would see output that began this way:

$VAR1 = [

 ‘startrule’,

 [

 ‘recipename’,

 ‘recipe’,

 [

 ‘name’,

 ‘strawberry lemonade popsicle’

]

],

 [

 [

 ‘ingredient’,

 ‘ingredient’,

 [

 ‘name’,

 ‘frozen lemonade ‘

58  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS
Practical Perl Tools: Parse Me, Amadeus

],

 ‘-’,

 [

 ‘amount’,

 ‘12’

],

 [

 ‘unit’,

 ‘ounces’

]

],

 ...

For a more complex but precise parse tree, we can slip an
<autotree> tag ahead of the startrule in the grammar, and
Parse::RecDescent will create a data structure that begins like
this:

$VAR1 = bless({

 ‘__RULE__’ => ‘startrule’,

 ‘recipename’ => bless({

 ‘__RULE__’ => ‘recipename’,

 ‘name’ => bless({

 ‘__VALUE__’ => ‘strawberry lemonade

 popsicle’

 }, ‘name’),

 ‘__STRING1__’ => ‘recipe’

 }, ‘recipename’),

 ‘ingredient(s)’ => [

 bless({

 ‘unit’ => bless({

 ‘__VALUE__’ => ‘ounces’

 }, ‘unit’),

 ‘amount’ => bless({

 ‘__VALUE__’ => ‘12’

 }, ‘amount’),

 ‘__STRING2__’ => ‘-’,

 ‘__RULE__’ => ‘ingredient’,

 ‘name’ => bless({

 ‘__VALUE__’ => ‘frozen

 lemonade ‘

 }, ‘name’),

 ‘__STRING1__’ => ‘ingredient’

 }, ‘ingredient’),

 ...

Now, what you do with that data structure once you get it is truly
up to you. In our case, you could have something that engages
your fully automated kitchen to make a popsicle for you.

I want to leave you pondering this little bit of free will, but before
I go I think I would be remiss if I didn’t mention that there are
other really cool parsing modules available. The two that I have
my eye on in particular are the Regexp::Grammars module
(builds on the super-powerful regexp constructs in Perl 5.10+)
and the Marpa::R2 module, which uses a very different parsing
algorithm than Parse::RecDescent and can do some cool stuff
that Parse::RecDescent can’t. Do check them both out if parsing
is in your future.

Take care and I’ll see you next time.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 59

COLUMNS

Python: With That
Five Easy Context Managers

D A V I D B E A Z L E Y

A t the last PyCon conference, Raymond Hettinger gave a keynote talk
in which he noted that context managers might be one of Python’s
most powerful yet underappreciated features. In case you’re new to

the concept of a context manager, we’re talking about the with statement that
was added to Python 2.6. You’ll most often see it used in the context of file
I/O. For instance, this is the “modern” style of reading a file line-by-line:

with open(‘data.csv’) as f:

 for line in f:

 # Do something with line

 ...

f automatically closed here

In this example, the variable f holds an open file instance that is automatically closed when
control leaves the block of statements under the with statement. Thus, you don’t have to
invoke f.close() explicitly when you use the with statement as shown. If you’re not quite
convinced, you can also try an interactive example:

>>> with open(‘/etc/passwd’) as f:

... print(f)

...

<open file ‘/etc/passwd’, mode ‘r’ at 0x2b4180>

>>> print(f)

<closed file ‘/etc/passwd’, mode ‘r’ at 0x2b4180>

>>>

With that in mind, seeing how something so minor could be one of the language’s most power-
ful features as claimed might be a bit of a stretch. So, in this article, we’ll simply take a look at
some examples involving context managers and see that so much more is possible.

Make a Sandwich
What is a context manager anyways? To steal an analogy from Raymond Hettinger, a context
manager is kind of like the slices of bread that make up a sandwich. That is, you have a top
and a bottom piece, in-between which you put some kind of filling. The choice of filling is
immaterial—the bread doesn’t pass judgment on your dubious choice to make a sandwich
filled with peanut-butter, jelly, and tuna.

In terms of programming, a context manager allows you to write code that wraps around
the execution of a block of statements. To make it work, objects must implement a specific
protocol, as shown here:

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly
Media, 2013). He is also known as the creator
of Swig (http://www.swig.org) and Python
Lex-Yacc (http://www.dabeaz.com/ply.html).
Beazley is based in Chicago, where he also
teaches a variety of Python courses.
dave@dabeaz.com

60  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS
Python: With That: Five Easy Context Managers

class Manager(object):

 def __enter__(self):

 print(‘Entering’)

 return “SomeValue” # Can return anything

 def __exit__(self, e_ty, e_val, e_tb):

 if e_ty is not None:

 print(‘exception %s occurred’ % e_ty)

 print(‘Exiting’)

Before proceeding, try the code yourself:

>>> m = Manager()

>>> with m as val:

... print(‘Hello World’)

... print(val)

...

Entering

Hello World

SomeValue

Exiting

>>>

Notice how the “Entering” and “Exiting” messages get wrapped
around the statements under the with. Also observe how the
value returned by the __enter__() method is placed into the
variable name given with the optional as specifier. Now, try an
example with an error:

>>> with m:

... print(‘About to die’)

... x = int(‘not a number’)

...

Entering

About to die

exception <class ‘ValueError’> occurred

Exiting

Traceback (most recent call last):

 File “<stdin>”, line 3, in

ValueError: invalid literal for int() with base 10: ‘not a number’

>>>

Here, carefully observe that the __exit__() method was invoked
and presented with the type, value, and traceback of the pending
exception. This occurred prior to the traceback being generated.

You can make any object work as a context manager by imple-
menting the __enter__() and __exit__() methods as shown;
however, the contextlib library provides a decorator that can also
be used to write context managers in the form of a simple genera-
tor function. For example:

from contextlib import contextmanager

@contextmanager

def manager():

 # Everything before yield is part of __enter__

 print(“Entering”)

 try:

 yield “SomeValue”

 # Everything beyond the yield is part of __exit__

 except Exception as e:

 print(“An error occurred: %s” % e)

 raise

 else:

 print(“No errors occurred”)

If you try the above function, you’ll see that it works in the same
way.

>>> with manager() as val:

... print(“Hello World”)

... print(val)

...

Entering

Hello World

SomeValue

No errors occurred

>>>

Sandwiches Everywhere!
Once you’ve seen your first sandwich, you’ll quickly realize that
they are everywhere! Consider some of the following common
programming patterns:

File I/O

f = open(‘somefile’)

...

f.close()

Temporary files/directories

name = mktemp()

...

remove(name)

Timing

start_time = time()

...

end_time = time()

Locks (threads)

lock.acquire()

...

lock.release()

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 61

COLUMNS
Python: With That: Five Easy Context Managers

Publish-subscribe

channel.subscribe(recipient)

...

channel.unsubscribe(recipient)

Database transactions

cur = db.cursor()

...

db.commit()

Indeed, the same pattern repeats itself over and over again in all
sorts of real-world code. In fact, any time you find yourself work-
ing with code that follows this general pattern, consider the use
of a context manager instead. Indeed, many of Python’s built-in
objects already support it. For example:

File I/O

with open(‘somefile’) as f:

 ...

Temporary files

from tempfile import NamedTemporaryFile

with NamedTemporaryFile() as f:

 ...

Locks

lock = threading.Lock()

with lock:

 ...

The main benefit of using the context-manager version is that
it more precisely defines your usage of some resource and is less
error prone should you forget to perform the final step (e.g., clos-
ing a file, releasing a lock, etc.).

Making Your Own Managers
Although it’s probably most common to use the with statement
with existing objects in the library, you shouldn’t shy away from
making your own context managers. In fact, it’s pretty easy to
write custom context manager code.

The remainder of this article simply presents some different
examples of custom context managers in action. It turns out that
they can be used for so much more than simple resource manage-
ment if you use your imagination. The examples are presented
with little in the way of discussion, so you’ll need to enter the
code and play around with them yourself.

Temporary Directories with Automatic Deletion
Sometimes you need to create a temporary directory to perform
a bunch of file operations. Here’s a context manager that does
just that, but it takes care of destroying the directory contents
when done:

import tempfile

import shutil

from contextlib import contextmanager

@contextmanager

def tempdir():

 name = tempfile.mkdtemp()

 try:

 yield name

 finally:

 shutil.rmtree(name)

To use it, you would write code like this:

with tempdir() as dirname:

 # Create files and perform operations

 filename = os.path.join(dirname, ‘example.txt’)

 with open(filename, ‘w’) as f:

 f.write(‘Hello World\n’)

 ...

dirname (and all contents) automatically deleted here

Ignoring Exceptions
Sometimes you just want to ignore an exception. Traditionally,
you might write code like this:

try:

 ...

except SomeError:

 pass

However, here’s a context manager that allows you to reduce it
all to one line:

@contextmanager

def ignore(exc):

 try:

 yield

 except exc:

 pass

Example use. Parse data and ignore bad conversions

records = []

for row in lines:

 with ignore(ValueError):

 record = (int(row[0]), int(row[1]), float(row[2]))

 records.append(record)

With a few minor modifications, you could adapt this code to
perform other kinds of exception handling actions: for example,
routing exceptions to a log file, or simply packaging up a com-
plex exception handling block into a simple function that can be
 easily reused as needed.

62  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS
Python: With That: Five Easy Context Managers

Making a Stopwatch
Here’s an object that implements a simple stopwatch:

import time

class Timer(object):

 def __init__(self):

 self.elapsed = 0.0

 self._start = None

 def __enter__(self):

 assert self._start is None, “Timer already started”

 self._start = time.time()

 def __exit__(self, e_ty, e_val, e_tb):

 assert self._start is not None, “Timer not started”

 end = time.time()

 self.elapsed += end - self._start

 self._start = None

 def reset(self):

 self.__init__()

To use the timer, you simply use the with statement to indicate
the operations you want timed. For example:

Example use

my_timer = Timer()

...

with my_timer:

 statement

 statement

 ...

...

print(“Total time: %s” % my_timer.elapsed)

Deadlock Avoidance
A common problem in threaded programs is deadlock arising
from the use of too many locks at once. Here is a context man-
ager that implements a simple deadlock avoidance scheme that
can be used to acquire multiple locks at once. It works by simply
forcing multiple locks always to be acquired in ascending order
of their object IDs.

from contextlib import contextmanager

@contextmanager

def acquire(*locks):

 sorted_locks = sorted(locks, key=id)

 for lock in sorted_locks:

 lock.acquire()

 try:

 yield

 finally:

 for lock in reversed(sorted_locks):

 lock.release()

This one might take a bit of pondering, but if you throw it at the
classic “Dining Philosopher’s” problem from operating systems,
you’ll find that it works.

import threading

def philosopher(n, left_stick, right_stick):

 while True:

 with acquire(left_stick, right_stick):

 print(“%d eating” % n)

def dining_philosophers():

 sticks = [threading.Lock() for n in range(5)]

 for n in range(5):

 left_stick = sticks[n]

 right_stick = sticks[(n + 1) % 5]

 t = threading.Thread(target=philosopher,

 args=(n, left_stick, right_stick))

 t.daemon = True

 t.start()

if __name__ == ‘__main__’:

 import time

 dining_philosophers()

 time.sleep(10)

If you run the above code, you should see all of the philosophers
running deadlock free for about 10 seconds. After that, the pro-
gram simply terminates.

Making a Temporary Patch to Module
Here’s a context manager that allows you to make a temporary
patch to a variable defined in an already loaded module:

from contextlib import contextmanager

import sys

@contextmanager

def patch(qualname, newvalue):

 parts = qualname.split(‘.’)

 assert len(parts) > 1, “Must use fully qualified name”

 obj = sys.modules[parts[0]]

 for part in parts[1:-1]:

 obj = getattr(obj, part)

 name = parts[-1]

 oldvalue = getattr(obj, name)

 try:

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 63

COLUMNS
Python: With That: Five Easy Context Managers

 setattr(obj, name, newvalue)

 yield newvalue

 finally:

 setattr(obj, name, oldvalue)

Here’s an example of using this manager:

>>> import io

>>> with patch(‘sys.stdout’, io.StringIO()) as out:

... for i in range(10):

... print(i)

...

>>> out.getvalue()

‘0\n1\n2\n3\n4\n5\n6\n7\n8\n9\n’

>>>

In this example, the value of sys.stdout is temporarily replaced
by a StringIO object that allows you to capture output directed
toward standard output. This might be useful in the context
of certain tasks such as tests. In fact, the popular mock tool
(https://pypi.python.org/pypi/mock) has a similar, but much
more powerful variant of this decorator.

More Information
This article is really only scratching the surface of what’s
possible with context managers; however, the key takeaway is
that context managers can be used to address a wide variety of
problems that come up in real-world programming. Not only
that, they are relatively easy to define, so you’re definitely not
limited to using them only with Python’s built-in objects such as
files. For more ideas and inspiration, a good starting point might
be documentation for the contextlib module as well as PEP 343
(http://www.python.org/dev/peps/pep-0343/).

BECOME A USENIX SUPPORTER AND
REACH YOUR TARGET AUDIENCE

The USENIX Association welcomes industrial sponsorship and offers custom packages to
help you promote your organization, programs, and products to our membership and con-
ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted
audience, we offer key outreach for our sponsors. To learn more about becoming a USENIX
Supporter, as well as our multiple conference sponsorship packages, please contact
 sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence
and innovation in neutral forums. Sponsorship of USENIX keeps our conferences affordable
for all and supports scholarships for students, equal representation of women and minorities
in the computing research community, and the development of open source technology.

www.usenix.org/usenix-corporate-supporter-program

64  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS

iVoyeur
Hearsay Among Monitoring Systems

D A V E J O S E P H S E N

This may be a little premature to talk about, but lately I’ve been con-
sumed by an idea that is conceptually rooted in the complexity
involved in making monitoring systems talk to each other. For

someone who writes articles about making monitoring systems talk to
each other, this is perhaps natural, but I know I’m not the only one who has
noticed that adding a new monitoring system to an existing infrastructure
does not linearly increase its complexity.

For example, say you have Nagios and want to add Splunk, and you want them to talk to each
other, feeding passive check results from Splunk to Nagios and also round-trip times for
an HTTP service in Nagios into Splunk. Then you add Ganglia and Collectd to the mix in a
similar fashion. This scenario, depicted in Figure 1, begets four custom configurations for
Nagios alone, one for Nagios itself, one for Nagios to talk to Splunk, another for Nagios to talk
to Collectd, and yet another for Nagios to talk to Ganglia. Some of these systems will need to
be configured in kind to talk back to Nagios.

I/O Hooks Aren’t Enough Anymore
So inter-system configuration complexity is something like (n-x)2+(nx), where x is the number
of send or receive-only, Graphite/Collectd-style tools you plug in to your monitoring archi-
tecture. If we were talking algorithms, we’d reduce this to 0(n2) and be done. Effective systems
monitoring requires a toolbox, but every tool you add to the box means reconfiguring all tools.

This complexity is obviously a hassle, but worse, it has a tendency to make snowflakes of
your monitoring systems, eventually resulting in highly customized, fragile infrastructure.
The alternative is to limit our visibility by forgoing the use of good tools to avoid the configu-
ration burden (or installing them as stand-alone). A nearly exponential increase in configu-
ration complexity makes this a hard limit for everyone, which is to say every shop WILL have
to pick and choose a few tools from an increasingly huge list of amazingly great monitoring
systems if they want them to work together.

At the risk of sounding melodramatic, I am saddened by this. I want all of these great monitor-
ing tools to work like Legos. I want to plug them in to each other and build things with them. I
want them to play to each other’s strengths and become more than the sum of their parts.

There’s No I in “Common Data Model”
Imagine for a moment that instead of each system having its own unique I/O hooks, they
all supported a common data interchange format. If they all just woke up one morning and
agreed to send and receive the same format messages. As depicted in Figure 2, they would
no longer need to be configured specifically to communicate to each other, and could instead
each be configured simply to enable import and/or export of the common format. Each

Dave Josephsen is the
author of Building a
Monitoring Infrastructure
with Nagios (Prentice
Hall PTR, 2007) and is

senior systems engineer at DBG, Inc., where he
maintains a gaggle of geographically dispersed
server farms. He won LISA ’04’s Best Paper
award for his co-authored work on spam
mitigation, and he donates his spare time to
the SourceMage GNU Linux Project.
dave-usenix@skeptech.org

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 65

COLUMNS
iVoyeur: Hearsay Among Monitoring Systems

 monitoring system could share data out in a system-agnostic
way, and other systems could pick and choose the state and
 metric data that was relevant to them regardless of the source.

This would greatly reduce the cost of adding new monitoring
infrastructure, and would make everyone’s life easier. But is it
even possible to translate the output of every monitoring system
to a common format that works as the input of every other?

Although it seems unlikely, practically speaking, all monitoring
systems deal with similar data. The Riemann Project’s event
type, described at [1], characterizes a system-agnostic blob of
monitoring data pretty perfectly. Copied directly from that site,
the structure looks like this:

host A hostname, e.g., “api1”, “foo.com”
service e.g., “API port 8000 reqs/sec”
state Any string less than 255 bytes, e.g., “ok”,
 “warning”, “critical”
time The time of the event, in UNIX epoch seconds
description Freeform text
tags Freeform list of strings, e.g.,
 [“rate”, “fooproduct”, “transient”]
metric A number associated with this event, e.g., the
 number of reqs/sec.
ttl A floating-point time, in seconds the event
 is valid for

Every monitoring system I’ve worked with generates data that
fits pretty well into this struct, and most fit with room to spare.
Formalizing this, changing the “state” field to a Nagios-style int,
and adding a UID field to make it possible to sign the messages
and/or provide a unique hash so that they can be more easily
 de-duplicated/commuted etc. produces my own definitions:

string Host //hostname, e.g., “foo.com”,
string Service //e.g., “HTTP reqs/sec”
uint8 State //Nagios style 0 ok, 1 warn, 2 crit,
 3 unk 4-10 reserved
time_t Time //the time the event occurred
string Description //non-numeric state, event, or service
 description
string[] Tags //list of tags, e.g., [“sentby:alice”,”src:nagios”]
float64 Metric //a metric, e.g., the number of reqs/sec.
uint32 TTL //valid time-to-live (in seconds) for this message
string UID //unique hash or signature from host+service+
 time+State+Metric

Okay, Let’s Kick This Pig
In a perfect world, I could at this point assemble the minions,
kidnap the maintainer of every monitoring system, and demand
that they import and export this structure for all the relevant
events their systems generate. But despite my lack of minions,
other problems need solving first, beginning with who pushes
and who pulls, and continuing on through wire encoding (proto-
buf? JSON? XML? etc.), and the litany of details associated with
actually putting the messages on the wire, routing them to where
they need to go, and figuring out what to do when they get there.
So I think, before I can push for native adoption, that there will
need to be a fairly well developed model for how data exchange
should operate in practice. We need to see what it looks like
before we can decide whether it’s worth doing.

To that end, libhearsay is a library that implements this common
data format and comes with a couple of tools to simplify the pro-
tocol and data exchange details. Written in Golang [2] over the
past few weeks when I should have been washing the dishes, lib-
hearsay tools employ JSON and Zeromq [3] (sometimes written
as 0MQ) to distribute “scraps” of hearsay between monitoring

Figure 1: Each system must be custom configured for interoperability with
the others.

Figure 2: Each system merely enables support for a common data model.

66  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS
iVoyeur: Hearsay Among Monitoring Systems

systems (spewers and listeners), enabling your monitoring sys-
tems to gossip to each other.

Any monitoring system with something to share can be made
into a hearsay spewer with the “spewer” utility. Spewer reads
JSON-formatted scraps of hearsay from STDIN or a FIFO,
verifies that they are valid (requiring either a host or service
name, and a metric or state value), and puts them on the wire
via Zeromq push or pub. In push mode, Zeromq will fan out the
scraps by fairly distributing them among the connected listen-
ers. In pub(lish) mode, Zeromq will broadcast each scrap to
every subscriber.

The generic listener listens to a comma-separated list of spewer
socket addresses, and outputs JSON-encoded scraps to STD-
OUT or appends them to a file of your choosing. The generic lis-
tener also has a “Nagios” mode that injects passive check results
directly into your Nagios CMD file. Inter-system compatibility
will be achieved through the creation of many task-specific
listeners that are designed to work with specific tools such as
Munin, Reimann, Zabbix, Zenoss, Reconnoiter, Graphite, etc.
Each of these listeners will “just work,” meaning that given the
address of a spewer or several spewers, they’ll take scraps off the
wire, validate them, and inject them into their parent monitoring
system in the way that system expects to receive them.

For now, the generic_listener and some shell scripts can help
us get by, and hopefully prove the model, but step 2 certainly
centers around the creation of a litany of purpose-specific
listeners (some of which should be written by the time you read
this). At that point, the cost of entry will be low enough that “nor-
mal users” will be able to play. Step 3 will be to push for native
support. If you’re a project maintainer, expect to see me at your
con next year.

Patterns
Zeromq subscribers provide a filter when they subscribe to a pub
socket, which enables them to discard the messages they aren’t
interested in. This should work handily with the “Tag” field in
our scrap struct. The model I have in mind for my shop looks
pretty much like Figure 2, where all spewers and listeners con-
nect to a central set of redundant message brokers and use filters
to extract the scraps from the systems they’re interested in.

These brokers are nothing more than a set of systems that have
both a listener (to accept scraps from every monitoring server)
and a spewer (to copy every scrap back to the interested listen-
ers). Something like a Brooklyn barber shop, all systems know
to go to these hosts to both share and receive new hearsay. I
imagine that each spewer will use the spewer utilities’ “-t”
switch to add a tag to each scrap they send, identifying it as, for
example: “src:nagios”, and each listener will filter for tags of this
or that type.

Interestingly, given just the generic spewer and listener tools,
any sort of distributed message-passing architecture could
be built, and although I’m excited about the possibility of
my “smorgasbord of monitoring data” model, I’m even more
intrigued to see what other admins might design.

Wait, how does this work exactly?

Let’s take a look at the spewer tool in practice by launching it
with “-d” to trigger debug mode and sending it a partial scrap
like so:

[dave@vlasov]--> echo ‘{“Host”:”foo.com”,”Service”:”HTTP”,

”State”:0}’ | spewer -d

Starting Server

got message: {“Host”:”foo.com”,”Service”:”HTTP”,”State”:0}

Sending:

{“Host”:”foo.com”,”Service”:”HTTP”,”State”:

0,”Time”:”2013-07-26T13:51:47.277299512-05:00”,”Description”:””

,”Tags”:[“Spewed-by:

vlasov.dbg.com”], “Metric”:-42,”TTL”:60,”UID”:””}

As you can see, given only a hostname, service name, and state
value, spewer created a full scrap by populating default values
for Time, Metric, and TTL, and adding a “Spewed-by:” tag,
which should help us avoid message loops in the future. If I’d
given spewer a “-u” switch, it would have generated an MD5
hash-sum of the message and assigned it to UID.

Spewer also created a 0MQ push socket and placed the scrap on
the wire for any connected listeners. If we had a generic listener
connected to localhost port 5000, spewer would have read the
message and printed it back to STDOUT. If five listeners had
been listening, 0MQ would have (round-robin) distributed the
message to one of them. If I’d specified “-m pub”, spewer would
have opened a pub socket and every one of the connected five
listeners would have gotten its own copy of the message.

There are myriad ways to get data out of Nagios and into the
spewer, but I haven’t made a final decision on what interim
Nagios support looks like exactly. Because Nagios provides
handy macros for things such as hostname, service name, and
state, I’m tempted to write a little tool that is intended to be
called from a notification command that could inject a scrap
into spewer, or modify spewer to accept incoming scraps on a
TCP socket locally.

Spewer cannot itself be called via a Nagios command because it
needs to persist the publisher socket, and therefore must run as
a daemon-like entity. Other options are a Nagios Event Broker
module that could inject scraps into spewer, or something as
simple as a shell script that could tail a performance log file from
Nagios, translating and providing scraps to spewer via STDIN.
Each approach has pros and cons.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 67

COLUMNS
iVoyeur: Hearsay Among Monitoring Systems

I also anticipate the need for an indexing service of some sort to
enable listeners to find spewers securely. I’ll cross that bridge
when I come to it.

This may be a long road to a dead-end, but at the moment I’m
optimistic and by the next issue expect to have some real sys-
tems talking to each other. If you’d like to hack along, feel free to
grab libhearsay from GitHub [4] or my blog [5]. Any help would be
vastly appreciated and is 100% guaranteed to be repaid in beer at
the first convenient conference we both attend.

Take it easy.

References
[1] http://riemann.io/concepts.html.

[2] http://golang.org/.

[3] http://www.zeromq.org.

[4] https://github.com/djosephsen/Hearsay.

[5] http://www.skeptech.org/hearsay.

APRIL 2–4, 2014 • SEATTLE, WA

11th USENIX Symposium on Networked Systems
Design and Implementation

Join us in Seattle, WA, April 2-4, 2014, for the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’14). NSDI focuses on the design principles, implementation,
and practical evaluation of networked and distributed systems. Our goal is to bring together
researchers from across the networking and systems community to foster a broad approach to
addressing overlapping research challenges.

Program Co-Chairs: Ratul Mahajan, Microsoft Research, and Ion Stoica, University of California,
Berkeley

www.usenix.org/conference/nsdi14

SAVE THE DATE!

68  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS

For Good Measure
Trending North

D A N G E E R A N D M U K U L P A R E E K

Trends, like horses, are easier to ride in the direction they are going.

 — John Naisbitt

W e are the operators of the Index of Cyber Security (ICS), a two-
and-a-half-year-old effort to inform the community at large
of the trends in cybersecurity, which is to say the components

of risk that the digital world brings with it. Monthly, we poll people with
operational responsibility for cybersecurity on how two dozen different
cyber security risks have changed in the past month, and, from that polling,
calculate the ICS. Our Web site [1] has details. The questions are each five-
point Likert scales, as in this example:

Compared to last month, the threat from mass malware has
fallen fast, fallen, stayed static, risen, risen fast

The ICS is a risk index; it is a time-series snapshot of cybersecurity risk as collectively seen
by vetted, front-line practitioners. The ICS does not model the world but rather observes, in a
structured way, the state of play in the cybersecurity space. If the ICS rises, it is because the
respondents as a group have seen risk rise in their own work across the aggregate of all two
dozen vectors of risk.

For the general public, we publish the ICS in the same way that the Conference Board
publishes the Consumer Confidence Index [2], as a single number at the end of the month.
For our respondent group, we publish monthly detailed reports and an Annual Report. This
column excerpts the most recent Annual Report, for the year ending March 2013.

Cybersecurity risk has been rising since inception though the month-over-month change has
varied, as seen in Figure 1.

Perhaps more to the point, the rate of increase is itself increasing, as seen either by compar-
ing the compound annual growth rate (CAGR) since inception of the index to the CAGR
calculated only over the most recent six months (in Figure 2), or as seen by normalizing the
monthly changes in the ICS to their collective median and noting the distribution of diver-
gence from that median (in Figure 3).

This finding of not just a continuing rise but an accelerating rise in the aggregate cyber-
security risk, as seen by front-line practitioners, has decision support value both to other
practitioners and to policy makers.

The wide digital community is spending more time and treasure on cybersecurity every
month as well, that is, the race between “Are we getting better?” (yes) and “Is the attackable

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

Mukul Pareek is a risk manage-
ment professional based in New
York. Mukul is the co-publisher
of the Index of Cyber Security and
the author of a risk education

Web site, riskprep.com. mp@pareek.org

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 69

COLUMNS
For Good Measure: Trending North

surface growing?” (yes again) is a race being won by attack-
ability. Cue the Red Queen: “It takes all the running you can do
to keep in the same place.”

Each question we ask has its own trendline, and each question is
a component risk of the overall ICS. Now you might at first think
that some component risk dominates the overall ICS, thus reduc-
ing the ICS to a noisy measure of that one risk. You’d be wrong.
Rank ordering the spot (month over month) change in compo-
nent risk contribution to the overall ICS is simply the rat’s nest
in Figure 4.

If you look not at the month over month (spot) impact of individ-
ual risks on the ICS in sum but rather at the cumulative impact
of those individual risks, the picture (reinitialized, that is,
limited to the most recent year alone) is a bit more appreciable,
as seen in Figure 5.

Stopping for a moment, let us say that increasing risk is not
surprising per se, but rather, the ICS confirms in a methodologi-
cally coherent way what might be your assumption, viz., that
risk is rising in the aggregate but quite unevenly with respect to
individual elements that make up the overall risk envelope.

Previous studies have shown that (non-nation-state) attackers
manage their work lives in conventional ways—they have identi-
fiable work shifts, they outsource where it is economical to do so,
and they prefer tools that enhance labor productivity—all signs
of normal work patterns. To those we might add seasonality. The
visual indication of that seasonality is a plot, for each month, of
whether a three-month sliding window of variability for each
question increased from the previous month’s value (counted and
shown in blue) or declined (counted and shown in red). Figure 6
graphs Year 1 (of the ICS, April 2011 through March 2012), and
Figure 7 graphs Year 2 (April 2012 through March 2013); they
are rather similar.

Figure 1: Index of Cyber Security and its rate of change

Figure 2: Compound annual growth rate since inception vs the most
recent six months

Figure 3: Rate of change of the ICS normalized to the median

Figure 4: Tracing the rank of component risks month-to-month

70  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS
For Good Measure: Trending North

From time to time, someone will publish a paper that purports to
settle the hypothesis that cybersecurity failures affect the mar-
ket capitalization of the affected firm. We ask, instead, whether
there is some other indicator that represents the breadth of the
financial market overall. One candidate is the Chicago Board
Options Exchange’s Market Volatility Index, known as VIX or,
colloquially, the “Fear Index.”

The short answer to whether there is any relation between broad
financial market swings and similarly broad cybersecurity
swings is “no, there is no general relation between VIX and the
ICS,” that is to say that cybersecurity risk, as described by those
who deal with it most closely, and general market fear do not cor-
relate. Nevertheless, you may be interested to note that the three
component risks that most closely correlate with the VIX are, in
order, attacks by hacktivists, attacks by strategic rivals, and pub-
lic infrastructure/cloud as a target. Perhaps these three confirm,
indirectly, where the public’s attention does lie.

The three least correlated are all about vulnerabilities (exploi-
tation attacks, failures of defense against known vulnerabili-
ties, and failures of defense against unknown vulnerabilities),
perhaps likewise confirming where the public’s attention does
not lie.

Despite the rat’s nest in Figure 4 (the rank
ordering of the month over month change in
component risk contribution to the overall
ICS), the trendlines of some component
risks are indeed close to the trendline of the
overall ICS. The three component risk trends
most closely mirroring the overall ICS are,
in order, attacks by nation states, attacks by
strategic rivals, and the respondents’ estima-
tion of their own personal cybersecurity risk.

Let us repeat that we are observers here; the
questions that are asked are all relative—
relative to the individual respondent’s own
definitions (“what is malware?”) and to the
relation of this month’s risk to last month’s.
Put differently, all the results of the ICS are
ordinal scale, not interval nor ratio scale. It
is our bias that the only purpose for any pro-
gram of security metrics is decision support,
and relative measures, meaning trendlines of
ordinal values, are decision support personi-
fied. For planners and policy makers, the
differentials between component risks, the
volatility of component risks both interior to
themselves and between each other, and the
implications of presuming that this or that
trend is long-term durable are all decision
supporting.

Because we are not modeling but rather observing, there is no
requirement that the questions we have chosen be uncorrelated
with each other, nor that they be mutually exclusive and col-
lectively exhaustive. The component risks are indeed correlated
with each other to a degree, and again sampling three pairwise
correlations between questions, we find the results in Table 1,
each of which is intuitive. That these (and other pairwise corre-
lations) may be unsurprising should be thought of as confirming
various decision support assumptions.

Besides the fixed set of questions asked each month, we also ask
a special question. For this past September, the question was
whether the respondent had discovered an attack aimed at some
other party, and 65% had done so. This aligns with the report
in the Verizon Data Breach Investigations Report [3] that 80%
of data breaches are discovered not by the victim but by some
unrelated third party. Another special question asked what
percentage of the cybersecurity products now running in the
respondent’s own enterprise would the respondent reinstall if
starting from scratch; we found 35% buyer’s remorse (would not
again buy or install). And another special question found that
more than half of the respondents are unable to find qualified
help regardless of the level of compensation that can be offered.

Figure 5: Tracking rank order just over the most recent year. As examples, phishing as a weapon
increases while botnets decrease over the year.

R Pair

0.942 Personal risk overall & Mobile devices as targets

0.928 Business disruption as the effect desired & Botnets as the weapon

0.924 Data theft as the effect desired & Phishing/social engineering as the weapon

Table 1: The amount of correlation for some pairs of risks

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 71

COLUMNS
For Good Measure: Trending North

You get the idea.

Because the greatest truth in cybersecurity practice is a robust
rate of change, the ICS does occasionally have new questions
added to the survey panel and old ones removed. The methodol-
ogy for doing so mimics all established financial indices and is,
by design, boring. In fact, everything about the design of the ICS
seeks to be boring so that the results we obtain cannot be attrib-
uted to artifacts of methodology. Anyone familiar with survey
research or index construction will find little to comment upon
with regard to the ICS. All the juice is in the subject matter.

We are always interested in adding qualified individuals to the
pool. We seek respondents who have direct operational respon-
sibility for cybersecurity, and we seek them as individuals, not
as representatives of their company’s position on anything. We
offer the respondent, in return, data not available to the general
public. We do all our work with the ICS in a way that assures
respondents of non-traceback of their participation and, more
importantly, of their answers to the questions. (There are air

gaps, data destruction, and other safeguards to that latter point
about non-traceback that we will discuss one-on-one with can-
didate respondents.)

If you are, or can recommend, such a person, then please be in
touch; the Web site says how to do this. Of course, suggestions
are always welcome.

References
[1] www.cybersecurityindex.org.

[2] www.conference-board.org/data/consumerconfidence.cfm.

[3] www.verizonenterprise.com/DBIR.

Figure 6: April 2011 through March 2012 showing increase (above the
line) or decrease (below the line; red in PDF version)

Figure 7: April 2012 through March 2013; looks a lot like Figure 6

72  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS

/dev/random
R O B E R T G . F E R R E L L

You may remember last month I outlined a failed job interview with
Facebook. This month’s curious encounter is with Amazon (the mega-
corporation, not the river, although there are certain similarities).

I got a phone call at work one day from a cheery recruiter who wanted to discuss a job posi-
tion with me. She then told me about the working conditions and benefits at Amazon for a
good 15 minutes, at the close of which I told her I was sold. Then she asked me some really
elementary questions about UNIX, such as, “what command would you use to see what
processes are running.” I told her much more than she wanted to know about ps, including
an exposition on all the command-line options available depending on whether your kernel
is derived primarily from AT&T or BSD. Then I talked about GNU ps on Linux. “Wow,” she
replied, helpfully.

“What’s the job?” I finally asked, since that seemed a germane point. It was a systems engi-
neer position. “That sounds like a lot of scripting,” I said, warily. “Oh, it is,” she enthused,
“C, C++, Perl, Python, and Ruby, mostly.” I rolled my eyes. “I’ve never been very good at any
language that starts with C,” I explained. “I was once decent at Perl. I fiddled around with
Python when it first came out. I skirted the perimeter of Ruby, looking for an easy way in and
found none. Java 1.0 and I had a short but intense relationship. Coding isn’t my strong suit, in
other words. How about a job involving information security?”

She sounded doubtful, “I don’t think we have any of those, but I’ll look.”

“Amazon has no need for any security people? I find that hard to believe.”

A minute or so later and she’s back.

“I found one!”

“Great. What’s the title?”

“Systems security engineer.”

“Let me guess: it involves scripting with C, C++, Perl, Python, and Ruby.”

“Yes, yes it does! How did you know?”

“Lucky guess. Look, all of my current certifications are in infosec. I haven’t been certified as
any sort of programmer since 1998. You should be able to tell that from my resume. Why did
you call me?”

She hemmed and hawed for a moment. “Because AWS is getting into the classified informa-
tion space and people with your security clearance are hard to find.”

“Super. I’ll tell you what: if you locate a bona-fide information security position, feel free to
call me back. Otherwise, please take me off your list of people whose rusty or non-existent

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist for the
2011 Robert Benchley Society

Humor Writing Award. rgferrell@gmail.com

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 73

COLUMNS
/dev/random

skills we’re willing to overlook just because they won’t have to
sit around on their thumbs for eighteen months to get the right
clearance.”

As you can probably surmise from my “job recruitment disaster
chronicles,” I’ve experienced a sudden surge in activity from
headhunters lately. From my observations this is always a good
sign for the economy, if nothing else. In the course of listening
to/reading their spiels, I had a Scythian moment (a public men-
tion for the first person who gets this reference and communi-
cates with me) and got fixated on the language they were using
to describe UNIX/Linux sysadmin positions instead of com-
prehending the totality of the recruitment effort itself. This led,
inexorably, to scouring the InterWebs in a quest for the perfect
representative job announcement. Below you will discover—
verbatim, spelling and grammatical errors intact—the fruits of
this labor. Don’t forget to scoop out the pits first or you’ll break
your teeth.

Position ID: aX075ENGir4zY1eJe4bk1X
The UNIX System Administrator must possess a high level
knowledge of the UNIX/Linux OS. Must be highly proficiency
at the UNIX command line involving a variety of utilities,
interpreters and compilers and have Shell Programming skills.
In addition, high proficiency in Operating Systems. Works on
unusually complex technical problems and provides solutions
that are highly innovative and ingenious. Establish a defined
framework as an analytic environment. Experience with
System Management tools to include NetApp Management,
and tools such as SPLUNK, NAGIOS, ZENOSS, GANGLIA,
or CLOUDERA. Experience or ability to perform HADOOP
System Administration, installation, configuration, networking,
server administration/management, troubleshooting, security,
monitoring, tuning, capacity planning, backup/recovery, service
pack/hot fix/patch install, vendor support liaison, coordination
with technical staff at all levels.

Experience with NoSQL technologies (Cassandra, HBase),
NoSQL Data Warehouse technologies (HIVE), Lucene, Tomcat,
Pentaho, OpenLDAP, BIND/DNS, YUM, Puppet, Cacti, VMware,
KVM, Xen, Hypervisor, OpenVZ, Brocade Fiber Channel experi-
ence in zoning, Memcache, Redis, experience using Chef to
deploy and manage large clusters of servers, AllFusion ERwin
Data Modeler; Data modeling software; IBM Rational Data
Architect; Visual Paradigm DB Visual ARCHITECT, Gluster
FS, Drupal, Sendmail, Postfix, Cyrus, Dell Open Manage, IT
Assistant, What Up Professional, Spine, Openstack, Spacewalk/
RedHat Satellite, F5, HP Lefthand, EMC, Elastic Search, Volde-
mort, NFS, DAS, NAS, and SAN. Assures Data Center is clean
and clear of obstructions.

Ideal candidate will be a bright, enthusiastic, flexible, energetic,
and results-driven professional who works best in a multi skilled
team, sometimes during non-core business hours. The company
has a very casual and great culture. They house an indoor gym
with accessible classes and showers, state of the art kitchen on
site and promote a 37.5 hour work weeks along with many other
perks! They are very focused on “work-life” balance. This is the
type of company that you will want to grow with long term. Rea-
sonable regular, predictable attendance is essential. Requires
hands and fingers dexterity to operate computer components
such as a keyboard or mouse. Must possess sufficient peripheral
vision to have the ability to observe an area that can be seen up
and down or the left and right while eyes are fixed on a given
point. Ability to identify and distinguish colors essential. To
perform this job successfully, an individual must be able to per-
form each essential duty satisfactorily. Must have knowledge of
the structure and content of the English language including the
meaning and spelling of words, rules of composition, and gram-
mar. Must possess the ability to combine pieces of information
to form general rules or conclusions (includes finding a relation-
ship among seemingly unrelated events). Must have the ability to
arrange things or actions in a certain order or pattern according
to a specific rule or set of rules (e.g., patterns of numbers, letters,
words, pictures, mathematical operations) and the ability to
generate or use different sets of rules for combining or grouping
things in different ways.

Perks include: Weekly FreshDirect grocery delivery & weekly
catered lunch. Classic Pac-Man/Galaga arcade machine. Coke
machine stocked with free drinks.

I’m off to update my resume now. I think I remember a little GW-
Basic. GOTO rules!

74  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

BOOKSBook Reviews
E L I Z A B E T H Z W I C K Y , M A R K L A M O U R I N E , A N D M E L I S S A G R A Y

Peopleware
Tom DeMarco and Timothy Lister
Addison Wesley, 2013. 238 pp.
ISBN 978-0-321-93411-6
Reviewed by Elizabeth Zwicky

Peopleware is an old favorite of mine, and I approached this
edition with some trepidation, the way you approach anything
you loved when younger that has now been updated; will it turn
out to have lost its luster, either through age or through savage
updating? On the whole, I was very happy. The original copyright
shown is 1987, and in the intervening roughly quarter-century, a
lot has changed, but the fundamentals of programming and man-
aging people have not. The update manages to remove most of the
dated references and adds a good bit of purely new material.

Peopleware is an introduction to the human side of managing
technology teams. It is eminently readable—it comes in short,
vivid chunks that say things programmers want to hear in terms
that management can understand. If you are feeling that there is
something fundamentally missing from the practice of technol-
ogy management, this will fill that gap and fire you up.

I’m somewhat sad that after this long, the humanistic approach
found here still feels fresh, startling, and avant-garde. Paying
more attention to human issues than new technologies, like
personal jet packs and hover cars, seems destined to remain
the wave of the future. And yet there are signs of hope—when
a phone rings audibly in my office, people are startled and
displeased. It’s a rare event, rare enough that the last time a
repetitive noise went on for a while, one of my colleagues leapt
up angrily to search out and silence the phone, only to realize
that the rest of the office was laughing at him. The annoying
noise was in fact a crow on the windowsill. The good news here
is that our office environment is both quiet and near a window;
the bad news is that the entire team was within sight and ear-
shot of the crow and the ensuing search. So there’s still work
for Peopleware to do.

Adaptive Software Development
James A. Highsmith
Addison Wesley, 2000. 348 pp.
ISBN-0-932633-40-4
Reviewed by Elizabeth Zwicky

Somehow this crept onto a list of new releases, so I was puz-
zled to read through an entire book on software development
practices for rapidly changing environments that never used
the terms “Agile” or “Extreme” as we now know them. It’s still
a worthwhile book, with a detailed explanation of a practical
and human-centered approach to development in high-change
environments. It is quite kind to the waterfall model, suggest-
ing places it is appropriate and ways to gently move people away
from it. And it is heavily influenced by Peopleware while being
much more traditional in tone and format.

This would be a great bridge book for somebody who wants or
needs to move to a more flexible style of managing projects, but
would like to do so without overt, radical breaks with tradition.

The Practice of Network Security Monitoring
Richard Bejtlich
No Starch Press, 2013. 334 pp.
ISBN 978-1-59327-509-9
Reviewed by Elizabeth Zwicky

This book will tell you how to install Security Onion and its
add-ons, how to work with those tools (including tricks, traps,
and subtleties involved), and it provides significant discussion
of how to place monitoring taps. Bejtlich provides some advice
on how you keep track of what’s going on when you don’t know
what you’re dealing with. These are all significant challenges
for new network security administrators.

I feel convinced that this book would help me set up a network
security monitoring system based on open source systems and
use it to improve the security of pretty much any network. On the
other hand, this is a task where I don’t really need all that much
help—I know a lot about how networks work and about the prac-
ticalities of securing them. I’m less convinced that somebody
without all that background would find it sufficient.

What it doesn’t talk about, except in vague and abstract terms, is
the actual practice of network security monitoring—what alerts
are important? which ones are not? There’s a lot of good informa-
tion here, but it doesn’t quite jell into a clear problem statement
and answer, and it isn’t quite enough for a security novice.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 75

BOOKS

Graph Databases
Ian Robinson, Jim Webber, and Emil Eifrem
O’Reilly Media, 2013. 200 pp.
ISBN 978-1-449-35626-2
Reviewed by Elizabeth Zwicky

In a world where we all used graph databases, you could just
write a book about how to use them. But most of us don’t, so this
is a relatively broad introduction, covering what graph databases
are, why you might want one, and how you would design, query,
and optimize one.

Simplifying somewhat further than is advisable, a graph data-

base allows you to query data by talking about objects and
relationships instead of by talking about rows and fields. Graph
databases are considerably more efficient at certain kinds of
queries than traditional databases. If you want to ask “What
did Customer 43 order recently?” any old database will do. If
you want to ask “What might Customer 43 order next?” you will
rapidly find yourself asking, “What other customers ordered
the same items as Customer 43?” and a suitably designed graph
database will vastly improve your experience. (Or so the authors
claim, very believably.)

If you’re in a position to implement a system using new database
technology, graph databases are an interesting tool to have avail-
able to you, and this introduction, while it clearly doesn’t cover
all the corners of the space, should get you started.

Advanced Programming in the UNIX Environment,
3rd Edition
W. Richard Stevens and Stephen A. Rago
Addison Wesley, 2013. 994 pp.
ISBN 978-0-321-63773-4
Reviewed by Mark Lamourine

A lot has changed since I first read the late Richard Stevens’
Advanced Programming in the Unix Environment. Stephen Rago
has just released his second update. There are very few books
I enjoy rereading and fewer still tech books, but I enjoyed this
refresher course.

Advanced Programming describes the interface between pro-
grams and the kernel in a *NIX system. Even when a program
uses higher level libraries, in the end this is what they come
down to.

There are numerous tutorials on programming languages and
programming in general. There are textbooks describing the
*NIX kernel internals. Stevens and Rago don’t just list the kernel
system calls and their arguments. They illustrate their use and
the behavior of the kernel in response. This gives the reader a
sense not just of how to use each call, but when and why. It also

gives them the ability to work backward from the behaviors of a
system to the calls that would be the cause.

In 1993 the systems described were AT&T System V R4 and
4.3BSD. In 2013 Rago has added FreeBSD, Linux, MacOS, and
Solaris 10 (arguing that while Solaris is derived from SYSVR4,
it has 15 years of enhancements). While this might seem to add
quite a bit, it seems that standardization has largely served its
purpose. Variations still exist but they’re not nearly as large as
might be expected. The 3rd edition is almost 1,000 pages com-
pared to 740 for the first edition, but Rago has added two sec-
tions on threading and one on network sockets to address topics
that didn’t exist in the early 1990s.

There are remarkably few actual system calls (functions that
cause a process to switch from user to kernel mode). The
remainder of the interfaces are known as system libraries and
are generally built on top of the system calls. These are used to
manage the core system resources (files, processes, threads,
and memory) to communicate between processes (signals,
semaphores, shared memory) and between systems and devices
(serial I/O and networking). Stevens and Rago explore each of
these in some depth, highlighting differences between operating
system flavors.

The authors begin most chapters by explaining some aspect of a
running *NIX system: files and I/O, processes and interprocess
communication, errors and the process environment variables.
They show what each feature is for, how it affects the operation
of the system, and how programs interact with it. Only then do
they introduce the system calls with realistic example code.
Each chapter closes with a traditional summary and a set of
exercise questions.

Stevens and Rago close the book with a couple of chapters that
present complete uncontrived examples of real-world systems
programming.

Advanced Programming is known as a classic for good reasons.
The writing is clear and precise. The examples are detailed but
to the point. The chapters follow a progression from topics that
will likely be familiar and commonly used to those that may be
more specialized or esoteric. The rationale for or history behind
a design choice or variation is provided when it offers some
insight into how a feature is to be used. This is one of the rare
books that works both as an introduction and as a reference.

I’ve done a fair amount of systems level programming and I
recommend Advanced Programming to pretty much anyone who
programs *NIX systems seriously; however, I’m a system admin-
istrator by trade and avocation. There are two divided and vocal
camps on the question of whether programming is required
for system administration. I won’t weigh in on the question of
requirement, but I don’t think it can hurt to at least learn how to

76  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

BOOKS

read C code. I think it can be a tremendous benefit to understand
the kernel system calls, especially when tracing and debugging
processes. I recommend Advanced Programming to anyone who’s
interested in understanding the interfaces between *NIX pro-
grams and the system that runs them.

The Go Programming Language Phrasebook
David Chisnall
Addison Wesley, 2012. 264 pp.
ISBN 978-0-321-81714-3
Reviewed by Mark Lamourine

In The Go Programming Language Phrasebook David Chisnall
provides all of the information an experienced coder needs to
begin experimenting with Go. He doesn’t spend a lot of time on
the minutiae of the language and libraries, deferring instead
to other books and resources when a reader might want more
detail. He concentrates on the features that make Go significant
and on the idioms and coding patterns that make the best use of
those features.

It turns out that Go is designed not to illustrate some new pro-
gramming paradigm, but in response to the known shortcomings
of the aging C programming language in the context of system
software development where it still dominates. Much of the Go
syntax looks like C, but where it differs there is a reason. Usu-
ally the changes are meant to eliminate common coding errors
or to decrease the complexity of implementing modern coding
patterns. The most significant new features, “goroutines” and
“channels,” provide a cleaner means of implementing concur-
rency both on individual multicore computers and in networked
distributed systems. It is also notable that, although Go is a
compiled language, the development environment offers a way to
run many programs from source code on the command line as if
they were scripted.

The author avoids the worst impulses of writers of this kind of
book. The phrasebook format can lead an author to provide a
code snippet for every variation of every feature of every library.
Chisnall focuses on writing about Go and uses the code snip-
pets only to illustrate a point. He details not just how Go differs
from other common languages but why. Because Go is meant to
replace C, a low-level language, the machine details, such as the
placement of structures in memory, will peek up through to the
coder. Chisnall doesn’t shy away from discussing how coding
style and idiom will affect the behavior of the machine and how
Go features contrast with other languages. Go is still a young
language, and Chisnall informs the reader where there are cave-
ats, gaps, or areas of continuing development that might make
his examples obsolete.

In addition to the standard language primer and features (vari-
ables and types, scoping, objects, arrays, and collections) and
the new features (goroutines and channels), Chisnall includes
sections on working with the Go runtime environment, packag-
ing and distributing code, and debugging. The one thing notably
missing is any mention of a unit testing framework.

The Go Programming Language Phrasebook is an excellent intro-
duction both to a new alternative for systems programming and
a survey of the challenges faced by coders implementing modern
concurrent and distributed applications. Because Go produces
executable binaries for any modern OS and architecture, I will
certainly consider trying it the next time I need to code a binary
from scratch, and this book will be the first source I pick up.

Realm of Racket: Learn to Program
One Game at a Time!
Matthias Felleison, David Van Horn, Conrad Barski,
Forrest Bice, Rose DeMaio, Spencer Florence, Feng-Yun Mimi
Lin, Scott Lindeman, Nicole Nussbaum, Eric Paterson,
Ryan Plessner
No Starch Press, 2013. 294 pp.
ISBN 978-1-59327-491-7
Review by Mark Lamourine and Melissa Gray

I’ve read a number of books aimed at introducing software
development to new readers, but I wouldn’t have picked Lisp as
a first language. Realm of Racket is an introductory text aimed
at college freshman and written at least in part by students at
Northeastern University. The students get top billing on the
cover. The language is Racket, a derivative of Scheme, which is
in turn a Lisp variant. The authors try to set an informal tone
with comic strip artwork and a game and quest narrative which
seemed to me to be a bit childish for the audience. It’s been a long
time since I was a college freshman.

Luckily I had a handy intern in the cube across from me, and she
agreed to read it and give me her impressions. On reading them I
had to reconsider my first take on the book. This is what she had
to say:

The information is laid out in an accessible and engaging way. I
think it would be effective and understandable for college freshmen
regardless of previous programming experience. The story and
cartoons are engaging. High-level material is clearly explained
and given to the reader gradually in a way that builds on the
previous chapters. As someone who has taken both high school
and college intro programming courses, game-based examples
and exercises are a good way to teach logic and decision-based
 programming. So I think this is a strong feature of this book.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 77

BOOKS

The “read front to back” method this book employs might be bother-
some for impatient students who would rather skip through a
textbook by topic. However, if a student’s goal is really to learn the
material, this ends up being a great method because you can learn
things in a logical order.

So, Melissa didn’t seem to be as put off as I thought she’d be.
When I asked her about it she shrugged and directed me back to
the text and the teaching arch and I had to take a new look.

The chapter topics and sequence presented are not what I’ve
come to expect for procedural languages, but are natural for
Lisp. Variables, conditionals, and functions come first, but then
the authors present recursion and lambdas before coming back
to looping constructs and trees. They don’t stop there, though,
and this is where the youthful comic strip cover seems mislead-
ing. The authors continue, introducing more advanced topics,
memoization, and lazy evaluation. The book closes with several
chapters developing a simple distributed game using client-
server constructs and messaging.

There’s a lot packed into this book and it’s not really aimed at
the tweens that some other No Starch programming books have
been, though I wouldn’t hesitate to offer it to a motivated high
school student. The DrRacket IDE runs on Windows, MacOS,
and Linux so that students can begin work in whatever environ-
ment they are comfortable. The IDE is also fairly comprehensive,
containing tools for interaction, development, and debugging.
The Racket language includes module constructs that I don’t
remember seeing when I learned Scheme. DrRacket also pro-
vides a GUI library that I know wouldn’t work on my VT100.

In the end I’m impressed. Realm of Racket and DrRacket both are
well thought out and well suited to their tasks.

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by sending email to
board@usenix.org.

P R E S I D E N T
Margo Seltzer, Harvard University
margo@usenix.org

V I C E P R E S I D E N T
John Arrasjid, VMware
johna@usenix.org

S E C R E T A R Y
Carolyn Rowland
carolyn@usenix.org

T R E A S U R E R
Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S
David Blank-Edelman, Northeastern University
dnb@usenix.org

Sasha Fedorova, Simon Fraser University
sasha@usenix.org

Niels Provos, Google
niels@usenix.org

Dan Wallach, Rice University
dwallach@usenix.org

C O - E X E C U T I V E D I R E C T O R S
Anne Dickison
anne@usenix.org

Casey Henderson
casey@usenix.org

Nominating Committee for USENIX
Board of Directors
The biennial election of the USENIX Board of Directors
will be held in early 2014. The USENIX Board has
appointed Margo Seltzer to serve as chair of the Nominat-
ing Committee. The composition of this committee and
instructions on how to nominate individuals will be sent
to USENIX members electronically and will be published
on the USENIX Web site this fall.

78  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2012

The following information is provided as the annual report of the USENIX Association’s finances. The accompanying statements
have been reviewed by Michelle Suski, CPA, in accordance with Statements on Standards for Accounting and Review Services
issued by the American Institute of Certified Public Accountants. The 2012 financial statements were also audited by McSweeney &
Associates, CPAs.

Accompanying the statements are charts that illustrate the breakdown of the following: operating expenses, program expenses, and
general and administrative expenses. The operating expenses for the Association consist of the following: program expenses, man-
agement and general expenses, and fundraising expenses, as illustrated in Chart 1. The operating expenses include the general and
administrative expenses allocated across the Association’s activities. Chart 2 shows the breakdown of USENIX’s general and adminis-
trative expenses. The program expenses, which are a subset of the operating expenses, consist of conferences and workshops, programs
(including ;login: magazine) and membership, student programs and good works projects, and the LISA Special Interest Group; their
individual portions are illustrated in Chart 3.

The Association’s complete financial statements for the fiscal year ended December 31, 2012, are available on request.

—Anne Dickison, Co-Executive Director

—Casey Henderson, Co-Executive Director

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 79

Program	 Expenses	
85%	

Management	 &	 General	
Expenses	
14%	

Fundraising	 Expenses	
1%	

Chart	 1:	 	 USENIX	 2012	 Opera4ng	 Expenses	

System	 Management	 &	
Computer	 Exp	

18%	

Deprecia:on	 &	 Amor:za:on	
16%	

Image	 Marke:ng	 &	 Public	
Rela:ons	

14%	
Occupancy	

13%	

Accoun:ng	 &	 Legal	
8%	

Board	 of	 Directors	 Expenses	
7%	

Office	 Expenses	
6%	

Insurance	
5%	

Other	 Opera:ng	 Expenses	
5%	

Bank	 &	 Internet	
Merchant	 Fees	

4%	

Telephone	 &	 Connec:vity	
4%	

Chart	 2:	 	 USENIX	 2012	 General	 &	 Administra;ve	 Expenses	
	 	

Conferences	 &	 Workshops	
82%	

Programs	 (including	 ;login:)	 &	
Membership	

15%	

Student	 Programs	 &	
Goodworks	 Projects	

1%	 LISA	 SIG	
2%	

Chart	 3:	 	 USENIX	 2012	 Program	 Expenses	
	

80  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

REPORTSConference Reports

HotOS XIV: 14th Workshop on Hot Topics
in Operating Systems
Santa Ana Pueblo, NM
May 13-15, 2013

HotOS XIV Opening Remarks
Summarized by Rik Farrow (rik@usenix.org)

Petros Maniatis, Intel Labs, the PC chair, explained the ground
rules for the HotOS ’13. Presenters had only 10 minutes, with
a few minutes for questions and answers as the next presenter
set up his or her laptop. Each talk session was followed by a
half-hour open mike session, where participants were welcome
to speak on any topic, although the discussions were generally
related to ideas brought up during the previous session or earlier
in the workshop.

Petros also introduced a new concept: unconference sessions.
Four sessions were set aside for groups to meet about topics
of their own choosing. Attendees announced topics during a
session on Monday morning and gave reports on the issues, and
sometimes on the results of these meetings, on Wednesday, right
before the end of the workshop.

Shuffling I/O Up and Down the Stack
Summarized by Shriram Rajagopalan (rshriram@cs.ubc.ca)

We Need to Talk About NICs
Pravin Shinde, Antoine Kaufmann, Timothy Roscoe, and Stefan Kaestle,
Systems Group, ETH Zurich

Timothy Roscoe began by pointing out that modern NICs have
become complex devices with a variegated set of features, but
operating systems do not provide proper abstractions to access
many of these features. Windows provides different abstractions
for each NIC manufacturer, whereas Linux does not provide any
support to access the hardware functionalities in modern NICs.

Most operating systems as of now cannot optimize performance
of a workload by automatically identifying and leveraging func-
tionalities exposed by the NIC hardware.

Dragonet presents a new network stack design that represents
the protocol state machine in the OS as a dataflow graph. The
NIC’s capabilities are represented as a dataflow graph as well.
The two graphs can be combined in such a way that function-
alities not provided by the NIC hardware can be provided by
software components in the network stack.

Someone pointed out that graphics folks have taken a simi-
lar approach, and asked whether Mothy could draw a parallel
between the two approaches. Mothy replied that their approach
has a similar flavor; however, graphics cards are heterogeneous
and provide arbitrary multiprocessing capabilities apart from
functionality offload. His team is dealing with fixed function
hardware. Someone else asked how high should the abstractions
go up the stack: for example, the ability to push computations
onto the NICs for certain workloads (e.g., receiver side scaling).
Mothy answered that they don’t know yet, but that they’d like to
be able to offload processing to the NIC, but they need to track
the spatial placement of threads. Brad Karp (University College,
London) asked whether it is possible to automatically capture
the NIC’s capabilities in a protocol graph, when its firmware is
updated, and if so wouldn’t they have to update the OS’s pro-
tocol graph accordingly. Mothy responded that you could treat
this issue like a bug fix for bad firmware in the card. Until the
firmware is fixed, the OS could use a different resource graph as
a workaround. Their design just makes it easy to work around
these hardware issues.

The NIC Is the Hypervisor: Bare-Metal Guests in IaaS
Clouds
Jeffrey C. Mogul, Jayaram Mudigonda, Jose Renato Santos, and Yoshio
Turner, HP Labs

Jeff Mogul started with a question: Why would anyone want
to run a bare metal guest without a hypervisor? There could be
several motivations, such as performance, security, application/
vendor support for certain software, licensing requirements,
and customer demand. The next question that naturally arises
is how can one run both bare metal guests (BMGs) and virtual
machines in the same cloud? With BMGs, we no longer have a
guest OS running over a hypervisor, so where will the protection
boundary be drawn? Jeff suggested using the Switch/NIC to
enforce a hypervisor-like protection boundary for BMGs.

A simple inventory shows that we have several components
already in place. For example, a sNICh provides ACLs with
hardware NICs. Remote management can be accomplished
via components such as HP’s iLO (or equivalents from other

In this issue:

HotOS XIV: 14th Workshop on Hot Topics
in Operating Systems 80
Summarized by Rik Farrow, Seungyeop Han, William Jannen, Shriram
Rajagopalan, Deian Stefan, Jonas Wagner, Edward Yang, and Cristian
Zamfir

HotPar ’13: 5th USENIX Workshop on Hot Topics
in Parallelism 95
Summarized by Rik Farrow

The complete reports from HotPar ’13, USENIX ATC ’13, ICAC ’13,
HotCloud ’13, HotStorage ’13, and WiAC ’13 are available online
at www.usenix.org/publications/login

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 81

REPORTS

vendors, using IPMI) with little modification. The Remote
Management Engine (RME) at the end host interacts with the
cloud controller. Depending on the requirements of the BMG, the
RME configures the NIC with appropriate protection boundar-
ies by disabling certain features; however, other things, such as
checkpointing, migration, etc., require guest OS support. Jeff
suggested that using an SDN is not the appropriate solution
because BMG-NICs present a cleaner separation between the
edge hardware and the network fabric and scales better.

Someone asked whether customers who demand bare-metal
guests have concerns with licensing fees. Jeff answered that
some applications cannot run on a VM, and apps would not be
able to tell they were running over a sNICh. Muli Ben-Yehuda
(Technion) asked whether this would still be necessary if the
hypervisor had no performance penalty. Jeff pointed out that
performance is just one aspect. A key driving factor for BMG-
NICs is licensing and support requirements. Someone asked
about the problem with RMEs accessing the main memory, and
Jeff replied that because of their design (the BMC interface
used by IPMI) RMEs do not have a main memory map. Another
person asked why the RME is even relevant. Jeff said that they
need someone to control the NIC. Current systems allow RME
to control the NIC. Basically, we are leveraging something that’s
readily available.

Virtualize Storage, Not Disks
William Jannen, Chia-che Tsai, and Donald E. Porter, Stony Brook University

Bill Jannen stated that virtualization works great because
of hardware emulation but has a big performance impact on
 storage. For example, we have duplicated storage stacks in both
the guest and the host—things such as page caches, read ahead
blocks, etc.—when using a file-based backing disk. The double
caching can cause correctness problems with certain file system
operations in the event of failure. Bill described an example
scenario where the guest issues an unlink system call on a file
and gets an acknowledgement from the host; however, at the
host level, the inode information still resides in the page-cache.
Should the host fail and come back up, the guest OS’s applica-
tion would see the deleted file and might react in an undefined
manner.

They proposed separating the media access layer from the file
system. The application interfaces would reside in the guest while
things like I/O schedulers would be at the host. They could then
augment the guest API with performance, ordering hints, etc.

Steve Niel (VMware) claimed that VMware ESX servers do not
have this issue; however, he appreciated the idea that we need to
modularize the storage layer. Ed Yang (Stanford) said that this
also applies to Xen and KVM, and that their example pertains to
the configuration settings for their guest OS. Muli Ben-Yehuda
said that the idea of modularizing certain aspects of storage,
such as file systems, depends totally on the data structures that

the file system uses. The case may be that such modularization
is not possible for a given file system due to the nature of its data
structures.

Unified High-Performance I/O: One Stack to Rule
Them All
Animesh Trivedi, Patrick Stuedi, Bernard Metzler, and Roman Pletka, IBM
Research Zurich; Blake G. Fitch, IBM Research; Thomas R. Gross, ETH Zurich

Animesh Trivedi stated that I/O performance has changed over
the years. We have moved from disks to flash and will move to
PCM, which represents two to five orders of magnitude perfor-
mance improvement; however, the OS is not leveraging these
features. We need a set of rich I/O semantics with direct access
to hardware.

High performance I/O stacks work great with disks but don’t
perform well with NVRAMs. Instead of reinventing the wheel,
he suggested, let’s leverage the technology available in the
networking community. Inspired by high performance software-
controlled NICs, he proposed user-space mapped I/O channels
with no OS involvement. An even better alternative would be
to unify both I/O stacks. The OS could support a single set of
abstractions for multiple sets of devices. The application would
no longer care whether the storage is local or remote. Animesh
said they have a working prototype that performs two to five
times better with about a half million IOPS.

Muli Ben-Yehuda disagreed with Animesh’s claim that network
performance issues with respect to application access have
been fully solved. Animesh replied that they do not claim that
it’s fully solved. Their opinion is that certain aspects of this
space have been fully fleshed out and they propose to leverage
them. For example, the OS would do a one-time translation to set
up the I/O channel, acting like a control plane, for a very large
file transfer. John Ousterhout (Stanford) asked what if there
were a very large number of small files, which would be doing
too many checks and hurting latency. Animesh agreed that too
many data/control plane switches would have an impact on
performance. Ed Bugnion (EPFL) pointed out that in networks,
the socket is the central abstraction. In storage, its equivalent is
SCSI. Their example is to use a niche network example (direct
hardware access) and build a system on top of it. So at best, it’s
a niche within a niche. Animesh countered that sockets don’t do
high-speed transfers of hundreds of GBs of data. If you need high
performance I/O, you need a niche. Simon Peter (U Washington)
asked, what if two applications want to access the same file?
Animesh said that you just remap the same channels with mul-
tiple processors and assume that the hardware can keep track
of the ordering. Andrew Warfield pointed out that Animesh
had focused on the similarities between the two domains, and
asked that Animesh provide a big difference that is challenging.
Animesh replied that networks have no notion of transactions
while storage uses a lot of transactions. We have no way to roll
back a transaction when doing I/O over network (but we can over
storage).

82  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

REPORTS

Open Mike
Matt Welsh (Google) asked whether we know the kind of
applications that are driving the kinds of papers that were
seen in the I/O session. Do all applications need these features,
such as direct access to I/O, or is it just a few? Timothy Roscoe
responded that trading applications is a good use case because
they cannot afford the hit on latency. He agreed that the cus-
tomer base was a small one and that the application domain for
these ideas was small.

Jeff Mogul commented that HPC applications are difficult
to manage as they grow—especially resources, I/O, etc. The
concepts presented in the session basically proposed abstrac-
tions that help the application/user easily manage these
resources. Alex Snoeren (UC San Diego) added that, although
these papers proposed to take the hardware capabilities to user
space, hardware vendors (e.g., storage) are moving in the other
direction (keeping to kernel space) in an effort to be compatible
with each other. They don’t want user-space libraries directly
accessing their devices and creating compatibility issues.

Muli Ben-Yehuda reiterated Alex’s observation that vendors are
trying to move interfaces to the kernel because of legacy applica-
tions. He added that a major issue with direct hardware access
is the loss of ability to migrate VMs and cited SR-IOV as one
example. For enterprises with legacy applications, migration is a
valuable tool compared to direct hardware access. Dave Ackley
(U New Mexico) pointed out that NICs are getting smarter; it’s
the manifest destiny of silicon. Just as GPUs have been grow-
ing in capabilities by leaps and bounds, expect the same thing
to happen with network processing. George Candea (EPFL)
wondered whether a coordinated hardware/software design is
needed to get the desired performance. The current approach
is a real hodgepodge. Andrew Warfield (UBC) said that the
current network stack is a real mess, with 15 vendors and only
two of them focused on performance. Muli reiterated that mov-
ing code into user space wouldn’t work for legacy applications.
Steve Hand (Cambridge and MSR) said that once you bypass the
hypervisor, you can no longer migrate, and people like the ability
to do migration. So is this what customers really want?

Petros summarized by saying that this is a puzzle with multiple
sides. Being able to mix-and-match and optimize for a particu-
lar solution would be nice. All sides have a point here—splitting
things into small pieces, pushing some into hardware.

Edgy at the Edge
Summarized by Jonas Wagner (jonas.wagner@epfl.ch)

The Case for Onloading Continuous High-Datarate
Perception to the Phone
Seungyeop Han, University of Washington; Matthai Philipose, Microsoft
Research

Seungyeop Han introduced the case for onloading continuous
high-data-rate perception onto the phone by explaining how

computer vision has reached maturity and enables many appli-
cations, from context-sensitive reminders to tracking the user’s
diet. To perform sensing on the phone for continuous availability,
cost, and privacy is desirable. Trends in memory size, processor
speed, and power consumption indicate that this will be feasible
in 2015.

A key optimization for on-phone video processing is using other
sensors to gate the computation. These sensors identify frames
that need not be processed, e.g., due to low light or motion blur,
and discard more than 98% of all frames. This gating framework,
combined with privacy concerns and the possibility to share
models and algorithms between apps, calls for implementing
video processing as an operating systems service.

Vova Kuznetsov (EPFL) asked whether gating is still useful
if interesting frames come in batches. For many applications,
gating still provides considerable energy savings. Matt Welsh
(Google) asked whether this is really an OS problem. Seungyeop
replied that techniques such as gating require multiple resources
to be scheduled and shared between apps. Also, the OS can
ensure privacy in the presence of malicious apps. To a follow-up
question on privacy, Seungyeop replied that there are further
ideas: for example, filtering an audio frame such that it is pos-
sible to identify the speaker but not the content. When asked
whether his work makes offloading obsolete, Seungyeop said
that, although some classes of applications require the cloud for
reasons like low latency, more effort should go into onloading
perception onto the phone.

Making Every Bit Count in Wide-Area Analytics
Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek Pai, and Michael J.
Freedman, Princeton University

Wide-area analytics need to cope with huge data volumes that
exceed and outgrow the available bandwidth. Because not all
data can be transmitted to a central location for analysis, exist-
ing systems make static decisions about what data to collect.
They incur high costs for collecting (too) much data, yet are
unable to obtain more data retroactively if the need arises.

Ariel Rabkin presented an alternative architecture in which
full data is stored close to where it is collected. The data is then
aggregated, summarized, and transmitted to the user with a pre-
cision and granularity that meets bandwidth constraints. The
architecture supports reasoning about the bandwidth require-
ments of queries. Users can interactively define a policy that
controls how results degrade gracefully as bandwidth changes.
The OLAP cube is the chosen data model, because it supports
merging, summarizing, and aggregating data automatically
according to this policy.

When Doug Terry (MSR) asked about other data models that
have been considered, Ariel replied that they had looked at SQL
tables and MapReduce tuples. SQL tables require too much
semantic awareness, especially in the presence of missing data.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 83

REPORTS

Alex Snoeren (UCSD) recalled a similar, more general system
where custom merge procedures could be specified for every
data element. Ariel replied that such merge procedures are dif-
ficult to write for rich data, and hard to optimize compared to
OLAP cubes. Peter Bailis (UC Berkeley) asked how the system
compares to the Tiny Aggregation Service (TAG) used in sensor
networks. Ariel explained that the focus is less on reliability and
more on using the bottlenecked wide-area link as efficiently as
possible.

QuarkOS: Pushing the Operating Limits of Micro-Powered
Sensors
Pengyu Zhang, Deepak Ganesan, and Boyan Lu, University of Massachusetts
Amherst

Pengyu Zhang presented work that pushes the operating limits
of tiny sensors, such as medical implants or self-powered cam-
eras. These harvest energy from temperature gradients, electro-
magnetic waves, or ambient light to charge energy buffers with
a capacity of only few μAh. This severely restricts the amount
of work that can be done in a single charge-discharge cycle, and
precludes the use of conventional sensor-network operating
systems.

QuarkOS fragments tasks as much as possible so that individual
fragments stay within the energy limits. QuarkOS efficiently
measures available energy and inserts sleep gaps within frag-
ments to recharge the energy buffer. Passive RF communica-
tion is given as an example: fragments consist of transmitting a
single bit. Another example is image sensing, where sleeps can
be inserted between pixels and even within the different stages
of sensing a single pixel.

The first question was about time scales. Pengyu answered
that one charge-discharge cycle takes about 100μs, and that
one image can be sensed in a few minutes. Somebody then
asked how much energy could be saved by this technique.
Pengyu replied that QuarkOS does not reduce energy consump-
tion but extends the operating limits of sensors so that they can
still execute tasks, albeit slowly, when limited energy is avail-
able. Mike Freedman (Princeton) asked at what scale Quar-
kOS can be applied. Is there a niche between battery-powered
devices running conventional sensor OSes and micro-motes
running without OS? Pengyu answered that their experiments
used the Intel WISP architecture, which fits into this category.
These devices have the advantage of being much easier to
use than really small motes, where functionality needs to be
embedded in hardware. John Ousterhout (Stanford) inquired
about the limits of the power buffer. Pengyu explained that
larger buffers are possible but disadvantageous: they require
over-proportionally longer charge times, need more energy to
reach the operating voltage, and cause more heat to be emitted
during the discharge.

Open Mike
The open mike session started with Jonas Wagner (EPFL) ask-
ing whether partial information from low-rate video processing
or low-bandwidth wide-area analytics is really more beneficial
than the traditional case where users see full information or
none at all. Ariel Rabkin replied that partial information is less
scary than it sounds, and definitely useful.

The discussion continued around onloading vs offloading tasks
to phones. There are many forms of offloading, some of which
are well received. For example, Web sites can be fetched and
rendered in the cloud, and be streamed to the phone at the right
resolution.

Another topic that was raised was whether hardware could help
with fragmenting tasks into even smaller units than what is pos-
sible with QuarkOS.

Be More Tolerant, but Not Too Tolerant
Summarized by William Jannen (wjannen@cs.stonybrook.edu)

Failure Recovery: When the Cure Is Worse Than the
Disease
Zhenyu Guo, Sean McDirmid, Mao Yang, and Li Zhuang, Microsoft Research
Asia; Pu Zhang, Microsoft Research Asia and Peking University; Yingwei
Luo, Peking University; Tom Bergan, Microsoft Research and University of
Washington; Madan Musuvathi, Zheng Zhang, and Lidong Zhou, Microsoft
Research Asia

Zhenyu Guo began with an explanation of Microsoft Azure’s leap
day bug as an example of how efforts to recover from faults can
actually do more harm than help. He analyzed service failures
at major companies, and described three of several categories
of common misbehaviors: resource contention, “recovered”
software bugs, and service dependencies. Zhenyu argued that
any failure recovery effort should be engineered to do no harm,
because many of the bugs he described led to cascading failures
that brought down many healthy system components when try-
ing to recover from a small number of faults.

Zhenyu noted that one element commonly missing in failure
recover design is systems thinking—the process of understand-
ing how things interact with a system as a whole. Some deci-
sions may seem correct locally, but are not necessarily globally
correct. Systems thinking must be applied in all phases: design,
testing, and deployment.

Petros Maniatis asked how easy it is to determine whether an
action will do harm or not. Zhenyu explained that it is not easy,
and that they have identified challenges in each step of the
development cycle. There is no single solution that can solve all
problems.

Someone posited the idea that systems thinking might result in
a bunch of ground states that the system falls back into rather
than cascading failures. In the context of the cloud, ground
states might result in the cloud not processing jobs, and there-
fore not making money. A guiding principle might instead be

84  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

REPORTS

“don’t lose money,” rather than “do no harm.” Risking cascading
failures might be better than running the risk of not making
money. Zhenyu agreed that this is a concern, but said that sys-
tems thinking is applicable in many situations.

John Ousterhout wondered whether the real problem was that
error recovery code never gets debugged; it happens infrequently,
but if developers knew it was there, they would fix it.

Toward Common Patterns for Distributed, Concurrent,
Fault-Tolerant Code
Ryan Stutsman and John Ousterhout, Stanford University

Ryan Stutsman noted that many current applications scale
to support billions of users, and developers write code that is
distributed, concurrent, and fault tolerant. When managing
thousands of logical threads of execution, the control flow must
be adaptive and recover from failures easily, which impacts the
way that programs are written. Developers have no control over
when faults occur; traditional imperative code doesn’t work, and
execution history cannot be relied on. Ryan argues that it is only
the state of the current system that really matters, and that pro-
grams should take steps based solely on state. While working on
RAMCloud, they developed rules, tasks, and pools as a pattern
for writing fault-tolerant code.

Ryan described rules, which are predicates based on actions.
Actions fire in response to whatever conditions happen to be
correct at the given moment. He explained that tasks group rules
together with the state that they act on. Each task also has a
goal, which is an invariant that the task is to achieve or main-
tain. Pools group tasks for a subsystem. In this pattern, execu-
tion order is determined by state instead of by some predefined
ordering, and the execution order can adapt dynamically.

Mike Freedman noted that one way to think about this is that
developers are designing systems that represent finite state
machines. But it is more general than that, and you don’t want
to hard code a set of states; writing with this pattern should use
actions and triggers. He wondered whether people using this
model often write static state machines. Ryan responded that
the patterns he’s noticed have not had explicit state tags. The
conditions apply implicitly. The model is not really about explicit
states, but how to reason locally.

Peter Bailis wondered whether Ryan could compare their
approach to rule-based languages like Bloom. Ryan was not
familiar enough to speak about Bloom, but he thinks about the
problem in a similar manner to how model checkers work: the
programmer defines conditions and invariants.

John Wilkes observed that in practice, people actually write
little state machines, and he thought that the idea of small-scale
state machines applied lightly is a powerful idea. Ryan was
concerned with the idea of explicit state machines for reasons
of scalability. He would like to be able to reason about a system
with just a local view of its state.

Escape Capsule: Explicit State Is Robust and Scalable
Shriram Rajagopalan, IBM T. J. Watson Research Center and University
of British Columbia; Dan Williams and Hani Jamjoom, IBM T. J. Watson
Research Center; Andrew Warfield, University of British Columbia

Shriram Rajagopalan noted that cloud infrastructure scales,
and applications should be able to scale easily on that infra-
structure as work increases. He proposed the capsule abstrac-
tion, a modification of applications and operating systems so
that they support scaling at session granularity. The proposal
would decouple sessions from applications; mobile sessions
would allow balanced scale-out and scale-in, and replicated ses-
sions would allow efficient and transparent fault tolerance.

Each layer must annotate the state that it wants to export, and
each capsule must explicitly name its dependencies. A vertical
chain of dependencies is called a “slice,” which can represent the
entire running state of a session. A centralized entity would be
responsible for knowledge of capsules at each layer, and it would
be able to unplug a slice, move it to another machine, and then
plug the capsule back in at the destination. Shriram argued that
elasticity and fault tolerance support should be provided at the
system level, which the capsule abstraction provides.

Steve Muir commented that capsules were conceptually similar to
Google’s app engine, and he inquired about the tradeoffs of being
intrusive. He noted that for many Web applications, the failure
model is simply to drop the connection and restart. Shriram
replied that if a single app engine is overloaded, there is no way to
shed load dynamically and wait for the request to terminate. App
engine scaling occurs at request boundaries.

Erez Zadok inquired as to which entity is responsible for detect-
ing and setting dependencies. Shriram replied that the developer
of every layer is responsible for setting dependencies and for
registering the capsule. Erez followed up by asking about a case
where there are many dependencies and inter-dependencies, to
the point that it is cheaper to migrate the whole VM. Shriram
noted that most session-based applications do not have depen-
dencies that are so widespread.

Peter Druschel (MPI-SWS) noted that capsules were cheaper
than process migration, but more intrusive. Historically, process
migration has lost out in favor of VM migration, and Shriram
was asked what made him think this trend would reverse. Shri-
ram contended that there is a tradeoff; the coarser the granular-
ity of migration, the less benefit in terms of fault tolerance and
elasticity.

Timothy Roscoe asked which sessions would work well in the
model. Some sessions might be hard to slice, and for sessions
that are short-lived, there would be no point to migrating. Shri-
ram said that for servers with millions of requests per second,
this would not make sense, but that normal Web commerce
applications have sessions that are not short-lived. A few min-
utes is more than enough time to overload a machine, and it is a

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 85

REPORTS

large enough window that a machine can fail, causing a loss of all
session state.

Open Mike
The session began with a discussion of Ryan Stutsman’s work.
Petros Maniatis wondered about the case where two rules
created an infinite loop, where each triggered the other. Ryan
responded that there is no way to prevent programmers from
writing infinite loops, but goal states help. If reaching a goal
state takes too long, log messages are generated to help identify
the problem. How one could ensure that atomic session code
could be kept error free, specifically in the case of memory allo-
cation failure, was also asked. Ryan responded that due to the
expense of malloc, they mostly use preallocated buffers. He said
that large external failures cannot be ignored, but local error
handling can be done. Ariel Rabkin noted that a consequence
of state machines being implicit is that it becomes difficult to
ensure that progress is being made. Ryan commented that tim-
ers help, just as they help to detect infinite loops.

Erez Zadok shifted the discussion back to cascading failures. He
noted that many of the examples from Zhenyu’s talk suggested
that a global view would allow better job handling and recovery.
He noted that it might be difficult for a centralized controller
to manage large systems, and wondered if a distributed version
was considered. Erez likened the situation to current discus-
sions in the world of electrical grid systems, where buildings or
city blocks could disconnect themselves from the grid in the case
of failure. Zhenyu replied that restricting failures to containers
would help. He also noted that reusing existing failure detection
mechanisms is useful.

The session concluded with further discussion of escape cap-
sules and the difficulties that arise when retrofitting capsules to
software stacks that were not designed with capsules in mind.
Shriram noted that developers may not identify all state that
needs to go into a session, and that plugging and unplugging
capsules is not an easy job, especially in the presence of unpre-
dictable processes like garbage collection.

Biiiig
Summarized by Seungyeop Han (syhan@cs.washington.edu)

Large-Scale Computation Not at the Cost of
Expressiveness
Sangjin Han and Sylvia Ratnasamy, University of California, Berkeley

Sangjin Han presented Celias, a new programming model for
large-scale computation. He started by reviewing the Map-
Reduce family (including Dryad and Spark). Although those
frameworks support bulk transformation of immutable data,
they are not well suited to fine-grained updates on the data set.
In their experiments with an iterative MapReduce job for k-hop
reachability, they found that overhead takes more than 95% of
the whole computation. Further, MapReduce cannot handle
dynamic dataflows evolving at runtime. Sangjin proposed a new

solution to fix those problems while preserving scalability and
the fault tolerance properties of MapReduce.

Their programming model, Celias, is based on the classic program-
ming model, Linda. Whereas Linda uses the process model and
does not have any automatic scaling or fault tolerance features,
Celias introduces microtasks as the computation model and uses
tuplespace as data model. Microtasks are written as signature
and code, and are triggered by the availability of tuples that
match with the signature. The used input tuple is then automati-
cally replaced by the output tuple. This programming model
allows automatic scaling and fault tolerance without the inter-
vention of programmers. Additionally, Sangjin noted that Celias
is at least as expressive as MapReduce.

Matt Welsh (Google) commented that sometimes the immutable
property is important, especially for rerunning as a batch, and it
is important to find killer apps. Michael Freedman (Princeton)
said that small tasks would kill performance with frequent I/O.
John Ousterhout (Stanford) asked about the consistency issue.
Sangjin answered that Celias is relying on atomic operations to
ensure that updates are consistent. Petros Maniatis (Intel Labs)
asked whether Optimus over Dryad would not solve the problem.
Sangjin explained the approach is more like SQL and SQL query
optimization and does not give the expressiveness that Celias
provides.

When Cycles Are Cheap, Some Tables Can Be Huge
Bin Fan, Dong Zhou, and Hyeontaek Lim, Carnegie Mellon University; Michael
Kaminsky, Intel Labs; David G. Andersen, Carnegie Mellon University

Bin Fan presented a new hash table that can serve a very large
number of entries entirely from memory. Their target is when
keys could be large whereas each value costs a few bits. He
showed an example of the hash table storing UserID → online/
offline. In the traditional hash tables storing those entries, some
rows are not utilized. Additionally, storing keys to avoid collision
takes another large space. Overall, it requires O(k+v) bits/entry.

By contrast, Bin’s team suggested a new data structure to save
memory. The core idea is to throw away the keys and to do brute
force to avoid collisions. To do so, their algorithm, SetSepara-
tion, enumerates hash functions in a hash function family to
find the hash function that maps all keys in a group to correct
values. Then, it records the parameter to get the hash function.
Dividing the entire input into small groups, their scheme can
handle a large number of keys/values. By the algorithm, their
data structure uses only 0.5 + 1.5v bits/entry. Bin noted that the
algorithm has a caveat that it cannot handle a membership func-
tion because it does not maintain keys by itself. In evaluation,
SetSeparation uses only 3.88 MB for 16 million entries, whereas
the STL (Standard Template Library) map uses 869.46 MB and
the lookup speed is faster.

Jonas Wagner (EPFL) asked how Set Separation handles
updates. Bin answered that it needs to keep track of which keys

86  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

REPORTS

are in the group in external storage. Volodymyr Kuznetsov
(EPFL) commented that STL map is not a hash table and asked
whether lookup and update cost would depend on key-size. Bin
noted they were using a hash map and lookup is still constant
although a little bit tricky. Michael Freedman (Princeton) asked
whether figuring out which group the query key is in is not
key-dependent. Bin replied that determining it is again based
on hashing. Roxana Geambasu (Columbia) asked about con-
crete applications, noting that it has restrictions. Bin mentioned
software routers as one example. Dan Williams (IBM Research)
commented that it would be expensive for the cases with longer
values. Bin said that it needs to be done per-bit for a multi-bit
case, and the benefit decreases for longer values.

Wanted: Systems Abstractions for SDN
Sapan Bhatia, Andy Bavier, and Larry Peterson, Princeton University

Sapan Bhatia started by noting that iptables were functioning
as a Swiss Army knife for many network configurations: while
iptables is a powerful tool, it has the reputation for being tedious
to use and error-prone. Additionally, changing configuration
leads to resetting state, such as policies or routing entries. The
research community has provided useful results, including
new network architectures, domain-specific languages (such
as Click), OS extensions, and finally SDN. In practice, however,
nothing is changed and configuration still involves iptables.

Sapan explained that they have taken the best of academic ideas
with standard tools. He presented NativeClick, which combines
Click Modular Router’s language to specify the graph and native
runtime overlaid on the Linux networking stack. More specifi-
cally, elements and ports of Click are replaced with executable
scripts and virtual links. Key mechanisms allowing this are
from the network container to isolate route tables, policies, and
virtual links. For connection to SDN, Sapan noted that expand-
ing SDN to the end host is important. Also, he showed an SDN
perspective consisting of vdev, controller, and processes in a
middlebox.

Andrew Baumann (MSR) asked how to debug iptables since it
requires understanding the Click abstraction. Sapan noted that
it is an open problem in the generated codes, and current iptables
itself is hard enough to debug. John Wilkes (Google) asked about
evaluation. Sapan said that it is more community-driven, and
users do not complain about it. Shriram Rajagopalan (UBC)
commented that the SDN connection is a bit weak. Sapan noted
it is about how you do middlebox functions and that the systems
and the SDN approaches meet, since it achieves the end-result of
SDN through OS functions.

Open Mike
The open mike session started with a question from Siddhartha
Sen (Princeton) to Bin Fan about whether inserting lots of new
keys could affect the performance. Bin answered that each group
can handle a small number of keys, and thus more than 30 keys

per group may require rehashing. Erez Zadok (Stony Brook Uni-
versity) continued with a comment that this is somewhat similar
to Bloom filters and worth exploring the similarity. Bin replied
that the difference is that their mechanism does not make any
mistakes for the known keys, which a Bloom filter might do.
One person from MSR wondered whether Bin’s team used the
same code for underlying hash functions in CHD (the Compress,
Hash, Displace algorithm) when they evaluated. Bin answered
they used the reference code from Google; a coauthor, Hyeontaek
Lim (CMU), added that a number of entries would degrade CHD
performance as well, and thus changing the underlying hash
function would not change the trends.

There was a big discussion about applications for system
research. Brian Noble (U Michigan) said that everyone should
spend time finding someone doing computationally intensive
projects. Timothy Roscoe (ETH) mentioned that computational
finance and sociology will be interesting fields in terms of appli-
cations, and John Wilkes (Google) added biology and medicine.
Petros Maniatis (Intel Labs) said that applications do not need
to be solid ones, but it does make the work plausible. John Wilkes
commented that for something big, we do not have an application
yet, and we need to think not of applications, but problems and
how we can solve them. Matt Welsh (Google) said that we have to
get inspiration from problems out there and need to do general-
ization. Timothy Roscoe said that he had found someone with a
big problem: he had teamed up with people who had fled the big
banks and investment companies, as well as people still working
at Credit Swiss, to do work on financial modeling. He has also
worked with the Swiss Federal police in tracking counterfeited
watches shipped around the world.

Someone commented that many people need help identify-
ing their problems. Brad Karp (UCL) gave an example of block
boundaries that are used for many other problems, although
not for applications, but it is a fundamental problem of bigger
systems.

Catching Up in the Clouds
Summarized by Deian Stefan (usenix@deian.net) and Edward Yang
(ezyang@cs.stanford.edu)

The Case for Tiny Tasks in Compute Clusters
Kay Ousterhout, Aurojit Panda, Joshua Rosen, Shivaram Venkataraman,
Reynold Xin, and Sylvia Ratnasamy, University of California, Berkeley; Scott
Shenker, University of California, Berkeley, and International Computer
Science Institute; Ion Stoica, University of California, Berkeley

In data-parallel computing, the straggler problem arises when a
single task runs at a much slower rate (e.g., because it’s running
on a slow machine) than other tasks, slowing down the whole
job. Yet, we typically schedule large batch tasks to ensure high
cluster utilization. This not only amplifies the straggler problem,
but also gives rise to another problem: cluster responsiveness.
By running long batch tasks, short interactive jobs may need to
wait on the order of seconds or minutes before being serviced,
effectively rendering the cluster unresponsive.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 87

REPORTS

To address these issues, Kay Ousterhout argued that all data-
parallel jobs should be broken down into tiny tasks. This
addresses the straggler problem by ensuring that workloads are
evenly distributed across machines; fine-grained scheduling
ensures that slow machines are assigned fewer tasks than fast
machines. A simulation on Facebook workloads showed that
using tiny tasks would improve the response time by roughly
5x. In a similar fashion, the tiny tasks paradigm bridges the gap
between cluster utilization and responsiveness: long-running
batch jobs are broken down into thousands of tiny tasks, allow-
ing short interactive jobs to be interleaved as launched.

There are many challenges in implementing an architecture
that employs the tiny task paradigm. To narrow the challenges,
the authors focus on applying the model to data-parallel com-
putations similar to MapReduce. In such a scenario, a task is
typically I/O bound (reading input data stored on disk), and, to
ensure high disk utilization, a tiny task must run for at least a
few hundred milliseconds—a duration they argue that is accept-
able even for Web applications. This is challenging as it requires
changing the programming model to break a job into many tiny
tasks, reducing the launch of a task to a few milliseconds, imple-
menting a task scheduler that handles millions of decisions per
second, and changing the underlying distributed file system to
handle many small reads; however, using similar techniques to
Spark and FDS, the authors believe they can address some of the
concerns; developing a practical architecture, although promis-
ing, is part of their ongoing work.

Mike Schroeder (MSR) asked for a characterization of the jobs
for which the straggler problem was not solved by their solu-
tion. Ousterhout noted that tiny tasks require a change in the
programming model, but programmers can ignore this and, for
example, can still write code that contains infinite loops—in
such cases, tiny tasks won’t do much to improve the situation.
Jeff Mogul asked how long a job should be, as opposed to how
long it can be (i.e., short enough to read 8 MB as to use the disk
efficiently). Ousterhout noted that the few hundred millisec-
onds is consistent with the shortest duration of data-analytics
jobs they’ve observed in practice. Hyeontaek Lim pointed out
that dividing a 40,000-task job into 4 million won’t necessarily
be “better”; what size jobs should be sub-divided? Ousterhout
explained that they had looked into the space to find charac-
teristics of different jobs and found that jobs with a few tasks
were the ones with long-running tasks; finding the precise point
where diving into more tasks becomes inefficient is part of
future investigation.

Using Dark Fiber to Displace Diesel Generators
Aman Kansal, Microsoft Research; Bhuvan Urgaonkar, Pennsylvania State
University; Sriram Govindan, Microsoft

High availability is a lot of work. A server may be protected
against power failure by a UPS; but this is no good if your net-
work gateway goes down: datacenters must also install diesel

generators to protect against utility failure; but this, too, fails in
the event of physical disaster, so your data must be georeplicated.
Highly available services are deployed with multiple layers of
redundancy, and this redundancy is expensive. Because high
availability services must always be georeplicated, Aman Kansal
suggested relying solely on georeplication for availability, reduc-
ing the availability needs for any given datacenter.The authors
argue that “Geo-distributed Bunches of Datacenters” (or GBoDs)
could be practical, but there are a number of questions to answer.
For one, how much can one reduce DC availability before global
availability is affected? Assuming independent failure, one can
calculate this out: for n=10, one can do with 0.1% failure prob-
ability rather than 0.001%. A bigger question is how applications
need to adapt to this new scheme. Some methods of georeplica-
tion, such as sharding distributed state, no longer work as every-
thing must be replicated everywhere—addressing this is an open
research problem. Bandwidth, however, is not a problem: the
authors propose that the dark fiber connecting these datacenters
be used to carry out the large amounts of data transfer necessary
to perform full replication.

Timothy Roscoe pointed out that building a new datacenter
takes a really long time: on the order of seven months, which is
quite different from spinning up a new server. Jeff Mogul noted
that as the reliability of single datacenters decreases, the error
bars on your availability calculation increase. One might do OK
if there is an error margin built into your availability figures; but
that margin costs money, exactly what GBoDs are trying to save.
Edouard Bugnion asked which workloads could be distributed
this way, and Aman answered that without software redesign,
read-only software is the only thing that can be done; applica-
tions with real-time data writes are considerably more difficult.

Towards Elastic Operating Systems
Amit Gupta, Ehab Ababneh, Richard Han, and Eric Keller, University of
Colorado, Boulder

Amit Gupta said that one of the main benefits of cloud-based
systems is the ability to elastically change the amount of
resources allocated to an application according to demand; how-
ever, we presently place the burden of elasticity on apps: an app
has to, a priori, be designed to operate in a cloud environment.
The developer must design the app such that it can distribute the
workload, on demand, among different instances; handle data
consistency issues (e.g., sharing across instances); and monitor
load as to decide when to expand or contract the number of nodes.

Rather than continue building apps with elasticity in mind,
Gupta argued for making elasticity an OS primitive. ElasticOS
would allow applications to be built without any notion of elas-
ticity, while transparently expanding and contracting to accom-
modate different workloads. To this end, they propose using
elastic page tables, i.e., page tables that map virtual addresses to
machine/physical addresses, as a way to allow an application to
expand when memory on other nodes becomes available and is

88  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

REPORTS

in demand. Different from previous distributed shared memory
(DSM) systems, they, however, do not replicate data pages across
machines. Instead, paging-in remote tables results in them being
moved from the remote machine. This avoids the need for coher-
ency protocols that have plagued DSM systems; however, to take
advantage of locality, they propose migrating the process/thread
execution context once the number of pages that are being pulled
in reaches a certain threshold. Unlike data pages, this can be
quite efficient because caching multiple copies of code pages
does not require DSM-like protocols. Gupta concluded the talk
with the remark that although various issues (e.g., fault tolerance
and elastic network I/O) need to be addressed, their preliminary
Linux implementation has shown promising measurements.

Jay Lorch (MSR) was skeptical about the approach, as it wound
up leading researchers on the same path as DSM. In response,
Gupta noted that their work differs from the DSM efforts in two
important ways: DSM heavily relied on replication and kept exe-
cution context fixed (except for process migration); in their work,
they keep a unique copy of data and move execution contexts
when appropriate. Andrew Warfield noted that moving contexts
around is expensive (because it requires transferring roughly a
page of context information) and asked why moving the con-
text to the data is a good idea (because this happens often when
stretching to a large number of nodes). Gupta noted that they
adopted a hybrid approach: they pull data until they notice that
they can exploit locality, and at that point they jump. He further
noted that for certain workloads this approach may not work,
but this requires further investigation. Timothy Roscoe brought
up the issue of memory efficiency: if code pages are replicated
to allow fast context transfers, at what point does this approach
become inefficient? Gupta noted that in data-intensive applica-
tions, such as MySQL, the number of code pages is much lower
than the corresponding number of data pages, so they do not
anticipate a large overhead if code is carefully replicated across
a (part of the) datacenter. The last questioner asked whether
there is any reason to believe that cluster-wide parallelization is
going to be better than multicore. In response, Gupta noted that a
process on a single node is inherently bound by memory and they
intend to break that barrier.

Open Mike
Rik Farrow provided the quote of the session: “I think you live in
an alternate reality called Google.”

Everyone seemed to agree about tiny tasks for cluster computing
(except one guy from Berkeley), so the conversation turned to a
discussion about GBoDs and elastic computing.

The subject of datacenters was close to the heart of many of
the industrial members of the audience. Two interesting topics
came up during the ensuing discussion. The first was political
reasons why applications may not be georeplicated; for example,
a country may have strict data privacy laws that prevent data

from being replicated across its borders. Jeff Mogul mentioned
that this was exactly the case, and that they had implemented
selective georeplication. John Wilkes (Google) brought up the
cost calculation that companies are constantly doing when con-
sidering datacenter administration. Some infrastructure has 11
datacenters deployed to serve 10 datacenters’ worth of load, with
the last datacenter running compute jobs on the extra capacity.
As opposed to infrastructure such as Google AppEngine, which
has excessive redundancy, GBoDs may not be a win in such situ-
ations. Additionally, when a datacenter goes down, there is the
cost of all the hardware that is not being utilized in that datacen-
ter; one participant noted that making sure that this hardware is
not wasted is worth at least some money.

The response to the elastic computing talk had been consider-
ably more prickly, and so Jeff launched a new discussion by
pointing out that ElasticOS was targeted at being fully back-
wards-compatible, whereas tiny tasks and datacenters asked
programmers to change their programming model. “Aren’t we
underestimating the value of not changing applications?” Matt
Welsh responded that at Google, “We are constantly changing
our applications to adopt new programming models.” This led to
Rik Farrow’s response: “I think you live in an alternate reality
called Google.” There was some debate whether or not MapRe-
duce was an example of a new programming model that had been
rapidly taken up by non-Google programmers. Lim countered by
stating that Hive/Pig were used by people who looked at MapRe-
duce and said, “We want SQL.” Depending on who you ask, the
majority of MapReduce jobs are written in these languages.

Others were confused about whether or not ElasticOS bought
anything in an era where machines with 1 TB memories could
be purchased. Moving around all this data, especially in a failure
tolerant way, would be difficult. “At some point,” one partici-
pant commented, “won’t brute force just win out?” The authors
acknowledged this, and argued that you’d have to make locality
assumptions about the usage of 1 TB of memory.

Correct, Secure, and Verifiable
Summarized by William Jannen (wjannen@cs.stonybrook.edu)

Toward Principled Browser Security
Edward Yang, Deian Stefan, John Mitchell, and David Mazières, Stanford
University; Petr Marchenko and Brad Karp, University College London

Deian Stefan noted that the Web has evolved into an application
platform. And although traditional operating systems provide
applications with page protection and file system permissions,
the browser must rely on the same origin policy (SOP) to protect
data. There are exceptions to strict isolation in the SOP; on the
one hand, these exceptions allow developers to build complex,
information-sharing apps; on the other hand, exceptions can lead
to leaks of sensitive data.

Deian listed several remedies for SOP shortcomings, such as the
content security policy (CSP) and cross-origin resource sharing

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 89

REPORTS

(CORS), but noted that such measures are coarse-grained, static,
and inflexible. He proposed a more principled approach—to use
information flow control (IFC) as a browser security primitive.
Browser-based IFC would do more than just emulate the SOP;
it would allow execution of untrusted code on sensitive data. A
strict base policy could enforce origin non-interference, but the
framework would allow flexibility and fault isolation.

Matt Welsh asked about the proposal’s implications on both
browser and Web API designs, and whether it would require a
change to all browsers and all API code. Deian noted that the
proposal would require browser modifications, but it would not
require a modification of JavaScript; it would be just another
API that developers could use. Deian was then asked about mem-
ory and performance overheads, and the potential implications
that overheads would have in the browser performance war. He
replied that although he did not have numbers on hand, there
would be no impact on the performance of existing code. The
proposal is effectively an opt-in and coarse-grained approach.
Don Porter requested some implementation insights. Deian
responded that it is implemented as a whole new API. They
leverage Gecko’s compartment model, with all implementation
done at the language level.

Deian was asked to discuss the differences between their pro-
posal and FlowFox from CCS. He explained that the FlowFox
mechanism was for JavaScript only, was not opt-in, and could
break existing Web sites; also, it does not support declassifica-
tion. Ashvin Goel (U Toronto) asked how to ensure that attack-
ers could not simply bypass checks, especially in the presence
of browser bugs. Deian noted that avoiding bugs is difficult,
but that they leverage Gecko’s compartment model to isolate
memory spaces.

Volodymyr Kuznetsov (EPFL) asked about side channels. Deian
commented that this is an extension of their previous work that
does address some side channels, but with respect to external
timing channels there is not much they can do. Peter Bailis
asked whether an opt-in policy would allow adversaries to hide
in legacy content. Deian clarified that the proposal would not
impose on existing Web sites, but a Web site that uses the API
would be protected.

-OVERIFY: Optimizing Programs for Fast Verification
Jonas Wagner, Volodymyr Kuznetsov, and George Candea, École
Polytechnique Fédérale de Lausanne (EPFL)

Jonas Wagner noted that there are many tools that prove the
safety and correctness of software, but that these tools are rarely
used in practice because often they are slow or hard to use. One
reason that existing tools are slow is because they receive the
wrong kind of input—a performance-optimized binary; the time
it takes to verify a program can be made significantly faster by
compiling specifically for verification instead of for execution on
a CPU. As an example, branches are costly for verification, and
equivalent branch-free code often can be verified more easily.

Jonas proposed a compiler switch to enable verification optimi-
zations, much in the way -g is used for debugging, and -O3 for
performance. The -OVERIFY flag would signal the compiler to
preserve high-level information, favor optimizations that ease
verification, annotate the program, and generate runtime checks
so that verification tools can easily detect bugs. They actually
have an implementation that they have tested.

Ariel Rabkin asked whether performing these optimizations
inside the compiler or inside the verification tool itself makes
more sense. He also wondered whether verification time was
really a limiting factor. Jonas noted that the time it takes to
verify is important; a drastic cost reduction would not only save
developer time, it could change the ways that verification tools
were used, to the extent that they potentially could be used at
every commit. And one of the principal advantages of using a
compiler flag is that it does not require any changes to existing
verification tools.

Ariel then asked if the same tweaks are valuable for all verification
tools. Jonas explained that there are different types of tools; their
prototype, -OSYMBEX, generates code optimized for symbolic
execution tools. Martín Abadi then posed an idea: what if a com-
piler could generate several different versions of the binary, each
optimized for verifying a particular property? Jonas noted that
this would work particularly well for finding concurrency bugs.

When Andrew Birrell (MSR) asked about high-level information
that can’t be transferred down to assembly, Jonas remarked that
a binary with debugging information has complete source code,
but that not all information is necessary. High-level types, and
information about which variables are local, global, or thread
local would be helpful.

Global Authentication in an Untrustworthy World
Martín Abadi, Andrew Birrell, Ilya Mironov, Ted Wobber, and Yinglian Xie,
Microsoft Research

Andrew Birrell gave a quick recap of authentication with X.509
certificates, noting many positive features: authentication is
completely decentralized, non-hierarchical, and worldwide.
Additionally, X.509 is pervasive and quite secure; however,
Andrew pointed out that being quite secure is almost as bad as
not being secure at all. He used a few high-profile examples of
failures to prove this point. The underlying problem is the large
scale of trust—the relying party trusts every CA in the delega-
tion chain, not just the root or the leaf. Intermediate CAs are all
uniformly powerful and can write a certificate for any name.
Andrew argued that although non-hierarchic authentication is
essential, uniform trust of worldwide CAs does not work. Local
policies are a better approach.

Andrew then discussed the details of their data set. A 2010
EFF data set was parsed and then supplemented with additional
data collected in 2012. In total, 7.8 million certificates were
acquired from 22.7 million TLS handshakes, and the details were

90  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

REPORTS

organized in an SQL database. Although the database enables ad
hoc queries, the data is too large for ad hoc analysis; they instead
performed cluster analysis, choosing a set of 18 features that
were thought to be interesting, including key length, country,
trusted root, etc. The result was a set of 28 tight clusters with
few outliers.

Andrew presented uses for the data set, such as a user-controlled
policy engine. The database could be queried to make trust deci-
sions. Policies could be designed by experts and selected by the
end user.

Mike Freedman wondered why SPKI never took off, given that it
allows chained delegation. Andrew responded that SPKI allowed
Web-of-trust-like things, but clearly there was not enough
demand. People seem quite happy with the current situation
using X.509, except that it breaks two times per year. Deian Ste-
fan asked about data access. Andrew hoped that Microsoft would
allow the data set to be made public, but he noted that the 2010
EFF data set is available.

Petros Maniatis asked about the implementation of any policies
that might have made sense for Microsoft, and whether Andrew
had evaluated how many Web sites had such policies “turned
off.” Andrew joked that had they done this evaluation, it would
have been an SOSP paper, but they are currently working on it.

Automated Debugging for Arbitrarily Long Executions
Cristian Zamfir, Baris Kasikci, Johannes Kinder, Edouard Bugnion, and
George Candea, École Polytechnique Fédérale de Lausanne (EPFL)

Cristian Zamfir explained that the debugging process, iden-
tifying and fixing the root cause of a program failure, differs
during development and production. During development, the
gdb record option can be used to reverse step from the point of
failure, but in the production world, a core dump from a segmen-
tation fault cannot be reverse-stepped. Although production
level record support is possible, overheads may be prohibitive.
The question, then, is what can be done with limited information
in production systems?

Cristian proposed reverse execution synthesis (RES), which
takes as input a program and its core dump, and outputs an exe-
cution suffix that would lead to that core dump. He noted a key
insight is that there exists a large class of programs for which
the root cause is close to the actual point of failure, making the
search space manageable; however, the challenge is inferring
the paths. This can be done by recording constraints through
branches and checking against the core dump state. By applying
this process recursively, the system can build an incrementally
larger execution suffix. As long as the start of the path contains
feasible values, the execution suffix is guaranteed to reach the
error state. RES can debug arbitrarily long programs with no
runtime overhead.

Steve Hand wondered how many distinct paths were often
observed. Cristian replied that RES works well for small con-

current programs, and that they are able to synthesize unique
suffixes in about a minute. But, in general, a program that over-
writes much of its state would result in many execution suffixes.

John Wilkes asked whether logs could be leveraged. Cristian
said that logs could provide path information, which is impor-
tant. They would not provide full paths, but they would provide
specific points, which could disambiguate state.

Petros Maniatis asked about the tradeoffs of checkpointing at
runtime, and then combining forward and backward search.
Cristian replied that fast checkpointing might be something
worth using and could potentially be used to validate the fea-
sibility of states. But his position is to do as much as possible
without recording; checkpointing is a form of recording.

Jeff Mogul asked whether the compiler could be leveraged, like
-OVERIFY, to generate log entries at specific points where
reverse stepping would be difficult. Cristian said that the com-
piler could try to use less overwriting, and that they are trying to
use copy-on-write when possible.

When John Wilkes asked for project insights, Cristian replied
that the project is still in its beginnings. Execution suffixes are
currently on the order of hundreds of instructions, but it depends
on the specific program and how much rewriting it does. He
noted that without debugging symbols, a control flow graph is
necessary in order to determine possible paths.

Open Mike
George Candea wanted to know how comfortable people were
with putting specialized code in programs solely for post- mortem
analysis. He was curious about the range of measures with which
people were comfortable. Matt Welsh wanted clarification as
to whether George was asking about developers, libraries, or
runtimes. George responded that that was the point of his ques-
tion. He thought some people might be uncomfortable with a 5%
overhead, but Matt thought that 5% was absolutely fine because
the information gained was invaluable. John Wilkes noted
that monitoring systems generate several percent overhead,
so overheads under one percent are well within the acceptable
threshold. Jeff Mogul said that what is unacceptable is logging
information that causes privacy concerns.

Matt Welsh asserted that reviewers should make sure to avoid
punishing papers when the overheads are over these thresholds.
Also pointed out is that just because a technique is not accept-
able for production, it is still worth reading. Mike Freedman
commented that it is also important for authors to be careful
about how they calculate overheads. Erez Zadok reiterated
that acceptable costs are dependent on the application. NASA’s
Jet Propulsion Labs might be willing to accept overheads of
20–30% for a Mars rover, so the community shouldn’t set simple
thresholds. John Wilkes added that thinking about the cost to
fix bugs is also important. There should be more flexibility than

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 91

REPORTS

just one magic number. What we would like is a range of things
and different choices. Overheads accumulate, so thinking about
priorities and making sure that important features are the ones
that are ultimately incorporated is important; what might be
acceptable on a server might not be acceptable on a phone.

Petros Maniatis asked about the role of hardware. He noted that
Intel provides branch information such as last branch records
(LBR), but that in terms of performance, these things are not
free. Intel must prioritize things, too, so if the software commu-
nity would come to a consensus, then hardware designers could
make these decisions.

A general comment was that the session’s debugging papers
assumed a C-code environment, but there also is interest in
managed language runtimes. A lot of production code is writ-
ten in languages such as Java and C#, and this might be an easy
place to add diagnostics. An open question was how general can
these tools be made.

Something Old, Something New, Something Hot
Summarized by Cristian Zamfir (cristian.zamfir@epfl.ch)

Operating System Support for Augmented Reality
Applications
Loris D’Antoni, University of Pennsylvania; Alan Dunn and Suman Jana,
University of Texas at Austin; Tadayoshi Kohno, University of Washington;
Benjamin Livshits, David Molnar, Alexander Moshchuk, and Eyal Ofek,
Microsoft Research; Franziska Roesner, University of Washington; Scott
Saponas, Margus Veanes, and Helen J. Wang, Microsoft Research

David Molnar explained that augmented reality (AR) applica-
tions impose new challenges on operating systems for several
reasons. First, AR applications must deal with potentially
sensitive data that gets mixed with user input, which calls for
a more fine-grained permission system. David showed how
the raw video input stream may contain user faces and private
information, yet any application can access this information, so
this will not work with AR applications that multiplex access to
the same video stream. Second, the window system will have to
be updated in order to handle 3D objects from multiple applica-
tions, as opposed to the square windows we have today. Third,
AR systems have to deal with continuous inputs (e.g., gestures)
that are also inherently noisy (e.g., an object may be confused
with an arm).

David pointed out that given the emergence of such systems,
these challenges (especially the privacy-related ones) will have
to be solved before the legislation is updated in probably 2–3
years. Otherwise, without some privacy guarantees, AR systems
may even be officially banned from certain contexts.

Michael Freedman (Princeton) asked what lessons from Web
mash-ups can be applied in this area. David mentioned that the
work on clickjacking defense can be used. Another issue is the
Same Origin Policy, which does not yet exist in AR systems, but
there is room to innovate in this area.

Steve Muir (VMware) asked if the OS should manage the access
to private data. David argued positively, and briefly described his
upcoming paper in USENIX Security on how to provide visual
explanations to users of what the requested permissions allow
applications to access. Stefan Bucur (EPFL) asked whether
information flow control could help. David agreed that is a good
direction for exploration. Peter Druschel (MPI) asked whether
there will be a “one size fits all” set of abstractions for the AR
applications. David said that the answer is likely yes, since this
model will be easier to use by developers.

Solving the Straggler Problem with Bounded Staleness
James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R. Ganger, and
Garth Gibson, Carnegie Mellon University; Kimberly Keeton, HP Labs; Eric
Xing, Carnegie Mellon University

James Cipar introduced Stale Synchronous Parallelism, a model
that maps to scientific applications and can tolerate stragglers.
The key idea is that this model allows applications to tolerate
significant delays in some threads. Preliminary results with
an early prototype show that increased staleness can mask the
effects of occasional delays. The model also detects when data
becomes too unsynchronized, and synchronizes threads to avoid
unbounded staleness. An important open question for ongoing
work is how to automatically tune the requirements of the appli-
cation regarding freshness.

Doug Terry (MSR) asked whether the staleness bound impacts
convergence and James answered that, in their experience, it is
important. Mike Schroeder (MSR) asked whether their method
works with non-transient delays. James answered that their
approach supports temporary delays, like a GC pause or some
additional computation done by a specific thread, but it cannot
do anything against non-transient delays. Roxana Geambasu
(Columbia) asked what other kind of applications this model
accommodates. James said they have experience with scientific
computing applications, page rank, and machine-learning algo-
rithms that resemble gradient descent. Jonas Wagner (EPFL)
asked why performance improves when there are no delays.
James answered the staleness model masks some delays. David
Ackley (UNM) pointed the authors to related work that uses a
similar technique to tolerate transient errors. This technique
works for errors, but might apply also to delayed computation.

Lightweight Snapshots and System-Level Backtracking
Edouard Bugnion, Vitaly Chipounov, and George Candea, Ecole Polytechnique
Fédérale de Lausanne (EPFL)

Edouard Bugnion introduced the concept of lightweight snap-
shots, a new state abstraction that provides immutable snap-
shots integrated into the virtual memory subsystem. Based on
the lightweight snapshots abstraction, he proposed a design for
an operating system that provides system-level backtracking for
arbitrary applications. The design of the backtracking OS lever-
ages modern x86 hardware-virtualization support to perform
efficient backtracking and supports configurable scheduling
policies.

92  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

REPORTS

Edouard gave several examples of applications that can benefit
from the backtracking OS (e.g., S2E, a demanding application
that implements full-system symbolic execution, and Z3, an
SMT solver). He also exemplified the system-level backtrack-
ing API using the canonical n-queens example. Their early
prototype can already provide backtracking capabilities to
complex applications such as Z3, with minimal changes to the
 application.

David Molnar (MSR) asked whether developers can pass the
scheduling heuristic to the OS. Edouard answered this is indeed
possible. Andrew Bauman (MSR) asked whether it would be
better to move the scheduler outside the OS. Edouard answered
that the scheduling policy and the scheduler are decoupled: the
scheduler can be in the OS, and the scheduling policy can be
set by the application. Edward Yang (Stanford) asked whether
the proposed abstraction can be thought of as a faster fork().
Edouard answered that it is more than that, since it is hard to
just use fork() and combine it with various search heuristics.
Brad Karp (UCL) asked whether privilege separation (as in
Wedge, a system built at UCL) is another application of the pro-
posed system. Privilege separation requires strong isolation, but
can this be added? Edouard answered that Wedge was eventually
built into Dune. The big takeaway is that one can now envision
building domain-specific operating systems.

HAT, Not CAP: Towards Highly Available Transactions
Peter Bailis, University of California, Berkeley; Alan Fekete, University
of Sydney; Ali Ghodsi, University of California, Berkeley and KTH/Royal
Institute of Technology; Joseph M. Hellerstein and Ion Stoica, University
of California, Berkeley

Peter Bailis proposed highly available transactions (HATs) that
are available in the presence of network partitions. The CAP
theorem shows that it is impossible to provide linearizability
in the presence of arbitrary network partitions, and does not
directly apply to database transactions. Peter pointed out that
even single-node databases do not provide serializability by
default, because it is expensive. Instead, they provide weaker
consistency models, and many applications work well with these
models and can tolerate the arising anomalies to gain perfor-
mance. However, it is not clear which models can be achieved
with high availability.

Their work is about exploring the class of high availability low-
latency transactions that can be achieved in the presence of
network partitions. Peter proposed techniques based on read or
write buffering to provide some guarantees (read committed and
repeatable read isolation) for a HAT system, and also described
some additional guarantees that they proved are not achievable
(e.g., regency bounds and some integrity guarantees).

Brad Karp (UCL) noted that previous papers about Spanner and
Eiger mentioned similar social networking examples (e.g., the
order of the posts). Brad asked what HAT can provide compared
to this other work. Peter answered that there are many existing

applications that work with the weak consistency offered by
today’s databases, so this is a useful programming model. More-
over, the anomalies that would appear under these models do not
appear for some applications. For instance, TPCC isn’t subject to
anomalies from weak consistency, which is why Oracle is TPCC-
compliant and offers a weak consistency model. Doug Terry
(MSR) argued that one way to implement repeatable reads is to
just not allow any transactions to commit when you have a parti-
tion. Peter said that with transactions you can have success and
abort, so one can abort everything and obtain the liveness prop-
erty. Their paper contains details on how they define transaction
availability. Michael Freedman (Princeton) asked whether the
write buffering technique is two-phase commit. Peter answered
no and explained the differences.

Open Mike
Byung-Gon Chun (Microsoft) asked how the bounded staleness
model compares to the asynchronous lazy synchronization
model used in GraphLab. James answered that GraphLab makes
assumptions about data locality and would also require modi-
fications to their algorithms to accommodate staleness. Petros
Maniatis (Intel) asked whether their work is about figuring out
how much staleness can be supported by the applications. James
answered that they established a profile of the applications that
work, and identified several applications that fit the profile.
Steve Hand (Cambridge) suggested that if one speculates, then
one may also need to roll back, so they could use lightweight
snapshots proposed in the talk by Edouard Bugnion.

Jacob Lorch (MSR) asked how to evaluate which of the consis-
tency models discussed in the HAT not CAP talk is reasonable
and can be understood by users. Peter Bailis (Berkeley) argued
that it is still an open question what consistency models to run
on and not violate the application’s integrity constraints. Peter
argued this is a great direction that should see more work and
exemplified with work from Marc Shapiro at INRIA on conflict-
free replicated data types. Siddhartha Sen (Princeton) proposed
comparing the code that one would have to write to deal with
weaker vs stronger consistency. Ali Ghodsi (Berkeley) com-
mented that Doug Terry’s session consistency model already
prevents several anomalies that users see, so the big open ques-
tion is what is the consistency model that is both efficient and
prevents most of these anomalies.

Hardware to the Rescue
Summarized by Cristian Zamfir (cristian.zamfir@epfl.ch)

The von Neumann Architecture Is Due for Retirement
Aleksander Budzynowski and Gernot Heiser, NICTA and University of New
South Wales

Gernot Heiser’s talk was motivated by the plateau reached by
CPU frequency and the multicore trend; he proposed a self-
modifying data flow graph computation model to replace the
von Neumann model. Their model essentially does away with
global memory, thus aiming at making it possible to express and

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 93

REPORTS

 implement general purpose parallel computations easier and
more efficiently.

A typical data flow computing model is static, and there is no
way to express dynamic algorithms and data structures. To
address this challenge, they propose a data flow graph that can
change itself, change references to other nodes in their immedi-
ate neighborhood, create new nodes, etc. They have a partial
implementation that takes Haskell code as input and translates
it into data-flow assembly.

Ariel Rabkin (Princeton) wondered how synchronization is
implemented and asked to see how the proposed design works for
something simple like matrix multiplication. Gernot answered
that synchronization is entirely done by data flow. He also men-
tioned that the example he described in the talk is more com-
plex than a matrix multiplication and would work for dynamic
data structures. Mike Schroeder (MSR) asked about the next
step; where do they plan to get the hardware to implement this?
Gernot said they can try to simulate this architecture in soft-
ware without the performance benefits. Moreover, their work
is inspired by a startup that aims to build fully asynchronous
hardware.

David Ackley (UNM) said that the answer to all the open ques-
tions raised by the talk is coming up with a spatial layout of the
graph, which has to be embedded in the hardware, which has to
be spatially extended, yet still be finite. Gernot answered that
there is commonality between their hardware and the hardware
proposed by David at the previous HotOS. They are trying to get
away from the global address space yet retain as much of the CS
abstractions as possible, thus making the model more easy to
program than David’s model.

Brad Karp (UCL) asked whether before proposing such a change
at the hardware level, one does not have to refute the arguments
made by people working on taking a sequential programming
model and making it work for multicores. Gernot argued that
everyone is trying to tweak the von Neumann model, but
these approaches will run out of steam after some scale. He
argued that his system has some nice properties that are worth
 exploring.

Arrakis: A Case for the End of the Empire
Simon Peter and Thomas Anderson, University of Washington

Simon Peter argued that recent hardware devices enable build-
ing kernels that allow applications to talk to hardware directly,
without OS mediation; the kernel only provides control plane
services (e.g., deals with resource reallocation), but applications
use a library linked in their address space to talk to hardware
directly. One enabler for this design is the fact that hardware is
increasingly virtualized. Moreover, I/O devices become faster
while CPUs are bottlenecked by frequency, so unmediated
access to hardware devices is an important performance-
related requirement.

One of Arrakis’ several goals is to allow applications to custom-
ize OS functionality (e.g., provide protection domains using
hardware protection). Moreover, Arrakis is designed to provide
device driver safety, by running device driver replicas and ensur-
ing that when one replica crashes, the system does not crash.
One important challenge is dealing with the fact that hardware
may not provide sufficient virtualization capabilities for meeting
all the proposed design goals.

Jeff Mogul (Google) said Arrakis looks like it is partially rein-
venting the InfiniBand model (which has had this separation
for a decade). Simon answered they are trying to generalize that
model to other hardware. Steve Muir (VMware) argued that
Arrakis needs to support migration and checkpointing to be use-
ful for real-world use cases and Peter agreed. Edouard Bugnion
(EPFL) asked what can be learned from the way people build
the control/data plane separation in network hardware. Simon
answered this was part of their inspiration and that they are
already looking at that literature.

Rethinking Network Stack Design with Memory Snapshots
Michael Chan, Heiner Litz, and David R. Cheriton, Stanford University

Michael Chan proposed a redesign of the network stack, which
leverages HICAMP (ASPLOS ‘12), a hardware memory system
that supports snapshot isolation. The system allows zero-copy,
reduces memory allocations, and works with the existing socket
API. The main motivation for this work is that the networking
stack uses many memory allocations and accesses, while net-
work I/O speeds are going up. Unlike existing approaches, users
do not have to use specific data structures to do zero-copy;
instead they can use the application data. Compatibility with
the POSIX API is done by simply passing another flag to the
 malloc() call to use HICAMP memory.

Michael showed how to do zero-copy I/O and how to simplify the
DMA process and the NIC design. He also discussed the space
and time tradeoff of the design. He ended the talk by arguing that
software-hardware co-design can improve OS architecture and
solicited ideas for applications to other areas of system design.

Siddhartha Sen (Princeton) pointed out that persistent data
structures (some developed by Targent) can be used to efficiently
keep multiple copies of a data structure and be able to update it
partially. Jacob Lorch (MSR) asked when the hardware will be
available. Michael mentioned they have a simulator and plan to
make it available to others soon.

Rik Farrow (USENIX) mentioned that their system ends up
doing pointer chasing, which imposes some overhead. Michael
said there are two additional reads/write when writing duplicate
data. Michael mentioned some back-of-the-envelope calcula-
tions for network I/O that seem very optimistic (several hundred
Gbps), so even achieving 50% of that would be impressive.

94  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

REPORTS

Edouard Bugnion asked about the downside when integrating
with the cache hierarchy. Michael answered that L3 will take
care of most of the caching for their data structures, but in L1
and L2 would only contain immutable data, so there is no need
to maintain cache coherency. He envisioned a selector that can
be configured to tell the CPU whether the range needs to be
handled by the HICAMP controller or the CPU.

Open Mike
Steve Muir (VMware) asked if the approaches discussed can
be partially implemented (e.g., implement memory snapshots
for just for a part of the memory). Gernot Heiser argued against
sacrificing the purity of the model, otherwise the model will
never take off. Michael argued that you can use HICAMP as an
accelerator, not a replacement for paged virtual memory, so they
advocate a hybrid model. Simon Peter argued that for Arrakis
they do not advocate a hybrid model, but one could retrofit Arra-
kis onto KVM, for instance.

Jonas Wagner (EPFL) commented that the discussed hardware
models seem to map very well for some workloads, but not for all,
and asked whether there are systems with little workload diver-
sity for which these systems would work well. Several attendees
gave examples of systems that run dedicated workloads (e.g.,
OLTP) that could benefit from the proposed hardware changes
(e.g., snapshots). Jonas also gave an example for functional lan-
guages that could implement reference counting more efficiently
in hardware. Gernot agreed that functional languages map very
well to a data flow model. Simon also argued that garbage collec-
tion also maps very well. Jacob Lorch and Eduard Bugnion sug-
gested that hardware-software co-design is a fascinating area
for innovation, but we should not rely only on hardware people
to design hardware, otherwise the hardware is hard to exploit.
Some examples are hardware that can help do efficient garbage
collection and hardware that can efficiently demultiplex. Simon
said an open question is what happens if the hardware is not
flexible enough at demultiplexing: can a software solution be
found?

David Molnar (MSR) pointed out a new piece of hardware that
looks interesting: tritium batteries that do not require charging.
An open question is how to re-architect the OS assuming such
new hardware.

Unconference Results
Summarized by Rik Farrow (rik@usenix.org)

Hardware’s Role in System Design
Michael Chan presented the summary of what I thought of as
Petro Maniatis’ session about the future of CPU and system
designs. He pointed out that Intel is swayed by what it expects
its biggest customers will want in the future, and what systems
researchers want. Software writers want better performance,
but also better views of the internal metrics collected by proces-
sors. Power consumption is one of Intel’s biggest focuses right

now, but there are also issues of hardware and software mis-
match. For example, Barrelfish relies on cache coherency for
inter-core communication, but this works poorly for data struc-
tures (or anything larger than six cache lines). Finally, software
folks struggle to imagine what will come out of the Intel CPU
pipeline five years down the road, the current timeframe for
integrating changes in CPUs, and secret by design.

Networking CPU Cores
Jeff Mogul presented a summary of John Ousterhout’s uncon-
ference session, which was focused on John’s desire for a high-
speed network that would connect CPU cores and their level 1
caches together with very low latency. The conclusion was that
switch designers have already worked on a very similar issue,
exchanging packets of data across a switch fabric with very low
latency, and that John should talk with the people familiar with
these designs. Jeff pointed out that John doesn’t want queues,
but Jeff said that there must be queues.

Augmented Reality and Mobile Sensors
David Molnar (Microsoft) first thanked Franzi Roesner (U
Washington) for helping lead this session. Then he explained
what is different in new settings, such as Google Glass and
more immersive augmented reality (AR) displays: the input
and the output. The input is noisy, sounds and video, and much
of it should be private. The output must be controlled, so that
malicious apps don’t overlay reality with their own version—for
example, rewriting a sign. The OS must create a permissions
experience and abstractions to control what applications can
access which data. We no longer have 2D windows, but 3D vol-
umes. AR makes several existing problems much worse.

There are issues of privacy as well, such as bystander privacy, or
places that want a complete ban on video recording, like a gym
or a bar in Seattle. There are also man-in-the-middle concerns,
such as a government that seeks to collect data on its citizens.
David suggested having primacy of the physical space—for
example, allowing the owner of a space to zap a camera using an
infrared laser. He concluded by saying that there is about a two-
year window to deal with this before legislatures start mangling
these issues.

Programming Language Approaches to Systems
Edward Yang (Stanford) began by pointing out that program-
ming language and software can be codesigned, and you can
even build a language just for yourself. They discussed compo-
sition and modularity, the ability to have many languages that
can work together. They want incrementalism, which means
backward compatibility and no flag days, but also the ability to
exclude what doesn’t work well. Ed mentioned the difficulty in
measuring programmer productivity, and concluded by saying
that program languages people should be hired, as they often
bring useful insights into projects.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 95

REPORTS

Security
The security unconference group was one of the largest, but
the ground covered seemed all-too familiar to me. Deian Stefan
(Stanford) presented the summary. The group began by consid-
ering a trust model for code integrity, then pondered allowing
untrusted code to modify or copy data. They posited that they
know how to isolate untrusted code, and that the interesting
question is how to share data between sandboxes. They next
considered machine learning for security, and whether authenti-
cation (actually authorization) should be considered on a scale.

They also considered the role of firewalls in security today, con-
cluding that firewalls provide insufficient protection and that
getting them to provide better protection would require a huge
amount of user interaction. Plus, firewalls do not protect against
internal attackers. They ignored the issue that the attacker who
has established a beachhead through the typical spearphishing
attack is essentially an insider. This negates having a firewall in
almost all of the attacks on organizations seen today.

They finished their session by discussing the role of the user
in making security decisions, asking whether they can educate
non-power users about security. Restructuring designs that
avoid requiring the user to make any security decisions was the
final point (and a very good one). My apologies for the editorial
comments, and while I only witnessed the end of the discussion,
I found myself disturbed by hearing old ground covered while
summarizing the notes for the entire session.

Big OLTP: Oxymoron or Impending Crises
Using a graphical reference to Oracle, Peter Bailis (UC Berkeley)
began the summary for this session with a question: when will
the current tech we use break? Peter said that OLTP follows two
common patterns: low mutation rate with many queries, or lots
of mutation but few queries. And with devices like Google Glass,
there will be both high mutation and lots of queries. Closed-world
assumptions about databases will no longer hold, with the source
of truth being external to the stream processor. They expect to
see OLTP combined with OLAP (analytics), and the challenge
will remain providing isolation between queries (ACID).

Big Data Analytics
Byung-Gon Chun presented 13 slides, the most thorough and
the longest summary. He began with six slides where the group
attempted to define big data, and presented a nice sound bite: the
three Vs of Volume, Velocity, and Variety. While volume is clear
enough when speaking of big data, and velocity obviously refers
to the ability to process that data swiftly, variety means that data
may be unstructured.

The group came up with eight areas of interest. The first was low
latency, i.e., the ability to work interactively, to recognize signifi-
cant events in data, and to remain efficient as the volume of data
grows. Second was data management, which refers to the issues
of data labeling, data format (e.g., HDF5), standardization, prov-

enance, and new data structures. Unified execution is a simple
concept: being able to process data on a single box or a scaled-up
cluster using the same program. The fourth issue, related to
unified execution, is unified programming. Spark and Hive were
presented as examples. Workflow management was the fifth
issue, the ability to schedule and coordinate a set of related jobs,
along with tools for doing this.

Their sixth issue was resource management, which implies
at least prioritization or constraints that control how many
resources a job can use. While an economic approach was
suggested, it was also pointed out that Cosmos, a chargeback
scheme, is not working. The seventh issue was accuracy, in
the sense that sometimes approximate answers, requiring less
processing, are acceptable, and there needs to be the ability to
adjust the desired accuracy. The final point was configuration
complexity, with Hadoop being used as a bad example, having
tens of configuration parameters. What is needed is auto-tuning
knobs, where the knobs set desired goals instead of tweaking
specific parameters.

Elastic OS
Amit Gupta, who presented a paper about elasticity in operating
systems, convened this unconference session to further explore
the issue. The participants wondered whether an ElasticOS
for generic processes is too broad a goal, but perhaps certain
applications, or even threads, would be suitable for elasticizing.
Elasticizing may occur for different reasons, even shrinking a
process when resource costs go up and expanding when costs go
down, and the process could use more resources. In the end, the
group concluded that they still need to be convinced.

Verification
Ariel Rabkin (Princeton) organized this session, wrote a sum-
mary, but left before he could present it. On his slides, he had
written that they now believe that increasingly large artifacts
can be verified if the artifact was designed with verifications in
mind. Formalization of code design is possible, probably usable,
but is only cost-effective for safety-critical code, and not usable
yet for Web companies.

HotPar ’13: 5th USENIX Workshop on Hot Topics
in Parallelism
San Jose, CA
June 24-25, 2013

Panel
Tools in the Real World
Summarized by Rik Farrow (rik@usenix.org)
Panelists: Niall Dalton, Calxeda; Brandon Lucia, University of Washington and
Microsoft Research; Tipp Moseley, Google; Paul Peterson, Intel Corporation

Brandon Lucia has just gotten his Ph.D. from the University of
Washington and is going next to MSR. Brandon started talking
about software development tool research. Development tools
eat data, such as programming traces and source code. Next, we
need to abstract the data (for example, convert program traces

96  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

REPORTS

to event traces). Abstractions helps us facilitate analysis, the
final step, for example, in suggesting a solution for a problem in
 performance.

Brandon provided a concrete example from his own work, a
project called Recon (recon.cs.washington.edu), for concurrency
debugging. Recon uses CPU hardware to monitor shared data
accesses, uses this to build context-aware graphs, and analyzes
these graphs to reconstruct the root cause of a failure.

Brandon ended by covering some trends. Statistical modeling
and analysis allows you to take big piles of data and make sense
out of them, distilling the data into a model. The next trend is
the collection of data in real time, such as instrumenting all of
Google’s servers to capture rare events in situ. Third, tools can
also be used for automation, not just for analysis but also for
fixing problems. The last trend Brandon talked about was clos-
ing the gap between hardware architecture and software tool
designers. Hardware support allows you to collect data that you
wouldn’t otherwise be able to collect.

Tipp Moseley began by saying that tools solve problems. Google
collects hundreds of thousands of profiles every day, including
hardware counters (instructions per second, branch mispredic-
tion, cache misses) and software profiles (heap size, growth,
lock contention, disk fragmentation). They process this data
to produce reports on potentially anomalous results for appli-
cations, libraries, and even functions. Because Google owns
the entire stack, every time you submit a change, your change
includes tests so that the change can be analyzed. Tipp said that
their tools work well for uncovering race cases, while some other
tests, like load tests, are difficult to test. Google does profile
applications in production, but scale is a huge problem. A one-
in-a-million race condition will happen all the time at Google’s
scale. Static analysis works poorly at this scale, because the sys-
tems are so large with many interacting programs on distributed
systems.

Tipp said that the really hard problems cross boundaries. For
example, each Web request comes in through load balancers, to
frontends, to backends, then to storage. It becomes very difficult
to figure out where a problem occurs in this chain, discovering
what causes long tail latency, for example, in performance.

Tipp wants tools that have low overhead, such as sampling that
takes less than 3%, as well as more hardware counters.

Niall Dalton said the most important tool is coffee. Niall
displayed a chart on which there is a latency spike every 500
ms after an OS upgrade, and asked how we would solve this.
In another example, a new version of a system comes in, and
again there are latency spikes that show up routinely, but
software tools fail to discover what’s causing the problem. Niall
explained that the problem lay in the BIOS, and that he had to
hack the BIOS to fix the problem. Both examples were single
applications on dedicated systems. Niall next described having

two applications on the same box, both stressing RAM access,
but tools that trace applications wouldn’t see that. Niall said
changes to disk seek patterns, network incast, and the effects
of big data applications that are not on the system under obser-
vation but affect its performance are like a “whale swimming
by.” So you have your own problems, plus your neighbors’.

A lot of us have built ad hoc tools over the years, but the hardest
problem is to discover where, deep in the system, something is
going on. Just think of dueling schedulers. And it might take
2,000 hours before a kernel crash occurs.

Paul Peterson said that when you are in the software tools busi-
ness, your software will work better on your hardware than on
other hardware. Paul added that he was speaking for himself, not
Intel. Although people are most familiar with Intel as a hard-
ware company, Intel has also been a software company that has
been working in the world of parallelism since multicore CPUs
became common. Intel works with BIOS, device drivers, operating
systems for optimizing performance, and with 14,000 engineers
worldwide.

Paul works on the Parallel Studio suite of products, focusing
on the node level, but also on the cluster level, with tracing
and analysis tools at each level. For example, Advisor XE helps
people design and build parallel programs. They also have Com-
poser, Intel MPI, VTune amplifier, and Inspector, which looks
for memory leaks. Intel produces enabling software that helps
developers.

The chair started off by saying that coffee is his favorite tool,
too. He then asked Tipp whether some of the concerns he has are
Google-only problems, that is, only large data companies have
these problems. Tipp said that in 10 years, everyone is going to
have to deal with them, even on smartphones. Another panelist
said that cloud computing is already producing environments
that look like a lot of problems within Google. Paul ranked his
top three list of customer complaints: tools shouldn’t break
(especially debugging tools—broken debuggers really piss people
off); speed matters (for anything other than hardware tools) and
overhead should be less than 10%; and finally, the tool doesn’t
produce enough data. People want tools to be faster and richer.
Niall said that these problems already exist, say, if they want
traces on a group of systems instead of one.

Next, the chair asked Tipp what they did to solve race detection.
Tipp said he didn’t solve this himself, but that much smarter
people built tools built on Valgrind that just seem to work. A lot
of the work is based on fine-tuning edge cases. Google has good
test coverage, but doesn’t have good tools for doing race detection
on code working at production scale. Brandon said that he didn’t
think that race detection problems are solved, that the overhead
is too high (10x). Tipp said that he wanted that side, the produc-
tion side, solved as well.

Note: The compete reports from HotPar ’13 are available online at
www.usenix.org/publications/login

Coming Soon!
A brand new magazine for the

Raspberry Pi Community

Look for us at your local newsstand
UK/EU Sept. 21 US/Can Oct. 18 Australia Nov. 18

Or find us online at
www.raspberry-pi-geek.com

ad_login_RPG_Launch_07_2013.indd 1 8/23/13 9:06:07 AM

NOVEMBER 3-8, 2013 • WASHINGTON, D.C.

27th Large Installation System
Administration Conference

Keynote Address: “Modern Infrastructure: The Convergence of Network, Compute, and Data”
by Jason Hoffman, Founder, Joyent

Join us for 6 days of practical training on topics including:

 SRE Classroom: Non-Abstract Large System Design
for Sysadmins by John Looney, Google

 Root Cause Analysis by Stuart Kendrick,
Fred Hutchinson Cancer Research Center

 PowerShell Fundamentals by Steven Murawski, Stack
Exchange

 Introduction to Chef by Nathen Harvey, Opscode

The 3-day Technical Program includes:

 Plenaries by Hilary Mason, bitly, and Todd Underwood, Google

 Invited Talks by industry leaders such as Ariel Tseitlin,
Netflix; Jeff Darcy, Red Hat; Theo Schlossnagle,
Circonus; Matt Provost, Weta Digital; and Jennifer
Davis, Yahoo!

 Paper presentations, workshops, vendor exhibition,
posters, Guru Is In sessions, BoFs, and more!

www.usenix.org/lisa2013

New for 2013: The LISA Lab Hack Space!

Sponsored by in cooperation with LOPSA

Early
Bird

Discount
Register by
October 15
and save!

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

