
F E B R U A R Y 2 0 1 3   V O L . 3 8 , N O . 1

Flat Datacenter Storage
J E R E M Y E L S O N A N D E D N I G H T I N G A L E

Temperature Management in Datacenters: Cranking Up the
Thermostat Without Feeling the Heat
N O S A Y B A E L - S A Y E D , I O A N S T E F A N O V I C I , G E O R G E A M V R O S I A D I S ,
A N D Y A . H W A N G , A N D B I A N C A S C H R O E D E R

Allen Wittenauer on Hadoop: An Interview
R I K F A R R O W

Samba’s Way Toward SMB 3.0
M I C H A E L A D A M

Conference Reports from OSDI ’12: 10th USENIX Symposium
on Operating Systems Design and Implementation

U P C O M I N G E V E N T S
FAST ’13: 11th USENIX Conference on File and
 Storage Technologies

February 12–15, 2013, San Jose, CA, USA
www.usenix.org/conference/fast13

TaPP ’13: 5th USENIX Workshop on the Theory and
Practice of Provenance

April 2–3, 2013, Lombard, IL, USA
www.usenix.org/conference/tapp13

NSDI ’13: 10th USENIX Symposium on Networked
Systems Design and Implementation

April 3–5, 2013, Lombard, IL, USA
www.usenix.org/conference/nsdi13

HotOS XIV: 14th Workshop on Hot Topics in
 Operating Systems

May 13–15, 2013, Santa Ana Pueblo, NM, USA
www.usenix.org/conference/hotos13

2013 USENIX Federated Conferences Week
June 24–28, 2013, San Jose, CA, USA
www.usenix.org/conference/fcw13

USENIX ATC ’13: 2013 USENIX Annual Technical
Conference
June 26–28, 2013
www.usenix.org/conference/atc13

ICAC ’13: 10th International Conference on
Autonomic Computing
June 26–28, 2013
www.usenix.org/conference/icac13
Submissions due: March 4, 2013

HotPar ’13: 5th Workshop on Hot Topics in
Parallelism
June 24–25, 2013
www.usenix.org/conference/hotpar13
Submissions due: March 7, 2013

ESOS ’13: 2013 Workshop on Embedded Self-
Organizing Systems
June 25, 2013
www.usenix.org/conference/esos13
Submissions due: March 4, 2013

8th International Workshop on Feedback Computing
June 25, 2013
https://www.usenix.org/conference/feedback13
Submissions due March 29, 2013

HotCloud ’13: 5th USENIX Workshop on Hot Topics
in Cloud Computing
June 25–26, 2013
www.usenix.org/conference/hotcloud13
Submissions due: March 7, 2013

WiAC ’13: 2013 USENIX Women in Advanced
Computing Summit
June 27, 2013
www.usenix.org/conference/wiac13
Submissions due: March 13, 2013

HotStorage ’13: 5th USENIX Workshop on Hot Topics
in Storage and File Systems
June 27–28, 2013
www.usenix.org/conference/hotstorage13
Submissions due: March 11, 2013

HotSWUp ’13: 5th Workshop on Hot Topics in
Software Upgrades
June 28, 2013
www.usenix.org/conference/hotswup13
Submissions due: March 7, 2013

USENIX Security ’13: 22nd USENIX Security
Symposium

August 14–16, 2013, Washington, DC, USA
www.usenix.org/conference/sec13
Submissions due: February 21, 2013

Workshops Co-located with USENIX Security ’13
EVT/WOTE ’13: 2013 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections
August 12–13, 2013

CSET ’13: 6th Workshop on Cyber Security
Experimentation and Test
August 12, 2013
www.usenix.org/conference/cset13
Submissions due: April 25, 2013

HealthTech ’13: 2013 USENIX Workshop on Health
Information Technologies
Safety, Security, Privacy, and Interoperability of Health
Information Technologies
August 12, 2013

LEET ’13: 6th USENIX Workshop on Large-Scale
Exploits and Emergent Threats
August 12, 2013

FOCI ’13: 3rd USENIX Workshop on Free and Open
Communications on the Internet
August 13, 2013

HotSec ’13: 2013 USENIX Summit on Hot Topics
in Security
August 13, 2013

WOOT ’13: 7th USENIX Workshop on Offensive
Technologies
August 13, 2013

LISA ’13: 27th Large Installation System
Administration Conference

November 3–8, 2013, Washington, D.C., USA

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Rikki Endsley
rikki@usenix.org

C O P Y E D I T O R
Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N
Arnold Gatilao
Casey Henderson
Michele Nelson

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
nonmembers are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth
Street, Suite 215, Berkeley, CA 94710.

©2013 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designa-
tions appear in this publication and USENIX
is aware of a trademark claim, the designa-
tions have been printed in caps or initial caps.

F E B R U A R Y 2 0 1 3 , V O L . 3 8 , N O . 1

O P I N I O N

Musings R I K F A R R O W .2

S T O R A G E

Flat Datacenter Storage J E R E M Y E L S O N A N D E D M U N D B . N I G H T I N G A L E .5

Samba’s Way Toward SMB 3 .0 M I C H A E L A D A M . 16

P O W E R

Temperature Management in Datacenters: Cranking Up the Thermostat Without
Feeling the Heat N O S AY B A E L- S AY E D , I O A N S T E F A N O V I C I , G E O R G E A M V R O S I A D I S ,

A N D Y A . H W A N G , A N D B I A N C A S C H R O E D E R . 26

S Y S A D M I N

Allen Wittenauer on Hadoop: An Interview R I K F A R R O W . 34

Kadeploy3: Efficient and Scalable Operating System Provisioning for Clusters 
E M M A N U E L J E A N V O I N E , L U C S A R Z Y N I E C , A N D L U C A S N U S S B A U M . 38

P R O G R A M M I N G

The Owl Embedded Python Environment: Microcontroller Development for the
Modern World T H O M A S W . B A R R A N D S C O T T R I X N E R . 45

C O L U M N S

Practical Perl Tools D AV I D B L A N K - E D E L M A N . 52

Python: Import Anything D AV I D B E A Z L E Y . 61

iVoyeur D AV E J O S E P H S E N . 69

/dev/random R O B E R T G . F E R R E L L . 74

B O O K S

Book Reviews E L I Z A B E T H Z W I C K Y, W I T H M A R K L A M O U R I N E A N D T R E Y D A R L E Y 78

C O N F E R E N C E S

10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’12) . 83

OPINION

2   ;login: VOL. 38, NO. 1

Rik is the editor of ;login:.
rik@usenix.org

It’s a question of balance [1] . At least, that’s how I see things as I look over the col-
lection of articles in this month’s issue .

We all need balance: balance in our lives, between work and play, between waking
and sleeping, exercise and rest, eating what we like and staying healthy . Computer
systems require balance too .

Leading off, Jeremy Elson and Ed Nightingale describe Flat Datacenter Storage,
based on their OSDI 2012 paper . I liked Jeremy’s presentation in Hollywood, and
asked him to reprise that presentation as an article . But as much as I liked his pre-
sentation, I also liked the balance presented in the design of FDS .

At first glance, FDS is just another distributed storage system, like HDFS . But if
you look closer, you can see evidence of the balance that is the theme of this issue .
FDS uses hashes to distribute tracts (extents) evenly throughout servers . Metadata
is also distributed evenly, via a similar mechanism . But the real balancing act of
FDS has to do with the design of the network . Instead of hooking up servers to top-
of-rack switches, and these switches to other switches or routers, the designers of
FDS sought a balance between network bandwidth at both clients and servers and
the capability of a client or server to consume or produce data . They spent extra
money on network infrastructure so that there are no bottlenecks to slow down
performance .

And did this level of balance make a difference? FDS can replace a lost drive con-
taining a modest amount of data (92 GB) in 6 .2 seconds if the cluster includes 1,000
disks . And using the MinuteSort benchmark [2], the FDS replaced Hadoop as the
fastest at generic sorting and TritonSort at specialized (Formula 1) sorting .

I think there are lessons to be learned with FDS, which is really why I asked
 Jeremy and Ed to write for this issue .

How Hot Is Too Hot?
El-Sayed et al . take on a different type of balance . Most datacenters (DCs) choose
a conservative setpoint for the cold side of the aisles . This is based on conservative
information provided by server vendors . After all, the goal of a DC is to process
information, not lose servers and disks because of too high temperatures .

Through the analysis of vast amounts of data, and their own tests using a heat
chamber, these researchers found that the balance between too cold (spending
more on cooling) and too hot (having to replace failed components) can shift

Musings
R I K F A R R O W

 ;login: FEBRUARY 2013 Musings   3

toward warmer DCs . As cooling DCs represents a large proportion of their energy
budgets, being able to adjust the setpoint higher saves energy, money, and perhaps
the planet as well .

Along the way, El-Sayed et al . disprove some of the long-held assumptions about
the effects of temperature on the reliability of disks and memory as temperature
levels increase .

Michael Adam, a Samba developer, provides us with deep insight into where Samba
is today and its path forward . The Samba project has gone from leading Microsoft,
with the first version of clustered SMB storage, to playing catch-up today . Fitting
this into my theme of balance is a bit more difficult, but when you consider that
Samba had advanced the state of SMB storage, and is now playing catch up, I can
see this as an attempt to recover the balance between Samba and SMB .

I interviewed Allen Wittenauer of LinkedIn, both a Hadoop committer and large
scale cluster operator . I had been curious about how one goes about managing
Hadoop clusters, and Allen was just the person to talk to . Allen provided informa-
tion about both how to monitor a Hadoop cluster and how to manage and improve
the performance of Hadoop tasks . So where’s the balance? It turns out that there
is a balance here too, between taking the macro overview and drilling down to see
what is happening on individual systems .

Jeanvoine et al . present Kadeploy3, a system for installing OS images on grids .
They have been developing this system for years, and have successfully tested it
on grids with over a thousand nodes . For balance, they describe how they decided
on the best way to utilize the network bandwidth for the quickest installation .

Thomas Barr and Scott Rixner present their Python development toolchain for
ARM Cortex-M3 embedded controllers . With their open source toolkit, developing
software for embedded systems becomes almost as easy as Python programming:
you get to use Python, you have access to the special libraries provided by the pro-
vider of the system-on-chip, and you also get instant feedback . Barr and Rixner do
mention balance, in the sense of the comparison of the expert embedded systems
programmer versus the rest of us . With tools like Owl (their development toolchain),
we don’t need to be experts to get work done, while experts are still needed to cre-
ate the libraries required by Owl .

Out of Balance
So much for balance . Or perhaps I could say that for balance, the rest of the issue
doesn’t follow the balance theme?

David Blank-Edelman continues his journey of showing us how to use various
Web-based APIs, focusing this time on a service that can send and receive texts,
make voice calls, and collect dial button presses as part of a survey, or automated
call center .

David Beazley set out to scare his readers by diving deeper into the arcana of the
Python import mechanism . In an earlier column, David explained how you can
set the import path, but this time he shows us tricks for changing what actually
happens when you attempt to import a module into your Python program . Not to
worry, concludes David, as this will be rationalized with version 3 .3 .

4   ;login: VOL. 38, NO. 1

Dave Josephsen continues his coverage of XI, the GUI and database extension to
Nagios . Dave explains the various ways a group of sysadmins can hose each other’s
work when using different methods of administering Nagios when only one uses XI .

Robert Ferrell shares a blast from the past . Robert depicts a UNIX “expert” with
advice that might send shivers, perhaps of annoyance, down your spine .

Elizabeth Zwicky reviewed five books for this issue, including a second edition
of a book on regular expressions, two Python books (data analysis and Python
for kids), a book on managing programmers, and finally another kids program-
ming book . Coincidently, Mark Lamourine reviewed the same book, Super Scratch
Programming Adventure!, and I’m including both of them, as the perspectives of
the authors, and the ages of their testers, differ . Mark also reviewed a book on
assembly language programming for ARM, helping to balance out the focus on
Python . Trey Darley reviewed two books, one on insider threats, and the other
on Internet protocols .

We also have three sets of summaries from OSDI in this issue: the conference
itself, and two workshops, MAD and HotPower .

As the editor of ;login:, I always strive for a balance between materials that I believe
are of most interest to the greatest number of readers, and articles that have some-
thing to teach . To me, the process of research is one of learning, composed of new
ideas, implementation, and trial and error, and that’s something that we can all
learn from .

References

[1] A Question of Balance: http://en .wikipedia .org/wiki/A_Question_of_Balance .

[2] Sort Benchmark: http://sortbenchmark .org/ .

STORAGE

 ;login: FEBRUARY 2013   5

Jeremy Elson received his
PhD from UCLA in 2003. He
has worked in wireless sensor
networks, time synchronization,

online mapmaking, CAPTCHAs, and distrib-
uted storage. He also enjoys riding bicycles,
flying airplanes, and DIY electronics.
jelson@microsoft.com

Ed Nightingale has worked at
Microsoft since graduating with
a PhD from the University of
Michigan in 2007. Ed’s favorite

research areas include operating systems
and distributed systems. Outside of work, Ed
enjoys bicycling, reading, and attempting to
keep up with his children.
ed.nightingale@microsoft.com

There’s been an explosion of interest in Big Data—the tools and techniques for han-
dling very large data sets . Flat Datacenter Storage (FDS) is a new storage project at
Microsoft Research . We’ve built a blob store meant for Big Data, which scales to tens
of thousands of disks, makes efficient use of hardware, and is fault tolerant, but still
maintains the conceptual simplicity and flexibility of a small computer .

To make this idea concrete, consider the problem of “little data .” From a systems
perspective, little data is essentially a solved problem . The perfect little-data
computer has been around for years: a single machine with multiple processors
and disks interconnected by something like a RAID controller . For I/O-intensive
workloads, such a computer is ideal . When applications write, the RAID control-
ler splits the writes up and stripes them over all the disks . There might be a small
number of writers writing a lot, or a large number of writers writing a little bit, or a
mix of both . The lulls in one writer are filled in by the bursts in another, giving us
good statistical multiplexing . All the disks stay busy, and high utilization means
we’re extracting all the performance we can from our hardware . Reads can also
exploit the striped writes . Even if some processes consume data slowly and others
consume it quickly, all the disks stay busy, which is what we want .

Writing software for this computer is easy, too . How many physical disks there are
doesn’t matter; programmers can pretend there’s just one big one . Files written by
any process can be read by any other without caring about locality . If we’re trying
to attack a large problem in parallel (for example, trying to parse a giant log file) the
input doesn’t need to be partitioned in advance . All the workers drain a global pool
of work; when it’s exhausted, they all finish at about the same time . This prevents
stragglers and means the job finishes sooner . We call this dynamic work allocation .

Another benefit of the little-data computer is that it’s easy to adjust the ratio of
processors to disks by adding more of whichever is needed . An administrator
can buy machine resources to match the expected workload, fully and efficiently
making use of the hardware budget .

This machine has one major drawback: it doesn’t scale . We can add a few dozen
processors and disks, but not thousands . The limitation lies in the fact that such a
system relies on a single, centralized I/O controller . Roughly, the controller is doing
two things:

Flat Datacenter Storage
J E R E M Y E L S O N A N D E D M U N D B . N I G H T I N G A L E

6   ;login: VOL. 38, NO. 1

u	 It manages metadata . When a process writes, the controller decides how the
write should be striped, and records enough state so that reads can find the
data later .

u	 It physically routes the data between disks to processors—actually transporting
the bits .

In FDS, we’ve built a blob store that fully distributes both of these tasks . This
means we can build a cluster that has the essential properties of the ideal little-
data machine, but can scale to the size of a datacenter . To maintain conceptual
simplicity, computation and storage are logically separate . There is no affinity,
meaning any processor can access all data in the system uniformly—that’s why
we call it “flat;” however, it still achieves very high I/O performance that has come
to be expected only from systems that couple storage and computation together,
such as MapReduce, Dryad, and Hadoop .

We’ve developed a novel way of distributing metadata . In fact, the common case
read and write paths go through no centralized components at all . We get the
bandwidth we need from full bisection bandwidth Clos networks, using novel
techniques to schedule traffic .

With FDS, we’ve demonstrated very high read and write performance . In a single-
replicated cluster, a single process in read or write loop can achieve more than 2
GBps all the way to the remote disk platters . In other words, FDS applications can
write to remote disks faster than many systems can write locally to a RAID array .

Disks can also talk to each other at high speed, meaning FDS can recover from
failed disks very quickly . For example, in one test with a 1,000-disk cluster, we
killed a machine with seven disks holding a total of about two-thirds of a terabyte;
FDS brought the lost data back to full replication in 34 seconds .

Finally, we’ve shown that FDS can make applications very fast . We wrote a straight-
forward sort application on top of FDS that beat the world record for disk-to-disk
sorting in 2012 . Our general-purpose remote blob store beat previous implementa-
tions that exploited local disks . We’ve also experimented with applications from
other domains, including stock market analysis and serving an index of the Web .

The Basics
In FDS, all blobs are identified with a simple GUID . Each blob contains 0 or more
allocation units we call tracts . Tracts are numbered sequentially, starting from 0
(Figure 1) .

All tracts in a system are the same size . In most of our clusters, a tract is 8 MB;
we’ll see later why we picked that size . A tract is the basic unit of reading and
writing in FDS .

The programming interface is simple; it has only about a dozen calls, such as
 CreateBlob, ReadTract, and WriteTract . The interface is designed to be asyn-
chronous, meaning that the functions don’t block, but rather call a callback when
they’re done . A typical high-throughput FDS application will start out by issuing a
few dozen reads or writes in parallel, then issue more as the earlier ones complete .
We call applications using the FDS API the FDS clients .

In addition to clients, there are two other types of actors in FDS . The first is the
tractserver, lightweight software that sits between a raw disk and the network,
accepting commands from the network such as “read a tract” and “write a tract .”

 ;login: FEBRUARY 2013 Flat Datacenter Storage   7

There’s also a special node called the metadata server, which coordinates the
cluster and helps clients rendezvous with tractservers .

The existence of tractservers and the metadata server is invisible to programmers .
The API just talks about blobs and tract numbers . Underneath, our library contacts
the metadata server as necessary and sends read and write messages over the
network to tractservers .

Metadata Management
To understand how FDS handles metadata, it’s useful to consider the spectrum of
solutions in other systems .

On one extreme, we have systems like GFS and Hadoop that manage metadata
centrally . On essentially every read or write, clients consult a metadata server
that has canonical information about the placement of all data in the system . This
gives administrators excellent visibility and control; however, it is also a central-
ized bottleneck that has exerted pressure on these systems to increase the size of
writes . For example, GFS uses 64 megabyte extents, nearly an order of magnitude
larger than FDS tracts . This makes it harder to do fine-grained load balancing like
the ideal little-data computer does .

On the other end of the spectrum are distributed hash tables . They’re fully decen-
tralized, but all reads and writes typically require multiple trips over the network
before they find data . Additionally, failure recovery is relatively slow because
recovery is a localized operation among nearby neighbors in the ring .

In FDS, we tried to find a spot in between that gives us some of the best properties
of both extremes: one-hop access to data and fast failure recovery without any
centralized bottlenecks in common-case paths .

FDS does have a centralized metadata server, but its role is limited . When a client
first starts, the metadata server sends some state to the client . For now, think of
this state as an oracle .

When a client wants to read or write a tract, the underlying FDS library has two
pieces of information: the blob’s GUID and the tract number . The client library
feeds those into the oracle and gets out the IP addresses of the tractservers respon-
sible for replicas of that tract . In a system with more than one replica, reads go to
one replica at random, and writes go to all of them .

The oracle’s mapping of tracts to tractservers needs two important properties .
First, it needs to be consistent: a client reading a tract needs to get the same answer
as the writer got when it wrote that tract . Second, it has spread load uniformly .
To achieve high performance, FDS clients have lots of tract reads and writes
out standing simultaneously . The oracle needs to ensure (or, at least, make it
likely) that all of those operations are being serviced by different tractservers .
We don’t want all the requests going to just one disk if we have ten of them .

Figure 1: Blobs and tracts

8   ;login: VOL. 38, NO. 1

Once a client has this oracle, reads and writes all happen without contacting the
metadata server again . Because reads and writes don’t generate metadata server
traffic, we can afford to do a large number of small reads and writes that all go to
different spindles, even in large-scale systems, giving us really good statistical
multiplexing of the disks—just like the little-data computer .

This technique gives us the f lexibility to make writes as small as we need to . For
throughput-sensitive applications, we use 8 MB tracts: large enough to amortize
seeks and make random reading and writing almost as fast as doing so sequen-
tially . We have also experimented with seek-bound workloads, where we reduced
the tract size all the way down to 64 KB . That’s hard with a centralized metadata
server but no problem with our oracle .

So, what is this oracle? Simply, it is a table of all the disks in the system, collected
centrally by the metadata server . We call this table the tract locator table, or TLT .
The table has as many columns as there are replicas; the example in Figure 2
shows a triple-replicated system . In single-replicated systems, the number of
rows in this table grows linearly with the number of disks in the system . In multi-
ply replicated systems, it grows as n2; we’ll see why a little later .

For each read or write operation, the client finds a row in this table by taking
the blob GUID and tract number and deterministically transforming them into
a row index:

Table_Index=(Hash(Blob_GUID) + Tract_Number) mod TLT_Length

As long as readers and writers are using consistent versions of the table, the map-
pings they get will also be consistent . (We describe how we achieve consistent
table versioning in our full paper [3] .) We hash the blob’s GUID so that independent
clients start at “random” places in the table, even if the GUIDs themselves are not
randomly distributed .

A critical property of this table is that it only contains disks, not tracts . In other
words, reads and writes don’t change the table . This means clients can retrieve it
from the metadata server once, then never contact the metadata server again . The
TLT only changes when a disk fails or is added .

There’s another clever thing we can do with the tract locator table: use it to fully
distribute the per-blob metadata, such as each blob’s length and permission bits .
We store this in “tract -1 .” Clients find the metadata tract the same way that they
find regular data, just by plugging -1 into the tract locator formula . This means
that the metadata is spread pseudo-randomly across all tractservers in the system,
just like the regular data .

Tractservers have support for consistent metadata updates . For example, imagine
that several writers are trying to append to the same blob . In FDS, each executes
an FDS function called Extend Blob . This is a request for a range of tract numbers
that can be written without conflict . The tractserver serializes the requests and
returns a unique range to each client . This is how FDS supports atomic append .

Unlike data writes, which go directly from the client to all replicas, metadata
operations in multiply replicated systems go to only one tractserver—the one in the
first column of the table . That server does a two-phase commit to the others before
returning a result to the client .

Figure 2: An example tract locator table.
Each letter represents a disk.

 ;login: FEBRUARY 2013 Flat Datacenter Storage   9

Because we’re using the tract locator table to determine which tractserver owns
each blob’s metadata, different blobs will most likely have their metadata opera-
tions served by different tractservers . The metadata traffic is spread across
every server in the system; however, requests that need to be serialized because
they refer to the same blob will always end up at the same tractserver, thus main-
taining correctness .

Networking
So far, we’ve assumed that there was an uncongested path from tractservers to
clients . We now turn to the question of how to build such a network .

Until recently, the standard way to build a datacenter was with significant over-
subscription: a top-of-rack switch might have 40 Gbps of bandwidth down to
servers in the rack, but only 2 or 4 Gbps going up to the network core . In other
words, the link to the core was oversubscribed by a factor of 10 or 20 . This, of
course, was done to save money .

There has been a recent surge of research in the networking community in Clos
networks [2] . Clos networks more or less do for networks what RAID did for disks:
by connecting up a large number of low-cost, commodity routers and doing some
clever routing, building full bisection bandwidth networks at the scale of a data-
center is now economical .

In FDS, we take the idea a step further . Even with Clos networks, many comput-
ers in today’s datacenters still have a bottleneck between disks and the network .
A typical disk can read or write at about a gigabit per second, but there are four,
or 12, or even 25 disks in a typical machine, all stuck behind a single one-gigabit
link . For applications that have to move data, such as a sort or a distributed join,
this is a big problem .

In FDS, we make sure all machines with disks have as much network bandwidth as
they have disk bandwidth . For example, a machine with 10 disks needs a 10-gigabit
NIC, and a machine with 20 disks needs two of them . Of course, adding bandwidth
has a cost; depending on the size of the network, we estimate about 30% more per
machine . But as we’ll explain a little later, we get a lot more than a 30% increase in
performance for that investment .

We’ve gone through several generations of testbeds; the largest has 250 machines
and about 1,500 disks . They’re all connected using 14 top-of-rack routers and eight
spine routers . Each router has 64 10-gigabit ports . The top-of-rack routers split
their 64 ports into two halves: 32 ports connect to computers (clients or tractserv-
ers) and 32 connect to spine routers . There is a 40 Gbps connection between each
top-of-rack and spine router—four 10 Gbps ports bonded together . In aggregate,
this gives us more than 4 .5 terabits of bisection bandwidth .

Unfortunately, just adding all this bandwidth doesn’t automatically produce a
storage system with good performance . Part of the problem is that in realistic
conditions, datacenter Clos networks don’t guarantee full bisection bandwidth .
They only make it stochastically likely . This is an artifact of routing algorithms
such as ECMP (equal-cost multipath routing) that select a single, persistent path
for each TCP flow to prevent packet reordering . As a result, Clos networks have a
well-known problem handling long, fat f lows . In FDS, our data layout is designed
to spread data uniformly across disks partly because of the network load that such
an access pattern generates . FDS clients use a large number of very short-lived

10   ;login: VOL. 38, NO. 1

f lows to a wide set of pseudo-random destinations, which is the ideal case for a
Clos network .

A second problem is that even a perfect Clos network doesn’t actually eliminate
congestion; it just pushes the congestion out to the edges . Good traffic shaping is
still necessary to prevent catastrophic collisions at receivers—a condition known
as incast [6] .

What’s particularly unfortunate is that these two constraints are in tension . Clos
networks need short flows to achieve good load balancing, but TCP needs long
flows for its bandwidth allocation algorithm to find an equilibrium that prevents
collisions .

In FDS, we ended up doing our own application-layer bandwidth allocation using
a hybrid request-to-send/clear-to-send (RTS/CTS) scheme reminiscent of that
found in wireless networks . Large messages are queued at the sender, and the
receiver is notified with an RTS . The receiver limits the number of CTSes it allows
outstanding, thus limiting the number of senders competing for its receive band-
width . Small messages, such as control messages and RTS/CTS, are delivered over
a different TCP flow from the large messages, reducing latency by enabling them
to bypass long queues . FDS network message sizes are bimodal: large messages
are almost all about 8 MB, and most other messages are 1 KB or smaller .

Microbenchmarks
Our full paper [3] has a more thorough evaluation of FDS . Here, we’ll describe
one set of microbenchmarks: testing the speed of simple test clients that read
from or wrote to a fixed number of tractservers . We varied the number of clients
and measured their aggregate bandwidth . The clients each had a single 10 Gbps
Ethernet connection . The tractservers had either one or two, depending on how
many disks were in the server .

Figure 3 shows results from a single-replicated cluster . Note the x-axis is logarith-
mic . The aggregate read and write bandwidth go up close to linearly with the num-
ber of clients, from 1 to 170 . Read bandwidth goes up at about 950 MBps per client
and write bandwidth goes up by 1,150 MBps per client . Writers saturated about
90% of their theoretical network bandwidth, and readers saturated about 74% .

Two different cluster configurations are depicted: one used 1,033 disks, and the
other used about half that . In the 1,033 disk test, there was just as much disk band-
width as there was client bandwidth, so performance kept going up as we added
more clients . In the 516 disk test, there was much more client bandwidth available

1 2 5 10 50 200

0
10
20
30
40
50
60
70

To
ta

l B
an

dw
id

th
 (G

B/
s)

Number of Clients

read
write

516 Disks

1,033 Disks

1 2 5 10 50 200

0
10
20
30
40
50
60
70

Number of Clients

read
write

Figure 3: Sequential reading and writing in
a single-replicated cluster

Figure 4: Sequential reading and
writing in a triple-replicated cluster

 ;login: FEBRUARY 2013 Flat Datacenter Storage   11

than disk bandwidth . Because disks were the bottleneck, aggregate bandwidth kept
going up until we’d saturated the disks, then leveled off .

We also tested clients that had 20 Gbps of network bandwidth instead of 10 . These
clients were able to read and write at over 2 GBps . In other words, writing remotely
over the network all the way to disk platters, these FDS clients were faster than
many systems can write to a local RAID . Decoupling storage and computation does
not have to mean giving up performance .

Figure 4 shows a similar test against a triple-replicated cluster instead of a single-
replicated cluster . Read bandwidth is about the same, but as expected, writes
saturate the disks much sooner because clients have to write three times as much
data (once for each replica) . The aggregate write bandwidth is about one-third of
the read bandwidth in all cases .

Failure Recovery
The way that data is organized in a blob store has a dramatic effect on recovery
performance . The simplest method of replication is unfortunately also the slowest:
mirroring . Disks can be organized into pairs or triples that are always kept identi-
cal . When a disk fails, an exact copy of the failed disk is created using an empty
spare disk and a replica that’s still alive . This is slow because it’s constrained by
the speed of a single disk . Filling a one terabyte disk takes at least several hours,
and such slow recovery decreases durability because it lengthens the window of
vulnerability to additional failures .

We can do better . In FDS, when a disk fails, our goal is not to reconstruct an exact
duplicate of the failed disk . Instead, we ensure that somewhere in the system, extra
copies of the lost data get made, returning us to the state where there are three
copies of all data .

We exploit our fine-grained striping of data across disks, and lay out data so that
when a disk fails, there isn’t just a single disk that contains backup copies of that
disk’s data . Instead, the n disks that remain will each have about 1/nth of the data
lost . Every disk sends a copy of its small part of the lost data to some other disk that
has some free space .

Because we have a full bisection bandwidth network, all the disks can do this in
parallel, making failure recovery fast . In fact, because every disk is participating
in recovery, FDS has a nice scaling property: as a cluster gets larger, recovery goes
faster . This is just the opposite of systems that use simple mirroring, where larger
volumes require longer recovery times .

Implementing this scheme using the tract locator table is relatively straight-
forward . We construct a table such that every possible pair of disks appears in
a row of the table . This is why, in replicated clusters, the number of rows in the
table grows as n2 . We can optionally add more columns for more durability, but to
get the fastest recovery speed, we never need more than n2 rows .

When a disk fails, the metadata server first selects a random disk to replace the
failed disk in every row of the table . Then, it selects one of the remaining good disks
in each row to transfer the lost data to the replacement disk . (Additional details are
described in our paper [3] .)

12   ;login: VOL. 38, NO. 1

We tested failure recovery in a number of configurations, in clusters with both
100 and 1,000 disks, and killing both individual disks and all the disks in a single
machine at the same time (Table 1) .

In our largest test, we used a 1,000-disk cluster and killed a machine with seven
disks holding a total of 655 GB . All the lost data was recovered in 34 seconds .

More interesting is that every time we made the cluster larger, we got about
another 40 MBps per disk of aggregate recovery speed . That’s less than half the
speed of a disk, but keep in mind that’s because every disk is simultaneously read-
ing the data it’s sending, and writing to its free space that some other disk is filling .
Extrapolating these numbers out, we estimate that if we lost a 1 TB disk out of a
3,000-disk cluster, we’d recover all the data in less than 20 seconds .

MinuteSort
We’ve built several big-data applications on top of FDS from domains that include
stock market analysis and serving an index of the Web . These applications are
described in our recent paper on FDS [3] . In this article, we’ll focus on just one: We
set two world records in 2012 for disk-to-disk sorting using a small FDS application .

MinuteSort is a test devised by a group led by the late Jim Gray [1] . The question is:
given 60 seconds, how much randomly distributed data can be shuffled into sorted
order? Because the test was meant as an I/O test, the rules specify the data must
start and end in stable storage . We competed in two divisions: one for general-
purpose systems, and one for purpose-built systems that were allowed to exploit
the specifics of the benchmark .

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120M
ile

st
on

e
C

om
pl

et
io

n
Ti

m
e

(s
)

Number of Nodes Complete

800GB Sort Before Dynamic Work Allocation

Input read complete

Shuffled data received from all peers

Output complete

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120M
ile

st
on

e
C

om
pl

et
io

n
Ti

m
e

(s
)

Number of Nodes Complete

800GB Sort After Dynamic Work Allocation

Input read complete

Shuffled data received from all peers

Output complete

Figure 5: Visualization of the time to reach three milestones in the completion of a sort. The
results are shown before (left) and after (right) implementation of dynamic work allocation.
Both experiments depict 115 nodes sorting 800 GB.

Disk Count 100 1,000

Disks Failed 1 1 1 1 7

Total Stored (TB) 4 .7 9 .2 47 92 92

GB/disk 47 92 47 92 92

GB Recovered 47 92 47 92 655

Recovery Time (s) 19 .2±0 .7 50 .5±16 .0 3 .3±0 .6 6 .2±0 .4 33 .7±1 .5

Table 1: Mean and standard deviation of recovery time after disk failure in a triple-replicated
cluster. The high variance in one experiment is due to a single 80 sec. run.

 ;login: FEBRUARY 2013 Flat Datacenter Storage   13

In the general-purpose division, the previous record, which stood for three years,
was set by Yahoo! using a large Hadoop cluster [4] consisting of about 1,400
machines, and about 5,600 disks . With FDS, using less than one-fifth of the com-
puters and disks, we nearly tripled the amount of data sorted, which multiplies out
to a 15x improvement in disk efficiency . The gain came from the fact that Yahoo!’s
cluster, like most Hadoop-style clusters, had serious oversubscription both from
disk to network, and from rack to network core . We attacked that bottleneck, by
investing, on average, 30% more money per machine for more bandwidth, and
harnessed that bandwidth using the techniques described earlier . The result
is that instead of a cluster having mostly idle disks, we built a cluster with disks
working continuously .

In the specially optimized class, the record was set last year by UCSD’s Triton-
Sort [5] . They wrote a tightly integrated and optimized sort application that did a
beautiful job of squeezing everything they could out of their hardware . They used
local storage, so they did beat us on CPU efficiency, but not on disk efficiency . In
absolute terms, we set that record by about 8% . What distinguishes our sort is that
it was just a small application sitting on top of FDS, a general-purpose blob store
with no sort-specific optimizations .

Dynamic work allocation was a key technique for making our sort fast . We noted
earlier that one advantage of ignoring locality constraints—as in the little-data
computer—is that all workers can draw work from a global pool, preventing strag-
glers . Early versions of our sort didn’t use dynamic work allocation; we just divided
the input file evenly among all the nodes .

As seen in the time diagram in Figure 5 (left), stragglers were a big problem . Each
line represents one stage of the sort . A horizontal line would mean all nodes fin-
ished that stage at the same time, which would be ideal . Initially, the red (lowest
line) stage was far from ideal . About half the nodes would finish the stage within
25 seconds and a few would straggle along for another 30 . This was critical because
there was a global barrier between the red stage and the green stage (middle line
in graph) .

We knew the problem did not lie in the hardware because different nodes were
the stragglers in each experiment . We concluded that we had built a complex
distributed system with a great deal of randomness; a few nodes would always get
unlucky . We switched to using dynamic work allocation . In Figure 5 (right), each
node would initially process a tiny part of the input . When it was almost done, it
would ask the head sort node for more work . This dramatically reduced stragglers,
making the whole job faster . A worker that finished early would get more work
assigned and unlucky nodes would not . This was entirely enabled by the fact that
FDS uses a global store; clients can read any part of the input they want, so shuf-
fling the assignments around at the last second really has no cost .

Conclusion
FDS gives us the agility and conceptual simplicity of a global store, but without the
usual performance penalty . We can write to remote storage just as fast as other
systems can write to local storage, but we’re able to discard the locality constraints .

This also means we can build clusters with very high utilization; we can buy as many
disks as we need for I/O bandwidth, and as many CPUs as we need for processing
power . Individual applications can use resources in whatever ratio they need . We

14   ;login: VOL. 38, NO. 1

do have to invest more money in the network . In exchange, we unlock the potential
of all the other hardware we’ve paid for, both because we’ve opened the network
bottleneck and because a global store gives us global statistical multiplexing .

Today, many data scientists have the mindset that certain kinds of high-bandwidth
applications must fit into a rack if they’re going to be fast, but a rack just isn’t big
enough for many big-data applications . With FDS, we’ve shown a path around that
constraint . FDS doesn’t just make today’s applications faster . FDS may let us imag-
ine new kinds of applications, too .

Acknowledgments

Dave Maltz built our first Clos networks and taught us how to build our own .
Johnson Apacible, Rich Draves, and Reuben Olinsky were part of the sort record
team . Trevor Eberl, Jamie Lee, Oleg Losinets, and Lucas Williamson provided
systems support . Galen Hunt provided a continuous stream of optimism and
general encouragement . We also thank Jim Larus for agreeing to fund our initial
14-machine cluster on nothing more than a whiteboard and a promise, allowing
this work to flourish .

References

[1] D . Bitton, M . Brown, R . Catell, S . Ceri, T . Chou, D . DeWitt, D . Gawlick, H . Garcia-
Molina, B . Good, J . Gray, P . Homan, B . Jolls, T . Lukes, E . Lazowska, J . Nauman, M .
Pong, A . Spector, K . Trieber, H . Sammer, O . Serlin, M . Stonebraker, A . Reuter, and
P . Weinberger, “A Measure of Transaction Processing Power,” Datamation, vol . 31,
no . 7 (April 1985), pp . 112–118 .

[2] A . Greenberg, P . Lahiri, D . A . Maltz, P . Patel, and S . Sengupta, “Towards a Next
Generation Data Center Architecture: Scalability and Commoditization,” Proceed-
ings of the ACM Workshop on Programmable Routers for Extensible Services of
Tomorrow, PRESTO ’08 (ACM, 2008), pp . 57–62 .

[3] E .B . Nightingale, J . Elson, J . Fan, O . Hofmann, J . Howell, and Y . Suzue, “Flat
Datacenter Storage,” Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12), October 2012 .

[4] O . O’Malley and A .C . Murthy, “Winning a 60 Second Dash with a Yellow
Elephant,” 2009: http://sortbenchmark .org/Yahoo2009 .pdf .

[5] A . Rasmussen, G . Porter, M . Conley, H . Madhyastha, R .N . Mysore, A . Pucher,
and A . Vahdat, “TritonSort: A Balanced Large-Scale Sorting System,” 8th USE-
NIX Symposium on Networked Systems Design and Implementation (NSDI ’11),
Boston, MA, April 2011 .

[6] V . Vasudevan, H . Shah, A . Phanishayee, E . Krevat, D . Andersen, G . Ganger,
and G . Gibson, “Solving TCP Incast in Cluster Storage Systems,” 7th USENIX
Conference on File and Storage Technologies (FAST ’09), San Francisco, CA,
February 2009 .

SANDBOXING & VIRTUALIZATION • DETECTING CHEATERS

MARCH/APRIL 2011

THREAT MODELING • MOBILE DEFENSE • FROM PAPER TO PIXELS

JULY/AUGUST 2011

INSIDER ATTACKS • MOBILE TWO-FACTOR AUTHENTICATION • TRUTH IN CROWDSOURCING
SEPTEMBER/OCTOBER 2011

Protect Your Network

www.qmags.com/SNP

IEEE Security & Privacy is the
publication of choice for great
security ideas that you can put into

practice immediately. No
vendor nonsense, just real
science made practical.

—Gary McGraw,
CTO, Cigital, and author of Software
Security and Exploiting Software

Access the latest trends and
peer-reviewed research
anywhere, anytime

Further your knowledge
with in-depth interviews
with thought leaders

 SUBSCRIBE FOR $1995

DIGITAL EDITION

16   ;login: VOL. 38, NO. 1

Michael Adam is a software
engineer with a university
background in mathematics and
computer science. He leads the
Samba team of SerNet GmbH

in Germany. As a developer of the Samba
software, Michael currently concentrates
on the new protocol aspects in the SMB file
server and is especially interested in clustering
Samba. obnox@samba.org

The well-known Samba software has been a pioneer in clustered Server Message
Block (SMB) file sharing since 2007 . With Windows 8 and Server 2012, Micro-
soft has released version 3 .0 of the SMB protocol, introducing a whole set of
new features for all-active SMB clustering and server workloads . This article
describes the interesting challenges that Samba faces in implementing SMB 3
and the missing features of SMB 2—most notably durable file handles—and pro-
vides details about the techniques used to solve the issues .

The Samba software [1] has provided open source SMB file, print, and authentica-
tion services on UNIX systems since 1992 . When version 3 .6 was released in 2011,
Samba added support for version 2 .0 of the SMB protocol .

In late 2011, Microsoft presented what is now called SMB 3 .0 under the name of
SMB 2 .2 at the SNIA Storage Developer Conference [2] . At that time, the Samba
engineers had developed a rather good understanding of most of the tasks for
implementing SMB 2 .1 and had started to work on the one big feature of SMB 2 .0
that was missing from Samba’s SMB 2 . 0 implementation in Samba 3 .6: durable
file handles .

The announcement of SMB 2 .2 got the Samba developers started because this
touched an area Samba had pioneered since 2007: all-active clustering of SMB
itself . So in parallel to the design and development of durable file handles, the
developers dove into the exploration of the new SMB version 3 .0 . It turned out that
in order to implement durable handles, some of the internal design characteristics
of Samba that had to be revised and changed were also obstacles for the implemen-
tation of the SMB 3 features as well as most parts of SMB 2 .1 . So the developers
took as holistic an approach as possible when implementing durable handles in
order to pave the way for moving toward SMB 3 .

A year has passed with the outcome that Samba 4 .0, which has just been released,
features durable handles and support for SMB 2 .1—complete except for leases—and
basic support for SMB 3 .0, not yet including any of the more advanced features .
Before we dive into the Samba-specific details, here is an overview of the various
versions of SMB .

SMB 1, 2, 3…
The SMB protocol has been around for many years and is the basis of Windows’
network file and print services . There are many other implementations of the
protocol—Samba being the most popular open source implementation—generally

Samba’s Way Toward SMB 3.0
M I C H A E L A D A M

 ;login: FEBRUARY 2013 Samba’s Way Toward SMB 3 .0   17

available in Linux and on most UNIX systems, and used in storage appliances,
from small to very large, scale-out clustered systems .

With Windows Vista (released in 2007) and Windows Server 2008, Microsoft
introduced version 2 .0 of the SMB protocol . SMB 2 .0 was essentially a cleanly
re-designed variant in the long evolution of the SMB protocol . The number of
calls was reduced, all file operations were handle-based, and chained requests
were integrated into the protocol . One of the biggest additions of SMB 2 .0 was
the concept of durable file handles: durable handles can be reclaimed by the
client after a short network outage with all lock and caching state, so as to allow
for uninterrupted I/O .

SMB 2 .1, introduced with Windows 7 and Windows Server 2008 R2 in late 2009,
brought a couple of new features: leases, which are “oplocks done right,” and
handle caching introduced systematically with refined cache revocation rules
as compared to the old batch oplocks; and applications were able to upgrade their
caching mode without the need to break the mode in advance . Multi-credit (or
large MTU) was a new mechanism that reduced the number of network round
trips required for reading or writing large hunks of data by allowing for bigger
data units to be transferred in a single read or write request .

Resilient file handles added certain guarantees to durable handles . Their use-
fulness was limited, though, because resiliency had to be requested by an aware
application that used the published interface . Dynamic reauthentication allowed
the client to reauthenticate a session proactively before the server signaled the
 session had expired . Branch cache enables machines in an office to cache file
server contents locally after it has been fetched over a wide area network link . In
summary, the major topics of SMB 2 .1 were the reduction of network verbosity
and increased reliability .

In September and October 2012, respectively, Windows Server 2012 and Win-
dows 8 were published, along with version 3 .0 of the SMB protocol . This version
was called 2 .2 until shortly before the official release, but was relabeled due to the
scope of the additions .

The main topic of SMB 3 is all-active clustering, especially the scale-out and
continuously available characteristic of file shares . With SMB 3, Microsoft for the
first time specifically addressed server workloads, for Hyper-V and SQL . Apart
from new signing and encryption mechanisms and the so-called secure negotia-
tion, some of the major features of SMB 3 are: multi-channel as a mechanism for
the client to bundle multiple transport connections (channels) into a single SMB
session; persistent file handles are like durable handles with strong guarantees
(in contrast to the resilient handles of SMB 2 .1, these are transparent to the cli-
ent); and support for RDMA-capable transports such as Infiniband or iWARP for
reduced latency and CPU load imposed by network I/O operations .

Tasks for Samba
There are a lot of interesting features in the above list that Samba has not imple-
mented or had not implemented in Samba 3 .6 . Specifically, durable handles of SMB
2 .0, leases, multi-credit, dynamic reauthentication of SMB 2 .1 and directory leases,
the clustering concepts, persistent handles, multi-channel, and RDMA-support of
SMB 3 .0 . To understand how the Samba developers have solved or are planning to

18   ;login: VOL. 38, NO. 1

solve the items of this voluminous list of tasks, one first must know some details
about the design and internal functionalities of the Samba software .

Design of Samba’s File Server
The main daemon of Samba’s file server is the smbd process . It listens on the TCP
ports 445 and 139 for SMB connections and, for each new TCP connection, forks
one smbd child process that is afterward exclusively in charge of handling this
connection . There is hence essentially a 1:1 correspondence between smbd child
processes and SMB-client TCP connections to the Samba server .

A certain amount of interprocess communication is needed between the smbd
processes, mostly regarding locking and other conf licting operations on files .
Because the locking semantics in SMB differ widely from what POSIX provides,
the obvious UNIX/POSIX locking mechanisms through the file system and kernel
are not enough here . Therefore, Samba has introduced a file system abstraction
layer that implements the required features of a file system with the required
semantics . This layer maintains a set of databases to store information that is not
available directly in the underlying POSIX file system . These are most importantly
 locking.tdb, which is the database for open file handles, including share modes,
oplocks, and brlock.tdb, which stores the byte range locks . On the other hand, the
SMB-level pieces of information were kept purely in memory in previous releases
of Samba, including the latest version 3 .6, which included support for SMB 2 .0 .

The mentioned databases use Samba’s own database implementation, the trivial
database (TDB) [3] . It is a simple Berkeley DB-style key-value database that also
supports multiple concurrent writers through record locks and memory mapping,
and can be used for fast interprocess communication . The TDB databases are used
virtually everywhere inside Samba .

In addition to the databases, there is the so-called messaging as a means of
interprocess communication . The smbd processes can register themselves as
interested in a certain database record, for example, representing a lock on a file .
And the process holding the lock will send a message to the waiting process
when it releases the lock so that the waiting process can try again to get hold of
the lock . The messages are implemented by signals to trigger the other process
and TDB records that hold the actual message content .

Samba, the Clustered SMB Pioneer
This architecture of Samba’s file server was the main reason that the implementa-
tion of a clustered Samba file server was initially relatively easy to achieve: Samba
was multi-process, and the important data for interprocess communication was
serialized into the TDB databases anyway . So when the developers first started to
experiment seriously with clustered Samba in 2006, the main task quickly became
making the TDB databases clustered, because serving different TCP connections
to a single node by different daemons on that node is in principle not much differ-
ent from serving TCP connections to different nodes by processes on those nodes .

Some clever design had to be invented to make TDB clustered in a fashion that
scaled well . Using a conventional clustered database as a substitute, or even stor-
ing the TDB files in the clustered file system to be used for sharing files with
Samba, turned out to scale negatively, but the intent was to create a system that
would scale positively (if not linearly) with the number of nodes in the cluster

 ;login: FEBRUARY 2013 Samba’s Way Toward SMB 3 .0   19

with respect to the number of operations and the accumulated SMB throughput
per time unit . In 2007, the clustered TDB software CTDB [4] was released and
achieved this goal (see my paper about clustering Samba with CTDB [5]) .

This clustering of course cannot be perfect, because it must be transparent to the
client; the Samba server implementation cannot change the Windows SMB client
software to be aware of the clustering . To the client, a Samba-CTDB cluster looks
like a single SMB server with multiple network interfaces . The main issue is what
happens when one node becomes unavailable . The IP addresses associated with
that node are migrated to a different node, and the CTDB software sends so-called
tickle-ACK packets to the clients previously connected to the now unavailable
node to trigger a fast reconnect to the same IP address . But this reconnect means
that the client loses all its open file handles with the associated caches (oplocks)
and locks . Also, write or read operations that were in process when the node failure
occurred are lost . Samba could not implement any retry or replay mechanisms
without being able to modify the client .

This form of clustering was good enough, though, for the Samba-CTDB suite to
become pretty popular quickly . Big installations started using it, and it was mean-
while used as a base technology in a couple of NAS appliances . The main point was
that Windows at that time could not do all-active SMB clustering at all .

This has changed now with SMB 3 .0, which has introduced all-active clustering of
SMB into the protocol .

Step 0: Client Implementation and Tests
Despite the availability of protocol documentation from Microsoft in the MSDN
library [6] since 2008, after the court decision in the European Commission com-
petition case, the initial step in Samba’s development process toward understand-
ing and implementing new features in the server is usually still to write tests . The
official source about SMB 2 and 3 is the [MS-SMB2] document from MSDN [7] . At
the time Samba started to explore SMB 3, the SMB 3 content of this document was
still nascent, so test cases were inevitable . The tests are usually written as part of
the smbtorture program . These tests are run against Windows and are extended
until a good understanding of the protocol aspect is achieved, and as a next step the
server implementation is extended until the tests are passed . The prerequisite for
writing these tests for SMB features is a client implementation of these features .
At the beginning of the exploration of durable handles and SMB 3 .0, there were
effectively four SMB client libraries in Samba: implementations for SMB 1 and
SMB 2 in source3/ and source4/ .

To understand this, one has to know that the Samba code had been split into two
code bases with the release of Samba 3 .0 and the start of the Samba4 project in
2003 . These two code bases were then known as the Samba3 and the Samba4
projects and were, despite the original intent, developed in parallel until they
were merged again in 2008 . From this time on, the code that was originally from
the Samba3 tree was found in the source3 directory, and the Samba4 code in the
source4 directory . Although the code has been increasingly reconciled since the
merge, the client implementations and test tools were still completely separate
until last year . None of these client implementations was complete and each had
its own problems .

20   ;login: VOL. 38, NO. 1

As a first step, the developers created a common low-level base library for SMB1
and SMB2, and the existing libraries were turned into wrappers around this new
library . The new client library is located in the files

libcli/smb/smbXcli_base.h

libcli/smb/smbXcli_base.c

With this client library a whole new set of tests have been written for durable and
persistent handles, leases, multi-credit, multi-channel, and many more aspects of
SMB 1 and 2 . The test tool even uncovered a couple of bugs in the Windows Server
2012 prereleases . It still remains to unify the higher level libs into a single SMB
client library that is used in all tests and in the smbclient command line client tool .

Implementing Durable Handles
The basic support for SMB 2 .0 in Samba 3 .6 could be added while keeping the
original overall design paradigms explained above, namely the principle that the
SMB-level pieces of information about sessions, share connections (“tree con-
nects” in SMB speak), and open files were previously kept in memory and not
marshaled into databases, because there was no need for interprocess communi-
cation at that level .

Durable file handles of SMB 2 .0 created a new situation, in that they are a purely
SMB-level concept . When the client is disconnected, the SMB server effectively
keeps the file behind the durable handle open and gives it back to the client when
it reconnects and reclaims the durable handle . More concretely, when a client
reconnects after a short network outage, it uses a special form of the SMB2 session
setup, the so-called session reconnect, which is characterized by the presence of
the PreviousSessionId field . The server is to delete all tree connects associated
to the session and close associated file handles except for the durable ones before
replying to the session setup request . Thus, Samba needs to be able to look up SMB
sessions, especially disconnected ones, by session ID, and tree connects by the
tree ID . After establishing a new tree connect, the client requests to reconnect its
durable handles by specifying the FileId in the durable handle reconnect create
context . Hence, Samba needs to be able to look up open file handles by their file ID .

Furthermore, a reconnecting client will talk to a newly created smbd process, and
hence the file handle in Samba can no longer be tied to a single smbd process . This
shows that in order to implement durable handles, Samba needed a way to access
session, tree connect, and file handle information from different processes, i .e ., to
create new SMB-level databases for sessions, tree connects, and open file handles .

After some initial thoughts about really keeping the files open until a client recon-
nects and tries to reclaim its durable handles, and then passing the open file to
the new smbd via fd-passing, the developers chose a different initial approach: At
disconnect, Samba closes the file and marks the entry in the locking.tdb database
as disconnected . When the client reconnects the durable handle, Samba looks up
the handle information in the corresponding databases, reopens the file, and rees-
tablishes all modes and locks . This approach has the advantages of being easier to
implement and of having a chance of succeeding when an SMB process gets killed,
or when a reconnect happens to a different node in a Samba-CTDB cluster . One
disadvantage is that it is not interoperable; between the server closing the file and
the client reconnecting there is a possibility that a different application (such as
NFS) could access the file without Samba noticing .

 ;login: FEBRUARY 2013 Samba’s Way Toward SMB 3 .0   21

In addition to the requirement for new databases, the assumption that the entries in
the databases always refer to an existing smbd process had to be given up . This point
is quite subtly important, since the lazy cleanup of the VFS-level databases relied on
each entry being valid if and only if the process referred to by the entry existed . The
new disconnected state enters a special new server ID token into the entries that lets
the cleanup mechanism skip the pruning of the corresponding entry .

The introduction of the new SMB-level databases was in fact much more involved
than one might guess, because the old structures mixed elements from the SMB/
SMB2 layer, the FSA layer (see [MS-FSA] referred to by the [MS-SMB2], [MS-
SMB], and [MS-CIFS] documents of the MSDN documentation [6]), and Samba’s
POSIX-VFS layer . The structures were also used across the various layers, so it
was rather difficult to change a behavior in just one layer . This situation arose
because the Samba code was not cleanly designed in a greenfield environment but
was production code, the roots of which began at a time of limited understanding
of the protocol and which grew over many years . Hence the introduction of the
databases also required a cleanup and reworking of the SMB server .

The result was the smbXsrv system, a set of structures, databases, and attached
code to form the core code of the protocol side of the SMB server . The data struc-
tures are defined in the idl (interface definition language) file

source3/librpc/idl/smbXsrv.idl

and these are the corresponding new databases:

smbXsrv_session_global.tdb

smbXsrv_tcon_global.tdb

smbXsrv_open_global.tdb

Now the separation between the SMB layer and the VFS layer is clearer . A couple of
the old structures such as connection_struct and user_struct have been unbur-
dened and moved to the VFS layer, and the old sessionid.tdb and connections.

tdb databases are gone . With a lot of work required on the nitty-gritty details, this
was the basis for the implementation of durable handles .

Low-Hanging Fruit
Based on the introduction of the smbXsrv system, a few tasks have become rela-
tively easy and straightforward to implement .

1 . Session reconnect. This is actually part of the durable handle implementation,
but more on the client behavior side and not strictly part of the durable handle
negotiation .

2 . Dynamic re-authentication. This item of SMB 2 .1 permits a client to proactively
reauthenticate its session .

3 . Multi-Credit. This feature of SMB 2 .1 allows the client to consume multiple data
units (so-called credits) in a single SMB request, resulting in a reduced number
of network round trips required for the same high-level copy operations .

SMB in Samba 4.0
Samba 4 .0 .0 has been released on December 11, 2012 . This is the first version
of Samba shipping with the long-awaited Active Directory domain controller .
That is, Samba 4 .0 provides all the components required for an Active Directory
server, most prominently LDAP, Kerberos, and DNS, along with a whole set of RPC

22   ;login: VOL. 38, NO. 1

(remote procedure call) services . In contrast to the original plans of the Samba4
project, this release is made possible by the combination of the Active Directory
server part with the advancement of the file server of the Samba3 releases . The
original plans of the Samba4 project were to complete the file server of the Samba4
code base, but with the limited developer resources concentrated on the directory
features while the production-proven Samba3 file server grew and matured . So the
4 .0 release is also the direct continuation of the Samba 3 .x file server releases . And
for pure file-serving purposes, one can configure and run 4 .0 in exactly the way
familiar from version 3, omitting the Active Directory part .

Although 4 .0 is clearly the Active Directory server release of Samba in the public
perception, the changes discussed in this article also make it a big and important
file server release .

With the support for durable file handles, Samba 4 .0 now ships with full SMB 2 .0
support . SMB 2 .1 is supported, with the omission of leases, resilient handles, and
branch cache . Basic support for SMB 3 .0 is also provided, and this includes the new
cryptographic algorithms, secure negotiation, and the new versions of the durable
handle requests . All missing features are negotiable capabilities that a server need
not offer, and hence Samba 4 .0 is a correct SMB 3 .0 server . Furthermore, these
changes lay the foundation for further SMB 3 development currently in preparation .

The maximum SMB version that the server will offer can be controlled with the
configuration parameter max protocol . The default is set to SMB3, but older
protocol versions can be chosen with values such as SMB2, which is a synonym of
SMB2_10 (i .e ., SMB 2 .1), SMB2_02 (i .e ., SMB 2 .0), and NT1 (i .e ., SMB 1) . The full
details can be found in the smb.conf(5) manual page .

The durable handle feature can be turned on or off in the configuration via the
parameter durable handles . The default is turned on, but this will only be effec-
tive if Samba’s means for interoperability have been disabled . The reason for this
is that with the current implementation, external access to a disconnected durable
handle (e .g . with NFS or AFP protocol) would not be noticed, hence activating
durable handles in that multi-protocol situation would open the door for data cor-
ruption . More concretely, the following settings in the configuration file smb.conf
activate durable handles in Samba 4 .0:

[global]

 durable handles = yes

 kernel oplocks = no

 kernel share modes = no

 posix locking = no

The remaining sections of this article describe the plans for the further develop-
ment of SMB 2 .1 and 3 .0 features that are currently in preparation .

Leases
One of the interesting features of SMB 2 .1 is leasing . As mentioned above, leases
can be seen as SMB oplocks done right . Leases and oplocks are modes for caching
data operations, opens, and closes on files . In principle, there are three primitives
of caching: read caching allows caching of data read operations, write caching
allows one to cache data writes and byte range locks, and handle caching allows
caching of open and close operations .

 ;login: FEBRUARY 2013 Samba’s Way Toward SMB 3 .0   23

The traditional SMB oplocks know three combination of these: level 2 oplocks
provide read caching, exclusive oplocks provide read and write caching, and batch
oplocks provide read, write, and handle caching . Leases come in four flavors: read
leases, read handle leases, read/write leases, and read/write handle leases .

One important change is that by virtue of a so-called lease key that identifies the
lease, clients can, in contrast to the case of oplocks, upgrade their caching mode
without revoking their original lease . Furthermore, the maximum sharable cach-
ing mode is changed from read to read and handle, which is implemented by the
new read handle leases .

Finally, SMB 3 .0 introduces a new concept of directory leases: a lease on a directory
allows the client to cache metadata operations on files in that directory in contrast
to the data operations cached by leases on files .

Leases, including directory leases, will be implemented in Samba relatively soon .
Based on the preparatory work on the smbXsrv system, the necessary steps are
rather clearly arranged . The additions on the SMB protocol level are mostly obvi-
ous . The more subtle changes are required at the FSA layer . The developers have
designed extensions to the format of the locking.tdb entries to cope with the
additional caching modes on that level, so that both the semantics for oplocks and
leases can be covered . The main work will lie in the extension of the existing cache
handling routines, to reflect the broader cache revocation matrix . Although there
is a certain level of protocol interoperability for SMB oplocks due to the so-called
Linux kernel leases, this interoperability is already far from perfect, and for leases
the offered semantics are simply too different . Therefore, as in the case of durable
handles, Samba will probably not start off being able to offer leases in an interoper-
able environment, and definitely not for directory leases .

More SMB 3
The Samba developers are currently planning and designing the implementation of
the large list of features of SMB 3 . The remaining part of this paper describes the
current plans to implement some of the most compelling features .

Clustering

From Samba’s perspective, Windows finally embracing active-active clustering is
very exciting . The most interesting question to start with is how well this can be
integrated with Samba’s CTDB clustering . Fortunately, initial investigations indi-
cate that the concepts introduced by Windows are either orthogonal to Samba’s
clustering or capable of being integrated quite nicely . SMB 3 .0 offers three cluster-
ing capabilities that can be attached to a share:

1 . Cluster: The availability of the share can be monitored with the Witness service,
an RPC service described in the [MS-SWN] document at [8] . The Witness ser-
vice also allows the client to be notified of network interface changes . This is to
speed up failovers in a highly available server . With the current state of research
and testing, the Witness service will integrate cleanly with the CTDB clustering .

2 . Continuous availability: This share allows for transparent failover of SMB cli-
ents . That is, in case of planned or unplanned outage of a cluster node, the SMB
client is guaranteed to be able to reconnect to a different node without inter-
ruption of I/O, so the applications using the SMB file share will not notice . This

24   ;login: VOL. 38, NO. 1

is based on certain retry and replay concepts, and it is the foundation and the
prerequisite for persistent file handles .

3 . Scaleout: This is the all-active nature of shares, that is the share is available on
all nodes of the cluster simultaneously . It increases the available accumulated
bandwidth for a share . Load can be balanced across the cluster nodes, in particu-
lar administratively triggered using the transparent SMB failover . The all-active
nature also enables faster recovery of durable handles . Because the scale-out
characteristic is the basis of Samba’s CTDB clustering model, the understand-
ing is that CTDB will enable building scale-out SMB3 clusters with Samba . The
details of this are currently being worked out .

The bottom line is that SMB 3 .0 adds clustering capabilities that CTDB clusters
also have, but without client awareness . With SMB 3 .0, the server introduces
clustering infrastructure, while the main logic for failover and retry is in the client .
This fact is the main reason that this will integrate with CTDB, so Samba develop-
ers will not need to invent a completely new clustering model .

Multi-Channel

As mentioned above, multi-channel is a mechanism for the client to bundle mul-
tiple transport connections (channels) into a single SMB session . The I/O load is
spread across the channels, and the session is more robust against network fail-
ures: a session is intact as long as there is at least one intact channel on the session .
Multi-channel is also the basis for RDMA support . The prerequisite for channel
bundling is the new interface discovery control that the server has to offer . Based
on the information this control delivers, the client decides which interfaces it uses .

The starting point for implementing multi-channel in Samba is to give up the
assumption that smbd processes correspond bijectively to TCP connections to the
SMB ports . The plan is to transfer TCP connections that belong to the same client
to a common process by applying a technique called fd-passing to the TCP-socket .
This transfer will be done at protocol negotiation time based on the client identi-
fier called Client GUID . There are concrete plans for most of the details, but the
complete implementation of multi-channel in Samba will be a rather large task,
since the infrastructure for finding a server based on the Client GUID and passing
a connection from one server to another needs to be created . Furthermore, the
assumption that one smbd serves only one TCP connection is currently rooted
firmly in the server code, and this needs to be carefully removed .

Persistent Handles

Persistent file handles are like durable file handles but with guarantees, whereas
durable handles are a best-effort concept . This kind of file handle is only offered
on continuously available shares . The SMB protocol mechanisms for obtaining
and reconnecting persistent handles are in principle already available in Samba
4 .0, although not activated: they are treated by special flags in the SMB3 version
of the durable request . The difficult part of the implementation are the additional
guarantees attached to persistent handles . In contrast to the durable handles,
whose pieces of information are stored in the usual volatile databases, informa-
tion for persistent handles will need to be stored persistently, so that a discon-
nected persistent handle will, for instance, survive a server restart . The details
of the implementation are not designed yet, but this will definitely come with a
performance penalty regarding opening files . But this is expected and accepted

 ;login: FEBRUARY 2013 Samba’s Way Toward SMB 3 .0   25

for persistent handles; these are targeted at server workloads such as Hyper-V
and SQL, which don’t open and close files at a high frequency but rather work on a
small number of open-end files for a long time, the important thing being that the
open cannot be lost .

SMB over RDMA

The final SMB3 topic to be touched here is SMB Direct, the variant of SMB 3 .0
that can use RDMA-capable transports such as Infiniband or iWARP-capable 10G
Ethernet adapters for the data transfers . SMB direct uses a normal TCP connec-
tion as the initial connection, and this is always used for the protocol head . Then
multi-channel is used to bind an RDMA-capable channel to the session for the pay-
load data in reads and writes . This is a topic where much research is still needed,
because it requires integration with special RDMA-capable network hardware
since Windows does not offer a pure software iWARP implementation as Linux
does . The transport abstraction is already largely designed and prototyped, but the
work does not stop there; existing iWARP client libraries libibverbs or librdmaca
must be integrated . They are currently not fork-safe, and they can’t be used with
fd-passing, which is the proposed mechanism for multi-channel session binds . So
Samba needs some changes in such libraries .

Conclusion
Samba 4 .0 will be an exciting release, not only because of the new Active Directory
server component, but also as a file server release . The new release features basic
SMB 3 .0 support, and comes with support for durable file handles as the big new
feature . The developers are currently busy designing and even starting the imple-
mentation in Samba of leases and many features of SMB 3, most notably support for
scale-out and continuously available shares, multi-channel, and persistent handles .
The main goal is to enable full support for SMB 3 .0 clustering, e .g ., running Hyper-V
on a Samba-CTDB cluster with one of the next releases (4 .1 or 4 .2) of Samba .

References

[1] Samba, the open source SMB server for UNIX: http://www .samba .org/ .

[2] The SNIA Storage Developer Conference 2011: http://www .snia .org/events/
storage-developer2011 .

[3] TDB, Samba’s trivial database: http://tdb .samba .org/ .

[4] CTDB, the clustered TDB project: http://ctdb .samba .org/ .

[5] Michael Adam, “Clustered NAS for Everybody: Clustering Samba with CTDB,”
http://www .samba .org/~obnox/presentations/sambaXP-2009/samba-and-ctdb .pdf .

[6] MSDN Library, Open Specifications: Windows Protocols: http://msdn .microsoft
 .com/en-us/library/ms123401 .aspx .

[7] MSDN Library, [MS-SMB2]: Server Message Block (SMB) Protocol Versions 2
and 3: http://msdn .microsoft .com/en-us/library/cc246482%28v=prot .20%29 .aspx .

[8] MSDN Library, [MS-SWN]: Service Witness Protocol: http://msdn .microsoft
 .com/en-us/library/hh536748%28v=prot .20%29 .aspx .

POWER

26   ;login: VOL. 38, NO. 1

Nosayba El-Sayed is a PhD
student in the Department
of Computer Science at the
University of Toronto, working

under the supervision of Professor Bianca
Schroeder. Her research focuses on improving
the reliability and energy-efficiency of large-
scale systems. Nosayba received her BS
and MS in computer engineering from the
University of Kuwait. nosayba@cs.toronto.edu

Ioan Stefanovici is a PhD
student in the Computer
Systems and Networks Group at
the University of Toronto under

the supervision of Professor Bianca Schroeder.
His research deals primarily with improving
the reliability and performance of large-scale
computer systems. He also has industry
experience working at Microsoft, Google, and
IBM Research. ioan@cs.toronto.edu

George Amvrosiadis is a
PhD student in computer
science at the University of
Toronto. His research interests

include storage reliability and idleness char-
acterization, detection, and utilization. He
completed his BS at the University of Ioannina
in Greece, with a thesis on namespace man-
agement of federated file systems.
gamvrosi@cs.toronto.edu

Andy A. Hwang is a PhD student at the University of Toronto under the super-
vision of Professor Bianca Schroeder. He received his BAS from the University of
Waterloo and MS from the University of Toronto. Andy works on enhancing the
reliability and performance of computer systems, both as a whole and for specific

components such as DRAM. hwang@cs.toronto.edu

Bianca Schroeder is an assistant professor in the Department of Computer Science
at the University of Toronto. Before coming to Toronto, Bianca completed her PhD
and a two-year post-doc at Carnegie Mellon University. Her research focuses
on computer systems, in particular the reliability of large-scale systems and the

empirical analysis of computer systems. bianca@cs.toronto.edu

Datacenters have developed into major energy hogs, and more than a third of this
energy is spent on cooling . While estimates suggest that increasing datacenter
temperature by just one degree could reduce energy consumption by 2–5%, the
effects of increased temperature on server components are not well understood . In
this article, we present results from a large-scale field study, which demonstrate
that there is ample potential for increasing datacenter temperatures without sacri-
ficing system reliability or performance .

Datacenters currently account for nearly 3% of the world’s electricity consump-
tion, and the annual cost for a single cooling system can be as high as $8 million .
Not surprisingly, a large body of research has been devoted to reducing cooling
cost . Interestingly, one key aspect in the thermal management of a datacenter is
still not well understood: controlling the setpoint temperature at which to run a
datacenter’s cooling system . While Google and Facebook have begun increasing
temperatures in some of their datacenters, most organizations are typically more
conservative, operating their datacenters in the 20°C to 22°C range, some as cold
as 13°C degrees [2, 6] . Setting datacenter temperatures is more of a black art than a
science, and many operators rely on anecdotal evidence or manufacturers’ (conser-
vative) suggestions, as there are no field studies detailing the effects of tempera-
ture on hardware components . In this article, we present results from our recent
work [4] on the impact of temperature on component reliability and performance
based on large-scale field data from multiple organizations and on experiments
we conduct in a lab using a heat chamber . We also discuss several other concerns
related to increased datacenter temperatures .

Temperature Management in Datacenters
Cranking Up the Thermostat Without Feeling the Heat

N O S A Y B A E L - S A Y E D , I O A N S T E F A N O V I C I , G E O R G E A M V R O S I A D I S ,
A N D Y A . H W A N G , A N D B I A N C A S C H R O E D E R

 ;login: FEBRUARY 2013 Temperature Management in Datacenters   27

Temperature and Reliability
Our study of the effect of temperature on system reliability focuses on two specific
hardware components, hard disk drives and DRAM, as these are among the most
frequently replaced components in today’s datacenters . We also study the impact
of temperature on the overall reliability of a node .

Errors in DRAM

We study the effect of temperature on two different DRAM error modes: correct-
able errors (CEs), where bits on a DRAM chip are flipped but can be corrected with
error correcting codes (ECC), and uncorrectable errors (UEs), where the number of
erroneous bits is too large for the ECC to correct, causing an application or machine
crash . In many environments, UEs affect component lifetimes, as a single UE is
often considered serious enough to replace the component .

Our largest data source comes from datacenters at Google, covering five different
hardware platforms, and includes per DIMM counts of the occurrence of uncor-
rectable errors, as well as periodic temperature measurements based on sensors
on the motherboard . Figure 1 shows the monthly probability of an uncorrectable
DRAM error per DIMM as a function of the average monthly temperature .

Interestingly, we find that error rates are mostly flat with temperature, with the
exception of one model (model A) . We find that when further breaking down the
data for model A and looking at the trends for individual datacenters, error rates
are flat with temperature except for one outlier datacenter that exhibited a slightly
increasing trend .

We performed a similar analysis on data collected at Los Alamos National Lab
(LANL) on node outages that were due to DRAM problems and on data collected
at the SciNet Consortium (from the largest supercomputing cluster in Canada) on
DIMM replacements . Again, we found no correlation between higher temperatures
and increased DRAM failure rates .

We had also looked at the impact of temperature on correctable errors in an earlier
study [7] based on Google data and, again, found no evidence of a correlation between
temperature and correctable errors in DRAM .

Observation: We do not observe evidence for increasing rates of uncorrectable
DRAM errors, correctable DRAM errors, DRAM DIMM replacements, or node
outages caused by DRAM problems as a function of temperature (within the range
of temperatures our data comprises) .

Latent Sector Errors in Hard Disks

We concentrate our study of hard disk reliability on two common disk failure modes:
latent sector errors (LSEs), where individual sectors on a disk become inaccessible,
and complete disk failures . Both failure modes occur at a significant rate in the field,
posing threats to data safety .

Our data on latent sector errors was collected from January 2007 to May 2009
from seven different datacenters at Google, covering three disk models and a total
of 70,000 disks . For each disk, we have monthly reports of the average internal disk
temperature (collected from SMART) and the temperature variance .

10 20 30 40 50 60
10−5

10−4

10−3

10−2

10−1

Temperature (Celsius)

Pr
ob

ab
ilit

y
of

 U
nc

or
re

ct
ab

le
 D

R
AM

 E
rro

r

All Models

MODEL C
MODEL D
MODEL A
MODEL E
MODEL F

Figure 1: Probability of uncorrectable DRAM
errors at Google as a function of temperature

28   ;login: VOL. 38, NO. 1

Figure 2 (left) shows the monthly probability of a disk developing an LSE as a
function of temperature for each of the three disk models . We observe a trend of
increasing LSE rates as temperature rises; however, an interesting observation
is that the magnitude of increase is much smaller than expected based on com-
mon models (e .g ., the Arrhenius model), which predict exponential growth of
hardware failures with temperature . Using curve-fitting techniques, we found
that a linear fit was comparable and in many cases even better than an exponen-
tial fit to our data .

Observation: The prevalence of latent sector errors increases much more slowly
with temperature than reliability models suggest . Half of our model/datacenter
pairs show no evidence of an increase, while for the others the increase is linear
rather than exponential .

We also study the effect of variability in temperature on LSEs . Figure 2 (right)
shows the monthly probability of LSEs as a function of coefficient of variation
(CoV: the coefficient of variation is defined as the standard deviation divided by
the mean) in temperature . When further breaking down the data by datacenter,
we observe the following:

Observation: When further breaking down the data by datacenter, we find that the
variability in temperature tends to have a more pronounced and consistent effect
on LSE rates than mere average temperature .

Hard Disk Replacements

We consider a hard disk failure as any kind of disk problem that is serious enough
to replace the disk in question . We have obtained data on disk replacements and
disk temperatures collected from January 2007 to May 2009 at 19 different data-
centers at Google, covering five different disk models and 200,000 disks .

When analyzing the monthly probability that a disk will fail as a function of disk
temperature, we observe that only three out of the five disk models show any
increase in failure rates as temperature increases . Moreover, for these three mod-
els, visual inspection as well as results from statistical curve-fitting indicate that
the increase in failure rates tends to be linear rather than exponential .

Observation: Only some disk models experience increased failure rates with tem-
perature, and for those models the increase is weaker than what existing reliability
models predict .

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

Pr
ob

ab
ilit

y
of

 e
rro

r

CoV in Temperature

MODEL 3
MODEL 4
MODEL 6

20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y
of

 e
rro

r

Temperature (Celsius)

MODEL 3
MODEL 4
MODEL 6

Figure 2: The monthly probability of LSEs by temperature (left) and by coefficient of variation
(right)

 ;login: FEBRUARY 2013 Temperature Management in Datacenters   29

Other Datacenter-Specific Factors

There are many datacenter-specific factors beyond temperature that might affect
reliability (workload, humidity, handling procedures, etc .) . We make an interest-
ing observation when separating the data on LSEs by datacenter: LSE rates for the
same disk model can vary widely, by a factor of two, for disks in different data-
centers . We considered differences in age or usage as possible reasons, but found
that neither has a significant correlation with temperature .

Observation: There are other datacenter-specific factors that have a stronger effect
on disk reliability than temperature . These could, for example, include humidity,
vibration, or handling procedures .

Node Outages

Rather than focusing on a particular hardware component, we also considered
overall system reliability as a function of temperature . We study a data set cover-
ing all node outages in 13 clusters (a total of 4384 nodes) at LANL recorded
between 2001 and 2005, and event logs containing periodic temperature measure-
ments provided by sensors on the motherboard .

The two graphs in Figure 3 show the monthly probability of a node outage for
LANL system 20 as a function of the average temperature and the coefficient of
variation (CoV) in temperature, respectively . The left graph compares the node
outage probability of the coldest 50% of the nodes (left bar) with the node outage
probability of the hottest 50% of the nodes (right bar) . The right graph compares
the node outage probability for the top 50% of nodes with the highest CoV and the
bottom 50% of nodes with lowest CoV .

Observation: We observe no evidence that hotter nodes have a higher rate of node
outages or node downtime (node downtime graph omitted for space) .

Observation: We find that high variability in temperature seems to have a stronger
effect on node reliability than average temperature .

We have expanded our analysis to node outages at 12 other clusters at LANL and
hardware replacements at a cluster at SciNet and make similar observations . Full
results are included in [4] .

Other Concerns with Increased Temperatures
While it is widely known that higher temperatures might negatively affect the
reliability and lifetime of hardware devices, less attention is paid to other concerns
with increased temperatures . The first is the fact that high temperatures can also

0

0.01

0.02

0.03

0.04

0.05
HW node outage − LANL system 20

Temperature (Celsius)

Pr
ob

ab
ilit

y

22−30
30−41.1

0

0.02

0.04

0.06

HW node outage − LANL system 20

CoV in Temperature

Pr
ob

ab
ilit

y

0−0.0074
0.0074−0.04

Figure 3: Probability of node outages by temperature (left) and by coefficient of variation (right)

30   ;login: VOL. 38, NO. 1

negatively affect the performance of systems . Many server components employ a
variety of mechanisms that will activate at high temperatures to protect them-
selves against temperature-induced errors and failures . These mechanisms can
introduce overheads, potentially affecting server performance . Other concerns
include the effect of higher temperatures on a server’s power consumption and
potential hot spots in a datacenter . We discuss each of these below .

Performance of Hard Disk Drives

We begin with a study of the effect of temperature on hard disk drives . It has been
suggested that in order to protect themselves against a possibly increasing rate
of LSEs, some hard disk models enable read-after-write (RAW) when a certain
temperature threshold is reached . Under RAW, every write command sent to the
disk is followed by a verify operation, which will read back the sector that has just
been written and verify its contents . Unfortunately, features such as RAW are
often considered trade secrets and their associated parameters (or even existence)
are not well documented . In fact, even within a company manufacturing hardware
these features are regarded as confidential and not shared outside product groups .

As a result, we decided to investigate experimentally how the performance of
different components changes with increasing temperatures using a testbed
based on a heat chamber . We equip a Dell PowerEdge R710 server, a model that
is commonly used in datacenter server racks, with a variety of hard disk drives,
including SAS as well as SATA drives, covering all major manufacturers . We run
a wide range of workloads, including synthetic benchmarks and a set of macro-
benchmarks, while using the heat chamber to vary the ambient temperature
within a range of 10°C to 55°C .

Figure 4 shows the throughput (in MBps) for one sample workload, the Postmark
file system benchmark, as a function of the drive internal temperature as reported
by the drive’s SMART statistics; the observations below, however, summarize our
findings across all workloads (see paper [4] for all results) .

Observation: All SAS drives and one out of the three SATA drives experience some
drop in throughput for high temperatures . The drops are typically in the 5–20%
range, sometimes as high as 40–80% for certain models running disk-intensive
workloads .

Observation: Because for a particular drive model the throughput drop happens
consistently at the same temperature (between 50°C and 60°C disk-internal tem-
perature, depending on the drive model), and none of the drives report any errors,
we speculate that the drop in throughput is due to protective mechanisms enabled
by the drive .

Observation: We also observe throughput drops for read-only workloads, suggest-
ing the presence of other non-publicized protection mechanisms besides RAW .

Observation: When translating the drive-specific internal temperatures into ambi-
ent temperatures (inside the heat chamber), we observe a drop in throughput for
temperatures ranging from 40°C to 55°C, depending on the drive model . Although
datacenters will rarely run at an average inlet temperature above 40°C, most data-
centers have hot spots, which might routinely reach such temperatures .

0 10 20 30 40 50 60 70 800

50

100

150

200

250

300

Postmark
 Throughput

Internal Temperature (deg. Celsius)

Th
ro

ug
hp

ut
 (M

B/
se

c)

Hitachi 750GB SATA
Seagate 1TB SATA
WD 160GB SATA
Fujitsu 73GB SAS
Hitachi 300GB SAS
Seagate 73GB SAS
Seagate 500GB SAS

Figure 4: Throughput of an I/O-intensive
workload (Postmark) as a function of disk
internal temperature.

 ;login: FEBRUARY 2013 Temperature Management in Datacenters   31

Performance of Other Server Components

Most enterprise-class servers include features to protect the CPU and memory
subsystems from damage or excessive error rates due to high temperatures . These
include scaling of the CPU frequency, reducing the speed of the memory bus (e .g .,
from 1066 MHz to 800 MHz), and employing protection mechanisms for DRAM
(e .g ., SEC-DED ECC, Chipkill ECC, memory mirroring) . During experiments
where we placed the server in a heat chamber, we did not observe that our server
model enabled any of these features automatically . When manually enabling vary-
ing protective features, we find that they can introduce reductions in throughput
by as much as 50% for microbenchmarks that stress the memory system, and 3–4%
for macrobenchmarks modeling real-world applications .

Server Power Consumption

Increasing the air intake temperature of IT equipment can have an impact on
the equipment’s power dissipation . Leakage power of a processor increases with
higher temperatures . Additionally, most IT manufacturers start to increase the
speed of internal cooling fans once inlet air temperatures reach a certain thresh-
old, to offset the increased ambient air temperature . Together, these can make up
a significant fraction of a server’s total power consumption . To study the effect of
increasing ambient temperatures on a server’s power consumption, we attached
a power meter to our server (results shown in Figure 5 [left]) and monitored fan
speeds (see Figure 5 [right]) while placing the server in our heat chamber and
running a variety of different workloads .

Observation: The server’s total power consumption increases dramatically (by
more than 50%) in ambient temperatures over 40°C .

Observation: Based on our measurements of server fan speeds during the experi-
ments and after consulting manufacturer’s specifications for the server’s fans,
we can attribute the majority of the server’s additional power consumption to the
increased fan speeds, rather than leakage power .

Observation: Interestingly, we find that the server fan speeds seemed to increase
solely as a function of ambient temperature, irrespective of the server’s internal
temperature, suggesting the need for smarter fan controllers .

10 15 20 25 30 35 40 45 50 550

50

100

150

200

250

Ambient Temperature (C)

Po
w

er
 (W

)

GUPS
STREAM
Dhrystone
Whetstone
OLTP−Mem
DSS−Mem
BLAST
Idle

10 15 20 25 30 35 40 45 50 550

2000

4000

6000

8000

10000

12000

14000

Ambient Temperature (C)

Fa
n

Sp
ee

d
(R

PM
)

GUPS
STREAM
Dhrystone
Whetstone
OLTP−Mem
DSS−Mem
BLAST
Idle

Figure 5: The effect of ambient temperature on power consumption (left) and server fan
speeds (right)

32   ;login: VOL. 38, NO. 1

Reduced Safety Margins

One final concern with increasing datacenter temperatures are hot spots: portions of
a datacenter that are significantly hotter than the average room temperature . The
concern is that as the average temperature in a datacenter increases, the hot spots
will approach critical temperature thresholds at which servers are configured to
shut down in order to avoid equipment damage . This reduces the amount of time
available to shut down a server cleanly, in case of an event such as AC or fan failure .
We used data from seven datacenters at Google and a 256-node cluster at LANL to
study variations in temperature between different servers in the same datacenter .

Observation: Interestingly, the trends for temperature imbalances are very similar
across datacenters and organizations . The node/disk in the 95th percentile is
typically around 5°C hotter than the median node/disk, and the 99th percentile is
around 8–10°C hotter than the median node/disk .

Lessons Learned
Based on our study of data spanning more than a dozen datacenters at three dif-
ferent organizations, and covering a broad range of reliability issues, we find that
the effect of high datacenter temperatures on system reliability is smaller than
often assumed . For some of the reliability issues we study, namely DRAM fail-
ures and node outages, we do not find any evidence for a correlation with higher
temperatures (within the range of temperatures in our data sets) . For those error
conditions that show a correlation (latent sector errors in disks and disk failures),
the correlation is much weaker than expected . These observations imply that
there is ample room for increasing datacenter temperatures without sacrificing
system reliability .

Rather than average temperature, the variability in temperature might be the more
important factor . Even failure conditions, such as node outages, that do not show
a correlation with temperature, do show a clear correlation with the variability in
temperature . Efforts in controlling such factors might be more important than low
average temperature in keeping hardware failure rates low .

We find evidence that other datacenter-specific factors (such as humidity, vibra-
tion, handling procedures) are likely to have a stronger, or at least an equally strong,
effect as temperature . Although we do not have sufficient data for a detailed study
of these factors, anecdotal evidence from discussions with datacenter operators
suggests, for example, that poor handling procedures for equipment are major fac-
tors in the field . Our observations demonstrate the need for more work in this area .

Do our results mean that common models (e .g ., the Arrhenius model) that predict
exponential growth in failure rates with temperature are wrong? We think no .
Instead, it is likely that in practice (and for realistic temperatures) the effects of
other factors dominate failure rates . The Arrhenius model solely tries to capture
the effect of heat on hardware components without taking into account other pos-
sible factors that impact hardware reliability in the field . Our results indicate that,
when all real-world factors are considered, the effect of temperature on hardware
reliability is actually weaker than commonly thought .

The error mode that was most strongly correlated with high temperatures is latent
sector errors (LSEs) in hard disk drives . In experiments with our testbed based
on a heat chamber, we observe that not all hard disks employ mechanisms, such
as read-after-write, to protect against increases in LSEs under high temperature .

 ;login: FEBRUARY 2013 Temperature Management in Datacenters   33

For those that do (mostly enterprise-class drives), we find that they tend to kick in
only at very high temperatures and are associated with significant performance
penalties . Operators concerned about LSEs might want to implement independent
protection mechanisms under high temperatures, such as “scrubbing” their data at
increased rates .

We find that higher temperatures can raise a server’s power consumption by more
than 50%, and attribute the additional dissipation to increased fan speeds through
our experiments . In many cases, this could likely be avoided by employing more
sophisticated fan controller algorithms . This suggests that smarter fan controllers
are needed to run datacenters hotter .

We find that in a typical datacenter, the top 5% of nodes are 5°C hotter than
the median temperature, whereas the top 1% of nodes are 8–10°C hotter than the
median . This is important to keep in mind when raising datacenter temperatures,
as it will bring these hot spots even closer to critical thresholds when thermal
shutdown becomes necessary . Operating at higher temperatures will therefore
require mechanisms (including, for example, a detailed temperature monitoring
infrastructure) to detect and react quickly to unforeseen events, such as AC or
fan failures .

References

[1] C . Belady, A . Rawson, J . Pfleuger, and T . Cader, “The Green Grid Datacenter
Power Efficiency Metrics: PUE & DCiE,” technical report, Green Grid, 2008 .

[2] J . Brandon, “Going Green in the Datacenter: Practical Steps for Your SME to
Become More Environmentally Friendly,” Processor, vol . 29, Sept . 2007 .

[3] California Energy Commission, “Summertime Energy-Saving Tips for
 Businesses”: consumerenergycenter .org/tips/business_summer .html .

[4] N . El-Sayed, I .A . Stefanovici, G . Amvrosiadis, A .A . Hwang, and B . Schroeder,
“Temperature Management in Datacenters: Why Some (Might) Like It Hot,” in
Proceedings of the Fourteenth International Joint Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ‘12), ACM, 2012, pp . 163–174 .

[5] Lawrence Berkeley National Labs, Benchmarking—Datacenters: http://
hightech .lbl .gov/benchmarking-dc .html, December 2007 .

[6] Rich Miller, “Google: Raise Your Datacenter Temperature”: http://www
 .datacenterknowledge .com/archives/2008/10/14/google-raise-your-data-center
-temperature/, 2008 .

[7] B . Schroeder, E . Pinheiro, and W .-D . Weber, “DRAM Errors in the Wild: A
Large-Scale Field Study,” in Proceedings of the Eleventh International Joint Confer-
ence on Measurement and Modeling of Computer Systems (SIGMETRICS ’09),
ACM, 2009, pp . 193–204 .

SYSADMIN

34   ;login:  VOL. 38, NO. 1

I have wanted to run an article about Hadoop performance for a while, and my
search for an expert finally paid off . Justin Sheehy, CEO of Basho, suggested that I
interview Allen Wittenauer of LinkedIn .

I had naively thought that the way to improve, or at least maintain, Hadoop perfor-
mance was to monitor the performance of the cluster, but Allen, with experience as
both a Hadoop developer and large cluster operator, has very different thoughts on
the subject .

I started out by reading the slides of a old presentation that Allen wrote called
“Hadoop 24/7” . Among his suggestions were to run the checks hadoop dfsadmin

-fsck and <t>hadoop dfsadmin -report nightly, and to use an NFS backup of the
NameNode file system image . You can find an updated version of his presentation at
https://www .usenix .org/sites/default/files/login-1302-wittenauer-slides .pdf .

Rik: Let’s start with some information about your background as it pertains to
Hadoop . Looking at your LinkedIn references, I can see you worked for Sun, then
Yahoo!, and now LinkedIn . Also, you are a Hadoop committer, which implies a lot
about your ability to talk about Hadoop . Can you tell me more?

Allen: After a few years working at a software company that supported hospitals, I
wanted to get involved with bigger scale problems . A friend of mine said they were
hiring at Sun and would I be interested . “The network is the computer”… yes! I was
lucky enough to get hired and moved up the ranks . As a result, I had the privilege of
bringing order to the chaos that organic growth brings at larger and larger scales .
Three such problems were building a single NIS domain to handle 100,000+ hosts
spread across the entire SF Bay Area, OS provisioning on an intercontinental scale,
and building a world-wide, single realm Kerberos deployment .

A layoff and a short stint at a startup later, I found myself talking to Yahoo! about
Hadoop . They were interested in the same sorts of problems, but with a view toward
sharing the solution with the world at large . Many companies solve these problems
using home-grown tools; however, when one is trying to build a community around
what was mostly (at the time) unproven technology, it is vital that you show a solu-
tion that they themselves can use . I was brought in to “rethink” Yahoo!’s operational
infrastructure with an eye toward open source, what I would call “burning the
house down .” It was very “startup”-like, so while that’s what I was hired for, I ended
up doing a lot more than that and had the honor of directly impacting some of the
key components in Hadoop, especially as it relates to operations .

Allen Wittenauer on Hadoop
An Interview

R I K F A R R O W

Allen Wittenauer is currently
the Senior Grid Computing
Architect at LinkedIn, Inc. He
has been working with Hadoop

with an eye toward operability for almost six
years. aw@apache.org

Rik is the editor of ;login:.
rik@usenix.org

 ;login: FEBRUARY 2013 Allen Wittenauer on Hadoop   35

Rik: In the earlier versions of your slides, you mentioned using hadoop commands
nightly to check the health of the underlying HDFS . Have these suggestions changed
over time?

Allen: The basics are still the same, but Hadoop has greatly matured in the past
four years since this presentation was completed . While doing at least a nightly
fsck to check for health is still important, there is a lot more information now
available to use for basic monitoring and metrics collection via the normal Hadoop
metrics plugins, JMX and JSON . In addition to CPU usage, network usage, etc ., we
collect a lot of that extra Hadoop data plus some additional ones such as disk ser-
vice times to build a macro view of the overall system’s health . While the metrics
Hadoop provides tend to be extremely low level, just keeping track of values such as
“tasks completed” can be useful to see if the overall grid is getting faster/slower .

One of the key points about monitoring is that you want to check the health of the
service . I recommend having a tiny job that runs every 15 minutes as a canary to
verify everything is working . In addition, alerting on percentage of down nodes vs .
on individual node failures becomes increasingly important as you scale up . That’s
a common mistake when people first start working with Hadoop . We’re all trained
from the beginning that every machine is important because most services are
fragile . If the compute nodes are properly provisioned, losing a few shouldn’t mat-
ter . It’s a hard concept to unlearn .

Rik: You also mentioned issues with the NameNode, which has always (for me)
been the scariest part of HDFS .

Allen: From an Enterprise view of the world, the fact that single points of failure
exist in the system at all is shocking . From an HPC/scientific view, not as much . I
think people forget that for a long time Hadoop was being built in a “two guys in a
garage” fashion to solve fairly specific problems . There wasn’t a priority placed on
five-9s of uptime for a system that was geared toward batch computation . Scal-
ing up to petabytes of data and fixing performance issues related to processing
that large of a data set were the priorities . It was acceptable to have, say, an hour
of downtime in the case of a failure . Now that many more people are interested
in using HDFS for real-time access with technologies like HBase and the ever
increasing commercial interest, the focus has shifted . The 2 .x branch of Apache
Hadoop will include high availability of the NameNode .

Something else to consider: using something like Xen’s Live Migration or another
HA solution—Linux HA, SunCluster, whatever—is also an option . Administrators
shouldn’t be afraid of trying to apply other methods .

That said, I think too much focus is placed on this limitation . In the almost six
years, 30+ grids, 30k hosts, and two companies where I’ve run Hadoop, the number
of times where a highly available NameNode would have saved me from service
downtime can be counted on one hand . Almost all cases of NameNode failures are
configuration problems or bad user behavior, none of which high availability will
actually help prevent from a downtime perspective . Additionally, I find it some-
what odd that no one seems to be too concerned about the lack of availability for
the JobTracker . A file system with nothing running on it isn’t very useful .

Rik: You have suggestions in your slides [1] for setting up the NameNode (mostly
lots of memory, as that is key to performance), and recovering a NameNode using
an NFS replica of the image . As I want to focus on troubleshooting performance
issues, I am more interested in maintaining the health of the NameNode than

36   ;login:  VOL. 38, NO. 1

recovering it . But writing the change log to an NFS mounted file might be a perfor-
mance issue . What other performance issues should people running a NameNode
be aware of? Do you still recommend using NFS for the backup change log?

Allen: Until the 2 .x branch is stabilized, yes, I do . At LinkedIn, we actually store
our primary NFS copy on the secondary NameNode . At Yahoo!, we had some older
NetApp boxes that were too small for another project that we repurposed for this
task . The number of IOPS obviously scale to how busy a particular HDFS might be,
but in most cases this is relatively light . Even so, it is important to make sure that
the NFS server is nearby on the same network core since you don’t want too much
latency . Another key point is that the NameNode can work off of only one fsimage
and edits file . If the primary machine has a file system failure where the image is
stored, it will continue to run off of the NFS copy .

Rik: How does a sysadmin go about uncovering performance problems in a Hadoop
cluster? You’ve said that maintaining the health of HDFS is one key, and the
NameNode is another . But there may be other causes of big (noticeable) drops in
performance when executing a job that gets done every day .

Allen: One of the most important actions that users can do is take a holistic view
of the work they are trying to accomplish . Many, many times users will tune
individual jobs, making them as fast as possible so that they can iterate during
development quickly . In the process, they hit an anti-pattern in the production
phase where the parallelization is too high to the point that the entire workflow is
performing worse . For example, increasing reducers to the point that many small
files are generated has an extremely negative network impact on the next phase
of the MapReduce job that is going to read those files, either during the read of the
input or in the shuffle phase .

I’m also a big fan of getting your hands dirty at the micro level . When dealing with
large, scalable systems, the temptation is high to look at your metrics for the entire
system and say everything looks fine . What you miss out on is that you might have
one job or an internal framework or something else that has bad behavior . Averaged
out, that’s easily missed . But dropping down to the shell and just getting a feel for
what is happening on a per-node basis is extremely helpful . Years ago, we shaved
hours of processing from some very important workflows at LinkedIn by discover-
ing a hidden bug in a commonly used internal framework . It wasn’t properly cach-
ing data from an external hint file and in turn was triggering an extra I/O on one
of the six disks for every record read . From the macro level, it was averaged away
but dropping down, and using tools like truss, dtrace, iostat, and sar made it really
stick out .

Rik: What about tunables? I hear that there are a ton of them and they almost all
have an impact on performance .

Allen: Yes, there are an amazing assortment of settings that can be applied to a job .
The running joke in the early days was that we’d hit a particular corner case and
have to add something to the configuration to tackle that problem . Unfortunately,
there is no magic bullet to know which particular tunable is the correct one to
modify . This is made worse by the fact that some tunables, such as io .sort .mb, have
a direct impact on how other tunables will operate . Today, the best bet is to use the
job and system metrics to determine whether the setting you’ve changed made a
difference . Usually one of the biggest mistakes people make here is to just throw
more heap at the problem . In most cases, this is the wrong thing to do . So that
should be the last thing that is changed .

 ;login: FEBRUARY 2013 Allen Wittenauer on Hadoop   37

I’m excited about tools like Duke University’s Starfish project (http://www .
cs .duke .edu/starfish/) . We’ve been doing cooperative research in the hopes that
exposure to “real world” conditions will improve its suggestions . In the future, this
means that we will have some utilities to automatically tune workflows for nearly
maximum performance .

Of course, bad algorithms will still be bad no matter how much tuning one does .

Rik: In your slides, you mention there is no real security in Hadoop, and I’ve seen
postings to this effect . I’ve also read a posting by you mentioning adding Kerberos
support . That means adding another dependency to Hadoop, although one that
most orgs can easily support if they have AD or Samba 4, so perhaps this is not
really a performance issue . But maybe I am wrong, and having an overutilized AD
server or congested network link to it could slow down a Hadoop cluster . .

Allen: There was a great debate about how do we secure Hadoop . For quite a while,
Hadoop didn’t even have the concept of permissions or even of different users .
Those were only added to prevent users from accidentally deleting each others’
data . There was always the thought that “we should secure the system,” but other
priorities prevented that from happening . Eventually, business realities forced
the issue and we had the challenge of how do you secure a highly scalable service
while also making it perform? We knew we didn’t want the system to prompt for a
password and then pass that around . Clearly we needed something that was single
sign-on, the holy grail . There was a big debate around using x .509 certificates/
PKI vs . Kerberos . Ultimately, the decision came down to implement SASL so that
people could build their own solution if necessary, but we were going to go with
built-in support for GSSAPI with Kerberos .

A big chunk of that decision was exactly as you stated: most places have Kerberos
in the form of Active Directory, even if they don’t know it . That takes care of the
authentication portion, but now what about scale? It was decided to use a token
mechanism so that individual daemons wouldn’t be an inadvertent DoS against
the KDCs . In this way, your Kerberos credential is used by your job client against
individual services, that client gets a token, and then that token is used throughout
the rest of your job’s lifecycle to access other parts of the system without impacting
the KDC . That takes care of overextending a potentially overutilized AD server .

Reality, however, is a bit different . Internal politics for most organizations likely
make this less cut and dried . If user accounts, and therefore their AD credentials,
are controlled by IT, does that same organization really want to hand out Kerberos
keytab files for potentially thousands of machines that they don’t control? Prob-
ably not . So what ends up happening is that companies do a one-way trust so that
IT still owns the corporate infrastructure and the “other” organization (Web
operations, DBAs, development, whoever) can tie their Hadoop systems to a local
 Kerberos infrastructure . Users still have one password (which makes them happy),
the Hadoop operations team has control over their boxes (which makes them
happy), and all of your data is nicely secured (which makes everyone happy) . As
an added bonus, this also helps balance out the performance implications as the
Hadoop systems will mostly be hitting the local KDCs .

Rik: This is great information . Is there anything else you’d like to add?

Allen: Just a big thank you to the wonderful services and information that USENIX
and LISA have provided over the years . I’m truly honored to be able to contribute
back to the technical excellence that these organizations represent .

38   ;login: VOL. 38, NO. 1

Emmanuel Jeanvoine is a
Research Engineer at Inria
Nancy Grand Est. He specializes
in distributed systems and high

performance computing. In 2007, he obtained
a PhD in computer sciences at Université de
Rennes 1. emmanuel.jeanvoine@inria.fr

Luc Sarzyniec is a Junior
Engineer at Inria Nancy Grand
Est. He started working on
distributed systems and high

performance computing after he obtained his
master of research in computing sciences in
2011. luc.sarzyniec@inria.fr

Lucas Nussbaum is an Assistant
Professor at Université de
Lorraine. His research focuses
on high performance computing

and distributed systems. He is also involved in
a professional curriculum focusing on system
administration. lucas.nussbaum@loria.fr

Installing an operating system can be tedious when it must be reproduced on many
computers, on large scale clusters, for instance . Because installing the nodes
independently is not realistic, disk cloning or imaging with tools such as Clonezilla
[1], Rocks [5], SystemImager [6], or xCAT [8] is a common approach . In those cases,
the administrator must keep updated just one node (sometimes called the golden
node) that will be replicated to other nodes . In this article, we present Kadeploy3,
a tool designed to perform operating system provisioning using disk imaging and
cloning . Thanks to its efficiency, scalability, and reliability, this tool is particularly
suited for large scale clusters .

Reliable Deployment Process with Kadeploy3
Kadeploy3 belongs to the family of disk imaging and cloning tools . It takes as input
an archive containing the operating system to deploy, called an environment, and
copies it on the target nodes . As a consequence, Kadeploy3 does not install an
operating system following the classical installation procedure, and the user must
provide an archive of the environment (as a tarball, for Linux environments) .

Kadeploy3 does not directly take control of the nodes because doing so requires
some specific and uncommon hardware support . Instead, it uses common net-
work boot capabilities based on the PXE protocol [4], and it manages the associ-
ated PXE profiles .

Using such a mechanism, combined with the capability to update the PXE profiles
of the nodes dynamically and to reboot the nodes in a reliable way (thanks to out-
of-band control interfaces, such as Baseboard Management Controller, Remote
Supervisor Adapter, or the power distribution unit’s capabilities), taking control of
the nodes and specifying what they are booting is possible .

As shown in Figure 1, a typical deployment with Kadeploy3 is composed of three
major steps, called macro steps .

1 . Minimal environment setup: the nodes reboot into a trusted minimal environ-
ment that contains all the tools required for the deployment (partitioning tools,
archive management, etc .), and the required partitioning is performed .

2 . Environment installation: the environment is broadcast to all nodes and ex-
tracted on the disks . Some post-installation operations also can be performed .

3 . Reboot using the newly deployed environment .

Kadeploy3
Efficient and Scalable Operating System Provisioning for Clusters

E M M A N U E L J E A N V O I N E , L U C S A R Z Y N I E C , A N D L U C A S N U S S B A U M

 ;login: FEBRUARY 2013 Kadeploy3   39

Each macro step can be executed via several different mechanisms to optimize the
deployment process depending on required parameters and the specific infra-
structure . For instance, the reboot using the newly deployed environment step
can perform a traditional reboot or it might instead rely on a call to kexec(8) for
a shorter reboot .

Reconfiguring a set of nodes involves several low-level operations that can lead to
failures for various reasons, e .g ., temporary loss of network connectivity, reboot
taking longer than planned, etc . Kadeploy3 reliability is achieved because (1) the
deployment process has powerful error management and (2) critical reboot opera-
tions required for the node control are based on reboot commands escalation in
order to be able to take control of the nodes in any situation .

Reliability of the Deployment

Kadeploy3 is designed to detect failures as quickly as possible and improve deploy-
ment reliability by providing a macro-step replay mechanism on the nodes of inter-
est . To illustrate that, let’s consider the last deployment macro step that aims at
rebooting using the deployed environment . Kadeploy3 implements, among others,
the following strategies:

1 . Directly load the kernel inside the deployed environment thanks to kexec .
2 . Perform a hard reboot using out-of-band management hardware without check-

ing the state of the node .

Thus it is possible to describe strategies such as: try the first strategy; if some
nodes fail, try the second strategy, several times if required .

Because all the steps involved in the deployment process rely on system calls
(hard disk operations, network communications, specific hardware manage-
ment), special attention has been paid to error handling . Kadeploy3 collects the
result of every operation (exit status, stdout, stderr), even when it is performed
on remote nodes . As a consequence, some steps can be replayed on nodes where
a problem occurs .

Furthermore, some operations may last too long (e .g ., network boot, file-system
creation, etc .), but Kadeploy3 provides administrators with the capability of defin-
ing specific timeouts for some operations in order to adapt the deployment process
to the infrastructure . That allows identifying some problems quickly and replaying
some operations on the related nodes .

Configure PXE profiles
on TFTP or HTTP server

Trigger reboot
Wait for nodes

to reboot

Configure nodes
(partition disk, . . .)

Broadcast system image
to nodes

Do post-installation
customization of nodes

Configure PXE profiles
on TFTP or HTTP server

Trigger reboot
using IPMI or SSH

Wait for nodes to reboot
on deployed environment

M
a
cr
o
st
ep

1
M
in
.
en

v
.
se
tu

p

M
a
cr
o
st
ep

2
E
n
v
.
in
ta
ll
a
ti
o
n

M
a
cr
o
st
ep

3
F
in
a
l
re
b
o
o
t

Figure 1: Kadeploy deployment process, composed of three macro-steps

40   ;login: VOL. 38, NO. 1

Reliability of Reboot Operations

Because reboot operations are essential to control the cluster nodes, and ultimately
the entire deployment process itself, they must behave correctly and reliably . Sev-
eral methods can be used to reboot nodes, for instance:

1 . Directly execute the /sbin/reboot command .
2 . Use out-of-band management hardware with protocols such as IPMI . Various

kinds of reboots can be executed: reset, power cycle, etc .
3 . Use the power management capability of the power distribution unit (PDU) .

Performing an /sbin/reboot is the best solution with regards to speed and clean-
liness; however, it may not be an option if the target node is unreachable via in-band
methods such as SSH (e .g ., the node is already down, the OS has crashed, an
unfriendly operating system is installed, etc .) . In this scenario, we would use
IPMI-like features if available . Also, because it bypasses the power-on self test, it
might be better for speed to perform a reset rather than a power cycle, but some-
times this is not sufficient . Finally, if onboard management hardware is unreach-
able, we may be required to use the capabilities of a remotely manageable PDU .

Kadeploy3 provides administrators with a way to specify several levels of com-
mands in order to perform escalation if required . This allows them to perform
highly reliable deployments if the clusters have the appropriate hardware . Unfor-
tunately, depending on the methods chosen, reboot escalation comes at a cost, and
a balance must be struck between desired reliability and the time to deployment .

Scalability
In addition to having a reliable node-control mechanism, deploying large scale
clusters in a reasonable time requires being able to execute several commands
efficiently and to send large files on a large number of nodes .

Parallel Commands

The deployment workflow contains several operations that reduce to executing a
command on a large set of nodes .

Thanks to SSH, one can execute commands remotely and retrieve their outputs,
but launching SSH commands on a large number of nodes in sequence does not
scale at all . Furthermore, launching all commands simultaneously can impose an
extreme load on the server and can consume all of its file descriptors .

Several tools have been built to overcome these limitations . For instance, Pdsh [3]
and ClusterShell [2] are designed to execute SSH commands on many nodes in
parallel . Both tools use windowed execution to limit the number of concurrent SSH
commands, and both also allow retrieval of command outputs on each node .

We choose to leverage TakTuk [9] as our mechanism for parallel command execu-
tion and reporting . TakTuk is based on a model of hierarchical connection . This
allows TakTuk to distribute the execution load on all the nodes in a tree and to
perform commands with low latency . Using such a hierarchical mechanism would
normally require the tool to be installed on all nodes . Fortunately, TakTuk includes
a convenient auto-propagation feature that ensures the tool’s existence on all nec-
essary nodes . The tool also uses an adaptive work-stealing algorithm to improve
performance, even on heterogeneous infrastructures .

 ;login: FEBRUARY 2013 Kadeploy3   41

File Broadcast

The broadcast of the system image to all nodes is a critical part of the deploy-
ment . In cluster environments where the most important network for applica-
tions is using Infiniband or Myrinet, the Ethernet network is often composed
of a hierarchy of switches (e .g ., one switch per rack) that is hard to leverage for a
high- performance broadcast . File distribution to a large number of nodes via any
sequential push or pull method is not scalable . Kadeploy3 provides system admin-
istrators with three scalable file distribution approaches during the Environment
installation macro step to minimize deployment time .

With tree-based broadcast, a file is sent from the server to a subset of nodes, which
in turn send the file to other subsets until all the nodes have received the file . The
size of the subsets, called tree arity, can be specified in the configuration . A large
arity can reduce the latency to reach all nodes, but transfer times might increase
because global bandwidth is equal to the bandwidth of a network link divided by
the tree arity . The opposite effect occurs when the arity is small . In general, this
broadcast method does not maximize bandwidth and should be used primarily for
the distribution of small files . This method is also inefficient when used in hierar-
chical networks . We implement tree-based broadcast using TakTuk .

Chain-based broadcast facilitates the transfer of files with high bandwidth . A
classical chain-based broadcast suffers from the establishment time of the chain
in large-scale clusters . Indeed, because each node must connect to the next node in
the chain (usually via SSH), a sequential initialization would drastically increase
the entire broadcast period . Thus we perform the initialization of the chain with a
tree-based parallel command . This kind of broadcast is near-optimal in a hierar-
chical network if the chain is well ordered because, as shown in Figure 2, all the
full-duplex network links can be saturated in both directions, and the performance
bottleneck becomes the backplane bandwidth of the network switches . For this
method, we implement chain initialization using TakTuk and perform transfers
using other custom mechanisms .

BitTorrent-based broadcast is able to send files at large scale without making any
assumptions about the quality of the network . Furthermore, BitTorrent is able
to handle churn efficiently, an important property in large scale systems such as
petascale and future exascale clusters . Currently, our experiments show that there
are two scenarios in which the performance of this broadcast method is inferior to
the other methods . The first pathological case is one in which we are broadcasting

images
server

Figure 2: Topology-aware chained broadcast. Data is pipelined between all nodes. When
correctly ordered, this ensures that inter-switch links are only used once in both directions.

42   ;login: VOL. 38, NO. 1

on a small-scale cluster with a high-speed network, and the second is one in which
we are broadcasting small files . In both cases, BitTorrent exhibits high latency, and
the overhead of the protocol dominates the time to broadcast . The large number of
established connections between nodes induced by the protocol can lead to bottle-
necks depending on the network topology .

In a default configuration, Kadeploy3 uses tree-based broadcast for the files used
in the deployment process (e .g ., disk partition map) and chain-based method for
the environment broadcast that is usually a large file; however, this behavior can
be modified in the configuration .

Other Advanced Features
In addition to being reliable and scalable, Kadeploy has many useful features .

Multi-Cluster Support

Kadeploy3 can be configured to manage several clusters at the same time through
a hierarchical set of YAML configuration files . In a grid-like environment, initiating
and controlling deployments on several Kadeploy servers from a unique Kadeploy
client is also possible .

Hardware and Software Compatibility

Kadeploy3 does not generally rely on vendor-specific mechanisms . Vendor-specific
remote control systems used to trigger node reboots can be used easily, even if they
do not support the IPMI protocol . Environments can be stored either as tarballs
(for Linux environments) or as raw partitions, which enables the deployment of
Windows or BSD-based systems .

Rights Management and Environments Library

Kadeploy3 can be used to provide users with a cloud-like experience with bare-
metal system reservation . It can integrate with a cluster batch scheduler used to
manage reservations in order to delegate system deployment rights to specific
users for the duration of a job . Kadeploy3 can also manage a set of environments
and their visibility (public, private) in order to provide default environments, on
which users can base their work to create and register custom environments .

Statistics Collection

Identifying defunct nodes in a cluster is often hard, especially when failures are
transient . Kadeploy3 integrates a statistics-collection mechanism that enables the
detection of nodes that often fail during the deployment process .

Performance Evaluation

Grid’5000 Experimental Testbed

Kadeploy3 has been used intensively on the Grid’5000 testbed (http://www
 .grid5000 .fr) since the end of 2009 (and previous versions of Kadeploy were used
since 2004) . In that time, approximately 620 different users have performed
117,000 deployments . On average, each deployment has involved 10 .3 nodes . The
largest deployment involved 496 nodes . To our knowledge, the deployed operat-
ing systems are mostly based on Linux (all flavors) with a sprinkling of FreeBSD .

 ;login: FEBRUARY 2013 Kadeploy3   43

Although the Grid’5000 use case does not exercise all the goals targeted by
 Kadeploy3 (e .g ., scalability), it shows the tool’s adequacy with regard to most
characteristics, such as reliability .

Curie Petascale Supercomputer

We had the opportunity to evaluate Kadeploy3 on the Curie [7] supercomputer
owned by GENCI (http://www .genci .fr/) and operated by CEA (http://www .cea .
fr): 2088 nodes were available to perform the test and the goal was to deploy the
production environment . After a single administrative cycle, 2015 nodes were
successfully deployed . This proved the efficiency and the reliability of Kadeploy3
in a large-scale production infrastructure .

Virtual Testbed

Validating scalability on large physical infrastructures can become complex
because it requires privileged rights on many components (e .g ., access to manage-
ment cards, modification of PXE profiles, etc .) . For example, because the Curie
supercomputer is used for production purposes, we only had access to it for several
hours . Thus we chose to build our own large-scale virtual testbed on Grid’5000,
leveraging important features such as link-layer isolation, and Kadeploy3 of course .

We performed an experiment in which we used 635 physical nodes of the Grid’5000
testbed . Depending on the nodes capabilities, we launched a variable number of
KVM virtual machines . In total, 3,999 virtual machines were launched and par-
ticipated in a single virtual network (despite that the physical nodes were located
on four different sites) . Then we installed all the required servers: DHCP, TFTP,
MySQL, HTTP server, Kadeploy3 . Once the testbed was launched, we were able
to perform deployments within a single cluster of 3,999 nodes . During the largest
run, a 430 MB environment was installed on 3,838 virtual machines in less than
an hour; 161 virtual nodes were lost due to network or KVM issues . A significant
amount of time was also wasted because of the high latency between geographi-
cally distant sites (10–20 ms), which affected some infrastructure services such as
DHCP and the PXE protocol .

Wrapping Up
We think that Kadeploy3 can help system administrators of large-scale clusters
save precious time by reducing OS provisioning time . The best way to be convinced
is to try it . Kadeploy3 is free software (CeCill 2 license) written in Ruby and avail-
able from http://kadeploy3 .gforge .inria .fr/ . Source code, as well as Debian and
RPM packages, can be downloaded . Kadeploy3 is configured thanks to few YAML
files . To help administrators, a complete guide describes the entire installation and
configuration process [10] .

References

[1] Clonezilla: http://clonezilla .org .

[2] ClusterShell: http://cea-hpc .github .com/clustershell .

[3] Parallel Distributed Shell: http://sourceforge .net/projects/pdsh .

[4] Preboot Execution Environment (PXE) Specification: http://download .intel
 .com/design/archives/wfm/downloads/pxespec .pdf .

44   ;login: VOL. 38, NO. 1

[5] Rocks: Open-Source toolkit for real and virtual clusters: http://www
 .rocksclusters .org .

[6] SystemImager: http://systemimager .org .

[7] The Curie supercomputer: http://www-hpc .cea .fr/en/complexe/tgcc-curie .htm .

[8] xCAT: Extreme Cloud Administration Toolkit: http://xcat .sourceforge .net .

[9] Benoit Claudel, Guillaume Huard, and Olivier Richard, “TakTuk: Adaptive
Deployment of Remote Executions,” Proceedings of the 18th ACM International
Symposium on High Performance Distributed Computing (HPDC), ACM 2009,
pp . 91–100 .

[10] Kadeploy3: https://gforge .inria .fr/frs/download .php/27606/kadeploy-3 .1-3 .pdf .

PROGRAMMING

 ;login: FEBRUARY 2013   45

Thomas W. Barr is a fifth-year
PhD student at Rice University
in the Department of Computer
Science. He received his BS

degree in engineering and music from Harvey
Mudd College in 2008. He has published
research in computer architecture, embedded
systems software, and high-performance
computing. Outside of graduate school, he has
worked as an expert witness and in litigation
support for intellectual property.
twb@rice.edu

Scott Rixner is an Associate
Professor of Computer Science
at Rice University. His research
focuses on the interaction

between operating systems, runtime systems,
and computer architectures; memory
controller architectures; and hardware and
software architectures for networking. He
works with both large server-class systems
and small embedded systems. Prior to joining
Rice, he received his PhD from MIT.
rixner@rice.edu

Imagine my typical day . My alarm clock goes off and I immediately check my
email on my iPhone . I stumble out of bed, make myself a cup of coffee and watch
the morning news that my TiVo kindly recorded for me . I unlock my car and am
presented with a map that shows the traffic on my route to work .

While there were three obvious computers in this little story, there are dozens
more unsung heroes you probably didn’t even think about . My alarm clock, my cof-
fee maker, my TiVo remote, and my car key all are built around a microcontroller .
My car is built around dozens of them . This article is about programming these
very real, very complex computer systems .

Modern microcontrollers are almost always programmed in C . Applications run
at a very low level without a real operating system . They are painfully difficult to
debug, analyze, and maintain . At best, a simple real-time operating system (RTOS)
is used for thread scheduling, synchronization, and communication [3] . These
systems provide primitive, low-level mechanisms that require expert knowledge
to use and do very little to simplify programming . At worst, they are programmed
on the bare metal, perhaps even without a C standard library . As the electronic
devices of the world become more and more complex, we absolutely have to do
something to make embedded development easier .

We believe that the best way to do this is to run embedded software on top of a
managed runtime system . We have developed and released as open source an effi-
cient embedded Python programming environment named Owl . Owl is a complete
Python development toolchain and runtime system for microcontrollers . Specifi-
cally, Owl targets systems that lack the resources to run a traditional operating
system, but are still capable of running sophisticated software systems . Our work
focuses on the ARM Cortex-M3 class of devices . These microcontrollers typically
have 64–128 KB of SRAM, and have up to 1 MB of on-chip flash . Surprisingly,
though, they are quite fast, executing at up to 100 MHz . This makes them more
than fast enough to run an interpreter . These devices are absolutely everywhere;
by 2015, ARM Cortex-M3-based systems are estimated to outsell x86 systems by a
factor of 40 .

Owl is a complete system that includes an interpreter, a programmer, an IDE, and
a set of profilers and memory analyzers . Owl is derived from portions of several
open-source projects, including CPython and Baobab . Most notably, the core
runtime system for Owl is based on Dean Hall’s Python-on-a-Chip (p14p) [2] . We
support it on Texas Instruments LM3S9x9x Cortex-M3 microcontrollers as well as
STM ST32F4 Cortex-M4 microcontrollers .

The Owl Embedded Python Environment
Microcontroller Development for the Modern World

T H O M A S W . B A R R A N D S C O T T R I X N E R

46   ;login: VOL. 38, NO. 1

Owl demonstrates that it is possible to develop complex embedded systems using
a high-level programming language . Many software applications have been
developed within the Owl system, including a GPS tracker, a Web server, a read/
write FAT32 file system, and an artificial horizon display . Furthermore, Owl is
capable of running soft real-time systems; we’ve built an autonomous RC car and
a pan-and-tilt laser pointer mount . These applications were written entirely in
Python by programmers with no previous embedded systems experience, show-
ing that programming microcontrollers with a managed runtime system is not
only possible but easy . Additionally, Owl is used as the software platform for Rice
University’s r-one educational robot [5] . A class using this robot is now being
taught for the third time, and groups of first-semester college students have been
able to program their robots in Python successfully without any problems from the
virtual machine . Moreover, at a demo, we had children as young as seven years old
programming robots .

The cornerstone of this productivity is the interactive development process . A user
can connect to the microcontroller and type statements to be executed immedi-
ately . This allows easy experimentation with peripherals and other functionality,
making incremental program development for microcontrollers almost trivial .
In a traditional development environment, the programmer has to go through a
tedious compile/link/flash/run cycle repeatedly as code is written and debugged .
Alternatively, in the Owl system a user can try one thing at the interactive prompt
and then immediately try something else after simply hitting “return .” The cost
of experimentation is almost nothing .

This sort of capability is invaluable to both the novice and expert embedded pro-
grammer . While there are certainly many people in the world who are skilled in the
art of low-level microcontroller programming, the process is and always will be
expensive, slow, and error-prone . By raising the level of abstraction, we can allow
expert embedded developers to spend their limited time making more interesting
and complex systems, not debugging simple ones .

Finally, Owl is fun to use . Microcontrollers help put a lot of the joy back into pro-
gramming because they make it possible to build real, physical systems . Go out and
build a super-intelligent barbeque, a home automation controller, or a fearsome
battle robot . We’ll make sure that register maps and funky memory layouts don’t
get in your way .

The Owl System
Modern 32-bit ARM-based microcontrollers now have enough performance to
run a relatively sophisticated runtime system . Such systems include eLua [1], the
Python-on-a-Chip project [2], and Owl, our project . These systems execute mod-
ern high-level languages and provide system support for everything from object-
oriented code to multithreading to networking .

The Owl runtime natively executes a large subset of the standard Python byte-
codes . This allows us to use the standard Python compiler and even to execute
many existing programs . Owl natively supports multithreading and includes a
novel feature to call C functions . This is critical on microcontrollers because
 programmers must call into a C driver library to control peripherals . Our system
allows Python programmers to call functions in these libraries exactly as if they
were standard Python functions .

Figure 1: An artificial horizon (a) and an
autonomous car (b) built with Owl

 ;login: FEBRUARY 2013 The Owl Embedded Python Environment   47

The high-level design of Owl allows a user to build embedded systems without
having low-level knowledge about microcontrollers . Users start by connecting to
the microcontroller from a standard desktop computer over USB . Owl then shows a
Python prompt, just like regular Python . When the user types a statement, the host
computer compiles the statement into bytecodes, sends it to the controller where it
is executed . Any resulting output is sent back for display and the process repeats .

Along the way, Owl automatically manages resources on the controller . The prompt
is a built-in feature, as is the thread scheduler, the memory manager and countless
others . A user doesn’t need to write code on the microcontroller to connect over
USB; it just works . The user doesn’t need to allocate memory for a variable, nor
remember to free it later . These automatic features are nothing particularly new
in large computer systems, but they are nearly unheard of in the embedded space .
Higher level languages including Python are heavily used in everything from pack-
age managers to cell phones to scientific computing . We believe that the time has
come to use these ideas to make microcontroller programming easier .

Does It Work?
Often, people tell us that building a high-level language interpreter for microcon-
trollers must be “impossible .” There’s simply not enough RAM or enough flash or
enough speed! We’ve found this to be false and refer you to our research paper on
the Owl system [4] for a more in-depth look at these issues . We would like to take
this opportunity to address some specific questions people have asked us .

Question: Surely a complete virtual machine takes up a lot of flash?

Indeed, flash memory that stores programs and data is a precious resource on a
microcontroller; however, it turns out that Owl doesn’t need much more flash than
a traditional RTOS does .

The Owl VM itself is actually quite small, around 35 KB, and it contains all of
the code necessary for manipulating objects, interpreting bytecodes, managing
threads, and calling C functions . When compared to the 256 KB or more avail-
able on a microcontroller, this is not much larger than the so-called “light weight”
 FreeRTOS, which requires 22 KB .

The largest fraction of this space is used by C libraries, such as a network stack, a
USB library or specialized math routines . The size of the standard Owl distribu-
tion is on the order of 150 KB, the majority of which are compiled C libraries . Any
C application that uses these libraries would have to include them, just like Owl .
Therefore, the overhead incurred by Owl for any complex application that utilizes
a large set of peripherals and C libraries will be quite low .

Question: Okay, but won’t it be very, very slow?

This depends greatly on what you’re doing . At one extreme, the bytecode to add two
numbers together takes about 10 μs . This is 500 times slower than the single cycle
32-bit add that the Cortex-M3 is theoretically capable of; however, the interpreter
supports much more complicated operations, including function calls into native C
code, which incur far lower overhead .

Overall, the proof is in what you can build . We’ve implemented many applications
using Owl, and the performance has always been sufficient . We’ve connected
our controller to a GPS receiver, three-axis accelerometer, three-axis MEMS

Figure 2: Owl can be programmed from the command
line, or using our cross-platform, Arduino-like IDE

48   ;login: VOL. 38, NO. 1

 gyroscope, digital compass, LCD display, microSD card reader, ultrasonic range
finder, steering servo, and motor controller . We then built an artificial horizon
display (using the display and accelerometer), a GPS tracker (using the GPS, com-
pass, microSD, and display), and an autonomous RC car (using the gyroscope, GPS,
range finder, steering servo, and motor controller) . All of these applications work
just fine .

Question: Aren’t all embedded systems real-time?
You’ve said nothing about building real-time systems.

There is some truth to this . Owl is not a hard real-time system . Owl provides no
guarantees about when code will run; however, most real-time systems only need
soft real-time guarantees . There is no loss of life if a thermostat takes an extra few
milliseconds to switch on .

Our autonomous car is one such system . The car is based on an off-the-shelf remote
controlled car that has had the R/C receiver disabled . Instead, a microcontroller
running Owl drives the outputs . The car senses its position with GPS, navigating
to waypoints . Meanwhile, it monitors a rangefinder to detect obstacles and uses a
gyroscope to drive straight . All of these functions are “real-time systems,” and they
all work to form a functional autonomous car .

Question: Well, okay, but what about garbage collection?
Doesn’t that ruin everything?

The impact of garbage collection on embedded workloads is much smaller than
even we expected it to be .

Owl’s garbage collector (GC) is a simple mark-and-sweep collector that occasion-
ally stops execution for a variable period of time . We found that the garbage collec-
tor has the largest impact on applications that use complex data structures, such
as CPU benchmarks that we ported to Owl . These structures take a long time to
traverse during the mark phase of collection . Additionally, there are a large number
of objects in total, slowing the sweep phase . Overall, garbage collection can take up
to 65 ms or 41% of execution time on these types of programs .

The embedded systems we have examined use much simpler data structures . This
means that GC runs more rarely, and for shorter periods of time . For the worst-
case embedded workload we tested, this takes 8 ms on average, only 11% of the
application’s running time .

Further reducing the impact of GC on embedded workloads, our virtual machine
runs the collector when the system is otherwise idle . In an event-driven system,
there are often idle times waiting for events . We take advantage of those idle times
to run the garbage collector preemptively . In practice, this works quite well . For
example, when we tested our autonomous car, all GC happened during sleep times .
In other words, the garbage collector never interrupted or slowed useful work .

Sounds great for a beginner. What about me, though? I’ve been
writing low-level assembler and C for decades! I can already
build microcontroller applications. Why do we need yet another
development system?

Of course it is possible for one skilled in the art to build a complex embedded sys-
tem using low-level programming tools . Owl itself is an example of such a system;

 ;login: FEBRUARY 2013 The Owl Embedded Python Environment   49

however, just because it’s possible to build a system using these tools doesn’t mean
we can’t do better!

The time of an expert embedded systems programmer is a precious commodity . A
higher level language makes building complicated algorithms and data structures
easier . Tools such as profilers and interactive prompts make exploring the perfor-
mance and behavior of a system possible . These tools mean that a programmer has
to spend less time debugging and can spend more time building products . In the
time that it might take an expert engineer to build a programmable thermostat in
C, the same expert engineer might be able build a machine learning thermostat in
Python . The fact that an expert programmer is capable of repeatedly writing low-
level code doesn’t mean that it should be necessary .

Perhaps more critically, though, raising the level of abstraction can make programs
more reliable . Programs are simpler, so they are less error-prone . Owl can detect
internal errors, such as stack overflow, turning a catastrophic memory corruption
bug into a properly detected and reported error condition . Owl can detect program-
ming bugs, such as array bounds violations, reporting a sensible error before a
device is deployed into the field .

Finally, Owl allows users to reprogram part or all of their devices easily, some-
times without even needing to restart the controller . This means that deployed
devices can be tested, modified, fixed, and upgraded without having to take criti-
cal systems offline . This would be extremely difficult to accomplish with normal
embedded toolchains and is rarely, if ever, done .

We don’t see the Owl system as a replacement for skilled embedded systems pro-
grammers . Rather, we see it as a productivity multiplier . We are skilled embedded
systems programmers—we built the Owl system—yet we can accomplish a lot more
a lot faster using the Owl system itself!

Using Owl
Getting started with Owl is easy . Here, we show a simple robotic example using
an off-the-shelf Texas Instruments “Evalbot .” The Evalbot is a simple, two-motor
turtle, or Roomba-like, robot . You can download all the software we use here and
find links to the hardware from our Web site . We demonstrate how to use the inter-
active prompt to control the hardware using both prepackaged libraries as well as
through low-level driver library calls . Finally, we show how to flash a program onto
the robot and run it while disconnected from the host computer .

First, we assume that the Owl tools distribution is installed onto a UNIX-like sys-
tem and that the robot is connected over USB . From a prompt, type:

$ mcu interactive

Owl Interactive Prompt

Using Python 2.7.3

Running release firmware 0.01. (05Sep12, 01:37AM, twb)

mcu> 1+1

2

mcu>

This prompt looks and works just like any other Python prompt . You can assign
values to variables, evaluate expressions, call functions, and even define functions
and classes . Of course, this would be a very boring robot if we didn’t dig into con-
trolling the hardware . The Owl distribution for the TI Evalbot contains prebuilt

Figure 3: The Texas Instruments Evalbot is
a commercially available robot that can be
programmed using Owl

50   ;login: VOL. 38, NO. 1

modules to control some of the robot peripherals . As a simple example, let’s play
with the motors module . After each statement, the robot responds immediately .
First, we run the left motor 100% forward, then 100% backward, then we stop it:

mcu> import motors

mcu> motors.left.run(100)

mcu> motors.left.run(-100)

mcu> motors.left.run(0)

mcu>

Suppose, however, that you were designing your own device . You won’t have access
to high-level peripheral libraries for it, so you’ll need to make calls directly into the
low-level driver library . Owl makes this relatively easy by making those libraries
appear just like any other Python module . In fact, the conversion from C to Python
is so transparent that you can use the original C documentation provided by the
microcontroller vendor .

Suppose we are trying to read the current value of the bump sensor, which is just a
simple push button attached to a general purpose I/O pin . We will first need to enable
the GPIO module . In C, we would do this with the line SysCtlPeripheralEnable

(SYSCTL_PERIPH_GPIOE). In Python, this translates very simply . In fact, we can
call this function from the prompt:

mcu> import sysctl

mcu> sysctl.PeripheralEnable(sysctl.PERIPH_GPIOE)

mcu>

Similarly, we will call gpio.PinTypeGPIOInput and gpio.PadConfigSet to
configure the correct pin . Finally, we will read the value by calling gpio.PinRead.
Putting all of this together, we can write a simple program to emulate the “bounce
against walls” behavior of a Roomba:

robot.py

import motors, sysctl, gpio, sys

initialize the bump sensors

sysctl.PeripheralEnable(sysctl.PERIPH_GPIOE)

gpio.PinTypeGPIOInput(gpio.PORTE_BASE, gpio.PIN_0) # right bumper

gpio.PinTypeGPIOInput(gpio.PORTE_BASE, gpio.PIN_1) # left bumper

gpio.PadConfigSet(gpio.PORTE_BASE, gpio.PIN_0, gpio.GPIO_STRENGTH_2MA,

 gpio.GPIO_PIN_TYPE_STD_WPU)

gpio.PadConfigSet(gpio.PORTE_BASE, gpio.PIN_1, gpio.GPIO_STRENGTH_2MA,

 gpio.GPIO_PIN_TYPE_STD_WPU)

loop forever

while True:

 if gpio.PinRead(gpio.PORTE_BASE, gpio.PIN_1): # bumped!

 motors.left.run(100) # full forward

 motors.right.run(-100) # full backwards

 sys.sleep(1500) # wait 1500 ms

 elif gpio.PinRead(gpio.PORTE_BASE, gpio.PIN_0):

 motors.left.run(-100)

 motors.right.run(100)

 sys.sleep(1500)

 ;login: FEBRUARY 2013 The Owl Embedded Python Environment   51

 else: # go straight ahead.

 motors.left.run(100)

 motors.right.run(100)

We can now flash this program as a module onto the robot . This process erases all
user-programmed modules from the device and programs one or more new files . In
this case, we only program one module, robot .py, by resetting the robot and calling
mcu robot .py at the UNIX prompt . This module could be imported (and therefore
executed) from the Python prompt, or it can be run in stand-alone mode . When
the microcontroller starts up, it checks to see if it is connected to USB . If it is not,
it automatically runs the primary module, which was the first module listed when
the device was programmed .

Now, our robot is free to explore the world!

Next Steps
There are unfathomable numbers of microcontrollers in the world, but for some
reason, we don’t think of them as “real” computer systems . While we’ve developed
incredible programming environments for cell phones and Web apps, we still
program most embedded systems as if they were PDP-8s . As a result, we have
countless lines of unportable, unreliable, and unsafe code that we use every day .
Programmers have very little visibility over what their software is doing and must
debug software using multimeters and oscilloscopes . This is expensive, painful,
and error-prone . Furthermore, the process is not really all that fun . Let’s start
thinking of these tiny devices as the fully fledged computer systems that they are .
We think Owl and the other open-source projects are a great start . They enable
interactive software development that’s high-level, safe, and easy as opposed to the
current approach that is more akin to flipping front-panel switches on an Altair .

Go try Owl out! Microcontroller development boards are cheap nowadays .
Numerous boards are available for less than $100 and some for as low as $15 .
Companies such as SparkFun Electronics and AdaFruit Industries sell a life-
time worth of peripherals that are easy to work with . Check out our Web site at
http://embeddedpython .org/ for links to these products, buy some of them, down-
load Owl, and get out there and build something . We promise that you’ll have a
lot of fun!

References

[1] eLua: http://www .eluaproject .net/ .

[2] Python-on-a-Chip: http://code .google .com/p/python-on-a-chip/ .

[3] T .N .B . Anh and S .-L . Tan, “Real-Time Operating Systems for Small Microcon-
trollers,” IEEE Micro, vol . 29, no . 5), 2009 .

[4] T .W . Barr, R . Smith, and S . Rixner, “Design and Implementation of an Embed-
ded Python Runtime System,” USENIX ATC, 2012 .

[5] J . McLurkin, A . Lynch, S . Rixner, T . Barr, A . Chou, K . Foster, and S . Bilstein . A
Low-Cost Multi-Robot System for Research, Teaching, and Outreach . Distributed
Autonomous Robotic Systems, pages 597–609, 2010 .

COLUMNS

52   ;login: VOL. 38, NO. 1

David N. Blank-Edelman is the
Director of Technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ‘05 conference and one of the LISA
‘06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010.  dnb@ccs.neu.edu

If you’ve noticed a spate of “here’s how to use Perl to talk to X Web service” topics
in this column lately, it probably isn’t a coincidence . I have to confess, I’m a sucker
for a Web service that gives you super powers just by using the simple API they
provide . For example, in our last column we looked at how to easily translate text in
and out of a large number of the world’s major languages using Google Translate’s
API . For this column, we’re going to do all sorts of fun things with phones from
Perl . If you’ve ever wanted a way to send and receive SMS and voice messages,
retrieve input from a caller, and stuff like that, have I got a column for you .

Like last time, in this column, we’re going to be using an API from a commercial
vendor . I am not a shill for that vendor . They are not paying me to promote their
product . Like last time, I’m actually paying them to use the service . There are other
vendors offering similar services . I’m choosing this one because their API is easy
to use and the cost for small volumes of use is sufficiently low that it doesn’t cost
very much to play around (and, in fact, they offer a free account should you want to
pay nothing during your playtime) . Their API has the added benefit of using things
that we’ve seen in past columns such as a REST and XML . You won’t need to refer-
ence past columns, but if you’re an avid reader of this column (hi mom!), a number
of things we’ll be looking at should be comfortably familiar .

So who is the lucky vendor this time that gets to take my money? In this column
we’re going to work with the Twilio API . As we’ve done in the past, I’m going to
hold off on talking about the Twilio-specific Perl modules available for a bit just
so we can get a good handle on the basics of what is going on before we let someone
else’s code do the driving . In this case looking at the underlying stuff is doubly
important because Twilio’s API and the Perl modules that interact with it assume
you understand TwiML, their little mini-XML dialect for command and control .
And that’s just where we are going to start .

Twinkle, Twinkle, Little TwiML
We’re starting a Perl-themed column with an XML dialect because in order to use
their service, you’ll be slinging TwiML around lots . In the past I’ve praised XML
because it can be superbly readable as long as you don’t take pains to thwart this
quality (I’m looking at you Microsoft Office) . TwiML is no exception; it basically
consists of a set of “verb” tags that instruct the service to do something . For
example, if we wanted to ask it to send an SMS message, we could write:

Practical Perl Tools
I Just Called to Say $_

D A V I D N . B L A N K - E D E L M A N

 ;login: FEBRUARY 2013 Practical Perl Tools   53

 <?xml version=”1.0” encoding=”UTF-8”?>

 <Response>

 <Sms from=”+14105551234” to=”+14105556789”>

 The king stay the king.</Sms>

 </Response>

That’s a direct quote from their API docs at https://www .twilio .com/docs/api
(which I just had to quote because of the embedded reference) . If we wanted to
call our special Twilio number (more on this shortly) and have it speak to us, we
could write:

 <?xml version=”1.0” encoding=”UTF-8”?>

 <Response>

 <Say>Twinkle, Twinkle, little TwiML</Say>

 </Response>

The first line is the standard XML declaration . The commands we write will live
in a response tag (you’ll see why it is called this when we get to talking about REST
stuff) . Twilio will perform the commands, and if the context is a phone call as in
the second example, it will hang up at that point .

There are other verbs available with names that all make sense such as Dial to dial
a call, Play to play a sound file on to the call from a specified URL, Record to record
sound from the call, and so on . The only one that may not be obvious at first blush is
Gather . Gather is used to receive input from a caller (i .e ., “Press 1 to speak to Larry
Wall . . .”) . We’ll see an example of that later in this column .

The REST of the Story
To actually use this stuff, we need to see how to set up conversations with the
Twilio’s server . This is where the REST stuff we mentioned in the beginning
comes in . Let’s dive right into some useful examples to see how this works . The
TwiML part won’t show up until our second example, so we’ll set that aside for a
brief moment as we look at some code for sending an SMS message:

 use HTTP::Request::Common qw(POST);

 use LWP::UserAgent; # can’t use LWP::Simple to POST

 use strict;

 my $tw_serverURL = ‘https://api.twilio.com’;

 my $tw_APIver = ‘2010-04-01’;

 my $tw_acctsid = ‘{YOUR ACCT SID HERE}’;

 my $tw_authtoken = ‘{YOUR AUTH TOKEN HERE}’;

 my $tw_number = ‘{YOUR TWILIO NUMBER}’;

 my $test_number = ‘{A VALIDATED NUMBER}’;

 # create the user agent and give it credentials to use

 my $ua = LWP::UserAgent->new;

 $ua->credentials(‘api.twilio.com:443’, ‘Twilio API’,

 $tw_acctsid, $tw_authtoken);

54   ;login: VOL. 38, NO. 1

 # create a request

 my $req = POST “$tw_serverURL/$tw_APIver/Accounts/

 $tw_acctsid/SMS/Messages”,

 [

 ‘From’ => “$tw_number”,

 ‘To’ => “$test_number”,

 ‘Body’ => ‘Just a spiffy message!’,

];

 # ...and send it

 my $response = $ua->request($req);

 if ($response->is_success) {

 print $response->decoded_content;

 }

 else {

 die $response->status_line;

 }

Let’s walk through this fairly generic LWP::UserAgent code together . After loading
the modules we’ll need, we define some variables that include the URL we’re going
to contact (their server plus API version), the API SID and token (user name and
password we get when we sign up), and the numbers we’ll be using . When you sign
up for Twilio, you are given the opportunity to choose a number from which your
text and voice messages will be sent and received . Once you pay for the service, you
are also able to purchase additional numbers . At demo signup time you are also
prompted to validate a number (i .e ., prove you own it)—their system calls you and
asks you to provide a passcode the Web site shows you—to act as a test number . You
will need to use this test number as the source/destination number to call or be
called by your Twilio number until you become a paying customer .

With these things defined, we can create a UserAgent object (the thing that is
going to pretend to be a browser) and give it the credentials it will need to access
that REST API URL . We construct the request by specifying the URL and the
parameters we’ll want to pass in when we do the POST . We send it off, and then
print the response we get back . Here’s a sample response that I’ve pretty printed so
it is easier to read:

 <?xml version=”1.0”?>

 <TwilioResponse>

 <SMSMessage>

 <Sid>SMb70e55827ff00117fd88060902ffddddd</Sid>

 <DateCreated>Mon, 26 Nov 2012 02:56:44 +0000</DateCreated>

 <DateUpdated>Mon, 26 Nov 2012 02:56:44 +0000</DateUpdated>

 <DateSent/>

 <AccountSid>{MY ACCOUNT SID}</AccountSid>

 <To>{THE VALIDATED NUMBER}</To>

 <From>{MY TWILIP NUMBER}</From>

 <Body>Just a spiffy message!</Body>

 <Status>queued</Status>

 <Direction>outbound-api</Direction>

 <ApiVersion>2010-04-01</ApiVersion>

 <Price/>

 ;login: FEBRUARY 2013 Practical Perl Tools   55

 <Uri>/2010-04-01/Accounts/{MY_ACCOUNT_SID}/SMS/Messages/

 SMb70e55827ff00117fd88060902ffddddd</Uri>

 </SMSMessage>

 </TwilioResponse>

It is basically an echo of the message we sent, but I want to draw your attention to
one of the elements:

 <Status>queued</Status>

When you send a message, it gets queued to be sent . Unlike some services, you do
not stay connected to the server until the message is actually sent . This means you
don’t get a definitive response code back from the request that indicates success or
failure on the sending . How you get the response back brings us to the REST stuff…

In my request, I didn’t include the optional StatusCallback parameter . If I were to
include that in my request, e .g .,

 my $req = POST “$tw_serverURL/$tw_APIver/Accounts/$tw_acctsid/SMS/

Messages”,

 [

 ‘From’ => “$tw_number”,

 ‘To’ => “$test_number”,

 ‘Body’ => ‘Just a spiffy message!’,

 ‘StatusCallback’ => ‘http://your.Web.server.com/messagestat.pl’,

];

Twilio would fire off a POST request to that URL once the message has gone
through (or not) . This callback style of programming shows up throughout the API,
so if you plan to do much with it you’ll need a Web server where you can place code
that will receive messages from their server . Here’s a very simple example we could
use as messagestat .pl to receive a message from them:

 use CGI;

 use Data::Dumper;

 my $q = CGI->new;

 my $params = $q->Vars;

 open my $OUTPUT, ‘>>’, ‘twilio.out’ or die “Can’t write output: $!”;

 print $OUTPUT Dumper \$params;

 close $OUTPUT;

This receives the POST from Twilio’s servers (and anyone who can contact that
URL) and writes the parameters of the request to a file . If we look at the contents of
the file, we see it says:

$VAR1 = \{

 ‘AccountSid’ => ‘{MY_ACCOUNT_SID}’,

 ‘SmsStatus’ => ‘sent’,

 ‘Body’ => ‘Just a spiffy message!’,

 ‘SmsSid’ => ‘SMe1620214513ccee199851ad9f13ffff’,

 ‘To’ => ‘{THE VALIDATED NUMBER}’,

 ‘From’ => ‘{MY TWILIP NUMBER}’,

 ‘ApiVersion’ => ‘2010-04-01’

 };

56   ;login: VOL. 38, NO. 1

Here we can see that the SmsStatus was ‘sent’, so the message went out . If for some
reason it couldn’t be sent successfully, that would have been reflected in the status
posted to our CGI script .

Early in this section I mentioned “conversations with their server,” but the last
example didn’t offer anything particularly scintillating in this regard . Let’s do
something more sophisticated, this time with a voice call instead of an SMS mes-
sage . Let’s do a two-question telephone poll from Perl using Twilio . This will allow
us to bring the TwiML we learned earlier back into the picture .

The first step is to tell Twilio’s servers to initiate a voice call . I’m going to leave
out all of the initialization code from the example below to save space because it
is exactly the same as the previous example . Here’s the one part of the code that
changes:

 my $req = POST “$tw_serverURL/$tw_APIver/Accounts/$tw_acctsid/Calls”,

 [

 ‘From’ => “$tw_number”,

 ‘To’ => “$test_number”,

 ‘Url’ => ‘http://your.Web.server.com/voicepoll.pl’,

 ‘StatusCallback’ => ‘http://your.Web.server.com/messagestat.pl’,

];

The first change is we’re requesting a different kind of REST object; we’re asking
for Calls instead of SMS/Messages . The second change is we’ve told Twilio that
once it initiates a call, it should contact the voicepoll .pl script for further instruc-
tions to follow once the call has connected . And this is where TwiML becomes
important .

The URL pointed to by the Url parameter is expected to provide Twilio’s server
with a TwiML document it should process . Here’s our voicepoll .pl script that will
provide this document:

 use CGI qw(:standard);

 use strict;

 my $q = CGI->new;

 my $params = $q->Vars;

 print $q->header(‘text/xml’);

 if (not $params->{‘Digits’}) {

 print <<POLL;

 <?xml version=”1.0” encoding=”UTF-8”?>

 <Response>

 <Gather numDigits=”1” action=”/voicepoll.pl”>

 <Say>Welcome to the login poll</Say>

 <Say>Press 1 if you are happy and you know it</Say>

 <Say>Press 2 if you really want to show it</Say>

 </Gather>

 <Say>No input, toodles!</Say>

 </Response>

 POLL

 }

 ;login: FEBRUARY 2013 Practical Perl Tools   57

 else {

 if ($params->{‘Digits’} ne “3”) {

 open my $RESPONSE, ‘>>’, ‘twresp.out’

 or die “Can’t write to twrestp.out”;

 print $RESPONSE “Received $params->{‘Digits’}\n”;

 close $RESPONSE;

 print <<POLL;

 <?xml version=”1.0” encoding=”UTF-8”?>

 <Response>

 <Gather numDigits=”1” action=”/voicepoll.pl”>

 <Say>Next Question</Say>

 <Say>Press 1 if you are happy and you know it</Say>

 <Say>Press 2 if you really want to show it</Say>

 <Say>Press 3 if you are suffering from ennui</Say>

 </Gather>

 <Say>No input, toodles!</Say>

 </Response>

 POLL

 }

 else {

 open my $RESPONSE, ‘>>’, ‘twresp.out’

 or die “Can’t write to twrestp.out”;

 print $RESPONSE “END POLL\n”;

 close $RESPONSE;

 print <<BYEBYE;

 <?xml version=”1.0” encoding=”UTF-8”?>

 <Response>

 <Say>End of Poll, thanks!</Say>

 </Response>

 BYEBYE

 }

 }

Here are two small caveats before we look at what the script and its embedded
TwiML is doing . First, this script is going to spit out TwiML in the most straight-
forward but uncouth way possible . It’s just a bunch of print statements using
HEREDOC syntax (<<) . If you were doing this for real, you’d want to use some sort
of XML generator or one of the custom Twilio modules we’ll get to in a moment .
Second, all TwiML fetched from the servers is coming from this one script with a
bunch of dumb control logic . In real life it might make more sense to have differ-
ent responses to different queries from their servers handled by different scripts
(“Press 1 for Sales” then points to the sales .pl script and so on) .

Let’s walk through what is going on one step at a time . We used a modified version
of our SMS script to ask Twilio to initiate a call and then have it fetch the URL
for the CGI script above . This CGI script checks to see whether it has received a
parameter called ‘Digits’ for reasons you’ll see in just a second . If that parameter
isn’t defined yet (true because this will be the first time it has been accessed by
Twilio for this call), it prints the following TwiML back to their server:

58   ;login: VOL. 38, NO. 1

 <?xml version=”1.0” encoding=”UTF-8”?>

 <Response>

 <Gather numDigits=”1” action=”/voicepoll.pl”>

 <Say>Welcome to the login poll</Say>

 <Say>Press 1 if you are happy and you know it</Say>

 <Say>Press 2 if you really want to show it</Say>

 </Gather>

 <Say>No input, toodles!</Say>

 </Response>

This TwiML uses “Gather,” a verb we haven’t seen before . Gather will attempt
to read keypad input from the call (i .e ., the caller pressed the phone’s number
 buttons) . In the TwiML, there are two attributes being passed in for Gather: “num-
Digits” for the number of digits we hope to get back (one) and “action” for the URL
that will be called if Gather is successful .

As I mentioned above, the TwiML makes another call to the voicepoll .pl script in
<Gather>, but it could easily have been told to fetch some other CGI script for its
next batch of TwiML . Embedded in this Gather call are a number of <Say> ele-
ments used to speak the menu for the person on the line . Because they are listed as
sub-elements of Gather, this means that the Gather is active while they are speak-
ing . The caller doesn’t have to wait to press a button . She or he can interrupt the
<Say> directives, and the Gather will complete and immediately pass the results to
the URL specified in the action attribute (bypassing anything else in this TwiML
file) . The action URL is used as the source of the next TwiML directive, and the
control flow continues using whatever TwiML it provides . Should the <Gather>
fail, e .g ., time out if it doesn’t get input, the directives outside of the <Gather> are
run . In this case, a final <Say> command will bid the caller adieu before hanging up .

Let’s assume the <Gather> was able to retrieve a choice from the caller and see
what happens next . The CGI script specified in its action attribute gets called with
the results from the Gather command being passed as a parameter called ‘Digits’ .
This is why the script looks to see whether it has received that parameter . If it
hasn’t, it knows it is the first time it is being called . If it gets the number 3 in that
parameter, it will immediately print the “BYEBYE” TwiML code . Any other num-
ber tells the script to print the Next Question TwiML . All along the way, we collect
the results we received to a response file that accumulates lines like:

 Received 2

 Received 5

 Received 1

 END POLL

This is just to show off the input we received . If we really cared about it we’d want
to store it in a more considered way, like a database . At the very least, we’d want a
way to store things so multiple polls going at once record their results properly . And
speaking of results, in the script that originated the call, we kept the

 ‘StatusCallback’ => ‘http://your.Web.server.com/messagestat.pl’,

line . Just like with an SMS message, this URL gets called after the operation has
been completed (successfully or unsuccessfully) . In the case of a voice message, we
get a cool set of parameters posted to the messagestat .pl URL:

 ;login: FEBRUARY 2013 Practical Perl Tools   59

‘AccountSid’ => ‘{MY_ACCOUNT_SID}’,

 ‘ToZip’ => ‘02283’,

 ‘FromState’ => ‘MA’,

 ‘Called’ => ‘{THE VALIDATED NUMBER}’,

 ‘FromCountry’ => ‘US’,

 ‘CallerCountry’ => ‘US’,

 ‘CalledZip’ => ‘02283’,

 ‘Direction’ => ‘outbound-api’,

 ‘FromCity’ => ‘CAMBRIDGE’,

 ‘CalledCountry’ => ‘US’,

 ‘Duration’ => ‘1’,

 ‘CallerState’ => ‘MA’,

 ‘CallSid’ => ‘CA4fdd2c584cd58230f9e7413c452fffff’,

 ‘CalledState’ => ‘MA’,

 ‘From’ => ‘{MY TWILIO NUMBER}’,

 ‘CallerZip’ => ‘02139’,

 ‘FromZip’ => ‘02139’,

 ‘CallStatus’ => ‘completed’,

 ‘ToCity’ => ‘BOSTON’,

 ‘ToState’ => ‘MA’,

 ‘To’ => ‘{THE VALIDATED NUMBER}’,

 ‘CallDuration’ => ‘17’,

 ‘ToCountry’ => ‘US’,

 ‘CallerCity’ => ‘CAMBRIDGE’,

 ‘ApiVersion’ => ‘2010-04-01’,

 ‘Caller’ => ‘{MY TWILIO NUMBER}’,

 ‘CalledCity’ => ‘BOSTON’

Yup, a little bit of geolocation is thrown in for free .

There’s one last category of operations I want to mention (but not demonstrate for
space reasons) . So far we haven’t seen any code for the case where someone calls
in to your Twilio number or sends an SMS message to it . When you set a Twilio
number up, you associate two URLs with it: one for voice, the other for SMS . When
a call or an SMS message comes in to that number, Twilio attempts to post infor-
mation about the incoming call/message to the appropriate URL (as parameters,
same as we’ve seen before) and expects to be handed back some TwiML telling it
what to do . That CGI script can do whatever you need with the incoming informa-
tion (e .g ., log the parameters) and direct Twilio to do something (like start a phone
poll or take an order for a pizza) .

WWW::Twilio::API and WWW::Twilio::TwiML
I’d like to end with a quick look at the two special purpose Perl modules for inter-
acting with Twilio . The first lets you make API calls without having to trouble
your pretty little head with all of the LWP::UserAgent details . Instead of our first
code example, we could write:

use WWW::Twilio::API;

 my $twilio = WWW::Twilio::API->new(

 AccountSid => ‘{MY ACCOUNT SID}’,

 AuthToken => ‘{MY ACCOUNT TOKEN}’,

);

60   ;login: VOL. 38, NO. 1

 my $response = $twilio->POST(

 ‘SMS/Messages’,

 ‘From’ => ‘{MY TWILIO NUMBER}’,

 ‘To’ => ‘{THE VALIDATED NUMBER}’,

 ‘Body’ => ‘Just a spiffy message!’

);

WWW::Twilio::API lets you use all of the other API calls we’ve seen before . For
example, in the WWW::Twilio::API doc, we see an example of making a call:

 $twilio->POST(

 ‘Calls’,

 To => ‘5558675309’,

 From => ‘4158675309’,

 Url => ‘http://www.myapp.com/myhandler’

);

The other special purpose Twilio module courtesy of the same author is
WWW::Twilio::TwiML . It is designed to make authoring TwiML easier, but
I’ll say up front that I’m not entirely clear it is much easier to use than any of
the other XML authoring modules that are available . I think it holds the most
promise for people who enjoy writing chained method expressions (i .e ., code
with lots of thing->thing->thing statements) . For example, if we wanted to
output the first set of TwiML we printed in voicepoll .pl above, we would write:

 use WWW::Twilio::TwiML;

 my $twiml = WWW::Twilio::TwiML->new;

 $twiml

 ->Response

 ->Gather({ action => ‘/voicepool.pl’ })

 ->Say(‘Welcome to the login poll’)

 ->parent->Say(‘Press 1 if you are happy and you know it’)

 ->parent->Say(‘Press 2 if you really want to show it’)

 ->parent->parent->Say(‘No input, toodles!’);

 print $twiml->to_string;

The chained statement can be read something like this: “Create a <Response> ele-
ment . In this element create a <Gather> element . In the <Gather> element, create
a <Say> element . Now, instead of creating the next <Say> within the current <Say>
element, put it in the parent (the <Gather>) . Do that again for the next <Say> . Then,
go to that element’s grandparent (the <Response> element) and place a final <Say>
element in it .” If your brain has no problems mapping the chained steps to the pro-
cess of building our little XML tree structure, great, this might be the module for
you . If not, seek another solution .

And with that, we now have a good start on how to use Twilio’s API from Perl to do
all sort of fun phone-related stuff . Take care and I’ll see you next time .

 ;login: FEBRUARY 2013   61

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009).

He is also a co-author of the forthcoming
Python Cookbook (3rd Edition, O’Reilly &
Associates, 2013). Beazley is based in
Chicago, where he also teaches a variety of
Python courses. dave@dabeaz.com

In the August 2012 issue of ;login:, I explored some of the inner workings of Python’s
import statement . Much of that article explored the mechanism that’s used to set
up the module search path found in sys .path as well as the structure of a typical
Python installation . At the end of that article, I promised that there is even more
going on with import than meets the eye . So, without further delay, that’s the topic
of this month’s article .

Just as a note, this article assumes the use of Python 2 .7 . Also, because of the
advanced nature of the material, I encourage you to follow along with the interac-
tive examples as they nicely illustrate the mechanics of it all .

Import Revisited
Just to revisit a few basics, each Python source file that you create is a module that
can be loaded with the import statement . To make the import work, you simply
need to make sure that your code can be found on the module search path sys.path .
Typically, sys.path looks something like this:

>>> import sys

>>> sys.path

[‘’,

 ‘/usr/local/lib/python2.7/site-packages/setuptools-0.6c11-py2.7.egg’,

 ‘/usr/local/lib/python2.7/site-packages/pip-1.1-py2.7.egg’,

 ‘/usr/local/lib/python2.7/site-packages/python_dateutil-1.5-py2.7.egg’,

 ‘/usr/local/lib/python2.7/site-packages/pandas-0.7.3-py2.7-macosx-

10.4-x86_64.egg’,

 ‘/usr/local/lib/python2.7/site-packages/tornado-2.1-py2.7.egg’,

 ‘/usr/local/lib/python27.zip’,

 ‘/usr/local/lib/python2.7’,

 ‘/usr/local/lib/python2.7/plat-darwin’,

 ‘/usr/local/lib/python2.7/plat-mac’,

 ‘/usr/local/lib/python2.7/plat-mac/lib-scriptpackages’,

 ‘/usr/local/lib/python2.7/lib-tk’,

 ‘/usr/local/lib/python2.7/lib-old’,

 ‘/usr/local/lib/python2.7/lib-dynload’,

 ‘/Users/beazley/.local/lib/python2.7/site-packages’,

 ‘/usr/local/lib/python2.7/site-packages’]

>>>

Python: Import Anything
D A V I D B E A Z L E Y

62   ;login: VOL. 38, NO. 1

For most Python programmers (including myself until recently), knowledge of the
import statement doesn’t extend far beyond knowing about the path and the fact
that it sometimes needs to be tweaked if code is placed in an unusual location .

Making Modules Yourself
Although most modules are loaded via import, you can actually create module
objects yourself . Here is a simple interactive example you can try just to illustrate:

>>> import imp

>>> mod = imp.new_module(“mycode”)

>>> mod.__file__ = ‘interactive’

>>> code = ‘’’

... def hello(name):

... print “Hello”, name

...

... def add(x,y):

... return x+y

... ‘’’

>>> exec(code, mod.__dict__)

>>> mod

<module ‘mycode’ from ‘interactive’>

>>> dir(mod)

[‘__builtins__’, ‘__doc__’, ‘__file__’, ‘__name__’, ‘__package__’, ‘add’,

‘hello’]

>>> mod.hello(‘Dave’)

Hello Dave

>>> mod.add(10,20)

30

>>>

Essentially, if you want to make a module you simply use the imp.new_module()
function . To populate it, use the exec statement to execute the code you want in
the module .

As a practical matter, the fact that you can make modules from scratch (bypass-
ing import) may be nothing more than a curiosity; however, it opens a new line of
thought . Perhaps you could create modules in an entirely different manner than
a normal import statement, such as grabbing code from databases, from remote
machines, or different kinds of archive formats . What’s more, if all of this is pos-
sible, perhaps there is some way to customize the behavior of import directly .

Creating an Import Hook
Starting around Python 2 .6 or so, the sys module acquired a mysterious new vari-
able sys.meta_path . Initially, it is set to an empty list:

>>> import sys

>>> sys.meta_path

[]

>>>

What purpose could this possibly serve? To find out, try the following experiment:

 ;login: FEBRUARY 2013 Python: Import Anything   63

>>> class Finder(object):

... def find_module(self, fullname, path=None):

... print “Looking for”, fullname, path

... return None

...

>>> import sys

>>> sys.meta_path.append(Finder())

>>> import math

Looking for math None

>>> import xml.etree.ElementTree

Looking for xml None

Looking for xml._xmlplus [‘/usr/local/lib/python2.7/xml’]

Looking for _xmlplus None

Looking for xml.etree [‘/usr/local/lib/python2.7/xml’]

Looking for xml.etree.ElementTree [‘/usr/local/lib/python2.7/xml/etree’]

Looking for xml.etree.sys [‘/usr/local/lib/python2.7/xml/etree’]

Looking for xml.etree.re [‘/usr/local/lib/python2.7/xml/etree’]

Looking for xml.etree.warnings [‘/usr/local/lib/python2.7/xml/etree’]

Looking for xml.etree.ElementPath [‘/usr/local/lib/python2.7/xml/etree’]

Looking for xml.etree.ElementC14N [‘/usr/local/lib/python2.7/xml/etree’]

Looking for ElementC14N None

>>>

Wow, look at that! The find_module() method of the Finder class you just wrote
is suddenly being triggered on every single import statement . As input, it receives
the fully qualified name of the module being imported . If the module is part of
a package, the path argument is set to the package’s __path__ variable, which
is typically a list of subdirectories that contain the package subcomponents .
With packages, there are also a few unexpected oddities . For example, notice the
attempted imports of xml.etree.sys and xml.etree.re . These are actually imports
of sys and re occurring inside the xml.etree package . (Later these are tested for a
relative and then absolute import .)

As output, the find_module() either returns None to indicate that the module isn’t
known or returns an instance of a loader object that will carry out the process of
loading the module and creating a module object . A loader is simply some object
that defines a load_module method that returns a module object created in a man-
ner as shown earlier . Here is an example that mirrors the creation of the module
that was used earlier:

>>> import imp

>>> import sys

>>> class Loader(object):

... def load_module(self, fullname):

... mod = sys.modules.setdefault(fullname, imp.new_module(fullname))

... code = ‘’’

... def hello(name):

... print “Hello”, name

...

... def add(x,y):

... return x+y

... ‘’’

... exec(code, mod.__dict__)

... return mod

64   ;login: VOL. 38, NO. 1

...

>>> class Finder(object):

... def find_module(self, fullname, path):

... if fullname == ‘mycode’:

... return Loader()

... else:

... return None

...

>>> sys.meta_path.append(Finder())

>>> import mycode

>>> mycode.hello(‘Dave’)

Hello Dave

>>> mycode.add(2,3)

5

>>>

In this example, the code is mostly straightforward . The Finder class creates a
Loader instance . The loader, in turn, is responsible for creating the module object
and executing the underlying source code . The only part that warrants some
discussion is the use of sys.modules.setdefault() . The sys.modules variable is a
cache of already loaded modules . Updating this cache as appropriate during import
is the responsibility of the loader . The setdefault() method makes sure that this
happens cleanly by either returning the module already present or a new module
created by imp.new_module() if needed .

Using Import Hooks
Defining an import hook opens up a variety of new programming techniques . For
instance, here is a finder that forbids imports of certain modules:

forbidden.py

import sys

class ForbiddenFinder(object):

 def __init__(self, blacklist):

 self._blacklist = blacklist

 def find_module(self, fullname, path):

 if fullname in self._blacklist:

 raise ImportError()

def no_import(module_names):

 sys.meta_path.append(ForbiddenFinder(module_names))

Try it out:

>>> import forbidden

>>> forbidden.no_import([‘xml’,’threading’,’socket’])

>>> import xml

Traceback (most recent call last):

 File “<stdin>”, line 1, in

ImportError: No module named xml

>>> import threading

 ;login: FEBRUARY 2013 Python: Import Anything   65

Traceback (most recent call last):

 File “<stdin>”, line 1, in

ImportError: No module named threading

>>>

Here is a more advanced example that allows callback functions to be attached to
the import of user-specified modules:

postimport.py

import importlib

import sys

from collections import defaultdict

_post_import_hooks = defaultdict(list)

class PostImportFinder:

 def __init__(self):

 self._skip = set()

 def find_module(self, fullname, path):

 print “Finding”, fullname, path

 if fullname in self._skip:

 return None

 self._skip.add(fullname)

 return PostImportLoader(self)

class PostImportLoader:

 def __init__(self, finder):

 self._finder = finder

 def load_module(self, fullname):

 try:

 importlib.import_module(fullname)

 modname = fullname

 except ImportError:

 package, _, modname = fullname.rpartition(‘.’)

 if package:

 try:

 importlib.import_module(modname)

 except ImportError:

 return None

 else:

 return None

 module = sys.modules[modname]

 for func in _post_import_hooks[modname]:

 func(module)

 _post_import_hooks[modname] = []

 self._finder._skip.remove(fullname)

 return module

66   ;login: VOL. 38, NO. 1

def on_import(modname, callback):

 if modname in sys.modules:

 callback(sys.modules[modname])

 else:

 _post_import_hooks[modname].append(callback)

sys.meta_path.insert(0, PostImportFinder())

The idea on this hook is that it gets triggered on each import; however, immediately
upon firing, it disables itself from further use . The load_module() method in the
PostImportLoader class then carries out the regular import and triggers the reg-
istered callback functions . There is a bit of a mess concerning attempts to import
the requested module manually . If an attempt to import the fully qualified name
doesn’t work, a second attempt is made to import just the base name .

To see it in action, try the following:

>>> from postimport import on_import

>>> def loaded(mod):

... print “Loaded”, mod

...

>>> on_import(‘math’, loaded)

>>> on_import(‘threading’, loaded)

>>> import math

Loaded <module ‘math’ from ‘/usr/local/lib/python2.7/lib-dynload/math.so’>

>>> import threading

Loaded <module ‘threading’ from ‘/usr/local/lib/python2.7/threading.pyc’>

>>>

Although a simple example has been shown, you could certainly do something
more advanced such as patch the module contents . Consider this additional code
that adds logging to selected functions:

def add_logging(func):

 ‘Decorator that adds logging to a function’

 def wrapper(*args, **kwargs):

 print(“Calling %s.%s” % (func.__module__, func.__name__))

 return func(*args, **kwargs)

 return wrapper

def log_on_import(qualified_name):

 ‘Apply logging decorator to a function upon import`

 modname, _, symbol = qualified_name.rpartition(‘.’)

 def patch_module(mod):

 setattr(mod, symbol, add_logging(getattr(mod, symbol)))

 on_import(modname, patch_module)

Here is an example:

>>> from postimport import log_on_import

>>> log_on_import(‘math.tan’)

>>>

>>> import math

>>> math.tan(2)

Calling math.tan

 ;login: FEBRUARY 2013 Python: Import Anything   67

-2.185039863261519

>>>

You might look at something like this with horror; however, you could also view
it as a way to manipulate a large code base without ever touching its source code
directly . For example, you could use an import hook to insert probes, selectively
rewrite part of the code, or perform other actions on the side .

Path-Based Hooks
Manipulation of sys.meta_path is not the only way to hook into the import
 statement . As it turns out, there is another variable sys.path_hooks that can
be manipulated . Take a look at it:

>>> import sys

>>> sys.path_hooks

[<type ‘zipimport.zipimporter’>]

>>>

The items on sys.path_hooks are callables that process individual items in the
sys.path list, and it either responds with an ImportError or it returns a finder
object that is used to load modules from that path component . Try this experiment:

>>> import sys

>>> def check_path(name):

... print “Checking”, repr(name)

... raise ImportError()

...

>>> sys.path_hooks.insert(0, check_path)

>>> # Clear the cache to have all path entries rechecked

>>> sys.path_importer_cache.clear()

>>> import foo

Checking ‘’

Checking ‘/usr/local/lib/python27.zip’

Checking ‘/usr/local/lib/python2.7’

Checking ‘/usr/local/lib/python2.7/plat-darwin’

Checking ‘/usr/local/lib/python2.7/plat-mac’

Checking ‘/usr/local/lib/python2.7/plat-mac/lib-scriptpackages’

Checking ‘/usr/local/lib/python2.7/lib-tk’

Checking ‘/usr/local/lib/python2.7/lib-old’

Checking ‘/usr/local/lib/python2.7/lib-dynload’

Checking ‘/usr/local/lib/python2.7/site-packages’

Traceback (most recent call last):

 File “<stdin>”, line 1, in

ImportError: No module named foo

>>>

Notice how every entry on sys.path is checked by our function . To expand this
code, you would make the check_path() function look for a specific pathname
 pattern . If found, it returns a special finder object that’s similar to before . Try this:

>>> class Finder(object):

... def find_module(self, name, path=None):

... print “Looking for”, name, path

... return None

68   ;login: VOL. 38, NO. 1

...

>>> def check_path(name):

... if name.endswith(‘.spam’):

... return Finder()

... else:

... raise ImportError()

...

>>> import sys

>>> sys.path_hooks.append(check_path)

>>> import foo

Traceback (most recent call last):

 File “<stdin>”, line 1, in

ImportError: No module named foo

>>> sys.path.append(‘code.spam’)

>>> import foo

Looking for foo None # Notice Finder output here

Traceback (most recent call last):

 File “<stdin>”, line 1, in

ImportError: No module named foo

>>>

This technique of hooking into sys .path is how Python has been expanded to
import from .zip files and other formats .

Final Words and the Big Picture
Hacking of Python’s import statement has been around for quite some time, but
it’s often shrouded in magic and mystery . Frameworks and software development
tools will sometimes do it to carry out advanced operations across an entire code
base; however, the whole process is poorly documented and underspecified . For
instance, internally, Python 2 .7 doesn’t use the same machinery as extensions to
the import statement . Frankly, it’s a huge mess .

One of the most significant changes in the recent Python 3 .3 release is an almost
complete rewrite and formalization of the import machinery described here .
Internally, it now uses sys.meta_path and path hooks for all stages of the import
process . As a result, it’s much more customizable (and understandable) than
previous versions .

Having seen of all of this, should you now start hacking on import? Probably not;
however, if you want to have a deep understanding of how Python is put together
and how to figure things out when they break, knowing a bit about it is useful . For
more information about import hooks, see PEP 302, http://www .python .org/dev/
peps/pep-0302/ .

 ;login: FEBRUARY 2013   69

Dave Josephsen is the author
of Building a Monitoring
Infrastructure with Nagios
(Prentice Hall PTR, 2007)

and is Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ’04’s
Best Paper award for his co-authored work
on spam mitigation, and he donates his spare
time to the SourceMage GNU Linux Project.
dave-usenix@skeptech.org

Before I begin in earnest, I should point out that this article is the second in a series
of articles on Nagios XI, which is the commercial version of Nagios . Herein I assume
you’ve read the previous article [1] and/or have a working understanding of the gen-
eral XI architecture, which is different from Open Source Nagios, or “Nagios Core .”
So now that we have that out of the way…

Quick, what do you think of when I say “wizard”?

I’ll risk being a bit presumptions in my hope that the image of Milamber, Gandalf,
Dallben, Merlin, or etc . is what probably occurs to the type of person who might
happen to accidentally read this article . Or if you’re of a certain disposition,
perhaps it was Sidi, Sauron, Arawn, or etc . (I’m not judging) . If that’s what you
thought, then I’m with you . Those guys and the ideas connected with them are
certainly the first thing that pops into my head, and although a few alternatives
occur to me, the absolute last wizard on my mind, a wizard worse than the absolute
darkest of the wizards of lore, a wizard so utterly corrupt and vile that I hesitate to
mention it much less write an entire article about it, is the configuration wizard .

Was ever there a thing less wizardly? The configuration wizard is like a wizard in
the same way Facebook is like a book (or dare I say for you Colorado readers: in the
same way the flower pot is . . . well never mind) . So I admit, I’m not looking forward
to writing this particular article . And I’ve put it off, as long as absolutely possible
(as my editor may attest), but it must be done . This of course is no slight to Nagios
XI, which is awesome, and although the Nagios crew have done a top-notch job
implementing a feature that will help a ton of people and fling wide for them the
heavy, spiked portcullis that bars the entrance to corporate America, you’ll forgive
me, I’m sure, for feeling a bit reluctant in the documenting of it .

As I write this in the twilight of the year two thousand and twelve, there are
system administrators who, while mostly competent and sane in other respects,
have managed to carry out their entire careers using nothing but graphical con-
figuration tools . As I related in the previous article, one of the major, oft-repeated
gripes these admin have with Nagios Core is its reliance on configuration files
and the accompanying assumption that you will edit them when you want the
configuration to change .

To address this—perhaps the largest barrier to adoption for many corporate shops
who need to simplify the configuration process—Nagios XI comes complete with
all of the plugins in the standard plugins package, as well as NRPE, NSCA, and
NRDP pre-installed . Additionally, the XI developers have provided a plethora of

iVoyeur
Nagios XI (cont.)

D A V E J O S E P H S E N

70   ;login: VOL. 38, NO. 1

semi-automated configuration wizards, which, given the bare-minimum informa-
tion about a host, take care of the initial setup as well as adding and modifying
services on already-configured hosts .

Pay No Attention to the Files Behind the Curtain
If you consult the official XI documentation at http://library .nagios .com/library/
products/nagiosxi/documentation, you’ll quickly form the impression that the
wizards are the only method for host and service configuration . The configuration
files themselves are rarely if ever mentioned, as if they don’t exist . With names
such as “Exchange Server,” “Website,” and “Windows Workstation,” the wizards
make setting up new hosts and services easy enough that these tasks can be
delegated to 1st-level support techs, or even end-users . The auto-discovery wizard
is capable of bootstrapping an environment given only a CIDR net-block to start
with, and in my experience does a good job of initial setup . To add NRPE-based
host checks, or other services after the fact, just run the appropriate wizard on the
preexisting host .

For example, if Server1 was created with the auto-discovery wizard, and you now
want to add NRPE checks to get CPU, Memory, and Disk information from the
host, you must first install NRPE on Server1 . If Server1 doesn’t already have NRPE
on it, and is one of several common server types, such as a Windows server, Red
Hat, or Ubuntu, the XI developers have an agent package designed to work with XI
specifically at:

http://assets.nagios.com/downloads/nagiosxi/wizards

Once the agent is installed on Server1, simply run the NRPE wizard on the server
from the configuration tab of the XI user interface, as shown in Figure 1, entering
the IP or FQDN of the server, and choosing the type from the drop-down list . The
wizard will then display a pre-configured subset of available check commands
relevant to your server type, and provide text-entry fields for you to specify custom
settings or additional commands if you wish .

Auto-Configuration Gotchas
Static configuration files may still be maintained in etc/nagios/static . So it’s
entirely possible to run your own scripts, or auto-generation tools such as those

Figure 1: The Nagios XI NRPE wizard

 ;login: FEBRUARY 2013 iVoyeur   71

included with Check_MK, provided you configure them to write their configura-
tion to the static directory . I can’t deny that the automated configuration features
in XI have, ironically, complicated things a bit for those of us who have reason to
maintain the configuration manually . While in the Nagios Core universe, there
is a single way to configure Nagios (text files), there are three ways to configure
Nagios in the XI universe (text files, NagiosQL, and XI wizards), and although the
three co-exist as well as I think it’s possible, it can become burdensome to ensure
uniform parameters if the administrators mix-and-match their configuration
methodologies in XI . I’ll give you an example .

Larry, his brother Darryl, and his other brother Darryl all work at bloody stump
lumber mill, where they recently purchased a Nagios XI server to monitor their
growing sales Web-application server farm . Larry was a UNIX admin in college, so
he prefers to edit the config files; Darryl likes to have fine-grained control over the
config, but isn’t very good in vim, so he uses the XI advanced configuration section;
and other Darryl would rather be watching football (an American sport, similar to
rugby but with armor), so he just runs the wizard for everything . Each of the broth-
ers has a server running SSHD that he wants to configure in XI .

When other Darryl runs the auto-discovery wizard on his server’s IP, XI scans the
host and automatically configures a host check and a check_tcp service check for
the SSH port . It then pushes the config to NagiosQL, which commits it to the DB,
writes out the configuration, and restarts the daemon .

Darryl, meanwhile, sets up his host using the NagiosQL forms directly, but instead
of choosing check_tcp, he chooses the check_ssh service, which does pretty much
the same thing, but returns slightly different output . He also names the service
“ssh” instead of “SSH” like the wizard does .

Larry, meanwhile, has really done his homework . He already has a service group
for ssh servers in the static config files he created, so rather than doing all the typ-
ing and clicking that his brothers do, he simply adds his server to the ssh_servers
service group, and the rest takes care of itself . The problem is, his service group
inherits a different set of templates than NagiosQL, so although his service check
uses the same name and check command as the wizard, his polling interval is dif-
ferent, and he has a different notification target for service warnings .

In this way the brothers end up with three different definitions for the same
service, which might not be a problem immediately, but will cause all manner of
headaches if and when they want to integrate Nagios with another tool, or gener-
ally try to do any sort of automation using their monitoring server .

I admit these sorts of disconnects are possible with text configuration files, but my
point is the text configuration encourages administrators to use templates to nor-
malize the configuration, as Larry did in the example above . The automated tools
by comparison encourage isolating the configuration at the host level, because it’s
easier for the automated tools to parse them that way . Thus in Larry’s configura-
tion, we find a single services .cfg wherein every service is defined and assigned a
host group, while in NagiosQL’s configuration we find a services directory with
a single file for each host . The former makes it pretty easy to verify that all the
service checks for every host are implemented in the same way . The latter makes it
much more difficult .

Further, in my experience, the disdain that people like Larry naturally feel for
people like other Darryl generally discourages them from paying close attention

72   ;login: VOL. 38, NO. 1

to what people like other Darryl are doing . In fact, merely inviting other Darryl to
configure the monitoring server with wizards might trigger a tendency in Larry
to go off on his own and “do it the right way” using well-written static config
files, which only exacerbates the problem by more widely diverging the configu-
ration paths .

Whether this will be a problem in your shop will depend on how many hands are
stirring the pot, and the extent to which the more clueful users are aware of the
potential problem . The idea of delegating the configs is certainly tempting, and I’m
not saying you shouldn’t . If you do, my advice would be to use either the wizards or
static config for service and host creation, and avoid using NagiosQL directly if you
can avoid it (you could still safely use it to modify objects, just not to create them) .
That way, you can carefully set up the static config to ensure it references the wiz-
ard templates, or simply copy definitions from the NagiosQL files, and everything
should remain pretty much uniform .

Automated Configuration for Passive Checks
One cool bit of functionality that is related to automated configuration in Nagios XI
is the “Unconfigured Objects” feature . In the event that XI receives a passive check
result for a host or service that it doesn’t know about, it automatically generates
an inert configuration for that host or service, and places it in the “Unconfigured
Objects” section of the “Configure” tab . Administrators may then approve the inert
objects, and they will become part of the running configuration . This is a welcome
addition that I can imagine myself becoming reliant on, and it wouldn’t be possible
without the other wizards in place .

Auto-Discovery Is Dead, Long Live Auto-Discovery
Four or five years ago, a monitoring system’s ability to perform auto-discovery
seemed to be the feature that enabled forum trolls to distinguish the “cool”
monitoring systems from the insipid wanna-be toys, and Nagios, being bereft in
this respect, was in the latter group . At the time, it seemed like I couldn’t read a
monitoring-related Slashdot post without being bombarded with comments from
the adherents for various commercial products who were forever chanting this
strange “auto-discovery or death” rhetoric .

Why they chose that particular feature I can’t guess . I’ve rarely in my professional
career found myself in want of such a tool for Nagios, which is not to imply that
options were lacking . On the contrary, the whining in the forums begat an explo-
sion of these add-ons for Nagios in every language at every level of complexity . So
numerous were they that groups of them would loiter in the parks at night, and in
the morning they would flock outside the Best Buy entrance, hoping for work . As a
group I think most of us found them unwieldy; they made strange assumptions and
were overly enamored of XML .

Today the various auto-discovery add-ons for Nagios have either disappeared or
have become abandonware . Yes, all of them, 100% . Some light googling retrieves
only ancient blog posts from bygone tool-writers announcing or justifying the
creation of their now-abandoned hot new auto-discovery tool for Nagios (now with
extra XML!) . Given the firestorm of controversy that once surrounded this topic, I
find it disorienting that not only the tools, but even the trolls have utterly vanished .
It’s a vexing turn of events but not, I think, an unhealthy one for the Nagios com-
munity, and I suspect two things account for it .

 ;login: FEBRUARY 2013 iVoyeur   73

The first is a plugin written by Mathias Kettner called Check_MK, which I cov-
ered at length in [2] and [3] . The second is Nagios XI, which has everything the
trolls would expect to see in a “cool kid” monitoring system and more, especially
configuration wizards . I can’t prove it, but my suspicion is that real administra-
tors with real problems to solve discovered Check_MK and never looked back, or
convinced their managers to pony up and buy them XI (or both); at the same time,
one look at the XI screenshots caused a massive spontaneous troll migration away
from the monitoring forums and toward dpreview .com or perhaps YouTube, where
they all live happily trolling it up to this day (sorry about that, YouTube) .

I jest, but truly, I think my hypothesis has some merit . If you’re the kind of sys-
admin who likes to get hacky with Nagios Core, you’re going to write a one-liner
for auto-discovery and be done . (The old auto-discovery tools wouldn’t have given
you enough control, anyway .) If you’re the type who just wants to install something
without getting too involved, you’ll install Check_MK and be done . And if you’re
in the market for an effective, established, polished commercial product with
support behind it, then you’ll buy Nagios XI and be done . Even if it is an untestable
assertion, I think I’ve decided to believe it on the grounds that it’s also poetic; the
wizards, after all, appear to have conquered the trolls .

Take it easy .

[1] https://www .usenix .org/publications/login/december-2012-volume-37
-number-6/ivoyeur-nagios-xi .

[2] https://www .usenix .org/publications/login/june-2012-volume-37-number
-3/ivoyeur-changing-game-part-4 .

[3] https://www .usenix .org/publications/login/august-2012-volume-37
-number-4/ivoyeur-gift-fire .

74   ;login: VOL. 38, NO. 1

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist for the
2011 Robert Benchley Society

Humor Writing Award. rgferrell@gmail.com

I stumbled across this piece I wrote as a writing sample in 1997 in a forgotten
 directory on a seldom-accessed backup drive. I can’t remember what I was audi-
tioning for; whatever it was, I probably triggered some sort of mental aberration in
the editor and she had to go to a sanitarium or monster truck rally. That happens
with my writing on a fairly regular basis. Whatever the case, now that this vintage
nonsense has had 16 years to ferment, I thought I’d pop it open and give y’all a hearty
slurp. Remember: 1997.

* * * * *

I encounter an uncomfortably large number of people who, for one reason or
another, want desperately to convince some unsuspecting slice of the population
that they are technically knowledgeable, if not downright expert, at All Things
UNIX . Most of them, however, have neither the aptitude nor the patience to endure
the years of dedication it takes to get this sort of experience on their own . It is a
bewildering fact that virtually all of these hapless souls somehow end up in my
office seeking advice, training, or consolation (usually in that order) . So that I
might save my vocal cords untold wear and get in at least a minimal amount of
work for the agency that pays my salary, I have come up with a short guide for all
those who want to speak UNIX without actually knowing anything about it . A
little time invested memorizing this and you can add at least $25 an hour onto your
consulting fee . That will help to offset the psychiatric bills .

Q: What, exactly, is UNIX?
A: UNIX is an operating system that has been around since 1970, almost as long
as that shrimp cocktail in the back of your fridge . When you push down those little
buttons on the keyboard, magic pixies carry the scan code for each button to the
keyboard controller fairy, who puts them all in an envelope, licks it, and shoots it up
to the processor in one of those vacuum-powered hamster tube things, only digital .
The processor steams open the envelope and arranges the scan codes like building
blocks, creating a surprisingly realistic model of the Taj Mahal before reluctantly
knocking it over and getting on with the business at hand . The scan codes are
instructions to the program currently running in the foreground, which may be
GUI or just slightly sticky .

Q: How does UNIX work?
A: UNIX runs as a series of processes . These processes can be started at boot time
or later on by a user or another process . When one process starts a second one it

/dev/random
What is UNIX?

R O B E R T G . F E R R E L L

 ;login: FEBRUARY 2013 /dev/random   75

is said to fork . The result of forking is, not surprisingly, a child, and the original
is then a parent, which should be apparent . If the parent process dies, the child is
orphaned and Social Services has to be called in . Processes that are supposed to
be controlled by other processes but aren’t are defunct and become eligible for a
government bailout . Each process has an identifying number, the PID . The parent
of a child process has another number, called a PPID . To understand why this is,
you need a PhD . Users have a number, too, known as a UID (which should never
under any circumstances be confused with an IUD) . The most useful number for
you to know is probably the one for the help desk .

Q: How about UNIX and the Internet?
A: UNIX and the Internet are like two socks in a shoe . While all other operating
systems have to be clever and sweet talk their way onto the Internet, UNIX just
strolls right in without even breaking a sweat . When UNIX systems communicate
with one another over the Internet, they talk TCP/IP or UDP, through little revolv-
ing doors called ports . There are thousands of ports available, but a lot of them have
been reserved for visiting diplomats or taken over by applications no one except
other software developers and family members will ever use because the hinges
squeak . This is called progress, and it gets people into trouble . Ports are identified
by simple decimal numbers, such as 25 . This is surprising and a little misleading,
since virtually everything else about UNIX is in hex, octal, binary, or worse .

Q: What the heck are daemons, anyway?
A: There are special processes in UNIX that slink around in the background listen-
ing for requests for service . These are called daemons, because they can turn on
you when you least expect it . Some of them peek out through those ports we just
talked about, waiting for the odd packet to stray too close and slurp it up like a frog
snatching a dragonfly . These processes are controlled by the all-powerful, all-
knowing INETD, without which ARPANET would have been just (tremendously
expensive and highly classified) cans with strings running between them . INETD
is really a whole suite of listening programs started at the same time, including
TCP/IP, FTP, UUCP, Telnet, RCP, and more . As a result, if your INETD is DOA,
you can’t even send out an SOS . LOL .

I could go on ad infinitum, as many of my friends will readily attest, but in the
interests of brevity I will now turn to a list of the essential terminology you
absolutely must be able to bandy about to impress and, if necessary, confuse your
clients .

cat: Reads a file and prints it to the screen, or combines files, or appends to a file .
Likes milk . Opposite of dog() .

cc: Compile a C program . Or copy a message to someone . CC is a cool command to
toss casually into conversation because it has so darn many options, like -dalign,
-fnonstd, -qp, -W[p02abl], -xsbfast, and -xstrconst .

chmod: Make files inaccessible or render them non-executable . Then magically fix
them for your awestruck and deeply grateful clients . Example: chmod 000 | find / *
-name -print

cmp: This one is good just to impress people with its voluminous and highly cryptic
output . Example: cmp -l /etc/disktab /usr/adm/messages .

cof2elf: I don’t want to explain what this one does . I just like the way it sounds, like
something you might hear in Elrond’s infirmary .

76   ;login: VOL. 38, NO. 1

cpio: Archives files onto or off of a disk . Use in conjunction with r2d2 . Also has a
plethora of options . Example: cpio -i bBcCdEfHIkmMrRsStuvV . Gesundheit .

crontab: Run a command or shell script at a set time . Not to be taken internally .

crypt: Bury a file so deep in gobbledygook that its meaning can’t ever get out . A
favorite of legislators and instruction book authors worldwide .

df: See how many devices are attached to the system, and how much can be deleted
from them .

du: Report how much disk space is being wasted by useless fluff such as /vmUNIX .

egrep: An old version of grep . Or a long-legged water bird if your mouf is foo ob
peanub bubba .

find: A career-enhancing command with more options than Georgia has peaches .
A well-written find command can approach a Perl script for unreadability:
find . \? -mtime -4 | xargs grep [Oo]bfuscate -o -prune -perm 444
-exec lp {} \;

ftp: Share those unwanted files and programs . The Internet equivalent of dumping
stuff out on the curb .

grep: Feel around in a file for something . Not legal in all states . Be careful you don’t
prick your finger and get AIDS .

head: Print the first ten lines or so . A useful command, mostly for its puerile sug-
gestive value .

hostid: Spits back a mysterious-looking hexadecimal number for no apparent
reason .

kill: The ultimate aggressive sysadmin tool . Looks bad, is worse .

ln: A great way to confuse any file system hopelessly . Example: ln -f pwd kill -9 1 .

nohup: Disallow current or former drill instructors from logging onto the system .

od: A command that is as descriptive as it is functional . Example: od -bv kernel.o. > /
etc/inittab .

pack: A good, well-rounded command . Example: pack -f - * .

pg: A great way to ensure that important material is read . Find a nice, long text file
and then try pg -r -1 file .

red: Print files with all characters far to the left of center (warning: process obsoletes
itself after a while) .

rksh: The most versatile and useful shell . Add the line SHELL=/bin/rksh to / .profile
right now .

stty: One of the all-time great UNIX commands . Virtually any combination of op-
tions and modes is a veritable work of poetic art. Example: stty -a cstopb parodd
-ixoff -olcuc flusho stappl ctrl-char dsusp cooked -dtrxoff x cibrg r setctbrg .

talk: A clever little utility that might get you committed . Example: talk | whoami .

tar: Rolls up your files into a small, viscous black ball for storage . Surprisingly, it is
not GUI .

timex: A version of rollx that uses a plainer font and a lot fewer system resources .

touch: Update and otherwise control files . Leave yourself open to various lawsuits
and possible criminal indictment in the process . See grep .

tee: Balance the ball on a little wooden pegleg . Then hit that sucker hard . Yelling
“fore!” optional .

 ;login: FEBRUARY 2013 /dev/random   77

truss: Trace system parameters during program execution . Primarily for customer
support, especially of the lower abdomen and pelvic region . Example: /usr/bin/hernia
> truss .

uuglist: Stops the system clock abruptly .

vc: Destroys the target file, then disappears into the operating system before you can
kill it .

wall: A collection of bricks . Or Just Another Perl Hacker .

wc: A little chickadee that really doesn’t do much of anything . Example: wc | find / *
-print .

who: Checks your system for owls .

yacc: Checks your system for yaks .

xargs: Checks your system for, um, zargs .

USENIX Member Benefits
Members of the USENIX Association receive the following benefits:

Free subscription to ;login:, the Association’s magazine, published
six times a year, featuring technical articles, system administration
articles, tips and techniques, practical columns on such topics as
security, Perl, networks, and operating systems, book reviews, and
reports of sessions at USENIX conferences .

Access to ;login: online from October 1997 to this month:
www .usenix .org/publications/login/

Access to videos from USENIX events in the first six months after
the event: www .usenix .org/conferences/ multimedia/

Discounts on registration fees for all USENIX conferences .

Special discounts on a variety of products, books, software, and
periodicals: www .usenix .org/member-services/ discounts

The right to vote on matters affecting the Association, its bylaws,
and election of its directors and officers .

For more information regarding membership or benefits,
please see www .usenix .org/membership-services
or contact office@usenix .org .
Phone: 510-528-8649

BOOKS

78   ;login: VOL. 38, NO. 1

Regular Expressions Cookbook, Second Edition
Jan Goyvaerts and Steven Levithan
O’Reilly and Associates, 2012 . 575 pp .

ISBN 978-1-449-31943-4

This is an excellent reference work, which will some day—
perhaps many days—save you untold effort . Yes, this book
goes over how regular expressions work, but where it shines
is in providing practical recipes that take into account not
only the details of regular expressions but also the details
of the world . For instance, in processing ZIP codes it notes
that there is one ZIP+4 (and only one) that contains letters,
but then notes that your mail to Saks’ shoe department will
deliver just fine without it anyway, and recommends you just
ignore it . Regular Expressions Cookbook is happy to suggest
combining regular expressions and code for readability and
performance .

The book is admirably agnostic, bearing in mind the possibility
that you will want to deal with phone numbers and postal
codes from outside the US, use non-ASCII character sets, and
parse Windows-specific values . Although it is impossible to
cover all the languages and situations where you may want to
use regular expressions, it covers a good wide variety, includ-
ing uses in text editors, and provides references to useful test-
ing tools . I might not have picked up this title had I not been
looking at books to review (after all, I already own two books
on regular expressions), and that would have been a real loss .
Even if you’re already a pro with regular expressions, this
book will point out details and save thought; if you’re not, it
will help you without making you too terribly dangerous .

Python for Data Analysis
Wes McKinney
O’Reilly and Associates, 2012 . 432 pp .

ISBN 978-1-449-31979-3

This is a specialist’s book . If you read the title and think,
“Wow, how handy; I have this data I know how to analyze,

Book Reviews
E L I Z A B E T H Z W I C K Y , W I T H M A R K L A M O U R I N E A N D T R E Y D A R L E Y

and I know some Python, and learning all of R seems a bit
unwieldy when I could do all my processing in Python,” then
you really want this book . If you are fully confident in your
skills in one thing or another, either Python or data analysis,
and you’re interested in teaching yourself the other with a bit
of assistance from a reference work, this title would still be a
good choice .

If you need hand-holding, move on . This is the kind of the
book that says airily that there are many ways to get a random
sample of items, with different performance implications,
and then provides an example of exactly one of them . You are
expected to already know what performance implications it
has and to think of the rest for yourself . (It’s hardly an unusual
problem, after all .) The book also, in the Macintosh installa-
tion instructions, tells you to download a software package
without specifying where you would download it from . (For
one thing, the answer is easily findable in search engines, and
for another, it already told you in the Windows instructions—
why you would read the Windows installation instructions in
order to do a Macintosh installation, I do not know .)

I’m probably going to use my copy, if I can pry it out of the
hands of the Python guy at work who has been asking me
wistfully for months whether I know anything about pandas
(the Python library, not the bamboo-eating animals) .

Managing the Unmanageable: Rules, Tools, and
Insights for Managing Software People and Teams
Mickey W . Mantle and Ron Lichty
Addison Wesley, 2012 . 406 pp .

ISBN 978-0-321-82203-1

There are some good insights in this book and some pithy
rules of thumb; it’s an approachable book about managing
programmers, which will probably help many managers,
especially those who manage groups composed entirely
of programmers turning out new projects . All the same, I
couldn’t love it . Some of the problem was the authors’ style,

 ;login: FEBRUARY 2013 Book Reviews   79

which doesn’t work for me (and that’s a highly personal thing,
so you should check out the book to see how you feel about it
yourself) . Some of that was the laser-like focus on traditional
programming . The authors are quite condescending about
people who program in scripting languages or, worse yet, use
GUI tools, and they don’t care about non-programmers—
including QA, system administrators, designers, and technical
writers—at all . Apparently in their world, programming man-
agers don’t deal with such people . Also programming manag-
ers only manage development groups, not support groups .

The book does a much better job than most on the nitty-gritty
of interviewing and hiring programmers, and the rules of
thumb it presents get a nice wide range of perspectives repre-
sented . If the style and the tight focus work for you, this book
is a good place to start in the programming management
game; the content strikes me as mostly right, if occasionally
over-opinionated .

Python for Kids
Jason R . Briggs
No Starch Press, 2012 . 313 pp .

ISBN 978-1-59327-407-8

Super Scratch Programming Adventure!
The LEAD Project
No Starch Press, 2011 . 158 pp .

ISBN 978-1-59327-409-2

These two books take superficially similar approaches; both
of them use video game development to motivate kids to learn
to program . Python for Kids is aimed at kids age 10 and up,
whereas Super Scratch is geared toward kids 8 and older;
however, even apart from the age difference, these books will
suit radically different children .

Super Scratch is in a comic book format, and it focuses on
a language designed for children . Python for Kids is a stan-
dard introduction to Python, gently modified for children .
For a lot of kids, particularly kids on the younger end of the
age range, Super Scratch is going to be the more attractive
option . Super Scratch starts off with an intergalactic adven-
ture, and gets to making a cat move on page 21 (and that
includes 10 pages kids can skip and a couple in which you’re
already looking at the cat on your screen) . Python for Kids
gets halfway through before it starts covering a game, and it
begins by adding numbers . If your kid wants to program for
programming’s sake and is likely to be offended by having
things dressed up with irrelevant space-going comic strips,
Python for Kids is the better choice .

Of the two, I think Super Scratch does a better job of bringing
programming to kids because it talks about debugging, for
example, and does a better job of providing questions kids are
likely to be interested in answering . Of course, Super Scratch
also starts with a programming language designed for kids,
which is a major leg up .

Python for Kids has to work within the limitations of Python,
which requires a certain amount of typing and discussing
integers and the like . On the whole, I think Python for Kids
copes pretty well, although my head exploded at the para-
graph “Why is a giraffe like a sidewalk? Because both
a giraffe and a sidewalk are things, known in the English
language as nouns, and in Python as objects .” OK, first of all,
a giraffe is not a noun . The word “giraffe” is a noun . Second,
there is no guarantee that nouns are things or things are
describable with nouns . “Beauty” is a noun, but beauty is not
a thing, and a pregnant giraffe is a thing, but only describ-
able with a noun phrase . Third, objects, nouns, and things
have very different characteristics . A giraffe is even less like
a Python object than it is like a noun . Fourth, while giraffes
and sidewalks are like each other in their degree of dissimi-
larity from both nouns and Python objects, this totally fails
to illuminate me about Python objects and doesn’t come up
again . Presumably, if I were 10 years old this would bother
me less, but I still don’t think it would do much to help me
understand Python objects .

My test child is 8; she has encountered Python for Kids in
its previous online existence, and by all reports was unim-
pressed . (Like me, she is not interested in programming for
programming’s sake, so she’s pretty much out of its target
audience in several directions .) She was quite taken with
both Super Scratch and the Scratch programming language,
and although she required a little help to make the connec-
tion between the book and the screen, she was enthused
about working with it . At which point, using only the instruc-
tions she could not proceed without in Super Scratch, she
carefully recreated in Scratch…the first turtle drawing exer-
cise in Python for Kids, which she ran into at least six months
ago . Go figure .

Meanwhile, these experiences seem to have communicated
only some of what they were trying to . Days later, we looked
at the screen saver on my computer, drawing fancy flowers,
and I said to her, “You know that’s a computer program, right?
People write programs that draw flowers .” “Really?” she said .
“Huh . I’ve written three programs, you know .” Score a point
for empowerment; take it away for not having connected that
experience to the things computers do that she loves .

—Elizabeth Zwicky

80   ;login: VOL. 38, NO. 1

Assembly Language Programming: ARM Cortex M3
Vincent Mahout
Wiley-ISTE, 2012 . 246 pp .

ISBN 978-1-84821-329-6

I’m one of those people who thinks that software developers
should be aware of the workings at least one and probably two
levels below where they are working . That would be reason
enough to want to read up on assembly language . The recent
growth in consumer and hobbyist ARM systems makes that
a good selection .

Modern compiled and scripted languages plaster over so
much of the arcana that goes on at the machine level that
there’s no good place to just jump in and get coding . Mahout
takes about five chapters to get to some working code . Those
chapters cover the ARM architecture and elements of assem-
bly syntax .

The final four chapters are where this book earns its keep .
Chapter 6 demonstrates how to implement logical constructs
such as looping and branching blocks that in a high-level
language might be represented with a single keyword and a
couple of curly braces . Chapter 7 covers modularity and con-
structing procedures and functions, including detailing the
ARM-calling convention . Chapter 8 is about handling hard-
ware- and software-generated exceptions . Chapter 9 walks
through the creation of a complete simple program, detailing
each of the steps required to assemble, link, load, and run
the program . Remember, in assembly you’re responsible for
initializing the stack and all of the memory you’ve allocated
before branching to your program .

Aside from the long exposition that must happen before get-
ting to the meat, this book has several other quirks that effect
the reading experience . The contrast of the graphics and
code typesetting detract somewhat from the otherwise clean
layout . The code boxes use an unnecessarily dark background
that makes the black text hard on the eyes . Many of the graph-
ics appear to be color images converted to gray-scale without
any additional touch up .

There is, throughout the book, an odd use of language, at least
to my American English ear . When describing the sample
project used to illustrate the use of the assembler/linker/
loader tool chain, Mahout begins, “This entire project is of
restricted algorithmic interest .” I probably would have cho-
sen “limited .” The word choice doesn’t confuse the meaning
but can stand out as you read . If this issue had happened once
I would have passed it off as a quirk, but it occurs repeatedly .
Mahout is a native French speaker . The book is published
and printed in the UK . I would have thought that an English-
speaking editor would have spent a bit more time polishing
simple word choices .

The number of ARM family variations and the fact that ARM
SOC (System on a Chip) are manufacturer-specific mean
that Mahout can’t talk about things outside the core spec
itself . He chose a fairly recent mobile core, the Cortext M3,
as his working model .

In the same way that there are different flavors of compiler
for high-level languages, there are multiple assembler envi-
ronments for a given processor family . Mahout based his
book on the Keil ARM-MDK (Microcontroller Development
Kit) . Kiel has been purchased by ARM, and the “Lite” version
is available from the arm .com Web site for free and is capable
of demonstrating all of the work in the book . Appendix D of
the book details how the GNU-GCC assembler (specifically
the assembler from the Sourcery G++ suite) differs from the
ARM-MDK .

This is certainly not a book for a novice programmer . If you
need proper ARM references, the ARM site itself has those
for each of the processor flavors, and for a specific SOC you
will need the manufacturer references . I don’t want to recom-
mend against this book for an experienced coder who wants
to taste assembly language or get a look under the hood of an
ARM system, but I will warn that reading it will take some
dedication . This might be a good book for the classroom, but
I would hope that the teacher would re-organize or gloss the
early chapters and somehow get the students straight into
some hands-on work . I’m still looking for the K&R or Stevens
of modern assembly .

Super Scratch Programming Adventure!
The LEAD Project
No Starch Press, 2011 . 158 pp .

ISBN 978-1-59327-409-2

Since the invention of Logo and the turtle in 1967, people
have been trying to create languages and environments that
invite kids to learn and explore programming . The Scratch
programming environment was created at the MIT Media
Lab’s Lifelong Kindergarten project in 2006 . An environment
like Scratch still has to be presented to kids in a way which
helps them engage .

Super Scratch Programming Adventure is published in North
America by No Starch Press, but was developed and written
by The Lead Project, a collaboration between the Hong Kong
Federation of Youth Groups and the MIT Media Lab .

When I got this book in the mail, the first thing I did was set
up Scratch on my 13-year-old daughter’s computer . After
supper I handed her the book and walked away . My daughters
have both been resistant to learning programming from me
and I generally don’t push except occasionally to offer some

 ;login: FEBRUARY 2013 Book Reviews   81

new toy to try, like this . Several hours later she was still play-
ing with Scratch . I’ll call that a win . She continued to play
with it on and off for several days .

When I asked her what she thought of the book she said she
liked it in general . She thought the comic book presentation
was a bit young for her, but that it didn’t detract once she got
into it . She played with each of the games and explored some
of the variations, but she didn’t follow the progression of the
book faithfully and she didn’t formally complete any of the
“lessons” in the way the authors intended . She said that a big
part of Scratch is creating the artwork for the stories . She
doesn’t consider herself an artist so she stopped when she ran
out of things to do with the (large) provided set of “avatars .”

With the experiment over I started working through the
book myself .

Scratch is a programmable storytelling environment . The
user can draw characters (avatars) and backgrounds or use
some from the provided library . The stories are programmed
by dragging and dropping a set of tool bar objects, represent-
ing logic constructs and methods, on various other objects,
such as avatars or drawing pens . A loop or code block actually
wraps around the contained steps so the nesting and scope
are visually clear . Method parameters are text boxes whose
contents the user can change . Types of programming objects
(logic, avatars, drawing tools) are color coded . Scratch and
the programming examples for the book are available online
from the URLs provided .

Super Scratch Programming Adventure! has the typical cast
of characters: the human, for the reader to identify with, and
a collection of animals and aliens to play the roles of helpers
and villains . The adventure is presented as a series of crises
to be overcome . Each crisis has a program that starts out
working, but not in the desired way . The text guides the
reader through the process of changing the program to solve
the problem . The end of each chapter suggests some other
ways to experiment to see the effect of different changes .

The chapters present the typical concepts of variables, code
blocks, looping, and procedures in a purely practical and
experimental way without any attempt at theory . The stu-
dents get a visceral understanding through their play . In a
classroom setting a teacher might have a discussion session
to get the students to talk about the implications of what
they’ve done, but that’s not part of the text . By the end the
students have played with 2D motion, sound, color, and user
interaction .

As I mentioned, Scratch is a storytelling environment and
Super Scratch Programming Adventure ! is a storybook . Story-
telling isn’t much fun without an audience . Scratch provides

a means to upload stories to a public Web site, and the book
encourages the student both to do that and to explore the
stories there for additional ideas .

My experiences with recent middle and high school “com-
puter” classes have been disappointing, and I expect it’s
not uncommon . Recent activities in the UK [1, 2] and this
book from Hong Kong (not to neglect any US efforts I’m not
aware of) give me hope that middle and secondary computer
education may yet grow beyond teaching proprietary word
processing software . This book is probably best suited to
a middle school environment . It’s going to require creative
and enthusiastic teachers to foster the sense of expressive
freedom needed so that the students never know they’re
“programming .” I’d certainly recommend this book and
Scratch to an involved parent whose child has expressed
an interest in using computers for something more than
viewing videos and playing games . This book will stay on
my daughter’s shelf, and it may yet call her back to play .

[1] http://www .guardian .co .uk/politics/2012/jan/11/
michael-gove-boring-it-lessons .

[2] http://www .raspberrypi .org/about .

—Mark Lamourine

The CERT Guide to Insider Threats: How to
Prevent, Detect, and Respond to Information
Technology Crimes (Theft, Sabotage, Fraud)
Dawn Cappelli, Andrew Moore, and Randall Trzeciak
Addison-Wesley Professional, 2012 . 432 pp .

ISBN: 978-0-321-81257-5

Carnegie Mellon’s CERT Insider Threat Center has (in col-
laboration with various law enforcement agencies) amassed
a substantial data set of criminal cases involving malicious
trusted insiders . Through analysis of this database the
authors (all of whom work for the Insider Threat Center, by
the way) have identified distinct profiles associated with
fraud, IP theft, and sabotage . The authors use these case
histories to great effect throughout the book to drive their
points home .

They won my heart early with this line in the book’s overview:
“If you learn only one thing from this book, let it be this: Insider
threats cannot be prevented and detected with technology
alone .” For managers, faced with a difficult and a subtle prob-
lem, the temptation to throw an expensive black box at it, put a
tick in the box, and assume that it does what it says on the tin
can be irresistible . Couple that with the trend of outsourcing
critical functions and you’ve got a recipe for danger .

82   ;login: VOL. 38, NO. 1

The first four chapters provide a fairly high-level overview of
case histories, profiles, motivations, and mitigation strate-
gies . The rest of the book is devoted to issues specific to the
software development life cycle, best practices for prevention
and detection, suggested technical controls, and in-depth
examination of selected cases . Technical types can glean use-
ful insights from this book, but to get the maximum benefit, try
organizing a reading group with the folks over in HR .

Advanced Internet Protocols, Services, and
Applications
Eiji Oki, Roberto Rojas-Cessa, Mallikarjun Tatipamula,
and Christian Vogt
Wiley, 2012 . 260 pp .

ISBN: 978-0-470-49903-0

I marvel that such a slender volume can pack such a wallop
of disappointment . Based on the publisher’s description,
this book sounded like it would pair nicely with the new
 edition of TCP/IP Illustrated, Volume 1 . I hoped it would fill
in the gap on topics that Kevin Fall omitted for brevity’s
sake (i .e ., dynamic routing protocols, traffic shaping, QoS,
and so forth) . Sadly, this book contains so many errors (both
linguistic and technical) that I cannot imagine an editor
was ever even in the same room with the manuscript . This
is a rambling 260-page paraphrasing of RFCs that somehow
manages to be less readable than the RFCs themselves . This
book lists for $US 99 .95 . For that amount of money you can
buy two copies of Fall’s opus . Do yourself a favor and skip
this one . Hopefully, Fall is hard at work updating TCP/IP
Illustrated, Volume 2 .

—Trey Darley

USENIX Board of Directors
Communicate directly with the USENIX Board of
 Directors by writing to board@usenix .org .

P R E S I D E N T

Margo Seltzer, Harvard University
margo@usenix.org

V I C E P R E S I D E N T

John Arrasjid, VMware
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland
carolyn@usenix.org

T R E A S U R E R

Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S

David Blank-Edelman, Northeastern University
dnb@usenix.org

Sasha Fedorova, Simon Fraser University
sasha@usenix.org

Niels Provos, Google
niels@usenix.org

Dan Wallach, Rice University
dwallach@usenix.org

C O - E X E C U T I V E D I R E C T O R S

Anne Dickison
anne@usenix.org

Casey Henderson
casey@usenix.org

REPORTS

 ;login: FEBRUARY 2013   83

10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’12)
Hollywood, CA
October 8–10, 2012

Opening Remarks
Summarized by Rik Farrow (rik@usenix.org)

Program Co-chair Amin Vahdat opened the conference, tell-
ing the audience that this year’s attendance was high, close
to but not greater than the record for OSDI. Vahdat explained
the review process: 25 out of 215 papers were accepted, pro-
ducing 1079 written reviews. Authors were sent reviewers’
comments so that they could address any concerns about
the research before they submitted their final versions of
their papers.

Co-chair Chandu Thekkath presented the two Jay Lepreau
Best Paper awards to the 26 authors of “Spanner: Google’s
Globally-Distributed Database” for Best Paper, and to Mona
Attariyan, Michael Chow, and Jason Flinn for “X-ray: Auto-
mating Root-Cause Diagnosis of Performance Anomalies in
Production Software,” the Best Student Paper.

The UCSC Cancer Genomics Hub
David Haussler, University of California, Santa Cruz (adjunct at UCSF
& Stanford)
Summarized by David Terei (davidt@scs.stanford.edu)

Twelve years ago, two teams raced to sequence the human
genome. Today, DNA sequencing technology is outpacing
Moore’s Law; it is the dawn of personal genomics. The first
human genome cost more than $100 million to sequence,
while in 2013, sequencing will cost $1,000 per personal
genome.

Instead of simply looking at one reference genome to under-
stand diseases, imagine looking at millions—this is where
a lot of medical research will head. Cancer will be the main
target as the disease is caused by changes to the human
genome and is highly individual. There is also a willingness
to try new ideas; the rest of the medical community is gener-
ally slower moving, said Haussler.

Thus, genomes are the key to the future of cancer treatment.
A patient’s genome will be compared to a database of other
genomes to devise a treatment. Drugs targeted to the indi-
vidual are needed and feasible.

The Cancer Genome Atlas is currently the largest such
database, containing around 10,000 entries. Each entry
consists of a biopsy of the tumor and normal tissue, with
both sequenced and the differences analyzed and mapped
to the first human genome reference to account for normal
and abnormal variations between individuals. Generally
speaking, there are 3 to 4 million normal differences between
individuals; this variation among us is referred to as a per-
sons “germ line.” For sequenced genomes, a variety of muta-
tions between the tumor and healthy tissue can be detected,
including point mutations, deletions, duplications, inversions,
and shifts.

The analysis of these mutations and the sequenced genome
data itself are now being stored in the UCSC Cancer Genom-
ics Hub (CGHub). CGHub provides a secure platform to host
the confidential data and manage access to it for authorized
researchers. The platform also supports an app-like model
for authorized software that provides analysis and visual-
ization tools to researchers. Each entry (patient) is around
100 GB when compressed; CGHub is currently designed for
50,000 genomes and holds 24,000 files from 5,500 cases. No
collocated computing power is provided for now.

The analysis of these files is an interesting and challenging
field for the systems and machine learning fields. Ideally,
we would have large-scale, automated discovery of diagnos-
tic signatures. (Think of how the prediction of treatment
outcome would be improved if based on genetic data!) Here
is where the systems community can help, by providing
information on (1) how to handle big data, (2) how to analyze
the data, (3) how to predict outcomes based on this analysis/
data, and (4) how to make treatment recommendations from
all of this.

Jeanna Matthews (Clarkson) asked if the benchmark chal-
lenge was available yet. Haussler replied that they will be

Complete conference reports from HotPower ’12,
MAD ’12, and OSDI ’12 are available online at
www.usenix.org/publications/login

Conference Reports

84   ;login: VOL. 38, NO. 1

announcing the benchmark challenge soon: read in the raw
DNA and output how it was mutated. Ken Yocum (UCSD)
asked Haussler to comment on consent from patients and
 privacy concerns for getting data into the database. Haussler
said they were about to release some data without restric-
tions. In general, you need to apply for permission with NIH
to gain access and abide by its privacy policy/expectations
(prove you will do valuable research). Amin Vahdat (UCSD)
asked about the cost for analyzing DNA data. Haussler replied
that if the cost of sequencing is as low as $500 and the cost
of analysis is $2000, there will be enormous pressure to also
drive down the computational cost. They need better algo-
rithms and novel techniques to accomplish this. For example,
to compare every piece of DNA with 50 others currently takes
a few weeks. Bryan Ford (Yale) asked whether Haussler could
describe the major computational and storage roadblocks.
Haussler said, in a word, I/O. Currently, individuals are writ-
ing small, isolated tools that create lots of intermediate files.

Big Data
Summarized by Jim Cadden (jmcadden@bu.edu)

Flat Datacenter Storage
Edmund B. Nightingale, Jeremy Elson, and Jinliang Fan, Microsoft
Research; Owen Hofmann, University of Texas at Austin; Jon Howell
and Yutaka Suzue, Microsoft Research

Jeremy Elson presented the Flat Datacenter Storage (FDS),
a datacenter-scale blob store that has the agility and con-
ceptual simplicity of a global store without the usual perfor-
mance penalty. The novel approach taken by FDS to alleviate
the network bottleneck is to multiplex the application’s I/O
across the available throughput and latency budget of the
disks within the system.

Jeremy began the talk with a conceptual introduction to a
“little data” platform—a highly utilized, tightly coupled multi-
core machine. This commonplace example illustrated the
inherent problem with big data computation in that our tra-
ditional machine architectures do not scale. FDS attempts to
provide the essential properties of little data platforms with
the scale and performance necessary for big data application.
This is realized through a novel combination of three attri-
butes: a simple scalable blog store, decentralized metadata
management, and a full bisection bandwidth CLOS network
with novel distributed traffic scheduling. The performance
gains of FDS come at the cost of the requirement of addi-
tional underlying hardware, in specifically the 1:1 matching
between I/O and network bandwidth.

In the experimentation results, FDS showed read/writes to
remote disks at up to 2 GBps—faster than most systems write
locally. In addition, intra-disk high-speed communication of
FDS allows for impressive data recovery benchmarks, with
over 600 GB of data being recovered in 34 seconds within

a 1000 node cluster. Applications built atop FDS are able to
achieve world-record-breaking performance. MSR trumped
Yahoo!’s 2009 record at Minute Sort benchmark by sorting
data at a 15x efficiency improvement over the existing record.

Geoff Kuenning (Harvey Mudd) asked if the replication
communication of the coherence protocol would present a
potential bottleneck. Jeremy agreed that a replicated cluster
would incur some necessary cost, but the applications flex-
ibility to extend blobs and lazy disk space allocation will help
alleviate this cost. Someone asked whether the authors had
compared the performance of FDS against other commercial
high-end storage systems (e.g., EMC, Hatachi, etc.) and how
they expected FDS to scale further. Jeremy explained that
they do not have the opportunity to do a 1:1 datacenter-scale
comparison and, in addition, the linear scaling characteris-
tics of FDS should allow for a scale of up to tens of thousands
of nodes.

PowerGraph: Distributed Graph-Parallel Computation
on Natural Graphs
Joseph E. Gonzalez, Yucheng Low, Haijie Gu, and Danny Bickson,
Carnegie Mellon University; Carlos Guestrin, University of Washington

Joseph Gonzalez presented PowerGraph, a framework for
graph-parallel computation on natural graphs. Power Graph
was shown to produce order-of-magnitude computation
improvement on natural graphs over the existing graph-
parallel abstraction frameworks such as Pregel and GraphLab
version 1. PowerGraph is now integrated into GraphLab 2.1
and released under the Apache license.

Joseph began by introducing natural graphs, graphs that, by
definition, are derived from real-world phenomena, like a
Twitter connection graph. Natural graphs are commonplace
in machine learning and data mining problems throughout
science. A distinct trait of natural graphs is their highly
skewed power-law degree distributions that create a star-like
graph motif. An example illustrating this was that of Presi-
dent Obama’s twitter account and his many followers.

PowerGraph changes the model for structuring the parallel
computation on a graph by splitting up a high-degree vertex
and distributing it across machines. PowerGraph’s gather,
apply, and scatter (GAS) technique further enables the work
to be divided, computed in parallel, and sent to a “master”
machine where changes are applied on the master and synced
to mirror nodes. The GAS method was shown to be applicable
to all existing graph processing systems by a new theorem
that states any edge cut can be reconstructed as a vertex-
cut. Preprocessing and greedy-cut techniques can further
increase the performance of PowerGraph.

In the experimental results, PowerGraph was shown to
provide an order-of-magnitude performance increase over

 ;login: FEBRUARY 2013 Conference Reports   85

previous frameworks in both throughput and runtime. The
scalability of PowerGraph was illustrated through PageRank
iterations on the billion-node Yahoo! Altavista Web Graph,
spending only seconds running across on 64 Amazon EC2
HPC nodes.

Terence Kelly (HP Labs) noticed that the graphs used to
gather experimental data were small enough to fit into
main memory, and proposed that a comparison between
 PowerGraph and a simple straightforward serial process
would be interesting. Joseph agreed that PowerGraph can
be beaten by a single core to a point, but it makes great
strides on larger graphs and in the cloud. Aapo Kyrola
(CMU) inquired about the difference between the approach
of PowerGraph and previous vertex partitioning techniques.
Joseph explained that the objectives of PowerGraph include
an asynchronous operation and the ability to transform edge
data. Aapo also made the same point as Terence Kelly, that it
is often possible to compute graph problems on a single host,
without partitioning.

GraphChi: Large-Scale Graph Computation on Just
a PC
Aapo Kyrola and Guy Blelloch, Carnegie Mellon University; Carlos
Guestrin, University of Washington

Aapo Kyrola introduced GraphChi, a natural graphic process-
ing framework designed to compute on a single desktop PC
via appropriate use of data structure and algorithms. Graph-
Chi was written in 8000 lines of C code and is also available
as a Java implementation.

Aapo began by setting the assumption that most large-scale
natural graphs (e.g., Facebook social connections) have bil-
lions of edges yet can be reasonably stored on a single hard
drive and, therefore, may not need the added overhead and
cost required by the cloud if the computation can be handled
on a single machine. The GraphChi model, similar to that of
PowerGraph, is designed to exploit the inherent character-
istics of natural graphs. Perhaps more of a fan of music than
politics, Aapo used Lady Gaga’s Twitter followers to illus-
trate the high-degree vertices trait of natural graphs.

One way in which GraphChi enables sequential scalable
graph computation on a single machine is through increased
I/O performance gained through optimizations made to alle-
viate random-access reads on disk. The Parallel Sliding Win-
dow (PSW) works by loading subgraphs into memory, one at
a time, running computation, and returning that subgraph
to disk. Heavy preprocessing is required on the graph to sort
the vertex and edges in a way that both in and out edges of a
directed subgraph can be extracted per load interval.

In the experimental results, Aapo showed that GraphChi
performs reasonably well with large scale Big Data graph

computations on a single Mac Mini machine. For problems
dealing with complex computational issues, a 4x speedup
was recorded by running GraphChi across four cores. The
same speedup was observed with problems involving high
I/O as GraphChi would saturate the I/O lines with only two
concurrent threads. Graphs with billions of edges required
less than an hour of preprocessing.

Mohit Saxena (Wisconsin) asked if their research compared
PWS with OS techniques for memory mapping or SSD as a
cache. Aapo explained that since the graph is passed over
once in its entirety (and then f lushed), OS caching tech-
niques don’t really apply.

Privacy
Summarized by Edmund Wong (elwong@cs.utexas.edu)

Hails: Protecting Data Privacy in Untrusted Web
Applications
Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,
and John C. Mitchell, Stanford University; Alejandro Russo, Chalmers
University

Web platforms, such as Facebook, currently host many third-
party apps that access private user data. It is hard to place
trust in third-party app code; developers of such apps, due to
malice or ignorance, may leak private data. However, even
if developers are well-meaning, it is hard to trust their app,
as building secure Web apps is difficult. Typically, develop-
ers implement security policy in an error-prone fashion, by
injecting if-statements in application logic. A typical plat-
form protects user data by allowing users to decide whether
an app gets access to data, but the platform does not control
how the app uses said data.

To address this problem, Deian Stefan from Stanford Uni-
versity presented Hails, a Web platform framework that
enables security policies to be explicitly specified along-
side data. Hails aims to be deployable today, usable by non-
security developers, and suitable for building extensible
Web platforms. In Hails, the trusted platform provider hosts
untrusted apps and enforces security through language-level
information-flow control (IFC) techniques. Stefan argued
that, unlike Hails, previous IFC systems, such as Aeolus,
HiStar, Nexus, or Jif, provide no guide for structuring apps,
require policies that are hard to write, are not appropriate for
dynamic systems such as the Web, and/or require modifica-
tions to the entire app stack.

Hails introduces a new design pattern, Model-Policy-
View-Controller (MPVC), which is an extension of Model-
View-Controller. In MPVC, the model-policy consists of
the data model and the policy associated with the data. The
policy follows the data as it flows through the system and
specifies where data can flow. The view-controller compo-
nents provide application logic and user-interface elements;

86   ;login: VOL. 38, NO. 1

they do not implement security policy and are not trusted
by users. View-controller components invoke model-policy
components to store/fetch user data, and a Hails runtime
enforces that the policy is followed end-to-end.

Hails is implemented as a Haskell library that enables quick
turnaround on API design and allows developers to use
their existing tools and libraries. Part of the library is the
Hails runtime which provides an HTTP server that runs
the view-controller. To demonstrate Hails in action, Stefan
presented GitStar, a Web site for hosting source code much
like GitHub, except the platform is provided by Hails and
untrusted apps run atop this platform, unlike the monolithic
structure of GitHub. In GitStar, the model-policy consists of
data on projects and users, and third-party developers can
build apps (view-controllers) to implement functionality,
such as a code viewer or a wiki. Hails ensures that these apps
cannot leak data even if the apps access project and user data.
Stefan evaluated the usability of Hails by asking five develop-
ers to implement apps using Hails. These developers thought
that Hails greatly simplified the process of writing security
policies and securing their apps. Stefan also showed that
Hails was faster than Sinatra, another Ruby Web applica-
tion framework, for small Ruby apps but slower than Apache
running PHP.

The first questioner asked how Stefan evaluated the usability
of Hails for users. Stefan reiterated that the five developers
(including one high-school student) who were asked to
develop on Hails were successful in doing so; these develop-
ers found that Hails greatly simplified the process. Stefan
was particularly excited by this result because he felt that
developers using other IFC systems were typically experts
in IPC, not Web developers. Jonas Wagner (EPFL) asked
whether there were obstacles to applying the techniques
used in Hails to a framework in Ruby on Rails or Python
and whether policy can be enforced without modifying the
language runtime. Stefan replied that other languages were
considered, but Haskell was chosen due to control over side
effects. Stefan said that for any other language, the compiler
must be modified to support Hails. However, Hails currently
allows developers to write apps that call untrusted (Linux)
executables and referred to the paper for a further discussion
on the use of untrusted executables within Hails. Peter Good-
man (U of Toronto) asked which compiler was used with
Hails; Stefan replied that GHC was used.

Eternal Sunshine of the Spotless Machine: Protecting
Privacy with Ephemeral Channels
Alan M. Dunn, Michael Z. Lee, Suman Jana, Sangman Kim, Mark
Silberstein, Yuanzhong Xu, Vitaly Shmatikov, and Emmett Witchel,
The University of Texas at Austin

Alan Dunn presented Lacuna, whose goal is to provide
forensic deniability: no evidence is left for a non-concurrent

attacker once the program has terminated. Dunn argued
that current approaches, such as private browsing and
secure deallocation, still leave traces of private data because
these approaches are hindered by the lack of proper system
support. Lacuna’s goals are to protect a user’s privacy even
under extreme circumstances—even if the machine is
compromised at the root level or is physically seized—while
maintaining usability. Lacuna supports running private
applications (i.e., those that preserve a user’s privacy under
Lacuna) alongside non-private applications; supports a wide
variety of private applications; and has reasonable overhead
that is only incurred on private applications.

Lacuna achieves these goals by running applications inside
erasable program containers and providing privacy- preserving
I/O channels from these containers to hardware. The eras-
able program containers are virtual machines (VMs), where
I/O can be intercepted by the virtual machine monitor (VMM)
as necessary. Lacuna provides several I/O channels: disk I/O
is encrypted before leaving the VMM and decrypted within
the VMM upon being read back. For hardware that supports
hardware virtualization (e.g., USB, network), Lacuna allows
the driver running within the erasable program container
to control and communicate directly with the hardware,
bypassing the host OS in the process. This approach requires
no modifications to host drivers, and any code running out-
side the erasable program container never sees unencrypted
data. For hardware that does not support hardware virtual-
ization (e.g., the graphics card), Lacuna provides software
proxies that are placed close to where data is pushed or pulled
from hardware, in host drivers or even on a graphics card.
When a contained application performs an I/O operation with
this type of hardware, the VMM passes the data for the oper-
ation to/from that hardware’s associated software proxy via
a cryptographically secured channel. This approach requires
no modification to guest applications, and any residual data
that may remain in the host OS is cryptographically erased
by deleting the encryption/decryption keys when the channel
is no longer in use.

Dunn then described how he evaluated Lacuna, which was
implemented as a modified version of QEMU-KVM (a virtual
machine monitor) running atop a modified version of Linux
as the host OS, to show that Lacuna met its privacy and
usability goals. In one experiment, Dunn injected random
tokens into peripheral I/O paths and scanned memory to see
whether these tokens could be located in various applications
and in the OS in order to gauge what code holds on to sensi-
tive data. Without Lacuna, these tokens are almost always
found; with Lacuna, the tokens are never found. While the
latency incurred when switching between private and non-
private applications is low, Lacuna incurs higher overhead for
performing USB I/O operations due to interactions between

 ;login: FEBRUARY 2013 Conference Reports   87

the guest and host OSes; Lacuna reduces this overhead to
some degree by eliminating extra disconnections that occur
when the guest OS performs USB initialization. Finally,
Dunn showed that while Lacuna incurs higher CPU utili-
zation, applications experience minimal slowdown, partly
thanks to the availability of hardware AES support.

Fitz Nolan wondered whether external parties could poten-
tially force the user to decrypt sensitive data and whether
usage of Lacuna would imply guilt. Dunn said that Lacuna
prevents users from incriminating themselves since all
traces of private applications are removed (at least crypto-
graphically), and it would be up to the courts whether users
could get in trouble for not being able to decrypt their data.
Dunn also disagreed that users would only use Lacuna if they
had something to hide. Someone asked how unencrypted
data in the device buffers were handled. Dunn replied that
Lacuna uses public APIs to clear out as much data as pos-
sible, but it is possible that device buffers keep some data
around. Peter Desnoyers (Northeastern) asked whether the
graphics benchmark unfavorably favors Lacuna because
Lacuna’s implementation could potentially avoid some steps
that would otherwise have to be taken. Dunn said they did
not exploit this shortcut in their evaluation. Finally, someone
from Microsoft asked how difficult it was to modify device
drivers for Lacuna and about the complexity of supporting
3D APIs. Dunn responded the difficulty varies per sub-
system and that often one can capture a lot of devices with a
single modification; at the moment, Lacuna does not support
3D acceleration.

CleanOS: Limiting Mobile Data Exposure with Idle
Eviction
Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana
Geambasu, and Nikhil Sarda, Columbia University

Yang Tang began by saying that CleanOS provides new
OS abstractions for protecting sensitive data on mobile
devices. The mobile nature of these devices results in their
being easily stolen, seized, or lost. Because the OSes run-
ning on these devices are not designed to protect sensitive
data, mobile devices accumulate large amounts of sensitive
information that can be accessed by anyone who has physi-
cal access to the device. Tang showed that 13 out of the 14
Ginger bread apps his research group studied kept sensitive
data in clear text either in memory or persistent storage.
Moreover, Tang cited that many users do not lock their
devices or use poor passwords.

Tang proposed CleanOS, a mobile Android-based OS that rig-
orously protects sensitive data in anticipation of device theft/
loss and allows the user to know exactly what data is exposed.
CleanOS leverages three critical insights: (1) sensitive data
is often rarely used (e.g., an email password is only needed

when sending or fetching new messages); (2) mobile apps
often already contain cloud components that store data;
and (3) mobile devices are almost always connected via
WiFi and cellular connections. In CleanOS, sensitive data is
encrypted and stored in a sensitive data object, or SDO. When
access to a SDO is needed, CleanOS contacts a trusted cloud
 component to retrieve the decryption key needed to access
the SDO. CleanOS uses taint-tracking on the local device to
track accesses to sensitive data located in RAM and stable
storage. When an SDO has not been accessed in a while,
CleanOS will automatically cryptographically evict the SDO
by securely deleting the decryption key off the local device.
By minimizing the amount of sensitive data on a user’s local
device and shifting the protection of sensitive data to the
cloud, CleanOS offers the ability to audit or limit the amount
of exposure or access to said data; access to sensitive data
can be completely revoked if the user’s device is stolen.

CleanOS is implemented as a modified version of Android/
TaintDroid that uses a CleanOS cloud service on Google App
Engine. Tang described how an email app that his research
group implemented within CleanOS reduced exposure of sen-
sitive data by roughly 90% without modification (CleanOS
automatically puts SSL-related state, passwords, and user
input into SDOs). Modifying the app to use SDOs reduced
content exposure to 0.3% that of the unmodified app. More-
over, Tang showed that auditing is very precise when the app
is modified to support SDOs and can still be precise with
specific types of data (e.g., passwords) even when the app is
not. Finally, Tang showed that the overheads of CleanOS are
largely unnoticeable over WiFi. On 3G, the overheads are
more significant but can be made reasonable through a series
of optimizations that Tang proposed, including batching
evictions and retrievals of decryption keys.

Mark Silverstein (UT Austin) asked what the power con-
sumption overhead of using CleanOS was. Tang responded
by stating that while CleanOS adds some overhead (less than
9% overall), this overhead is largely dwarfed by the power
consumed by the screen. Jason Flinn (Michigan) asked about
the fundamental tradeoff between the performance benefits
associated with caching and the security and granularity of
caching. Tang replied that this is a policy decision that the
user can configure. Stefan Bucur (EPFL) asked whether
eviction continues when the device is taken offline. Tang
responded that in the case of short-term disconnections,
CleanOS can delay the eviction of SDOs by a bounded amount
of time; for long-term disconnections, CleanOS can be con-
figured to hoard keys before being disconnected. Finally,
Bryan Ford (Yale) asked whether taint explosion is a problem.
Tang said that in his experience it was not, and that running
their email app for 24 hours resulted in only about 1.8%
objects being tainted.

88   ;login: VOL. 38, NO. 1

Mobility
Summarized by William Jannen (wjannen@cs.stonybrook.edu)

COMET: Code Offload by Migrating Execution
Transparently
Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke, and Z. Morley Mao,
University of Michigan; Xu Chen, AT&T Labs—Research

Mark Gordon began with a discussion of off loading. He
observed that mobile device resources are limited in terms
of computation, energy, and memory; yet mobile devices are
often well connected to the network. COMET explores the
question of how to add network resources to mobile device
computations transparently. Previous projects have explored
the capture-and-migrate paradigm, such as CloneCloud and
MAUI. COMET distinguishes itself from these approaches
by enhancing support for multithreaded environments and
synchronization primitives. Mark also noted that COMET’s
fine granularity of offloading efficiently handles functions
with work loops, since resources can be offloaded in the
middle of a method. At a high level, COMET merges the moti-
vation of offloading—to bridge the computation disparity
among nodes in a network—with the mechanism of dis-
tributed shared memory, which provides a logically shared
address space.

Mark explained that distributed shared memory (DSM) is
traditionally applied in cluster environments, which have
low latency and high throughput. However, COMET relies on
wire less communication between two endpoints. COMET
implements a simple field-based DSM scheme, in which dirty
fields are tracked locally, and only dirty fields are trans-
mitted. COMET DSM leverages the Java memory model,
which is field based and which specifies a happens-before
partial ordering among all memory accesses.

VM synchronization is used to establish the happens-before
relationship between two endpoints. VM synchronization
is a directed operation between a pusher and a puller, and
is responsible for synchronizing thebytecode sources, Java
thread stacks, and Java heap. Thus, thread migration is
implemented as a push VM synchronization operation. Mark
noted that VM synchronization is designed to be recovery
safe; the client is always left with enough state to resume
operation in the event that the server thread is lost.

Mark was asked about the user input component of most
Android apps. He replied that certain application types will
not benefit from offloading, including applications with a lot
of user interactions. However, there are applications, such
as turn-based games, and applications with some type of
kernel computation, that would benefit from using COMET.
COMET may also open up new types of applications. Mark
was also asked to restate the differences between COMET
and CloneCloud. Mark noted that COMET provides complete

support for offloading multiple threads—threads never have
to block to wait for remote state. He also noted that COMET
can offload within a method. Arjun Roy (UCSD) asked about
I/O requests, and Mark responded that I/O requests translate
to native functions. They did not have time in this paper to
try to virtualize the FS like CloneCloud.

AppInsight: Mobile App Performance Monitoring in
the Wild
Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan,
Ian Obermiller, and Shahin Shayandeh, Microsoft Research

Lenin Ravindranath exclaimed that developers are inter-
ested in two things: where user-perceived delays crop up,
and, when they do, what is the bottleneck? To answer these
questions, developers must manually instrument apps,
which poses a significant barrier for the average developer.
AppInsight significantly reduces the barrier for monitor-
ing performance in the hands of users. It is completely
automatic, requiring no effort from developers; AppInsight
does not require source code, runtime, or OS modifications.
A developer simply writes an app, AppInsight performs
binary instrumentation, and the developer submits the
i nstrumented app to the app store.

Lenin explained that a fundamental problem for automatic
app instrumentation is that modern apps are highly inter-
active, UI-centric programs, which are written using very
asynchronous programming patterns. With synchronous
code, the user-perceived delay can be calculated by observ-
ing the beginning and end of functions. With asynchronous
code, background threads process individual tasks. The
user-perceived delay includes the time for the entire execu-
tion, and to measure this, the monitor must track time across
thread boundaries. However, AppInsight does not modify the
runtime, so it has no context for executing threads. It must
have a way to know which asynchronous call is responsible
for invoking each thread. Lenin defined a user transaction
as beginning with a UI manipulation, and ending with the
completion of all synchronous and asynchronous threads
triggered by that manipulation. The critical path is the
bottleneck path through a user transaction, where speeding
up the path will reduce the user-perceived delay. AppInsight
automatically instruments apps to track user transactions
and the critical path.

In additional to performing critical path analysis for each
transaction, AppInsight provides aggregate analysis. Aggre-
gate analysis can give developers additional insight into what
factors cause delay. AppInsight can group transactions and
use statistical analysis to identify the root causes of vari-
ability, identify group outliers, and highlight common critical
paths. AppInsight can also be used to understand app failures
in the wild—since entire transaction graphs are tracked,

 ;login: FEBRUARY 2013 Conference Reports   89

developers can walk backwards through the path to figure
out which user event triggered the exception. All the analysis
is made available to developers through a Web-based tool.

Frank Lih asked if AppInsight can be used to identify perfor-
mance problems caused by other applications, perhaps due to
competition for resources. Mark replied that AppInsight can
be imagined as the first step in finding a performance prob-
lem. He was next asked about their evaluation, and how expe-
riences might change when applications with thousands of
users are monitored. Lenin responded that more interesting
problems will be identified as more diverse device configura-
tions and environmental conditions are encountered.

OSDI 2012 Poster Session 1
Summarized by Peter Gilbert (petergilbert@gmail.com)

Be Conservative: Enhancing Failure Diagnosis with
Proactive Logging
Ding Yuan, University of Illinois at Urbana-Champaign and University
of California, San Diego; Soyeon Park, Peng Huang, Yang Liu, Michael
M. Lee, Xiaoming Tang, Yuanyuan Zhou, Stefan Savage, University of
California, San Diego

Diagnosing production failures is difficult because the
exe cution environment and user inputs often cannot be
reproduced exactly. Log messages are often the best avail-
able resource, reducing diagnosis times by 1.4x–3.0x for
failures in software such as Apache, PostgreSQL, and Squid.
However, the authors found that log messages were printed in
only 43% of failures in a survey of real-world errors. Further
examination revealed that 77% of failures had an explicit and
generic error condition. They present ErrLog, an automated
tool that analyzes and instruments source code to insert log-
ging for error conditions. They are able to reduce the diagno-
sis time by 60% for real-world failures while adding a modest
1.8% runtime overhead.

πBox: A Platform for Privacy-Preserving Apps
Sangmin Lee, Edmund L. Wong, Deepak Goel, Mike Dahlin, and Vitaly
Shmatikov, The University of Texas at Austin

There is growing concern about smartphone apps mishan-
dling users’ privacy-sensitive data. Instead of relying on
untrustworthy apps to properly handle personal data, the
authors propose shifting the responsibility to a platform that
isolates apps from user data. πBox provides a sandbox that
spans the device and the cloud and controls storage and com-
munication of sensitive data. Privacy policies are configured
based on an app’s functionality: for example, an app that
uses location information for localization is prevented from
releasing that data, while usage statistics and advertising
data are allowed to be released only through an aggregate
channel that respects differential privacy.

Diagnosis-Friendly Cloud Management Stack
Xiaoen Ju and Kang G. Shin, University of Michigan; Livio Soares, Kyung
Dong Ryu, and Dilma Da Silva, IBM T.J. Watson Research Center

The authors argue that it is important for a cloud manage-
ment layer to be both easy to use and reliable, easy to diag-
nose and debug. To address this need, they propose logging
message flows and building diagnostic tools to analyze this
information. Examples of proposed tools include a tool for
detecting anomalous message flows, a testing tool that can
inject faults to explore recovery logic, and a replay tool to run
tests offline.

Processing Widely-Distributed Data with JetStream
Matvey Arye, Ariel Rabkin, Siddhartha Sen, Michael J. Freedman, and
Vivek Pai, Princeton University

This work aims to enable queries over data sets that are dis-
tributed over wide areas, such as smart grid monitoring data
or traffic statistics from Web services. Goals include mov-
ing computation to data when possible, adapting to network
variation, using approximations when bandwidth limitations
prohibit exact answers, and allowing users to configure algo-
rithms. To support these features, they present JetStream,
which combines data cubes from online analytical process-
ing (OLAP) with techniques from streaming databases.
Advantages of their approach include efficient per-cube
durability, easy specification of approximations through
dimension hierarchies, explicit data movement via streams,
and compatibility with open-ended data like logs.

C3A: Client/Server Co-Verification of Cloud
Applications
Stefan Bucur, Johannes Kinder, George Candea, EPFL

Cloud applications are increasingly (1) split among multiple
administrative domains and (2) heterogeneous, consisting of
components built using different programming languages.
These characteristics make cloud applications difficult to
test and verify. To address this problem, the authors propose
a technique called federated symbolic execution, in which
specialized symbolic execution engines for different lan-
guages share a common symbolic data representation. Sym-
bolic execution is driven by request specifications provided
by the developer using an API in the target language. Testing
runs as a cloud service, and properties defined in request
specifications are verified along execution paths.

Hails: Protecting Data Privacy in Untrusted Web
Applications
Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,
and John C. Mitchell, Stanford University; Alejandro Russo, Chalmers
University

This work addresses the problem of protecting users’ private
data spread across inter-connected Web applications. The
authors argue that existing APIs force users to resort to
coarse-grained access control and to choose between privacy
and features. For example, a user must decide between

90   ;login: VOL. 38, NO. 1

 granting an application access to her Facebook data, at which
point she forfeits control of the data, or not using the applica-
tion at all. The authors present the Hails multi-application
Web platform as an alternative. Hails executes each Haskell
application inside a jail and controls whether private data can
be released by the application. Language-level information
flow control is used to track private data as an application
executes. Policies specifying how private data can be shared
are stored alongside the data itself and enforced globally
across all applications.

ContextJob: Runtime System for Elastic Cloud
Applications
Wei-Chiu Chuang, Bo Sang, Sunghwan Yoo, Charles Killian, and Milind
Kulkarni, Purdue University

A key advantage offered by the cloud for applications is
elasticity, or the ability to scale dynamically with demand
to take advantage of additional resources. However, the
authors argue that it is difficult for programmers to reason
about application semantics and ensure correctness when
designing elastic applications. To alleviate this problem,
they propose a programming model in which developers
write seemingly inelastic code and elasticity is handled by
the runtime system. The programmer works with the simple
abstraction of an event queue.

What Does Distributed Computing Look Like on a
Multicore Machine?
Stefan Kaestle and Timothy Roscoe, ETH Zürich

This work explores how to achieve high performance for par-
allel applications running on complex multicore machines.
This can be difficult due to the challenges of ensuring efficient
access to global state such as database tables. Both hardware
characteristics and software requirements must be consid-
ered. The authors advocate an approach that (1) abstracts
global state to support agile placement and access, and (2)
chooses among distributed algorithms dynamically. In on-
going work, they plan to explore how to best abstract global
state and to quantify the cost of automating these choices
compared to hand-tuned implementations.

X-ray: Automating Root-Cause Diagnosis of
Performance Anomalies in Production Software
Mona Attariyan, University of Michigan and Google, Inc.; Michael Chow
and Jason Flinn, University of Michigan

This work focuses on troubleshooting performance problems
in complex production software. While profiling and logging
can reveal which events occurred, determining how and why
the events affected performance is often a challenging man-
ual task. The authors present X-ray, a tool for automating this
process by attributing performance to specific root causes.
X-ray does so by assigning costs to operations such as system
calls and applying taint tracking to connect these operations
to a root cause. The time-consuming analysis is completed

offline using deterministic replay, adding an online overhead
of only 1–5%. In an evaluation using real performance issues
in software such as Apache and PostgreSQL, X-ray correctly
ranked the actual root cause first or tied for first in 16 out of
17 cases.

Toward Emulating Large-Scale Software Defined
Networks (SDN)
Arjun Roy, Danny Yuxing Huang, Kenneth Yocum, and Alex Snoeren,
University of California, San Diego

To facilitate developing emerging software defined network
(SDN) technologies, testing platforms are needed for experi-
menting with large-scale SDNs. The authors propose an archi-
tecture consisting of multiple ModelNet emulator instances
to increase bandwidth. Challenges include how to maximize
bandwidth for each emulator host and how to account for the
effects of different OpenFlow implementations from differ-
ent vendors. They propose profiling real OpenFlow switches
to quantify idiosyncrasies and then replicating them in
emulated switches.

Rearchitecting System Software for the Cloud
Muli Ben-Yehuda and Dan Tsafrir, Technion—Israel Institute of
Technology

The authors observe that traditional operating systems are
poorly suited for cloud environments where users pay per-
use for a number of reasons: applications are constrained by
kernel abstractions and implementation choices that are hid-
den by design, and applications share a single I/O stack and
device drivers. The authors present an alternative platform
called nom that takes advantage of architectural support for
virtualization to provide each application direct and secure
access to its own I/O device. This enables the use of I/O
stacks and device drivers optimized for specific applications.
Applications can also change behavior to adapt to changing
resource availability and pricing.

Who is Going to Program This?
Marcus Völp, Michael Roitzsch, and Hermann Härtig, Technische
Universität Dresden

This work anticipates challenges programmers will face
when developing for future heterogeneous manycore
machines. Potential components include powerful cores
“fused” from multiple smaller cores, redundant cores to
handle specific hardware errors, and specialized accelerator
cores. The authors argue that there is a mismatch between
new properties (two-way mediation between hardware and
applications, adaptive software parallelism, reconfigurable
hardware, and spatial data placement) and current appli-
cation characteristics (hardcoded threads, ad hoc use of
accelerators, and opaque data use). They propose an “Elastic
Manycore Architecture” that uses lambdas not threads for
parallelism, queues for asynchronous work, runtime profil-
ing, decentralized scheduling decisions, and an “execution

 ;login: FEBRUARY 2013 Conference Reports   91

stretch” metric to quantify utilization and efficiency. Cross-
layer information is shared at interfaces between the OS,
runtime, and applications.

Performance Isolation and Fairness for Multi-Tenant
Cloud Storage
David Shue and Michael J. Freedman, Princeton University; Anees
Shaikh, IBM T.J. Watson Research Center

The authors argue that existing cloud storage services, while
implementing pay-per-use service on shared infrastructure,
either offer no fairness or isolation, or assume uniform demand
and are non work-conserving. They present a system for pre-
dictable shared cloud storage called Pisces. Pisces provides
per-tenant weighted fair shares of system resources without
sacrificing high utilization. The approach comprises four
mechanisms: placement of partitions by fairness con straints,
allocation of local weights by tenant demand, selection of
replicas using local weights, and weighted fair queuing.
Eval uation results show that Pisces achieves nearly ideal fair
sharing, performance isolation, and robustness to changes in
demand, while imposing an overhead of less than 3%.

Devirtualization: I/O Virtualization Based on Device
Files
Ardalan Amiri Sani, Rice University; Sreekumar Nair, Nokia Research
Center; Kevin A. Boos and Lin Zhong, Rice University; Quinn Jacobson,
Nokia Research Center

Devirtualization is an approach for allowing the OS run-
ning in a guest virtual machine (VM) to directly use a device
driver running in the host OS through a simple virtual device
driver. The approach leverages the widely used device file
interface, which provides a narrow and stable boundary for
device drivers and already supports multiplexing among pro-
cesses. Devirtualization can support many GPUs and input
devices in guest VMs with minimal device-specific changes
while imposing no user-perceptible latency. A virtual device
file in a guest VM corresponds to the actual device file in the
host, and file operations performed by the guest are for-
warded to the host and performed by the actual device driver.
Because guest file operations use separate guest virtual
addresses, a hybrid address space is provided to bridge guest
user space memory and host kernel memory.

Dune: Safe User-Level Access to Privileged CPU
Features
Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières,
and Christos Kozyrakis, Stanford University

The authors argue that many applications could benefit
from a safe, efficient way to directly access privileged CPU
features such as page tables, tagged TLBs, and ring protec-
tion. Standard mechanisms like ptrace and mprotect are
too slow and clumsy, while modifying the kernel for every
application is risky and does not scale. Simply running each
application in its own virtual machine (VM) is dismissed
due to poor integration with the host OS and unacceptable

overhead. Instead, Dune leverages architectural support
for hardware-assisted virtualization but exports a process
abstraction rather than a VM abstraction. A minimal kernel
module manages virtualization hardware and interactions
with the kernel, while the libDune library helps applications
manage privileged CPU features. The authors demonstrate
Dune’s value by implementing a privilege separation facility,
a sandbox for untrusted code, and a garbage collector.

Mercurial Caches: OS Support for Energy-Proportional
DRAM
Asim Kadav, Rathijit Sen, and Michael M. Swift, University of
Wisconsin—Madison

While DRAM is a significant contributor to power consump-
tion, techniques that take advantage of unused DRAM to save
power are limited. The authors propose mercurial caches to
provide OS abstractions for low-power DRAM. Mercurial
caches occupy portions of DRAM to put them in a low-power
state. Challenges include how to dynamically resize mercu-
rial caches without affecting application performance, how
to ensure that mercurial caches do not appear as missing
memory, and how to utilize mercurial caches when they are
not completely turned off. Energy-aware page migration is
needed for mercurial caches to be effective despite fragmenta-
tion of the physical address space. A preliminary evaluation
using an analytical model shows that mercurial caches can
achieve energy usage proportional to DRAM usage.

Herding the Masses—Improving Data/Task Locality
in Hadoop
Bingyi Cao and Daniel Abadi, Yale University

The authors demonstrate that the default scheduler for
map tasks in Hadoop, which greedily selects tasks with
data nearby in FIFO order, can result in poor locality. They
propose an alternative two-level sort algorithm consisting
of a coarse-grained sort followed by a fine-grained sort,
using only information about the local node and tasks. High
efficiency is possible because only a few tasks need be sorted
for each node.

Optimizing Shared Resource Contention in HPC
Clusters
Sergey Blagodurov and Alexandra Fedorova, Simon Fraser University

This work focuses on performance problems in HPC clusters
due to contention for shared multicore resources such as
caches and memory controllers. The authors argue that HPC
clusters must be made contention-aware to remedy this prob-
lem. They present Clavis-HPC, a contention-aware virtual-
ized HPC framework. Tasks are classified as devils if they
are memory-intensive with a high last-level cache miss rate,
or turtles otherwise. The scheduling algorithm minimizes
the number of devils on each node, maximizes the number of
communicating processes on each node, and minimizes the
number of powered-up nodes in the cluster. The schedule is
enforced using low-overhead live migration.

92   ;login: VOL. 38, NO. 1

OSDI Poster Session 1
 Summarized by Lisa Glendenning (lglenden@cs.washington.edu)

Towards a Data Analysis Recommendation System
Sara Alspaugh, University of California, Berkeley; Archana Ganapathi,
Splunk, Inc.; Randy Katz, University of California, Berkeley

This project proposes building a tool for semi-automated,
user-guided exploration of arbitrary data sets. The proposed
approach is to build a tool on top of Splunk, a platform for
indexing and searching semi-structured time series data.
Existing packages built on top of Splunk provide front-end
analyses such as reports and dashboards, but each package
is tailored to a specific class of data. The proposed tool would
create and recommend front-end analyses for arbitrary data
sets and iterate based on user feedback.

Nested Virtual Machines and Proxies for Easily
Implementable Rollback of Secure Communication
Kuniyasu Suzaki, Kengo Iijima, Akira Tanaka, and Yutaka Oiwa, AIST:
National Institute of Advanced Industrial Science and Technology; Etsuya
Shibayama, The University of Tokyo

The objective of this work is to use fuzz testing to verify
implementations of protocols for secure communication;
the current target is TLS/SSL. This project’s approach for
verification depends on a rollback capability that the authors
have implemented using nested virtual machines, proxies,
and a control protocol. Work in progress includes developing
a protocol fuzzing generator as a client component.

MiniStack: Operating System Support for Fast User-
Space Network Protocols
Michio Honda and Felipe Huici, NEC Europe Ltd.; Luigi Rizzo, Universita
di Pisa

The motivation of this work is to move the network stack into
user space while approaching the high performance, isola-
tion, and security of kernel- and hardware-based networking
implementations. MiniStack builds on the high performance
of netmap while addressing some of netmap’s limitations:
applications can snoop and overwrite each other’s packets;
applications can spoof the packet source address; and there is
no mechanism to demultiplex received packets to the appro-
priate application. MiniStack extends VALE, a virtual Ether-
net switch implemented as a Linux and BSD kernel module.

POD: Performance-Oriented I/O Deduplication for
Primary Storage Systems
Bo Mao and Hong Jiang, University of Nebraska—Lincoln; Suzhen Wu,
Xiamen University

Deduplication reduces I/O redundancy in primary storage
systems but can lead to data fragmentation and resource
contention. POD mitigates these problems by selectively
deduplicating write requests and by dynamically adjusting
the memory space between the index cache and the read
cache based on the I/O accesses.

A Verified Kernel and Commodity Hardware
Yanyan Shen and Kevin Elphinstone, University of New South Wales,
NICTA

Formally verified microkernels such as seL4 provide a strong
foundation on which to build trustworthy systems, but
com modity hardware is susceptible to transient faults such
as silent memory corruption and bus errors. This project
proposes using techniques such as redundant execution on
multiple cores to detect and recover from hardware faults in
the trusted software layer.

Closing the Gap Between Driver Synthesis and
Verification
Alexander Legg and Leonid Ryzhyk, NICTA; Adam Walker, NICTA and
University of New South Wales

Driver synthesis automatically generates a device driver
implementation from a device and OS specification. This
work proposes using a code template for the OS specification
rather than a state machine, which is susceptible to state
explosion and is hard to maintain. A code template requires
some manually written code, but these code snippets undergo
verification during the synthesis process.

Collaborative Verification with Privacy Guarantees
Mingchen Zhao, University of Pennsylvania; Wenchao Zhou, Georgetown
University; Alexander Gurney and Andreas Haeberlen, University of
Pennsylvania; Micah Sherr, Georgetown University; Boon Thau Loo,
University of Pennsylvania

In distributed systems, nodes fail in a number of ways includ-
ing misbehavior—e.g., violating protocol specifications. The
goal of this work is to verify whether a node is behaving as
expected without revealing sensitive information about non-
faulty nodes. The approach is to generalize the collaborative
verification techniques that were used in the SPIDeR system
to verify the interdomain routing decisions of BGP systems.
Ongoing work includes automatic generation of verification
protocols via a new programming language.

The Ethos Project: Security Through Simplification
W. Michael Petullo and Jon A. Solworth, University of Illinois at Chicago

Existing operating systems have very high complexity, and
this complexity limits the level of assurance possible. Ethos
is an experimental, clean-slate OS with security as a primary
goal. Ethos is designed to support the development and deploy-
ment of secure systems for both application developers and
system administrators; for instance, Ethos provides a small
set of carefully chosen system calls with high-level seman-
tics and compulsory security protections. Ethos currently
supports applications written in Go.

GReplay: A Programming Model for Kernel-Space GPU
Applications
Xinya Zhang, Jin Zhao, and Xin Wang, Fudan University

The goal of this project is a GPU programming model for ker-
nel-space applications with a high-level API, high portability,

 ;login: FEBRUARY 2013 Conference Reports   93

and low overhead. GReplay applications are developed with
OpenCL and compiled in user space, but GPUs are invoked
from a kernel module. The kernel-space component imple-
ments an abstraction layer over GPU drivers. Evaluation of
four applications shows high throughput compared to Mesa
3D and Catalyst, an official driver.

Malleable Flow for Time-Bounded Replica Consistency
Control
Yuqing Zhu and Jianmin Wang, Tsinghua University; Philip S. Yu,
University of Illinois at Chicago

Replication schemes across datacenters typically trade off
consistency with availability and operation latency. A system
with malleable f low (M-f low) supports latency-bounded
operations that maximize replica consistency within the
given time. The key idea for malleable flow is to decompose
the replication process into stoppable stages and then into
a directed graph of ordered steps. Given a time constraint,
the system will reform an execution flow into a path through
the graph that guarantees fault-tolerance and maximizes
consistency. An M-flow system has been implemented over
Cassandra.

Rebasable File Systems for Enhanced Virtual Machine
Management
Jinglei Ren, Bo Wang, Weichao Guo, Yongwei Wu, Kang Chen, and
Weimin Zheng, Tsinghua University

Fast virtual machine cloning creates a VM by linking it to
a base with block-level mapping. Two drawbacks of current
approaches for fast cloning for VDI and cloud environments
are that (1) updates to the base cannot propagate to derived
images, and (2) derived images cannot seamlessly roll back
to a previous base. Cinquain is a file-based storage that
addresses these problems by providing a file system view for
each VM. Cinquain can rebase operations for VMs by seam-
lessly changing the parent of a child view.

Experiences with Hardware Prototyping Solid-State
Cache
Mohit Saxena and Michael M. Swift, University of Wisconsin—Madison

High-speed solid-state drives (SSDs) composed of NAND
flash are often deployed as a block cache in front of high
capacity disk storage. This work prototypes FlashTier, a
lightweight, consistent and durable storage cache, on the
OpenSSD evaluation board. To compensate for the low base-
line performance of OpenSSD, the prototype implements a
number of techniques within the OpenSSD device firmware
to efficiently manage large flash block sizes and increased
channel and plane parallelism. These techniques include: (1)
merge buffer for aligned random writes, (2) read buffer for
efficient random reads, (3) perfect page striping to maximize
flash bank parallelism, and (4) minimized read-modify-write
cycles for partial overwrites.

User-Mode Storage Systems for Storage-Class Memory
Haris Volos, Sankaralingam Panneerselvam, and Michael M. Swift,
University of Wisconsin—Madison

Storage class memory (SCM) technology is byte-addressable,
non-volatile, and has a low access time. This work rede-
signs the storage architecture of operating systems to take
advantage of this new technology. The approach is to build a
memory file system with high flexibility and performance by
enabling direct access of SCM from user-mode applications.
The system has three main components: (1) a user-mode
library file system that implements naming and mapping, (2)
a trusted file system service that enforces concurrency con-
trol and maintains the integrity of metadata, and (3) an SCM
manager that securely records and enforces resource usage.

Distributed Systems and Networking
Summarized by Jim Cadden (jmcadden@bu.edu)

Spotting Code Optimizations in Data-Parallel
Pipelines through PeriSCOPE
Zhenyu Guo, Microsoft Research Asia; Xuepeng Fan, Microsoft Research
Asia and Huazhong University of Science and Technology; Rishan Chen,
Microsoft Research Asia and Peking University; Jiaxing Zhang, Hucheng
Zhou, and Sean McDirmid, Microsoft Research Asia; Chang Liu, Microsoft
Research Asia and Shanghai Jiao Tong University; Wei Lin and Jingren
Zhou, Microsoft Bing; Lidong Zhou, Microsoft Research Asia

Zhenyu Guo presented PeriScore, a procedural optimization
technique for improving performance of data-parallel com-
putation systems. This is achieved through pipeline-aware
holistic code-optimization techniques.

Zhenyu began by defining network I/O as the bottleneck in
distributed parallel pipeline jobs (such as MapReduce). One
way to alleviate a network bottleneck is to reduce the data
shuffling between computation procedures though optimiza-
tions. Traditional compilers do not optimize the procedure
code in relation to the pipelining, and this can be a pains-
takingly process when done manually. PeriScore allows for
automatic optimization of a distributed programs procedure
code in the context of data flow.

By optimizing the procedure code directly, PeriScore
removes unnecessary data, relocates operations, and calcu-
lates early predicates, which results in less data being shared
across the network overall. The optimization process of
PeriScore is to (1) construct an inter-procedural flow graph,
(2) add safety constraints for skipping or shuffling code, and
(3) transform code for the reduction of shuffling I/O.

In the question and answer session, Jason Flinn asked if the
optimization based on static analysis can be improved with
the addition of profiling. Zhenyu agreed that profiling would
be sure to improve the overall performance increase as con-
servative approximations are currently done in cases where
data sizes are unknown (e.g., streams).

94   ;login: VOL. 38, NO. 1

MegaPipe: A New Programming Interface for Scalable
Network I/O
Sangjin Han and Scott Marshall, University of California, Berkeley;
Byung-Gon Chun, Yahoo! Research; Sylvia Ratnasamy, University of
California, Berkeley

Sangjin Han presented MegaPipe, a new programming
interface for scalable network I/O, designed to replace the
standard BSD socket I/O. Sangjin began with the observation
that message-oriented I/O (HTTP, RPC, key-value stores)
with the BSD socket API can be very CPU intensive; small
message sizes and short duration of connections lead to
undesired performance, and adding additional cores does not
alleviate the problem.

MegaPipe works through the combination of three system
optimizations: (1) I/O batch processing assisted by a kernel
library, (2) a per-core channel abstraction for a listening
socket that allows for per-channel accept queues (avoiding
contention), and (3) lightweight sockets that skip the file
abstraction layers. MegaPipe assumes that file abstractions
are no longer appropriate for sockets since sockets are short-
lived and rarely shared.

In the evaluation section, MegaPipe was shown to improve
throughput by up to 100% on an eight-core machine for mes-
sages of one kilobyte and smaller (smaller improvements
were short for larger packet sizes). In addition, MegaPipe
provided a near 15% throughput improvement for mem-
cached and 75% throughput improvement for nginx for short
connections. MegaPipe enjoys near linear scalability with
evaluation run on up to 128 cores.

Mendel Rosenblum (Stanford) pointed out that people had
just given up on using sockets and asked if their lightweight
sockets are good enough to quit using other solutions. Sanjin
answered that in most cases you don’t need the full gen-
erality of sockets. When you really need the generality of
sockets, you want to convert to our sockets. A researcher
from MSR asked about the delay costs of the I/O batch-
ing. Sangjin responded that the batch size is small enough
(~32 operations) so that it does not affect latency much. Ali
Mashtizadeh (Stanford) asked if their research takes system
scheduling into account. Sangjin explained that a basic
assumption with MegaPipe is that there is one thread per
core and that the MegaPipe process is scheduled like any
other user-level application.

DJoin: Differentially Private Join Queries over
Distributed Databases
Arjun Narayan and Andreas Haeberlen, University of Pennsylvania

Arjun Narayan presented DJoin, a technique for processing
differentially private queries (including, but not limited to,
‘JOIN’) across distributed databases. Differential privacy is
a process to control the amount of sensitive information that

a database can release about its protected data set. Differ-
ential privacy software exists for central databases, as does
non-private distributed join queries. DJoin applies both these
techniques to allow for differentially private joins across
distributed databases.

Arjun began with a motivating example of a scientist
researching a recent outbreak of malaria in Albania. Ideally,
this scientist would want to directly compare the records of
who recently contracted malaria with those who had traveled
to Albania (data that exists across databases of airlines and
hospitals). However, free and open access to this information
would be a giant violation of individual privacy and, in many
cases, against the law.

Differential privacy works by factoring noise into the result
of the queries made on a database. Every query on the data-
base has a privacy cost attached, and the amount of noise
added depends on the balance “spent” on that particular
query. Once a user has spent their allotted resource they can
no longer query the database. DJoin introduced two novel
primitives: BN-PSI-CA, a differentially private form of
private set intersection cardinality, and DCR, a multi-party
combination operator that can aggregate noised cardinalities
without compounding the individual noise terms.

In the evaluation section, DJoin was shown to incur non-
trial computation costs, e.g., over an hour of computational
overhead per query for databases greater than 30,000 rows.
However, this work was described as “embarrassingly” scal-
able, shown by a nearly 4x increase through parallelizing
across four cores. Arjun concluded by defining DJoin to be
not fast enough for interactive use and more appropriate for
offline analysis.

Being that this is a system’s venue, it was no surprise that
most questions involved curiosity surrounding the workings
of differential privacy. Anunjun (Yale) asked if it is possible to
support differentially private sum operations. Arjun replied
that, yes, an extension of the existing count mechanism
would be trivial. Henry Gibbs (Yale) inquired about a possible
timing attack involving the size of the database and the time
of the computation. Arjun explained that the set intersection
is padded to the size of the entire database and noise is added
to the polynomial size. Mike Freedman (Princeton) asked
about the theoretical limitation of differential privacy, which
requires a database to be “retired” after a certain amount of
queries/cost have been processed. Arjun acknowledged that
this characteristic of differential privacy was unfortunate
and suggested that the lifespan of a sensitive database can be
extended by carefully vetting access and queries.

 ;login: FEBRUARY 2013 Conference Reports   95

Security
Summarized by Amit A. Levy (amit@amitlevy.com)

Improving Integer Security for Systems with KINT
Xi Wang and Haogang Chen, MIT CSAIL; Zhihao Jia, Tsinghua University
IIIS; Nickolai Zeldovich and M. Frans Kaashoek, MIT CSAIL

Xi Wang from MIT presented several vulnerabilities result-
ing from integer overflow bugs. For example, such bugs allow
an attacker to mount buffer overflow attacks or a malicious
process to over-consume resources. Wang and his collabora-
tors developed a static analysis tool, KINT, for identifying
such bugs. They used KINT to find 114 bugs in the Linux ker-
nel. They also propose two extensions to the C language and
standard library that help mitigate integer overflow bugs.

Their case study yielded several interesting observations.
First, of the 114 Linux kernel bugs they found, 79% caused
buffer overflows or logical bugs. Second, two-thirds of the
bugs had existing checks in the code, but the checks were
wrong! Wang argued that this is evidence of how hard it is to
reason about integer overflow bugs manually.

KINT is a tool for detecting integer overflows by statically
analyzing LLVM IR (intermediate representation). KINT
runs three separate passes on the program, one analyzing
each function independently, another that performs whole-
program analysis to reduce false positives from the first pass,
and a third pass employing taint analysis using user annota-
tions. Finally, KINT combines the results of all three passes
and generates a bug report.

Wang discussed two mechanisms for mitigating the integer
overflow bugs KINT finds. The authors added kmalloc_
array, a new library call to the Linux kernel as of version 3.4.
kmalloc_array implements the integer overflow check rather
than relying on the caller to do so. Wang argued that while
this fix targets a very specific bug, the bug is so common and
potentially harmful that this simple library extension would
have a large effect. The authors also propose adding the NaN
value to the C language, which holds a special value for the
results of computations that overflow an integer value. They
implemented NaN in the clang C compiler.

Cristian Zamfir asked how Wang determined that the
125,172 possible bugs in KINT found in the Linux kernel were
false positives. Wang responded that actually he’s not sure
whether they are false positives or actual bugs. Rather, the
remaining 741 were bugs he was able to manually verify. Luis
Pedrosa from USC asked how KINT deals with cases that
are too hard for the solver to solve. Wang responded that they
mark them explicitly as unsolved in the final report.

Dissent in Numbers: Making Strong Anonymity Scale
David Isaac Wolinsky, Henry Corrigan-Gibbs, and Bryan Ford, Yale
University; Aaron Johnson, US Naval Research Laboratory

“Anonymity enables communication of sensitive ideas with-
out fear of reprisal from government, organizations or peers.”
While, traditionally, anonymous systems must trade strong
anonymity for scale, and users end up choosing weaker
systems with more users, Daniel Wolinsky presented the
argument that anonymous systems actually depend on large
numbers of users—that weak anonymous systems with many
numbers are often stronger than strong anonymous systems
with few users. He introduced Dissent, a system that is able
to provide strong anonymity while scaling to 1000s of active
participants.

The key insight in Dissent is to combine the peer-to-peer
architecture of DC-nets and Mix-nets to achieve strong
anonymity and the client-server model of Tor to achieve
scalability. For example, while each peer in DC-nets requires
O(N^2) (N is the total number of participants) random
number generations while in Dissent, clients need a random
number generation per server, and each server needs one for
each client—i.e., O(M*N) random number generations for the
whole system. Similarly, communication cost in DC-nets is
O(N^2) ciphertext transmissions, while Dissent uses mul-
ticast trees to achieve linear communication costs. Finally,
Wolinsky presented an evaluation of Dissent that shows it
can scale to thousands of participants.

Finally, Wolinsky presented an evaluation of Dissent that
shows it can scale up to 1000s of participants. Mike Walfish
from UT-Austin asked whether 2000 people are “really too
many to throw in jail” since with Dissent it is very clear when
someone is a member. He followed up, asking whether there
was a way to hide membership. Wolinsky replied that the Tor
project has made some progress in that regard, but that in
the end he believes this comes down to an arms race with the
adversary. Saurabh Bagchi (Purdue) asked whether there was
a tradeoff between privacy and the number of honest servers
that can be deployed. Wolinsky responded that the security of
Dissent relies on the existence of at least one honest server as
well as a number of honest clients.

Efficient Patch-Based Auditing for Web Application
Vulnerabilities
Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich, MIT CSAIL

Buggy Web applications can lead to security vulnerabili-
ties that may only be discovered long after the applications
have been introduced. If a vulnerability has been around for
months or years, has it been exploited? By whom? Taesoo
Kim presented a technique for using security patches to
identify past attacks.

96   ;login: VOL. 38, NO. 1

The key insight is that since security patches render previ-
ous attacks harmless, comparing the execution of each past
request with the patch and without it will expose differences.
For example, the same request may result in different SQL
queries to the database with and without the patch. If the
request in fact behaves differently, that request may be part
of an attack. However, a naive implementation would execute
each request twice—so auditing one month of traffic would
require two months.

Kim identifies three opportunities he and his colleagues used
to improve performance in their auditing system. First, a
patch may not affect all requests, so not all requests need to
be re-executed. They used control-flow filtering to determine
which requests could not be affected by the patch. Second,
much of the pre-patch and post-patch execution runs are
identical, so there is no need to run both, identical, versions.
Finally, multiple requests may execute similar code, so fur-
ther redundancies can be eliminated. The authors memoized
requests throughout the re-execution to avoid re-running
similar requests.

Using all of these techniques, the authors were able to audit
requests 12–51 times faster than the original execution.
They evaluated the effectiveness of their system on patched
vulnerabilities from MediaWiki (using Wikipedia traces) and
HotCRP (using synthetic workloads). Finally, they found that
the overhead of their system during normal execution was
about 14% higher latency and 15% lower throughput.

Matvey Arye (Princeton) asked about the overhead of stor-
ing all of the information along with requests. Kim replied
that in their Wikipedia traces the overhead averaged 5.4 KB
per request. Jonas Wagner (EPFL) asked how they can re-
execute requests without access to state that might only be
available, such as specific data, in the production database.
Kim clarified that instead of making actual database calls,
their system records responses from external sources like the
database and replays those responses during re-execution.

Technical solutions to the real-world problems
you face every day.

Learn the latest techniques for better:

on Windows, Linux, Solaris, and popular
varieties of Unix.

Also AvAilAble
ADMiN: ReAl solutioNs foR ReAl NetwoRks

• network security

• system management

• troubleshooting

• performance tuning

• virtualization

• cloud computing

Risk-fRee tRiAl!
 3 issues
 + 3 DVDs
 for only

 $3

order your trial now!

shop.linuxnewmedia.com

PRActicAl. PRofessioNAl. elegANt.
Enjoy a rich blend of tutorials, reviews, international news, and
practical solutions for the technical reader.

2issues
only $1599

ad_login_admin+lpm_12_2012.indd 1 12/20/12 4:33:17 PM

SAVE THE DATE!
APRIL 3–5, 2013 • LOMBARD, IL

10th USENIX Symposium
on Networked Systems
Design and Implementation

NSDI ’13 focuses on the design principles, implementation, and practical evaluation of large-
scale networked and distributed systems. Systems as diverse as data centers, Internet routing,
peer-to-peer and overlay networks, storage clusters, sensor networks, wireless and mobile
systems, Web-based systems, and measurement infrastructures share a set of common
challenges. NSDI ’13 will bring together researchers from across the networking and systems
community to foster a broad approach to addressing our common research challenges.

Full program information and registration details are available on the conference Web site:
www.usenix.org/nsdi13

Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	Table of Contents
	Musings
	Flat Datacenter Storage
	Samba’s Way Toward SMB 3.0
	Temperature Management in Datacenters
	Allen Wittenauer on Hadoop
	Kadeploy3
	The Owl Embedded Python Environment
	Practical Perl Tools
	Python: Import Anything
	iVoyer: Nagios XI (cont.)
	/dev/random: What is UNIX?
	Book Reviews
	Conference Reports

