
D E C E M B E R 2 0 1 2   V O L . 3 7 , N O . 6

kGuard: Lightweight Kernel Protection
V A S I L E I O S P . K E M E R L I S , G E O R G I O S P O R T O K A L I D I S ,

E L I A S A T H A N A S O P O U L O S , A N D A N G E L O S D . K E R O M Y T I S

Detecting and Tracking the Rise of DGA-Based Malware
M A N O S A N T O N A K A K I S , R O B E R T O P E R D I S C I , N I K O L A O S

V A S I L O G L O U , A N D W E N K E L E E

The Great Firewall of China: How It Blocks Tor and Why
It Is Hard to Pinpoint
P H I L I P P W I N T E R A N D J E D I D I A H R . C R A N D A L L

Conference Reports from EVT/WOTE ’12

U P C O M I N G E V E N T S

Middleware 2012: ACM/IFIP/USENIX 13th
International Conference on Middleware

December 3–7, 2012, Montreal, Quebec, Canada
www.usenix.org/conference/middleware2012

LISA ’12: 26th Large Installation System
Administration Conference

December 9–14, 2012, San Diego, CA, USA
www.usenix.org/conference/lisa12

FAST ’13: 11th USENIX Conference on File and
 Storage Technologies

February 12–15, 2013, San Jose, CA, USA
www.usenix.org/conference/fast13

TaPP ’13: 5th USENIX Workshop on the Theory
and Practice of Provenance

April 2-3, 2013, Lombard, IL, USA
www.usenix.org/conference/tapp13
Submissions due: January 10, 2013

NSDI ’13: 10th USENIX Symposium on
Networked Systems Design and Implementation

April 3–5, 2013, Lombard, IL, USA
www.usenix.org/conference/nsdi13

HotOS XIV: 14th Workshop on Hot Topics in
 Operating Systems

May 13–15, 2013, Santa Ana Pueblo, NM, USA
www.usenix.org/conference/hotos13
Submissions due: January 10, 2013

2013 USENIX Federated Conferences Week
June 24–28, 2013, San Jose, CA, USA
USENIX ATC ’13: 2013 USENIX Annual Technical
Conference
June 26–28, 2013
www.usenix.org/conference/atc13
Paper titles and abstracts due: January 23, 2013

ICAC ’13: 10th International Conference on
Autonomic Computing
June 26–28, 2013
www.usenix.org/conference/icac13
Submissions due: March 4, 2013

HotPar ’13: 5th Workshop on Hot Topics in
Parallelism
June 24–25, 2013
www.usenix.org/conference/hotpar13
Submissions due: March 7, 2013

HotCloud ’13: 5th USENIX Workshop on Hot Topics in
Cloud Computing
June 25–26, 2013
www.usenix.org/conference/hotcloud13
Submissions due: March 7, 2013

WiAC ’13: 2013 USENIX Women in Advanced
Computing Summit
June 27, 2013

HotStorage ’13: 5th USENIX Workshop on Hot Topics
in Storage and File Systems
June 27–28, 2013
www.usenix.org/conference/hotstorage13
Submissions due: March 11, 2013

HotSWUp ’13: 5th Workshop on Hot Topics in
Software Upgrades
June 28, 2013
www.usenix.org/conference/hotswup13
Submissions due: March 7, 2013

USENIX Security ’13: 22nd USENIX Security
Symposium

August 14–16, 2013, Washington, DC, USA
Workshops Co-located with USENIX Security ’13

EVT/WOTE ’13: 2013 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections
August 12-13, 2013

CSET ’13: 6th Workshop on Cyber Security
Experimentation and Test
August 12, 2013
www.usenix.org/conference/cset13
Submissions due: April 25, 2013

HealthTech ’13: 2013 USENIX Workshop on Health
Information Technologies
Safety, Security, Privacy, and Interoperability of Health
Information Technologies
August 12, 2013

LEET ’13: 6th USENIX Workshop on Large-Scale
Exploits and Emergent Threats
August 12, 2013

FOCI ’13: 3rd USENIX Workshop on Free and Open
Communications on the Internet
August 13, 2013

HotSec ’13: 8th USENIX Workshop on Hot Topics in
Security
August 13, 2013

WOOT ’13: 7th USENIX Workshop on Offensive
Technologies
August 13, 2013

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Rikki Endsley
rikki@usenix.org

C O P Y E D I T O R
Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N
Arnold Gatilao
Casey Henderson
Michele Nelson

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
nonmembers are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth
Street, Suite 215, Berkeley, CA 94710.

©2012 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designa-
tions appear in this publication and USENIX
is aware of a trademark claim, the designa-
tions have been printed in caps or initial caps.

D E C E M B E R 2 0 1 2 , V O L . 3 7 , N O . 6

O P I N I O N

Musings R I K F A R R O W .2

S E C U R I T Y

kGuard: Lightweight Kernel Protection VA S I L E I O S P. K E M E R L I S , G E O R G I O S

P O R T O K A L I D I S , E L I A S AT H A N A S O P O U L O S , A N D A N G E L O S D . K E R O M Y T I S .7

Detecting and Tracking the Rise of DGA-Based Malware M A N O S A N T O N A K A K I S ,

R O B E R T O P E R D I S C I , N I K O L A O S VA S I L O G L O U , A N D W E N K E L E E . 15

Anatomy of SIP Attacks J O Ã O M . C E R O N , K L A U S S T E D I N G - J E S S E N , A N D

C R I S T I N E H O E P E R S . 25

AdSplit: Separating Smartphone Advertising from Applications S H A S H I S H E K H A R ,

M I C H A E L D I E T Z , A N D D A N S . W A L L A C H . 33

The Great Firewall of China: How It Blocks Tor and Why It Is Hard to Pinpoint 
P H I L I P P W I N T E R A N D J E D I D I A H R . C R A N D A L L . 42

S Y S A D M I N

Helping Users Create Better Passwords B L A S E U R , P AT R I C K G A G E K E L L E Y, S A R A N G A

K O M A N D U R I , J O E L L E E , M I C H A E L M A A S S , M I C H E L L E L . M A Z U R E K , T I M O T H Y P A S S A R O ,

R I C H A R D S H AY, T I M O T H Y V I D A S , L U J O B A U E R , N I C O L A S C H R I S T I N , L O R R I E F A I T H

C R A N O R , S E R G E E G E L M A N , A N D J U L I O L Ó P E Z . 51

P R O G R A M M I N G

ReDeBug: Finding Unpatched Code Clones in Entire OS Distributions 
J I Y O N G J A N G , M AV E R I C K W O O , A N D D AV I D B R U M L E Y . 58

C O L U M N S

Practical Perl Tools D AV I D B L A N K - E D E L M A N . 69

Data Processing with Pandas D AV I D B E A Z L E Y . 76

iVoyeur D AV E J O S E P H S E N . 82

/dev/random R O B E R T G . F E R R E L L . 86

N O T E S

USA Team Wins Big at 2012 International Olympiad in Informatics B R I A N C . D E A N . . . 88

Thanks to Our Volunteers A N N E D I C K I S O N A N D C A S E Y H E N D E R S O N 89

B O O K S

Book Reviews E L I Z A B E T H Z W I C K Y, W I T H R I K F A R R O W . 91

C O N F E R E N C E S

2012 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections
(EVT/WOTE ’12) . 94

OPINION

2   ;login: VOL. 37, NO. 6

Rik is the editor of ;login:.
rik@usenix.org

Almost all of the articles in this issue have to do with security—not surprising, as
this is the annual security issue of ;login: . Our first article, about protecting open
source kernels from exploits hosted in user space, brought to mind something
completely different, yet related: the design of the Titanic . The Titanic was billed
as the fastest, safest, most modern ship of its era, but we all know what happened .
Hubris, current construction techniques (brittle metals), and bad design all led to
her sinking . What I want briefly to focus on are the watertight compartments that
were supposed to prevent the Titanic from sinking . The watertight compartments
were on the lowest level of the Titanic, but the barrier walls did not reach to the
ceiling . As the bow sank, water overtopped the walls, speeding the Titanic’s, and
1502 people’s, demise .

Compartments
Modern computers also have compartments, arranged via several related mecha-
nisms: memory management, protection rings, and the system trap instruction .
Memory management controls the access of regions of memory by user processes . To
execute memory in the kernel, the system trap instruction transfers control to kernel
code . And while in the kernel, code executes at ring 0, the most privileged ring .

Code executed with ring 0 has access to all memory . This access allows the kernel
to read or write from anywhere in user space, so the kernel can copy data to devices
or write the results of system calls into the memory of user processes . But execut-
ing code in user space while the CPU is in ring 0 is something that never needs to
occur, and shouldn’t happen . But it can, and does .

In Kemerlis et al ., our lead article, the authors describe exploits that involve
executing code in user space while still operating in ring 0 . That gives the executed
code the same access as the kernel itself, allowing an exploit to modify data struc-
tures in the kernel, and even to add new code in the form of back doors, keystroke
loggers, and network monitors . Like the Titanic, the “watertight” compartments in
most CPUs don’t really work .

Kemerlis et al . have developed a compiler plugin, kGuard, that watches for
attempts to jump into code in user space and blocks that from happening . Their
method works for both Linux and BSD-based kernels today, and although the
default remedy is a kernel panic, it does prevent the exploit from succeeding .

Intel, with its Supervisor Mode Execution Protection (SMEP) appearing in CPUs
starting with Ivy Bridge, detects when the CPU attempts to execute code in user

Musings
R I K F A R R O W

 ;login: DECEMBER 2012 Musings   3

space while the CPU is in ring 0 . The operating system has to enable SMEP during
booting, and clearing a bit in register CR4 disables it . There are already articles
about how to disable this feature in Windows 8 [1, 2], and some information about
bypassing it in Linux [3] . Note that PaX [4] really prevents this type of attack,
by arranging system memory using segment registers so kernel and user-space
memory are truly separated .

Hardware
SMEP provides some hardware support for defending against return-to-user-
space exploits . Perhaps if the ability to turn off SMEP could be disabled physically,
the current exploit paths would be prevented . SMEP could work like the auditing
feature in Linux and BSD kernels, where running auditctl -e 2 prevents auditing
from being changed or disabled without rebooting . I imagine that SMEP must be
disabled during the initial boot process, and may remain disabled in some operat-
ing systems—ones that don’t care about security .

Hardware is, well, hard . Implementing a proposed design change in silicon actually
takes years . And once it is present, vendors, such as Intel and AMD, do not want
the new feature to turn out to be a mistake . Still, I’d like to see even bigger changes
than SMEP in future CPUs, with the ability to have much stronger compartmen-
talization high on my list .

We already have manycore CPUs, but these CPUs all share the same memory
and use the same three hardware security mechanisms we have been using in
computers since the 1960s . These hardware features—particularly how memory
is managed—do a poor job of supporting microkernels, where only a small kernel
runs in ring 0, as in seL4 [5] . Communication within current CPUs is via memory,
and moving between regions of memory owned by different processes involves the
intervention of the operating system, via both a system trap and a context switch .
Of course, processes can decide to share memory regions, but then they need to
manage the shared memory themselves . What has been missing is hardware sup-
port for message passing .

I’m aware that this is a difficult problem to solve, for many reasons: first, it is not how
CPUs have been designed; second, because creating such a design would be revolu-
tionary, it would require all new operating systems and applications . Or would it?

seL4 already can support a Linux API, and MINIX 3 [6] supports POSIX . As for
running existing applications on top of very different hardware and operating sys-
tems, we have been doing this for years, via virtualization . There are also projects
such as Microsoft’s Drawbridge, designed to run untrusted applications within
their own environment (a picoprocess) while providing as much of the required
software stack (Windows libraries and the WinNT API) as needed [7] . Although
Drawbridge is designed for today’s CPUs, it could run much more securely in
hardware-supported compartments . I suspect that open source operating systems
could explore similar directions to support existing applications in hardware-
supported sandboxes as well .

And even exascale computers (see Knauerhase et al . [8]) could benefit from these
changes . In their design, most processors run execution engines, whereas only a
few provide operating systems support via control engines . Although I don’t know
whether this design matches what I have long wanted, it does allow programmers
to manipulate data blocks as first-class objects, and it might be a huge step toward

4   ;login: VOL. 37, NO. 6

an architecture that supports the message passing and strong compartmentaliza-
tion I keep hoping for .

The Lineup
As mentioned, Kemerlis et al . explain why their solution, kGuard, has become
important in protecting systems . Their solution is relatively lightweight (less than
1% performance hit for common server applications) while providing a higher level
of security for today’s hardware and operating systems .

Antonakakis et al . take us off in a different direction by using DNS error responses
to locate bot-infected PCs . Current bots often use algorithmically determined
domain names as a method to prevent loss of control of their bots through a take-
over of the botnet C&C server . Pleiades watches for unsuccessful DNS resolution
requests and filters them using machine-learning algorithms to match bots to
known malware, and to identify new versions of malware based on the patterns of
domain names generated .

Ceron et al ., part of the Brazilian CERT team, have been watching attacks against
VoIP servers for over a year . They set up honeypots listening for SIP connections,
and recorded what happens after a connection to their fake SIP servers . In their
article, they both analyze the traffic they’ve collected and make suggestions for
securing SIP servers .

Winter and Crandall explain how parts of the Great Firewall of China (GFC) func-
tion . Through their work with the Tor Project, they have learned a lot about how a
state agent goes about censoring the Internet and, in particular, blocking access to
both Tor routers and to bridges . Theirs is a fascinating story, as nothing is quite as
simple as it might seem .

Shekhar et al . provide a bridge between programming and security . They present
AdSplit, a method for hosting advertisements with Android apps that separates them
from the applications that would otherwise have included them . For advertisers,
AdSplit means that the activity they see has not been spoofed, or the advertising hid-
den . For users, AdSplit moves advertising into a separate environment, so they don’t
share the same access privileges/permissions as the apps they are associated with .

Crossing partially over into sysadmin, Ur et al . tell us about their research with
passwords and password meters . They have calculated the resistance to cracking
various sets of passwords created using different rules . They also tested a vari-
ety of measures, using thousands of test subjects, to see what forms of feedback
work best in helping users pick good passwords—that is, ones highly resistant to
guessing or cracking .

Slipping over into the realm of programming, while not really abandoning security,
Jang et al . explain how their Python script, ReDeBug, finds code clones . If you have
ever programmed, you have likely borrowed code from other programs and repur-
posed it . In their research, Jang et al . have found thousands of examples of clones in
open source code, but their real focus is on code that has been patched but remains
unpatched in places it has been copied to—sometimes for as long as 10 years .

David Blank-Edelman takes us on another Perl adventure, this time into the
realm of machine translation . Using a Google app as the example, David shows us
how to translate languages and use a (moderately) RESTful Web service using
Perl libraries .

 ;login: DECEMBER 2012 Musings   5

Dave Beazley explores Pandas, a Python library for data analysis . Dave shows
us how to slice and dice large data structures using both Pandas and numpy, an
underlying Python library that provides an array object .

Dave Josephson has discovered a new hammer, and is looking for things to pound .
The hammer is Nagios XI, a new interactive interface for Nagios that does so much
more than just present an interface for system monitoring . Dave is very pleased .

Robert Ferrell was intrigued by both the Great Firewall of China, and the security
design considerations of the typical programmer . He views the GFC from on high,
then explains, through a simple analogy, what’s wrong with most of our software .

Elizabeth Zwicky has reviewed several books, ranging from homebrew forensics
(like CSI in your kitchen), two books supporting new versions of OS X, a book about
problem-solving for programmers, and another Scrum book . Hint: she doesn’t like
all of them . I contribute a review of a short book about LEDs for lighting .

The EVT/WOTE ’12 summary from the USENIX Security Symposium appears
in this issue as well . Actually, all of the summaries from the Security Symposium
appear online . With this issue, summaries will appear online as soon as they
have been edited, copyedited, and formatted, and although this does take time,
it won’t be the several months that we have to wait for the print issue of ;login: . It
also means I can develop more articles for each issue without being so concerned
about running out of space .

Unlike the Titanic, if your kernel is exploited, you will not even notice it—at first . It
won’t be a bone-jarring crunch as an iceberg the size of a small town rips through
the hull, under the waterline . Instead, a successful exploit will silently provide
remote control of your system, from the level with total access . Only failed exploits
(that crash your kernel) will be “easy” to notice .

I do hope that some day we will have compartments that are complete, and still
provide the same performance that we have today . Who knows? Maybe we can
have both better security and more performance with future CPU designs .

To see videos from USENIX Security ‘12, visit: https://www .usenix .org/
conferences/multimedia .

Resources

[1] Windows 8 exploit bypassing SMEP: http://packetstormsecurity .org/files/
116618/SMEP_overview_and_partial_bypass_on_Windows_8 .pdf .

[2] Bypassing Intel SMEP on Windows 8 x64: http://blog .ptsecurity .com/2012/09/
bypassing-intel-smep-on-windows-8-x64 .html .

[3] Dan Rosenberg, “SMEP: What Is It, and How to Beat It on Linux”: http://
vulnfactory .org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/ .

[4] PaX: http://grsecurity .net/ .

[5] Secure Microkernel Project (seL4): http://www .ertos .nicta .com .au/research/sel4/ .

[6] MINIX 3: http://www .minix3 .org/ .

[7] Drawbridge: http://research .microsoft .com/en-us/projects/drawbridge/ .

[8] Knauerhase, Cledat, Teller, “For Extreme Parallelism, Your OS Is Sooooo
 Last-Millennium,” ;login:, vol . 37, no . 5 (October 2012), USENIX Association .

Technical solutions to the real-world problems
you face every day.

Learn the latest techniques for better:

on Windows, Linux, Solaris, and popular
varieties of Unix.

Also AvAilAble
ADMiN: ReAl solutioNs foR ReAl NetwoRks

• network security

• system management

• troubleshooting

• performance tuning

• virtualization

• cloud computing

Risk-fRee tRiAl!
 3 issues
 + 3 DVDs
 for only

 $3

order your trial now!

shop.linuxnewmedia.com

PRActicAl. PRofessioNAl. elegANt.
Enjoy a rich blend of tutorials, reviews, international news, and
practical solutions for the technical reader.

2issues
only $1599

ad_login_admin+lpm_12_2012.indd 1 10/19/12 12:37:00 PM

SECURITY

 ;login: DECEMBER 2012   7

Vasileios Kemerlis is a PhD
student in the Department of
Computer Science at Columbia
University. His research

interests are mainly in software and systems
security, with a focus on automated software
hardening. vpk@cs.columbia.edu

Georgios Portokalidis is a
postdoctoral researcher in
the Department of Computer
Science at Columbia University.

He obtained his doctorate from the Vrije
Universiteit in Amsterdam. His research
interests are mainly around the area of systems
security, but extend to network monitoring,
operating systems, and virtualization
technologies. porto@cs.columbia.edu

Elias Athanasopoulos holds a BS
in physics from the University
of Athens, and an MS and PhD
from the University of Crete. He

is currently a Marie Curie postdoctoral fellow
with Columbia University.
elathan@cs.columbia.edu

Angelos D. Keromytis is
an Associate Professor of
Computer Science at Columbia
University. His research

interests revolve around systems and software
security and reliability. He received his PhD in
2001 from the University of Pennsylvania.
angelos@cs.columbia.edu

Kernel exploits have become increasingly popular over the past several years .
We have developed kGuard, a cross-platform system that defends the operating
system (OS) against a widespread class of kernel attacks . We describe how these
attacks work and how kGuard protects the kernel with only a small decrease in
performance .

The OS kernel is becoming an attractive target for attackers . The rising number
of kernel vulnerabilities discovered and reported attest to this (see Figure 1) . The
reasons behind this trend are numerous . First, the number of applications running
(continuously) with administrative privileges has significantly decreased, mean-
ing that an attacker compromising such programs remotely gains only limited
power over the underlying system . Additionally, programs have become harder to
exploit due to the various defense mechanisms already adopted by modern OSes,
such as address space layout randomization and stack smashing protection . The
most interesting reason is probably that vulnerabilities such as NULL pointer
dereference bugs, which were thought to be impractical, hard to exploit, and had
not received significant attention by the security community, can be used with
ease against the kernel to gain elevated privileges . In fact, some researchers pro-
claimed 2009 as “the year of the kernel NULL pointer dereference flaw” [2] . Last,
exploiting kernel bugs has the added benefit of allowing attackers to mask their
presence on the compromised systems (e .g ., by hiding processes or files) .

Figure 1: Kernel vulnerabilities (per year) reported to NIST. Over the past decade, the distinct
number of CVE identifiers assigned to kernel vulnerabilities has increased by a factor of 5.

kGuard
Lightweight Kernel Protection

V A S I L E I O S P . K E M E R L I S , G E O R G I O S P O R T O K A L I D I S ,
E L I A S A T H A N A S O P O U L O S , A N D A N G E L O S D . K E R O M Y T I S

8   ;login: VOL. 37, NO. 6

Kernel attacks are facilitated by the fact that user and kernel space (i .e ., the mem-
ory area where user applications and the kernel reside, respectively), are weakly
separated in modern OSes . As a result, direct transitions from more to less privi-
leged protection domains (i .e ., kernel to user space) are permissible, even though
the reverse is not . This is what transforms NULL pointer dereference bugs from
system instability vulnerabilities to privilege escalation threats . When exploited
successfully, they enable local users to execute arbitrary code with kernel privi-
leges, by redirecting the control flow of the kernel to user-controlled memory . Such
return-to-user (ret2usr) attacks have affected all major OSes, including Windows,
Linux, and the BSDs . These attacks are not limited to x86/x86-64 systems, but
have also targeted the ARM, DEC, and PowerPC architectures .

Previous approaches to the problem are either impractical for deployment in cer-
tain environments or can be easily circumvented . For example, the most popular
approach has been to disallow user processes to memory-map the lower part of
their address space (i .e ., the one including page zero) . This scheme has been cir-
cumvented by various means and is not backwards compatible . The PaX [8] patch
for x86 and x86-64 Linux kernels does not exhibit the same shortcomings, but
greatly increases system call and I/O latency . Recent advances in virtualization
have fostered a wave of research on extending virtual machine monitors (VMMs)
to enforce the integrity of the virtualized guest kernels; however, virtualization
is not always practical . Consider smartphone devices that use stripped-down
versions of Linux and Windows, which are also vulnerable to such attacks . Run-
ning a complex VMM on current smartphones is not realistic due to their limited
resources (i .e ., CPU and battery life) . On PCs, running the whole OS over a VM
incurs performance penalties and management costs, while increasing the com-
plexity and size of a VMM can introduce new bugs and vulnerabilities . Addressing
the problem in hardware is the most efficient solution, but even though Intel has
recently announced a new CPU feature, named SMEP [5], to thwart such attacks,
hardware extensions are oftentimes adopted slowly by OSes . More importantly,
other vendors have not publicly announced similar extensions .

kGuard is a lightweight solution to the problem . kGuard consists of a compiler
plugin that augments kernel code with control-flow assertions, which ensure that
privileged execution remains within its valid boundaries and does not cross to user
space . This is achieved by identifying all exploitable control transfers during com-
pilation, and injecting compact dynamic checks to attest that the kernel remains
confined . kGuard is to some extent related to previous research on control-flow
integrity (CFI) [1]; however, CFI is not effective against ret2usr attacks, because
its integrity is only guaranteed if the attacker cannot overwrite the code of the
protected binary or execute data . (During a ret2usr attack the control flow is redi-
rected into memory pages whose contents and permissions are fully controlled by
the attacker .)

Background

Virtual Memory Organization

Commodity OSes offer process isolation through private, hardware-enforced
virtual address spaces; however, as they strive to squeeze more performance out of
the hardware, they adopt a “shared” process/kernel memory model for minimiz-
ing the overhead of operations that cross protection domains, such as system calls,
interrupts, and exceptions . Specifically, Windows and UNIX-like OSes divide

 ;login: DECEMBER 2012 kGuard: Lightweight Kernel Protection   9

virtual memory into user and kernel space . The former hosts user processes, while
the latter holds kernel code and data, kernel extensions (modules), and device
drivers . In most architectures, the separation between the two spaces is assisted
and enforced by the following hardware features: CPU modes (or protection rings),
a memory management unit (MMU), and special-purpose instructions . The x86/
x86-64 instruction set architecture (ISA) supports four protection rings, with the
kernel running in the most privileged one (ring 0) and user applications in the least
privileged (ring 3) . In fact, modern x86/x86-64 CPUs have more than four rings;
hardware-assisted virtualization and System Management Mode are colloquially
known as ring -1 and -2, respectively . Similarly, the PowerPC and MIPS platforms
have two CPU modes, SPARC has three, and ARM seven . All these architectures
feature an MMU, typically programmed using privileged special-purpose instruc-
tions, which implements virtual memory and ensures that memory assigned to a
certain ring is not accessible by the less privileged ones .

Kernel Exploitation

Code running in user space cannot directly access or jump into the kernel, and
hence, special-purpose instructions and hardware facilities (i .e ., interrupts and
exceptions) are provided for crossing the user/kernel boundary . Nevertheless,
while executing privileged code, complete and unrestricted access to all memory
and system objects is available . For example, when servicing a system call for a
process (or during interrupt/exception handling) the kernel executes within the
context of a preempted process and can directly access user memory to store the
result of the call or read user data .

At the same time, OS kernels, which are mostly written in type-unsafe languages
and assembly, suffer the same software flaws that plague applications . For
instance, buffer and integer overflows, pointer arithmetic bugs, use-after-free vul-
nerabilities, and signedness errors can all be exploited to corrupt kernel memory
and hijack control flow, thus executing arbitrary code with elevated privileges . The
ability to trigger such a bug in the kernel, from a local process, provides a unique
standpoint to attackers who totally control (i .e ., both in terms of permissions and
contents) part of the address space available to the kernel at any given time . In
other words, “shellcode” can be executed with kernel rights by hijacking a privi-
leged execution path and redirecting it to user space .

ret2usr Attacks

ret2usr attacks have become the most popular kernel exploitation method, for
which a wealth of defensive mechanisms exists [7, 8, 5] . They are manifested
by overwriting kernel data with user space addresses, after exploiting memory
safety bugs in kernel code . As expected, attackers typically aim for control data
[10], such as return addresses, jump tables, and function pointers, since these
facilitate arbitrary code execution; however, pointers to critical data structures,
frequently stored in kernel stack or heap, are also favored targets, since their
contents can be tampered with by mapping fake copies in user space [9] . Most
exploits of that kind target data structures that contain function pointers, or data
that affect kernel execution, so as to diverge the control f low to arbitrary (typi-
cally user-controlled) places .

The end effect of these attacks is that the kernel is hijacked and control is redi-
rected to user space code . Typically, ret2usr exploits use a multi-stage shellcode,

10   ;login: VOL. 37, NO. 6

where the first stage lies in user space and glues together kernel functions (i .e ., the
second stage shellcode) that perform privilege escalation or execute a rootshell .
We refer to this type of exploitation as return-to-user [7] because it resembles the
older return-to-libc [4] technique that redirected control to existing code in the C
library . ret2usr attacks are yet another incarnation of the confused deputy problem
[6], where a user fools the kernel (deputy) into misusing its authority and executing
arbitrary, non-kernel code with elevated privileges .

kGuard
kGuard consists of a cross-platform GCC plugin that enforces address space seg-
regation without relying on special hardware or architecture-specific features [8,
5] . It protects the kernel from ret2usr attacks with low-overhead by building on the
following security primitives: inline monitoring and code diversification .

Inline Monitoring

kGuard augments exploitable control transfers, at compile time, with dynamic con-
trol-flow assertions (CFAs) that, at runtime, prevent the unconstrained transition
of privileged execution paths to user space . Figure 2a illustrates the concept . The
injected CFAs perform a small runtime check before each indirect branch to verify
that the target address is always in kernel space . If the assertion is true, execution
continues normally, while if it fails because of a violation, execution is transferred
to a handler that was inserted during compilation . The default handler appends a
warning message to the kernel log and halts the system; however, custom handlers
are also supported for facilitating forensic analysis (e .g ., dumping the shellcode for
studying new ret2usr exploitation vectors), selective confinement (i .e ., avoiding
instrumenting “legitimate” boundary violators such as VMware’s I/O back door),
and providing protection against persistent threats .

CFA guards come in two flavors, namely CFAR and CFAM, depending on whether
the protected control transfer uses a register or memory operand . Figure 2b shows
an example of a CFAR guard . The code is from the show() routine of the cpufreq
driver in x86 Linux . kGuard instruments the computed branch (call *%ebx) with
three additional instructions . First, the cmp instruction compares the ebx register
with the lower bound kernel address 0xC0000000 . The same is also true for x86
FreeBSD/NetBSD (OpenBSD maps the kernel to the upper 512 MB of the virtual
address space, and hence, its base address in x86 CPUs is located at 0xD0000000),

Figure 2a: CFA-based confinement. The
injected guards perform a small runtime
check before each computed branch to
verify that the target address is in kernel
space.

Figure 2b: CFAR guard gets applied on an
indirect call in x86 Linux (drivers/cpufreq/
cpufreq.c).

 ;login: DECEMBER 2012 kGuard: Lightweight Kernel Protection   11

whereas for x86-64 the check should be with address 0xFFFFFFFF80000000 .
In case the assertion is true, the control transfer is authorized by jumping to the
call instruction . Otherwise, the mov instruction loads the address of the violation
handler (0xC05AF8F1; panic()) into the branch register and proceeds to execute
the call, which will invoke the violation handler .

Similarly, CFAM guards confine indirect branches that use memory operands;
however, these guards not only assert that the branch target is within the kernel
address space, but also ensure that the memory address where the branch target
is loaded from is also in kernel space . The latter is necessary for protecting
against cases where attackers have managed to tamper with data structures that
contain control data, by overwriting data pointers to such structures with user
space addresses and mapping fake copies in user space . Interested readers are
referred to our recent USENIX Security paper for more information regarding
the CFAM guards [7] .

Code Diversification

CFAR and CFAM guards provide reliable protection against ret2usr attacks only if
the attacker exploits a kernel bug that allows him partially to control a computed
branch target (e .g ., by zeroing out certain bytes); however, vulnerabilities where the
attacker can overwrite kernel memory with arbitrary values also exist [3] . When
such flaws are present, exploits could attempt to bypass kGuard .

B Y PA S S T R A M P O L I N E S

To subvert kGuard, an attacker must be able to determine the address of a (indi-
rect) control transfer instruction inside the text segment of the kernel . Moreover,
she should also be able to control the value of its operand reliably (i .e ., its branch
target) . We refer to that branch as a bypass trampoline. Note that in ISAs with
overlapping variable-length instructions, finding an embedded opcode sequence
that translates directly to a control branch in user space is possible . By overwrit-
ing the value of a protected branch target with the address of a bypass trampoline,
the attacker can successfully execute a jump to user space, as depicted in Figure 3 .
The first CFA corresponding to the initially exploited branch will succeed, since
the address of the trampoline remains inside the privileged memory segment,
while the second CFA that guards the bypass trampoline is completely bypassed by
jumping directly to the branch instruction .

C O D E I N F L AT I O N

This technique reshapes the kernel’s text area (see Figure 4) . kGuard begins with
randomizing the starting address of the text segment . This is achieved by insert-
ing a random NOP sled at its beginning, which effectively shifts all executable
instructions by an arbitrary offset . Next, it continues by inserting NOP sleds of
random length at the beginning of each CFA . The end result is that the location
of every computed control transfer instruction is randomized, making it harder
for an attacker to guess the exact address of a confined branch to use as a bypass
trampoline . The effects of the sleds are cumulative because each one pushes all
instructions and NOP sleds following to higher memory addresses . The size of the
initial sled is chosen by kGuard based on the target architecture .

The per-CFA NOP sled is randomly selected from a user-configured range . By
specifying the range, users can trade higher overhead (both in terms of space and

Figure 3: Subverting kGuard using bypass
trampolines. CFA1 succeeds since the address
of the second branch (trampoline) is in kernel
space. CFA2 is completely bypassed by jump-
ing directly to the branch instruction.

Figure 4: Code inflation reshapes the kernel’s
text area by inserting NOP sleds of random
length at the beginning of each CFA.

12   ;login: VOL. 37, NO. 6

speed) for a smaller probability that an attacker can reliably obtain the address of
a bypass trampoline . An important assumption of the aforementioned technique is
the secrecy of the kernel’s text and symbols . If the attacker has access to the binary
image of the confined kernel or is armed with a kernel-level memory leak, the
probability of successfully guessing the address of a bypass trampoline increases;
however, assigning safe file permissions to the kernel’s text, modules, and debug-
ging symbols is not a limiting factor . This can be trivially achieved by changing the
permissions in the file system to disallow reads, from non-administrative users, in
/boot and /lib/modules in Linux/FreeBSD, /bsd in OpenBSD, etc . In fact, this
is considered standard practice in OS hardening, and is automatically enabled in
PaX and similar patches, as well as in the latest Ubuntu Linux releases . Also note
that the kernel should harden access to the system message ring buffer (dmesg)
and certain files in the proc pseudo-file system, in order to prevent the leakage of
kernel addresses .

C FA M O T I O N

The basic idea behind this technique is the “continuous” relocation of the pro-
tected branches and injected guards, by rewriting the text segment of the kernel,
for more hardening against bypasses . Figure 5 illustrates the concept . During
compilation, kGuard emits information regarding each injected CFA, which can
be used later to relocate the respective code snippets . Specifically, kGuard logs the
exact location of the CFA inside the kernel’s text, the type and size of the guard,
the length of the prepended NOP sled, as well as the size of the protected branch .
Armed with that information, kGuard can then migrate every CFA and indirect
branch instruction separately, by moving it inside the following window: sizeof

(nop_sled) + sizeof (cfa) + sizeof (branch) . Currently, kGuard only sup-
ports CFA motion during kernel bootstrap . That said, keep in mind that ret2usr
violations are detected at runtime, and hence one false guess is enough to identify
the attacker and restrict his capabilities (e .g ., by revoking his access to prevent
brute-force attempts) .

Results and Next Steps
The effectiveness of kGuard has been experimentally assessed by instrumenting
different vanilla Linux kernels, both in x86 and x86-64 architectures, and testing
them against real exploits that cover a broad spectrum of different flaws, including
direct NULL pointer dereferences, control hijacking via tampered data structures
(data pointer corruption), function and data pointer overwrite, arbitrary kernel-
memory nullification, and ret2usr via kernel stack-smashing . As expected, kGuard
was able to detect and prevent exploitation successfully in all cases . For more
information regarding the evaluation suite, please refer to our paper in USENIX
Security ’12 [7] .

kGuard exhibits lower overhead than previous work . On average, it imposes a 11 .4%
overhead on system call and I/O latency on x86 Linux, and 10 .3% on x86-64, as
reported by the LMbench micro-benchmark suite . In the case of IPC bandwidth, it
exhibits an average slowdown of 6% on x86, and 6 .6% on x86-64 . Additionally, the
size of a kGuard-compiled kernel grows between 3 .5% and 5 .6%, due to the inserted
checks, while the impact on real-life applications, such as the MySQL RDBMS and
Apache Web server, is minimal (≤ 1%) .

Figure 5: CFA motion synopsis. kGuard
relocates each inline guard and protected
branch, within a certain window, by routinely
rewriting the text segment of the kernel.

 ;login: DECEMBER 2012 kGuard: Lightweight Kernel Protection   13

Future steps include investigating how to apply the CFA motion technique while a
kernel is running and the OS is live . Currently, we have developed a Linux pro-
totype that utilizes a dedicated kernel thread, which upon a certain condition,
freezes the kernel and performs rewriting . Thus far, we have achieved CFA reloca-
tion in a coarse-grained manner by exploiting the suspend subsystem of the Linux
kernel . Specifically, we bring the system to pre-suspend state to prevent any kernel
code from being invoked during relocation (note that the BSD OSes have similar
capabilities); however, our end goal is to perform CFA motion in a more fine-
grained, non-interruptible and efficient manner, without “locking” the whole OS .
Further in the future, we also plan to explore custom fault handlers that perform
error virtualization for automatically recovering from attacks .

Conclusion
kGuard is a fast and flexible cross-platform solution that protects the kernel from
ret2usr attacks . It works by injecting fine-grained inline guards during the trans-
lation phase that are resistant to bypass, and does not require any modification
to the kernel or additional software such as a VMM . kGuard can safeguard both
32- and 64-bit OSes that map a mixture of code segments with different privi-
leges inside the same scope and are vulnerable to ret2usr exploits . We believe that
kGuard strikes a balance between safety and functionality, and provides compre-
hensive protection from a widespread class of attacks .

Availability
kGuard is freely available at: http://www .cs .columbia .edu/~vpk/research/kguard/ .

Acknowledgments
We thank Georgios Kontaxis for his valuable feedback on earlier drafts of this
manuscript . This work was supported by DARPA, the US Air Force, and ONR
through Contracts DARPA-FA8750-10-2-0253, AFRL-FA8650-10-C-7024, and
N00014-12-1-0166, respectively . Any opinions, findings, conclusions, or recom-
mendations expressed herein are those of the authors, and do not necessarily
reflect those of the US Government, DARPA, the Air Force, or ONR .

References

[1] M . Abadi, M . Budiu, U . Erlingsson, and J . Ligatti, “Control-Flow Integrity,”
 Proceedings of the 12th ACM Conference on Computer and Communications
S ecurity (CCS), 2005, pp . 340–353 .

[2] M .J . Cox, “Red Hat’s Top 11 Most Serious Flaw Types for 2009,” February 2010:
http://www .awe .com/mark/blog/20100216 .html .

[3] CVE-2010-3904, October 2010: http://cve .mitre .org/cgi-bin/cvename .cgi
?name=CVE-2010-3904 .

[4] S . Designer, “Getting Around Non-Executable Stack (and Fix),” August 1997:
http://seclists .org/bugtraq/1997/Aug/63 .

[5] V . George, T . Piazza, and H . Jiang, “Technology Insight: Intel Next Generation
Microarchitecture Codename Ivy Bridge,” September 2011: www .intel .com/idf/
library/pdf/sf_2011/SF11_SPCS005_101F .pdf .

Do you know about the USENIX Open Access Policy?

USENIX is the first computing association to offer free and
open access to all of our conferences proceedings and videos.
We stand by our mission to foster excellence and innovation
while supporting research with a practical bias. Your member-
ship fees play a major role in making this endeavor successful.

www.usenix.org/membership

Please help us support open access.
Renew your USENIX membership

and ask your colleagues to join or renew today!

14   ;login: VOL. 37, NO. 6

[6] N . Hardy, “The Confused Deputy (or Why Capabilities Might Have Been
Invented),” . SIGOPS Operating Systems Review, vol . 22, no . 4, October 1988,
pp . 36–38 .

[7] V .P . Kemerlis, G . Portokalidis, and A .D . Keromytis, “kGuard: Lightweight
 Kernel Protection Against Return-to-User Attacks,” Proceedings of the 21st
 USENIX Security Symposium, USENIX Association, 2012, pp . 459–474 .

[8] PaX Team home page: http://pax .grsecurity .net, accessed September 2012 .

[9] SecurityFocus, “Linux Kernel ‘pipe .c’ Local Privilege Escalation Vulnerability,”
November 2009: http://www .securityfocus .com/bid/36901/info .

[10] Virtual Security Research, “Linux RDS Protocol Local Privilege Escalation,”
October 2010: http://www .vsecurity .com/resources/advisory/20101019-1/ .

 ;login: DECEMBER 2012   15

Manos Antonakakis received his
PhD in computer science from
Georgia Institute of Technology
under Professor Wenke Lee’s

supervision. Currently, he works at Damballa
as the Director of Academic Sciences where he
is responsible for academic research, university
collaborations, and technology transfer efforts.
His main research interests are in network
security and machine learning/data mining.
manos@damballa.com

Roberto Perdisci is an Assistant
Professor in the Computer
Science Department at the
University of Georgia, and an

Adjunct Assistant Professor in the School of
Computer Science at the Georgia Institute of
Technology. He is the recipient of a 2012 NSF
CAREER Award. His main research interests
are in network security and machine learning/
data mining. perdisci@cs.uga.edu

Nikolaos Vasiloglou received his
PhD in electrical engineering
from the Georgia Institute of
Technology. He has extensive

experience in developing machine-learning
applications and algorithms. In the past he
has developed machine-learning engines and
models for several companies.
nvasil@ieee.org

Wenke Lee is a Professor in the School of Computer Science at Georgia Institute
of Technology and the Director of the Georgia Tech Information Security Center
(GTISC). He earned his PhD in computer science from Columbia University in 1999.
He has published more than 100 scholarly articles. His current research projects

are in the areas of botnet detection, malware analysis, virtual machine monitoring, and Web 2.0
security and privacy, with funding from NSF, DHS, DoD, and industry. wenke@cc.gatech.edu

When bots go in search of their command and control (C&C) servers, they often
use algorithmically generated domain names (DGAs) . We have created a system
(Pleiades) that watches unsuccessful DNS resolution requests (NXDomain) from
recursive DNS servers in large networks . Pleiades can reliably identify new clus-
ters of NXDomains generated by DGAs, the newly infected hosts, and often, the
actual C&C servers the DGA malware employs . In this article, we explain how our
system works, as well as the most interesting information about current bot infec-
tions and C&C structures .

Introduction
Botnets are groups of malware-compromised machines, or bots, that can be
remotely controlled by an attacker (the botmaster) through a command and control
(C&C) communication channel . Botnets have become the main platform for cyber-
criminals to send spam, steal private information, host phishing Web pages, etc .
Over time, attackers have developed C&C channels with different network struc-
tures . Most botnets today rely on a centralized C&C server, whereby bots query a
predefined C&C domain name that resolves to the IP address of the C&C server
from which commands will be received . Such centralized C&C structures suffer
from the “single point of failure” problem because if the C&C domain is identified
and taken down, the botmaster loses control over the entire botnet .

To overcome this limitation, attackers have used P2P-based C&C structures in
botnets such as Nugache, Storm, and more recently, Waledac, Zeus, and Alureon
(aka TDL4) . Whereas P2P botnets provide a more robust C&C structure that
is difficult to detect and take down, they are typically harder to implement and
maintain . In an effort to combine the simplicity of centralized C&Cs with the
robustness of P2P-based structures, attackers have recently developed a number
of botnets that locate their C&C server through automatically generated pseudo-
random domains names . In order to contact the botmaster, each bot periodically
executes a domain generation algorithm (DGA) that, given a random seed (e .g ., the

Detecting and Tracking the Rise of
DGA-Based Malware
M A N O S A N T O N A K A K I S , R O B E R T O P E R D I S C I , N I K O L A O S V A S I L O G L O U ,
A N D W E N K E L E E

16   ;login: VOL. 37, NO. 6

current date), produces a list of candidate C&C domains . The bot then attempts
to resolve these domain names by sending DNS queries until one of the domains
resolves to the IP address of a C&C server . This strategy provides a remarkable
level of agility because even if one or more C&C domain names or IP addresses
are identified and taken down, the bots will eventually get the IP address of the
relocated C&C server via DNS queries to the next set of automatically generated
domains . Notable examples of DGA-based botnets (or DGA-bots, for short) are
Bobax, Kraken, Sinowal (aka Torpig), Srizbi, Conficker-A/B/C, and Murofet .

A defender can attempt to reverse engineer the bot malware, particularly its DGA
algorithm, to pre-compute current and future candidate C&C domains in order to
detect, block, and even take down the botnet; however, reverse engineering is not
always feasible because the bot malware can be updated very quickly (e .g ., hourly)
and obfuscated (e .g ., encrypted, and only decrypted and executed by external trig-
gers such as time) .

We recently proposed a novel detection system, called Pleiades [1], capable of
identifying DGA-bots within a monitored network without reverse engineering
the bot malware . Pleiades is placed between the network machines and the local
recursive DNS (RDNS) server (aka “below” the recursive DNS infrastructure of
the network) or simply at the edge of a network to monitor DNS query/response
messages from/to the machines within the network . Specifically, Pleiades ana-
lyzes DNS queries for domain names that result in Name Error responses, also
called “NXDOMAIN” responses, i .e ., domain names for which no IP addresses
(or other resource records) exist .

The focus on NXDomains is motivated by the fact that modern DGA-bots tend to
query large sets of domain names among which relatively few successfully resolve
to the IP address of the C&C server . Therefore, to identify DGA domain names
automatically, Pleiades searches for relatively large clusters of NXDomains that (1)
have similar syntactic features and (2) are queried by multiple potentially compro-
mised machines during a given epoch .

The intuition is that in a large network, such as the ISP network where we ran
our experiments, multiple hosts may be compromised with the same DGA-bots .
Therefore, each of these compromised assets will generate several DNS queries
resulting in NXDomains, and a subset of these NXDomains will likely be queried
by more than one compromised machine . Pleiades automatically is able to identify
and filter out “accidental” user-generated NXDomains due to typos or misconfigu-
rations . When Pleiades finds a cluster of NXDomains, it applies statistical learning
techniques to build a model of the DGA . This is used later to detect future compro-
mised machines running the same DGA and to detect active domain names that
“look similar” to NXDomains resulting from the DGA and therefore probably point
to the botnet C&C server’s address .

 ;login: DECEMBER 2012 Detecting and Tracking the Rise of DGA-Based Malware   17

Overview of Pleiades

Figure 1: A high-level overview of Pleiades

Next, we provide a high-level overview of our DGA-bot detection system, Pleiades .
As shown in Figure 1, Pleiades consists of two main modules: a DGA Discovery
module and a DGA Classification and C&C Detection module . We discuss the roles
of these two main modules and their components, and how they are used in coordi-
nation to learn actively and update DGA-bot detection models .

DGA Discovery

The DGA Discovery module analyzes streams of unsuccessful DNS resolutions,
as seen from “below” a local DNS server (see Figure 1) . All NXDomains generated
by network users are collected during a given epoch (e .g ., one day) . Then, the col-
lected NXDomains are clustered according to the following two similarity criteria:
(1) the domain name strings have similar statistical characteristics (e .g ., similar
length, level of “randomness,” character frequency distribution, etc .), and (2) the
domains have been queried by overlapping sets of hosts . The main objective of this
NXDomain clustering process is to group together domain names that likely are
automatically generated by the same algorithm running on multiple machines
within the monitored network .

Naturally, because this clustering step is unsupervised, some of the output NXDo-
main clusters may contain groups of domains that happen to be similar by chance
(e .g ., NXDomains due to common typos or to misconfigured applications) . There-
fore, we apply a subsequent filtering step . We use a supervised DGA Classifier to
prune NXDomain clusters that appear to be generated by DGAs that we have previ-
ously discovered and modeled, or that contain domain names that are similar to
popular legitimate domains . The final output of the DGA Discovery module is a set
of NXDomain clusters, each of which likely represents the NXDomains generated
by previously unknown or not yet modeled DGA-bots .

DGA Classification and C&C Detection

Every time a new DGA is discovered, we use a supervised learning approach to
build models of what the domains generated by this new DGA “look like .” In par-
ticular, we build two different statistical models: (1) a statistical multi-class clas-
sifier that focuses on assigning a specific DGA label (e .g ., DGA-Conficker .C) to the
set of NXDomains generated by a host hi and (2) a hidden Markov model (HMM)
that focuses on finding single active domain names queried by hi that are likely

18   ;login: VOL. 37, NO. 6

generated by a DGA (e .g ., DGA-Conficker .C) running on the host, and are therefore
good candidate C&C domains .

The DGA Modeling component receives different sets of domains labeled as Legiti-
mate (i .e ., “non-DGA”), DGA-Bobax, DGA-Torpig/Sinowal, DGA-Conficker .C,
New-DGA-v1, New-DGA-v2, etc ., and performs the training of the multi-class DGA
Classifier and the HMM-based C&C Detection module .

The DGA Classification module works as follows . Similar to the DGA Discovery
module, we monitor the stream of NXDomains generated by each client machine
“below” the local recursive DNS server . Given a subset of NXDomains generated
by a machine, we extract a number of statistical features related to the NXDo-
main strings . Then we ask the DGA Classifier to identify whether this subset of
NXDomains resembles the NXDomains generated by previously discovered DGAs .
That is, the classifier will either label the subset of NXDomains as generated by a
known DGA, or tell us that it does not fit any model . If the subset of NXDomains is
assigned a specific DGA label (e .g ., DGA-Conficker .C), the host that generated the
NXDomains is deemed to be compromised by the related DGA-bot .

Once we obtain the list of machines that appear to be compromised with DGA-
based bots, we take the detection one step further . While all previous steps focused
on NXDomains, we now turn our attention to domain names for which we observe
valid resolutions . Our goal is to identify which domain names, among the ones gen-
erated by the discovered DGA-based bots, actually resolve into a valid IP address .
In other words, we aim to identify the botnet’s active C&C server .

To achieve this goal, we consider all domain names that are successfully resolved
by hosts that have been classified as running a given DGA, say New-DGA-vX, by
the DGA Classifier . Then we test these successfully resolved domains against an
HMM specifically trained to recognize domains generated by New-DGA-vX . The
HMM analyzes the sequence of characters that compose a domain name d, and
computes the likelihood that d is generated by New-DGA-vX .

DGA Discoveries and Case Studies
In this section, we present the most important experimental results of our system .
We will elaborate on the DGAs we discovered throughout the two years of NXDo-
main monitoring period at a large US ISP . Then we will summarize the most inter-
esting findings from the 13 DGAs we detected . Seven of them use a DGA algorithm
from a known malware family . The other six, at the time of discovery and to the
best of our knowledge, have no known malware association . We will conclude with
three cases studies of currently active threats that employ DGAs for their C&C
call-back communications .

New DGAs

Pleiades began clustering NXDomain traffic on November 1, 2010 . We boot-
strapped the DGA modeler with domain names from already known DGAs and
also a set of Alexa domain names as the benign class . In Table 1, we present all
unique clusters we discovered throughout the evaluation period . The “Malware
Family” column simply maps the variant to a known malware family if possible .
We discover the malware family by checking the NXDomains that overlap with
NXDomains we extracted from traffic obtained from a malware repository . Also,
we manually inspected the clusters with the help of a security company’s threat

 ;login: DECEMBER 2012 Detecting and Tracking the Rise of DGA-Based Malware   19

team . The “First Seen” column denotes the first time we saw traffic from each
DGA variant . Finally, the “Population on Discovery” column shows the variant
population on the discovery day . We can see that we can detect each DGA vari-
ant with an average number of 32 “infected hosts” across the entire statewide ISP
network coverage .

As we see in Table 1, Pleiades reported seven variants that belong to known
DGA-enabled malware families [2–4, 7–9] . Six more variants of NXDomains were
reported and modeled by Pleiades, but for these, to the best of our knowledge, no
known malware can be associated with them . A sample set of 10 NXDomains for
each one of these variants can be seen in Figure 2 .

Within a two-year period of our experiments, we observed an average population
of 742 Conficker-infected hosts in the ISP network . Murofet had the second largest
population of infected hosts at 92 per day, while the Boonana DGA came in third
with an average population of 84 infected hosts per day . The fastest growing DGA
was Zeus .v3 with an average population of 50 hosts per day, but during the last four
days of the experiments, the Zeus .v3 DGA had an average of 134 infected hosts . It
is worth noting the New-DGA-v1 had an average of 19 hosts per day, the most popu-
lous of the newly identified DGAs .

FA L S E R E P O R T S O N N E W D G A S

During our evaluation period we came across five categories of clusters falsely
reported as new DGAs . In all of the cases, we modeled these classes in the DGA
modeler as variants of the benign class . We now discuss each case in detail .

The first cluster of NXDomains falsely reported by Pleiades were random domain
names generated by Chrome [10, 5] . Each time the Google Chrome browser
starts, it will query three “random looking” domain names . These domain names
are issued as a DNS check, so the browser can determine whether NXDomain
rewriting is enabled . The “Chrome DGA” was reported as a variant of Bobax from
Pleiades . We trained a class for this DGA and flagged it as benign . One more case

Malware
Family First Seen Population

on Discovery
Shiz/Simda-C [8] 03/20/11 37

Bamital [4] 04/01/11 175

BankPatch [2] 04/01/11 28

Expiro .Z [3] 04/30/11 7

Boonana [9] 08/03/11 24

Zeus .v3 [7] 09/15/11 39

TDSS/TDL DGA
Variant

07/08/12 201

New-DGA-v1 01/11/10 12

New-DGA-v2 01/18/11 10

New-DGA-v3 02/01/11 18

New-DGA-v4 03/05/11 22

New-DGA-v5 04/21/11 5

New-DGA-v6 11/20/11 10

Table 1: DGAs detected by Pleiades

Figure 2: A sample of 10 NXDomains for each DGA cluster that we could not associate with a
known malware family

20   ;login: VOL. 37, NO. 6

of testing for NXDomain rewriting was identified in a brand of wireless access
points: Connectify offers wireless hot-spot functionality, and one of their configu-
ration options enables the user to hijack the ISP’s default NXDomain rewriting
service . The device generates a fixed number of NXDomains to test for rewriting .

Two additional cases of false reports were triggered by domain names from the
.it and .edu TLDs . These domain names contained minor variations on common
words (i .e ., repubblica, gazzetta, computer, etc .) . Domain names that matched these
clusters appeared only for two days in our traces and never again . The very short-
lived presence of these two clusters could be explained if the domain names were
part of a spam campaign that was remediated by authorities before it became live .

The fifth case of false report originated from domain names under a US govern-
ment zone and contained the string wpdhsmp. Our best guess is that these are
internal domain names that were accidentally leaked to the recursive DNS server
of our ISP . Domain names from this cluster appeared only for one day . This class
of NXDomains was also modeled as a benign variant . It is worth noting that all
falsely reported DGA clusters, excluding the Chrome cluster, were short-lived .
If operators are willing to wait a few days until a new DGA cluster is reported by
Pleiades, these false alarms would not have been raised .

Case Studies

Next we discuss the three most interesting active threats that employ DGA tech-
niques as part of their C&C life cycle .

Z E U S .V 3

In September 2011, Pleiades detected a new DGA that we linked to the Zeus .
v3 variant a few weeks later . The domain names collected from the machines
compromised by this DGA-malware are hosted in six different TLDs: .biz, .com,

.info , .net , .org, and .ru. Excluding the top-level domains, the length of the
domain names generated by this DGA are between 33 and 45 alphanumeric char-
acters . By analyzing one sample of the malware, we observed that its primary C&C
infrastructure is P2P-based . If the malware fails to reach its P2P C&C network, it
follows a contingency plan, where a DGA-based component is used to try to recover
from the loss of C&C communication . The malware will then resolve pseudo-ran-
dom domain names, until an active C&C domain name is found .

To date, we have discovered 12 such C&C domains . Over time, these 12 domains
resolved to five different C&C IPs hosted in four different networks: three in the
US (AS6245, AS16626, and AS3595) and one in the United Kingdom (AS24931) .
Interestingly, we observed that the UK-based C&C IP address remained active for
only a few minutes, from Jan 25, 2012 12:14:04 EST to Jan 25, 2012 12:22:37 EST .
The C&C moved from a US IP (AS16626) to the UK (AS24931), and then almost
immediately back to the US (AS3595) .

B A N K PAT C H

We picked the BankPatch DGA cluster as a sample case for analysis because this
botnet had been active for several months during our experiments and the infected
population continues to be significant . The C&C infrastructure that supports this
botnet is impressive . Twenty-six different clusters of servers acted as the C&Cs for

 ;login: DECEMBER 2012 Detecting and Tracking the Rise of DGA-Based Malware   21

this botnet . The botnet operators not only made use of a DGA but also moved the
active C&Cs to different networks every few weeks (on average) . During our C&C
discovery process, we observed IP addresses controlled by a European CERT . This
CERT has been taking over domain names from this botnet for several months .
We managed to cross-validate with them the completeness and correctness of the
C&C infrastructure . Complete information about the C&C infrastructure can be
found in Table 2 .

IP Addresses CC Owner

146 .185 .250 .{89-92} RU Petersburg Int .

31 .11 .43 .{25-26} RO SC EQUILIBRIUM

31 .11 .43 .{191-194} RO SC EQUILIBRIUM

46 .16 .240 .{11-15} UA iNet Colocation

62 .122 .73 .{11-14,18} UA “Leksim” Ltd .

87 .229 .126 .{11-16} HU Webenlet Kft .

94 .63 .240 .{11-14} RO Com Frecatei

94 .199 .51 .{25-18} HU NET23-AS 23VNET

94 .61 .247 .{188-193} RO Vatra Luminoasa

88 .80 .13 .{111-116} SE PRQ-AS PeRiQuito

109 .163 .226 .{3-5} RO VOXILITY-AS

94 .63 .149 .{105-106} RO SC CORAL IT

94 .63 .149 .{171-175} RO SC CORAL IT

176 .53 .17 .{211-212} TR Radore Hosting

176 .53 .17 .{51-56} TR Radore Hosting

31 .210 .125 .{5-8} TR Radore Hosting

31 .131 .4 .{117-123} UA LEVEL7-AS IM

91 .228 .111 .{26-29} UA LEVEL7-AS IM

94 .177 .51 .{24-25} UA LEVEL7-AS IM

95 .64 .55 .{15-16} RO NETSERV-AS

95 .64 .61 .{51-54} RO NETSERV-AS

194 .11 .16 .133 RU PIN-AS Petersburg

46 .161 .10 .{34-37} RU PIN-AS Petersburg

46 .161 .29 .102 RU PIN-AS Petersburg

95 .215 .{0-1} .29 RU PIN-AS Petersburg

95 .215 .0 .{91-94} RU PIN-AS Petersburg

124 .109 .3 .{3-6} TH SERVENET-AS-TH-AP

213 .163 .91 .{43-46} NL INTERACTIVE3D-AS

200 .63 .41 .{25-28} PA Panamaserver .com

CIDR CC Owner

146 .185 .250 .0/24 RU PIN-AS

83 .133 .0 .0/16 EU LAMBDANET-AS

195 .3 .144 .0/22 LV RN-DATA-LV

94 .63 .149 .0/24 RO CORAL-IT

194 .11 .16 .0/24 RU PIN-AS

94 .63 .240 .0/24 RO POSTOLACHE

188 .95 .48 .0/21 NL GLOBALLAYER

46 .251 .224 .0/20 DE WEBTRAFFIC

95 .215 .0 .0/22 RU PIN-AS

94 .60 .122 .0/23 RO COVER-SUN-DESIGN

109 .236 .80 .0/20 NL WORLDSTREAM

63 .223 .96 .0/19 US JOVITA

91 .212 .226 .0/24 RU ZHIRK

46 .161 .28 .0/23 RU PIN-AS

141 .136 .16 .0/24 RO SC-MORE-SECURE-SRL

46 .249 .32 .0/19 NL SERVERIUS-AS

217 .23 .0 .0/20 NL WORLDSTREAM

62 .122 .74 .0/23 EU ROOT SA

50 .7 .192 .0/19 US FDCSERVERS

38 .0 .0 .0/8 US COGENT Cogent/PSI

194 .247 .182 .0/23 UA UDNET

195 .234 .124 .0/22 UA KOSMOTEL

195 .28 .10 .0/23 RU Neryungrinskoye

89 .208 .144 .0/20 RU DINET-AS

94 .228 .208 .0/20 NL NETROUTING-AS

27 .255 .64 .0/19 KR LGDACOM

91 .199 .75 .0/24 DE INTEROUTE

120 .197 .80 .0/20 CN CMNET

Table 2: C&C infrastructure for BankPatch

Table 3: Extended criminal network infrastructure behind
New TDSS/TDL4 DGA variant

22   ;login: VOL. 37, NO. 6

The actual structure of the domain name used by this DGA can be separated
into a four-byte prefix and a suffix string argument . The suffix string argu-
ments we observed were: seapollo.com, tomvader.com, aulmala.com,

apontis.com, fnomosk.com, erhogeld.com, erobots.com, ndsontex.com,

rtehedel.com, nconnect.com, edsafe.com, berhogeld.com, musallied.

com, newnacion.com, susaname.com, tvolveras.com, dminmont.com,

esroater.com, jierihon.com and mobama.com.

The four bytes of entropy for the DGA were provided by the prefix . We
observed collisions between NXDomains from different days, especially
when only one suffix argument was active . Therefore, we registered a small
sample of 10 domain names at the beginning of 2012 in an effort to obtain a
glimpse of the overall distribution of this botnet . Over a period of one month of
monitoring the sinkholed data from the domain name of this DGA, this botnet
has infected hosts in 270 different networks distributed across 25 different
countries . By observing the recursive DNS servers from the domain names
we sinkholed, we determined 4,295 were located in the US . The recursives we
monitored were part of this list, and we were able to measure 86 infected hosts
(on average) in the network we were monitoring . The five countries that had
the most DNS resolution requests for the sinkholed domain names (besides
the US) were Japan, Canada, the United Kingdom, and Singapore . The average
number of recursive DNS servers from th ese countries that contacted our
authorities was 22, significantly smaller than the volume of recursive DNS
servers within the US .

T D S S / T D L 4 D G A VA R I A N T

This TDSS/TDL4 DGA variant is the latest DGA discovery made possible
by Pleiades . At the time of this writing, no malware sample has been discov-
ered for this DGA variant . We believe that the DGA is primarily used to serve
traditional C&C and enables click-fraud activities for the main TDSS/TDL4
[6] infection . This new DGA variant for TDSS/TDL4 appeared as a new DGA
cluster in the beginning of July 2012 . The C&C network-hosting infrastruc-
ture spans multiple different networks in Europe, US, and Asia . While most
of the C&C IP addresses have been associated in the past with illicit opera-
tions (i .e ., RBN, BitCoin mining) and have affected hundreds of thousands of
victims, we are not aware of a sample available to the security community that
resembles the DGA’s behavior .

In an effort to describe the extended criminal C&C network for this TDSS/
TDL4 variant, we first obtained the C&C domain names and remote IPs from
the successful DNS resolutions observed by the TDSS/TDL4 DGA victims .
Then we projected them in our passive DNS data collection in order to discover
their immediate related historic IPs and domain names . We then selected all
the domain names that matched the HMM model for this DGA variant . The
resulting set of resource records constitutes the extended TDSS/TDL4 C&C
network . Using the RDATA extracted from our passive DNS, we can provide
a complete picture of the extended C&C network components . In Table 3, we
show the extended criminal network behind this threat . We were able to iden-
tify 85 hosts that appear to be related to the actors behind TDSS/TDL4 DGA
and that were used over the past 18 months .

 ;login: DECEMBER 2012 Detecting and Tracking the Rise of DGA-Based Malware   23

Figure 3: TDSS/TDL4 network agility

In Figure 3, we observe the network agility of the extended TDSS/TDL4 C&C net-
work infrastructure and note how the botmasters behind TDSS/TDL4 moved and
updated their impressive C&C network infrastructure from 03/03/2011 through
07/18/2012 . Multiple C&Cs hosts were clearly active at the same time, especially
towards the last few months of our analysis period .

In Figure 4, we present a small sample from the NXDomains the TDSS/TDL4
DGA generated over time . A few new NXDomains appear to be generated by the
infected hosts every 48 hours . Using this observation, and in collaboration with
Georgia Tech Information Security Center (GTISC), we managed to get a glimpse
of the botnet worldwide infection levels . As of September 15, 2012, we have
observed more than 250,000 unique Internet hosts tying to contact the GTISC
sinkhole . Unfortunately, this number is growing, which implies that either the
infection campaign is still active or the threat is largely undetectable by traditional
network and host level defenses .

Conclusion
With this short article, we summarize the key aspects of a novel detection system
called Pleiades . This system is able to detect machines accurately within a moni-
tored network that are compromised with DGA-based bots . Utilizing the streams
of unsuccessful DNS resolution from a large ISP, Pleiades can identify and model
previously unknown DGAs, instead of relying on manual reverse engineering of
bot malware and their DGA algorithms . In our multi-month evaluation phase, Ple-
iades was able to identify seven DGAs that belong to known malware families and
six new DGAs never reported before .

References

[1] M . Antonakakis, R . Perdisci, Y . Nadji, N . Vasiloglou, S . Abu-Nimeh, W . Lee, and
D . Dagon, “From Throw-Away Traffic to Bots: Detecting the Rise of DGA-Based
Malware,” 21st USENIX Security Symposium, USENIX Association, 2012 .

Figure 4: TDSS/TDL4 DGA NXDomain samples

24   ;login: VOL. 37, NO. 6

[2] BankPatch, Trojan .Bankpatch .C: http://www .symantec .com/security_
response/writeup .jsp?docid=2008-081817-1808-99, 2009 .

[3] Microsoft Malware Protection Center, Virus:Win32/Expiro .Z: http://www .
microsoft .com/security/portal/Threat/Encyclopedia/Entry .aspx?Name=Virus
%3AWin32%2FExpiro .Z, 2011 .

[4] M . Geide, “Another Trojan Bamital Pattern”: http://research .zscaler .
com/2011/05/another-trojan-bamital-pattern .html, 2011 .

[5] S . Krishnan and F . Monrose, “DNS Prefetching and Its Privacy Implications:
When Good Things Go Bad,” Proceedings of the 3rd USENIX Conference on Large-
Scale Exploits and Emergent Threats (LEET ‘10), USENIX Association, 2010,
 pp . 10-10 .USENIX Association .

[6] A . Matrosov, E . Rodionov, and D . Harley, TDSS parts 1 through 3: http://
resources .infosecinstitute .com/tdss4-part-1/, http://resources .infosecinstitute
 .com/tdss4-part-2/, http://resources .infosecinstitute .com/tdss4-part-3/, 2011 .

[7] CERT Polska, “ZeuS P2P+DGA Variant Mapping Out and Understanding the
Threat”: http://www .cert .pl/news/4711/langswitch_lang/en, 2012 .

[8]Sophos, Mal/Simda-C: http://www .sophos .com/en-us/threat-center/
threat-analyses/viruses-and-spyware/Mal~Simda-C/detailed-analysis
 .aspx, 2012 .

[9] Microsoft Malware Protection Center, Trojan:Java/Boonana: http://www
 .microsoft .com/security/portal/Threat/Encyclopedia/Entry .aspx?Name
=Trojan%3AJava%2FBoonana, 2011 .

[10] B . Zdrnja, “Google Chrome and (Weird) DNS Requests”: http://isc .sans .edu/
diary/Google+Chrome+and+weird+DNS+requests/10312, 2011 .

 ;login: DECEMBER 2012   25

João Marcelo Ceron is a Security
Analyst at CERT.br/NIC.br. He
holds a master’s degree from
Federal University of Rio Grande

do Sul, Brazil, where he worked with honeypots
for botnet detection. He currently works with
incident handling, and his research interests
include honeypot data analysis.
ceron@cert.br

Klaus Steding-Jessen is CERT.
br/NIC.br Technical Manager.
He holds a PhD in applied
computing from the Brazilian

National Institute for Space Research, where
he worked with honeypots for spam detection.
His research area is the use of honeypots for
detecting Internet infrastructure abuse by
attackers and spammers. He is also one of the
authors of the chkrootkit tool.
jessen@cert.br

Cristine Hoepers is CERT.
br/NIC.br General Manager.
She holds a PhD in applied
computing from the Brazilian

National Institute for Space Research in the
area of honeypot data analysis. Her research
interests include the use of honeypots for
incident detection and trend analysis. She
has spoken at several security conferences,
including FIRST, APWG, MAAWG, LACNIC,
and AusCERT. cristine@cert.br

In the past few years we have seen a steady increase in the popularity of VoIP
(Voice over IP) services . Scans for SIP (Session Initiation Protocol [4]) servers
have been reported for many years, and to gather more details about these activi-
ties we emulated SIP servers in a network of 50 low-interaction honeypots, and
collected data about these attacks for 358 days . What will follow is a description of
our observations and advice on how to prevent these attacks from being successful .

Tracking SIP Servers Abuse
For quite some time, the security community has been reporting an increase in
scans for the SIP default port 5060/UDP, as well as some anecdotal evidence of
other types of abuse . Similarly, at the CERT .br honeyTARG Honeynet Project [3]
(a chapter of The Honeynet Project), port 5060/UDP was consistently among the
top-10 targeted ports . Bearing that in mind, we have been tracking the abuse of SIP
servers more closely since last year .

This project consists of 50 low-interaction honeypots, based on Honeyd [7],
deployed in the Brazilian Internet space . In order to enable Honeyd to collect SIP
attack information, we implemented a listener that emulates Asterisk Server [2]
and allows the definition of which extensions are available, as well as their default
responses and passwords . This software allows us to collect the initial stages of a
SIP session, logging information such as attack origins and the phone numbers the
attackers attempted to call . For privacy reasons, we chose not to record audio ses-
sions, limiting the implementation only to the SIP signaling .

Figure 1 presents a SIP conversation fragment logged by our listener . There are two
SIP methods: REGISTER and INVITE. The first part is a REGISTER request . This is
used by a user agent (UA) for registering contact information, such as its current
IP address . The second part illustrates the INVITE method, which is used to estab-
lish a media session between UAs . In this log, a UA places a call from the extension
100 to the external phone number “201*****274” (sanitized number) . Additionally,
the “user-agent” field shows that this UA has provided the identification string
“X-Lite release 1006e stamp 34025”, a common softphone .

Anatomy of SIP Attacks
J O Ã O M . C E R O N , K L A U S S T E D I N G - J E S S E N , A N D C R I S T I N E H O E P E R S

26   ;login: VOL. 37, NO. 6

Figure 1: Honeypot log showing the attacker’s IP, the phone number being requested, and the
user agent identification string

Making Sense of the Data
The traffic targeted to port 5060/UDP in our honeypots was related to the follow-
ing attack steps:

1 . Scanning: searching for SIP servers .
2 . Enumeration: once a SIP server is identified, the attackers try to enumerate the

server configuration, available extensions, and so on .
3 . Brute force: attackers try to access extensions that are protected with weak

passwords .
4 . Abuse: after gaining access to a PABX extension, the attackers will try to call

external PSTN (Public Switched Telephone Network) numbers, usually to place
international calls .

In a preliminary analysis of the collected data, we were able to identify that the
attackers would try to call a given number by using several prefixes to increase the
attack success (see Figure 2) . This occurs because a SIP server can be configured
in different ways—for example “0” or “9” to access PSTN lines . In some countries,
such as Brazil, one must also specify the telecommunication operator to be used for
long distance calls .

Figure 2: A phone number requested in different ways in order to identify the correct prefix for
dialing long distance or international calls

Figure 2 illustrates the many variations one attacker was using for the phone
number “9725*****586” . To deal with this situation, which we called redundancy,
we implemented a heuristic to identify it and to store only a unified SIP session
related to this number in the database . Besides reducing the size of the database,
this heuristic also helped us to identify the phone number’s country code and to

 ;login: DECEMBER 2012 Anatomy of SIP Attacks   27

correlate calls placed at different times and coming from different sources, to a
unique phone number .

Table 1 summarizes the data that reached our honeypot infrastructure from Sep-
tember 2011 to September 2012 .

Table 1: Summary of the data collected from September 2011 to September 2012

The majority of the REGISTER messages are from automated scans . Most of them
have the signature of the SipVicious toolkit [5], a collection of tools for auditing
SIP-based VoIP systems . The INVITE messages are actual abuse attempts directed
to the listeners, i .e ., phone call attempts . The unified INVITE messages are the
INVITE messages after redundancies were identified . Note that the number of
unique ASNs and CCs demonstrate a high dispersion of the origin of the attacks .

In the following sections, we will focus on the analysis of the unified INVITE
messages, including the phone numbers that were called the most and the abuse
sources .

User Agents and IDS Evasion
An important piece of information logged is the user agent identification string
provided by the SIP clients that connected to the honeypots and tried to place a
call . The most frequent user agents provided are presented in Figure 3 .

Figure 3: Top user agent identification strings provided by the SIP clients that tried to place calls

Data Count

REGISTER messages 64,249,923

INVITE messages 1,007,697

Unified INVITE messages 153,773

Unique IPs 7,752

Unique Autonomous System Numbers - ASNs 858

Total number of days 358

Unique source country codes - CCs 83

28   ;login: VOL. 37, NO. 6

Note that 61 .23% of the connections came from SIP clients that didn’t provide any
user agent string . We grouped all these clients under an identification string we
called “undefined .” This behavior is not expected from SIP clients and may suggest
that many attackers are using customized tools to abuse SIP servers . Also note
that the third most frequent user agent is the “VaxSIPUserAgent,” which is used by
a software development kit, also suggesting customized tools .

Additionally, there was a group of attempts where the user agent almost never
repeated . In every new session, the client provided a random 20-character user
agent, as shown in Table 2 . This behavior was the second most frequent and was
observed even in sequential requests coming from the same IP address . Our best
guess is that this is being used to hide attack fingerprints or to evade IDS detection .

Table 2: Examples of random user agent identification strings captured by the honeypots

We have also observed user agents commonly used by SIP servers, such as
Asterisk . These user agents could be fake (set by the attacker) or could represent
compromised SIP servers used to abuse other servers . The remaining user agents
presented in Figure 3 refer to popular softphones .

As we can see, almost 85% of all connections came from customized or potentially
malicious software .

Where Is It Coming From?
When looking into the source of the abuse attempts, we can try to identify specific
patterns in the geographical origin and try to identify other characteristics that
could give some insights about possible motivations .

Based on the source IP addresses of the attempted calls, we were able to estimate
the source country code (CC) for the attacks . The country code allocation is based
on information provided by the Regional Internet Registries (RIRs) . Figure 4
shows these top CCs .

Timestamp IP User Agent String

2012-01-23T04:02:15Z 194 .X .X .131 DmQCAsNRKZYayfosaXES

2012-01-23T04:02:17Z 194 .X .X .131 yy3BHtWnCBPco3knmRqG

2012-01-23T04:02:19Z 194 .X .X .131 KdUhQNVVxaZYfHg0rXFD

2012-01-23T04:02:21Z 194 .X .X .131 otYvAff8mpZviS2CfF6M

2012-01-23T04:02:23Z 194 .X .X .131 5y5ttWMXPbFIeyHb4l4D

2012-01-23T04:02:25Z 194 .X .X .131 YDjb3Q8Wiw6442YCXMnE

 ;login: DECEMBER 2012 Anatomy of SIP Attacks   29

Figure 4: Top country codes of call requests (based on source IPs), aggregated by requested
phone numbers

In Table 3 we list the top 10 IP addresses . For each IP, there is also information
about how many different IDD (International Direct Dialing) codes it tried to call
and the user agent string provided .

Table 3: Top source IPs, country codes, number of countries called, and the user agent provided

The most frequent CCs observed are US and CN, which are also the ones for
three of the unique IPs that tried to place most of the calls . Note that the top
10 IPs were responsible for 44% of all call attempts . Additionally, the first IP
address is responsible for 67% of all attempts coming from Chinese IPs . Like-
wise, the third and fourth IPs were responsible for 47% of all call attempts com-
ing from IPs allocated to the US .

Another interesting fact is that the user agents provided by the top source IPs are
not those of popular softphones but, instead, are possibly from customized attack
tools . And, most interestingly, all the user agents provided by the ninth IP were
20-character random strings, as discussed in the previous section .

This combination of few IPs with distinctive user agents points to the possibility of
these being rogue VoIP servers or proxies used as hubs to place phone calls .

Count IP CC IDDs User Agent String

01 19,562 113 .X .X .205 CN 142 undefined

02 11,027 83 .X .X .16 NL 62 undefined

03 7,553 71 .X .X .9 US 67 VaxSIPUserAgent/3 .0

04 7,486 50 .X .X .99 US 27 undefined

05 6,412 49 .X .X .93 TH 38 undefined

06 5,647 85 .X .X .212 FR 2 undefined

07 5,343 122 .X .X .83 TH 37 undefined

08 4,672 24 .X .X .37 CA 6 undefined

09 4,640 194 .X .X .36 MD 48 random

10 4,234 202 .X .X .204 ID 27 undefined

30   ;login: VOL. 37, NO. 6

Considering that one of the expected behaviors of a rogue VoIP server is high
geographic dispersion of the destination phone calls, we tried to corroborate this
hypothesis with additional analysis . We used AfterGlow [1] to explore the rela-
tionship among the top IP (113 .X .X .205) and the destination of all calls . Figure 5
presents this IP address and the country codes it attempted to call . The CC was
determined using the Perl library Number::Phone::Country, that associates an IDD
to a country code . We can see that this IP, a possible VoIP server, places calls to 142
different countries .

Figure 5: Destination country code for all calls placed by the IP 113.X.X.205

Who They Are Calling, and Why...
To gain more understanding of the abuse, we have also studied the nature of the
phone numbers the attackers attempted to call . The most requested phone num-
bers fall into the following categories:

u	 Cell phones: identified by the number prefix
u	 Financial services: customer services from financial institutions (mainly Bank

of America and Citibank)
u	 Pre-paid phones: pre-paid card services for international phone calls

(Net2Phone)
u	 Customer relations: e-commerce customer relation services

The most called phone number was Bank of America’s Credit Card Customer
Service, totaling 5,090 attempts . Only seven IPs requested this phone number, and
four of them have the rogue VoIP server behavior that was discussed earlier . Actu-
ally, 64% of all calls to Bank of America’s Credit Card Customer Service came from
the eighth IP listed in Table 3 .

 ;login: DECEMBER 2012 Anatomy of SIP Attacks   31

Table 4: Most frequent combinations of source IPs and destination IDD country codes

The IP addresses that originated the calls were, for the most part, not the same as
the IDD destination country . Table 4 shows the most frequent pairs, consisting of
IPs allocated to a country code that are calling numbers in a given destination IDD
country code .

Based on the data analyzed so far, we can present some hypotheses about the
attackers’ motivations:

1 . Abusing SIP servers in order to place free phone calls or to gain anonymity;
2 . Abusing the premium-rate telephone numbers business model;
3 . Reselling VoIP services by abusing poorly configured SIP servers; and
4 . Validating personal identifiable information, such as credit cards and bank

 account details .

Securing Your SIP Server
The types of activities observed reinforce the importance of implementing the
current SIP security best practices [6] . Most attacks would have been prevented or
mitigated by following one or more of these recommendations:

u	 Protect the SIP server from the Internet: be more restrictive in terms of
which extensions can be reached from external IP addresses .

u	 Use strong passwords: use long, hard-to-guess passwords . Most SIP clients re-
quire the password to be entered only once, so there is no need to create easy-to-
remember passwords . The current recommendation is to use at least 12-charac-
ter passwords, including numbers, symbols, and lower and uppercase letters .

u	 Create usernames different from extensions: most brute force attempts try
usernames that match the extension numbers .

u	 Monitor the SIP use in your organization: monitor your SIP server logs for
abuse attempts, but also keep an eye on your PSTN billing information, looking
for unusual long distance and international calls .

Source IP Destination IDD Count (%)

PS   IL 7305 4 .23%

EG   EG 6138 3 .56%

MD   CZ 5559 3 .22%

US   CZ 4535 2 .63%

FR    RU 4264 2 .47%

CA   800 (Free) 3296 1 .91%

US   IL 2088 1 .21%

US   ZW 1904 1 .10%

CA   CZ 1903 1 .10%

DE   CZ 1749 1 .01%

32   ;login: VOL. 37, NO. 6

Conclusion
As the adoption of SIP services grows, being aware of the characteristics of the
abuse against them is increasingly important . As our analysis showed, almost
85% of all call requests came from customized or potentially malicious software,
and some of the calls may be related to unlawful activities . Also, because there
are attackers currently taking advantage of poorly configured servers, the need to
increase monitoring is clear .

The good news is that the implementation of basic VoIP security best practices will
prevent most of the attacks seen in the wild .

References

[1] AfterGlow: Link Graph Visualization: http://afterglow .sourceforge .net/ .

[2] Asterisk: The Open Source Telephony Projects: http://www .asterisk .org/ .

[3] CERT .br: honeyTARG Honeynet Project: http://honeytarg .cert .br/ .

[4] RFC 3261—SIP: Session Initiation Protocol: http://www .ietf .org/rfc/
rfc3261 .txt .

[5] SIPVicious—Tools for auditing SIP-based VoIP systems: http://blog
 .sipvicious .org/ .

[6] John Todd, “Seven Steps to Better SIP Security with Asterisk,” 2009:
http://blogs .digium .com/2009/03/28/sip-security/ .

[7] Niels Provos and Thorsten Holz, Virtual Honeypots: From Botnet Tracking to
Intrusion Detection, Addison-Wesley, 2008 .

BECOME A USENIX SUPPORTER AND
REACH YOUR TARGET AUDIENCE

The USENIX Association welcomes industrial sponsorship and offers custom packages to help
you promote your organization, programs, and products to our membership and conference
attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audi-
ence, we offer key outreach for our sponsors. To learn more about becoming a USENIX Sup-
porter, as well as our multiple conference sponsorship packages, please contact sponsorship@
usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and
innovation in neutral forums. Sponsorship of USENIX keeps our conferences affordable for all
and supports scholarships for students, equal representation of women and minorities in the
computing research community, and the development of open source technology.

www.usenix.org/usenix-corporate-supporter-program

 ;login: DECEMBER 2012   33

Shashi Shekhar graduated with
an MS in computer science from
Rice University and is a software
engineer at Google.
shashi.iitg@gmail.com

Michael Dietz is a PhD student
at Rice University.
mdietz@gmail.com

Dan S. Wallach is a Professor
of Computer Science at Rice
University.
dwallach@cs.rice.edu

A wide variety of smartphone applications today rely on third-party advertis-
ing services, which provide libraries that are linked into the hosting application .
Advertising libraries often need additional permissions, requiring applications
to issue requests for additional permissions to their users at install time . This
article describes our AdSplit model, where we extended Android to allow an appli-
cation and its advertising to run as separate processes, under separate user IDs,
eliminating the need for applications to request permissions on behalf of their
advertising libraries .

Introduction
The smartphone and tablet markets are growing in leaps and bounds, helped in
no small part by the availability of specialized third-party applications (“apps”) .
Whether on the iPhone or Android platforms, apps often come in two flavors: a free
version, with embedded advertising, and a pay version without . Both models have
been successful in the marketplace . To pick one example, the popular Angry Birds
game at one point brought in roughly equal revenue from paid downloads on Apple
iOS devices and from advertising-supported free downloads on Android devices
[1] . They now offer advertising-supported free downloads on both platforms .

We cannot predict whether free or paid apps will dominate in the years to come,
but advertising-supported apps will certainly remain prominent . Already, a cottage
industry of companies offer advertising services for smartphone app developers .

Today, these services are simply pre-compiled code libraries, linked and shipped
together with an app . This means that a remote advertising server has no way to
validate a request it receives from a user legitimately clicking on an advertise-
ment . A malicious app could easily forge these messages, generating revenue for
its developer while hiding the advertisements in their entirety . To create a clear
trust boundary, advertisers would benefit from running ads separately from
their host apps .

In Android, apps must request permission at install time for any sensitive privi-
leges they want to exercise . Such privileges include access to the Internet, access
to coarse or fine location information, or even access to see what other apps are
installed on the phone . Advertisers want this information in order to better profile
users and thus target ads at them; in return, advertisers may pay more money to
their hosting apps’ developers . Consequently, many apps that require no particular
permissions, by themselves, suffer permission bloat, being forced to request the

AdSplit
Separating Smartphone Advertising from Applications

S H A S H I S H E K H A R , M I C H A E L D I E T Z , A N D D A N S . W A L L A C H

34   ;login: VOL. 37, NO. 6

privileges required by their advertising libraries in addition to any of their own
needed privileges . Because users might be scared away by detailed permission
requests, app developers would also benefit if ads could be hosted in separate apps,
which might then make their own privilege requests or be given a suitable one-
size-fits-all policy .

Finally, separating apps from their advertisements creates better fault isolation . If
the ad system fails or runs slowly, the host apps should be able to carry on without
inconveniencing the user . Addressing these needs requires developing a suitable
software architecture, with OS assistance to make it robust .

This article primarily focuses on the current state of practice in the Android mar-
ketplace, giving a flavor of how we engineered AdSplit as a proof of concept for a
better system design .

App Analysis
The need to monetize freely distributed smartphone applications has given rise to
many different ad provider networks and libraries . The companies competing for
business in the mobile ad world range from established Web ad providers, such as
Google’s AdMob, to a variety of dedicated smartphone advertising firms .

With so many options for serving mobile ads, many app developers choose to
include multiple ad libraries . Additionally, there is a new trend of advertisement
aggregators that have the aggregator choose which ad library to use in order to
maximize profits for the developer .

Although we’re not particularly interested in advertising market share, we want to
understand how these ad libraries behave . What permissions do they require? And
how many apps would be operating with fewer permissions, if only their advertise-
ment systems didn’t require them? To address these questions, we downloaded
approximately 10,000 free apps from the Android Market and the Amazon App
Store and analyzed them .

Permissions Required

Every ad library requires Internet access, presumably to download the ad content
to be displayed . Many libraries want additional privileges to assist in customizing
ads . This ranges from location information to the ability to see what else is run-
ning on your phone . Presumably, better targeted ads will bring greater revenue to
the application developer .

Permission Bloat

In Android, an application requests a set of permissions at the time it’s installed .
Those permissions must suffice for all of the app’s needs and for the needs of its
advertising library . We decided to measure how many of the permissions requested
are used exclusively by the advertising library (i .e ., if the advertising library were
removed, the permission would be unnecessary) .

Our results, shown in Figure 1, are quite striking: 15% of apps requesting Internet
permissions are doing so for the sole benefit of their advertising libraries; 26% of
apps requesting coarse location permissions are doing it for the sole benefit of their
advertising libraries; and 47% of apps requesting permission to get a list of the
tasks running on the phone (the ad libraries use this to check whether the applica-

 ;login: DECEMBER 2012 AdSplit: Separating Smartphone Advertising from Applications  35

tion hosting the advertisement is in foreground) are doing so for the sole benefit
of their advertising libraries . These results suggest that any architecture that
separates advertisements from applications will be able to reduce permission bloat
significantly . (In concurrent work to our own, Grace et al . [5] performed a static
analysis of 100,000 Android apps and found advertisement libraries uploading sen-
sitive information to remote ad servers . They also found that some advertisement
libraries were fetching and dynamically executing code from remote ad servers .)

Design Objectives
The first and most prominent design decision of AdSplit is to separate a host appli-
cation from its advertisements . This separation has a number of ramifications:

u	 Specification for advertisements. Currently, the ad libraries are compiled and
linked with their corresponding host application . If advertisements are separate,
then the host activities must contain the description of which advertisements to
use . We introduced a method by which the host activity can specify the particu-
lar ad libraries to be used .

u	 Permission separation. AdSplit allows advertisements and host applications to
have distinct and independent permission sets .

u	 Process separation. AdSplit advertisements run in separate processes, isolated
from the host application .

u	 Life-cycle management. Advertisements only need to run when the host ap-
plication is running, otherwise they can be safely killed; similarly, once the host
application starts running, the associated advertisement process must also start
running . Our system manages the life cycle of advertisements .

u	 Screen sharing. Advertisements are displayed inside a host app, so if advertise-
ments are separated, there should be a way to share screen real estate . AdSplit
includes a mechanism for sharing screen real estate .

u	 Authenticated user input. Advertisements generate revenue for their host ap-
plications; this revenue is typically dependent on the amount of user interaction

Figure 1: Distribution of types of permissions reduced when advertisements are separated
from applications

36   ;login: VOL. 37, NO. 6

with the advertisement . The host application can try to forge user input and
generate fraudulent revenue, hence the advertisements should have a way to
determine whether input events received from the host application are genuine .
AdSplit includes a method by which advertising applications can validate user
input, validate that they are being displayed on-screen, and pass that verification,
in an unforgeable fashion, to their remote server .

The AdSplit Design

Because we want to factor out the advertising code into a separate process/
activity, this will require a variety of changes to ensure that the user experience
is unchanged .

An app using AdSplit will require the collaboration of three major components: the
host activity, the advertisement activity, and the advertisement service . The host
activity is the app that the user wants to run, whether a game, a utility, or whatever
else . It then “hosts” the advertisement activity, which displays the advertisement .
There is a one-to-one mapping between host activity and advertisement activ-
ity instances . The UNIX processes behind these activities have distinct user IDs
and distinct permissions granted to them . To coordinate these two activities, we
have a central advertisement service . The ad service is responsible for delivering
UI events to the ad activity . It also verifies that the ad activity is being properly
displayed and that the UI clicks aren’t forged .

AdSplit builds on Quire [2], which prototyped a feature shown in Figure 2, allow-
ing the host and advertisement activities to share the screen together . This Quire
feature, when combined with a standard Android feature that allows the adver-
tisement activity to detect when its UI is occluded, provides the underpinnings of
AdSplit ‘s UI compositing system .

Permission Separation

With Android’s install-time permission system, an application requests every
permission it needs at the time of its installation . As we described above, adver-
tising libraries cause significant bloat in the permission requests made by their
hosting applications . Our AdSplit architecture allows the advertisements to run as
separate Android users with their own isolated permissions . Host applications no
longer need to request permissions on behalf of their advertisement libraries .

We note that AdSplit makes no attempt to block a host application from explicitly
delegating permissions to its advertisements . For example, the host application
might obtain fine-grained location permissions (i .e ., GPS coordinates with meter-
level accuracy) and pass these coordinates to an advertising library that lacks any
location permissions . Plenty of other Android extensions, including TaintDroid
[3] and Paranoid Android [8], offer information-flow mechanisms that might be
able to forbid this sort of thing if it was considered undesirable . We believe these
techniques are complementary to our own, but we note that if we cannot create
a hospitable environment for advertisers, they will have no incentive to run in an
environment like AdSplit .

Separation for Legacy Apps
A significant number of current apps with embedded advertising libraries would
immediately benefit from AdSplit, reducing the permission bloat necessary to host

Figure 2: Screen sharing between host and
advertisement apps

 ;login: DECEMBER 2012 AdSplit: Separating Smartphone Advertising from Applications  37

embedded ads . This section describes a proof-of-concept implementation that can
automatically rewrite an Android app to use AdSplit . Something like this could be
deployed in an app store or even directly on the smartphone itself .

We first built a rewriting system that decompiled an Android app, replacing the
internal advertising library with a stub that called out to our AdSplit advertising
service . Although we got this working for one specific library, there are a number
of problems that would stand in the way of this as a general-purpose solution for
AdSplit:

Ad Installation

When advertisements exist as distinct apps in the Android ecosystem, they will
need to be installed somehow . We’re hesitant to give the host app the necessary
privileges to install third-party advertising code . Perhaps an app could declare
that it had a dependency on a third-party app, and the main installer could hide
this complexity from the user, in much the same way that common Linux pack-
age installers will follow dependencies as part of the installation process for any
given target .

Ad Permissions

Even if we can get the ad libraries installed, we have the challenge of understand-
ing what permissions to grant them . Particularly when many advertising libraries
know how to make optional use of a permission, such as measuring the smart-
phone’s location if it’s allowed, how should we decide if the advertisement app has
those permissions? Unfortunately, there is no good solution here, particularly not
without generating complex user interfaces to manage these security policies .

Ad Unloading

Like any Android app, an advertisement app must be prepared to be killed at any
time—a consequence of Android’s resource management system . This could have
some destabilizing consequences if the hosting app is trying to communicate with
its advertisement and the ad is killed . Also, what happens if a user wants to unin-
stall an advertising app? Should that be forbidden unless every host app which uses
it is also uninstalled?

For further details about the implementation of AdSplit ‘s legacy app support and
automatic rewriting, please see our full paper [9] .

Alternative Design: HTML Ads
While struggling with the shortcomings outlined above, we hit upon an alterna-
tive approach that uses the same AdSplit architecture . The solution is to expand on
something that advertising libraries are already doing: embedded Web views .

Ad creators purchasing advertising on smartphones will want to specify their
advertisements the same way they do for the Web: as plain text, images, or perhaps
as a “rich” ad using JavaScript . Needless to say, a wide variety of tools are available
to produce such ads, and mobile advertising providers want to make it easy for ads
to appear on any platform (iPhone, Android, etc .) without requiring heroic effort
from the ad creators .

38   ;login: VOL. 37, NO. 6

Consequently, all of the advertising libraries we examined simply include a Web-
View within themselves . Most of the native Android advertising code is really
nothing more than a wrapper around a WebView . Based on this insight, we suggest
that it will be easiest to deploy AdSplit by providing a single advertising app, built
into the Android core distribution, that satisfies the typical needs of Android
advertising vendors .

Installation becomes a non-issue, since the only advertiser-provided content in the
system is HTML, JavaScript, and/or images . We still use the rest of the AdSplit
architecture, running the WebView with a separate user ID, in a separate process
and activity, ensuring that a malicious app cannot tamper with the advertisements
it hosts .

Security permissions are more straightforward . The same-origin policy, standard
across the entire Web, applies perfectly to HTML AdSplit . Since the Android Web-
View is built on the same Webkit browser as the real Web browser app, it has the
same security machinery to enforce the same-origin policy .

Keeping all this in mind, we built a new form of WebView specifically targeted
for HTML ads: the AdWebView . The AdWebView is a way to host HTML ads in a
constrained manner . We introduced two advertisement-specific permissions that
can be controlled by the user . These permissions control whether ads can make
Internet connections or use geolocation features of HTML5 .

When an ad inside an AdWebView requests to load a URL or performs a call to the
HTML5 geolocation API, the AdWebView performs a permission check to verify
whether the associated advertisement origin has the needed advertisement per-
mission . These advertisement permissions can be managed by the user in exactly
the same way they are for any other Web pages .

About the only open policy question is whether we should allow AdSplit HTML
advertisements to maintain long-term tracking cookies or whether we should
disable any persistent state . Certainly, persistent cookies are a standard practice
for Web advertising, so they seem like a reasonable feature to support here as
well . AdWebView, by default, doesn’t support persistent cookies, but it would be
trivial to add .

Policy
Although AdSplit allows for and incentivizes applications to run separately from
their advertisements, there are a variety of policy and user experience issues that
we must still address .

Advertisement Blocking

Once advertisements run as distinct processes, some fraction of Android users will
see this as an opportunity to block advertisements for good . Certainly, with Web
browsers, AdBlock and AdBlock Plus are incredibly popular . The Chrome Web store
lists these two extensions in its top six with “over a million” installs each . (Google
doesn’t disclose exact numbers .)

The Firefox add-ons page offers more details, claiming that AdBlock Plus is far
and away the most popular Firefox extension, having been installed just over
14 million times, versus 7 million for the next most popular extension . The
Mozilla Foundation estimates that 85% of their users have installed an extension

 ;login: DECEMBER 2012 AdSplit: Separating Smartphone Advertising from Applications  39

(http://blog .mozilla .com/addons/2011/06/21/firefox-4-add-on-users/) . Many will
install an ad blocker .

To pick one example, Ars Technica, a Web site popular with tech-savvy users,
estimated that about 40% of its users ran ad blockers [7] . At one point, it added code
to display blank pages to these users in an attempt to cajole them into either paying
for ad-free “premium” service, or at least configuring their ad blocker to “white
list” the Ars Technica Web site .

Strategies such as this are perilous . Some users, faced with a broken Web site, will
simply stop visiting it rather than trying to sort out why it’s broken . Of course,
many Web sites instead employ a variety of technical tricks to get around ad block-
ers, ensuring their ads will still be displayed .

Given what’s happening on the Web, it’s reasonable to expect a similar fraction of
smartphone users might want an ad blocker if it was available, with the concomi-
tant arms race in ad block versus ad display technologies .

So long as users have not “rooted” their phones, a variety of core Android services
can be relied upon by host applications to ensure that the ads they’re trying to
host are being properly displayed with the appropriate advertisement content .
Similarly, advertising applications (or HTML ads) can make SSL connections to
their remote servers, and even embed the remote server’s public key certificate,
to ensure they are downloading data from the proper source, rather than empty
images from a transparent proxy .

Once a user has rooted their phone, of course, all bets are off . While it’s hard to
measure the total number of rooted Android phones, the CyanogenMod Android
distribution, which requires a rooted phone for installation, is installed on roughly
722,000 phones—a tiny fraction of the hundreds of millions of Android phones
reported to be in circulation . Given the relatively small market share where such
hacks might be possible, advertisers might be willing to cede this fraction of the
market rather than do battle against it .

Consequently, for the bulk of the smartphone marketplace, advertising apps on
Android phones offer greater potential for blocking-detection and blocking-resis-
tance than advertising on the Web, regardless of whether they are served by in-
process libraries or by AdSplit . Given all the other benefits of AdSplit, we believe
advertisers and application vendors would prefer AdSplit over the status quo .

Permissions and Privacy

Leaving aside whether it’s legal for advertisers to collect sensitive information
such as a user’s precise location, we could always invent technical means to block
this as a matter of policy . Unfortunately, a host app could always make its own
requests, under its own authority, that violate the user’s privacy and pass these
into the AdSplit advertising app . Can we disincentivize such behavior? We hope
that, if we can successfully reduce apps’ default requests for privileges that they
don’t really need, then users will be less accustomed to seeing such permission
requests . When they do occur, users will push back, refusing to install the app .
(Reading through the user-authored comments in the Android Market, many apps
with seemingly excessive permission requirements will have scathing comments,
along with technical justifications posted by the app authors to explain why each
permission is necessary .)

40   ;login: VOL. 37, NO. 6

Furthermore, if advertisers ultimately prefer the AdSplit architecture, perhaps
due to its improved resistance to click fraud and so forth, then they will be forced
to make the tradeoff between whether they prefer improved integrity of their
advertising platform, or whether they instead want less integrity but more privacy-
violating user details .

Conclusion
AdSplit touches on a trend that will become increasingly prevalent over the next
several years: the merger of the HTML security model and the smartphone appli-
cation security model . Today, HTML is rapidly evolving from its one-size-fits-all
security origins to allow additional permissions, such as access to location infor-
mation, for specific pages that are granted those permissions by the user . HTML
extensions are similarly granted varying permissions rather than having all-or-
nothing access [6] .

On the f lip side, iOS apps originally ran with full, unrestricted access to the
platform, subject only to vague policies enforced by human auditors . Only access
to location information was restricted . In contrast, the Android security model
restricts the permissions of apps, with many popular apps running without any
optional permissions at all . Despite this, Android malware is a growing problem,
particularly from third-party app stores (see, e .g ., [4, 10]) . Clearly, there’s a need
for more restrictive Android security, more like the one-size-fits-all Web secu-
rity model .

While the details of how exactly Web apps and smartphone apps will eventually
combine, our findings show where this merger is already underway: when Web
content is embedded in a smartphone app . Well beyond advertising, a variety of
smartphone apps take the strategy of using native code to set up one or more Web
views and then do the rest in HTML and JavaScript . This has several advantages:
it makes it easier to support an app across many different smartphone platforms .
It also allows authors to quickly update their apps, without needing to go through a
third-party review process .

These trends, plus the increasing functionality in HTML5, suggest that “native”
apps may well be entirely supplanted by some sort of “mobile HTML” variant, not
unlike HP/Palm’s WebOS, where every app is built this way .

Maybe this will result in an industry battle royale, but it will also offer the abil-
ity to ask a variety of interesting security questions . For example, consider the
proposed “Web intents” standard (http://webintents .org/) . How can an “external”
Web intent interact safely with the “internal” Android intent system? Both serve
essentially the same purpose and use similar mechanisms . We, and others, will
pursue these new technologies toward their (hopefully) interesting conclusions .

References

[1] T . Cheshire, “In Depth: How Rovio Made Angry Birds a Winner (and What’s
Next),” Wired, Mar . 2011: http://www .wired .co .uk/magazine/archive/2011/04/
features/how-rovio-made-angry-birds-a-winner .

[2] M . Dietz, S . Shekhar, Y . Pisetsky, A . Shu, and D .S . Wallach, “Quire: Lightweight
Provenance for Smart Phone Operating Systems,” 20th USENIX Security Sympo-
sium, San Francisco, CA, Aug . 2011 .

 ;login: DECEMBER 2012 AdSplit: Separating Smartphone Advertising from Applications  41

[3] W . Enck, P . Gilbert, C . Byung-gon, L .P . Cox, J . Jung, P . McDaniel, and A .N .
Sheth, “TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones,” Proceedings of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ‘10), Oct . 2010, pp . 393–408 .

[4] A .P . Felt, M . Finifter, E . Chin, S . Hanna, and D . Wagner, “A Survey of Mobile
Malware in the Wild,” 1st ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM ‘11), Chicago, IL, Oct . 2011 .

[5] M . Grace, W . Zhou, X . Jiang, and A .-R . Sadeghi, “Unsafe Exposure Analysis of
Mobile In-App Advertisements,” 5th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec ‘12), Tucson, AZ, Apr . 2012 .

[6] L . Liu, X . Zhang, G . Yan, and S . Chen, “Chrome Extensions: Threat Analysis and
Countermeasures,” 19th Network and Distributed System Security Symposium
(NDSS ‘12), San Diego, CA, Feb . 2012 .

[7] L . McGann, “How Ars Technica’s ‘Experiment’ With Ad-Blocking Readers Built
on Its Community’s Affection for the Site,” Nieman Journalism Lab, Mar . 2010:
http://www .niemanlab .org/2010/03/how-ars-technica-made-the-ask-of-ad
-blocking-readers/ .

[8] G . Portokalidis, P . Homburg, K . Anagnostakis, and H . Bos, “Paranoid Android:
Zero-Day Protection for Smartphones Using the Cloud,” Annual Computer Secu-
rity Applications Conference (ACSAC ‘10), Austin, TX, Dec . 2010 .

[9] S . Shekhar, M . Dietz, and D . Wallach, “Adsplit: Separating Smartphone
 Advertising from Applications,” 21st USENIX Security Symposium, Bellevue, WA,
Aug . 2012 .

[10] Y . Zhou, Z . Wang, W . Zhou, and X . Jiang, “Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets,” 19th
Network and Distributed System Security Symposium (NDSS ‘12), San Diego, CA,
Feb . 2012 .

42   ;login: VOL. 37, NO. 6

Philipp Winter is a PhD student
in the PriSec group at Karlstad
University in Sweden. His
work focuses on censorship
resistance and analysis. Philipp

would be happy if you would run a Tor relay if
you are not operating one already.
philwint@kau.se

Jedidiah Crandall is an Assistant
Professor at the University of
New Mexico Department of
Computer Science, where his
research focuses on advanced

inference techniques to understand the
structure and operations of networks. He is
also interested in natural language processing
of Asian-language social media. He is typing
this bio from behind the Great Firewall on a
business trip, in Harbin where the dumplings
and beer are excellent.
crandall@cs.unm.edu

Internet censorship is no longer a phenomenon limited to countries with a weak
human rights record—the Western world is beginning to embrace the idea . This
development leads to a fundamental research question: how can we know where
the roadblocks are on the Internet and the details of how they work? In this
article, we use the “Great Firewall of China” (GFC) to illustrate how complex of
a problem it can be to find the network filtering devices, and how sophisticated
the filtering itself can be when directed at an advanced target such as the Tor
anonymity network .

The GFC is only a small part of the legal, regulatory, and technical mechanisms
China has put in place for Internet censorship [6], but it is an important part
because it helps to separate China’s Internet from the Internet of the rest of the
world . Without this, domestic control of Internet content would be moot because
Chinese Internet users would simply seek out foreign Web sites where content
was not controlled .

After all, the GFC is capable of much more than just filtering keywords . In this
article, we will focus on two aspects .

We will first show the shortcomings in the current research literature that make
it difficult to narrow down where Internet filtering occurs within China’s Internet
using Internet measurements .

In the second part of this article, we will show how the GFC is blocking the Tor
anonymity network . Despite being originally designed as a low-latency anonymity
network, Tor is increasingly used as a censorship circumvention tool .

Shortcomings in Our Understanding of China’s Internet
 Censorship Implementation
What is censored is an important question to ask with respect to Internet censor-
ship, but it is not directly related to the implementation of censorship and so will
not be discussed in this section . There are two basic questions that should form
the foundation for understanding any Internet censorship implementation in a
given country: how is the filtering performed, and where does the filtering occur?
In China, determining how filtering is performed is complicated because filtering
implementations differ depending on location and, furthermore, can change over
time . We discuss this issue in the following section and, with respect to the Tor
network, later in this article . Where the filtering occurs is much more difficult to

The Great Firewall of China
How It Blocks Tor and Why It Is Hard to Pinpoint

P H I L I P P W I N T E R A N D J E D I D I A H R . C R A N D A L L

 ;login: DECEMBER 2012 The Great Firewall of China: How It Blocks Tor and Why It Is Hard to Pinpoint   43

determine in China because China’s Internet has a unique topology and may tun-
nel a large amount of IPv4 traffic through IPv6 tunnels .

How Is the Filtering Performed in China?

In 2003 Zittrain and Edelman [9] performed perhaps the first academic work to
collect data about what China was filtering and how that filtering was imple-
mented . Much of the work that followed in 2006 and 2007 focused on the filter-
ing of HTTP GET requests based on keywords [2] . The data showed that for GET
requests containing sensitive keywords (e .g ., “falun” in reference to the Falun
Gong religion), routers in China in between the client and server would forge
multiple TCP RST segments in both directions to try to reset the TCP connec-
tion . In Clayton et al . [2], sequence number matching was used to determine
that this filtering was probably being performed by a bank of intrusion detection
systems (IDSes), where the packets are allowed to pass through for performance
reasons but port mirrored to the bank of IDSes, which could use RST injection
to stop the f low of traffic for connections in which keywords appeared . The Con-
ceptDoppler project [3] also did some packet-level measurements of keyword fil-
tering for a wider array of routes approximately one year after Clayton et al . The
difference in time and place for these two sets of measurements may account for
several differences in the results .

For example, one question that is now resolved but illustrates the difficulties in
answering basic questions about Internet censorship in China is whether GET
request filtering is stateful . That is, does any GET request packet with a black-
listed keyword trigger TCP RST segments, or should the TCP handshake be
completed and an actual connection established first? Previous work (e .g ., [2, 3])
had drawn different conclusions, but more recent work [8] found that the filter-
ing is now totally stateful . This discrepancy in the literature is probably because
some routes were stateful and some were not, but over time all routes upgraded to
have stateful filters . This heterogeneity in the implementation of filtering in China
and the fact that it is always evolving create many challenges for measuring the
censorship implementation .

GET request filtering is relatively easy to measure because it appears to be sym-
metric and bi-directional so that eliciting censorship is as simple as sending an
offending GET request to any IP address in China . In fact, the reader can trigger
filtering by simply opening the URL http://www .baidu .com/s?wd=falun . China
implements other types of filtering, including DNS, Web content filtering, and
application-level filtering on microblog servers . The type of filtering most relevant
to how China blocks Tor, which would be filtering by IP address, has been less well
studied in the past literature .

Where Does the Filtering Occur in China?

The question of where a particular type of filtering occurs can be posed in different
ways, but typically we are interested in whether filtering occurs on specific routes
but not on others, and possibly what router on that route is performing the filtering .

Again, GET request filtering has been the most studied implementation of censor-
ship-related filtering in China in this respect because it is easy to solicit filtering
from outside the country . Clayton et al . [2] observed that the time-to-live (TTL)
field of forged TCP RST packets was larger than that of packets that really came

44   ;login: VOL. 37, NO. 6

from the actual Web server on the other end of their connection . ConceptDop-
pler [3] manipulated the TTL field of packets with blacklisted keywords to locate
which router on the route to each of the hosts within China they tested performed
filtering and forged the RSTs . They concluded that the filtering was concentrated
near the border but sometimes was as many as 13 hops beyond the border; 28% of
the routes they tested had no filtering at all . Xu et al . [8] did a more comprehensive
study and concluded that the filtering was occurring more at the provincial level .

In an article in the Atlantic Monthly in March 2008 [4], James Fallows wrote:

In China, the Internet came with choke points built in . Even now, virtually all
Internet contact between China and the rest of the world is routed through a
very small number of fiber-optic cables that enter the country at one of three
points: the Beijing-Qingdao-Tianjin area in the north, where cables come in
from Japan; Shanghai on the central coast, where they also come from Japan;
and Guangzhou in the south, where they come from Hong Kong . (A few places
in China have Internet service via satellite, but that is both expensive and
slow . Other lines run across Central Asia to Russia but carry little traffic .)

Xu et al .’s results and the fact that both GET request filtering and IP address filter-
ing have at times been found not to occur on all routes into or out of China suggest
a less centralized flow for China’s international traffic . How does this square with
Fallows’ notion of a small number of choke points? The answer may lie in Internet
Exchange Points (IXPs) and IPv4-over-IPv6 tunnels .

While the academic literature and online resources about IXPs seem only to
refer to one IXP in Shanghai, the China Internet Network Information Center’s
(CNNIC) map of Internet connectivity in China (available at http://www1 .cnnic .
cn/images/info-stat/map1208 .jpg) clearly shows three IXPs: in Beijing, Shanghai,
and Guangzhou .

Why do these IXPs not appear in various efforts to locate IXPs on the Internet?
The answer may lie in the fact that a large portion of China’s Internet backbone
appears to be implemented in IPv6, where IPv4 traffic is tunneled through in a
“4-over-6” tunnel . “6-over-4” tunnels are more common and more well-studied
than “4-over-6” tunnels, which along with IPv6 backbones create special chal-
lenges for any Internet measurement based on IPv4 . Routing table information
used in Internet topology measurements typically focuses on IPv4, and IPv4 trace-
routes cannot detect hops inside an IPv6 tunnel because the TTL field will not be
decremented in the IPv4 header . To measurements that are based on IPv4, “4-over-
6” tunnels look like single hops . How much of China’s Internet backbone is IPv6-
based with IPv4 traffic being tunneled through? What percentage of international
traffic traverses one of the three large IXPs in Beijing, Guangzhou, and Shanghai?
The research literature does not have answers to these questions .

More Research Is Needed

Before we can begin to answer the question of where exactly Internet censorship
filtering occurs within China’s Internet, we need a better understanding of the
structure of China’s Internet . The roles of IPv6 and IXPs are key to this under-
standing . If a significant amount of China’s backbone is IPv6, standard measure-
ment techniques based on manipulating and observing IP TTLs will not allow us
to find out which hop within this backbone is performing the filtering . It is possible
that past efforts to locate the filtering, where the filtering has appeared to be near

 ;login: DECEMBER 2012 The Great Firewall of China: How It Blocks Tor and Why It Is Hard to Pinpoint   45

the border [3] or at the local provincial level [8] may have simply been seeing either
the entrance point or exit point of a “4-over-6” tunnel because the results were
based on IPv4 TTLs . This is compounded by other problems with using TTLs, such
as the fact that forged RSTs from China appear to now make attempts to choose
TTLs that appear to be from the other end of the connection .

In summary, more research is needed into both the structure of China’s Internet in
general and how to locate filtering specifically .

IP address blacklisting may take place at the same routers that implement GET
request filtering, or it may be an entirely different mechanism . In either case, the
structure of China’s Internet will play a key role in the percentage of routes into
or out of China that successfully block blacklisted IP addresses . Furthermore,
it is likely that IP address blacklisting in China, like other mechanisms, is het-
erogeneous in the sense that various ISPs and different parts of the network may
implement it differently (e .g ., null routing, forged RSTs, network address transla-
tion, etc .) .

The GFC and Tor
With roughly 400,000 daily users and 3,000 relays, Tor is the most popular low-
latency anonymity network . Despite being originally designed for anonymity only,
Tor turned out to be a good tool to circumvent censorship equipment and is now
increasingly used for this purpose . This trend did not remain unnoticed by censors
and is the reason why Tor is receiving special attention by the GFC, among others .

The Past

For several years, the Tor network has been in a cat-and-mouse game with the
GFC . The first documented attempt to block Tor happened back in 2008 . Users
behind the GFC in China noticed that the official Tor Web site, www .torproject .
org, stopped being reachable . As it turned out, deep packet inspection (DPI)
boxes were scanning network traffic for the substring torproject.org in HTTP
requests . When this substring was found, spoofed TCP reset segments were sent
to both endpoints . Four years later (2012), this is still the case but can be circum-
vented easily by using HTTPS instead of plain HTTP . The DPI boxes are not able to
detect the substring if the traffic is encrypted .

Although this type of block simply prevented users from downloading the Tor
Browser Bundle from the official Web site (note that there are plenty of mirrors
operated by volunteers), a user who somehow got her hands on a copy of the Tor cli-
ent could still use the network without interference .

One year later, in 2009, the GFC’s functionality was extended also to block all
public relays as well as the directory authorities by simple IP blocks . The direc-
tory authorities serve the consensus, which is a directory containing all public Tor
relays . The directory is downloaded by Tor clients during the bootstrapping phase,
and blocking this step effectively blocked the public Tor network . But, at this point,
the Tor developers had already implemented the concept of bridges, which are
unpublished relays . Bridges are meant to provide a semi-hidden stepping-stone for
censored users into the network . Along with bridges comes the bridge distribution
problem: while in an ideal world, bridges should only be given to censored users, a
censor can always mimic users and obtain—and then block—bridge addresses the
same way . The current approach to the bridge distribution problem is to make it

46   ;login: VOL. 37, NO. 6

easy to get some of them but hard to get all of them, because then a censor could
simply block them all . While the public network was blocked at this point in China,
bridges remained functioning and were used heavily .

The increasing popularity of bridges did not remain unnoticed, though . Several
months later, in March 2010, the Chinese bridge usage statistics started to drop
significantly as shown on the right end in Figure 1 . An explanation for this sud-
den drop was provided in a blog post: The GFC started to block some of the more
popular bridges .

Figure 1: Bridge users connecting from China between 2009 and 2010

Bridges can be configured to be either public or private . A public bridge announces
its existence to the public bridge database operated by the Tor developers so that
it can be distributed automatically to people who need a bridge . A private bridge
remains silent and hence only known to its operator .

At this point in the arms race it was still possible to set up private bridges and
manually give their addresses to trusted people in China . For many months,
private bridges remained a working, if less-than-ideal, solution to the unreach-
able public Tor network as well as to the mostly blocked public bridges; however,
this changed in late 2011, when the GFC made the next move in the arms race .
While the GFC’s above-mentioned blocking attempts consisted mostly of simple
IP blocks and Web site crawling, the next section outlines a drastic increase in
sophistication and complexity .

The Present

In October 2011 a user reported on the Tor bug tracker that even private bridges
appeared to get blocked within only minutes of their first use . As illustrated in Fig-
ure 2, the GFC is now using a novel two phase approach to make this possible [7] . In
the first phase, Chinese egress traffic is being scanned for what appears to be Tor
connections and the second phase is meant to confirm this suspicion by reconnect-
ing to the suspected bridges and trying to initiate a Tor connection . The following
two sections will present these two phases in greater detail .

 ;login: DECEMBER 2012 The Great Firewall of China: How It Blocks Tor and Why It Is Hard to Pinpoint   47

Figure 2: The GFC is (1) identifying Tor connections and (2) preparing scanners, which then
(3) conduct follow-up scanning to verify that a Tor bridge was used

P H A S E 1 : F I N G E R P R I N T I N G O F T O R

The GFC fingerprints Tor connections by exploiting the fact that Tor’s TLS
handshake slightly stands out from other applications’ use of TLS . In particular,
Chinese DPI boxes are looking for the cipher list, which is part of the TLS client
hello . The cipher list is used by the Tor client to tell the bridge which cryptographic
ciphers it supports . In particular, Tor’s cipher list (for versions older than 0 .2 .3 .17-
beta) is a static string of 58 bytes . The following 58 bytes are what the DPI boxes
are looking for in egress traffic:

 0ac0 14c0 3900 3800 0fc0 05c0 3500 07c0 09c0 11c0

 13c0 3300 3200 0cc0 0ec0 02c0 04c0 0400 0500 2f00

 08c0 12c0 1600 1300 0dc0 03c0 fffe 0a00 ff00

For a long time, this cipher list was identical to the one used by Firefox 3 . The Tor
developers mimicked Firefox’s cipher list in an attempt to make the Tor TLS hand-
shake look like a Firefox connecting to an Apache Web server; however, newer ver-
sions of OpenSSL started adding TLS_EMPTY_RENEGOTIATION_INFO_SCSV to the
cipher list, which made Tor’s TLS handshake look different from Firefox 3 again .

P H A S E 2 : F O L L O W- U P S C A N N I N G

Once Chinese DPI boxes discover a Tor-specific cipher list on the wire, follow-up
scanning is initiated . Several minutes after the Tor handshake, two to three ran-
dom Chinese IP addresses reconnect to the bridge just used by a Chinese user .
These scanners connect to the bridge, start a TLS session, and then try to create
a Tor circuit . If this succeeds, the bridge finds itself on the blacklist shortly
thereafter . This blacklist consists of IP:Port tuples . Bridges and relays are not
simply blacklisted by IP address . This might lead to overblocking, i .e ., blocking

48   ;login: VOL. 37, NO. 6

more than actually necessary . Perhaps in an attempt to avoid this problem and
minimize collateral damage, the GFC operators chose to block bridges by IP
address and port . The blacklist probably holds around 4,000 such tuples (roughly
3,000 relays and 1,000 bridges) .

The obvious step at this point would be for bridges to simply block these scanners .
Unfortunately, the scanners mimic real computers very well . They come from
almost random Chinese IP addresses, and the few properties in which they differ
from real computers are hard to exploit effectively .

Evasion

Before discussing how the Tor network can be made more resistant to blocking
attempts, we first describe the two fundamental ways in which Tor—and any other
censorship evasion system—can be blocked:

B L O C K- B Y- P R O T O C O L

DPI boxes can be looking for Tor-specific signatures in the traffic exchanged by
client and server . Ethiopia, for example, is blocking Tor by matching for signatures
in the TLS client hello and server hello . If such a signature is found, the respective
packet is simply dropped .

B L O C K- B Y- E N D P O I N T

Alternatively, Tor can be blocked by simply harvesting all relays and as many
bridges as possible and blacklisting the respective IP addresses . Unfortunately,
this is still a viable strategy .

E VA DI N G P R O T O C O L F I LT E R I N G

Protocol filtering can be evaded by obfuscating, scrambling, and reshaping a given
network protocol to a degree that it is hard for DPI boxes to identify the target pro-
tocol . This can be done by simply exploiting “features” in TCP and IP or by adding
a thin obfuscation layer between the transport and the application protocol . Both
approaches can make the job of DPI boxes significantly harder .

The former is implemented by software such as fragroute (see http://www .monkey
 .org/~dugsong/fragroute/) or SniffJoke (see https://github .com/vecna/sniffjoke) .
Both projects exploit the fact that there is not enough information on the wire for a
DPI box to fully reconstruct what is happening between two endpoints .

The latter is realized by a tool called obfsproxy, which is a network proxy developed
by the Tor project . It is run as a local SOCKS proxy on the client-side as well as on
the server-side . The actual obfuscation is handled by so-called pluggable transport
modules . As long as the same module is loaded on both sides, the network traffic is
being scrambled as dictated by the respective modules .

At this point, the only publicly available module for obfsproxy is called obfs2, which
scrambles the network traffic so that no static fields remain that would be good
candidates for fingerprinting . After a minimal handshake, the two parties have
one symmetric session key each, which is used to build another layer of encryption
over Tor’s TLS connection .

 ;login: DECEMBER 2012 The Great Firewall of China: How It Blocks Tor and Why It Is Hard to Pinpoint   49

E VA DI N G E N D P O I N T F I LT E R I N G

Assuming a perfect world in which Tor’s transport protocol is unblockable, cen-
sors could still harvest and block the IP addresses of all bridges . After all, bridges
are supposed to end up in the hands of legitimate users who need them, but not in
the hands of evil censors; however, censors can always act as legitimate users to
harvest addresses .

As already discussed above, the pragmatic approach so far has been to make it easy
for a user to obtain a few bridges but hard to get many . Unfortunately, this approach
is not very future-proof . Nation-state adversaries have lots of human resources,
computational power, money, bandwidth, and IP address pools . Coming up with
bridge distribution strategies that are robust against this kind of adversary is
increasingly difficult .

Still, there is a glimpse of hope on the horizon . The recently proposed flash proxies
concept by Fifield et al . [5] turns Web site visitors outside the censoring regime
into short-lived stepping stones into the Tor network . The short-livedness is an
advantage as well as a disadvantage . The disadvantage is that long-lived TCP con-
nections can get terminated frequently . The advantage is that the mere volume of
Web site visitors can be too much for a blacklist to handle . The censor should get
overwhelmed by the sheer number of endpoints to block and discontinue blacklisting .

Conclusion
In this article, we gave an overview of the difficulties in determining in detail
where filtering is taking place and how it is done . We used the Great Firewall of
China and its ability to block the Tor anonymity network as an example .

Internet censorship is a relatively young field of research . Much more work needs
to be done—both, in the field of measurement and circumvention—to keep the
Internet free and information flowing freely . Current censorship research is
exploring different areas . Blocking-resistant transport protocols that are being
proposed appear to be pure randomness or mimic other protocols such as Skype or
HTTP . Other research proposes to move circumvention to the Internet backbone or
use Web site visitors as short-lived proxies . All in all, Internet censorship promises
to be an exciting field of research with many important, challenging problems that
will require bright minds to solve them .

References

[1] For a complete list of references, see: https://www .usenix .org/login-1212-
winter-references .

[2] R . Clayton, S .J . Murdoch, and R .N .M . Watson, “Ignoring the Great Firewall of
China,” I/S: A Journal of Law and Policy for the Information Society, vol . 3, no . 2
(2007), pp . 70–77 .

[3] J .R . Crandall, D . Zinn, M . Byrd, E . Barr, and R . East, “ConceptDoppler: A
Weather Tracker for Internet Censorship,” Proceedings of the 14th ACM Conference
on Computer and Communications Security (ACM, 2007), pp . 352–365 .

[4] J . Fallows, “The Connection Has Been Reset,” Atlantic Monthly, March 2008:
http://www .theatlantic .com/magazine/archive/2008/03/-the-connection-has
-been-reset/306650/, accessed Sept . 6, 2012 .

50   ;login: VOL. 37, NO. 6

[5] D . Fifield, N . Hardison, J . Ellithorpe, E . Stark, R . Dingledine, P . Porras, and D .
Boneh, “Evading Censorship with Browser-Based Proxies,” Proceedings of the 12th
Privacy Enhancing Technologies Symposium (Springer, 2012), pp . 239–258 .

[6] The Open Net Initiative, China: http://opennet .net/research/profiles/china,
accessed Sept . 6, 2012 .

[7] P . Winter and S . Lindskog, “How the Great Firewall of China Is Blocking Tor,”
Proceedings of the 2nd Workshop on Free and Open Communications on the Internet
(Bellevue, WA, USA, 2012), USENIX Association .

[8] X . Xu, Z .M . Mao, and J .A . Halderman, “Internet Censorship in China: Where
Does the Filtering Occur?” Proceedings of the 12th International Conference on
 Passive and Active Measurement (Springer, 2011), pp . 133–142 .

[9] J . Zittrain and B . Edelman, “Internet Filtering in China,” IEEE Internet
 Computing, vol . 7, no . 2, 2003, pp . 70–77 .

Statement of Ownership, Management, and Circulation, 10/1/12
Title: ;login: Pub . No . 0008-334 . Frequency: Bimonthly . Number of issues published annually: 6 . Subscription price $125 .
Office of publication: USENIX Association, 2560 Ninth Street, Suite 215, Berkeley, CA 94710 .
Headquarters of General Business Office of Publisher: Same . Publisher: Same .
Editor: Rik Farrow; Managing Editor: Rikki Endsley, located at office of publication .
Owner: USENIX Association . Mailing address: As above .
Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds,
mortgages, or other securities: None .
The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax purposes have not
changed during the preceding 12 months .
 Average no. copies each issue No. copies of single issue (Oct. 2012)
Extent and nature of circulation issue during preceding 12 months published nearest to filing date

A . Total number of copies 4063 3850
B . Paid circulation
 Outside-county mail subscriptions 2229 1858
 In-county subscriptions 0 0
 Other non-USPS paid distribution 1206 1051
 Other classes 0 0
C . Total paid distribution 3435 2909
D . Free distribution by mail
 Outside-county 0 0
 In-county 0 0
 Other classes mailed through the USPS 66 51
E . Free distribution outside the mail 472 660
F . Total free distribution 538 711
G . Total distribution 3973 3620
H . Copies not distributed 90 230
I . Total 4063 3850
Percent Paid and/or Requested Circulation 86% 75%

Paid Electronic Copies 272 273
Total Paid Print Copies + Paid Electronic Copies 3707 3182
Total Print Distribution + Paid Electronic Copies 4245 3893
Percent Paid (Both Print and Electronic Copies) 87% 81%

 I certify that the statements made by me above are correct and complete .
 Casey Henderson, Co-Executive Director 10/1/12

SYSADMIN

 ;login: DECEMBER 2012   51

Blase Ur is a second-year
PhD student in the School
of Computer Science at
Carnegie Mellon University.

His research focuses on usable security and
privacy, including passwords, online behavioral
advertising, and privacy decision making. He
received his undergraduate degree in computer
science from Harvard University.
bur@cmu.edu

Patrick Gage Kelley is an
Assistant Professor of Computer
Science at the University of New
Mexico. His research centers

on information design, usability, and education
around privacy. He recently completed his
thesis at Carnegie Mellon University on
standardized, user-friendly privacy displays
for privacy policies and Android permission
displays. pgage@cmu.edu

Saranga Komanduri is a PhD
student in the School of
Computer Science at Carnegie
Mellon University. His research

covers a broad spectrum of security-related
topics, including authentication, usable
security, and warnings. sarangak@cmu.edu

Over the past several years, we have researched how passwords are created, how
they resist cracking, and how usable they are . In this article, we focus on recent
work in which we tested various techniques that may encourage better password
choices . What we found may surprise you .

Despite a litany of proposed password replacements, text-based passwords are
not going to disappear anytime soon [4] . Passwords have a number of advantages
over other authentication mechanisms . They are simple to implement, relatively
straightforward to revoke or change, easy for users to understand, and allow for
quick authentication; however, passwords also have a number of drawbacks . Fore-
most among these drawbacks is that it is difficult for users to create and remember
passwords that are hard for an attacker to guess . Our research group at Carnegie
Mellon University has been investigating strategies to guide users to create pass-
words that are both secure and memorable .

In particular, we have focused on techniques such as password-composition
policies and password-strength meters—two of the most ubiquitous strate-
gies employed by system administrators to help users create secure passwords .
Although these strategies are commonly used, their effects had not been well
understood . Through a series of online studies, we have aimed to understand how
password-composition policies and meters affect password security, memorability,
and user sentiment .

The first step in evaluating the security of a password is to understand the threat
model . For instance, one can argue that a password that is hard to guess within the
first three or five tries is secure, since an attacker would quickly be locked out . All
but the most obvious passwords tend to resist this type of online attack . Passwords
have been under attack in other ways due to a spate of password-database compro-
mises in recent years, including at sites like Gawker and LinkedIn [3] . In posses-
sion of such a database, in which passwords are usually salted and hashed, rather
than stored in plaintext, an adversary can still “crack” passwords by hashing
potential passwords and checking whether these hashes appear in the database .
This type of attack, known as an offline attack, is particularly pernicious since
many users reuse a single password, or closely related passwords, across several
sites to avoid remembering dozens of passwords [2] . Thus, an offline attack that
successfully guesses a password on one site may let the attacker access a cornuco-
pia of other accounts .

Helping Users Create Better Passwords
B L A S E U R , P A T R I C K G A G E K E L L E Y , S A R A N G A K O M A N D U R I , J O E L
L E E , M I C H A E L M A A S S , M I C H E L L E L . M A Z U R E K , T I M O T H Y P A S S A R O ,
R I C H A R D S H A Y , T I M O T H Y V I D A S , L U J O B A U E R , N I C O L A S C H R I S T I N ,
L O R R I E F A I T H C R A N O R , S E R G E E G E L M A N , A N D J U L I O L Ó P E Z

52   ;login: VOL. 37, NO. 6

In this article, we first introduce the methodology for our recent work on pass-
word-composition policies [5, 6] and password meters [8], and define the metrics
we used to measure the security and usability of passwords . We then highlight key
results from these studies, paying particular attention to the lessons they hold for
guiding real-world password creation .

Methodology and Metrics
Both our password-composition-policy study and our password-meter study took
place online in two separate parts . We recruited participants using Amazon’s
Mechanical Turk crowdsourcing service . Our password-composition-policy
study involved more than 12,000 participants, while our study of password meters
included more than 3,000 participants .

In the first part of each study, we asked participants to imagine that their main
email provider had changed its password requirements, and that they needed to
create a new password . In the study of password-composition policies, each par-
ticipant created a password conforming to one of seven different composition poli-
cies, detailed later in this article . In the study of password meters, all participants
created passwords under the same policy, but saw one of 14 different password
meters, described later in this article, or no meter . Participants then completed a
survey about the password-creation experience and were asked to re-enter their
passwords . Two days later, participants received an email inviting them to return,
log in again with their password, and to take another survey about how they
handled their password .

Traditionally, password strength for a set of passwords has been measured by
entropy . In contrast, recent research advocates “guessability,” the number of guesses
it would take an adversary to guess a password, as a more appropriate metric for
evaluating the real-world security of passwords against password-cracking attacks
[1] . In our work, we calculated guessability by simulating a state-of-the-art pass-
word cracking algorithm [9] and determining how many attempts that algorithm
would make to find a particular password, based on a particular set of training data .

To measure the usability of a password, we employed several metrics . First, we
considered the memorability of the password . As a proxy for memorability, we
examined the rate at which participants were able to log in successfully using their
password about five minutes after password creation and when they returned for
the second part of the study two or more days later . We also examined the rate at
which participants returned for the second part of the study, hypothesizing that
participants who created unmemorable passwords might not return . We further
considered the proportion of participants who indicated in our surveys that they
wrote their password down or stored it electronically, or who used their browser
or a password manager to fill in their password automatically . Additionally, we
presented participants with sentiment statements, to which they indicated levels
of agreement or disagreement on a five-point Likert scale .

Password-Composition Policies
In our study of password-composition policies, we examined five main types
of policies . Each participant was assigned round-robin to a single policy . As a
baseline, the first policy, which we termed “basic8,” required only that the pass-
word contain at least eight characters . To observe the impact of requiring longer
passwords, we tested a “basic16” policy, which required only that the password

Joel Lee is an MS student in
information security policy
and management at Carnegie
Mellon University. He is

interested in usable security and privacy,
adopting effective security policies in
enterprises, and in balancing security with the
core business operations of a company. He
did his undergraduate degree in a partnership
between CMU and Singapore Management
University. jlee@cmu.edu

Michael Maass is a second-year
PhD student studying software
engineering at Carnegie Mellon
University. He works on science

of security problems, focused on sandboxing
and evidence-based software assurance.
Michael worked as a security engineer in the
aerospace industry before pursuing a PhD.
mmaass@cmu.edu

Michelle Mazurek is a fifth-
year PhD student in electrical
and computer engineering at
Carnegie Mellon University.

Her research focuses on usable security and
privacy, including usable access control and
passwords. She received her undergraduate
degree in electrical engineering from the
University of Maryland.
mmazurek@cmu.edu

Timothy Passaro is a senior BS
student in the Carnegie Institute
of Technology and School of
Computer Science at Carnegie

Mellon University. His primary research
interest is usable security and privacy.
tpassaro@cmu.edu

Richard Shay is a fourth-year
PhD student in the School of
Computer Science at Carnegie
Mellon University. His research

focuses on usable privacy and security,
studying online behavioral advertising and
password policy. He received an undergraduate
degree in computer science and classics from
Brown University, and a master’s degree in
computer science from Purdue University.
rshay@cmu.edu

 ;login: DECEMBER 2012 Helping Users Create Better Passwords   53

contain at least 16 characters . We then tested a condition, “dictionary8,” in which
the password was stripped of non-alphabetic characters and checked against the
free Openwall cracking dictionary . To test passwords that had to include several
character classes, our “comprehensive8” condition mandated an eight-character
password containing a lowercase letter, an uppercase letter, a digit, and a symbol .
The password also needed to pass the same dictionary check as in dictionary8 . We
also tested three variants of a blacklist policy, which allowed all passwords con-
taining at least eight characters other than passwords on blacklists, which were
sourced from dictionaries ranging in size from hundreds of thousands to billions of
potential passwords .

As shown in Figure 1, for weaker adversaries—those that would make around
one billion guesses—the comprehensive8 and largest blacklist conditions were
particularly resistant to a guessing attack, with the basic16 condition performing
slightly worse . As the number of guesses increased, basic16 began to outperform
the other conditions in guessing resistance . For instance, with one trillion guesses,
only around half as many basic16 passwords were cracked as in comprehensive8
and the largest blacklist condition, which in turn were significantly more resistant
to guessing than any other condition .

We also found usability advantages for the basic16 policy, which required long
passwords with no further restrictions . Many popular Web sites’ password policies
are similar to our comprehensive8 condition, mandating passwords containing
several character classes and passing a dictionary check; however, compared to
participants who needed to comply with the comprehensive8 policy, those who
needed to comply with basic16 needed fewer attempts to create their password and
reused existing passwords at a lower rate [6] . Furthermore, basic16 participants
expressed less frustration in our sentiment questions than those who needed to
enter a password that does not appear in a dictionary or blacklist .

Figure 1: Percentage of passwords cracked by our password guesser for passwords collected
under several password policies

Timothy Vidas is an ECE PhD
candidate at Carnegie Mellon
University. His research
interests include mobile device

security, digital forensics, reverse engineering,
cybercrime, and many other aspects of
computer security. tvidas@cmu.edu

Lujo Bauer is an Assistant
Research Professor in CyLab
and the Electrical and Computer
Engineering Department at

Carnegie Mellon University. Lujo’s research
interests span many areas of computer
security and include building usable access-
control systems with sound theoretical
underpinnings; developing languages and
systems for runtime enforcement of security
policies on programs; and, generally, narrowing
the gap between a formal model and a
practical, usable system. lbauer@cmu.edu

Nicolas Christin is the Associate
Director of the Information
Networking Institute at Carnegie
Mellon University and a

research faculty (Senior Systems Scientist)
in CyLab and the Electrical and Computer
Engineering and Engineering and Public
Policy departments. His research is at the
intersection of systems, security, and public
policy, and has most recently focused on online
crime, security economics, and psychological
aspects of computer security.
nicolasc@cmu.edu

Lorrie Faith Cranor is an
Associate Professor of
Computer Science and of
Engineering and Public Policy

at Carnegie Mellon University where she is
Director of the CyLab Usable Privacy and
Security Laboratory (CUPS). She is also a
co-founder of Wombat Security Technologies,
Inc. and previously was a researcher at AT&T
Labs-Research. She has authored more than
100 research papers on online privacy, usable
security, and other topics. lorrie@cmu.edu

54   ;login: VOL. 37, NO. 6

Password-Strength Meters
In our study of password meters, participants were assigned round-robin to one
of 15 conditions . In our control condition, participants were asked to create a
password with no meter present . In each of the other 14 conditions, participants
saw some variant of a password meter as they created their password . The design
of one condition, which we termed a baseline meter, was informed by a survey we
performed of password meter use on highly popular Web sites . Like the meters
observed in the wild, our baseline meter computed the strength of the password
using heuristics, such as the length of a password and the character classes it con-
tained . To fill the bar completely, a participant’s password could contain 16 or more
characters, with no further restrictions . Alternatively, it could contain eight or
more characters, including a lowercase letter, uppercase letter, digit, and symbol,
as well as pass a dictionary check . As the bar became filled, it changed color from
red to yellow to green; meanwhile, a single word of textual feedback changed in
several steps from “bad” to “excellent .” We also provided a suggestion for improve-
ment, such as “Consider adding a digit or making your password longer .”

Our other conditions, shown in Figure 2, tested meters with various visual elements
and with different scoring strategies . To test the effect of the visual elements, we
created seven meters that differed from the baseline meter only in their visual
display . These conditions included a meter with a segmented, rather than continu-
ous, bar; a meter that was always green; a tiny meter; a huge meter; a meter that
didn’t give suggestions for improving the password; and a meter that had only text,
without a visual bar . We also created a meter that replaced the visual bar with an
animated bunny . The stronger the participant’s password, the faster the bunny
danced .

To test the effect of changing how the meters scored passwords, we created four
meters that scored passwords stringently, as well as two meters that nudged
participants toward a particular password policy . Two of the four stringent meters
had the same visual appearance as the baseline meter, yet always gave passwords
half the score or one-third of the score that the baseline meter would have given .
The two other stringent meters always gave half the score of the baseline meter,
yet were text-only, lacking a visual bar . One text-only meter had standard-weight
text, while the other had boldface text . One of the two meters nudging participants
toward a particular policy only scored a password on its length, while the other
policy more heavily weighted the inclusion of multiple character classes .

We found that all meters we tested led to passwords with different properties than
those created without a meter . Passwords created with any type of meter were
longer, on average, than those created with no meter . Furthermore, passwords cre-
ated with stringent meters were the longest . For instance, passwords created with
the half-score meter had a mean length that was 4 .5 characters greater than those
created with no meter .

We then evaluated the strength of passwords using the aforementioned “guess-
ability” metric, quantifying the number of guesses a sophisticated adversary would
need to guess that password . We found that all password meters we tested pro-
vided at least a small advantage against guessing attacks, although most of these
differences were not statistically significant . As summarized in Table 1, the two
stringent meters with visual bars, half and one-third score, provided a significant
increase in guessing resistance compared to not having a meter . For instance,
within the first 5 trillion guesses (5×1012), 47% of passwords created with no meter

Serge Egelman is a research
scientist at UC Berkeley working
on usable security problems.
He uses empirical data to

improve user interface designs for security
mechanisms. He received his PhD from
Carnegie Mellon University.
egelman@cs.berkeley.edu

Julio López is a Senior Software
Engineer at Maginatics, Inc.
where he works on large-
scale cloud storage systems.

He received his PhD and MS degrees from
the Electrical and Computer Engineering
Department at Carnegie Mellon University,
and his BS from Universidad EAFIT in
Colombia. julio.lopez@cmu.edu

 ;login: DECEMBER 2012 Helping Users Create Better Passwords   55

were cracked . In contrast, only 26% of passwords created with the half-score meter
and 28% of passwords created with the one-third-score meter were cracked, while
34–46% of passwords created with all other meters were cracked .

No
Meter

Baseline
Meter

Half-score
Meter

One-third-
score Meter

All Other
Meters

5×1010 guesses 35% 27% 20% 17% 24–34%

5×1012 guesses 47% 39% 26% 28% 34–46%

Table 1: The percentage of passwords in each condition cracked within the first 5×1010 and first
5×1012 guesses

Although the passwords created with a meter tended to be longer and harder to
guess, they did not seem to be less memorable . In particular, we did not observe
statistically significant differences across conditions in any of our metrics for the
memorability of passwords . Participant sentiment did differ across conditions,
with the stringent meters leading participants to express annoyance at a higher
rate . Stringent meters also caused increased participant disillusionment; partici-
pants in these conditions agreed at a higher rate that they did not “understand how
the password strength meter rates [their] password” and agreed at a lower rate
with the statement, “It’s important to me that the password-strength meter gives
my password a high score .”

Figure 2: The password meters we tested varied in their visual design and in the way they
scored a password

Conclusions
From our study, we learned that a password-composition policy that causes users
to create passwords that are longer than usual, rather than passwords that contain
an array of character classes and that aren’t in a blacklist, seems to possess a
number of advantages . As the number of guesses increased, basic16 passwords
were more resistant to a guessing attack . On the other hand, since long passwords
are less common, it is also possible that existing cracking algorithms have not been
optimized to crack long passwords . In addition to their greater resistance to an

56   ;login: VOL. 37, NO. 6

offline attack, basic16 passwords also had usability advantages over other policies
resistant to guessing . For instance, these longer passwords were easier to create
and led to more favorable participant sentiment .

Still, while encouraging users to make longer passwords seems to provide both
security and usability benefits, we cannot yet definitively recommend a single
password-composition policy as the ideal one . For instance, we are not yet sure of
the optimal minimum length for these longer passwords . Likewise, a small per-
centage of the passwords created under the policy that emphasized length would
have been guessed even by a very weak attacker . As such, we still need to establish
whether encouraging or mandating the usage of additional character classes in
long passwords would increase security without adversely affecting usability .

We began our password-meter study wondering whether meters had any effect,
and we found that meters did indeed impact user behavior and security . For
instance, meters led users to create longer passwords . Unfortunately, unless the
meter scored passwords stringently, the resulting passwords were only margin-
ally more resistant to password-cracking attacks . The non-stringent meters in
our study most closely approximated real-world meters, suggesting that currently
deployed meters are too lenient . This result hints that system administrators
should make it more difficult to receive high scores from meters . How this result
generalizes remains an open question since our study only examined the effect
of a meter on the creation of a single password . It is possible a user would habitu-
ate to receiving lower scores from meters, neutralizing the security benefit . Also,
whether having to remember multiple passwords would lead to greater difficulty in
remembering passwords created with stringent meters is unknown .

As an alternative to guiding password creation, our group has also studied assign-
ing users passphrases, which are long (and thus more secure) passwords formed of
space-delimited words in a natural language . By automatically assigning pass-
phrases, their guessability can be controlled . We compared the usability of these
system-assigned passphrases to system-assigned traditional passwords . We found
passphrases to be far from a usability panacea; by various usability metrics, they
often performed slightly worse or no better than traditional passwords [7] . Our
investigation also revealed a few ways in which passphrases may be improved to
realize some of the desired usability benefits .

The research community is still far from providing the last word on the best
strategies for helping users create passwords that are both hard to guess and easy
to remember . Passwords have received substantial attention in recent years, with
many exciting contributions coming from a number of different research groups .
We look forward to conducting additional studies to help solidify our understand-
ing of passwords, and to providing more definitive guidelines to help users create
better passwords .

References

[1] J . Bonneau, “The Science of Guessing: Analyzing an Anonymized Corpus of 70
Million Passwords,” IEEE Symposium on Security and Privacy, 2012 .

[2] D . Florencio and C . Herley, “A Large-Scale Study of Web Password Habits,”
WWW 2007 .

[3] D . Goodin, “Why Passwords Have Never Been Weaker—And Crackers Have
Never Been Stronger,” Ars Technica, August 21, 2012 .

 ;login: DECEMBER 2012 Helping Users Create Better Passwords   57

[4] C . Herley, P . Van Oorschot, “A Research Agenda Acknowledging the Persistence
of Passwords,” IEEE Security & Privacy Magazine, vol . 10, no . 1, 2012, pp . 28–36 .

[5] P .G . Kelley, S . Komanduri, M .L . Mazurek, R . Shay, T . Vidas, L . Bauer, N . Chris-
tin, L .F . Cranor, J . Lopez, “Guess Again (and Again and Again): Measuring Pass-
word Strength by Simulating Password-Cracking Algorithms,” IEEE Symposium
on Security and Privacy, 2012 .

[6] S . Komanduri, R . Shay, P .G . Kelley, M .L . Mazurek, L . Bauer, N . Christin, L .F .
Cranor, and S . Egelman, “Of Passwords and People: Measuring the Effect of
Password-Composition Policies,” CHI, 2011 .

[7] R . Shay, P .G . Kelley, S . Komanduri, M . Mazurek, B . Ur, T . Vidas, L . Bauer, N .
Christin, L .F . Cranor, “Correct Horse Battery Staple: Exploring the Usability of
System-Assigned Passphrases,” SOUPS, 2012 .

[8] B . Ur, P .G . Kelley, S . Komanduri, J . Lee, M . Maass, M . Mazurek, T . Passaro, R .
Shay, T . Vidas, L . Bauer, N . Christin, and L .F . Cranor, “How Does Your Password
Measure Up? The Effect of Strength Meters on Password Creation,” 21st USENIX
Security Symposium, 2012 .

[9] M . Weir, S . Aggarwal, B . de Medeiros, and B . Glodek, “Password Cracking
Using Probabilistic Context-Free Grammars,” IEEE Symposium on Security and
Privacy, 2009 .

PROGRAMMING

58   ;login: VOL. 37, NO. 6

Jiyong Jang is a fifth-year
PhD student in electrical
and computer engineering at
Carnegie Mellon University. His

research interests include systems, software
and network security, with a focus on malicious
software analysis and binary program analysis.
He received his BS degree in computer science
and industrial system engineering in 2005 and
his MS degree in computer science in 2007
from Yonsei University, South Korea. He is the
recipient of the 2011 Symantec Research Labs
Graduate Fellowship. jiyongj@cmu.edu

Maverick Woo is a postdoctoral
researcher working in Carnegie
Mellon CyLab. With a back-
ground in data structures and

algorithm design, Maverick has a keen interest
in applying insights from theoretical computer
science to computer security. His recent work
focuses on accelerating binary analysis through
efficient abstraction recovery and automated
reasoning. pooh@cmu.edu

David Brumley is an Assistant
Professor at Carnegie Mellon
University in the Electrical
and Computer Engineering

Department. Professor Brumley graduated
from Carnegie Mellon University with a PhD
in computer science in 2008. He has received
several best paper awards, an NSF CAREER
award, and the United Stated Presidential Early
Career Award for Scientists and Engineers.
dbrumley@cmu.edu

Programmers often copy code from one program to another . Unfortunately, when
patches to buggy code are not propagated to all code clones, this leaves one or more
programs still vulnerable . In this article, we present ReDeBug, a tool to identify
unpatched code clones automatically that we have made available for use .

Unpatched Code Clones
Programmers should never fix the same bug twice . Unfortunately, buggy code
often gets copied from project to project, and each project fixes the bug indepen-
dently, which means resources are wasted to diagnose the same bug repeatedly . We
call clones of buggy code that has been fixed in only a subset of projects unpatched
code clones. Unpatched code clones are latent bugs that are likely to be vulnerable
and can cause a serious vulnerability window—the time frame between when a
vulnerability is disclosed and when a project containing the vulnerable code clone
is fixed .

For example, the patch presented in Listing 1 was issued in July 2009 to fix a heap
overflow bug in libvorbis . The patched vulnerability can cause a program crash or
arbitrary code execution via a maliciously crafted OGG file [3] . Unfortunately, we
found 93 unpatched code clones of this bug in our November 2011 data set . Projects
including mplayer and libtritonus-java in Debian, mednafen and libvorbisidec in
Ubuntu, and ffdshow and guliverkli in SourceForge all had the same vulnerable
unpatched code . In this case, the 93 packages were exposed to this known vulner-
ability for more than 800 days past the initial patch date .

 --- a/lib/res0.c

 +++ b/lib/res0.c

 @@ -208,10 +208,18 @@

 info->partitions=oggpack_read(opb,6)+1;

 info->groupbook=oggpack_read(opb,8);

 + /* check for premature EOP */

 + if(info->groupbook<0)goto errout;

 + for(j=0j;<info->partitions;j++){

 int cascade=oggpack_read(opb,3);

 - if(oggpack_read(opb,1))

 - cascade|=(oggpack_read(opb,5)<<3);

 + int cflag=oggpack_read(opb,1);

 + if(cflag<0) goto errout;

 + if(cflag){

 + int c=oggpack_read(opb,5);

ReDeBug
Finding Unpatched Code Clones in Entire OS Distributions

J I Y O N G J A N G , M A V E R I C K W O O , A N D D A V I D B R U M L E Y

 ;login: DECEMBER 2012 ReDeBug: Finding Unpatched Code Clones in Entire OS Distributions   59

 + if(c<0) goto errout;

 + cascade|=(c<<3);

 + }

 info->secondstages[j]=cascade;

 acc+=icount(cascade);

Listing 1: Example patch for CVE-2009-3379 showing diff details

To study how widespread the problem of unpatched code clone truly is and to
provide a tool that can help developers fight against it, we developed ReDeBug [5],
a system to find unpatched code clones quickly in code bases at the scale of entire
OS distributions . Using ReDeBug, we examined more than 2 .1 billion lines of code
from all packages in Debian Lenny/Squeeze, Ubuntu Maverick/Oneiric, all C and
C++ projects in SourceForge, and also the Linux kernel . ReDeBug identified 15,546
unpatched copies of known vulnerable code from 376 Debian/Ubuntu security-
related patches . ReDeBug uses syntax-based pattern matching, which allows it to
(1) scale to entire OS distributions, (2) support many different languages, and (3)
guarantee zero false detections .

u	 Scalability: To give a sense of the scale necessary to find all unpatched code
clones, observe that Debian Squeeze alone contains 16 GB of non-empty and
non-comment code, spanning more than 348 million lines . Using ReDeBug on
a machine with a 3 .40 GHz i7 CPU and SSD, we were able to scan the 2 .1 billion
lines of code in our entire data set against 1,634 buggy code patterns in less than
three hours . With the ability to search rapidly for unpatched code clones, ReDe-
Bug can be used to improve the security of code bases in day-to-day development
by promptly checking for copies of known vulnerabilities automatically .

u	 Support for many different languages: OS distributions include programs
written in a variety of languages . For example, Debian Squeeze consists of 288
million lines of C/C++, 24 million lines of Java, 14 million lines of Python, 12
million lines of Perl, 5 million lines of PHP, and so on . To handle such a large
variety of languages, ReDeBug uses a simple, fast, and language-agnostic syntax
pattern matching approach to find unpatched code clones . We realize that there
are more advanced matching algorithms that are applicable when the code is
correctly parsed, and that such algorithms will likely find even more unpatched
code clones . The challenge is, however, in the building of robust parsers for each
language, which has proven difficult even for professional software assurance
companies [1] . While we encourage future developers to add parsing support
to ReDeBug, for now ReDeBug opts for a simpler robust algorithm that works
across a wide variety of languages .

u	 Zero false detection rate: There are two types of false reports any clone detec-
tion algorithms can make . The first type is a syntactic “false detection .” This hap-
pens when an algorithm says an unpatched code clone is present when it is not .
ReDeBug eliminates false detections by performing a slower but exact match
after all potential matches have been rapidly identified . In contrast, advanced
heuristic matching algorithms used to find more code clones can suffer a higher
false detection rate . Reporting only true matches to developers is important; oth-
erwise, developers would end up wasting resources to examine the false reports .
The second type is a semantic “false positive .” This happens when an algorithm
detects an unpatched code clone, but the clone is used in a non-vulnerable way,
such as when checks have been inserted in earlier locations . Although ReDeBug
inevitably can have false positives just like any other syntax-based method, we

60   ;login: VOL. 37, NO. 6

argue that false positives still present problems because the code can be used in a
vulnerable way due to a change in the future .

ReDeBug
ReDeBug is available for download as an open source tool on our Web site (http://
security .ece .cmu .edu/redebug/) . ReDeBug is written in Python to make the tool (1)
easy to use without the need to compile first, (2) useful on multiple platforms, and
(3) simple to extend with language-specific optimizations . The Web site also offers
an online unpatched code clone detection service where developers can submit
their code to test whether it contains known vulnerabilities stored in our database .
If a match is found, a report showing both the original buggy code and unpatched
code clones found in the submitted code is presented .

 $ redebug.py -h

 usage: redebug.py [-h] [-n NUM] [-c NUM] [-v] patch_path source_path

 positional arguments:

 patch_path path to patch files (in unified diff format)

 source_path path to source files

 optional arguments:

 -h, --help show this help message and exit

 -n NUM, --ngram NUM use n-gram of NUM lines (default: 4)

 -c NUM, --context NUM print NUM lines of context (default: 10)

 -v, --verbose enable verbose mode (default: False)

Listing 2: Help message of ReDeBug

A full technical description of ReDeBug has been presented in [5] . Here we concen-
trate on how to use ReDeBug to find unpatched code clones in practice . As shown
in Listing 2, ReDeBug takes two positional arguments: patch path and source path .
The first refers to the top-level patch directory from which we extract original
buggy code snippets, and the second points to the top-level directory of the source
tree to be checked . As optional arguments, -n defines how many lines of code are
to be considered as a unit of code to compare, -c sets how many surrounding lines
of code are to be reported as context, and -v enables verbose output . ReDeBug
consists of three major components: (1) PatchLoader, which extracts original
buggy code snippets from patch files; (2) SourceLoader, which matches source
files against known buggy code; and (3) Reporter, which generates a report after
performing exact-matching test . We explain each component of ReDeBug with an
example of identifying the unpatched code clone for the CVE-2009-3379 vulner-
ability in the Debian mplayer package .

PatchLoader: ReDeBug takes patch files in the UNIX unified diff format, which
is popular among open source developers . Listing 1 shows a patch for the CVE-
2009-3379 vulnerability in libvorbis in the unified diff format . A unified diff patch
consists of a sequence of diff hunks where each hunk includes the filename of a
modified file, deleted source code lines that are prefixed by a -, and inserted source
code lines that are prefixed by a + . Modifications are represented as deletions of old
source code lines followed by insertions of new source code lines .

1 . Consider a set of patches Pi . ReDeBug extracts original code snippets Pi 8 from
Pi by excluding the lines prefixed by a “+” symbol . This is because the inserted
lines are not present in original buggy code . The surrounding context lines are

 ;login: DECEMBER 2012 ReDeBug: Finding Unpatched Code Clones in Entire OS Distributions   61

included to conservatively identify unpatched code clones . ReDeBug requires
only the patches but not the pre-patch source code . This allows ReDeBug to save
significant space because we do not have to keep the original source code .

2 . ReDeBug normalizes the extracted original buggy code Pi 8 to P̄
i by removing

whitespaces except new lines and converting all characters into lowercase .
We keep new lines since patches in the unified diff format operate at the line
level . ReDeBug also identifies file types using the libmagic library, and per-
forms language-specific normalization to increase the probability of identifying
unpatched code clones . For example, for C, C++, and Java, we remove single line
comments (//), multi-line comments (/* */), and curly brackets ({}) . The code in
Listing 3 shows the normalized buggy code extracted from the code in Listing
1 . Regular expressions for such language-specific optimizations are defined in
common .py, which can be easily extended to add more optimizations and support
other languages .

 info->partitions=oggpack_read(opb,6)+1;

 info->groupbook=oggpack_read(opb,8);

 for(j=0;j<info->partitions;j++)

 int cascade=oggpack_read(opb,3);

 if(oggpack_read(opb,1))

 cascade|=(oggpack_read(opb,5)<<3);

 info->secondstages[j]=cascade;

 acc+=icount(cascade);

Listing 3: Normalized buggy code extracted from Listing 1

3 . ReDeBug slides a window of nlines over the normalized code P̄
i . For example, we

have five windows from the code in Listing 3 when n=4: lines 1-4, 2-5, 3-6, 4-7,
and 5-8 . For each window w, we apply a list of hash functions H to build a list of
hash values hi = { h(w) | w ∈ P̄

i , h ∈ H }. At present, ReDeBug utilizes three hash
functions: FNV-1a hash (http://isthe .com/chongo/tech/comp/fnv/), djb2 hash,
and sdbm hash (http://www .cse .yorku .ca/~oz/hash .html) (refer to common .py) .
The default context in a diff file is three lines of code . Therefore, we can guaran-
tee each window has at least one changed line by setting n ≥ 4 (the default n is 4) .

SourceLoader: ReDeBug builds a Bloom filter [2] for each source file to check the
presence of known vulnerabilities . For example, ReDeBug checks for the CVE-
2009-3379 vulnerability in the code in Listing 4 as follows:

 info->begin=oggpack_read(opb,24);

 info->end=oggpack_read(opb,24);

 info->grouping=oggpack_read(opb,24)+1;

 info->partitions=oggpack_read(opb,6)+1;

 info->groupbook=oggpack_read(opb,8);

 for(j=0;j<info->partitions;j++){

 int cascade=oggpack_read(opb,3);

 if(oggpack_read(opb,1))

 cascade|=(oggpack_read(opb,5)<<3);

 info->secondstages[j]=cascade;

 acc+=icount(cascade);

 }

Listing 4: Source code snippet from mplayer package

62   ;login: VOL. 37, NO. 6

 info->begin=oggpack_read(opb,24);

 info->end=oggpack_read(opb,24);

 info->grouping=oggpack_read(opb,24)+1;

 info->partitions=oggpack_read(opb,6)+1;

 info->groupbook=oggpack_read(opb,8);

 for(j=0;j<info->partitions;j++)

 int cascade=oggpack_read(opb,3);

 if(oggpack_read(opb,1))

 cascade|=(oggpack_read(opb,5)<<3);

 info->secondstages[j]=cascade;

 acc+=icount(cascade);

Listing 5: Normalized source code snippet

1 . ReDeBug normalizes source file Fj to F̄j in a similar way by removing whitespac-
es except new lines and converting all characters into lowercase . Then, language-
specific optimizations such as comment removal are applied according to the
identified file type . For example, the code in Listing 4 is normalized into the code
in Listing 5 .

2 . ReDeBug slides a window of nlines over the normalized source code F̄j . We hash
each window w using the same list of hash functions H . Specifically, for each
h ∈ H, we set the h(w)-th bit of the Bloom filter BFj to 1 . Each source file is now
represented by its corresponding Bloom filter .

3 . ReDeBug tests if a normalized source file F̄j includes normalized buggy code P̄

i by checking if every bit in the locations specified by hi
 is set to 1 in BFj . For exam-

ple, for all the hash values hi
 generated from the code in Listing 3, we check if the

corresponding bits are set to 1 in the Bloom filter built from Listing 5 . If at least
one of the bits is 0, that means the corresponding window of P̄

i is not present in F̄
j

 . ReDeBug only records the pair
(P̄

i , F̄
j) as a potential match if F̄

j contains the entire P̄
i .

Reporter: For every pair (P̄
i , F̄

j) recorded, ReDeBug verifies whether P̄
i really

occurs in F̄
j . A Bloom filter may cause false detection due to hash collisions . This

is why ReDeBug performs an exact match to eliminate any possible false detection
due to the use of Bloom filters . For example, the code in Listing 5 indeed contains
the buggy code in Listing 3 . Finally, ReDeBug reports the Debian mplayer package
contains an unpatched code clone of CVE-2009-3379 . The report also presents a
pair of the patch in Listing 1 and the matched source code in Listing 4, which helps
developers to inspect the identified unpatched code clone easily .

Security-Related Bugs
Using ReDeBug, we analyzed more than 2 .1 billion lines of source code from sev-
eral OS distributions to comprehend the current trends of unpatched code clones .
Table 1 shows the detailed breakdown of our collected source code data set . The
Early 2011 dataset (Σ1) consists of all source packages from Debian 5 .0 Lenny,
Ubuntu 10 .10 Maverick, Linux Kernel 2 .6 .37 .4, and all C/C++ projects in Source-
Forge . The Late 2011 dataset (Σ2) contains all source packages from Debian 6 .0
Squeeze and Ubuntu 11 .10 Oneiric . For the SourceForge packages, we used version
control systems such as Subversion, CVS, and Git to obtain up-to-date packages;
then we excluded non-active code branches such as branches and tags directo-
ries . For source packages in Debian and Ubuntu, we applied existing patches, e .g .,
debian/patches/, because those patches can be included during a build . As a result,

 ;login: DECEMBER 2012 ReDeBug: Finding Unpatched Code Clones in Entire OS Distributions   63

the source packages we checked were patched with all available and included
patches on the download date .

In order to find security-critical bugs, we collected security-related patches from
Debian/Ubuntu security advisories that included the information about the
corresponding packages and patches/diffs . We downloaded 376 security-related
patches whose file names had recognizable CVE numbers, and gathered 1,634 diffs
from these CVEs . As described in Table 2, pre-2011 patches (δ1) were available at
the time of collecting Σ1, and 2011 patches (δ2) were released between the download
dates of Σ1and Σ2 .

In total, ReDeBug found 15,546 unpatched code clones in the two data sets Σ1 and
Σ2 . Figure 1 shows the detailed breakdown of unpatched code clones identified in
Σ1 and Σ2 when querying for δ1 and δ2 . We considered three scenarios to understand
the current situation of unpatched code clones .

u	 {δ1 & δ2} → Σ1: The unpatched code clones found in Σ1 using δ1 and δ2 approxi-
mate how many (potentially) vulnerable packages an adversary may be able to
spot when a patch becomes available . There were 10,248 unpatched code clones
detected in the SourceForge data set . The old stable, but still supported on the

Dataset

Files

Diffs
Date

Released

Pre-2011 Patches (δ1) 274 1,079 2001-2010

2011 Patches (δ2) 102 555 2011

Total 376 1,634 —

Table 2: Security-related patch data set

Figure 1: Unpatched code clones in Σ1 and Σ2 Figure 2: Unpatched code clones from patches in different years

Distributions Lines of Code Date
Collected

Early
2011
(Σ1)

Debian Lenny 257,796,235 Jan 2011

Ubuntu Maverick 245,237,215 Mar 2011

Linux Kernel 2 .6 .37 .4 8,968,871 Mar 2011

SourceForge (C/C++) 922,424,743 Mar 2011

Late
2011
(Σ2)

Debian Squeeze 348,754,939 Nov 2011

Ubuntu Oneiric 397,399,865 Nov 2011

Total 2,180,581,868 —

Table 1: Source code data set

64   ;login: VOL. 37, NO. 6

download date, Debian Lenny and Ubuntu Maverick also had 1,482 and 1,058
unpatched code clones, respectively . When security-related bugs are fixed in
the original packages, it is important to detect such serious vulnerabilities early
before an adversary identifies them .

u	 {δ1 & δ2} → Σ2: The unpatched code clones identified in Σ2 using δ1 and δ2 roughly
indicate how new versions of an OS respond to previously known security vul-
nerabilities . Debian Squeeze and Ubuntu Oneiric included 1,532 and 1,223 such
unpatched code clones, respectively . We reported the 1,532 unpatched code clones
identified in Debian Squeeze packages to the Debian security team and package
developers . So far, 145 real bugs have been confirmed by developers either by
private emails or by issuing a patch . This showcases the real world impact of Re-
DeBug . For some examples of the identified unpatched code clones, please refer
to our paper [5] and our Web site, http://security .ece .cmu .edu/redebug/ .

u	 δ1 → Σ1 vs . δ1 → Σ2: We investigated how many unpatched code clones per-
sisted from the previous version of an OS to the latest version of an OS . In our
evaluation, we compared the 1,838 unpatched code clones from δ1 in Σ1 and the
1,991 unpatched code clones also from δ1 in Σ2 . Among these 3,829 clones, 1,379
persisted . Figure 2 shows the number of unpatched code clones identified from
patches released in different years . Note that 21 of the unpatched code clones
are security vulnerabilities that were patched over a decade ago (in 2001) . This
indicates that unpatched code clones are long-lived in modern OS distributions .

In some cases, unpatched code clones may be found in dead code, e .g ., vulner-
able code that is present but not included at build time or vulnerable code that is
included but never gets executed due to logical conditions . The former usually hap-
pens when external library code is embedded in a source package, but the package
is written to prefer the available system library to the embedded library . Dead code,
however, may still be a latent vulnerability in that the accompanied vulnerable
library code can be used depending on the availability of the system library during
compilation on the user’s machine . For C, specifically, we compile code with an
assert statement inserted into the identified buggy code region and look for its cor-
responding assembly in the binary file to weed out such cases .

ReDeBug may have false positives when unpatched code clone is present but not
vulnerable . For example, from the patch for CVE-2009-4016 shown in Figure 3a,
an unpatched code clone was detected in ircd-ratbox package . The package main-
tainer informed us that the integer underflow vulnerability was fixed in a different
location as shown in Figure 3b, which shows two new checks to guard against the
vulnerable code . As a result, this unpatched code clone is used in a way that makes
it unexploitable . ReDeBug and all other syntax-based approaches share the same
problem .

Code Duplication

In order to understand the current situation of code clones, we performed a large-
scale experiment to measure the overall amount of copied code in OS distributions .
We measured this at two different granularities: the function level and the token
(n-lines of source code) level .

First, for all C/C++ source files in the Debian Lenny code base, we roughly identi-
fied functions using the following Perl regular expression:

 ;login: DECEMBER 2012 ReDeBug: Finding Unpatched Code Clones in Entire OS Distributions   65

Figure 3: Different fix for CVE-2009-4016

/ˆ \w+?\s[;̂]*? \([;̂]*?\)\s*({ (?:[ˆ{}]++|(?1))*})/xgsm

We realize that a regex may not be able to recognize all functions—that would
require a complete parser; however, for our evaluation this is sufficient to pro-
vide an estimate of code duplication at the function level . We identified a total of
3,230,554 functions and measured their pairwise similarity using the Jaccard
index . As shown in Figure 4, most of the function pairs had very low similarity
(below 0 .1), which is natural because different packages would have dissimilar
code for different functionality; however, surprisingly, 694,883,223 pairs of func-
tions had more than 0 .5 similarity, and 172,360,750 of them were more than 90%
similar . The result clearly shows a significant amount of code cloning, and this
suggests that unpatched code clones will continue to be important and relevant in
the future .

Second, we calculated the total fraction of shared tokens in each file for the
SourceForge data set . As shown in Figure 5, about 30% of files were almost unique
(0–10% shared tokens) . In contrast, more than 50% of files shared more than 90%

 else

 *d++ = *src;

- ++src;

- --len;

 + if (len > 0) {

 + ++src, --len;

 + }

 }

 *d = ‘\0’;

 return dest;

    3a: Patch for CVE-2009-4016

 - while (*src && (len > 0)) {

+ while (*src && (len > 1)) {

 if(*src & 0x80) {

 *d++ = ‘.’;

 --len;

+ if(len <= 1)

 + break;

 ...

 else

 *d++ = *src;

 ++src;

 --len;

 }

 *d = ‘\0’;

 return dest;

    3b: Another patch for CVE-2009-4016

Figure 4: Similarity among functions Figure 5: Fraction of shared tokens

66   ;login: VOL. 37, NO. 6

of tokens with other files, which shows that code cloning is common within the
SourceForge community as well . Note that 100% of shared tokens in a file does not
necessarily mean it is copied from another file as a whole . For example, this could
also happen when a file consists of small fractions from multiple files .

Related Work
Existing research has focused on finding all code clones, which is a harder problem
than just identifying unpatched code clones . Finding all code clones potentially
requires comparison among all code pairs, whereas identifying unpatched code
clones can be done with a single sweep over the data set . This line of research
uses a variety of matching heuristics based upon high-level code representa-
tions such as CFGs and parse trees . For example, CCFinder [7] generates a token
sequence from a program using a lexer and transforms the token sequence based
on language-dependent rules . A suffix-tree-based matching algorithm is then
used to determine similar code . CP-Miner [8] parses a program, hashes its tokens
into numeric values, and then runs the frequent subsequence mining algorithm to
detect clone-related bugs . Deckard [6] and DejaVu [4] both build parse trees and
represent structural information of a parse tree as a vector, and then cluster the
vectors with respect to the Euclidean distance . An advanced heuristic match-
ing, however, can suffer a higher false detection rate . For example, 73% of bug
reports from CP-Miner and 37% of bug reports from DejaVu were false code clones .
Furthermore, implementing good parsers is a difficult problem with which even
professional software assurance companies struggle [1] . Of course, once that has
been done, it will yield a robust level of abstraction that is not available to ReDeBug
today .

Conclusion
We presented ReDeBug, a system to efficiently detect unpatched code clones .
ReDeBug is designed to handle a large code base, e .g ., an entire OS distribution
written in a wealth of languages . We analyzed more than 2 .1 billion lines of real
code and identified 15,546 unpatched copies of known vulnerable code . This shows
that the problem of unpatched code clone is persistent and recurring . The practi-
cal impact of ReDeBug has been confirmed by the 145 real bugs that were found
and fixed in Debian Squeeze packages . We hope that ReDeBug can help develop-
ers enhance the security of their code in day-to-day development . You can try out
ReDeBug by visiting our Web site at http://security .ece .cmu .edu/redebug/ .

Acknowledgments
This research was supported in part by sub-award PO4100074797 from Lock-
heed Martin Corporation originating from DARPA Contract FA9750-10-C-0170
for BAA 10-36 . This research was also supported in part by the National Science
Foundation through TeraGrid resources provided by Pittsburgh Supercomputing
Center . We would like to thank the anonymous referees of our related paper [5] and
Debian developers for their feedback in this work .

References

[1] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler, “A Few

 ;login: DECEMBER 2012 ReDeBug: Finding Unpatched Code Clones in Entire OS Distributions   67

Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World,”
Communications of the ACM, vol . 53, no . 2, 2010, pp . 66–75 .

[2] Burton H . Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol . 13, no . 7, 1970, pp . 422–426 .

[3] National Vulnerability Database, CVE-2009-3379: http://web .nvd .nist .gov/
view/vuln/detail?vulnId=CVE-2009-3379, accessed 9/11/2012 .

[4] Mark Gabel, Junfeng Yang, Yuan Yu, Moises Goldszmidt, and Zhendong Su,
“Scalable and Systematic Detection of Buggy Inconsistencies in Source Code,”
Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, 2010 .

[5] Jiyong Jang, Abeer Agrawal, and David Brumley, “ReDeBug: Finding
Unpatched Code Clones in Entire OS Distributions,” Proceedings of the IEEE
Symposium on Security and Privacy, 2012 .

[6] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu,
“Deckard: Scalable and Accurate Tree-Based Detection of Code Clones,” Proceed-
ings of the International Conference on Software Engineering, 2007 .

[7] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, “CCFinder: A Mul-
tilinguistic Token-Based Code Clone Detection System for Large Scale Source
Code,” IEEE Transactions on Software Engineering, vol . 28, no . 7, 2002, pp .
654–670 .

[8] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou, “CP-Miner:
 Finding Copy-Paste and Related Bugs in Large-Scale Software Code,” IEEE
Transactions on Software Engineering, vol . 32, 2006, pp . 176–192 .

SANDBOXING & VIRTUALIZATION • DETECTING CHEATERS

MARCH/APRIL 2011

THREAT MODELING • MOBILE DEFENSE • FROM PAPER TO PIXELS

JULY/AUGUST 2011

INSIDER ATTACKS • MOBILE TWO-FACTOR AUTHENTICATION • TRUTH IN CROWDSOURCING
SEPTEMBER/OCTOBER 2011

Protect Your Network

www.qmags.com/SNP

IEEE Security & Privacy is the
publication of choice for great
security ideas that you can put into

practice immediately. No
vendor nonsense, just real
science made practical.

—Gary McGraw,
CTO, Cigital, and author of Software
Security and Exploiting Software

Access the latest trends and
peer-reviewed research
anywhere, anytime

Further your knowledge
with in-depth interviews
with thought leaders

 SUBSCRIBE FOR $1995

DIGITAL EDITION

COLUMNS

 ;login: DECEMBER 2012   69

David N. Blank-Edelman is the
Director of Technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ‘05 conference and one of the LISA
‘06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010. dnb@ccs.neu.edu

In this column, we hope to address the question “Is Perl the language of love?”
And if that attempt falls short (as I suspect it will), is there a way to speak the
language of love using Perl? Now, you and I may disagree which language is indeed
the language of love . Is it Huttese, as in the title above (okay, really Quechua) or
some other language? We’re going to need some way to go back and forth between
languages fluidly to answer this question .

One way to do this would be to use machine translation . Perhaps the most well
known way to access this kind of translation is through a service Google provides
called Google Translate . We’re going to look at how to work with this service from
Perl and also explore some of the little side lessons we can pick up along the way .
There are three quick things I need to bring to your attention before we jump into
how this all works:

1 . Google Translate is not free to use; it used to be, back in the day, but now you have
to pay a small amount to even play with it . Their pricing is listed on the Web site
(https://developers .google .com/translate/v2/pricing) . As of this writing, I’ll be
shelling out $20 US for the first one million characters of text being translated in
this column . There is a separate charge of $20 US for using their language detec-
tion feature (again, per one million characters) . To use the code found in this
article or to write your own, you’ll need to obtain your own Google Translate API
key (https://code .google .com/apis/console/?api=translate) and also set it up so
Google can bill you for the usage .

2 . In addition to paying for Google Translate use, there are a whole bunch of other
requirements you must adhere to in terms of how you need to identify its use in
your application, branding, blah, blah, blah . Please read the “Attribution Require-
ments” and “HTML Markup Requirements” sections of their documentation
(https://developers .google .com/translate/) carefully . You may wish to play the
proper sections of John Williams’ soundtrack in the background for proper
 effect .

3 . There is a Perl module whose whole job is to hide the implementation details
of using this service . I will indeed show you how to use it toward the end of this
column, so if you are impatient, you can skip to the end . We’re going to learn a
bunch of cool things before we get there, but, hey, I’ll understand if you are a busy
bounty hunter and don’t have the time to read all the way through .

Practical Perl Tools
“Mala trom pee chock makacheesa.”

D A V I D B L A N K - E D E L M A N

70   ;login: VOL. 37, NO. 6

Let’s Take a REST
Many, many Web services these days provide some sort of REST API . REST stands
for “Representational State Transfer .” The Wikipedia article on REST at http://
en .wikipedia .org/wiki/Representational_State_Transfer is decent (or was on the
day I read it) . Let me quote briefly from it:

REST-style architectures consist of clients and servers . Clients initiate
requests to servers; servers process requests and return appropriate
responses . Requests and responses are built around the transfer of
representations of resources . A resource can be essentially any coherent and
meaningful concept that may be addressed . A representation of a resource is
typically a document that captures the current or intended state of a resource

Representational State Transfer is intended to evoke an image of how a well-
designed Web application behaves: presented with a network of Web pages (a
virtual state-machine), the user progresses through an application by selecting
links (state transitions), resulting in the next page (representing the next state
of the application) being transferred to the user and rendered for his use .

(That last sentence comes from Roy Fielding’s dissertation, which actually defined
the REST architecture and changed Web services forever as a result .)

Discussing the REST idea in detail would get us into a whole other kettle of
fish that might leave both of us smelling bad . For example, I think some people
might quibble with Google calling their Google Translate API a REST API . They
acknowledge this in their doc when they say “the Google Translate API is some-
what different from traditional REST . Instead of providing access to resources, the
API provides access to a service .”

They essentially bend the REST idea to say that using this service consists of con-
structing URLs with the right service request details in them, fetching the URL,
and getting data back with the results of that service request . To quote their doc
directly:

“[T]he API provides a single URI that acts as the service endpoint .

You access the Google Translate API service endpoint using the GET REST
HTTP verb, as described in API operations . You pass in the details of all
service requests as query parameters .”

In this column, we’ve done this sort of thing lots of times . Let’s use similar code to
take a baby step:

 use LWP::Simple;

 my $tkey = ‘{YOUR Google Translate API KEY HERE}’;

 my $results = get(“https://www.googleapis.com/language/translate/v2/

languages?key=$tkey”);

 print “$results\n”;

 ;login: DECEMBER 2012 Practical Perl Tools   71

This prints out what looks like a large data structure along the lines of:

 {

 “data”: {

 “languages”: [

 {

 “language”: “af”

 },

 {

 “language”: “ar”

 },

 ...

 {

 “language”: “de”

 },

 {

 “language”: “el”

 },

 {

 “language”: “en”

 },

 ...

 {

 “language”: “vi”

 },

 {

 “language”: “yi”

 },

 {

 “language”: “zh”

 },

 {

 “language”: “zh-TW”

 }

]

 }

 }

And with that, we’ve made our first Google Translate API call . In this case we’ve
asked for the list of languages supported by the service .

When you look at the output, you may be thinking, “Hey, that output looks like
a data structure but is pretty legible; what format is it in?” Glad you asked . The
Google Translate API returns data in JSON (JavaScript Object Notation) format .
JSON has become one of the lingua francas of Web services on the Net . We’ve seen
JSON in this column before because it is a kissing cousin (where kissing cousin
might be better described as “a subset”) of the YAML data serialization format that
shows up all around the Perl world . Given JSON’s ubiquity, knowing how to work
with it is a desirable skill that is easy to pick up .

72   ;login: VOL. 37, NO. 6

As an example, we could modify our previous code to read like this:

 use LWP::Simple;

 use Data::Dumper;

 use JSON;

 my $tkey = ‘{YOUR Google Translate API KEY HERE}’;

 my $results = get(

 “https://www.googleapis.com/language/translate/v2/

languages?key=$tkey”);

 my $decoded = decode_json $results;

 foreach my $language (@{ $decoded->{data}->{languages} }) {

 print values $language, “\n”;

 }

and it would print out the list of supported languages . Let’s take apart the new
parts of this code so it is clear . We’ve loaded the JSON module that turns JSON
data into a Perl data structure . In this case, it has returned a hash reference to a
data structure that looks like this (courtesy of the Perl debugger):

 -> HASH(0x7f88f4499e48)

 ‘data’ => HASH(0x7f88f44eef68)

 ‘languages’ => ARRAY(0x7f88f4760ad8)

 0 HASH(0x7f88f462efb0)

 ‘language’ => ‘af’

 1 HASH(0x7f88f462ef98)

 ‘language’ => ‘ar’

 ...

There’s an outer hash with the single key of ‘data’ that contains a reference to an
inner hash whose only key is ‘languages’ and whose value is a reference to a Perl
array . Each element of that array contains a reference to a hash with ‘language’

as its key and the name of the language as the value .

This line:

 $decoded->{data}->{languages}

returns the reference to the languages array . We dereference it (using the
@{something} notation) to get at the values in the array, iterate over them, and
print the list of values contained in the hash stored in each value .

If your first reaction to this code is “yucko,” I don’t blame you . It sure seems like
a lot of work to get a single list of languages . But if you look carefully at the JSON
excerpt that is coming back from the service as printed above, you’ll see that the
JSON decode() call is faithfully translating the JSON structure into the correct
Perl data structure . In the real world you would encapsulate this call into a routine
in your code that would construct a more pleasant data structure for the rest of the
code to share . C’est la vie .

Translate Something Already!
Let’s actually get to the translation process . To do so we have to add a few more
twists to our previous code:

 ;login: DECEMBER 2012 Practical Perl Tools   73

1 . We have to make sure we’re playing by the rules of the (Web) road . Anything we
send to Google Translate in a URI must be properly escaped . Luckily, we have a
few Perl modules available to us that make this easy .

2 . Depending on what sort of code you are writing, you may have to deal with going
back and forth between different character encodings (UTF-8, Latin-1, etc .) .
Character encoding is a serious rabbit hole in itself, so we’re not going to talk
much about it for fear of being sucked into an entirely separate column . I did
sneak one character encoding decision in the previous code . The routine we
used from the JSON module, decode_json(), expects to receive a UTF-8 encoded
string and interpret it as UTF-8 text . You’ll see a similar, albeit more overt, deci-
sion in the code we’re about to construct .

 3 . As much as I appreciate the simplicity of LWP::Simple, we are shortly going to be
at the point where we are going to have to assert more control over just how the
request is constructed and sent out . For example, if the text that you are translat-
ing is over a certain length (Google’s docs says 5000 characters, but I’ve seen some
indication that 2000 characters might be a safer limit), the request must be sent
as a POST instead of the usual GET type . And when you do this, Google Translate
requires you also send along a header that says “X-HTTP-Method-Override: GET”
(i .e ., treat this POST request as if it were a GET) . I’m not going to show code that
takes this limit into account because it is built into one of the modules we’ll see
later, but I just wanted to let you know about it should you start writing something
on your own and find LWP::Simple can’t get this fancy . We’ll use its big brother,
LWP::Agent, in the examples below, but there are a number of possible modules we
could use .

A quick aside that originates from #3 above: in the process of researching this
article, I came upon a module I had never seen before called REST::Client .
REST::Client describes itself as “A simple client for interacting with RESTful
http/https resources .” It basically provides a little bit of syntactic sugar that makes
the fairly simple task of talking to a REST server even simpler . That’s cool, but even
cooler is the module based on it called REST::Client::Simple . REST::Client::Simple
lets you describe the API you are communicating with (e .g ., resources you can
access, parameters that can be passed) and then write code that speaks in terms of
that API . For example, excerpted from the documentation:

 use Net::CloudProvider;

 my $nc = Net::CloudProvider(user => ‘foobar’, api_key => ‘secret’);

 my $response = $nc->create_node({

 id => ‘funnybox’,

 hostname => ‘node.funnybox.com’,

 os => ‘debian’,

 cpus => 2,

 memory => 256,

 disk_size => 5,

 });

This code started off with a largish definition (not printed here) that said there
exists a create_node command performed by making a POST call with certain pos-
sible parameters for that resource . Note that the code above doesn’t show anything
about how the actual POST request is constructed or sent: that’s all done in the
background by REST::Client::Simple . This level of sophistication is beyond what

74   ;login: VOL. 37, NO. 6

we need for our translation example code, but I thought you might find this module
handy some day .

Okay, so let’s actually translate some stuff . To do so, we’ll need to construct a URI
with the following parameters:

 - key: we saw this before—it is our API key
 - q: the string we want to translate
 - target: the target language for the translation
 - source: the source language, if we don’t want Google Translate to try and guess it

Here’s a small program that takes an English string as an argument and prints
Google Translate’s best guess at its French equivalent:

 use LWP::UserAgent;

 use URI::Escape;

 use JSON;

 my $tkey = ‘{YOUR Google Translate API KEY HERE}’;

 my $sl = ‘en’;

 my $tl = ‘fr’;

 my $query = URI::Escape::uri_escape_utf8($ARGV[0]);

 my $ua = LWP::UserAgent->new();

 my $results

 = $ua->get(‘https://www.googleapis.com/language/translate/v2/’

 . “?key=$tkey”

 . “&q=$query”

 . “&source=$sl”

 . “&target=$tl”);

 die “Translation failed: “ . $results->status_line

 unless $results->is_success;

 my $decoded = decode_json $results->decoded_content;

 binmode(STDOUT, “:utf8”);

 foreach my $translation (@{ $decoded->{data}->{translations} }) {

 print values $translation, “\n”;

 }

This code isn’t very different from the previous examples . The code uses a slightly
different URI that requests translations, and it adds a few small things to make
sure that we stay URI and UTF-8 legal (URI::Escape::uri_escape_utf8 to encode
the URI before sending, binmode(STDOUT, “:utf8”) to make sure our output to
STDOUT is kept UTF-8) .

The process is still pretty simple . Let’s see how to make it even simpler using a
custom module for the job .

 ;login: DECEMBER 2012 Practical Perl Tools   75

WWW::Google::Translate and Beyond
There’s a lovely module called WWW::Google::Translate that makes writing code
for this API even easier than what we saw above . The module takes into account
the encoding, JSON, text size, and other details so you don’t have to . It can do spiffy
things such as cache the results so future requests for the same text don’t force you
to use up more of your API calls .

Here’s the first example from the docs:

use WWW::Google::Translate;

my $wgt = WWW::Google::Translate->new(
 { key => ‘<Your API key here>’,
 default_source => ‘en’, # optional
 default_target => ‘ja’, # optional

 }
);

my $r = $wgt->translate({ q => ‘My hovercraft is full of eels’ });

for my $trans_rh (@{ $r->{data}->{translations} }) {

 print $trans_rh->{translatedText}, “\n”;

}

Given our previous code, you can probably guess we just need to create a new
WWW::Google::Translate object and then ask the module to call a translate()
method to get the job done . One quick note about this example: if you run this code
using later versions of Perl, you may get a non-fatal error that looks something like
this:

 Wide character in print at Desktop/untitled.pl line 16.

This is warning you that you were trying to print Unicode data without prepar-
ing STDOUT to receive them . The fix for this is to add the line from above to the
program before the print takes place:

 binmode(STDOUT, “:utf8”);

Okay, one last addition before we draw this column to a close . If you want to write
code that performs translations but isn’t directly tied to Google Translate, you may
wish to check out the Lingua::Translate set of modules . Lingua::Translate is the
closest equivalent to the DBI framework for databases .

With Lingua::Translate, you write the same code independent of the back-end
service . Lingua::Translate::Google describes itself as “mostly a wrapper for
the WWW::Google::Translate module,” so you basically can use the power of
WWW::Google::Translate while keeping your code back-end neutral . If later on you
decide to stop using Google Translate and switch to something else, very little will
have to change in the rest of your program .

Take care and I’ll see you next time .

76   ;login: VOL. 37, NO. 6

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,

2009). He is also known as the creator of Swig
(http://www.swig.org) and Python Lex-Yacc
(http://www.dabeaz.com/ply.html). Beazley
is based in Chicago, where he also teaches a
variety of Python courses. dave@dabeaz.com

In most of my past work, I’ve always had a need to solve various sorts of data
analysis problems . Prior to discovering Python, AWK and other assorted UNIX
commands were my tools of choice . These days, I’ll mostly just code up a simple
Python script (e .g ., see the June 2012 ;login: article on using the collections
module) . Lately though, I’ve been watching the growth of the Pandas library with
considerable interest .

Pandas, the Python Data Analysis Library, is the amazing brainchild of Wes
McKinney (who is also the author of O’Reilly’s Python for Data Analysis) . In short,
Pandas might just change the way you work with data . Introducing all of Pandas
in a short article is impossible here, but I thought I would give a few examples to
motivate why you might want to look at it .

Preliminaries
To start using Pandas, you first need to make sure you’ve installed NumPy
(http://numpy .scipy .org) . If you’ve primarily been using Python for systems pro-
gramming tasks, you may not have encountered NumPy; however, it gives Python
a useful array object that serves as the cornerstone for most of Python’s science
and engineering modules (including Pandas) . Unlike lists, arrays can only consist
of a homogeneous type (integers, floats, etc .) . Operations involving arrays also
tend to operate on all of the elements at once . Here is a short example that illus-
trates some differences between lists and arrays:

>>> # Python lists

>>> c = [1,2,3,4]

>>> c * 3

[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]

>>> c + [10,11,12,13]

[1, 2, 3, 4, 10, 11, 12, 13]

>>> import math

>>> [math.sqrt(x) for x in c]

[1.0, 1.4142135623730951, 1.7320508075688772, 2.0]

>>>

>>> # numpy arrays

>>> import numpy

>>> d = numpy.array([1,2,3,4])

>>> d * 3

Data Processing with Pandas
D A V I D B E A Z L E Y

 ;login: DECEMBER 2012 Data Processing with Pandas   77

array([3, 6, 9, 12])

>>> d + numpy.array([10,11,12,13])

array([11, 13, 15, 17])

>>> numpy.sqrt(d)

array([1. , 1.41421356, 1.73205081, 2.])

>>>

Once you’ve verified that you have NumPy installed, go to the Pandas Web site
(http://pandas .pydata .org) to get the code before trying the examples that follow .

Analyzing CSV Data
One of my favorite pastimes these days is to play around with public data sets .
Another one of my favorite activities has been riding around on my road bike—
something that was recently curtailed after I hit a huge pothole and had to have my
local bike shop build a new wheel . So, in the spirit of huge potholes, let’s download
the city of Chicago’s pothole database from the data portal at http://data .cityofchi-
cago .org . We’ll save it to a local CSV file so that we can play around with it .

>>> u = urllib.urlopen(“https://data.cityofchicago.org/api/views/7as2-ds3y/

rows.csv”)

>>> data = u.read()

>>> len(data)

27683443

>>> f = open(‘potholes.csv’,’w’)

>>> f.write(data)

>>> f.close()

>>>

As you can see, we now have about 27 MB of pothole data . Here’s a sample of what
the file looks like:

>>> f = open(‘potholes.csv’)

>>> next(f)

‘CREATION DATE,STATUS,COMPLETION DATE,SERVICE REQUEST NUMBER,TYPE OF

SERVICE REQUEST,CURRENT ACTIVITY,MOST RECENT ACTION,NUMBER OF POTHOLES

FILLED ON BLOCK,STREET ADDRESS,ZIP,X COORDINATE,

Y COORDINATE,Ward,Police District,Community Area,LATITUDE,LONGITUDE,LOCATI

ON\n’

>>> next(f)

‘09/20/2012,Completed - Dup,09/20/2012,12-01644985,Pot Hole in Street,,,0,

172 W COURT PL,60602,1174935.20259427,1901041.84281984,42,1,32,

41.883847164125186,-87.63307578849374,”(41.883847164125186,

-87.63307578849374)”\n’

>>>

Pandas makes it extremely easy to read CSV files . Let’s use its read_csv() function
to grab the data:

>>> import pandas

>>> potholes = pandas.read_csv(‘potholes.csv’, skip_footer=True)

>>> potholes

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 116718 entries, 0 to 116717

Data columns:

78   ;login: VOL. 37, NO. 6

CREATION DATE 116718 non-null values

STATUS 116718 non-null values

COMPLETION DATE 115897 non-null values

SERVICE REQUEST NUMBER 116718 non-null values

TYPE OF SERVICE REQUEST 116718 non-null values

CURRENT ACTIVITY 94429 non-null values

MOST RECENT ACTION 94191 non-null values

NUMBER OF POTHOLES FILLED ON BLOCK 93790 non-null values

STREET ADDRESS 116717 non-null values

ZIP 115705 non-null values

X COORDINATE 116660 non-null values

Y COORDINATE 116660 non-null values

Ward 116695 non-null values

Police District 116695 non-null values

Community Area 116696 non-null values

LATITUDE 116660 non-null values

LONGITUDE 116660 non-null values

LOCATION 116660 non-null values

dtypes: float64(9), object(9)

>>>

When reading data, Pandas creates what’s known as a DataFrame object . One way
to view a DataFrame is as a collection of columns . In fact, you can easily extract
specific columns or change the data:

>>> addresses = potholes[‘STREET ADDRESS’]

>>> addresses[0:5]

0 172 W COURT PL

1 1413 W 17TH ST

2 11800 S VINCENNES AVE

3 3499 S KEDZIE AVE

4 1930 W CULLERTON ST

Name: STREET ADDRESS

>>> addresses[1] = ‘5412 N CLARK ST’

>>>

And there is so much more that you can do . For example, if you wanted to find the
five most reported addresses for potholes, you could use this one-line statement:

>>> potholes[‘STREET ADDRESS’].value_counts()[:5]

4700 S LAKE PARK AVE 108

1600 N ELSTON AVE 84

7100 S PULASKI RD 80

1000 N LAKE SHORE DR 80

8300 S VINCENNES AVE 73

>>>

Let’s say you want to find all of the unique values for a column . Here’s how you
do that:

>>> # Get possible values for the ‘STATUS’ field

>>> potholes[‘STATUS’].unique()

array([Completed - Dup, Completed, Open - Dup, Open], dtype=object)

>>>

 ;login: DECEMBER 2012 Data Processing with Pandas   79

Here is an example of filtering the data based on values for one of the columns:

>>> fixed = potholes[potholes[‘STATUS’] == ‘Completed’]

>>> fixed

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 94490 entries, 1 to 116717

Data columns:

CREATION DATE 94490 non-null values

STATUS 94490 non-null values

...

>>>

In this example, the relation potholes[‘STATUS’] == ‘Completed’ is computed
across all 116,000 records at once and creates an array of Booleans . By using that
array as an index into potholes, we get only those records that matched as True . It’s
kind of a neat trick .

In addition to street addresses, the pothole data also includes the total number of
potholes fixed at each address . Let’s try to refine our analysis so that it takes this
into account . Specifically, we’d like to sum up the total number of potholes fixed at
each address and base our report on that . Here’s how to do it .

First, let’s just pick out data on street addresses and number of potholes:

>>> addr_and_holes = fixed[[‘STREET ADDRESS’,

... ‘NUMBER OF POTHOLES FILLED ON BLOCK’]]

>>> addr_and_holes

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 94490 entries, 1 to 116717

Data columns:

STREET ADDRESS 94489 non-null values

NUMBER OF POTHOLES FILLED ON BLOCK 93558 non-null values

dtypes: float64(1), object(1)

>>>

Next, let’s drop missing values in the data:

>>> addr_and_holes = addr_and_holes.dropna()

>>> addr_and_holes

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 93558 entries, 13 to 116717

Data columns:

STREET ADDRESS 93558 non-null values

NUMBER OF POTHOLES FILLED ON BLOCK 93558 non-null values

dtypes: float64(1), object(1)

>>>

Let’s group the data by street address and calculate totals:

>>> addr_and_totals = addr_and_holes.groupby(‘STREET ADDRESS’).sum()

>>> addr_and_totals[:5]

 NUMBER OF POTHOLES FILLED ON BLOCK

STREET ADDRESS

1 E 100TH PL 9

1 E 110TH PL 20

1 E 111TH ST 10

80   ;login: VOL. 37, NO. 6

1 E 11TH ST 20

1 E 121ST ST 21

>>>

Finally, let’s sort the results:

>>> addr_and_totals = addr_and_totals.sort(‘NUMBER OF POTHOLES FILLED ON

BLOCK’)

>>> addr_and_totals[-5:]

 NUMBER OF POTHOLES FILLED ON BLOCK

STREET ADDRESS

6300 N RAVENSWOOD AVE 461

8200 S MARYLAND AVE 498

3900 S ASHLAND AVE 575

12900 S AVENUE O 577

5600 S WOOD ST 664

>>>

And there you have it—the five worst blocks on which to ride your road bike . It’s left
as an exercise to the reader to take this data and extend it to find the worst overall
street on which to ride your bike (by my calculation it’s Ashland Avenue, which is
probably of no surprise to Chicago residents) .

A File System Example
Let’s try an example involving a file system . Define the following function that col-
lects information about files into a list of dictionaries:

import os

def summarize_files(topdir):

 filedata = []

 for path, dirs, files in os.walk(topdir):

 for name in files:

 fullname = os.path.join(path,name)

 if os.path.exists(fullname):

 data = {

 ‘path’ : path,

 ‘filename’ : name,

 ‘size’ : os.path.getsize(fullname),

 ‘ext’ : os.path.splitext(name)[1],

 ‘mtime’ : os.path.getmtime(fullname)

 }

 filedata.append(data)

 return filedata

Now, let’s hook it up to Pandas and use it to analyze the Python source tree:

>>> import pandas

>>> filedata = pandas.DataFrame(summarize_files(“Python-3.3.0rc1”))

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 4207 entries, 0 to 4206

Data columns:

ext 4207 non-null values

 ;login: DECEMBER 2012 Data Processing with Pandas   81

filename 4207 non-null values

mtime 4207 non-null values

path 4207 non-null values

size 4207 non-null values

dtypes: float64(1), int64(1), object(3)

Let’s see how many files of different types there are:

>>> filedata[‘ext’].value_counts()[:5]

.py 1618

.c 479

.rst 429

.h 263

.o 236

>>>

As a final example, let’s generate a few statistics and use maplotlib to make a histo-
gram . Here, we’ll look at the sizes of .py files:

>>> pyfiles = filedata[filedata[‘ext’] == ‘.py’]

>>> pyfiles[‘size’].max()

385802

>>> pyfiles[‘size’].mean()

12964.483930778739

>>> pyfiles[‘size’].std()

23799.089183395961

>>> pyfiles[‘size’].hist(bins=30)

<matplotlib.axes.AxesSubplot object at 0x102f0e290>

>>> import pylab

>>> pylab.show()

If it works, you’ll end up with a plot that looks like Figure 1 .

That’s pretty neat—and it didn’t involve much code .

Final Words and In Memoriam
If you’re faced with the task of analyzing data, Pandas is definitely worth a look .
Although all of the problems shown in this example could have been solved by short
Python scripts, Pandas makes it even easier and more succinct .

Finally, in the last example, matplotlib (http://matplotlib .sourceforge .net) was
used to make a plot . matplotlib is one of the most popular extensions to Python that
is in widespread use by scientists and engineers . Sadly, John Hunter, the creator of
matplotlib, passed away suddenly this past August from complications of cancer
treatment, leaving behind his wife and three daughters . If you’ve benefited from
the use of matplotlib, a memorial fund has been established . More information can
be found at http://numfocus .org/johnhunter/ .

Figure 1: Histogram created with pyfiles[‘size’].hist(bins=30)
using the matplotlib library

82   ;login: VOL. 37, NO. 6

Dave Josephsen is the author
of Building a Monitoring
Infrastructure with Nagios
(Prentice Hall PTR, 2007)

and is Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ‘04’s
Best Paper award for his co-authored work on
spam mitigation, and he donates his spare time
to the SourceMage GNU Linux Project.
dave-usenix@skeptech.org

I once had an excellent conversation with Puppet [1] creator Luke Kanies . Well, I
think it was excellent but I don’t remember exactly . It was LISA ’07, I believe, and
although I recall talking at length, all that remains in my memory is a vague notion
that it was an excellent conversation, along with exactly two details . The first
thing I remember is that I embarrassed myself in a particularly epic way . The topic
was configuration management engines, and I think I made a quip about not know-
ing what I’d rather do less, write server configuration in XML or learn Ruby .

Luke, who had just wandered up, told me I should totally learn Ruby, because it was
awesome . I responded that I’d recently read a series of articles about Ruby in ;login:
magazine [2], and although the author seemed to know what he was talking about,
he hadn’t managed to inspire in me a desire to run out and learn yet another OOP
scripting language .

Luke, who had written those articles, apologized for not inspiring me .

The second thing I remember is his jacket, which did manage to inspire me . It was
a really great jacket, and he wore it as if everyone just went around wearing awe-
some jackets all the time . As if he came from a land where awesome jackets were
the most natural thing in the world and, having only recently arrived, hadn’t yet
caught on that we were—by our very nature—bereft of great jackets . The rest of us,
he probably assumed, must have forgotten our awesome jackets at home or some-
thing . Seeing it made me want to be the type of person who could wear a jacket like
that . More than that, I wanted to be the type of person who was capable of picking
out for himself an awesome jacket to wear places, but, alas, I am not that type of
person . Fundamentally, I think, it’s a form vs . function thing .

Some of us have a talent for function . We buy ThinkPads, code in C and shell, and
build low-level tools, or form higher level tools by combining simpler tools . Others
excel at form: they buy MacBooks, code in Ruby, and make polished, shiny tools
(with lots of library dependencies) . A few of us even straddle the border, dabbling
here and there and bringing form and function together .

It’s a rare admin who, like me, tends toward function while coveting form . I am
often confronted by the truth of this when I, knowing full well that a ThinkPad
is what I need, talk myself into buying a MacBook . Like the jacket, it just doesn’t
fit . Meanwhile, I observe that my function-leaning friends are rarely afflicted
with my fickleness . My friend Jeremy would run Linux on a ThinkPad if the keys
were made of sandpaper and the pointer-nub was an upside-down thumbtack . My

iVoyeur
Nagios XI

D A V E J O S E P H S E N

 ;login: DECEMBER 2012 iVoyeur   83

form-leaning friends, for their part, are even less likely to trade their iPhones for
something with a (gasp) real keyboard .

Having been far less hung-over than the others in my party, I was in attendance
at LISA ’11 when Nagios creator Ethan Galstad was awarded the outstanding
achievement award . Before he handed Ethan the award, David Blank-Edelman
asked for the Nagios users in the room to raise their hands, and the response was
easily 90th percentile . I was a little surprised by this because my impression had
been that Nagios wasn’t faring well with many sysadmins in the “form” crowd .

Don’t get me wrong, the sysadmins who knew and loved Nagios were happy to see
it continue in the way it always had, but its popularity had risen to the point that
a different and more populous group of potential end-users had taken notice, and
with them, Nagios doesn’t seem to be comparing favorably with newer, prettier,
and less flexible commercial competitors . Nagios was always a functional tool—a
framework—and for those of us who lean toward function, it’s usually enough that
it’s possible to make something prettier, that the pieces are all lying around .

This new breed of user seems to disagree . They have a few very specific gripes and
are pretty vocal about them [3, 4] (and etc .) . First, they find Nagios’ configuration
syntax unwieldy, to say nothing of the intolerable notion of (gasp) editing text files
by hand . Second, they find the Nagios Web interface, with its C-based CGI and lack
of pretty graphs, unforgivably old-fashioned . Finally, they seem to have no idea
what to make of the fact that there is no database back-end . Jiminy Christmas,
wrist watches and garbage disposals run MySQL these days! How is one to take
seriously a monitoring system that doesn’t?

For this considerable subset of users, Nagios’ price tag ($0) doesn’t make up for its
abhorrent lack of bling, and answers to the effect that all of these things can be rec-
tified with add-ons fall on deaf Bluetooth ear-pieces . Add-ons and hacks are birds
in the bush, and they would rather pay for a bird in the hand than go beating around
the bush themselves for free .

In the past few years, the Nagios people have therefore had an interesting problem
to solve if they wanted to remain relevant: how to create a polished product that
compares favorably with the likes of Zabbix, Hyperic, Patrol, Openview, etc . with-
out destroying the extreme flexibility that makes Nagios what it is .

Enter Nagios XI
Nagios XI might best be called the perfect compromise between maintaining the
power and flexibility of Nagios, while providing a turn-key monitoring system that
more than satiates the desires of the PHP proletariat . But that description sells
it short; XI is much more than just a shiny interface—it represents an enormous
quantity of custom development and integration work . Further, there is real func-
tionality in XI that simply can’t be found in Nagios Core .

But neither can it be called a new monitoring system in its own right, because, in
very important ways, it remains Nagios and retains all the flexibility and power on
which so many of us have come to rely .

84   ;login: VOL. 37, NO. 6

How Does It Work?

Figure 1 is a rough sketch of the Nagios XI architecture . As you can see, all of the
actual host and service monitoring, as well as notification, escalation, etc ., relies
on an unmodified Nagios Core daemon, so any preexisting plugins or customiza-
tion you might have will “just work” under XI . The NDOUtils plugin has been
enabled and configured to replicate state information from Nagios Core into a
MySQL database . Here is the primary information handoff between Core and
XI; Nagios XI reads this database to glean information about the current state of
hosts and services, as well as the Core daemon itself . This adds an information
layer to Core that can be consumed by third-party UIs as well as your own custom
integration scripts .

I’ve never been a fan of NDOUtils, but this is pretty much exactly the purpose for
which it was created: to enable the development of custom Web UIs by giving Web
developers (a notoriously database-focused lot) a database from which to glean
state data .

NagiosQL, a popular add-on designed to add Web-based configuration to Nagios,
provides the hooks necessary to modify the Nagios Core configuration from the XI
interface . Every parameter that can be configured in the flat files may instead be
set via the Web interface using the customized NagiosQL forms in the “Advanced
Configuration” section of the XI interface . Although these forms are well inte-
grated into XI, and retain an XI look and feel, there is a bit of a line in the sand
between NagiosQL-driven core configuration, which is referred to as “advanced”
in the XI interface, and the configuration parameters that are specific to XI itself .

This is because XI goes beyond presenting a simple Web wrapper to the Nagios
Core configuration files, providing in addition a litany of semi-automated wizards
and auto-discovery tools to ease the burden of initial and ongoing host and service
configuration . I’ll talk more about these in subsequent articles, but suffice to say
that it is the intention of the XI creators to isolate the majority of XI users from
the intricacies of the Nagios Core configuration to the extent that they never need
to know what a check command is, much less a template . This is exactly what the
form-crowd has asked for, and further, it makes it possible for monitoring configu-
ration, traditionally an operations task, to be delegated to first-level support types,
or in some environments, even to normal users . More clueful administrators who
need to customize this or that can still do so, without editing the config files by
hand, by using the NagiosQL-driven advanced configuration tool .

Configuration created by NagiosQL is automatically written to text configura-
tion files in etc/nagios, and is read by the Core daemon from these flat files in the
usual fashion . Although it’s technically possible to hand edit these configuration
files, it will avail you nothing because NagiosQL will eventually overwrite any
changes you make . If you have your own configuration-generating automation
(like Check_MK), or preexisting configuration that you do not wish to import into
NagiosQL, or even if you’re a curmudgeon who just prefers to edit the configu-
ration manually, you can still maintain static config files in etc/nagios/static,
and your files will still be parsed by the Core daemon while being left alone by
NagiosQL . That runs both ways: statically configured hosts and services can’t be
modified via the UI unless you manually import them into NagiosQL (at which
point they cease to be static) .

Figure 1: The Nagios XI architecture
 (simplified)

 ;login: DECEMBER 2012 iVoyeur   85

Finally, Nagios XI maintains its own PostgreSQL database to store various con-
figuration parameters, such as user-settings, custom dashboards, authentication
info, and the like . Given not one but two database back-ends, the shiny new PHP
interface, and the simplified configuration options, Nagios XI should satisfy the
complaints I’m used to hearing from corporate administrators who are in the mar-
ket for a “grown up” commercial monitoring product, but again, there’s a lot more
functionality than what I’ve encompassed in the architecture diagram .

What’s In It for You?

One Slick Interface for starters . Given the general quality of the alternative PHP
interfaces I’m used to finding in the Nagios Exchange repository, the XI interface
is shockingly excellent . It is not yet another effort to bring the CGI interface “up to
date” by replacing it with a PHP version of itself, but a complete rethinking of how
the UI should work . It manages to take advantage of the strengths of a Web pro-
gramming platform like PHP in a way that, like the jacket, awakens my repressed
covetousness for style but, unlike the jacket, might actually fit .

Elements within dashboards can be moved around or deleted to suit the pref-
erences of the user . AJAX is employed, both to update individual information
elements and to provide feedback, so that when I send a command via the UI to
reschedule a service check, or acknowledge an alert, a box momentarily appears to
let me know my command has been accepted . One of my least favorite things about
the Core UI is the way it dumps me to an acknowledgment page after I’ve issued a
command, forcing me manually to navigate back to somewhere useful .

Traditional Nagios tables like “service detail” and “hostgroup grid” still exist, but
are implemented as repurposable widgets, which I can use to build custom dash-
boards . New tables have been added, a few of which are very dense and handy, such
as the “minemap” visualization pictured in Figure 2 .

Also included is integrated time series data (pretty graphs), a modularized compo-
nent architecture with plugins such as the “Mass Acknowledgment Component”
(yes acknowledge problems and schedule down time for groups of hosts and ser-
vices), pretty new reports and interactive JavaScript-based visualization, a means
of describing displaying and alerting on business process logic, auto-configuration
and configuration wizards, and much more . All of which I will display for you like
an awesome jacket in the next few articles .

Take it easy .

References

[1] The Puppet configuration engine: http://docs .puppetlabs .com/ .

[2] Luke Kanies, “Why You Should Use Ruby,” ;login:, vol . 31, no . 2, April 2006:
https://www .usenix .org/publications/login/april-2006-volume-31-number
-2/why-you-should-use-ruby .

[3] Nagios grumbling: http://www .frontlineops .net/2011/09/why-im-moving-
from-nagios-to-zabbix .html .

[4] More Nagios grumbling: http://blog .desudesudesu .org/?p=1585 .

Figure 2: Nagios XI minemap

86   ;login: VOL. 37, NO. 6

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist for the
2011 Robert Benchley Society

Humor Writing Award. rgferrell@gmail.com

I had a dream about the Great Wall of China, as seen from space, which transmog-
rified after a few roof-reverberating snores into the Great Firewall of China, as
seen from cyberspace . I woke up with my wife’s pillow over my head and the urge to
feature General Tso’s chicken on my computer wallpaper—along with the germ of
an idea . Since they haven’t yet developed an effective antibiotic for the imagination
(one might point to Hollywood’s recent offerings in opposition to that assertion,
but we’ll carry on as though one had not), that germ quickly formed a slime-coated
colony that took over an entire section of my brain the way the [insert your least-
favorite major political party here] periodically take over Congress .

Moving cautiously but with all reasonable haste away from the politico-micro-
biological metaphor, I pondered over my first gallon of morning coffee what other
Internet edifices could be said to be visible from cyberspace . First, though, I had to
imagine something akin to the International (Cyber)Space Station drifting around
on the Internet with little cybernauts peering out through the windows . They have
tiny little cameras and even tinier little tubes of yogurt and I think I need another
cup of coffee . . .

So, what else might said cybernauts spy as they endlessly circle the tube-within-
a-tube (or whatever it was that silly politician said) that is the Internet? I came up
with a few in the shower the next morning, although the scenario further degener-
ated from topological features to movies while I was shampooing my hair .

The Provider Backbone Bridge on the River Kwai: a group of captured network engi-
neers is forced to build this structure that transports SONET-like connectivity along
with carrier-grade packet-oriented traffic over the yawning chasm of Layer 2 .

Router 66: Two geeks travel across America with a souped-up network analyzer
looking for new protocols in the wild .

HUB: a network appliance breaks all the rules and goes renegade, assigning broad-
cast and collision domains at will just for kicks and hoarding all the bandwidth for
itself . Eventually, the attached devices drop off, one by one, until only Hub is left
with his little black book of MAC addresses, alone but still defiant .

I suppose that got a little silly; let’s move on to more uplifting topics . My vote (the
only one that counts, in this case) is for chatting about the place of Secure Engi-
neering in the SDLC . First and most importantly, there is one . A place, I mean .
Too many software developers seem to miss that simple notion . Not only is there a
place, that place is most definitely not, as many more seem to think, in the “service
pack two” stage . I feel an analogy coming on . I think it may even be a Grand Mal .

/dev/random
R O B E R T G . F E R R E L L

 ;login: DECEMBER 2012 /dev/random   87

A popular, hip architect is hired to build a retail space . He decides, for ease of
access and maximizing display effectiveness, to forgo any actual walls except for
load-bearing beams . His design is met with overwhelming acclaim by the avant-
garde architectural community . On opening day, customers flock to the store in
droves, intrigued and exhilarated by the totally unfettered shopping experience . At
first the concept seems brilliant, but then merchandise begins to disappear .

It’s only a trickle at first . . . an item here and there . Not really noticed until the
weekly inventory . Then the thefts escalate dramatically, until one morning the
shelves are stripped bare . Nothing is left . Not a scrap . The architect is disheart-
ened, as is, understandably, the store owner . They realize there must be something
in place to prevent thievery, or at least make the thieves easier to detect and inter-
cept . The architect hits upon the idea of trained geese .

The geese live two per cage, one cage per aisle, and sound the alarm if anyone
comes into the store after closing hours . This works well for three nights . On the
fourth morning the geese are gone and the butcher shop across the street coinci-
dentally has a special on “pâté de foie gras, locally raised .”

Undaunted, the architect next tries placing hidden tags on all the items in the store
so that stolen merchandise can be more easily traced . This tactic is moderately
successful until legitimate customers discover the tags and their function, at
which point the goose poop hits the fan . Customers begin ripping their tags off and
gluing them to the owner’s car, house, clothing, and wife in protest . The store gets
listed in a Web site for most egregious privacy offenders . Things are not going well
for them, or for the architect .

In desperation, he hires armed guards with his own money to try to salvage the
store . Sadly, the sight of them drives away customers in droves, until the business
is no longer viable . The owner files for bankruptcy and the architect’s career is
badly stained by the whole sordid affair . He loses his license and is forced to move
back in with his parents .

Some years later the now decaying premises, overrun with roaches, pigeons, and
drug users, are bought by a young entrepreneur who immediately recognizes
the enormous potential of the location . She painstakingly cleans and rebuilds,
inside sturdy reinforced concrete walls with robust yet inconspicuous security
measures included in the design from day one . She chooses well-constructed
merchandise made with good quality materials, and offers it at reasonable prices .
Her business is fabulously successful within mere weeks of opening, despite the
walls . Customers do not seem to object to them at all, in fact, as they actually
contribute additional space for displaying merchandise and allow the store to
maintain a constant temperature as well as providing a safe, secure shopping
environment . She eventually sells the store to a huge retail conglomerate and
retires a multi-millionaire on her 42nd birthday .

Moral: Security belongs in the blueprints, not the remodeling plans .

Epilogue: I am proud to announce that after 40 years of avoiding it with one excuse
or another, I have at long last taken the final step to full and unquestionable geek-
hood: HAM radio . You may now call me KF5SAR . General Class at present; hope-
fully by the time you read this, Amateur Extra .

QST, y’all .

NOTES

88   ;login: VOL. 37, NO. 6

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the
Association’s magazine, published six
times a year, featuring technical articles,
system administration articles, tips and
techniques, practical columns on such
topics as security, Perl, networks, and
operating systems, book reviews, and
reports of sessions at USENIX
conferences .

Access to ;login: online from October
1997 to this month:
www .usenix .org/publications/login/

Access to videos from USENIX events
in the first six months after the event:
www .usenix .org/conferences/
multimedia/

Discounts on registration fees for all
 USENIX conferences .

Special discounts on a variety of prod-
ucts, books, software, and periodicals:
www .usenix .org/member-services/
discounts

The right to vote on matters affecting
the Association, its bylaws, and election
of its directors and officers .

For more information regarding
membership or benefits, please see
www .usenix .org/membership-services
or contact office@usenix .org .
Phone: 510-528-8649

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix .org .

P R E S I D E N T

Margo Seltzer, Harvard University
margo@usenix.org

V I C E P R E S I D E N T

John Arrasjid, VMware
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

T R E A S U R E R

Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S

David Blank-Edelman, Northeastern
University
dnb@usenix.org

Sasha Fedorova, Simon Fraser
University
sasha@usenix.org

Niels Provos, Google
niels@usenix.org

Dan Wallach, Rice University
dwallach@usenix.org

C O - E X E C U T I V E D I R E C T O R S

Anne Dickison
anne@usenix.org

Casey Henderson
casey@usenix.org

USA Team Wins Big at 2012
International Olympiad in
Informatics
Brian C. Dean, Director, USA Computing
Olympiad

Sirmione, a town on the shores of Lake
Garda in Northern Italy, is normally a
popular tourist destination for those
who love beautiful scenery and excellent
pasta . For one week in September 2012,
however, this picturesque town was
home to a special crowd: 310 of the best
high-school computing students from
around the world, who were representing
their respective countries at the Interna-
tional Olympiad in Informatics .

Now in its 24th year, the IOI, one of
several major international math and
science Olympiads, is the world’s most
prestigious computing competition at
the high-school level . Teams of up to four
students arrive from each participating
country (81 this year) to take part in a
grueling two-day competition featuring
some of the hardest algorithmic pro-
gramming problems one can find . When
the dust settles, top individuals are
awarded gold, silver, and bronze medals
according to their results . This year was
one of the best ever for team USA, which
won three golds and one bronze, just
behind China and Russia with four golds
each . Even better, USA student Johnny
Ho achieved the only perfect score at
the event, edging out superstar Gennady
Korotkevitch from Belarus, winner of
the previous three IOIs .

For team USA, the road to the IOI starts
approximately one year before the
event, with a series of monthly on-line

 ;login: DECEMBER 2012 USENIX Notes   89

 programming competitions hosted by
the USA Computing Olympiad . The
USACO (usaco .org) is a non-profit
organization funded by USENIX and
other corporate sponsors, which pro-
vides training and online programming
competitions for talented high school
students at all levels, from novice stu-
dents who have just learned to program
to advanced students competing at the
level of the IOI . Tens of thousands of
students have participated in USACO
training and competitions over the past
decade alone . With high school com-
puting education in the USA being in a
somewhat lackluster state, the USACO
plays a vital role in ensuring that bright
students can continue to develop their
skills beyond the standard high school
computing curriculum .

Every year, the USACO invites the top
16 high school computing students na-
tionwide to attend a rigorous academic
summer camp, where they participate in
advanced instruction in computational
problem-solving techniques, excursions,
enrichment activities, and, of course,
plenty of ultimate frisbee . Every camp
also features a game programming chal-
lenge for fun; this year, students teamed
up to write programs to compete in a
“blind man’s bluff” poker game, which
means you can see everyone’s cards ex-
cept yours . From USACO camp, the top
four students are selected to represent
the USA at the IOI . This year, team USA
consisted of:

•	 Johnny Ho (gold medal, 1st place
winner), from Lynbrook High School
in California

•	 Mitchell Lee (gold medal), home-
schooled in Virginia

•	 Scott Wu (gold medal), from Baton
Rouge Magnet High School in
Louisiana

•	 Daniel Ziegler (bronze medal), from
Davidson Academy in Nevada

Traveling to the IOI in Italy with the
team this year were team leader and
USACO director Brian Dean and deputy
leader Jacob Steinhardt . Brian is a

computer science professor at Clemson
University, and Jacob recently gradu-
ated from MIT and is beginning his PhD
studies in computer science at Stanford
under the direction of new Stanford pro-
fessor Percy Liang, also a USACO alum
and previous IOI medalist .

In addition to two full days of competi-
tion, IOI participants were treated to
the best of Italian culture and cuisine,
and excursions to Milan and Venice . IOI
2012 was an unforgettable experience .
We look forward to another strong show-
ing for team USA next summer at IOI
2013 in Brisbane, Australia .

Thanks to Our Volunteers
Anne Dickison and Casey Henderson,
USENIX Co-Executive Directors

As many of our members know, USE-
NIX’s success is attributable to a large
number of volunteers, who lend their
expertise and support for our confer-
ences, publications, good works, and
member services . They work closely
with our staff to bring you the best there
is in the fields of systems research and
system administration . Many of you
have participated on program commit-
tees, steering committees, and subcom-
mittees, as well as contributing to this
magazine . We are most grateful to you
all . We would like to make special men-
tion of some people who made particu-
larly significant contributions in 2012 .

First, we would like to offer special
thanks again to Margo Seltzer, President
of the USENIX Board of Directors, for
her service as Acting Executive Director
of USENIX until we took over the reins
in April of this year .

Program Chairs
William J . Bolosky and Jason Flinn:
10th USENIX Conference on File and
Storage Technologies (FAST ’12)

Steven Gribble and Dina Katabi: 9th
USENIX Symposium on Networked
Systems Design and Implementation
(NSDI ’12)

Olivier Bonaventure and Ramana
Kompella: 2nd USENIX Workshop on
Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and
Services (Hot-ICE ’12)

Engin Kirda: 5th USENIX Workshop
on Large-Scale Exploits and Emergent
Threats (LEET ’12)

Hans-J . Boehm and Luis Ceze: 4th
USENIX Workshop on Hot Topics in
Parallelism (HotPar ’12)

Gernot Heiser and Wilson Hsieh: 2012
USENIX Annual Technical Conference
(USENIX ATC ’12)

Michael Maximilien: 3rd USENIX
 Conference on Web Application
 Development (WebApps ’12)

Rodrigo Fonseca and Dave Maltz: 4th
USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud ’12)

Raju Rangaswami: 4th USENIX Work-
shop on Hot Topics in Storage and File
Systems (HotStorage ’12)

Christopher Walsh: 2012 USENIX
Workshop on Hot Topics in Cyberlaw
(USENIX Cyberlaw ’12)

Daniel V . Klein: 2012 USENIX Configu-
ration Management Summit (UCMS ’12)

Nicole Forsgren Velasquez and Carolyn
Rowland: 2012 USENIX Women in Ad-
vanced Computing Summit (WiAC ’12)

Umut A . Acar and Todd J . Green: 4th
USENIX Workshop on the Theory and
Practice of Provenance (TaPP ’12)

Kameswari Chebrolu and Brian Noble:
6th USENIX/ACM Workshop on Net-
worked Systems for Developing Regions
(NSDR ’12)

Tadayoshi Kohno: 21st USENIX Secu-
rity Symposium (USENIX Security ’12)

J . Alex Halderman and Olivier Pereira:
2012 Electronic Voting Technology
Workshop/Workshop on Trustworthy
Elections (EVT/WOTE ’12)

90   ;login: VOL. 37, NO. 6

Sean Peisert and Stephen Schwab: 5th
Workshop on Cyber Security Experi-
mentation and Test (CSET ’12)

Roger Dingledine and Joss Wright:
2nd USENIX Workshop on Free and
Open Communications on the Internet
(FOCI ’12)

Carl Gunter and Zachary Peterson: 3rd
USENIX Workshop on Health Security
and Privacy (HealthSec ’12)

Patrick Traynor: 7th USENIX Workshop
on Hot Topics in Security (HotSec ’12)

Anton Chuvakin: Seventh Workshop on
Security Metrics (MetriCon 7 .0)

Elie Bursztein and Thomas Dullien: 6th
USENIX Workshop on Offensive Tech-
nologies (WOOT ’12)

Chandu Thekkath and Amin Vahdat:
10th USENIX Symposium on Operating
Systems Design and Implementation
(OSDI ’12)

Michael J . Freedman and Neeraj Suri:
Eighth Workshop on Hot Topics in Sys-
tem Dependability (HotDep ’12)

Mani Srivastava and Thomas F .
Wenisch: 2012 Workshop on Power-
Aware Computing and Systems
 (HotPower ’12)

Peter Bodik and Greg Bronevetsky: 2012
Workshop on Managing Systems Auto-
matically and Dynamically (MAD ’12)

Dilma Da Silva, Jeanna Matthews, and
James Mickens: 2012 Workshop on Sup-
porting Diversity in Systems Research
(Diversity ’12)

Carolyn Rowland: 26th Large Installa-
tion System Administration Conference
(LISA ’12)

Invited Talks/Special Track Chairs
James Mickens, Florentina Popovici,
and Jiri Schindler: Posters and Work-in-
Progress Reports (WiPs) Committee at
FAST

John Strunk: Tutorial Chair at FAST

Srikanth Kandula: Poster Session Coor-
dinator at NSDI

Emil Sit: Poster Session Coordinator at
USENIX ATC

David Evans, David Molnar, Bruce Pot-
ter, and Margo Seltzer: Invited Talks
Committee at USENIX Security

Matt Bishop: Poster Session Coordinator
at USENIX Security

Matt Blaze: Rump Session Chair at
 USENIX Security

Shan Lu and Junfeng Yang: Poster
 Session Co-Chairs at OSDI

Narayan Desai, Cory Lueninghoener,
and Kent Skaar: Invited Talks Coordina-
tors at LISA

Lee Damon: Lightning Talks Coordina-
tor at LISA

Kyrre Begnum: Workshops Coordinator
at LISA

Chris St . Pierre: Guru Is In Coordinator
at LISA

Marc Chiarini: Poster Session Coordi-
nator at LISA

Other Major Contributors
John Arrasjid, David Blank-Edelman,
Sasha Fedorova, Matt Blaze, Clem Cole,
Alva Couch, Brian Noble, Niels Provos,
Carolyn Rowland, Margo Seltzer, and
Dan Wallach for their service on the
USENIX Board of Directors

Dan Geer, Eric Allman, and Niels Provos
for serving on the Audit Committee

Alva Couch for chairing the USENIX
Board of Directors Nominating
 Committee

Brian Dean, Mark Gordon, Rob Kolstad,
Richard Peng, Don Piele, Eric Price,
Jacob Steinhardt, and Neal Wu, this
year’s directors and coaches for the USA
Computing Olympiad, co-sponsored by
USENIX

Eddie Kohler for his HotCRP submis-
sions and reviewing system

Jacob Farmer of Cambridge Computer
for his sponsorship of the traveling LISA
Data Storage Day series and for organiz-
ing the Storage Pavilion and Data Stor-
age Day at LISA ’12

Mark Burgess and Diego Zamboni for
writing the Short Topics book published
by USENIX in 2012

Matt Simmons, Ben Cotton, and Greg
Riedesel for blogging about USENIX and
LISA ’12 activities

BOOKS

 ;login: DECEMBER 2012   91

Illustrated Guide to Home Forensic Science
Experiments: All Lab, No Lecture
Robert Bruce Thompson and Barbara Fritchman Thompson
O’Reilly Media, July 2012 . 428 pages .

ISBN 978-1-449-33451-2

This is a careful, practical guide to doing real forensic sci-
ence at home . Kind of like those detective kits they try to sell
kids, except with practical advice on really lifting finger-
prints, including superglue fuming techniques . (In case you
were wondering, the reason the detective kit didn’t work is
that dusting for fingerprints successfully is hard .) It’s not at
all like television; there’s actual work involved .

On the one hand, it is just as cool as it sounds . On the other
hand, did I mention it’s not like television? I’d be prepared for
the cool factor to wear off pretty quickly for the younger set .
Doing science—forensic or not—requires a certain amount
of meticulous attention to detail, accurate performance of
repetitive processes, and a willingness to embrace “Yes, those
are the same shade of orange” as a fabulous result .

But if you’re willing to pay careful attention to detail, you too
can do gel electrophoresis of DNA at home using primarily
things available at your local supermarket (well, my local
supermarket, which sells chopsticks and agar as well as
Tupperware and D batteries) . I have to admit I didn’t do the
experiments, but I did find myself with a sudden desire for a
microscope so that I could .

The text is interesting and neither undersells nor oversells
the experiments . It honestly lays out the authors’ experiences
with the practical issues . My only gripe is that some of the
images are poor, and in many of them the authors’ hands are
shown ungloved when the text calls for gloves .

Book Reviews
E L I Z A B E T H Z W I C K Y , W I T H R I K F A R R O W

OS X Mountain Lion: The Missing Manual
David Pogue
O’Reilly Media, July 2012 . 834 pages .

ISBN 978-1449-33027-9

OS X Mountain Lion Pocket Guide
Chris Seibold
O’Reilly Media, July 2012 . 236 pages .

ISBN 978-1-449-33032-3

I have just upgraded to Mountain Lion, making a dizzying
leap from running Snow Leopard on the home machine and
Leopard on the work machine to Mountain Lion and Lion,
so it seemed like a good moment to check out some Moun-
tain Lion books . Despite the hoopla about Lion, as a very
long-time Mac and iPad user, I didn’t actually find anything
particularly earth-shattering about it, or about Mountain
Lion, either .

Then I picked up Mountain Lion: The Missing Manual and
discovered that this was because I just didn’t know about
the exciting new bits . I’m still not convinced that they will
change my life, but I am intrigued at the possibility that
gestures will finally make full screen mode and spaces work
for me . And despite my functional knowledge of Macintoshes,
I learned useful things (Spotlight will do calculations for you,
which gives you a keystroke that brings up a calculator that
doesn’t obscure the numbers you wanted to add—sadly, it is
then impossible to cut-and-paste the answer) . The Missing
Manual also is smoothly readable and mildly funny (which,
trust me, is all the funny you are likely to put up with for 834
pages) . I’m not sure that I would be motivated to read it if I
weren’t reviewing it, but that’s not its fault; I just don’t have
any driving desire to know that much all at once about my
operating system . And it’s obsessed with keyboard shortcuts,
which I have a very limited amount of use for . If you want

92   ;login: VOL. 37, NO. 6

to know all the details instead of guessing, and/or you hate
using a mouse, it’s an excellent choice .

The Mountain Lion Pocket Guide is more my speed; the key-
board shortcuts are in sidebars and their own chapter instead
of spread throughout, and it’s brief . On the other hand, it’s
also slower to get to the cool stuff, or at least the stuff I think
is cool . Its 10 cool new Mountain Lion features, although they
are new to Mountain Lion, fail to pass my coolness bar reli-
ably, and oddly it disagrees with The Missing Manual about
one new feature; The Missing Manual says Mountain Lion
now does full-screen separately on multiple screens, Pocket
Guide says it does not . Sadly, Pocket Guide is right . Either
one will let me have one app full screen on either monitor,
while the other monitor displays a picture of linen apparently
designed to convey blankness while letting you know the
power is still on .

If you aren’t particularly feeling the lack of a manual, you
probably won’t love either book . If you are feeling the lack
of a manual in a nagging way, you probably want the Pocket
Guide. If you’d like to cuddle up with a manual and have the
interfaces to everything lovingly but gently explained to you,
go for The Missing Manual . (This is also a good choice if you
would like to feel clever and superior at work, where people
are actually quite impressed by what I picked up .)

Think Like a Programmer: An Introduction to
Creative Problem Solving
V . Anton Sproul
No Starch Press, 2012 . 227 pages .

ISBN 978-1-59327-424-5

This is a valiant effort at teaching somebody who is intelli-
gent and motivated how you do the essential parts of pro-
gramming . Not what “if . . . then . . . else” means, or how you
write syntactically correct code in some language, but how
to program . As a reviewer, I’m handicapped by the fact that
I’ve always known how to do that . I have, however, spent time
teaching people to solve problems, with some success .

I think on the whole this is a worthy approach; it tries to
demystify the process and break it down into pieces, which is
very useful for learners . In fact, merely existing is a good first
step, because many people—including learners—have a firm
belief that these things can’t be taught, which doesn’t help .

I have two quarrels with the book . First, I think it moves
over a lot of territory too fast . Yes, there are exercises, and
people are strongly encouraged to do them . But exercises by
themselves are not enough for most people learning to solve
problems; they need smaller bites at a time . Additionally,
some of these exercises don’t appear to me to be possible as

stated . For instance, using only two output statements, one
that outputs the hash mark and one that outputs an end-of-
line, writes a program that produces the following shape:
########
 ######
 ####
 ##

Where did those initial spaces at the beginning of the line
come from? We don’t get to output spaces . Is there some C++
trick here I don’t know about? If so, why are we depending
on it in the first chapter where we actually write programs?
This just seems mean, one way or another .

Second, it’s not clear to me why the author thinks C++ is a good
choice . Sure, that allows you to spend a lot of time thinking
about linked lists and low-level programming abstractions,
but it doesn’t allow you to spend a lot of time thinking about
appropriate data structures for your problem and high-level
programming abstractions other than classes . Linked lists
are not actually a good answer to most programs these days .
Use a database . Don’t need a database? Use a hash . I am not
convinced that knowing how to do linked lists and think about
pointers will teach a junior programmer how to avoid linked
lists when they are not needed, which is just about always .

Essential Scrum: A Practical Guide to the Most
Popular Agile Process
Kenneth S . Rubin
Pearson Education, July 2012 . 426 pages .

ISBN 978-0-13-704329-3

This lives up to its title; it lays out, clearly, the basics of
Scrum, from reasoning through mechanics . It’s a fairly mini-
mal version of Scrum; it doesn’t insist on pair programming
or user stories, for instance, and it doesn’t try to deal with
edge cases . There’s a paragraph or two on Scrum in inter-
rupt-driven groups (summary: don’t), but nothing about other
common issues (Scrum surrounded by other theories, groups
divided by distance) . If you are coming into a solidly Scrum-
based organization, this would be a good way to get a feel for
the bones of Scrum, separate from organizational issues and
peculiarities . If you’re struggling with a transition to Scrum,
The Scrum Field Guide (previously reviewed) is a better
choice . It’s more dogmatic about some particular Scrum
features, but much stronger on the nitty-gritty of transition-
ing to Scrum and running Scrum in edge cases . If you have
patience for two books, they make a good pair and illuminate
some of the internal variation in what Scrum practitioners
find important .

—Elizabeth Zwicky

 ;login: DECEMBER 2012 Book Reviews   93

LED Lighting: A Primer for Lighting the Future
Sal Cangeloso
O’Reilly Maker Press, 2012 . 58 pages .

ISBN 978-1-449-33476-5

As the time has come to phase out the terribly simple and
horribly inefficient 100-watt incandescent bulbs, I wanted to
learn more about LED-based lighting . I’ve already done most
of the home improvements possible for a home: extra insula-
tion in the attic, reflective barriers, extra insulation added to
outside walls, 3 .2 kW of solar panels, double-pane windows,
and no incandescent bulbs in my house . Since I’ve already
embraced fluorescents, what do I need to know about LEDs?

Cangeloso informs us of issues involving four forms of light-
ing: incandescents, halogen, fluorescents, and LEDs . I had
already bought a couple of LED bulbs as experiments, and
they were pretty disappointing: dim and off-color . And what’s
with the enormous heatsinks found in floodlight-type LEDs?

Lighting is heavily regulated, both to prevent fires and to
provide standards for consumers . Whereas we once bought
incandescent bulbs based on wattage, this is a poor method
when it comes to more efficient bulbs measured in lumens . I
still find myself comparing wattage to lumens . And it turns
out that the old incandescent bulbs have another endearing
feature: they produce a fuller spectrum of warm lighting .
This isn’t much of a surprise when you have a filament that
glows white hot inside a protective enclosure: you get every-
thing from ultraviolet to lots of infrared light . Cangeloso
explains color temperatures that helped me understand the
“cool” and “warm” terms .

LEDs, and incandescents, have another problem, and that
is color accuracy when used for lighting . The warm, full
spectrum is closer to what our eyes have evolved to use, but
LED bulbs, which actually do use phosphors to produce most
of their light, have difficulty producing anything close to a
full spectrum . The color rendering index (CRI) for an incan-
descent bulb is 100, 80 for Philips’ most popular A19 (the
familiar screw-in base) bulb, and 92 for its award-winning
(and very expensive) bulb . Color temperature is going to be
more important for most people, but not for artists and other
people who expect or require their colors to appear true .

What this book lacks are tables . I found myself paging back
through the book for the watts-to-lumens comparisons, and
just wished there was at least one table in this short book .

And those heatsinks? It turns out the LEDs produce less light
(and don’t last as long) when they get hot, and while incan-
descents discard lots of heat as infrared light, LEDs need
other forms of cooling . That, and because LED bulbs also
have electronics in their bases that provide both regulated
power and reduced power if overheating is detected, makes
LED bulbs truly high-tech compared to the glowing fila-
ments that are now being hoarded by some . I can suggest
reading this book if you want to learn more, see cutaway
photos of LED bulbs, and want to prepare for the future .

—Rik Farrow

REPORTS

94   ;login: VOL. 37, NO. 6

Conference Reports

In this issue:

2012 Electronic Voting Technology Workshop/
Workshop on Trustworthy Elections  94
Summarized by Harvie Branscomb

Conference reports from USENIX Security ’12, WOOT ’12,
HotSec ’12, CSET ’12, HealthSec ’12, and EVT/WOTE ’12 are
online at: www .usenix .org/publications/login

2012 Electronic Voting Technology Workshop/
Workshop on Trustworthy Elections (EVT/
WOTE ’12)

Bellevue, WA
August 6–7, 2012

New Interfaces
Summarized by Harvie Branscomb (harvie@electionquality.com)

Operator-Assisted Tabulation of Optical Scan Ballots
Kai Wang, University of California, San Diego; Nicholas Carlini, Eric
Kim, Ivan Motyashov, Daniel Nguyen, and David Wagner, University of
California, Berkeley

Kai Wang discussed OpenCount (code .google .com/p/
opencount), an open-source software project to productively
combine human cognition with machine functionality for
the purpose of tabulating scans of paper ballots . The design
was motivated by a need to go beyond what software can do
to interpret interesting cases, such as poor markings and
erasure marks . OpenCount interleaves computer vision tech-
niques with focused operator verification to produce a “cast
vote record” of each scan of a ballot suitable for performing
“single-ballot level” risk-limiting comparison audits . The
system does not rely on ballot vendor specifications or defini-
tion files and may be used with existing scans of voted bal-
lots, but it requires a not-voted or “blank” instance of every
unique ballot style used in the election for configuration .

The first phase involves an interaction with an operator to
identify a rectangular area around a voting “target” that the
system uses to find similar others, automatically grouping
them into clusters . Portions of text or image are operator
selected to identify and classify each unique style, such as
party, language, precinct, etc . In the second phase, voted
ballot scans are spatially translated and rotated as necessary
for registration with the data from the unvoted examples at
the pixel level across the entire ballot, and then again for each
voting target . Each target in every voted ballot is displayed
in an array ordered by average pixel density to allow the
operator to inspect visually and determine the threshold
between marks to be classified as votes and those not to be
so classified .

 ;login: DECEMBER 2012 Conference Reports   95

OpenCount has been successfully validated in California
counties through secondary scanning of several manufactur-
ers’ styles of ballots in five risk-limiting audits in 2011 and
two in 2012, with at least four more upcoming . Election offi-
cials have agreed that OpenCount provides a more accurate
count than purely machine counts not using operator input .

Anna Queredo asked how the system notifies the opera-
tor which ballots to look at . Kai explained that the operator
scrolls to the border between marked and unmarked targets
and focuses attention there . He said there is also a function to
handle ballot scans for which something unusual happened
separately . Jeremy Epstein asked how to notice marks that
are outside the “target .” Kai explained that marks within a
defined rectangular area surrounding the “target” are recog-
nized, but everything outside of that rectangle is ignored .

A Hybrid Touch Interface for Prêt à Voter
Chris Culnane, University of Surrey, Trustworthy Voting Systems Project

Prêt à Voter (pret ah votay) in its original form is an end-
to-end verifiable paper-ballot voting system design that is
machine tabulated such that no machine learns what the
voter intent is; thus, it systematically retains the privacy of
the vote . The design’s central element is a paper ballot that
can be split so that, after the ballot is marked, the randomly
ordered list of candidates becomes separated from the voter’s
marks . A crypto key containing a signed serial number pro-
tects access to the knowledge of the order of the candidates
on the ballot while the marks themselves remain public .
Chris Culnane’s talk introduced an accessibility extension
of Prêt à Voter in which the right-hand side of the ballot, the
portion to be marked, is implemented on a touch screen such
that all of the integrity features of the original design are
maintained while additional accessibility features such as
tactile and auditory cues could be implemented .

Two implementations were described, one for the original
Microsoft Surface interactive desktop and another for a 3M
Multi-Touch M2256PW . Chris also speculated about a third
using the Samsung SUR40 with Microsoft PixelSense . In the
design, the surface of the screen must recognize a 2D barcode
or a coded conductive ink or foil that (1) informs the system
of the location and orientation of one or more paper left-
hand ballot sides containing lists of human-readable ballot
choices (e .g ., candidates) and (2) allows the screen to display
the right-hand side(s) of the ballot as indistinguishable vote
targets in the appropriate location(s) . In Chris’ implementa-
tion only the left-hand side of the Prêt à Voter ballot exists in
paper form .

Chris admitted to concerns that voters might believe the
system could recognize their face through the glass, although
the technology does not have that capability . Philip Stark
asked about the time-frame to deploy . Chris admitted that
he has limited access to the necessary equipment and much
work is yet to be done . Jeremy Epstein asked about the range
of disabilities that could be served by this system . Chris said
the system only requires the ability to place the left-hand side
of a Prêt à Voter paper ballot on the display surface and read
it; thus embossing such as Braille may be needed . Also, the
system must hold the paper in place, so this limits the extent
to which the display can be placed vertically . Flexibility in
orientation is advantageous to voters with disabilities . Chris
suggested that a move to a smaller form factor would help
broaden the scope of application to various disabilities, and
price is also a concern . Peter Neumann questioned the need
for trust of the underlying technology, but Chris reassured
him that the system does not learn the permutations of the
candidate order; instead the system has access to only a
serial number protected by cryptography .

Election Auditing
Summarized by Harvie Branscomb (harvie@electionquality.com)

A Bayesian Method for Auditing Elections
Ronald L. Rivest and Emily Shen, Massachusetts Institute of Technology

Ron Rivest brings new resources from the field of statistics
to the practice of auditing elections . His talk about a “ballot-
polling” method of auditing described the use of Bayesian
methods and their multiple advantages, including for more
familiar “comparison audits .” Ballot polling does not require
access to data from a voting system and instead indepen-
dently predicts the likelihood that any given candidate would
be declared the winner after counting all of the ballots while
usually counting relatively few . It does require the ability to
randomly select and interpret the voter intent on every bal-
lot marked by every voter in an election contest . While the
method is easy to describe on a single page, the extent of the
calculations needed requires the assistance of a machine for
most elections . The Bayes audit does not require knowledge
of the margin of victory and conveniently permits multiple
auditors with multiple “Bayes priors” to be accommodated .
Bayes priors can reflect real biases among interested parties,
such as the expectations of a losing candidate who believes
that uncounted ballots are voted in his or her favor .

Ron reported that Bayes audits offer good efficiency, compa-
rable to that found in Stark’s ballot-polling and single-ballot
comparison-audit methods . He said Bayes methods can also
be applied to comparison audits, which offer even better
efficiency over ballot polling . Many voting methods can be
supported . Small and controllable miscertification rates

96   ;login: VOL. 37, NO. 6

are observed . Even if the audit is stopped early for practical
reasons, meaningful results can be obtained . Disadvantages
include applicability only to single-ballot audits with results
depending somewhat on the choice of prior . How Bayes audits
relate to risk-limiting audits remains an open question .

David Flater was concerned about non-obvious stopping cri-
teria and the need to control the risk to a specified level . Ron
Rivest explained that the analysis involved in the Bayes audit
is nicer than with other methods where it gets complicated
but that risk measures depend on the priors . Bayes methods
represent a solid approach to, for example, financial audits .
Peter Neumann expressed concern that this method has the
potential to predict election outcomes from incomplete data
and also that IRV outcomes could not be calculated without
complete data . Ron Rivest explained that, for all voting meth-
ods, you need everything “in” before beginning the audit .
John Bodin talked about comparison audits and the need for
an identifier to connect ballots to interpretations and the
security of this identifier . Philip Stark commented that part
of an election is convincing the loser that they have a “prior .”

More information is available at:
people .csail .mit .edu/rivest/bayes .

BRAVO: Ballot-polling Risk-limiting Audits to Verify
Outcomes
Mark Lindeman, Philip B. Stark, and Vincent S. Yates, University of
California, Berkeley

Philip Stark (statistics .berkeley .edu/~stark/Vote) opened by
emphasizing the importance of evidence-based elections and
the critical need for an adequate evidence trail measured by a
compliance audit as a prerequisite to any successful election
audit . Stark has been conducting single-ballot risk-limiting
audits both in comparison-audit format and the more
recently proposed ballot-polling mode . In a risk-limiting
audit, the question is not how many ballots to audit at first,
but when to stop . If there is compelling evidence that the
outcome is correct, then stop; otherwise continue the audit,
ballot by ballot, tabulating the result incrementally at each
step . In ballot-polling audits, you hand count votes, whereas
in comparison audits, you count the discrepancies between
a machine count and a hand count . According to Philip, in
defining the “risk” of a risk-limiting audit, one assumes that
a reported outcome might be wrong in the most maliciously
difficult way to detect . The “risk” is the chance that this
wrong-outcome scenario would not be detected and would
not be corrected by the audit . This is quite different from
the risk that any outcome is wrong . Numerous risk-limiting
audits have now been conducted by Stark et al . in California
elections ranging in size from 200 ballots to 121,000 ballots .

Ballot-polling audits require more ballots to be audited than
equivalent comparison audits, but do not require any results
from the voting system and have no setup costs such as the
need for secondary scanning of ballots . Although polling
audits do not check the voting system tabulation, they do
expose the voter marks on only relatively few sampled ballots
and a number comparable to that of a precinct comparison
audit . A good ballot manifest is needed in order to be able to
select a random sample, but the method can be executed with
dice and a pencil and paper if desired .

The methodology is reminiscent of a public opinion poll
where the ballot is asked, “What do you say?” Philip Stark
reported several successful election audit experiences in
California . He then extrapolated the audit workload for the
average statewide presidential contest . Among 255 statewide
presidential contests between 1992 and 2008, the median
expected sample size for a statewide ballot-polling audit
would be only 307 ballots .

Douglas Wikström suggested a potential for avoiding sequen-
tial sampling by using simultaneous multiple ballot sampling
or even some special handling of the ballot in the voting
booth such as “tossing a p coin .” Philip agreed some poten-
tial benefit might result . Peter Neumann asked about exit
polls . Philip Stark replied that exit polls are a biased sample,
encounter problems with people’s willingness to answer
accurately, and are in effect a mess .

If You Use Linux, You Should Be
Reading LINUX JOURNAL

�� In-depth information
providing a full 360-
degree look at featured
topics relating to Linux

�� Tools, tips and tricks you
will use today as well as
relevant information for
the future

�� Advice and inspiration for
getting the most out of
your Linux system

�� Instructional how-tos will
save you time and money

Subscribe now for instant access!
For only $29.50 per year—less
than $2.50 per issue—you’ll have
access to Linux Journal each
month as a PDF, in ePub & Kindle
formats, on-line and through our
Android & iOS apps. Wherever you
go, Linux Journal goes with you.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE

™

SAVE THE DATE!
FEB. 12–15, 2013 • SAN JOSE, CA

13

11th USENIX Conference
on File and Storage
Technologies

FAST ’13 brings together storage-system researchers and practitioners to explore new
directions in the design, implementation, evaluation, and deployment of storage systems.
The conference will consist of technical presentations, including refereed papers, Work-in-
Progress (WiP) reports, poster sessions, and tutorials.

 Full program information and registration will be available soon.

www.usenix.org/conference/fast13

Sponsored by USENIX in cooperation with ACM SIGOPS

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

