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In my June 2011 Musings [1], I used the metaphor of an assembly line’s parts supply 
for the hierarchy of storage used with modern processors: cache, memory, disk, and 
network . I’ve always been amazed by both assembly lines, and how it is possible 
that a CPU can get so much work done when it is so much faster than the devices 
that supply it .

Modern assembly lines are less than a century old, and through the mechanism of 
YouTube we can easily watch examples of assembly lines at work [2, 3] . In the first 
example, you can watch a Chevrolet assembly line from 1936, and in the newer 
one, a BMW line from 2010 . One big difference between the two lines is that in 
the BMW example, the only time you see a person appears to be accidental, just 
someone walking past the line . In the older line, most people are simply positioning 
parts, or performing a small set of tasks like several welds or tightening bolts . It is 
pretty easy to see why owners of a modern line might want to replace people doing 
boring, repetitive work—even if well-paying—with mindless machines .

Not an Assembly Line

My assembly line metaphor really falls short in a particular way that would have 
annoyed Alan Turing . A Turing machine mandates having the ability to test 
results and then branch, something assembly lines do not do . Much work has 
been done by Intel and other CPU vendors on branch prediction, because CPUs 
do include miniature assembly lines, called pipelines, which work best when kept 
filled with both instructions and data . A missed branch invalidates all the work 
already done by the pipeline, another cause of delay in our speedy processors . 
These missed branches also mean changes stored in the fastest (L1) cache, mean-
ing more delays waiting for the slower caches and much slower memory .

The inflexibility of real assembly lines is actually a problem for manufacturers . 
Setting up an assembly line takes time and money, so manufacturers want to con-
tinue to use each line for as long as possible . Another problem, similar to the CPU’s 
test and branch, occurs when one stage of the assembly line breaks down: the 
entire line stops . I got to visit a truck frame assembly line once, while I was visiting 
a factory that was investigating ways of manufacturing frames without using the 
traditional assembly line . That company wanted a system that was both more flex-
ible and capable of keeping production going even if one stage breaks down or runs 
out of supplies .

OPINIONMusings
R I K  F A R R O W
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Locality of instructions is just as important as careful arrangement of data . You 
are probably aware of several techniques that help with the locality of instructions . 
Loop unrolling involves doing more work before the (potentially) terminating test 
instruction . Function inlining replaces a function call with the set of instructions 
that act on the calling arguments . Both make the code larger, but both reduce the 
amount of jumping to other locations in memory .

Another technique, which evolved during the late ’80s, I believe, was the use of 
re-entrant libraries . Instead of statically linking libc into every binary, libc gets 
shared among all programs that use it, through being dynamically linked . This 
allows just one copy of libc to be present in memory, more likely just the parts of it 
currently in use, instead of those same parts being loaded into many locations in 
memory .

Kernel samepage merging [4] is a more recent development that also helps to avoid 
having multiple copies of the same instructions in memory . Originally developed 
to reduce the memory footprint of running multiple VMs, where you’d expect there 
to be lots of duplicate pages if you are running the same OS in many VMs, KSM is 
now recommended for use even on systems where you are not running VMs .

FlexSC [5] represents another advance in dealing with memory issues caused by 
system calls . In almost all systems since the dawn of multiprocessing, a special 
instruction triggers an exception that is handled by the kernel’s system call inter-
face . While the kernel executes, it uses its own instructions and data, necessitating 
the replacement of cache lines used by the currently waiting program . Besides the 
replacement of user mode instructions and data in various cache levels, other data 
also gets flushed, such as entries in the data translation look-aside buffer (dTLB), 
used to convert virtual to physical addresses . In the FlexSC paper, these side 
effects of a system call exception can decrease the number of instructions com-
pleted per CPU clock cycle (IPC) by 20% to 60% .

To fit this into the assembly line metaphor, an exception-based system call is like 
taking a portion of the parts supply for an assembly line and using it to support a 
completely different assembly line . This analogy is a forced one, as system calls are 
actually working on behalf of the program being executed . But it is as if a second 
assembly line gets called into play, one that shares the same supply stream, and 
that interference results in less work being completed overall .

The Lineup

We start this issue with an article about a tool for determining the correct balance 
of memory, disk, and SSD for a server application . Madhyastha et al . explain how 
their tool, scc, takes into account SLAs and the need for storing and access data, 
and is able to both reduce cost while suggesting appropriate changes in the propor-
tions of storage devices used . Their implementation of scc is available for download 
(http://www .cs .ucr .edu/~harsha/scc/) .

David Slik describes Cloud Data Management Interface (CDMI), an open proto-
col for storage data transfer and management for cloud and object storage sys-
tems . David first explains the goals of the standard and then demonstrates how 
its RESTful interface can be used (with curl) . CDMI is designed so that storage 
providers can supply just those portions of the interface that are applicable to the 
services they provide, and the standard can be extended whenever support for a 
new interface becomes sufficiently common .



 4   ;login: VOL.  37,  NO.  3   

Yanpei Chen and his co-authors revisit work they did for a workshop paper on TCP 
incast . TCP incast occurs when many servers attempt to reply with data simulta-
neously, resulting in much lower data transfer . In their article, they explain incast, 
supply equations for modeling incast, demonstrate the fit of their equations to 
experimental data, and show how a simple solution can reduce the effects of incast, 
with several examples of popular distributed systems, including Hadoop .

Robert Escriva and his co-authors, having taken a hard look at current NoSQL 
solutions, decided that another approach is warranted . They have created Hyper-
Dex, a system that provides consistency and reliability guarantees while outper-
forming popular systems such as Cassandra on benchmarks . In their article, they 
explain how they use a multi-dimensional space for indexing and node assignment, 
and how HyperDex manages to be both fast and consistent . Along the way, they 
highlight issues involving NoSQL solutions .

In my interview with Nathan Milford of Outbrain, I get him to discuss his use of 
Cassandra . Nathan is both an architect and a sysadmin for his company, and I can 
tell that he feels comfortable and secure in his decision to use Cassandra, along 
with several other tools for distributed computing .

Doug Hughes wanted to write about a series of incidents that befell his organiza-
tion, including the near loss of almost a petabyte of data . Doug describes the diag-
nostics for several hardware and networking-related problems in terms that will 
be familiar to most system administrators, and ends each story with some lessons 
learned . Along the way he describes some useful hardware features .

David Blank-Edelman has decided to discuss the weather in his Perl column . Well, 
perhaps it would be more accurate to say that he explains how to fetch weather 
information for particular locations using three different APIs using two different 
Perl modules for parsing the information . This is not just for weather junkies, but 
for anyone with the need to pull information out of XML or JSON-encoded data .

David Beazley takes us beyond the basics of Python’s lists, sets, and dictionaries, 
using libraries that will be included with any Python install after versions 2 .7 and 
3 .3 . David presents some useful techniques with collections . The Counter and 
defaultdict objects are dictionaries but with special features, and David provides 
examples of how to use them, including in analyzing Web logs .

Dave Josephsen begins by being mystified by a coworker who feels that “brothify-
ing” his food will make it more absorbable, but then goes on to tie this concept into 
making it easier to scale Nagios to more hosts . The Check_MK tool makes collect-
ing multiple checks from a host appear as a single check to Nagios, while simplify-
ing the configuration on the host .

Robert Ferrell was intrigued with the multiple dimensions used in HyperDex and 
decides to invent his own hyper-dimensional quantum computer . Then he worries 
about keeping track of data in the cloud, and visualizes techniques for monitoring 
data as it replicates .

While Elizabeth Zwicky takes a well-deserved break, six other book reviewers 
tackle six different books . Mark Lamourine discusses Jenkins: The Definitive 
Guide, covering a large book about an ever larger topic, an automated build system . 
Brandon Ching covers Webbots, Spiders, and Screen Scrapers, a second edition 
about collecting, storing, and processing data collected from the Web, whether 
from a single page or a wide sweep . Jeff Berg really liked The Tangled Web, a book 
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for anyone who needs to secure Web applications . Evan Teran takes a look at A 
Bug Hunter’s Diary, a book targeted at those interested in learning how to find and 
exploit code vulnerabilities present in various popular software programs . Peter 
Salus considers A Culture of Innovation, a collection of narratives by 19 individu-
als who have worked at BBN over the years . And, finally, I review D is for Digital, 
certainly the easiest read of this lot, but also a useful book to give to any educated 
person who wants to know more about computers and networking .

This issue concludes with summaries from the USENIX FAST conference . I’ve 
always enjoyed FAST, possibly because it combines hardware and software, 
academic and commercial research, into a single conference . The scc tool (Mad-
hyastha et al .) was presented as a FAST paper, and there are many other excellent 
papers summarized in this issue .

Even though the authors of FlexSC have demonstrated that the effects of system 
calls go well beyond the side-effects of a software interrupt—saving register and 
other process state, performing the system call (potentially blocking), then restor-
ing process state and continuing to execute in user mode—not much has changed 
since then . CiteSeerX shows only three citations, and FlexSC has certainly not 
become a part of the Linux kernel . Yet Apache httpd runs twice as fast with 
FlexSC, and there are few proposed system-level changes that have such strong, 
positive effects . I am left wondering whether there are other, better methods for 
avoiding cache pollution caused by system calls, or are there perhaps architecture 
advances on the hardware side that will lead to a more efficient system call inter-
face?

Resources

[1] Musings, ;login:, June 2011, vol . 36, no . 3 .

[2] Chevrolet Assembly line in 1936: http://youtu .be/HPpTK2ezxL0 .

[3] BMW in 2010: http://youtu .be/KEQdn57Kz1Q .

[4] Kernel samepage merging: http://www .linux-kvm .org/page/KSM .

[5] Livio Soares and Michael Stumm, “FlexSC: Flexible System Call Scheduling 
with Exception-LessSystem Calls”: https://www .usenix .org/conference/osdi10/
flexsc-flexible-system-call-scheduling-exception-less-system-calls .
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Today, application providers can choose from a range of storage choices to provi-
sion their infrastructure for cluster-based applications . Each storage technol-
ogy presents a different point in a complex tradeoff space of cost, capacity, and 
performance . To help application providers choose from these alternatives, we 
developed scc [1] to automate the selection of cluster storage configurations based 
on a formal specification of applications, hardware, and workloads . Our tool allows 
administrators to understand how high-level workload characteristics influence 
the cluster architecture, and in applying scc to several representative deployment 
scenarios, we show how it can enable 2x–4 .5x cost savings when compared to tra-
ditional scale-out techniques .

Identifying an appropriate cluster architecture to host a large-scale service is 
often not straightforward . Given a set of resources to choose from (e .g ., as shown 
in Table 1), an application provider has to answer several questions . What storage 
technologies should be employed, and how should data be partitioned across them? 
Where should caching be employed? What types of servers should be chosen to 
house the selected storage units? 

scc
Informed Provisioning of Storage for Cluster Applications

H A R S H A  V .  M A D H Y A S T H A ,  J O H N  C .  M C C U L L O U G H ,  G E O R G E  P O R T E R , 
R I S H I  K A P O O R ,  S T E F A N  S A V A G E ,  A L E X  C .  S N O E R E N ,  A N D  
A M I N  V A H D A T

Harsha V. Madhyastha 

is an Assistant Professor 

in Computer Science and 

Engineering at the University 

of California, Riverside. His research interests 

include distributed systems, networking, and 

security. 

harsha@cs.ucr.edu

John C. McCullough is 

pursuing a PhD in computer 

science at the University of 

California, San Diego, and 

is advised by Professor Alex C. Snoeren. He 

received an MS in computer science from 

UCSD (2008) and a BS in computer science 

from Harvey Mudd College. 

jmccullo@cs.ucsd.edu

George Porter is a Research 

Scientist in the Center for 

Networked Systems and 

a member of the Systems 

and Networking Group at UC San Diego. He 

received his BS from the University of Texas 

at Austin and his PhD from the University of 

California, Berkeley. 

gmporter@cs.ucsd.edu

Rishi Kapoor is a PhD student 

in computer science at the 

University of California, San 

Diego. His research interests 

include cloud computing and computer 

systems. 

rkapoor@cs.ucsd.edu



 ;login: JUNE 2012  SCC: Informed Provisioning of Storage for Cluster Applications   7

In addition, even if the application’s implementation is efficient and there is 
coarse-grained parallelism in the underlying workload, how will algorithmic shifts 
in the application or variations in workload affect the appropriate cluster architec-
ture? Our goal is to automate the process of answering these questions, rather than 
relying solely on human judgment .

Resource MB/s IOPS Watts Cost

7 .2K Disk 
(500 GB)

90 (R) 
90 (W)

125 (R) 
125 (W)

5 $213

15K Disk 
(146 GB)

150 (R) 
150 (W)

285 (R) 
185 (W)

2 .3 $296

SSD 
(32 GB)

250 (R) 
80 (W)

2500 (R) 
1000 (W)

2 .4 $456

DRAM 
(1 GB)

12 .8K (R) 
12 .8K (W)

1 .6B (R) 
1 .6B (W)

3 .5 $35

CPU core — — 20 $137

Server type Resource Limits Cost

Server1
4 cores, 1 Gbps network 

12GB DRAM, 4 SAS slots
$1400

Server2
16 cores, 10 Gbps network

48GB DRAM, 16 SAS slots
$1850

Server3
32 cores, 10 Gbps network

512GB DRAM, 16 SAS slots
$11000

Table 1: Example set of hardware units input to scc. Cost is price plus energy costs for three 
years.

In developing scc, we show how to systematically exploit storage diversity, i .e ., 
select among different physical media, local and remote storage, and various 
caching strategies . First, we determine how the characteristics of applications, 
workloads, and hardware should be specified in order to automate the selection 
of cluster configurations . To do so, we study several representative deployment 
scenarios and identify a parsimonious yet sufficiently expressive set of parameters 
that capture the tradeoffs offered by different types of storage devices and the 
varying demands across application components . To characterize applications, 
we leverage developer knowledge and standard techniques to trace the execu-
tion of applications, and, once developed, application models can be reused across 
deployments . Second, we implement scc, a storage configuration compiler, to take 
specifications of applications, workloads, and hardware as input, automatically 
navigate the large space of storage configurations, and zero in on the configuration 
that meets application SLAs at minimum cost .
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Specifying scc’s Inputs

As shown in Figure 1, scc takes three inputs: (1) a model of application behavior, 
specified in part by the application’s developer and in part by the administrator 
deploying the application; (2) characteristics of available hardware building blocks 
specified by the infrastructure provider; and (3) application performance metrics, 
i .e ., a parameterized service level agreement (SLA) (e .g ., a Web service SLA might 
specify a peak query rate per second) . Given these inputs, scc computes how cluster 
cost varies as a function of the SLA and outputs a low-cost cluster configura-
tion that meets the SLA at each point in the space . scc’s output cost vs . SLA value 
distribution helps administrators decide what performance can be supported cost 
effectively .

While there has been prior work on similarly configuring storage based on formal 
specifications of workloads and hardware [2, 3], these prior approaches take as 
input the workload demands on every component of the application (e .g ., the I/O 
rates to be satisfied by a logical volume of data) . In practice, application providers 
seek to satisfy SLAs that are specified at a higher level . For example, in a photo-
sharing Web service, the target may be to cope with a certain rate of photo uploads 
and downloads . To translate such SLA requirements into demands on individual 
application components, we need a model of the application .

Our characterization of applications accounts for two aspects: its implementation 
and the workload in its planned deployment . To capture an application’s implemen-
tation, we first ask the application’s developer to describe its decomposition into 
compute and storage components, and the interaction between them . We account 
for various characteristics of these components, such as whether the application 
runs in multiple phases, the I/O operations it performs in response to particular 
inputs, and the dependencies between different parts of the application . 

For example, Figure 2 depicts the components, and the interaction between them, 
for an example photo-sharing Web service . Although we place the onus on applica-
tion developers to formally specify the components of their application, an applica-
tion’s specification is reusable across deployments .

Second, we enable those who deploy an application to annotate the specification 
of the application’s architecture with properties of the expected workload in their 
deployment . To do so, we require that the compute and I/O characteristics of an 
application’s components, when subjected to the target workload, be determined by 
running small-scale application benchmarks . We characterize compute compo-
nents by their memory requirements and storage components by their storage 
capacity and persistence needs . We also label I/O operations and inter-component 
dependencies with properties such as the record size being read/written, and 
whether these operations are synchronous or asynchronous . The former helps 
differentiate between random and sequential I/O, while the latter determines 
the application’s ability to trade off latency with throughput . Extracting these 
properties requires tracing the application’s execution, now standard practice in 
resource-intensive performance-critical applications . In the absence of built-in 
tracing support, systems like Magpie [4] can be leveraged .

Automating the Navigation of the Configuration Space

scc determines the cost versus SLA distribution for a given application deployment 
by considering the configuration for each point in the distribution independently . 

scc

SLA
Specification

Cluster 
Building 
Blocks

SLA

C
os

t
OutputsInputs

Application
Model

NetworkCPUs CPUs
Server 1 Server n

Storage
Units

Tasks Datasets

Photo Upload

Thumbnail
Conversion

Photos

(Tag, Photos)
Mapping

Thumbnails

Viewing
Photos

Viewing
Tags

Writing Tags

1 x 200KB

1 x 200KB

10 x 4KB

1 x 4KB

1 x 1KB

10 x 1KB10 x 1KB

remote,persistent
(1 TB)

remote,persistent
(20 GB)

remote,persistent
(2 GB)

Figure 1: scc takes formal specifications of 
applications, hardware, and SLA metrics as 
input. It outputs a cost-versus-SLA distribu-
tion, while determining the minimum cost 
cluster configuration for every SLA value.

Figure 2: Interaction between tasks and 
datasets in example photo-sharing applica-
tion. Edges between tasks and datasets 
represent I/O with direction differentiating 
input and output. Dotted edges indicate task 
dependencies.
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To compute the cluster configuration for a target SLA, scc needs to determine the 
architecture of the cluster (the types of storage media to be used for each dataset 
and the types of servers used to host storage units and CPUs) and the scale at 
which this architecture must be instantiated (the number of servers, storage units, 
and CPUs, as well as the level of parallelism of each application task) to meet the 
SLA .

Guiding Principles

Two key principles help scc identify the right cluster configuration . First, the 
architecture and scale for every application component can be determined inde-
pendently when all operations are performed asynchronously, but not when some 
operations are synchronous . The SLA for any task only specifies the rate at which 
a task’s execution path must run . In the typical case, where a task’s execution path 
contains some operations that block others, scc needs to determine the “division 
of labor” across these operations that minimizes cost . For example, in a task that 
reads from an input dataset and then writes to an output dataset, in order to meet 
the task’s SLA it may suffice to provision fast storage for any one of the two data-
sets; provisioning fast storage for both datasets may unnecessarily result in higher 
cost due to storage capacity requirements, whereas slow storage for both may incur 
higher costs in satisfying I/O throughput needs . Hence, scc jointly determines 
resource requirements across all application components .

Second, since scc provisions for peak load, it prevents over-provisioning by ensur-
ing that at least one resource is bottlenecked on every server at peak load . (If the 
application provider wants to run the cluster at lower peak utilization, that can be 
specified as input .) Based on our characterization of hardware, there are four pos-
sible bottlenecks on each server: (1) the number of slots, (2) the bandwidth on an 
I/O controller, (3) the number of CPU cores, (4) network bandwidth .

Algorithm

Driven by the need for joint optimization across components, scc represents 
each point in the configuration space by the assignment of storage unit types to 
datasets . This assignment suffices to represent each configuration because, given 
this information, we can compute the number of storage units of each type and the 
number of CPUs necessary to meet the SLA . We can then compute the number of 
servers of each type required to accommodate these resources . As a result, if S is 
the number of storage choices and D is the number of datasets, scc has to search 
through a space of O(SD) configurations; for each dataset, scc can choose any one 
of the S storage options .

In cases where the configuration space is too large to perform an exhaustive 
search, scc performs a repeated gradient descent search . We start with a randomly 
chosen configuration .

In each step, we consider all neighboring configurations—those which differ in 
exactly one dataset’s storage-type assignment—and move to the configuration 
that still meets the SLA with the maximum decrease in cost . We repeat this step 
until we find a configuration where all neighbors have higher cost . Since gradient 
descent can lead to a local minimum, we repeat this procedure multiple times with 
different randomly chosen initial configurations and settle on the minimum cost 
output across the multiple attempts . In our evaluation, we have found that repeat-
ing the gradient descent 10 times is typically sufficient to find a solution close 
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to the global minimum . Therefore, even when determining the configuration to 
satisfy workloads of tens of thousands of queries per second, scc’s running time for 
any particular SLA is within a minute .

Figure 3: scc represents every configuration by the storage type assignments for each of the 
application’s datasets, and searches through this space with gradient descent (with multiple 
randomly chosen initial configurations) to find the minimum cost configuration.

At the heart of scc’s search of the configuration space (summarized in Figure 
3) is a procedure that, given any particular assignment of storage types to data-
sets, determines a cost-effective set of resources to meet the target SLAs . In this 
procedure, scc first determines for each remote dataset (i .e ., not local to any task) 
the number of storage units required of the type assigned to the dataset in the 
configuration state . Second, scc determines the number of CPUs required by every 
task and the number of storage units of the assigned type needed by the task’s local 
datasets . Finally, it solves a linear integer program to determine the types of serv-
ers and number of each kind required to minimize overall cluster cost .

Heterogeneous Configurations Beat Scale-Out

We have applied scc to three distributed applications with distinctly different 
workload characteristics: (1) a product search Web service modeled on Google 
Merchant Center, (2) Terasort, a MapReduce job to sort large tuple collections, and 
(3) a photo-sharing Web service modeled on Flickr . We validated scc by deploying 
these applications on a range of cluster configurations and measuring application 
performance on these configurations .

{D
datasets

S storage
options

S  candidate storage type assignmentsD

Start with random 
storage type 
assignment

Compute cost for every 
neighboring storage 

type assignment

Compute 1) no. of 
storage units of each 

type, and 2) no. of 
CPUs to meet SLA

Storage and compute costs

Constraints:
1. I/O bus bandwidth
2. I/O slots
3. CPU cores
4. Network bandwidth

Objective: min server costs

ILP formulation for
server costs

Output costs

Is min cost 
configuration 

cheaper?

Shift to storage 
type assignment 
corresponding to 

min cost 
configuration

Output configuration
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In applying scc to these diverse application workloads, we repeatedly find that 
clusters with heterogeneity—rather than conventional homogeneity—across serv-
ers are necessary to optimize cost . The resources required differ across applica-
tion components due to the varying ratios of capacity, compute, and I/O throughput 
needs across components . Figure 4 shows an example of how scc’s recommended 
configuration for our example product search Web service changes when the input 
workload is increased . First, we note that different application components are 
hosted on servers equipped with different types of storage . Second, the types of 
hardware resources allocated to the same application component radically change, 
rather than resources simply being increased in quantity, when the workload is 
increased .

Transitions in Cost-Optimal Storage Configurations

In applying scc to our exemplar applications, we also find that the most cost-effec-
tive cluster architecture depends not only on the application being provisioned 
but also on the workload and performance requirements . Data that was initially 
capacity-bound may become I/O-bound at higher loads, calling for shifts from high 
capacity but slow storage, e .g ., disks, to low capacity but fast storage, e .g ., SSDs . As 
a result, cluster configurations output by scc for our exemplar photo-sharing and 
product search applications result in 2x–4 .5x average savings in cost compared to 
similarly performant scale-out options .

(a)

Uploads/s
Storage unit type

Photos Thumbnails Tags

≤ 5 Disk Disk Disk

5–25 Disk Disk Disk + DRAM

25–330 Disk SSD Disk + DRAM

330–930 SSD Disk + DRAM Disk + DRAM

930–10k Disk + DRAM Disk + DRAM Disk + DRAM

(b)

Figure 5: (a) Cost versus SLA distribution output by scc for example photo-sharing applica-
tion, with (b) the corresponding regimes in the cost-effective architecture. Simply scaling out 
alternate configurations inflates cost by 3x–4.5x on average.

Network

HDFS

1x CPU2x CPUs
2x 7.2K disks 4x SSDs

Worker Processes

3 Servers

Network 1x CPU

6 Servers

8 GB DRAM
1x 7.2K disk

Config1

Config2

2x CPUs
2x 7.2K disks

2 Servers

2 Servers

Figure 4: Illustration of transition in minimum 
cost cluster configuration recommended by 
scc, when input workload is increased. scc 
uses heterogeneous architectures to reduce 
costs in comparison to simply scaling out 
resources.
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As an example, Figure 5(a) shows the cost distribution output by scc across a range 
of SLA values for our photo-sharing application . Perhaps surprisingly, no huge 
spikes are observed in this distribution; this is because scc balances costs across 
the kind of storage, the number of CPUs, and the number of machines provisioned . 
Rather than adding more machines of the same type, the cluster architecture 
transitions to faster storage as the SLA becomes more stringent, with transitions 
in storage type for different datasets seen at different SLA values . 

Figure 5(b) highlights these transitions . Note that the quantity in which different 
types of resources are provisioned varies within each architecture regime speci-
fied by every row in the table .

We further compare the cost output by scc with the cost associated with a scale-
out approach . We compare the scc configuration to the cases where the building 
block is based around: (1) storage servers with four 7 .2k-RPM disks (the cost-
optimal storage type for all datasets at the lowest SLA), and (2) servers with four 
15k-RPM disks . In either case, more storage servers are added as the required rates 
increase . Figure 5(a) shows that the costs in both cases are significantly greater 
than with scc, incurring between 3 and 4 .5 times more cost (note the logarithmic 
y-axis) . Thus, simply scaling out a homogeneous configuration that is cost-effec-
tive at low loads can result in significant cost inflation at higher loads . 

How Robust Are scc’s Recommendations?

scc’s output cluster configuration for a target SLA is a function of both the SLA 
and the values specified for the various attributes in the application and hardware 
specifications . In practice, an administrator may not have precise values for all 
attributes due to incomplete knowledge of the application workload, uncertainty of 
hardware costs, or measurement inaccuracy in benchmarking the application .

Attribute
Range with same architecture

Lowest value Input value Highest value

Avg . photo size 50 KB 200 KB 850 KB

Avg . thumbnail size 1 KB 4 KB 30 KB

SSD unit price $200 $450 $900

Dataset Most sensitive to what change in hardware costs?

Photos 20% drop in $ of 7 .2K-RPM disk

Thumbnails 92% drop in $ of DRAM

Tags 31% drop in $ of 15K-RPM disk

Table 2: (a) Robustness of scc’s output with respect to input values for a sample set of at-
tributes; (b) the change in hardware costs to which scc’s storage decision for each dataset is 
most sensitive.

scc is naturally built to cope with such uncertainty . For every attribute in the input 
specifications, scc varies the value of the attribute in the neighborhood of the ini-
tially specified value . For each attribute, it then outputs the range of values for that 
attribute wherein the cost-effective cluster architecture, i .e ., the types of resources 
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assigned to different application components, remains unchanged; variance of the 
attribute’s value within this range can be handled by simply adding more resources 
of the same type . Outside of that range, the cluster will need to be revamped with 
a different type of resource for some application component, a more onerous under-
taking . For example, we consider our example photo-sharing service with an SLA 
of 100 uploads/s, 300 photo views/s, and 100 tag views/s . Table 2(a) shows the 
value ranges output by scc for a few attributes, within which the cluster architec-
ture is robust to change . For example, we see that as long as the average photo size 
remains between 50 KB and 850 KB, the cluster architecture remains the same as 
that obtained with the input value of 200 KB .

Furthermore, scc can also evaluate the sensitivity of its choice of storage configu-
ration for every dataset in the application . For example, consider our photo-sharing 
Web service again with the same input SLA as above . Based on current hardware 
costs, scc determines that photos be stored on 15k-RPM disks, thumbnails be 
stored on SSDs, and tags be stored persistently on 7 .2k-RPM disks and cached in 
DRAM, in order to meet the SLA at minimum cost . However, these recommenda-
tions are likely to change as prices for storage units drop . scc can determine the 
robustness of its storage option choice in response to such changes in hardware 
prices . To do so, it varies the price of every type of storage unit from its input value 
down to 0, and notes the inflection points at which the optimal storage choice for 
some dataset changes . Based on this analysis, it can determine, for every dataset, 
that change in hardware price to which the current storage choice for the dataset 
is most sensitive . Table 2(b) shows that while the storage choices for photos and 
tags are sensitive to relatively small reductions in the prices for 7 .2k-RPM and 15k-
RPM disks, scc’s recommendation of storing thumbnails on SSDs is very robust to 
price fluctuations .

Conclusion

The primary thesis of our work is that the choice of cluster hardware for an appli-
cation should be informed by the interaction between the application’s behavior 
and the properties of hardware . Rather than relying on human judgment to do so, 
we developed scc to compile formal specifications of these inputs into cost-effec-
tive cluster configurations . We have applied scc to a range of application workloads 
and storage options to demonstrate that scc captures sufficient detail to identify 
the appropriate hardware at any given scale . We find that scc often recommends 
heterogeneous cluster architectures that result in significant cost savings com-
pared to traditional scale-out approaches .

Our implementation of scc is available for download at http://www .cs .ucr .edu/ 
~harsha/scc/ .
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In early 2009, recognizing the growing importance of cloud storage, and build-
ing on top of the earlier XAM object storage standard [1], the Storage Networking 
Industry Association (SNIA) [2] started a new technical working group with the 
primary goal of creating an industry standard for cloud storage . The result was 
the Cloud Data Management Interface (CDMI) [3], which was released as a formal 
industry standard in 2011 and is currently in the process of becoming an ISO/IEC 
standard .

The creation of the CDMI standard has been a collaborative effort, with contribu-
tions from over a hundred storage vendors, end users, and university researchers . 
All of the major enterprise storage vendors contributed to the standard, including 
Dell, Cisco, EMC, HP, Hitachi Data Systems, Huawei, IBM, Intel, LSI, NetApp, 
Oracle, Symantec, and VMware [4] . This represents a unique cross-industry 
endorsement of cloud storage, and the results are clearly visible in the breadth of 
use cases that CDMI is able to address .

In the year following the initial publication of CDMI, the SNIA has published an 
errata release of the standard and held four plugfests to demonstrate interoper-
ability and conformance of open source, research, and commercial implementa-
tions . In the coming year, additional milestones will be reached, with major storage 
vendors bringing CDMI-compatible systems to market, and work ongoing to add 
CDMI to open source platforms, including OpenStack [5] .

Design Principles

The following principles guided the design of the CDMI protocol:

u Complementary—A key design principle is that CDMI is designed to comple-
ment, not replace, existing NAS, SAN, and object protocols . Traditional file 
systems and LUNs can be managed out-of-band using CDMI, in conjunction 
with access via NAS and SAN protocols . CDMI can also be used as a self-service 
management and/or access protocol alongside other object protocols, such as 
OpenStack’s Swift . CDMI adopts many best-practice designs from existing pro-
tocols, such as NFSv4 ACLs, XAM globally unique identifiers, RESTful HTTP, 
and JSON structured metadata . Furthermore, as a protocol specification, CDMI 
places minimal restrictions on how servers are implemented, allowing it to be 
easily added to existing file, object, and cloud servers .

u Simple—In order to foster adoption and reduce the cost required to implement 
CDMI, the protocol is designed to be as simple as possible . By building on top 
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of HTTP, standard libraries and language constructs can be used, reducing the 
need for cloud libraries and allowing direct access by JavaScript browser-based 
clients . Using standard HTTP authentication and security mechanisms avoids 
complex header calculations . And providing the ability to start simple and add 
complexity only when needed reduces the learning curve and simplifies client 
code . Storing and retrieving your first CDMI object is as easy as:

demo$ curl -X PUT -d ‘Hello CDMI World’ -k http://127.0.0.1:18080/hello.txt 

demo$ curl -X GET -v -k http://127.0.0.1:18080/hello.txt

 This simplicity makes CDMI very script-friendly, allowing it to be easily used to 
create structured data repositories . At a recent coding challenge, a distributed 
CDMI-based temperature monitoring and reporting system was developed in 
hours, complete with a Web-based JavaScript front-end that retrieved data 
directly from the repository .

u Extensible—Recognizing that cloud storage is still in its infancy and that 
custom features are often required and desired, CDMI was designed from the 
ground up to allow functionality to be added to the standard without breaking 
client interoperability . CDMI allows clients to dynamically discover what fea-
tures a server implements, and it allows clients to discover profiles of capabilities 
required to perform common use cases . The SNIA also has defined a process by 
which emerging extensions can be documented, and once multi-vendor imple-
mentations have been demonstrated, they can then be incorporated into the next 
version of the standard .

CDMI as a Storage Protocol

CDMI is an encapsulation protocol based around RESTful HTTP . Representa-
tional State Transfer, or REST, was initially described by Roy Fielding in Chapter 
five of his PhD dissertation [6], and codifies a series of architectural patterns 
for the creation of Web-scale distributed systems . The key principles of REST-
ful architectures include stateless communication, idempotent operations with 
minimal side effects resulting from repeating a given transaction, and the use of 
negotiated “representations” for entities that are transferred between clients and 
servers .

CDMI defines five basic representations (content-types), described in RFC 6208, 
which are transferred between a client and a server in HTTP Request Bodies and 
HTTP Response Bodies, as illustrated in Figure 1 . 

While CDMI 1 .0 defines JSON-based representations, the standard is structured 
such that XML representations can easily be added .

CDMI also defines “Non-CDMI” interactions, where the value is directly trans-
ferred in the HTTP request and response body . This provides the ability for a 
CDMI server to act as a standard Web server to unmodified Web clients and 
browsers .

A Non-CDMI Request for a stored data object returns a standard HTTP response:

demo$ curl -X GET -v -k http://127.0.0.1:18080/hello.txt

* Connected to 127.0.0.1 (127.0.0.1) port 18080 (#0)

> GET /hello.txt HTTP/1.1

> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 

OpenSSL/0.9.8r zlib/1.2.3

Figure 1: CDMI requests and responses are 
embedded in HTTP sessions.

http://127.0.0.1:18080/hello.txt
http://127.0.0.1:18080/hello.txt
http://127.0.0.1:18080/hello.txt
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> Host: 127.0.0.1:18080

> Accept: */*

> 

< HTTP/1.1 200 OK

< Content-Type: text/plain

< Content-Length: 16

< 

Hello CDMI World

* Closing connection #0

A CDMI Request for the same stored data object returns the CDMI JSON repre-
sentation, which includes additional information about the stored object:

demo$ curl -X GET -v --header ‘Accept: application/cdmi-object’--header 

‘X-CDMI-Specification-Version: 1.0.1’ -k http://127.0.0.1:18080/hello.txt

* Connected to 127.0.0.1 (127.0.0.1) port 18080 (#0)

> GET /hello.txt HTTP/1.1

> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 

OpenSSL/0.9.8r zlib/1.2.3

> Host: 127.0.0.1:18080

> Accept: */*

> Content-Type: application/cdmi-object

> X-CDMI-Specification-Version: 1.0.1

> 

< HTTP/1.1 200 OK

< Content-Type: application/cdmi-object

< Content-Length: 1033

< Connection: close

< X-CDMI-Specification-Version: 1.0.1

< 

{

  “objectType”: “application/cdmi-object”,

  “objectID”: “00007ED90012E02F466C7574746572736879”,

  “objectName”: “hello.txt”,

  “parentURI”: “/”,

  “parentID”: “00007ED90010C2A44D4C503A46694D21”,

  “domainURI”: “/cdmi_domains/”,

  “capabilitiesURI”: “/cdmi_capabilities/dataobject/”,

  “completionStatus”: “Complete”,

  “mimetype”: “text/plain”,

  “metadata”: {

    “cdmi_ctime”: “2012-03-20T18:53:46.238543”,

    “cdmi_mtime”: “2012-03-20T18:53:46.238543”,

    “cdmi_mcount”: “1”,

    “cdmi_owner”: “root”,

    “cdmi_group”: “root”,

    “cdmi_acl”: [

      {

        “identifier”: “OWNER@”,

        “acetype”: “ALLOW”,

        “aceflags”: “OBJECT_INHERIT, CONTAINER_INHERIT, INHERITED”,

        “acemask”: “ALL_PERMS”

http://127.0.0.1:18080/hello.txt
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      },

      {

        “identifier”: “AUTHENTICATED@”,

        “acetype”: “ALLOW”,

        “aceflags”: “OBJECT_INHERIT, CONTAINER_INHERIT, INHERITED”,

        “acemask”: “READ”

      }

    ],

    “cdmi_size”: “16”

  },

  “valuerange”: “0-15”,

  “valuetransferencoding”: “utf-8”,

  “value”: “Hello CDMI World”

}

* Closing connection #0

In the above data object retrieval example, the meaning of the JSON fields in the 
HTTP response body is listed in Table 1 .

JSON Field Description

objectType
Indicates the type of object described in the JSON 
body . CDMI mimetypes are defined in RFC 6208 .

objectID
Every CDMI object has a globally unique identifier 
that remains constant over the life of the object .

objectName
The name of the object . Present only if the object is 
stored in a container .

parentURI
The URI of the container where the object is stored . 
Present only if the object is stored in a container .

parentID
The object ID of the parent container when stored in a 
container .

domainURI
The URI of a domain object corresponding to the 
administrative domain that owns the object .

capabilitiesURI
The URI to a capabilities object describing what can be 
done to the object .

completionStatus
Indicates whether the object is complete or is in the 
process of being created . This is used for long-running 
operations .

mimetype Indicates the mimetype of the value of the data object .

metadata

System and user-provided metadata, in JSON format . 
Examples of metadata include system properties such 
as creation time, size, owner, ACLs . Additional user-
specified metadata is also stored .
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valuerange Indicates the byte range returned in the value field .

valuetransferencoding
Indicates the encoding of the value field . CDMI 
supports both UTF-8 and base64 encodings .

value The data stored in the object .

Table 1: JSON fields returned in an example CDMI Data Object retrieval

Each CDMI object type defines different JSON fields that, in turn, define how 
objects are set and retrieved, with data objects defined in clause 8, containers 
defined in clause 9, domains defined in clause 10, queues defined in clause 11, and 
capabilities defined in clause 12 .

Example Client Use Cases

To provide a real-world example, let us suppose that we have been tasked with 
creating a distributed temperature monitoring system . Our requirements are to 
sample the temperature of the processor of each of our servers, storing second 
granular samples every minute to a repository, and providing a Web-based front-
end allowing users to visualize temperature across the datacenter .

Using CDMI, a small daemon would be written that runs on each server . This 
daemon collects 60 samples of data aligned to a minute, and stores it as a CDMI 
object, including user metadata for the start time, end time, server name, system 
load average, and processor type .

A JavaScript-based Web page is also served from the CDMI server . When 
accessed, the JavaScript program is run within the browser and performs a CDMI 
query based on the user metadata stored in the objects . For example, if a user 
wishes to see temperature for a given time range, the metadata is used to return 
only the temperature values within those time ranges . Various visualizations are 
then generated based on the temperature values returned in the query results .

A second example is a scalable cloud-based OCR system . Multiple scanning work-
stations scan documents and store them as a data objects . Once scanned, the object 
ID for each data object is enqueued into a CDMI queue object .

Multiple OCR engines are then instantiated within one or more compute clouds, 
with the number of instances dynamically varying based on the current size of the 
CDMI queue . Each OCR engine checks out a scan from the queue, performs OCR 
processing, and generates a new data object containing a PDF . Based on notifica-
tions of the creation of these PDFs, email notifications are then sent to the origina-
tor of the scan, or the PDF shows up in the user’s home directory .

CDMI Functionality

The following sections provide a survey of the functionality defined by the CDMI 
standard . To learn more, additional details and examples can be found in the CDMI 
standard document [3] .

Client-to-Cloud Data Transfer

The first area of scope for the CDMI standard is providing standardized methods 
for clients to exchange data for storage in clouds .
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C A PA B I L I T I E S  DI S C O V E R Y

The CDMI standard mandates that every CDMI server shall provide the abil-
ity for clients to discover what optional parts of the standard are implemented 
in a given server . As the CDMI standard addresses many different cloud-related 
use cases, allowing an implementer to select the subset of CDMI’s functionality 
specific to their target applications avoids imposing additional development costs 
for unneeded functionality . For example, a read-only cloud service is free to only 
implement functionality related to retrieval of stored data, whereas a cloud using 
CDMI to manage block storage LUNs would only need to implement containers 
and the ability to define exports .

Clients discover which parts of the CDMI standard are implemented by inspecting 
published “capabilities .” Profiles are also defined to allow clients to determine if 
logical sets of related capabilities are implemented .

D ATA  O B J E C T S

CDMI data objects are similar to files, and store a value along with metadata . Data 
objects can be accessed by ID and/or name and support partial retrievals and 
updates .

C O N TA I N E R S

CDMI container objects are similar to directories and contain named children that 
can be listed, along with metadata . Containers can be accessed by ID and/or name 
and support partial listing of children . Traditional hierarchies can be created 
using sub-containers .

Q U E U E S

CDMI queue objects are similar to data objects, where multiple values can be 
stored in a first-in/first-out manner . Queues are typically used to provide per-
sistent inter-process communication structures between distributed programs 
running in the cloud, and are also used as a foundation for advanced CDMI func-
tionality such as query and notification .

N O T I F I C AT I O N

CDMI allows clients to request that when stored objects are created, retrieved, 
updated, or deleted, notifications of these changes are enqueued into a client-cre-
ated CDMI queue . Clients can specify the characteristics of the objects for which 
notifications are generated, based on metadata matching criteria, and can specify 
which events are of interest and what information is to be returned in each gener-
ated notification . Notifications allow powerful workflows to be created, where 
loosely coupled programs can react to events in the cloud, such as performing 
transcoding, format conversion, sending notifications, and synchronizing between 
multiple storage systems .

Q U E R Y

CDMI allows clients to perform a query to find all stored objects that match a set 
of client-specified metadata matching criteria . Clients can specify which objects 
are included in the query results and what information from each object is to be 
included for each query result found . Query allows clients to quickly locate stored 
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objects, which can be used for further processing or displayed as results to end 
users .

A C C E S S  C O N T R O L

Access to CDMI objects is controlled by ACLs, which define the visibility, read, 
write, and deletion privileges . The mapping of client credentials to the ACL 
principal is managed via CDMI domains, which allows content administered by 
different organizations to co-exist within a single namespace .

Client-to-Cloud Management

The second area of scope for the CDMI standard is providing standardized meth-
ods for clients to manage data stored in clouds .

A D M I N I S T R AT I V E  D O M A I N S

CDMI introduces the concept of Cloud Domains, which permit clients to manage 
credential to identity mapping (think nsswitch for the cloud) and provide account-
ing and summary usage information . Domains are hierarchical, which permits 
tenant and subtenant models, along with delegated administration . Every stored 
object belongs to a single domain, which controls how the object is accessed and 
determines who has administrative control over the object .

D ATA  S Y S T E M  M E TA D ATA

In order to provide a channel that enables clients to express the data services they 
desire for content stored in the cloud and to give cloud storage system feedback to a 
client indicating which services are being offered, CDMI introduces a specialized 
type of metadata known as Data System Metadata (DSM) . Instead of providing 
low-level details about storage, such as RAID level, DSM is expressed in terms of 
service level objectives, such as desired throughput, latency, and protection .

A client specifies the desired DSM characteristics on individual objects or on con-
tainers of objects, which then propagate their DSM to all child containers and data 
objects . This provides hints about how data should be stored internally within the 
cloud, allowing a cloud to optimize its internal operations and to charge based on 
services requested and thus delivered .

The cloud can then create corresponding DSM feedback items, known as “_pro-
vided” metadata items, that indicate to a client which actual service the client is 
receiving . For example, if a client requests three-way replication by setting the 
“cdmi_data_redundancy” DSM to the value “3”, but the system can only provide 
two-way replication, the “cdmi_data_redundancy_provided” DSM would have the 
value “2” .

A complete list of standardized DSM items can be found in clause 16 .4 of the CDMI 
standard .

R E T E N T I O N

CDMI defines a series of DSM that allow restrictions to be placed on stored objects 
for compliance, eDiscovery, and regulatory purposes . Objects can be placed under 
retention, meaning they cannot be altered or deleted; can be placed under legal hold 
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(preventing deletion or modification); and can be automatically deleted when they 
are no longer under retention periods or any holds .

S N A P S H O T S

CDMI allows clients to trigger the creation of snapshots on a container-based 
granularity . Snapshots can be accessed through the CDMI interface, and provide 
read-only access .

E X P O R T S

DMI defines the ability to export CDMI containers via standard NAS or SAN 
protocols . The same approach can be extended to export CDMI namespaces via 
other cloud protocols, or export queues via other queuing protocols such as AMQP 
[7] . When combined with cloud computing standards such as OCCI [8] and CIMI 
[9], CDMI can provide full storage management services for both traditional block 
and file services accessed by cloud computing resources .

L O G G I N G

CDMI defines a standardized queue-based mechanism by which clients can 
receive cloud logging and audit data . This is especially important when a cloud acts 
as a proxy or broker and logging data must be aggregated or translated . The CDMI 
standard does not define the contents of log messages originating from clouds .

Cloud-to-Cloud Interactions

The third and final area of scope for the CDMI standard is providing standardized 
methods for clouds to transfer data with other clouds, both as a result of client 
requests and automatically .

G L O B A L LY  U N I Q U E  I D E N T I F I E R S

Every CDMI object has a globally unique identifier that remains constant for the 
life of the object, even as objects are moved or replicated across systems provided 
by different vendors . This enables location-independent access and allows content 
to be migrated and replicated without requiring updates to the client’s knowledge 
about how to access the stored data, as the identifier remains constant .

S E R I A L I Z AT I O N/ D E S E R I A L I Z AT I O N

CDMI objects can be serialized into a JSON format that can be used to 
transport objects and their metadata between systems . This provides a portable 
representation for backup and restore, as well as cloud-to-cloud transfer, even if it 
entails shipping hard drives or tapes storing the data .

C L O U D -T O - C L O U D  D ATA  M O V E M E N T

CDMI defines primitives that allow a client to request that a new object be created 
from an existing object in the same or a different cloud . This allows the destination 
cloud to retrieve the object directly from the source cloud (using credentials from 
the CDMI domain, or distributed authentication systems such as OAuth), avoiding 
the need to transfer the data to and from the client . This also enables clouds to 
provide transparent proxy and broker functions, while still allowing client access 
to the underlying clouds themselves .
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A U T H E N T I C AT I O N  D E L E G AT I O N

CDMI allows resolution of user credentials and mapping to ACL principals to be 
delegated, allowing CDMI systems to be easily interfaced both with local identity 
management systems such as AD and LDAP and with emerging federated identity 
systems .

Future Directions

The SNIA Cloud Technical Working Group encourages interested parties to join 
the group, participate in plugfests, and submit extensions to the CDMI protocol . 
Following review by the technical working group, extensions are published for 
public review . Once two interoperable implementations of an extension are demon-
strated at a plugfest, the extension can then be voted on for incorporation into the 
next version of the CDMI standard .

CDMI extensions currently under public review can be found at the SNIA Web site 
[10] .
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TCP incast is a recently identified network transport pathology that affects many-
to-one communication patterns in datacenters . It is caused by a complex interplay 
between datacenter applications, the underlying switches, network topology, and 
TCP, which was originally designed for wide area networks . Incast increases the 
queuing delay of flows, and decreases application level throughput to far below the 
link bandwidth . The problem especially affects computing paradigms in which 
distributed processing cannot progress until all parallel threads in a stage com-
plete . Examples of such paradigms include distributed file systems, Web search, 
advertisement selection, and other applications with partition or aggregation 
semantics [25, 18, 5] . 

There have been many proposed solutions for incast . Representative approaches 
include modifying TCP parameters [27, 18] or its congestion control algorithm 
[28], optimizing application level data transfer patterns [25, 21], switch level 
modifications such as larger buffers [25] or explicit congestion notification (ECN) 
capabilities [5], and link layer mechanisms such as Ethernet congestion control [3, 
6] . Application level solutions are the least intrusive to deploy, but require modify-
ing each and every datacenter application . Switch and link level solutions require 
modifying the underlying datacenter infrastructure and are likely to be logistically 
feasible only during hardware upgrades . 

Unfortunately, despite these solutions, we still have no quantitatively accurate and 
empirically validated model to predict incast behavior . Similarly, despite many 
studies demonstrating incast for micro-benchmarks, we still do not understand 
how incast impacts application level performance subject to real life complexi-
ties in configuration, scheduling, data size, and other environmental and work-
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load properties . These concerns create justified skepticism on whether we truly 
understand incast at all, whether it is even an important problem for a wide class of 
workloads, and whether it is worth the effort to deploy various incast solutions in 
front-line, business-critical datacenters . 

We seek to understand how incast impacts the emerging class of big data work-
loads . Canonical big data workloads help solve needle-in-a-haystack type prob-
lems and extract actionable insights from large-scale, potentially complex and 
unformatted data . We do not propose in this article yet another solution for incast . 
Rather, we focus on developing a deep understanding of one existing solution: 
reducing the minimum length of TCP retransmission time out (RTO) from 200 ms 
to 1 ms [27, 18] . We believe TCP incast is fundamentally a transport layer problem; 
thus, a solution at this level is best . 

The first half of this article develops and validates a quantitative model that 
accurately predicts the onset of incast and TCP behavior both before and after . 
The second half of this article investigates how incast affects the Apache Hadoop 
implementation of MapReduce, an important example of a big data application . We 
close the article by reflecting on some technology and data analysis trends sur-
rounding big data, speculate on how these trends interact with incast, and make 
recommendations for datacenter operators . 

Toward an Analytical Model

We use a simple network topology and workload to develop an analytical model for 
incast, shown in Figure 1 . This is the same setup as that used in prior work [25, 27, 
18] . We choose this topology and workload to make the analysis tractable . 

Figure 1: Simple setup to observe incast

The workload is as follows . The receiver requests k blocks of data from a set of 
N storage servers—in our experiments k = 100 and N varies from 1 to 48 . Each 
block is striped across N storage servers . For each block request received, a server 
responds with a fixed amount of data . Clients do not request block k+1 until all the 
fragments of block k have been received . This leads to a synchronized read pattern 
of data requests . We reuse the storage server and client code in [25, 27, 18] . The per-
formance metric for these experiments is application-level goodput, i .e ., the total 
bytes received from all senders divided by the finishing time of the last sender . 

We conduct our experiments on the DETER Lab testbed [12], where we have full 
control over the non-virtualized node OS, as well as the network topology and 
speed . We used 3 GHz dual-core Intel Xeon machines with 1 Gbps network links . 
The nodes run standard Linux 2 .6 .28 .1 . This was the most recent mainline Linux 
distribution in late 2009, when we obtained our prior results [18] . We present 
results using both a relatively shallow-buffered Nortel 5500 switch (4 KB per port) 
and a more deeply buffered HP Procurve 5412 switch (64 KB per port) . 

Bottleneck

Receiver

Sender 1

Sender 2

…

Sender N

Switch

Throughput drops to
small % of link capacity
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Flow Rate Models

The simplest model for incast is based on two competing behaviors as we increase 
N, the number of concurrent senders . The first behavior occurs before the onset of 
incast and reflects the intuition that goodput is the block size divided by the trans-
fer time . Ideal transfer time is just the sum of a round trip time (RTT) and the ideal 
send time . Equation 1 captures this idea . 

Incast occurs when there are some N > 1 concurrent senders, and the goodput drops 
significantly . After the onset of incast, TCP retransmission time out (RTO) repre-
sents the dominant effect . Transfer time becomes RTT + RTO + ideal send time, as 
captured in Equation 2 . The goodput collapse represents a transition between the 
two behavior modes . 

Figure 2 gives some intuition with regard to Equations 1 and 2 . We substitute block-
Size = 64KB, 256 KB, 1024 KB, and 64 MB, as well as RTT = 1 ms, and RTO = 200 
ms . Before the onset of incast (Equation 1), the goodput increases as N increases, 
although with diminishing rate, asymptotically approaching the full link bandwidth . 
The curves move vertically upwards as block size increases . This reflects the fact 
that larger blocks result in a larger fraction of the ideal transfer time spent transmit-
ting data, versus waiting for an RTT to acknowledge that the transmission com-
pleted . After incast occurs (Equation 2), RTO dominates the transfer time for small 
block sizes . Again, larger blocks lead to RTO forming a smaller ratio versus ideal 
transmission time . The curves move vertically upwards as block size increases . 

Figure 2: Flow rate model for incast, showing ideal behavior (solid lines, Equation 1) and incast 
behavior caused by RTOs (dotted lines, Equation 2). The incast goodput collapse comes from 
the transition between the two TCP operating modes.
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Empirical Verification

Figure 3: Empirical verification of flow rate incast model. Error bars represent 95% confidence 
interval around the average of five repeated measurements. This shows that (1) incast goodput 
collapse begins at N = 2 senders, and (2) behavior after goodput collapse verifies Equation 2. 

This model matches well with our empirical measurements . Figure 3 superposi-
tions the model on our previously presented data in [18] . There, we fix block size at 
256 KB and set RTO to 100 ms and 200 ms . The switch is a Nortel 5500 (4 KB per 
port) . For simplicity, we use RTT = 1 ms for the model . Goodput collapse begins at 
N = 2, and we observe behavior for Equation 2 only . The empirical measurements 
(solid lines) match the model (dotted-lines) almost exactly . 

Figure 4: Empirical verification of flow rate TCP model before onset of incast. RTO is 200 ms. 
Error bars represent 95% confidence interval around the average of five repeated measure-
ments. This shows (1) that behavior before goodput collapse verifies Equation 1, and (2) the 
onset of incast goodput collapse predicted by switch buffer overflow during slow start (Equa-
tion 3).

We use a more deeply buffered switch to verify Equation 1 . As we discuss later, 
the switch buffer size determines the onset of incast . Figure 4 shows the behav-
ior using the HP Procurve 5412 switch (64 KB per port) . Behavior before goodput 
collapse qualitatively verifies Equation 1—the goodput increases as N increases, 
although with diminishing rate; the curves move vertically upwards as block size 
increases . We can see this graphically by comparing the curves in Figure 4 before 
the goodput collapse to the corresponding curves in Figure 2 . 

Takeaway: Flow rate model captures behavior before onset of incast. TCP RTO domi-
nates behavior after onset of incast. 

Predicting the Onset of Incast

Figure 4 also shows that goodput collapse occurs at different N for different block 
sizes . We can predict the location of the onset of goodput collapse by detailed mod-
eling of TCP slow start and buffer occupancy . Table 1 shows the slow start conges-
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tion window sizes versus each packet round trip . For 16 KB blocks, 12 concurrent 
senders of the largest congestion window of 5864 bytes would require 70368 bytes 
of buffer, larger than the available buffer of 64 KB per port . Goodput collapse 
begins after N = 13 concurrent senders . The discrepancy of 1 comes from the fact 
that there is additional “buffer” on the network beyond the packet buffer on the 
switch, e .g ., packets in flight, buffer at the sender machines, etc . According to this 
logic, goodput collapse should take place according to Equation 3 . The equation 
accurately predicts that for Figure 4, the goodput collapse for 16 KB, 32 KB, and 64 
KB blocks begin at 13, 7, and 4 concurrent senders, respectively, and for Figure 3, 
the goodput collapse is well underway at 2 concurrent senders . 

Round trip 16KB blocks 32KB blocks 64KB  blocks 128KB blocks 

1 1,448  1,448  1,448  1,448 

2 2,896  2,896  2,896  2,896 

3 5,792  5,792  5,792  5,792 

4 5,864 11,584 11,584 11,584 

5 10,280 23,168 23,168 

6 19,112 46,336 

7 36,776

Table 1: TCP slow start congestion window size in bytes versus number of round trips. We veri-
fied using sysctl that Linux begins at 2x base MSS, which is 1448 bytes.

Takeaway: For small flows, the switch buffer space determines the onset of incast. 

Second Order Effects

Figure 4 also suggests the presence of second-order effects not explained by Equa-
tions 1 to 3 . Equation 3 predicts that goodput collapse for 128 KB blocks should 
begin at N = 2 concurrent senders, while the empirically observed goodput collapse 
begins at N = 4 concurrent senders . It turns out that block sizes of 128 KB represent 
a transition point from RTO-during-slow-start to more complex modes of behavior . 

We repeat the experiment for block size = 128 KB, 256 KB, 512 KB, and 1024 KB . 
Figure 5 shows the results, which includes several interesting effects . 
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Figure 5: Second-order effects other than RTO during slow start. Measurements done on HP 
Procurve 5412 switches (64 KB per port). RTO is 200 ms. Error bars represent 95% confidence 
interval around the average of five repeated measurements. Showing (1) partial RTOs more 
accurately modeling incast behavior for large blocks, (2) transition between single and multiple 
partial RTOs, and (3) triple duplicate ACKs causing more gradual, block size–independent 
onset of incast.

First, for block size = 512 KB and 1024 KB, the goodput immediately after the 
onset of incast is given by Equation 4 . It differs from Equation 2 by the multiplier 
a for the RTO in the denominator . This a is an empirical constant and represents 
a behavior that we call partial RTO . What happens is as follows . When RTO takes 
place, TCP SACK (turned on by default in Linux) allows transmission of further 
data, until the congestion window can no longer advance due to the lost packet . 
Hence, the link is idle for a duration of less than the full RTO value . Hence we call 
this effect partial RTO . For block size = 1024 KB, a is 0 .6, and for block size = 512 
KB, a is 0 .8 . 

Second, beyond a certain number of concurrent senders, a transitions to 
something that approximately doubles its initial value (0 .6 to 1 .0 for block size = 
1024 KB, 0 .8 to 1 .5 for block size = 512 KB) . This simply represents that two partial 
RTOs have occurred . 

Third, the goodput collapse for block size = 256 KB, 512 KB, and 1024 KB is more 
gradual compared with the cliff-like behavior in Figure 4 . Further, this gradual 
goodput collapse has the same slope across different block size . Two factors 
explain this behavior . First, flows with block size greater than 128 KB have a lot 
more data to send even after the buffer space is filled with packets sent during 
slow start (Equation 3 and Table 1) . Second, even when the switch drops packets, 
TCP can sometimes recover . Empirical evidence of this fact exists in Figure 4 . 
There, for block size = 16 KB and N = 13 to 16 concurrent senders, at least one of 
five repeated measurements manages to get goodput close to 90% of link capacity . 
Goodput collapse happens for other runs because the packets are dropped in a way 
that a connection with little additional data to send would observe only a single 
or double duplicate ACK and would go into RTO soon after . Larger blocks suffer 
less from this problem because the ongoing data transfers trigger triple duplicate 
ACK with higher probability . Thus, the connection retransmits, enters congestion 
avoidance, and avoids RTO . Hence the gradual goodput collapse . 

(1). (2). (3). 
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We should point out that SACK semantics are independent of duplicate ACKs, 
since SACK is layered on top of existing cumulative ACK semantics [23] . 

Takeaway: Second-order effects include partial RTO due to SACK, multiple partial 
RTOs, and triple duplicate ACKs causing more gradual onset of incast. 

Good Enough Model

Unfortunately, some parts of the model remain qualitative . We admit that the full 
interaction between triple duplicate ACKs, slow start, and available buffer space 
requires elaborate treatment far beyond the flow rate and buffer occupancy analy-
sis presented here . 

That said, the models here represent the first time we quantitatively explain major 
features of the incast goodput collapse . Comparable results in related work [28, 25] 
can be explained by our models also . The analysis allows us to reason about the 
significance of incast for future big data workloads later in the article . 

Incast in Hadoop MapReduce

Hadoop represents an interesting case study of how incast affects application-level 
behavior . Hadoop is an open source implementation of MapReduce, a distributed 
computation paradigm that played a key part in popularizing the phrase “big data .” 
Network traffic in Hadoop consists of small flows carrying control packets for var-
ious cluster coordination protocols, and larger flows carrying the actual data being 
processed . Incast potentially affects Hadoop in complex ways . Further, Hadoop 
may well mask incast behavior, because the network forms only a part of the over-
all computation and data flow . Our goal for this section is to answer whether incast 
affects Hadoop, by how much, and under what circumstances . 

We perform two sets of experiments . First, we run stand-alone, artificial Hadoop 
jobs to find out how much incast impacts each component of the MapReduce data 
flow . Second, we replay a scaled-down, real-life production workload using previ-
ously published tools [17] and cluster traces from Facebook, a leading Hadoop user, 
to understand the extent to which incast affects whole workloads . These experi-
ments take place on the same DETER machines as those in the previous section . 
We use only the large buffer Procurve switch for these experiments . 

Stand-alone jobs

Table 2 lists the Hadoop cluster settings we considered . The actual stand-alone 
Hadoop jobs are hdfsWrite, hdfsRead, shuffle, and sort . The first three jobs stress 
one part of the Hadoop I/O pipeline at a time . Sort represents a job with 1-1-1 ratio 
between read, shuffled, and written data . We implement these jobs by modifying 
the randomwriter and randomtextwriter examples that are pre-packaged with 
recent Hadoop distributions . We set the jobs to write, read, shuffle, or sort 20 GB of 
terasort format data on 20 machines . 
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E X P E R I M E N T  S E T U P

Parameter Values 

Hadoop jobs hdfsWrite, hdfsRead, shuffle, sort 

TCP version Linux-2 .6 .28 .1, 1ms-min-RTO 

Hadoop version 0 .18 .2, 0 .20 .2 

Switch model HP Procurve 5412 

Number of machines 20 workers and 1 master 

fs .inmemory .size .mb 75, 200 

io .file .buffer .size 4096, 131072 

io .sort .mb 100, 200 

io .sort .factor 10, 100 

dfs .block .size 67108864, 536870912 

dfs .replication 3, 1 

mapred .reduce .parallel .copies 5, 20 

mapred .child .java .opts -Xmx200m, -Xmx512M

Table 2: Hadoop parameter values for experiments with stand-alone jobs

The TCP versions are the same as before—standard Linux 2 .6 .28 .1, and modified 
Linux 2 .6 .28 .1 with tcp_rto_min set to 1 ms . We consider Hadoop versions 0 .18 .2 
and 0 .20 .2 . Hadoop 0 .18 .2 is considered a legacy, basic, but still relatively stable 
and mature distribution . Hadoop 0 .20 .2 is a more fully featured distribution that 
introduces some performance overhead for small jobs [17] . Subsequent Hadoop 
improvements have appeared on several disjoint branches that are currently being 
merged, and 0 .20 .2 represents the last time there was a single mainline Hadoop 
distribution [30] . 

The rest of the parameters are detailed Hadoop configuration settings . Tuning 
these parameters can considerably improve performance, but requires specialist 
knowledge about the interaction between Hadoop and the cluster environment . 
The first value for each configuration parameter in Table 2 represents the default 
setting . The remaining values are tuned values, drawn from a combination of 
Hadoop sort benchmarking [1], suggestions from enterprise Hadoop vendors [4], 
and our own experiences . One configuration worth further explaining is dfs 

.replication . It controls the degree of data replication in HDFS . The default 
setting is threefold data replication to achieve fault tolerance . For use cases 
constrained by storage capacity, the preferred method is to use HDFS RAID [14], 
which achieves fault tolerance with 1 .4x overhead, much closer to the ideal onefold 
replication . 
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R E S U LT S

Figure 6: Hadoop stand-alone job completion times and incast overhead. Measurements 
done on HP Procurve 5412 switches (64 KB per port). The error bars show 95% confidence 
intervals from 20 repeated measurements. The confidence intervals are not overlapping for 
both  settings. 

Figure 6 shows the results for Hadoop 0 .18 .2 . We consider two performance met-
rics: job completion time and incast overhead . We define incast overhead according 
to Equation 5, i .e ., the difference between job completion time under default and 1 
ms-min-RTO TCP, normalized by the job completion time for 1 ms-min-RTO TCP . 
The default Hadoop has very high incast overhead, while for tuned Hadoop, the 
incast overhead is barely visible . However, the tuned Hadoop-0 .18 .2 setting leads 
to considerably lower job completion times . 

The results illustrate a subtle form of Amdahl’s Law, which explains overall 
improvement to a system when only a part of the system is being improved . Here, 
the amount of incast overhead depends on how much network data transfers 
contribute to the overall job completion time . The default Hadoop configura-
tions result in network transfers contributing to a large fraction of the overall job 
completion time . Thus, incast overhead is clearly visible . Conversely, for tuned 
Hadoop overall job completion time is already low . Incast overhead is barely visible 
because the network transfer time is low . 

We repeat these measurements on Hadoop 0 .20 .2 . Compared with Hadoop 0 .18 .2, 
the more recent version of Hadoop sees a performance improvement for the default 
configuration . For the optimized configuration, Hadoop 0 .20 .2 sees performance 
overhead of around 10 seconds for all four job types . This result is in line with our 
prior comparisons between Hadoop versions 0 .18 .2 and 0 .20 .2 [17] . Unfortunately, 
10 seconds is also the performance improvement for using TCP with 1ms-min-
RTO . Hence, the performance overhead in Hadoop 0 .20 .2 masks the benefits of 
addressing incast . 
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Takeaway: Incast does affect Hadoop. The performance impact depends on cluster 
configurations, as well as data and compute patterns in the workload. 

Real-life Production Workloads

The results in the above subsection indicate that to find out how much incast 
really affects Hadoop, we must compare the default and 1 ms-min-RTO TCP while 
replaying real-life production workloads . 

Previously, such evaluation capabilities have been exclusive to enterprises that 
run large-scale production clusters . Recent years have witnessed a slow but steady 
growth of public knowledge about front-line production workloads [29, 10, 17, 15, 
9], as well as emerging tools to replay such workloads in the absence of production 
data, code, and hardware [17, 16] . 

W O R K L O A D  A N A LY S I S

We obtained seven production Hadoop workload traces from five companies in 
social networking, e-commerce, telecommunications, and retail . Among these 
companies, only Facebook has so far allowed us to release their name and syn-
thetic versions of their workload . We do have permission to share some summary 
statistics . The full analysis is under publication review . 

Several observations are especially relevant to incast . Consider Figure 7, which 
shows the distribution of per job input, shuffle, and output data for all workloads . 
First, all workloads are dominated by jobs that involve data sizes of less than 1 GB . 
For jobs so small, scheduling and coordination overhead dominate job completion 
time . Therefore, incast will make a difference only if the workload intensity is high 
enough that Hadoop control packets alone would overwhelm the network . Second, 
all workloads do contain jobs at the 10s TB or even 100s TB scale . This compels the 
operators to use Hadoop 0 .20 .2 . This version of Hadoop is the first to incorporate 
the Hadoop fair scheduler [29] . Without it, the small jobs arriving behind very 
large jobs would see FIFO head of queue blocking and would suffer wait times of 
hours or even days . This feature is so critical that cluster operators use it despite 
the performance overhead for small jobs . Hence, it is likely that in Hadoop 0 .20 .2, 
incast will be masked by the performance overhead . 

W O R K L O A D  R E P L AY

Figure 7: Per job input, shuffle, and output size for each workload. FB-* workloads come from a 
six-month cluster trace in 2009 and a 45-day trace in 2010. CC-* workloads come from traces of 
up to two months long at various customers of Cloudera, which is a vendor of enterprise Hadoop.
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We replay a day-long Facebook 2009 workload on the default and 1 ms-min-RTO 
versions of TCP . We synthesize this workload using the method in [17] . It captures 
in a relatively short synthetic workload the representative job submission and 
computation patterns for the entire six-month trace . 

Our measurements confirm the hypothesis earlier . Figure 8 shows the distribution 
of job completion times . We see that the distribution for 1 ms-min-RTO is 10–20 
seconds right-shifted compared with the distribution for default TCP . This is in 
line with the 10–20 seconds overhead we saw in the workload-level measurements 
in [17], as well as the stand-alone job measurements earlier in the article . The 
benefits of addressing incast are completely masked by overhead from other parts 
of the system . 

Figure 8: Distribution of job completion times for the FB-2009 workload.

Figure 9 offers another perspective on workload-level behavior . The graphs show 
two sequences of 100 jobs, ordered by submission time, i .e ., we take snapshots of 
two continuous sequences of 100 jobs out of the total 6000+ jobs in a day . These 
graphs indicate the behavior complexity once we look at the entire workload of 
thousands of jobs and diverse interactions between concurrently running jobs . The 
10–20 seconds performance difference on small jobs becomes insignificant noise 
in the baseline . The few large jobs take significantly longer than the small jobs and 
stand out visibly from the baseline . For these jobs, there are no clear patterns to the 
performance of 1 ms-min-RTO versus standard TCP . 

Figure 9: Sequences of job completion times 

The Hadoop community is aware of the performance overheads in Hadoop 0 .20 .2 
for small jobs . Subsequent versions partially address these concerns [22] . It would 
be worthwhile to repeat these experiments once the various active Hadoop code 
branches merge back into the next mainline Hadoop [30] . 

Takeaway: Small jobs dominate several production Hadoop workloads. Non-network 
overhead in present Hadoop versions masks incast behavior for these jobs. 
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Incast for Future Big Data Workloads

Hadoop is an example of the rising class of big data computing paradigms, which 
almost always involve some amount of network communications . To understand 
how incast affects future big data workloads, one needs to appreciate the tech-
nology trends that drive the rising prominence of big data, the computational 
demands that result, and the countless design and mis-design opportunities, as 
well as the root causes of incast . 

We believe that the top technology trends driving the prominence of big data 
include (1) increasingly easy and economical access to large-scale storage and 
computation infrastructure [11, 7]; (2) ubiquitous ability to generate, collect, and 
archive data about both technology systems and the physical world [19]; and (3) 
growing desire and statistical literacy across many industries to understand and 
derive value from large datasets [2, 13, 24, 20] . 

Several data analysis trends emerge, confirmed by the cluster operators who pro-
vided the traces in Figure 7:

1 .  There is increasing desire to do interactive data analysis, as well as streaming 
analysis . The goal is to have humans with non-specialist skills explore diverse 
and evolving data sources, and once they discover a way to extract actionable 
insights, such insights should be updated based on incoming data in a timely and 
continuous fashion . 

2 .  Bringing such data analytic capability to non-specialists requires high-level 
computation frameworks built on top of common platforms such as MapReduce . 
Examples of such frameworks in the Hadoop MapReduce ecosystem include 
HBase, Hive, Pig, Sqoop, Oozie, and others . 

3 .  Data sizes grow faster than the size per unit cost of storage and computation 
infrastructure . Hence, efficiently using storage and computational capacity are 
major concerns . 

Incast plays into these trends as follows . The desire for interactive and stream-
ing analysis requires highly responsive systems . The data sizes required for 
these computations are small compared with those required for computations on 
historical data . We know that when incast occurs, the RTO penalty is especially 
severe for small flows . Applications would be potentially forced to either delay the 
analysis response or give answers based on partial data . Thus, incast could emerge 
as a barrier for high quality interactive and streaming analysis . 

The desire to have non-specialists use big data systems suggests that functionality 
and usability should be the top design priorities . Incast affects performance, which 
can be interpreted as a kind of usability . It becomes a priority only after we have 
a functional system . Also, as our Hadoop experiments demonstrate, performance 
tuning for multi-layered software stacks would need to confront multiple layers of 
complexity and overhead . 

The need for storage capacity efficiency entails storing compressed data, perform-
ing data deduplication, or using RAID instead of data replication to achieve fault 
tolerance . In such environments, memory locality becomes the top concern, and 
disk or network locality becomes secondary [8] . If the workload characteristics 
permit a high level of memory or disk locality, network traffic gets decreased, the 
application performance increases, and incast becomes less of a concern . 
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The need for computational capacity efficiency implies that computing infrastruc-
ture needs to be more highly utilized . Network demands will thus increase . Con-
solidating diverse applications and workloads multiplexes many network traffic 
patterns . Incast will likely occur with greater frequency . Further, additional TCP 
pathologies may be revealed, such as the similarly phrased TCP outcast problem, 
which affects link share fairness for large flows [26] . 

Recommendations

Set TCP minimum RTO to 1 ms. 

Future big data workloads likely reveal TCP pathologies other than incast . Incast 
and similar behavior are fundamentally transport-level problems . It is not resource 
effective to overhaul the entire TCP protocol, redesign switches, or replace the 
datacenter network to address a single problem . Setting tcp_rto_min is a configu-
ration parameter change that produces low overhead, is immediately deployable, 
and, as we hope our experiments show, does no harm inside the datacenter . 

Deploy better tracing infrastructure. 

It is not yet clear how much incast will impact future big data workloads . This 
article discusses several contributing factors, but we need further information to 
determine which factors dominate under what circumstances . Better tracing helps 
remove the uncertainty . Where possible, such insights should be shared with the 
general community . We hope the workload comparisons in this article encourage 
similar, cross-organizational efforts elsewhere . 

Apply a scientific design process. 

We believe future big data systems demand a departure from some design 
approaches that emphasize implementation over measurement and validation . 
The complexity, diversity, scale, and rapid evolution of such systems imply that 
mis-design opportunities proliferate, redesign costs increase, experiences rapidly 
become obsolete, and intuitions become hard to develop . Our approach in this 
article involves performing simplified experiments, developing models based on 
first principles, empirically validating these models, then connecting the insights 
to real life by introducing increasing levels of complexity . We hope our experiences 
tackling the incast problem demonstrate the value of a design process rooted in 
empirical measurement and evaluation . 
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A new generation of data storage systems is now emerging to support high-
performance, large-scale Web services whose demands are ill-met by traditional 
RDBMSes . Dubbed the NoSQL movement, this trend has produced systems char-
acterized by data stores that provide weak consistency guarantees and limit the 
system interface . We argue that these systems have too aggressively capitulated, 
that much stronger consistency, availability, and fault-tolerance properties are 
possible, and, further, that it is possible to provide these properties while offering 
a rich API, although not as rich as full-blown SQL . We report on a recent system 
called HyperDex, describe the new techniques it uses to combine strong consis-
tency and fault-tolerance guarantees with high-performance, and go through a 
scenario to see how the system can be used by real applications .

ACID and BASE

During the golden age of databases, when the canonical database users were banks 
and other financial institutions, providing strong guarantees of atomicity, consis-
tency, isolation, and durability (ACID) were of paramount concern . More recently, 
however, the focus of data storage innovation has shifted away from supporting 
financial transactions to enabling Web services, such as Google, Facebook, and 
Amazon .com, that need to respond to queries efficiently, scale up to vast numbers 
of users, and tolerate the server failures that are inescapable at Web scale . 

The flagship for this shift away from traditional RDBMS concerns towards 
properties that are better suited for Web services is a movement called NoSQL . 
This movement represents a constellation of new data storage systems that forego 
the traditional ACID guarantees of RDBMSs, along with their SQL interface, for 
improvements along the dimensions that matter to scalable Web applications . 
Although the NoSQL name suggests that the removal of SQL is the driving force 
behind the movement, it is really just the focal point for an overhaul of the storage 
system interface . For example, rather than having rigid schemas and support for 
complex search queries, most NoSQL systems have relaxed schemas and favor key-
based operations whose implementation can be made scalable and efficient .

Yet the NoSQL movement has, in many ways, tossed the baby out with the bath-
water . Most NoSQL systems subscribe to an alternative to ACID called the BASE 
approach, whose fundamental pillars are Basically Available service, Soft-State, 
and Eventually Consistent data . It is true that achieving Web scale will require 
hard tradeoffs between conflicting desires; yet the BASE approach represents a 
capitulation across all fronts . It provides no fault-tolerance guarantee and achieves 
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no longevity for data, and typical BASE systems struggle to always return up-to-
date results even with no failures . The name is catchy, but the resulting systems 
are quite weak and are useful only to a small niche of applications that can accept 
best-effort guarantees .

In this article, we provide a brief introduction to HyperDex, a second-generation 
distributed key-value store that is fast, scalable, strongly consistent, and fault-
tolerant . By strongly consistent, we mean that a get will always return the latest 
value placed in the system by a put, not just eventually, but always, even during 
failures and reconfiguration . By fault-tolerant, we mean a system that can tolerate 
up to f failures, whether they are node (server) failures or network partitions 
affecting up to f hosts . And by fast, we mean a system with a streamlined 
implementation that, on the industry-standard YCSB benchmark, outperforms 
Cassandra [6] and MongoDB [1], two popular NoSQL systems, by a factor of 2 to 
13 . And above all, HyperDex supports a new lookup primitive by which objects 
stored in the system can be recalled by their attributes . Thus HyperDex combines 
the scalability and high performance properties of NoSQL systems with the 
consistency and fault-tolerance properties of RDBMSs, while providing a rich API . 
This unique combination of features is made possible by two novel techniques, 
hyperspace hashing and value dependent chaining, that determine the way 
HyperDex distributes its data .

Hyperspace Hashing

A key-value store, as its name suggests, provides users access to its data through 
key-based operations, such as put and get . Most large-scale key-value stores that 
support horizontal scaling either use a hashing function to map keys to nodes, such 
as Cassandra [6] and Dynamo [4], or partition the keyspace into contiguous regions 
that are assigned to different nodes by a centralized coordinator, such as BigTable 
[3] or HBase [2] . 

In contrast, HyperDex uses a new object placement method, called hyperspace 
hashing, that takes into account many object attributes when mapping objects to 
servers . Hyperspace hashing creates a multidimensional Euclidean space, where 
each dimension corresponds to one searchable attribute, that is, an attribute that 
may be used as part of a search query . An object’s position in this space is specified 
by its coordinate, which can be determined by hashing the object’s searchable 
attribute values . Objects’ schemas are fixed, and different object types necessarily 
reside in different hyperspaces . Of course, nothing prevents a HyperDex 
deployment from having multiple spaces with the same hyperspace structure .

For example, a space of objects with “first name,” “last name,” and “phone number” 
searchable attributes corresponds to a three-dimensional hyperspace where 
each dimension corresponds to one attribute in the original object . Such a space 
is depicted in Figure 1 . There are three objects in this space . The circular point 
is “John Smith” whose phone number is 555-8000 . The square point is “John 
Doe” whose phone number is 555-7000 . The diamond point is “Jim Bob” whose 
phone number is 555-2000 . Anyone named “John” must map to somewhere in the 
plane labeled “John .” Similarly, anyone with the last name “Smith” must map to 
somewhere within the plane labeled “Smith .” Naturally, all people named “John 
Smith” must map to somewhere along the line where these two planes intersect .
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Figure 1: Simple hyperspace hashing in three dimensions. Each plane passes through all points 
corresponding to a specified query. Together the planes represent a line through all phone 
numbers for a given first name and last name pair. The cubes show two of the eight zones in 
this hyperspace each of which is handled by different servers.

For each space, HyperDex tessellates the hyperspace into disjoint pieces called 
zones, and assigns nodes (servers) to each zone . Figure 1 shows two of these 
assignments . Notice that the line for “John Smith” only intersects two out of the 
eight assignments . Consequently, performing a search for all phone numbers of 
“John Smith” requires contacting only two nodes . Furthermore, the search could 
be made more specific by restricting it to all people named “John Smith” whose 
phone number falls between 555-5000 and 555-9999 . Such a search contacts only 
one out of the eight servers in this hypothetical deployment .

This simple object-mapping technique is not without pitfalls . Objects with many 
attributes translate to hyperspaces with many dimensions . The volume of the 
resulting hyperspace grows exponentially in the number of dimensions/attributes . 
A naïve approach would be to restrict the number of searchable attributes, and 
thus the size of the hyperspace . Such a technique limits the utility of hyperspace 
hashing . HyperDex avoids exponential growth of the hyperspace while maintain-
ing the utility of hyperspace hashing by creating multiple independent and smaller 
hyperspaces, called subspaces . A large object may be represented in constant-size 
hyperspaces, the number of which is linear to the number of searchable attributes 
in the object . Here, HyperDex trades storage efficiency for search efficiency .

An additional pitfall with naïve hyperspace hashing is that key lookups would be 
equivalent to single attribute searches, which would likely be inefficient compared 
to key lookups in other key-value stores . Fortunately, using subspace partition-
ing, it is trivial to construct a subspace containing just the key of the object . This 
ensures that a get operation will always contact exactly one server in this sub-
space .

Value-Dependent Chaining

In addition to providing good performance and scalability, a distributed storage 
system must also provide fault tolerance . Much like other distributed storage sys-
tems, HyperDex achieves fault tolerance through data replication . However, Hyper-
Dex’s use of hyperspace hashing and subspace partitioning introduce additional 
challenges, as the two features in combination force the same object to be stored 

First Name

Phone Number

Last Name

John

Smith
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at more than one server, which in turn presents problems of consistency between 
these replicas . As the location of an object in each subspace can change with every 
object update, the location of the replicas will also change . The replication scheme 
must therefore be able to manage replica sets that change frequently . 

One replication approach, used in NoSQL systems that preceded HyperDex, would 
be to use an eventually consistent update mechanism . Such a mechanism would 
allow each replica to accept updates, and at a later point, the updates would be 
propagated to the rest of the replicas . However, changes to the replica set from mul-
tiple concurrent updates could result in inconsistency across subspaces . This type 
of inconsistency can accumulate over time and result in significant divergence 
between the contents of different subspaces . Furthermore, detecting such diver-
gences is non-trivial and likely involves some form of all-to-all communication . 

Instead, HyperDex introduces a new replication protocol called value-depen-
dent chaining that efficiently provides total ordering on replica set updates . 
In value-dependent chaining, each update is propagated to the affected server 
nodes through a well-defined linear pipeline . Updates flow down the chain, 
while acknowledgments flow back up the chain . The head of the chain is the node 
responsible for that object’s key, called a point leader . Because all value dependent 
chains for the same object have the same point leader, all updates to that object can 
be fully ordered with respect to each other . Node failures lead to broken chains, 
which are fixed automatically by shifting all nodes below the point of breakage up a 
spot and adding a new spare node at the tail of the chain to restore the desired level 
of fault tolerance . Failures of the point leader are handled the same way, with the 
backup point leader becoming the new node responsible for that zone . This linear 
ordering ensures the invariant that there is never any confusion about which nodes 
have seen the most fresh updates; consequently, there is no need for expensive 
mechanisms such as voting, leader election, or quorum writes .

Value-dependent chains also provide an additional property for free: all key opera-
tions are strongly consistent . The same chaining mechanisms that consistently 
update the replica set ensure consistent updates to the objects, without any over-
head beyond what is required to maintain consistency of the replica set .

Tutorial

HyperDex has been fully implemented and is freely available for download . It 
includes all of the features we have described in this article . It is also being actively 
developed, with a small but growing development community that is eager to add 
developer-friendly features and additional language bindings . In this section, we 
will illustrate how a simple phonebook application uses HyperDex as its storage 
back-end .

Creating a HyperDex Space

A phonebook application needs to, at a bare minimum, keep track of a person’s first 
name, last name, and phone number . In order to distinguish unique users, it might 
assign to each a user ID . We can instruct HyperDex to create a suitable space for 
holding such objects with the following command:

hyperdex-coordinator-control 

 --host 127.0.0.1 --port 6970 

 add-space << EOF 
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space phonebook 

dimensions username, first, last 

 phone (int64) 

key username auto 1 3 

subspace first, last, phone auto 3 3 

EOF 

This command creates a new space called phonebook that stores objects with the 
following four searchable attributes: username, first name, last name, and phone 
number . In this example, the space creation command instructs HyperDex to 
create a 1-dimensional subspace for the key, and a 3-dimensional subspace for the 
remaining attributes .

The replication level is specified by the “1 3” and “3 3” parameters at the end of the 
key and subspace line . This instructs HyperDex to divide the key subspace into 21 
zones and the subspace for the remaining attributes into 23 zones, and to replicate 
each zone on to three nodes . As a general rule, a HyperDex administrator should 
configure HyperDex to not have significantly more zones per subspace than the 
number of nodes in the deployment .

Basic Operations

With a hyperspace defined, our phonebook application can connect to HyperDex 
and begin issuing basic get and put requests . We illustrate the HyperDex API using 
our Python client .

import hyperclient 

c = hyperclient.Client(‘127.0.0.1’, 1234) 

This code snippet instructs the client bindings to talk to the HyperDex control-
ler and retrieve the current HyperDex configuration . The controller ensures that 
the clients always receive the most up-to-date configuration . If the configuration 
changes, say, due to failures, the servers will detect that a client is operating with 
an out-of-date configuration and instruct it to retry with the updated HyperDex 
configuration .

Now that our phone application has created a client, it can insert objects in the 
system by issuing put requests:

c.put(‘phonebook’, ‘jsmith1’, 

 {‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024}) 

True 

c.put(‘phonebook’, ‘jd’, 

 {‘first’: ‘John’, ‘last’: ‘Doe’, ‘phone’: 6075557878}) 

True 

The client determines the unique location in the hyperspace for an object, contacts 
the servers responsible, and issues the put request to these servers . Similarly, our 
phone application can retrieve the jsmith1 object by issuing a get request .

c.get(‘phonebook’, ‘jsmith1’) 

{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024} 
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Our phone application can also use HyperDex’s search primitive to retrieve objects 
based on one or more secondary attributes .

[x for x in c.search(‘phonebook’, 

 {‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024})] 

[{‘first’: ‘John’, ‘last’: ‘Smith’, 

  ‘phone’: 6075551024, 

  ‘username’: ‘jsmith1’}] 

[x for x in c.search(‘phonebook’, {‘first’: ‘John’})] 

[{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024, ‘username’: ‘jsmith1’}, 

{‘first’: ‘John’, ‘last’: ‘Doe’, ‘phone’: 6075557878, ‘username’: ‘jd’}] 

[x for x in c.search(‘phonebook’, {‘last’: ‘Smith’})] 

[{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024, ‘username’: ‘jsmith1’}] 

[x for x in c.search(‘phonebook’, {‘last’: ‘Doe’})] 

[{‘first’: ‘John’, ‘last’: ‘Doe’, ‘phone’: 6075557878, ‘username’: ‘jd’}] 

Should the user decide to remove “John Doe” from his/her phonebook, the phone-
book application can remove the object by issuing a delete request:

c.delete(‘phonebook’, ‘jd’) 

True 

[x for x in c.search(‘phonebook’, {‘first’: ‘John’})] 

[{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024, ‘username’: ‘jsmith1’}] 

Finally, if the user wants to locate everyone named “John Smith” from Ithaca 
(area code 607), the phonebook application can issue the following range query to 
HyperDex:

[x for x in c.search(‘phonebook’, 

 {‘last’: ‘Smith’, ‘phone’: (6070000000, 6080000000)})] 

[{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024, ‘username’: ‘jsmith1’}] 

Atomic Read-Modify-Write Operations

HyperDex offers several atomic read-modify-write operations which are impos-
sible to implement in key-value stores with weaker consistency guarantees . These 
operations, in turn, enable concurrent applications that would otherwise be impos-
sible to implement correctly using non-atomic operations . For instance, using 
standard get and put operations, an application cannot ensure that its operations 
will not be interleaved with operations from other clients .

The canonical example for needing atomic read-modify-write operations involves 
two clients who are both trying to update a salary field . One is trying to deduct 
taxes—let’s assume that they are hard-working academics being taxed at the maxi-
mum rate of 36% . The other client is trying to add a $1500 teaching award to the 
yearly salary . So one client will be doing: 

v1=get(salary), v1 = v1 - 0.36*v1; put(salary, v1)

while the other client will be doing:

v2=get(salary), v2 += 1500; put(salary, v2)

where v1 and v2 are variables local to each client . Since these get and put opera-
tions can be interleaved in any order, it is possible for the clients to succeed (so 
both the deduction and the raise are issued) and yet for the salary to not reflect the 
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results! If the sequence is get from client1, get from client2, put from client2, put 
from client1, the raise will be overwritten—a most undesirable outcome .

Atomic read-modify-write operations provide a solution to this problem . Such 
operations are guaranteed to execute without being interrupted by or interleaved 
with any other operation . 

The word “atomic” is often associated with poor performance; however, Hyper-
Dex’s atomic operations are inexpensive and virtually indistinguishable from a 
put, thanks to the use of value-dependent chains . The head of each object’s value-
dependent chain is in a unique position to locally compute the result of the atomic 
operation and, should it succeed, pass the operation down the chain as a normal 
put . Should the operation fail, the remainder of the value-dependent chain does not 
need to be involved at all .

HyperDex supports a few different atomic instructions, the most general of which 
is a conditional_put . A conditional_put performs the specified put operation if and 
only if the value being updated matches a specified condition . 

Continuing with the sample phonebook application, consider extending the appli-
cation for use in login authentication . The phonebook table must then be extended 
to include a password attribute . Intuitively, a user should only be able to change 
his/her password when it matches the password that he/she used to log in . The 
phonebook application can do this by using conditional_put:

c.conditional_put(‘phonebook’, ‘jsmith’, 

 {‘password’: ‘currentpassword’}, 

 {‘password’: ‘newpassword’}) 

True 

c.get(‘phonebook’, ‘jsmith1’) 

{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075552048, 

  ‘password’: ‘newpassword’} 

Although this toy example omits certain implementation details relating to secure 
password storage, it is clear that the conditional_put operation enables behavior 
that is otherwise impossible to achieve with normal get and put operations . Any 
attempt to change the password without providing the previous password will fail:

c.conditional_put(‘phonebook’, ‘jsmith’, 

 {‘password’: ‘wrongpassword’}, 

 {‘password’: ‘newpassword’}) 

False 

As expected, the conditional_put failed because the password is not, in fact, 
“wrongpassword” .

HyperDex offers additional atomic operations . In many applications, the clients 
will want to increment or decrement a numerical field in the style of Google +1 and 
Reddit up/down votes . While implementing this is trivial with conditional_put, the 
implementation may require multiple attempts as the conditional_put operations 
fail in the face of contention . Atomic increment operations, in contrast, will not fail 
spuriously, and do not require the user to have retrieved the old value before start-
ing the operation .

We further extend our sample phonebook application to track the number of times 
each user’s information is viewed by adding a “lookups” attribute . The phonebook 
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application can consistently manage this counter using the atomic_increment 
operation:

c.atomic_increment(‘phonebook’, ‘jsmith1’, {‘lookups’: 1}) 

True 

The atomic increment is as inexpensive as a put operation . This enables our appli-
cation to log each lookup quickly and efficiently .

Asynchronous Operations

So far, we submitted synchronous operations to the key-value store, where the 
client had just a single outstanding request and waited patiently for that request to 
complete . In high-throughput applications, clients may have a batch of operations 
they want to perform on the key-value store . The standard practice in such cases is 
to issue asynchronous operations, where the client does not immediately wait for 
each individual operation to complete . HyperDex has a very versatile interface for 
supporting this use case .

Asynchronous operations allow a single client library to achieve higher through-
put by submitting multiple simultaneous requests in parallel . Each asynchronous 
operation returns a small token that identifies the outstanding asynchronous 
operation, which can then be used by the client, if and when needed, to wait for the 
completion of selected asynchronous operations .

Every operation we’ve covered so far in the tutorials (e .g ., get) has a corresponding 
version prefixed with async_ for performing that operation asynchronously . The 
basic pattern of usage for asynchronous operations is to initiate the asynchronous 
operation, do some work, perhaps issue more operations, and then wait for selected 
asynchronous operations to complete . This enables the application to continue to 
do other work while HyperDex performs the requested operations . 

Here’s how we could insert the “jsmith” user asynchronously:

d = c.async_put(‘phonebook’, ‘jsmith1’, 

 {‘first’: ‘John’, ‘last’: ‘Smith’,} 

  ‘phone’: 6075551024}) 

d 

<hyperclient.DeferredInsert object at 0x7f2bbc3252d8> 

do_work() 

d.wait() 

True 

d = c.async_get(‘phonebook’, ‘jsmith1’) 

d.wait() 

{‘first’: ‘John’, ‘last’: ‘Smith’, ‘phone’: 6075551024} 

Notice that the return value of the first d .wait() is True . This is the same return 
value that would have come from performing c .put( . . .), except the client was free to 
do other computations while HyperDex servers were processing the put request . 
Similarly, the second asynchronous operation, async_get, queues up the request on 
the servers, frees the client to perform other work, and yields its results only when 
wait is called .

This allows for powerful applications . For instance, it is possible to issue thou-
sands of requests and then wait for each one in turn without having to serialize the 
round trips to the server . Note that HyperDex may choose to execute concurrent 
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asynchronous operations in any order . It’s up to the programmer to order requests 
by calling wait appropriately .

Fault Tolerance

HyperDex provides a strong fault-tolerance guarantee to its clients . Anywhere 
during the preceding tutorial, feel free to kill off up to two of the nodes in the sys-
tem . You will be able to continue the tutorial, as the value-dependent chains will 
detect the failures and route around them . If you bring up new nodes, they will be 
integrated into the chains seamlessly by the coordinator . The particular fault-tol-
erance level f, which determines the number of simultaneous failures a space can 
withstand, is entirely up to the application to determine . Of course, there are trade-
offs; while a large f will yield a more robust system, it will also increase opera-
tion latencies, and the improvement in actual reliability is subject to diminishing 
returns . The critical issue here is that this tradeoff is not part of the HyperDex 
substrate but is left up to applications to determine . 

Performance

In an accompanying report [5], we carefully quantify HyperDex’s performance 
using the industry-standard YCSB benchmark against Cassandra and MongoDB . 
While a similar performance study is beyond the scope of this introduction to 
HyperDex, we will report the major takeaway: HyperDex is very fast . It is approxi-
mately 2 to 13 times faster than the fastest of the other two NoSQL systems . There 
are two reasons for this huge gap in performance, which is even more striking 
because the other two systems are left in their preferred configurations, where 
they provide weak fault-tolerance and consistency guarantees . First, hyperspace 
hashing provides an enormous speedup for search-oriented operations . There 
is a qualitative difference between systems that enumerate objects by iterating 
through the keyspace and HyperDex, which can use the hyperspace to efficiently 
pick the desired items, so the 13x improvement could have been even higher if the 
benchmark’s dataset had been larger . Second, HyperDex has a more streamlined 
implementation that is 2 to 4 times faster than Cassandra and MongoDB even at 
traditional get/put workloads . The precise details of the comparisons are in the 
technical report, and the beauty of open source is that there is tangible proof in a 
public repository that anyone can trivially check out and execute .

Summary

The emergence of large-scale Web applications has significantly altered the 
trajectory of distributed storage systems . From the radically different require-
ments of Web applications, NoSQL systems have emerged to fill the gap left by 
traditional databases . Early NoSQL systems used simple techniques, such as 
consistent hashing and parallel RPCs, to distribute their data, and thus were not 
able to make nuanced tradeoffs between desirable properties . In this article we 
presented HyperDex, a new high-performance key-value store that provides strong 
consistency guarantees, fault-tolerance against failures whose maximum size can 
be bounded, and high performance coupled with a rich API . These techniques are 
made possible through the use of hyperspace hashing and value-dependent chain-
ing, two novel techniques for laying out and managing data . We hope that Hyper-
Dex, with its strong consistency and fault-tolerance guarantees, high performance, 
and rich API, will enable a new class of applications that were not served well by 
existing NoSQL systems .
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Doug Hughes introduced me to Nathan Milford when he learned that I was looking 
for someone who could talk about his experience using Cassandra . Before talk-
ing with Nathan, I read his excellent slide deck about working with Cassandra [1], 
and watched part of his presentation of these slides [2] from the Cassandra NYC 
conference last December .

After a short phone conversation over the noise in his datacenter, Nathan agreed to 
continue our talk by email .

Rik: Could you tell us a little about what Outbrain does, to provide us with the 
background we need to understand why you chose to use Cassandra?

Nathan: I’ll just hit you with what my marketing team would have me say:

Outbrain is the leading content discovery platform, helping publishers, 
brands, and agencies reach a highly engaged audience through distribution 
on leading media sites . Outbrain works with publishers like CNN, Fox News, 
Hearst, Rolling Stone, and MSNBC as well as brands and agencies, including 
American Express, P&G, General Electric, Media Contacts, and Starcom to 
increase site traffic and generate new revenue through customized links to 
recommended content .

In short, we’re a content discovery and recommendation engine . We’ve got dozens 
of paid and organic recommendation algorithms that dig into our Hadoop, Solr, 
Cassandra, and other clusters and return, not only other content that is like what 
you’re reading, but other content that will likely be interesting to you .

Rik: That does sound interesting, but could you provide more detail?

Nathan: Gladly . We use Cassandra as a persistent cache of calculated recommen-
dations .

The (somewhat simplified) flow for our operation goes something like this:

u A user opens up a an article on, say, CNN .com .
u Our widget loads from a CDN and pings one of our three datacenters with the 

site and document IDs .
u A bevy of Tomcat instances behind HAProxy grab the document info, then query 

Memcached looking for pre-calculated recommendations for that document .
u If Memcached doesn’t have it, Tomcat will ping another app we call the 

CacheWarmer .
u If it is a new document, the CacheWarmer will send a request into ActiveMQ 

(a commonly used queue and message broker) to have various offline processes 
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crawl, index, and calculate the recommendations for it . This process can (de-
pending on the algorithms involved) hit Solr, Hadoop/Hive, MogileFS, MySQL, 
Cassandra, and/or a bunch of other internal processes that our brilliant R&D 
teams have concocted .

u The calculated recommendation data is then put into Memcached, where it will 
eventually expire, and into Cassandra, where it lives for much longer but also will 
eventually expire, thanks to Cassandra’s TTL feature .

u If it is a document we know about, we hit up Cassandra for it and float it into 
Memcached .

We’re also building other Cassandra clusters for other uses . We have a large docu-
ment mapping table in MySQL that is essentially a key/value store, and a good fit 
for Cassandra’s data model .

Before we started using data stores other than MySQL, we had a single-master 
MySQL setup with slaves distributed across datacenters . Since we’re read-heavy, 
it makes sense . However, data and traffic keep on growing, and fixing replication 
issues and managing a brittle topology requires more and more attention .

When not all of your data needs the features MySQL offers, you come to a place 
where you weigh the advantages of federating your data out into appropriate data 
stores and having to manage a menagerie of newfangled systems versus fitting all 
your data into MySQL and dealing with the feature overhead and keeping a system 
everyone already knows .

It’s not for everyone, but we chose to use the menagerie .

Rik: Why did you  choose Cassandra over other NewSQL databases? Were others 
in the running?

Nathan: We started using TokyoTyrant on SSDs, but at the time the project had a 
small community, the developer was not always responsive, and it was a bit unpol-
ished operationally . It was not crash-safe, and managing replication was a chal-
lenge sometimes, in that the mechanism was pretty basic .

We looked into HBase, but we were turned off by the HDFS append patches you 
needed to mess with at the time (it has since gotten better and more reliable) . Also, 
we wanted something that would reduce operational complexity, so running mul-
tiple Hadoop clusters just to run HBase on top of it as well as keeping the clusters 
in sync seemed like a lot of work .

Cassandra hit the sweet spot for performance and operational complexity . Dealing 
with replication across multiple datacenters is pretty trivial .

The biggest difficulty is getting people to model data for it properly and not treat it 
like MySQL . Once you model the data and have a query plan that suits it, Cassan-
dra is pretty hands-off from an operational perspective .

We’ve been using Cassandra in production since version 0 .5 .0 (1 .1 was just 
released) . We’ve had some rough patches, but nothing wildly discouraging, and, for 
the most part, it just works .

Since 0 .5 .0 we’ve gotten a SQL-like query language called CQL, JDBC drivers, roll-
ing upgrades, live schema management, encryption, compression, TTLs, secondary 
indexes, distributed counters, pluggable everything, performance parity between 
reads and writes, and a wildly long list of other great work by all the committers 
and community .
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I think one of Cassandra’s strongest attributes is the Cassandra community, which 
is very open and accepting of even people with the smallest, most trivial use cases . 
You can even get commercial support from the guys at DataStax, all of whom are 
pretty sharp folks .

You also have large players like Twitter and Netflix using it . [Ed .: Netflix is moving 
away from Oracle to use Cassandra exclusively [3, 4] .] Netflix actually showed how 
linearly it scales by doing a stress test scaling from 0 to 288 nodes in EC2 [5] .

Rik: When we talked earlier, you mentioned having a LAN party where everyone 
got Cassandra set up and running in less than 20 minutes . Is it really that easy?

Nathan: Yes . I am one of the organizers of the NYC Cassandra Meetup group along 
with Ed Capriolo, Jake Luciani, Levon Lloyd, and Eric Tamme . Ed had a wonderful 
idea where we’d have everyone bring a laptop (Windows, Mac, and Linux) with a 
recent JVM . We divided people into three groups, told them to plug into a different 
switch representing a different “datacenter,” and had them install the Cassandra 
binary package .

The hardest part was herding everyone into the respective areas and then onto the 
network . It took ~30–40 minutes to get everyone set up with the right network set-
tings and maybe 10 minutes after that to get everyone on the cluster . Shortly after 
that we were inserting a key in “New York” and watching it replicate to “France” 
and “Tokyo” [6] .

Cassandra is pretty complex, but the majority of that complexity exists to keep you 
from having to worry about its complexity .

I do a talk on how easy it is and what a boon it is to not have to deal with replication 
and repair and other administrative junk .

Rik: How did you size up your requirements, that is, the number of Cassandra 
nodes you needed for your application?

Nathan: We were not very scientific about it when we started 2–3 years ago . We do 
30 billion impressions a month, about a billion a day . You can do all the speculation 
and math and planning in the world, but at that scale, you just need to put traffic on 
it and let it sink or swim .

For the most part we found it to be a good swimmer .

Ultimately, the first iteration of our cluster was just some spare nodes . Over 
time our data, our traffic, and Cassandra’s performance profile changed and we 
migrated to new hardware while we played with different file systems, disk con-
figs, row and key caching, heap sizes, garbage collectors, etc .

Our current hardware spec is in the slide deck [1], but we have more nodes and are 
running 1 .0 .7 now .

Rik: How difficult is it to add new nodes?

Nathan: It is not difficult really, but it is a reasonably manual process . You need to 
recalculate your ring [7], then start up the new nodes with the correct token (which 
defines what part of the ring they own), then move each node’s token and let them 
shuffle the data .
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It is all a background process and is only limited by your bandwidth . If you have a 
multi-datacenter cluster, and slow transport between them  .  .  . well, you’ll just have 
to wait .

Cassandra is not for every use-case and certainly not for every type of data, but all 
in all, I’m very happy we went with it . It fits a nice niche in our environment and 
the community around it is a joy to participate in .
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Never in my career have I experienced as many things go wrong as I did back in late 
January/early February of 2012 . Strangely, not one of them was in any way related 
to any of the others; they just happened at the same time! Harrowing doesn’t begin 
to cover our feelings in the midst of this maelstrom . I rode out hurricane Opal, as it 
ripped through Alabama, with less stress . We had four unrelated near-disasters in 
the span of about four days, and nearly lost 800 TB of data . This is that story, plus a 
few semi-interesting lessons .

Issue 1

Our problems started with the network . We have monitors in place (e .g ., 
SmokePing [1]) that monitor latency on our wide area network . Our nominal 
latency is about 11 ms between our primary office site and our primary datacen-
ter site . The network between them is an OC-12 which is an optical, leased line 
of about 640 Mbps traversing several carriers . We also have a 100 Mbps Internet 
link which can act as a backup connection, via IPSEC VPN, when the OC-12 is 
down . Occasionally, one of the OC-12 WAN providers has a maintenance or a 
minor service-impacting event, and that latency will jump to around 60 ms as the 
traffic takes an alternate path through the provider’s networks, maintaining the 
same bandwidth . When this happens, the latency consistency (jitter) is relatively 
consistent, meaning that all packets have a round trip time (RTT) tightly clustered 
around 60 ms . 

An example of a major event would be equipment failure on either end; this takes 
down the OC-12 connection entirely . On the day of the incident, we saw latency in 
the 20 ms range but very jittery, which is more characteristic of our backup link 
on 100 Mbps service . This did not appear to be a standard provider-internal path 
reroute . We managed to confirm this theory fairly quickly by running iperf [2] 
between the two sites, yielding a paltry 50 Mbps instead of our more normal 300+ 
Mbps . We opened a ticket with the primary provider, the one to whom we send the 
monthly check .

You may notice that the rerouted OC-12 path has much higher latency than the 100 
megabit VPN path . We believe this is because the rerouted path is being directed 
through a distant state before coming back to NYC, although it is difficult to say for 
certain . There are several carriers who service the end-to-end circuit as we know 
it . We’ve seen cases where the local loop can add a significant amount of latency 
under pathological conditions . The high latency during provider maintenances is 
puzzling and under active investigation .
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A further troubleshooting difficulty with our WAN situation is that we don’t 
actually manage the routers containing the OC-12 linecards . We have a gigabit 
handoff with a partner organization who manages them for us . This means that 
when we have a non-trivial difficulty we need to engage this partner organization 
and the carrier organizations in a coordinated fashion . Such was this case . The 
carrier checked and re-checked the lines and could not find anything wrong . We’ve 
had instances where the OC-12 failback took more than 24 hours, so at first we 
assumed that this was one of those cases; a particular sub-carrier has been known 
to close tickets claiming nothing is wrong many times previously . In turn, we’ve 
repeatedly had to reopen and insist that “No, 60 milliseconds really isn’t normal, 
there’ s definitely something wrong . Please check again!” For this failure, after 
three days without OC-12, we were starting to worry . The worry was less directed 
than it might have been because of three other incidents that all happened while 
this one was occurring, but more on that later .

After many exchanges between carrier and partner, using loopback tests on both 
sides to prove the circuit was up, we isolated the problem to the datacenter side of 
the circuit . Upon further examination, we found that the link between the carrier-
provided OC-12 equipment and the partner-provided OC-12 router, only about 15 
meters of fiber, was the likely culprit . On the carrier side was a long range (LR) 
single-mode fiber-optical transceiver, and on the partner side was an intermediate 
range (IR) fiber-optic transceiver . Going by the specifications, the dB losses for 
both were mismatched . Also, IR transceivers have a range of about 15 km and LR 
have a range of about 40 km . It might be considered good luck that it managed 
to work for four years! We suggested that both sides adopt short range (SR) 
transceivers for the 15 meter distance to avoid overpowering the optical receivers 
on the other end . Neither organization had SR optics on hand . Both would have had 
to order the parts, leading to 2–3 more weeks of running on the 100 megabit backup 
link, which was clearly unacceptable . The local carrier, however, did have an IR 
transceiver on hand . So, after four days and replacing the LR transceiver we were 
up and running again on the primary link!

As a side note, the users were relatively unaffected by all of this because of some 
appliances we use on both ends of our WAN link . Among other useful features, the 
SilverPeak appliances that we use provide dynamic compression and optimization, 
network memory, and QoS:

u Network memory is the capacity to collect streams of data, store the patterns 
that haven’t been seen before on disk buffers on both ends (keyed with a strong 
checksum algorithm), and, when that pattern is recognized on the sender side, 
send the checksum key instead of the entire data stream . The remote side, seeing 
the key on the WAN interface, pulls the data pattern corresponding to the key 
from the local disk and feeds it to the requester over the LAN interface . This 
works in both directions .

u Compression and optimization encompasses both TCP header compression 
and a standard off-the-shelf data compression algorithm to compress the data 
portion of the packets . It also performs optimization on TCP patterns such as 
window and buffer sizes, retransmit rates, etc ., to get better usage of the available 
bandwidth . Obviously, compressibility of the data in question is an important 
factor, but can result in significant bandwidth reductions .
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u QoS allows one to prioritize:
 u What streams get priority over others, by protocol (ssh, http, nfs, general  

 TCP traffic, etc .)
 u What minimum bandwidth a given protocol is guaranteed in the face of 

 contention
 u What maximum bandwidth rate a protocol can consume
 u Whether a stream is compressed or not (e .g ., it makes no sense to try to 

compress ssh or https, nor to use network memory for either . If it were repeat-
able data, it wouldn’t be secure .) .

For us, QoS was the most important feature for running over the lower bandwidth 
connection, followed by network memory, which meant that patterns that had 
been requested before and were able to be fed to the requester at gigabit speeds . We 
prioritize ssh and VNC above all others, so interactive sessions were only mildly 
impacted . Not a single complaint ticket was originated .

Ponderables:

u Make sure that your backup links work; do periodic testing .
u Having QoS is very useful .
u Make sure that your optical transceivers are appropriately matched and appro-

priate for the distance of the fiber run .
u Your carrier(s) is/are likely to have escalation protocols . Make sure you know 

what these are for emergencies .

Issue 2

The second issue struck in the first day of the OC-12 outage . One of our 160 TB 
(raw) backup storage servers running ZFS lost knowledge of a group of about eight 
disks . We configured these servers with 6 by 10 disk Raidz2 stripes . This meant 
that two of the stripes were down two disks . A third disk failure in either of the 
Raidz2 sets (down two disks already) would mean a very large amount of lost 
backup data, because ZFS stripes blocks across all six of the Raidz2 stripe sets . 

We’ve experienced peculiarities with the RAID controllers in this system before . 
Each controller puts a label on every disk to indicate what logical unit (LUN) the 
disk is a part of . This logical unit can be a simple pass-through, or one of several 
different hardware RAID configurations . A pass-through is the same as taking a 
disk that sits behind the controller, stamping a label on it, and passing it through as 
a logical unit to the host OS (1:1); RAID LUNs are 1:n . The logical unit also includes 
information such as whether read or write caching should be enabled, among other 
things . This was the first time a controller had lost its capricious little memory of 
eight disks at once . Suspiciously, they were all adjacent disks in the chassis, but we 
could find no subsequent hardware problems, and there were other disks on the 
same controller that had no issues .

So we did what any normal organization would do under such circumstances . We 
tried pulling and reseating the disks . It didn’t help . We tried checking the SAS 
cables, which also didn’t help . We tried power cycling the entire server . That didn’t 
appear to help either . It turns out that the disks were physically there in the RAID 
controller view, but had disappeared from the OS view . We ended up having to 
re-add the RAID controller logical unit (LUN) labels onto the disks to make them 
show up to the OS . Once we did that, they were visible again in zpool status, but 
in a very odd way . If you remember my previous article covering ZFS (undetected 
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bit flips), you’ll be familiar with the way that zpool status looks . This is how it was 
showing up to us on that day (as representative of a single Raidz2 stripe with two 
disks from the amnesia set):

c1t24d0 ONLINE 0 0 0

c1t25d0 ONLINE 0 0 0

c1t26d0 ONLINE 0 0 0

11422982192057997398 FAULTED 0 0 0 was /dev/dsk/c2t0d0s0

3080189289823161725 FAULTED 0 0 0 was /dev/dsk/c2t1d0s0

c2t12d0 ONLINE 0 0 0

Instead of a controller number, there’s a big integer . Okay, this isn’t a huge problem . 
We can also see that the right column contains information about what the disk 
was . Hey, that’s handy! Or is it? No amount of zpool replace, add, or remove was 
able to deal with these disks . The zpool commands for removing and replacing 
disks told us the disks didn’t exist, while the commands for adding told us that they 
were already a member of the pool! We even tried a 14+ hour scrub of the entire 
zpool, but that didn’t recover anything any better .

It turns out that each of the labels for what the disk used to be (right column) also 
existed elsewhere in the status output for the 82 disks in the system . In other 
words, the disk mapping was FUBAR when the disks were lost . Unfortunately, 
we didn’t discover this until after I had tried some creative means of fixing these 
disks . We thought about the best way to recover these disks and were using the 
name from the right column before realizing that it was a conflict . I used dd to 
overwrite the disk label to, hopefully, make ZFS forget about the disks so that they 
could be replaced . This is a bit dangerous, but at the time we felt we had nothing to 
lose since the disks were already unused by, and unusable to, ZFS . But this made 
ZFS forget about eight other legitimate, functional, and otherwise healthy disks 
in the system! Several stripes were now down three disks (below critical) and one 
was down five disks! Hello, worst case…

Fortunately, we were able to revert this situation by carefully reconstructing 
which disks were what . After many hours of trying things, we removed the eight 
offending disks from the system (remember, they were adjacent) and rebooted . 
The file system was still unrecoverable in this state . We re-inserted the disks and 
used the Solaris format –e command followed by label to force an EFI label onto 
the accidentally demolished disks . At this point, ZFS managed to detect the correct 
info from the remaining disks and we could bring the zpool online . It reconstructed 
the broken label on the dd’d disks and we were back to where we had been the day 
before . After running another zpool scrub we determined that dd had blown away 
data blocks in two legitimate files that were contained in snapshots . In other 
words, we didn’t lose anything of primary value, just a copy of snapshotted copies 
of two old versions of files . It could have been a lot worse .

The problem remained that the original eight missing disks still had a broken 
ZFS label on them . We had to very carefully identify them since they did not have 
a usable /dev/dsk identification that could be used accurately at the system level . 
Using the long integer was also a failure; ZFS did not like that . Remember, we could 
neither remove them from ZFS knowledge, because they were not part of the cur-
rent pool, nor could we add them to the pool, because their label said that they were 
part of an existing pool . Even using zpool commands with –f would not work .
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We had to find a disk that wasn’t already thought to be somewhere else in the sys-
tem . Using zpool information correlated with ls /dev/dsk and the MegaCLI (which 
manages LUNs) command to map the single disk LUNs to disk numbers in the sys-
tem, we were able to find a single, spare disk that was not being mapped to a LUN . 
This was painstaking work . Using this disk, we were able to replace one of the 
disks with the large integer identifier . Then we deleted that logical unit, re-created 
it, ran devfsadm to map it to a cXtXdX designation, added it to the zpool as a spare, 
and were able to use it to replace the next drive, and so on, one after another, 2 TB 
at a time, until we were done . Only by fixing the labels one at a time were we able 
to repair the system . Other than losing two old versions of files in snapshots, we 
made a full recovery, but we were perilously close to losing all of the backups on 
this system .

Along the way, we had some hilarious exchanges via Jabber, like this classic:

|2012-01-30T14:31:34|1|to|N---|that’s curious -- grub prompt

|2012-01-30T14:31:48|1|from|N---|hrm.. let’s reset again

|2012-01-30T14:32:58|1|from|N---|the 4 flash drives are there

|2012-01-30T14:33:13|1|from|N---|(or 1, divided into 4 chunks, anyway)

|2012-01-30T14:33:15|1|to|N---|they were before as well

|2012-01-30T14:33:40|1|to|N---|great, my console shrunk down to a teeny 

window and can’t be resized

|2012-01-30T14:34:43|1|from|N---|heh

|2012-01-30T14:34:50|1|from|N---|well, it’s at grub again

…

|2012-01-30T18:08:17|1|to|N---|zpool import -Fn + slaughter a chicken?

|2012-01-30T18:08:27|1|to|N---|i guess that won’t help   

Ponderables:

u When you see “was” in ZFS output, make sure that it doesn’t match something 
that is already there .

u You can use dd to wipe out a disk label, and ZFS will still be able to repair it under 
many circumstances . (This saved our bacon!)

u Use RAID cards that do not require creating an explicit single disk logical unit . 
RAID cards that do implicit pass-through of disks that are not part of hardware 
RAID set logical units seem to work much better and be less confusing overall . 
Certainly they are less trouble to set up on an 80-disk system .

u Check your sanity by double-checking your mapping for apparently missing 
disks . They may not be what you think they are .

u Locate lights are helpful . Most RAID CLI software supports this .
u If you can’t replace a disk with itself because of some intermediate mapping 

SNAFU, try replacing it with a spare and working step-wise through the disks to 
get back to normal .

Issue 3

Sometime on the second day of the network outage, we were dismayed to find 
that an NFS monitor had triggered on one of our two primary application serv-
ers (which are exact copies of each other) . These servers are not very sizeable 
machines, but they have enough memory to keep the ZFS adaptive replacement 
cache (ARC [3]) for all of the actively served NFS files in memory . They also have a 
level-2 ARC (L2ARC) MLC (multi-level cell) SSD disk for holding more than twice 
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RAM for any overflow . They also have 10-gigabit network interface cards (NIC) 
tuned to reduce the number of interrupts when something like a Python applica-
tion launches and requests 10,000 accesses to NFS paths . Even when un-cached on 
the client, the server can feed the requested files (or lack thereof) back in ones or 
tens of microseconds instead of the typical ~10 milliseconds required if they had to 
be fetched from spinning media .

One of these two servers had gone unreachable . Unfortunately, this meant that 
roughly half of our cluster machines were stuck on new NFS application requests, 
owing to two factors:

1 . Linux does not support failover to an alternate server for read-only NFS shares . 
Our NFS clients are all Linux .

2 . Independent servers without shared storage cannot be set up as an NFS cluster 
in Solaris 10 .

We started diagnostics by grabbing the serial console and checking for anything 
egregious . Unfortunately, it was non-responsive . So we issued a remote power cycle 
command through the lights out management (LOM) interface . It displayed the 
BIOS flash screen, passed the memory self-test, and as soon as it reached the part 
where it interacts with the RAID card BIOS, the server got stuck . We tried another 
reset and it got stuck in the same place . Clearly, something was wrong there .

Deductively, we suspected that the RAID card had gone bad, so we started to swap 
it with a RAID card from another machine of the same type . Both machines are 
engineered well enough that this is an operation that can be done without remov-
ing the servers from the rack . This took about 20 minutes, because we had to make 
sure that the other machine was in a suitable state of disuse . 

Unfortunately, after the cards were swapped, and we powered the stuck server on, 
it got stuck in the same place! Unusual . . .What else could it be? We theorized that 
perhaps one of the SSD disks that we use for boot and ZFS intent log (ZIL) had gone 
bad in a particular way; perhaps it was hanging the SATA bus or controller with 
resets? So we removed the first of the two mirrored SSDs and did another reset . It 
got stuck in the same spot . We tried again, after pushing the first SSD back in and 
removing the second . Eureka! Somehow one of the two disks had failed in such a 
way that it had hung the bus, and removing it allowed the machine to boot nor-
mally .

Unfortunately, this had resulted in about 2–3 hours of downtime for quite a num-
ber of machines during primary work hours .

Ponderables:

u Make sure you have spares readily on hand, even for RAID cards .
u Having machines that allow for swapping RAID cards, CPUs, RAM, etc ., without 

total removal from the rack is useful for important application servers . Had we 
not had this, it would have easily added another 30 minutes to the procedures .

u SSDs are still relatively new technology and can have unusual failure modes . Try 
swapping them before the RAID card .

Issue 4

This was the big one . We nearly lost 640 TB of primary storage! Unfortunately, this 
article has already gotten somewhat long, so we’ll leave this as a tantalizing cliff-
hanger for the next issue! 
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It seems like everyone talks about the weather, but few people code about it . It’s not 
that I’m particularly enamored by weather (I go along with the Phantom Tollbooth 
quote, “I’m the Whether Man, not the Weather Man, for after all it’s more impor-
tant to know whether there will be weather than what the weather will be .”), but I 
think it makes a lovely trampoline from which to explore a few of the more preva-
lent kinds of Web services/APIs you may encounter . For these demonstrations 
I’m going to stick to free or close to free services (at least for a personal level of 
queries) . There are some commercial weather data providers who are exceptionally 
miserly with their data or force you to sign a EULA the size of my arm; they will be 
conspicuously absent from this column .

One quick note for my international readers: The goal of this column is to demon-
strate how to bring Perl to bear to work with these kinds of APIs, not the specific 
services or APIs themselves . If any of these services fail to cover your particu-
lar geographical area, it is possible you can find one that does and use the same 
techniques to query it . It’s not that I don’t care deeply and passionately about the 
weather where you live; it is just that it is easier for me to show code that I can vali-
date by looking out my window .

Weather Provided as XML

One thing that most of these services have in common is that they like to return 
data in a structured XML format . I thought I would start our exploration by looking 
at a service that returns a really simple XML document . Before I show this exam-
ple to you, I have to admit we’re going to be a bit naughty . The following example 
will query a service that doesn’t really have a documented API for this purpose 
and is almost certainly not supported in this context . And even though there is a 
Perl module available to use this service (though we’re going to do it by hand in this 
column), I can’t recommend you use it for anything besides educational/demon-
stration purposes .

So who provides this API-less service that we’re going to use in such a transgres-
sive manner? Google . I realize this is a bit of a surprise given how important APIs 
are to them, but this is not a separate official service to them . Google provides 
weather data as part of their ability to customize your Google home page (iGoogle, 
sigh) with a weather gadget . There is also a small amount of information on how 
their weather data is represented in a document about customizing their toolbar . 
Hopefully, this information gives you a sense of just how much in the wilderness 
we’ll be when we attempt to use this service .

COLUMNSPractical Perl Tools
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That being said, the actual work is really easy . If you make an HTTP GET request 
to a URL of this form:

http://www.google.com/ig/api?weather={some place}

it will return an XML document like this (I used Boston, MA, as the place and 
reformatted the reply for easier reading):

<?xml version=”1.0”?>

<xml_api_reply version=”1”>

     <weather module_id=”0” tab_id=”0” mobile_row=”0” mobile_zipped=”1” 

row=”0” section=”0”>

        <forecast_information>

            <city data=”Boston, MA”/>

            <postal_code data=”Boston MA”/>

            <latitude_e6 data=””/>

            <longitude_e6 data=””/>

            <forecast_date data=”2012-03-29”/>

            <current_date_time data=”2012-03-29 16:54:00 +0000”/>

            <unit_system data=”US”/>

        </forecast_information>

        <current_conditions>

            <condition data=”Overcast”/>

            <temp_f data=”42”/>

            <temp_c data=”6”/>

            <humidity data=”Humidity: 76%”/>

            <icon data=”/ig/images/weather/cloudy.gif”/>

            <wind_condition data=”Wind: N at 9 mph”/>

        </current_conditions>

        <forecast_conditions>

            <day_of_week data=”Thu”/>

            <low data=”34”/>

            <high data=”48”/>

            <icon data=”/ig/images/weather/rain.gif”/>

            <condition data=”Showers”/>

        </forecast_conditions>

        <forecast_conditions>

            <day_of_week data=”Fri”/>

            <low data=”37”/>

            <high data=”50”/>

            <icon data=”/ig/images/weather/sunny.gif”/>

            <condition data=”Clear”/>

        </forecast_conditions>

        <forecast_conditions>

            <day_of_week data=”Sat”/>

            <low data=”30”/>

            <high data=”45”/>

            <icon data=”/ig/images/weather/chance_of_rain.gif”/>

            <condition data=”Chance of Rain”/>

        </forecast_conditions>

        <forecast_conditions>

            <day_of_week data=”Sun”/>

            <low data=”34”/>
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            <high data=”55”/>

            <icon data=”/ig/images/weather/chance_of_rain.gif”/>

            <condition data=”Chance of Rain”/>

        </forecast_conditions>

    </weather>

</xml_api_reply>

Now, let’s grab the data using Perl and parse it . Since this is really simple XML and 
our use of this data is straightforward, we can turn to the tremendously helpful 
XML::Simple module to parse the data . Although XML::Simple can parse the data, 
it can’t fetch it from Google . For that we’ll use LWP::Simple, which provides a get() 
function that will retrieve data for a given URL . Here’s the code:

use strict;

use LWP::Simple;

use XML::Simple;

my $xml = XMLin( get(‘http://www.google.com/ig/api?weather=Boston+MA’),

    ValueAttr => [‘data’] );

print “Current conditions: “

    . $xml->{weather}->{current_conditions}->{condition} . “ “

    . $xml->{weather}->{current_conditions}->{temp_f} . “ F\n”;

foreach my $day ( @{ $xml->{weather}->{forecast_conditions} } ) {

    print $day->{day_of_week} . ‘: ‘

        . $day->{condition} . ‘ ‘

        . $day->{high} . ‘/’

        . $day->{low} . “\n”;

}

XML::Simple’s XMLin function gets called to parse the data retrieved by 
LWP::Simple . We use the defaults for it with one exception to make our life easier . 
If you take a look at the sample XML document above, you’ll see lines such as:

<condition data=”Overcast”/>

<temp_f data=”42”/>

<temp_c data=”6”/>

<humidity data=”Humidity: 76%”/>

where the elements don’t actually hold the data; the attributes of those elements do . 
By default, XML::Simple will place those attributes into their own separate hashes 
with the name of the attribute as the key . This means we would ordinarily get a 
data structure that looks like this excerpt:

‘current_conditions’ => HASH(0x7f8032f32b80)

   ‘condition’ => HASH(0x7f8032f332b8)

      ‘data’ => ‘Overcast’

   ‘humidity’ => HASH(0x7f8032f2da90)

      ‘data’ => ‘Humidity: 73%’

   ‘icon’ => HASH(0x7f8032f2db20)

      ‘data’ => ‘/ig/images/weather/cloudy.gif’

   ‘temp_c’ => HASH(0x7f8032f333d8)

      ‘data’ => 6

   ‘temp_f’ => HASH(0x7f8032f33348)

      ‘data’ => 42
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   ‘wind_condition’ => HASH(0x7f8032f2dbb0)

      ‘data’ => ‘Wind: N at 9 mph’

It would be much more pleasant if we could just eliminate the need for a separate 
sub-hash to hold the values, and instead get something like:

‘current_conditions’ => HASH(0x7fc001733058)

    ‘condition’ => ‘Overcast’

    ‘humidity’ => ‘Humidity: 73%’

    ‘icon’ => ‘/ig/images/weather/cloudy.gif’

    ‘temp_c’ => 6

    ‘temp_f’ => 42

    ‘wind_condition’ => ‘Wind: N at 9 mph’

and indeed, that’s what the ValueAttr option to XMLin() does for us in one swell 
foop . Now you get some sense of why I tend to be pretty effusive in my praise of 
XML::Simple .

Weather Provided as an RSS Feed

The second kind of weather service I’d like to explore with you is one I introduced 
in a column back in 2006 . There are services that provide weather data to you as 
RSS feeds . RSS is better known as a blog-related standard, so you may not have 
encountered it much except as internal plumbing found largely behind the scenes . 
Wikipedia’s got the following lovely description:

RSS (originally RDF Site Summary, often dubbed Really Simple Syndica-
tion) is a family of Web feed formats used to publish frequently updated 
works—such as blog entries, news headlines, audio, and video—in a stan-
dardized format . An RSS document (which is called a “feed,” “Web feed,” or 
“channel”) includes full or summarized text, plus metadata such as publish-
ing dates and authorship .

RSS feeds benefit publishers by letting them syndicate content automati-
cally . A standardized XML file format allows the information to be pub-
lished once and viewed by many different programs . They benefit readers 
who want to subscribe to timely updates from favorite websites or to aggre-
gate feeds from many sites into one place .

The RSS format spec has gone through a number of revisions, but all of them are 
represented using XML . We could use a generic XML parser to deal with it (as 
you’ll see in the next section in this column), but in this case it is a little easier to 
use a dedicated RSS module called XML:RSS::Parser to parse the data . There is 
also an XML::RSS module available that I would normally use, but it doesn’t seem 
to (at least in my experience) play nicely with the slightly customized RSS feed 
we’re going to consume in this section .

Yahoo! is probably the most popular provider that makes RSS feeds for weather 
available, so we’ll use them for the code example for this section . Querying Yahoo! 
for weather for a US location is as easy as requesting the RSS feed for that loca-
tion’s zip code using a URL:

http://xml.weather.yahoo.com/forecastrss?p={zipcode here}

Even though that query format works, it is deprecated; instead, Yahoo! now wants 
you to do this instead:
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http://weather.yahooapis.com/forecastrss?w={WOEID}

In the second format above, you provide a WOEID in the URL using the w param-
eter . Yahoo! created the WOEID, or “Where On Earth ID,” to be a unique identi-
fier for any place on the planet . It’s a cooler system than you might expect (so cool 
Twitter decided to adopt it) . More details on it can be found at this Yahoo! URL: 
http://developer .yahoo .com/geo/geoplanet/guide/concepts .html .

So where do you get the WOEID for a particular place? Yahoo! suggests the easiest 
way to do so is to search for that place at http://weather .yahoo .com . The resulting 
URL for that place’s weather page will end in the WOEID for that place . For exam-
ple, if I search for Boston, MA, the URL for the page that is returned has this URL:

http://weather.yahoo.com/united-states/massachusetts/boston-2367105/

If the idea that you have to type in each place you would want to query into a search 
box in a browser seems a bit, ehemm, manual to you (and I certainly hope it does to 
regular readers of this column), Yahoo! provides a place-to-WOEID query service 
available . It’s simple to use, but I think it is out of the scope of this column . For 
more details, please see http://developer .yahoo .com/geo/geoplanet/ .

So let’s get back to the task at hand and see how to use XML::RSS::Parser to deal 
with data from Yahoo!’s RSS-based weather service . XML::RSS::Parser doesn’t 
actually fetch the data from either of the two Yahoo! RSS feed URLs above, so we’ll 
again use LWP::Simple’s get() function . Putting all of these pieces together, we get 
sample code that looks like this:

use strict;

use LWP::Simple;

use XML::RSS::Parser;

my $parser = XML::RSS::Parser->new;

# Yahoo! uses a custom namespace for their data

$parser->register_ns_prefix( ‘yweather’,

    ‘http://xml.weather.yahoo.com/ns/rss/1.0’ );

# 2367105 is the WOEID for Boston, MA

my $feed = $parser->parse_string(

    get(‘http://weather.yahooapis.com/forecastrss?w=2367105’) );

print “Current Conditions: “

    . $feed->query(‘//yweather:condition/@yweather:text’) . “ “

    . $feed->query(‘//yweather:condition/@yweather:temp’) . “ F\n”;

my (@forecasts) = $feed->query(‘//yweather:forecast’);

foreach my $day (@forecasts) {

    print $day->query(‘@yweather:day’) . ‘: ‘

        . $day->query(‘@yweather:text’) . ‘ ‘

        . $day->query(‘@yweather:high’) . ‘/’

        . $day->query(‘@yweather:low’) . “\n”;

}

Most of the code above is pretty straightforward, with one exception . The lines 
that include code like this might be a bit curious:

$feed->query(‘//yweather:condition/@yweather:text’) 
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One of XML:RSS::Parser’s strengths (which it gets from the Class::XPath module it 
uses) is that it provides an XPath-like/lite query language . XPath provides a terse 
but elegant syntax for finding elements in an XML document . I like it a great deal, 
so much so that I suspect you can look for a future column on just XPath . In the 
meantime, let me explain that the code above returns the yweather:text attribute 
from an XML element with the name “yweather:condition” found anywhere in the 
document (‘//’ means anywhere starting from the root element) .

The line later in our code that says:

my (@forecasts) = $feed->query(‘//yweather:forecast’);

is performing a similar query, this time requesting all of the elements called 
yweather:forecast . We iterate over each of the elements returned by that query, and 
for each element we request the attributes we want to display:

foreach my $day (@forecasts) {

    print $day->query(‘@yweather:day’) . ‘: ‘

        . $day->query(‘@yweather:text’) . “ “

        . $day->query(‘@yweather:high’) . “/”

        . $day->query(‘@yweather:low’) . “\n”;

}

Weather Provided as JSON

For our final example, I though it would be good to change up the format we’re pro-
cessing even though XML is by far the most prevalent format being used to provide 
weather data . But XML itself is starting to get stiff competition from another data 
interchange format when it comes to Web services these days . The competitor is 
JSON, made popular because AJAXy things are tending to use it more and more . To 
understand a bit about JSON, I want to quote verbatim from the json .org Web site:

JSON (JavaScript Object Notation) is a lightweight data-inter-
change format . It is easy for humans to read and write . It is easy for 
machines to parse and generate . It is based on a subset of the Java-
Script Programming Language, Standard ECMA-262 3rd Edition—
December 1999 . JSON is a text format that is completely language 
independent but uses conventions that are familiar to programmers 
of the C-family of languages, including C, C++, C#, Java, JavaScript, 
Perl, Python, and many others . These properties make JSON an 
ideal data-interchange language .

JSON is built on two structures:
u A collection of name/value pairs . In various languages, this 

is realized as an object, record, struct, dictionary, hash table, 
keyed list, or associative array .

u An ordered list of values . In most languages, this is realized as 
an array, vector, list, or sequence .

These are universal data structures . Virtually all modern program-
ming languages support them in one form or another . It makes 
sense that a data format that is interchangeable with programming 
languages also be based on these structures .

If you’ve dealt at all with YAML, you will have very little problem coping with 
JSON (YAML proponents claim it is a superset of JSON) . We explored working 
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with JSON back in the June 2008 ;login: column, so you may want to take a quick 
look at that column if you’d like more information on how to work with it from Perl .

For this demonstration, we’re going to use the Web service from Weather Under-
ground (wunderground .com) that does charge money for their service if used over 
a certain amount . The free plan offers you 500 calls per day, 10 calls per minute—
more than sufficient for the needs of this column . If you want to go higher, the next 
tier (5000 calls per day, 100 per minute) is only $20US per month, nothing outra-
geous .

One quick aside before we actually get into coding against their API: our previ-
ous data provider, Yahoo! actually has a “secret” (i .e ., not directly documented in 
their Weather section, as far as I can tell) JSON API available . I think one undocu-
mented API per column is more than enough so I’m going to just mention it exists 
(use “forecastjson” in the URL instead of “forecastrss”) and move on .

To use the Weather Underground API, you need to sign up for an API key . With that 
key, you can construct your query URL . In the examples below, I’ve replaced my 
personal API key with YOURAPIKEY .

Unlike the previous services we’ve seen, Weather Underground lets you request 
different “features” from the service by adding keywords to the part of the URL you 
would normally associate with the path to the resource . For example, if I wanted to 
retrieve just the current conditions for a place, I would use a URL that began:

http://api.wunderground.com/api/YOURAPIKEY/conditions ...

If I wanted to duplicate what we’ve received from the other services by requesting 
both the current conditions and the forecast, the URL would begin with:

http://api.wunderground.com/api/YOURAPIKEY/conditions/forecast ...

After the features part of the URL, you provide the location and an indication of 
the format you’d like back . Here’s the complete URL we’d use to get back the cur-
rent conditions and forecast for Boston as a JSON document:

http://api.wunderground.com/api/YOURAPIKEY/conditions/forecast/q/MA/Boston.json

Based on our previous examples, you can probably guess what our sample code 
will look like . The main difference is we’ll be feeding the results of our get() to the 
JSON module’s from_json function . This converts the JSON documented into a 
Perl data structure, along the lines of this (I’ve heavily excerpted below because the 
data you get back is pretty voluminous):

0  HASH(0x7fd2bad12020)

   ‘current_observation’ => HASH(0x7fd2bad11f18)

      ‘relative_humidity’ => ‘79%’

      ‘solarradiation’ => 109

      ‘station_id’ => ‘KMAWINTH1’

      ‘temp_c’ => 6.1

      ‘temp_f’ => 42.9

      ‘temperature_string’ => ‘42.9 F (6.1 C)’

      ‘visibility_km’ => 16.1

      ‘visibility_mi’ => 10.0

      ‘weather’ => ‘Overcast’

      ‘wind_degrees’ => 47

      ‘wind_dir’ => ‘NE’
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      ‘wind_gust_kph’ => 16.1

      ‘wind_gust_mph’ => 10.0

   ‘forecast’ => HASH(0x7fd2baad6758)

      ‘simpleforecast’ => HASH(0x7fd2bad00850)

         ‘forecastday’ => ARRAY(0x7fd2badfcf08)

            0  HASH(0x7fd2badfcfc8)

               ‘avehumidity’ => 67

               ‘avewind’ => HASH(0x7fd2badfdd48)

                  ‘degrees’ => 34

                  ‘dir’ => ‘NE’

                  ‘kph’ => 10

                  ‘mph’ => 6

               ‘conditions’ => ‘Rain Showers’

The trickiest part is simply finding the right parts of the data structure to display . 
Here’s our last piece of sample code:

use strict;

use LWP::Simple;

use JSON;

my $weather = from_json(

     get(‘http://api.wunderground.com/api/YOURAPIKEY/conditions/forecast/q/

MA/Boston.json’

    )

);

print ‘Current conditions: ‘

    . $weather->{current_observation}->{weather} . “ “

    . $weather->{current_observation}->{temp_f} . “ F\n”;

foreach my $day ( @{

      $weather->{forecast}->{simpleforecast}->{forecastday} } ) {

          print  $day->{date}->{weekday_short} . “: “

               . $day->{conditions} . ‘ ‘

               . $day->{high}->{fahrenheit} . ‘/’

               . $day->{low}->{fahrenheit} . “\n”;

}

To end this column, let me show you the current output of the previous code so you 
can feel a bit better about the weather near you:

Current conditions: Overcast 42.9 F

Thu: Rain Showers 46/36

Fri: Clear 48/36

Sat: Chance of Rain 43/30

Sun: Chance of Rain 52/32

Take care, and I’ll see you next time .
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As a Python programmer, you know that lists, sets, and dictionaries are useful for 
collecting data . For example, you use a list whenever you want to store data and 
keep it in order: 

>>> names = [‘Dave’, ‘Paula’, ‘Thomas’, ‘Lewis’] 

>>> 

If you simply want a collection of unique items and don’t care about the order, you 
can make a set:

>>> colors = set([‘red’,’blue’,’green’,’purple’,’yellow’]) 

>>> 

You use a dictionary whenever you want to make key-value lookup tables: 

>>> prices = { ‘AAPL’ : 613.20, ‘ACME’ : 71.23, ‘IBM’ : 174.11 } 

>>> prices[‘AAPL’] 

613.20 

>>> 

Using just these three primitives, you can build just about any other data structure 
in the known universe . However, why would you? In this article, we reach into 
Python’s collections library and look at some of the tools it provides for manipulat-
ing collections of data . If you’re like me, these will quickly become a part of your 
day-to-day programming . 

Tabulating Data

How many times have you ever needed to tabulate data or build a histogram? For 
example, suppose you want to tabulate and count all of the IP addresses that made 
requests on your Web site from a server log such as this:

78.192.56.97 - - [15/Mar/2012:01:50:37 -0500] “GET /ply/ HTTP/1.1” 200 11875 

69.237.118.150 - - [15/Mar/2012:01:51:52 -0500] “GET /ply/ply.html HTTP/1.1” 

200 107623 

69.237.118.150 - - [15/Mar/2012:01:51:57 -0500] “GET /ply/example.html 

HTTP/1.1” 200 2393 

91.35.214.71 - - [15/Mar/2012:01:52:13 -0500] “GET /ply/ HTTP/1.1” 200 11875 

91.35.214.71 - - [15/Mar/2012:01:52:13 -0500] “GET /favicon.ico HTTP/1.1” 404 
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You might be inclined to write a small fragment of code using a Python dictionary, 
like this: 

hits_by_ipaddr = {} 

for line in open(“access-log”): 

 fields = line.split()

 ipaddr = fields[0] 

 if ipaddr in hits_by_ipaddr:

  hits_by_ipaddr[ipaddr] += 1

 else: 

  hits_by_ipaddr[ipaddr] = 1 

Although this code “works,” it’s also a bit clunky . For example, you have to add a 
special check for first initialization (otherwise the attempt to increment the count 
will fail with a KeyError on first access) . On top of that, after you have populated 
the dictionary, you will probably want to do some further analysis . For example, 
maybe you want to print a table showing the 25 most common IP addresses in 
descending order: 

popular_ips = sorted(hits_by_ipaddr, 

 key=lambda x: hits_by_ipaddr[x], 

 reverse=True)

for ipaddr in popular_ips[:25]:

 print(“%5d: %s” % (hits_by_ipaddr[ipaddr],ipaddr)) 

As output, this will produce a table such as this: 

       1096: 78.192.56.97  

       1040: 206.15.64.54   

 473: 212.85.154.246   

 226: 89.215.101.39   

 209: 212.85.154.254   

 185: 82.226.112.70   

 180: 78.192.56.101 

... 

Although this code is relatively easy to write, you still need to think about it a bit—
especially the tricky sort with the lambda . However, you can avoid all of this if you 
simply use Counter objects from the collections module . Here is a much simplified 
version of the same code: 

from collections import Counter  

hits_by_ipaddr = Counter() 

for line in open(“access-log”):     

 fields = line.split()     

 ipaddr = fields[0]     

 hits_by_ipaddr[ipaddr] += 1  

for ipaddr, count in hits_by_ipaddr.most_common(25):     

 print(“%5d: %s” % (count, ipaddr)) 

First added to Python 2 .7, Counter objects are perfectly suited for tabulation . They 
automatically take care of initializing elements on first access . Not only that, they 
provide useful methods such as most_common([n]) that return the n most com-
mon items . However, this is really only scratching the surface . 



 70   ;login: VOL.  37,  NO.  3   

If you want, counters can be automatically initialized from iterables . For example, 
let’s make letter counts from strings: 

>>> a = Counter(“Hello”) 

>>> b = Counter(“World”) 

>>> a 

Counter({‘l’: 2, ‘H’: 1, ‘e’: 1, ‘o’: 1}) 

>>> b 

Counter({‘d’: 1, ‘r’: 1, ‘o’: 1, ‘W’: 1, ‘l’: 1}) 

>>>  

Or, if you’re inclined and a bit more sophisticated, you can populate a counter from 
a generator expression: 

>>> f = open(“access-log”) 

>>> hits_by_ipaddr = Counter(line.split()[0] for line in f) 

>>> hits_by_ipaddr[‘78.192.56.97’] 

1096 

>>> 

You can also do math with counters: 

>>> a + b   # Adds counts together 

Counter({‘l’: 3, ‘o’: 2, ‘e’: 1, ‘d’: 1, ‘H’: 1, ‘r’: 1, ‘W’: 1}) 

>>> a - b   # Takes away counts in b 

Counter({‘H’: 1, ‘e’: 1, ‘l’: 1}) 

>>> b - a   # Takes away counts in a 

Counter({‘r’: 1, ‘d’: 1, ‘W’: 1}) 

>>> a & b   # Minimum counts  

Counter({‘l’: 1, ‘o’: 1}) 

>>> a | b   # Maximum counts 

Counter({‘l’: 2, ‘e’: 1, ‘d’: 1, ‘H’: 1, ‘o’: 1, ‘r’: 1, ‘W’: 1}) 

>>>  

Adding and subtracting counts are also available in-place using update() and sub-
tract methods, respectively . For example: 

>>> a = Counter(“Hello”) 

>>> a 

Counter({‘l’: 2, ‘H’: 1, ‘e’: 1, ‘o’: 1}) 

>>> a.update(“World”) 

>>> a 

Counter({‘l’: 3, ‘o’: 2, ‘e’: 1, ‘d’: 1, ‘H’: 1, ‘r’: 1, ‘W’: 1}) 

>>>  

Using some of these techniques, we can refine our script to process an entire direc-
tory of log files:

from collections import Counter 

from glob import glob  

hits_by_ipaddr = Counter()  

logfiles = glob(“*.log”) 

for filename in logfiles:     

 f = open(filename)     
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 hits_by_ipaddr.update(line.split()[0] for line in f)     

 f.close()  

for ipaddr, count in hits_by_ipaddr.most_common(25):     

 print(“%5d: %s” % (count, ipaddr)) 

By now, hopefully, you’ve gotten the idea that Counter objects are the way to go for 
tabulation . Frankly, they’re one of my favorite new additions to Python . 

Dictionaries with Multiple Values

Normally, dictionaries map a single key to a single value . However, a common ques-
tion that sometimes arises is how you map a key to multiple values . Naturally, the 
solution is to map a key to a list or set . For example, suppose you wanted to make 
a dictionary that mapped URLs to all of the unique IP addresses that accessed it . 
Here is some code that would do it: 

url_to_ips = {} 

for line in open(“access-log”):     

 fields = line.split()     

 ipaddr = fields[0]     

 url = fields[6]     

 # Create a set on first access     

 if url not in url_to_ips:         

  url_to_ips[url] = set()     

 url_to_ips[url].add(ipaddr) 

Again, we are faced with the problem of creating the first entry for each URL 
(hence, the check that makes the set on first access) . We can’t use Counter objects 
here, but not to worry—the defaultdict class is built just for this case . Here is an 
alternative implementation: 

from collections import defaultdict 

url_to_ips = defaultdict(set) 

for line in open(“access-log”):     

 fields = line.split()     

 ipaddr = fields[0]     

 url = fields[6]     

 url_to_ips[url].add(ipaddr) 

After running this code, you could do things like find out which IP addresses are 
likely to be robots: 

>>> url_to_ips[‘/robots.txt’] 

set([‘173.11.97.115’, ‘107.20.104.146’, ‘61.135.249.76’, ...]) 

>>> 

defaultdict is a special Python dictionary that allows you to supply a callable for 
creating the initial entry to be used on first access . In the above code, we’ve speci-
fied that a set be used . Here are some examples to try: 

>>> from collections import defaultdict 

>>> a = defaultdict(set) 

>>> a 

defaultdict(<type ‘set’>, {}) 

>>> a[‘x’].add(2) 
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>>> a[‘y’].add(3) 

>>> a[‘x’].add(4) 

>>> a 

defaultdict(<type ‘set’>, {‘y’: set([3]), ‘x’: set([2, 4])}) 

>>>  

In effect, the function provided to defaultdict is triggered to create the first value 
whenever a non-existent key is accessed . Here are more examples: 

>>> a[‘q’] 

set() 

>>> a[‘r’] 

set() 

>>> a 

defaultdict(<type ‘set’>, {‘y’: set([3]), ‘x’: set([2, 4]), ‘r’: set([]), ‘q’: 

set([])}) 

>>> 

Notice how entries for ‘q’ and ‘r’ were added simply by being referenced .

Underneath the covers, defaultdict uses a little-known special method called __
missing__() . It’s called on a dictionary whenever you read from a missing key . For 
example: 

>>> class mydict(dict): 

...  def __missing__(self, key): 

...  return 0    # Return the missing value 

...  

>>> d = mydict() 

>>> d[‘x’] 

0 

>>> d[‘y’] 

0 

>>> 

Counter objects are implemented using the __missing__() function shown above . 
defaultdict objects create the missing value using a user-supplied function . 

Dictionaries, Views, and Sets

One of the more subtle improvements to Python over the years has been related to 
the relationship between dictionaries and sets . In many respects, a set is just a col-
lection of dictionary keys with no values . In fact, the underlying implementation of 
sets and dictionaries is very similar and shares much of the same code .

Despite their similarities, dictionaries have not traditionally provided a natural 
way to interact with sets of keys or values . Instead, there are simple methods to 
return the keys, values, and items as a list:

>>> a = { ‘x’ : 2, ‘y’ : 3, ‘z’: 4 } 

>>> a.keys() 

[‘y’, ‘x’, ‘z’] 

>>> a.values() 

[3, 2, 4] 

>>> a.items() 

[(‘y’, 3), (‘x’, 2), (‘z’, 4)] 

>>>  
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Starting with Python 2 .7, it is possible to express the keys and values of a dictio-
nary as a “view” (which is also the default behavior of the above methods in Python 
3) . Unlike a list, a view offers a direct window inside the dictionary implementa-
tion . Changes to the underlying dictionary directly change the view: 

>>> k = a.viewkeys() 

>>> k 

dict_keys([‘y’, ‘x’, ‘z’]) 

>>> v = a.viewvalues() 

>>> v 

dict_values([3, 2, 4])  

>>> # Now change the dictionary and observe how the views change 

>>> a[‘w’] = 5 

>>> k 

dict_keys([‘y’, ‘x’, ‘z’, ‘w’]) 

>>> v 

dict_values([3, 2, 4, 5]) 

>>>  

At first glance, it might not be immediately obvious how views are useful . On a 
superficial level, they support iteration, allowing them to be useful in many of the 
same ways as having a list . However, one of their unique features is the ability to 
interact with sets and other sequences more elegantly . To illustrate, here are some 
simple examples you can try: 

>>> a = { ‘x’ : 1, ‘y’: 2, ‘z’ : 3 } 

>>> b = { ‘x’ : 4, ‘y’: 2 }  

>>> # Find all keys in common 

>>> a.viewkeys() & b.viewkeys() 

set([‘y’, ‘x’])  

>>> # Iterate over all keys except ‘z’ 

>>> for k in a.viewkeys() - [‘z’]:

... print(“%s = %s” % (k, a[k])) 

...  

y = 2 

x = 1  

>>> # Make a set of all key/value pairs 

>>> a.viewitems() | b.viewitems() 

set([(‘z’, 3), (‘y’, 2), (‘x’, 4), (‘x’, 1)]) 

>>> 

In more practical terms, understanding the nature of views can simplify your code . 
For example, if you wanted to find all of the IP addresses that accessed your site 
but didn’t look at the robots .txt file, you could simply write this: 

>>> nonrobots = hits_by_ipaddr.viewkeys() - url_to_ips[‘/robots.txt’] 

>>>  

Other Goodies: Queues, Ring Buffers, and Ordered Dictionaries

The collections module has a variety of other data structures that are also worth a 
look . For instance, if you ever need to build a queue, use the deque object . A deque 
is like a list except that it’s optimized for insertion and deletion operations on both 



 74   ;login: VOL.  37,  NO.  3   

ends; in contrast, a list has O(n) performance for operations that insert or delete 
items from the front of the list: 

>>> from collections import deque 

>>> q = deque() 

>>> q.appendleft(1) 

>>> q.appendleft(2) 

>>> q 

deque([2, 1]) 

>>> q.append(3) 

>>> q 

deque([2, 1, 3]) 

>>> q.pop() 

3 

>>> q.popleft() 

2 

>>>  

If you specify a maximum size, a deque turns into a ring-buffer or circular queue: 

>>> q = deque(maxlen=3) 

>>> q.extend([1,2,3]) 

>>> q 

deque([1, 2, 3], maxlen=3) 

>>> q.append(4) 

>>> q 

deque([2, 3, 4], maxlen=3) 

>>> q.append(5) 

>>> q 

deque([3, 4, 5], maxlen=3) 

>>>  

Last, but not least, there is an OrderedDict class . This is used if you want to store 
information in a dictionary while preserving its insertion order . This can be useful 
if you’re reading data that you later want to output in the same order in which it 
was read . For example, suppose you had a file of parameters like this: 

FILENAME foo.txt 

DIRNAME  /users/beazley 

MODE     a 

You could read it into an OrderedDict like this: 

>>> from collections import OrderedDict 

>>> parms = OrderedDict() 

>>> for line in open(“parms.txt”): 

... name,value = line.split() 

... parms[name] = value 

... 

>>> p[‘DIRNAME’] ‘

/users/beazley’ 

>>> for p in parms.items(): 

... print(p) 

...  (‘FILENAME’, ‘foo.txt’) 
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(‘DIRNAME’, ‘/users/beazley’) 

(‘MODE’, ‘a’) 

>>>  

Carefully observe how iterating over the dictionary contents preserves data in the 
same order as read . 

Final Words

If you’re using Python to manipulate data, the collections module is definitely 
worth a look . Even if you’ve been using Python for a while, the contents of this 
module have been expanded with each new Python release . In modern Python 
releases, you might be surprised at what you find . 
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It started with the Vacation . It was only three or four days long, but vacations can 
be a dangerous time for me . They give me an occasion to pursue subject matter I 
might normally avoid for fear of the rabbit holes [1] . I’m sure you can relate . One 
poorly chosen Wikipedia article and a little down-time and suddenly it’s 4 a .m . and 
you find yourself making cheese in the back yard, or thermite in the bathtub . Or 
was it cheese in the bathtub . . .? Well you get the point .

Anyway, a bit of heavy reading has lately left me with the palatable sense that my 
grasp of English grammar is not what it ought to be . That, in fact, it sucks . It’s not a 
happy realization in a person who is paid money to write things .

Realization isn’t the right word . I’ve been aware for some time that my West Coast 
public school education has left me deficient in this, and many other respects . To 
be sure, I have the innate grasp of grammar that we all share, but I’ve never, for 
example, diagrammed a sentence . Nor have I ever been instructed by a teacher 
to use the verb to find the subject of a sentence . Before yesterday I was wholly 
ignorant of how many types of verbs there are (transitive, irregular, dynamic, etc .) . 
Seeing the skill with which these other writers put together words to make sen-
tences to form thoughts, and comparing those sentences and thoughts to my own, 
has instilled in me a fascination with the rules of language syntax, rules which, 
if I knew them, would enable me to more accurately and completely (and let us all 
hope, tersely) articulate my thoughts . Have I been writing in the literary equivalent 
of Visual Basic my whole life? This is unacceptable .

Now, you and I, being the sort of people we are, the sort of people with training and 
experience in finding and consuming exactly the right knowledge—not just finding 
it and consuming it, in fact, but delighting in the finding and consuming of it—we 
have a penchant for cutting to the heart of things when we put in our cross-hairs 
subjects like English grammar . You and I aren’t surprised to learn that the absolute 
best way to understand English grammar is to learn Latin, and being the sort of 
people we are, we’re comfortable with that in the same way that we’re comfortable 
with the knowledge that the best way to understand Perl is to know assembler .

To those around us, however—those outside the confines of whatever conven-
tion hall we happen to be occupying (and perhaps even those to whom we are 
married)—the idea of learning Latin is a strange, extreme, and probably elitist 
proposition . That you and I would even consider such an undertaking makes us, 
transitively, strange, extreme, and probably elitist people . I know this, even if I 
don’t understand it, and so I maintain a cognitive duality to protect the anti-intel-
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lectual sensibilities of my fellow man (and spouse) . I tell myself I’m not learning 
Latin, that, in fact, I’m only learning about learning Latin, but I hesitate to mention 
even that to anyone off the conference floor, because that’s just the sort of distinc-
tion a weirdo extremist would make . No, this undertaking must be a secret . We’ll 
have to keep it between us .

It’s vexing therefore, when I’ve fallen far enough into a rabbit hole that I find myself 
immersed in the study of “Latin for Mountain Men” [2] in secret, as if it were some 
kind of weirdo extremist samizdat/porn, to walk into the break room and hear 
someone announce:

“I have discovered the secret of speed eating . The secret is to make your meal broth 
heavy!”

Any sort of loudly asserted absurdity like this really shakes me up when I’ve been 
on a bit of a mental binge . It makes me feel somehow dissonant and inhuman . I’ve 
often suspected that these are the sorts of situations that make people like you 
and me become people like the Unabomber, so some time ago I developed a mental 
model to protect my psyche in these sorts of situations . I call it the “Inverse Feyn-
man Filter” . I’ll let Dick explain:

I had a scheme  .  .  . when somebody is explaining something that I’m trying to 
understand: I keep making up examples . For instance, the mathematicians 
would come in with a terrific theorem, and they’re all excited . As they’re tell-
ing me the conditions of the theorem, I construct something which fits all the 
conditions . You know, you have a set (one ball)—disjoint (two balls) . Then the 
balls turn colors, grow hairs, or whatever, in my head as they put more condi-
tions on . Finally they state the theorem, which is some dumb thing about the 
ball which isn’t true for my hairy green ball thing, so I say, ‘False!’ [3]

If a Feynman filter is a mental model for the simplification of complex theorems, 
my Inverse Feynman Filter is a mental model for the complication of the absurd 
and idiotic . For example, this speed eating of broth thing sounds to me like a data 
compression or maybe a signal processing problem . You’re taking food, and com-
pressing it to broth, so it can be processed more quickly . See how wonderfully that 
works? If the subject matter is data compression, we needn’t concern ourselves 
with why someone would want to speed eat, much less that someone felt the neces-
sity to contemplate its secrets . We can ignore entirely the question of whether 
“heavy” is modifying “meal” or “broth” (why would the weight of the meal-broth 
matter?) and his improper use of “of” (assuming he meant that he’d discovered the 
secret to speed eating), so bonus, our top secret grammatical endeavors remain 
undiscovered! We can even interact, observing, for example, that some types of 
data are more difficult to compress, like so:

“That’s fascinating . How exactly does one ‘make’ one’s meal ‘broth heavy’? How 
would I, for example, go about ‘speed eating’ sunflower seeds?”

“No, no . If you want to speed eat, you have to eat broth .”

“So your ‘discovery’ is really that you can drink soup quickly?”

“Well, yeah, I guess .”

As you can see, it’s not a perfect model . When it fails, I simply transition to my 
backup technique, which is to use the story as a lengthy intro to a monitoring 
column for ;login: . This way I can focus my mental energy toward the creation of 
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an appropriate segue from the story into the proper subject matter of the column . 
The speed eating of broth is, for example, a perfect metaphor for Mathias Kettner’s 
Nagios plugin, Check_MK [4] .

Centralized polling engines like Nagios are difficult to scale because the load 
increase is linear . Every new service on every new host makes the monitoring 
system work that much harder . Eventually, you’ll hit an upper-level limit on the 
number of services a single poller can handle . Depending on the polling interval—
whether you’re processing performance data locally, and the sheer horsepower of 
the hardware on which the poller is running—that limit is generally around 5000 
services . At that point we need to look at splitting the workload across multiple 
pollers . Various means exist to split and parallelize the polling workload, most of 
which I’ve described in this column at one time or another .

But what if we could “brothify” some of those service checks, so that instead of 
performing seven service checks on a host, we could perform a single check on 
the host that would return the status of all seven services? This isn’t a new idea—
there have been various attempts to brothify and speed eat service checks over the 
years—but the idea hasn’t caught on, because the implementations were prob-
lematic . To be fair, the problem is really the design of Nagios, which assumes that 
every check returns a singular result from an individual service . The configuration 
associated with the brothification of multiple service checks is therefore invariably 
some kludgey mess involving passive service checks which, not unlike brothifying 
sunflower seeds, is just not worth the effort .

When one considers the inevitable differences between various types of hosts, that 
some will run services others won’t, and that some will use alert thresholds that 
are more or less strict, it’s easy to imagine the configuration nightmare associ-
ated with our broth . The specifics of what to monitor and how to monitor it will 
either need to be moved off the poller and out to the monitored hosts, abdicating 
the advantages of centralized configuration, or into the check command itself such 
that the check command for each host is accompanied by three pages of options, 
only a few of which are actually specific to that host .

Check_MK solves all of these problems and more, providing not just a means to 
brothify all the service checks on a host, but an all-inclusive monitoring agent that 
dynamically detects and reports a litany of information about the host . Perhaps 
“solves” is a strong word, as the server-side configuration is still a mess involving 
passive service checks, but Check_MK creates and manages all of that for you . In 
a way, the plugin’s dynamic configuration is the most impressive thing about it . 
After installing the plugin server side, and the agent on the host, the Admin runs 
an inventory program, which dynamically detects and, through the clever use of 
Nagios templates, generates the complete server-side configuration for every host 
inventoried, including the active check for the host as well as the passive checks 
for each service detected . This was a heavy lift; the kind of programming few of us 
enjoy .

The agent is tiny, being a shell script running under xinetd on Linux . Unlike NRPE 
[5], no attributes or arguments are passed from the server, which limits the vulner-
ability footprint . The agent is easily extended for custom broth ingredients by way 
of a plugin directory into which the admin may drop his own scripts . These custom 
scripts will be called by the MK agent, and, assuming they follow some simple 
formatting rules, their output will be parsed by the server plugin without any addi-
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tional configuration . The plugin will in turn generate passive checks for them and 
report them back to Nagios .

By default the agent dispenses a broth with the big four food groups—CPU, RAM, 
disk, and network—auto-detecting in the process CPU numbers, NICs (includ-
ing virtual interfaces like tun/tap) and even disk partitions . A dizzying array of 
other data is thrown in for flavor, including a process list, and a host of hardware-
specific info about devices like NVIDIA and 3-Ware cards, ACPI, and on and on . 
An agent is even available for Windows which includes all sorts of Windows and 
Active Directory metrics . A full list can be had by calling the plugin on the com-
mand line with a -M switch .

The agent program passes status to the plugin in a way that draws a distinction 
between mere service state and performance data . The plugin is, in turn, aware 
of performance data, which it can send to an RRDtool front-end for Nagios called 
“PNP4Nagios” [6] . The plugin even automatically generates the appropriate 
action_url syntax in the Nagios configuration so that the performance data graphs 
generated by PNP4Nagios are displayed on the Nagios Web Interface, all without 
the admin needing to lift a finger .

The Check_MK plugin provides hooks to customize the configuration it generates, 
making it easy to specify alert thresholds for individual services on individual 
hosts . The rules are implemented as a cascading series of defaults, with the most 
specific match winning . It can also query SNMP devices such as routers and 
switches using snmpwalk in lieu of a host-side agent .

It’s possible that by mixing our service checks together into a broth, we might learn 
something about how they interact . The Check_MK plugin has a few neat features 
that explore this possibility, including the ability to detect the primary node in an 
HA-Cluster using service information returned by the agents, and a feature called 
“Service aggregations .” This latter is an attempt to capture business logic, and 
bears some explanation because it’s actually quite a powerful idea .

A service aggregation can be thought of as a virtual service that is made up of 
several real services: for example, one can imagine a virtual service called “Email,” 
which is made up of the qmail-send daemon on several hosts along with a few data-
base and HTTP processes on various other hosts throughout the infrastructure . If 
any of these individual services goes down, Check_MK marks the top-level virtual 
service down as well .

Check_MK is a well-designed system that should be considered as a replacement 
for NRPE, especially if you’re experiencing growing pains . Next time I’ll be cover-
ing another Mathias Kettner creation called “MK_Livestatus,” which is actually 
an idea he stole from me about a year before I had it . Until then, look out for the 
rabbit holes .

Take it easy .
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While perusing HyperDex—because anything with “hyper” in it draws my geekish 
attention like a Texas ice storm draws tow trucks—I saw that they use n-dimen-
sional Euclidean mapping for storing and manipulating data . I happen to be 
enamored of the concept of and, verily, even the phrase n-dimensional, largely due 
to my (over)use of it in a couple of science fiction novels I wrote . Now, the inclusion 
of Euclidean sort of ruins it for mind-boggling potential, because Euclidean space 
is, in fact, composed of only three actual dimensions . Sure, that’s an oversimplifi-
cation . I like those . They are tidy and fit neatly on the page . I’ve made hundreds of 
them over the years . You can keep score at home, if you like .

Ignoring, for the time being, the Father of Geometry (and his college roommate, the 
Third Cousin Once Removed of Doodling in the Margins), let us turn our attention 
instead to a further examination of the relationship between extra dimensions and 
computing . The idea that data structures can be visualized in two or three dimen-
sions is nothing new, of course: every beginning programming student learns 
about matrices . RAID configurations fall into a similar category, albeit more on 
the hardware side, in that data are striped across multiple disks and therefore exist 
conceptually in Euclidean space . All of this, while moderately interesting, is too 
mundane for my tastes . No, what I’m talking about is n-dimensional quantum com-
puting . Booyah .

Let me break it down for you: quantum superposition is all well and good, but it’s 
still limited by the fact that there are only three possible states for a qubit to pos-
sess: one, zero, and both . In my n-dimensional hyper-quantum (“ND-Hype”) com-
puter, each qubit can itself exist in infinite multiple dimensions at once, providing 
a hyper-exponential increase in computing power . 

One of the hurdles of the current effort to build a useful quantum computer is 
generating enough entangled qubits to get anything useful done . The ND-Hype 
computer obviates that problem quite neatly in that it only requires one qubit to 
operate . When additional logic gates are needed to solve a problem, it dynamically 
recruits entangled brethren in as many dimensions as necessary, effectively giving 
it infinite qubits with which to work . Since the extradimensional qubits are all 
entangled with the original, their quantum states are transmitted to it instanta-
neously in what I will, naturally, call “hyperpositioning .” 

Thus, with but a single qubit, you can possess functionally limitless computing 
power . Designing the user interface might present a bit of difficulty, admittedly, 
since infinite simultaneous data outputs would be a little problematic to display, 
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but that’s an issue for the GUI engineers . I suppose you’d need a fairly large amount 
of RAM and one heck of a data bus to hold all that information long enough to 
accomplish anything with it, too . Hey, I’m just the idea man here .

I think one of the reasons I’m drawn to all things quantum is that every aspect of 
that topic is utterly counterintuitive and bordering on the insane, and, well, like 
attracts like . I mean, think about it: in the quantum world, the answer to the age-
old philosophical question, “If a tree falls in the forest and no one is there to hear it, 
does it make any sound?” is: “yes and no .” Unless there is an observer, the outcome 
has both possible states, not one or the other . That is clearly insane . 

The only way I can even begin to grasp it is to imagine that every single binary 
event I can witness, or even imagine, has a universe where the outcome is one, 
and another where it is zero . Once there is a witness to the precipitating event, the 
outcome is fixed and that observer is tied irrevocably to that universe . Until and 
unless there is an observer, however, the outcome is indeterminate . In my novels 
Tangent and Infinite Loop I refer to those quantum temporal inflection points as 
“frames .” Whatever term you choose to refer to this phenomenon, “rational” does 
not enter into it .

But, back to HyperDex . I think their data storage and retrieval scheme is pretty 
slick, although it also smacks of Yet Another Insidious Cloud Computing Initiative . 
At least they track the precise location of your data in their n-dimensional space, 
which is far more than I can say for most true cloud applications . I think my next 
big think tank project, based on a dream I had the other night, will be to create 
a sort of air traffic control system for use in the cloud that allows a user to track 
where her data actually are at a given moment in both logical and physical space . 
Sort of like tracking your teenage son when he borrows your car to go the store 
for you via four friends’ houses, the skateboard park, two different malls, and the 
Hyperdodecahedroplex Theater out on Route 15 . And then comes home six hours 
later without the milk or bread . Not to mention an empty gas tank .

I’d have a huge map of the world for my data tracker like the one in War Games that 
would trace each piece of your data as it spreads out through the cloud, displaying it 
like radar tracking of missile launches . This would help to drive home the message 
that the cloud is a colossal global security risk while at the same time providing an 
impressive component for your next dog-and-pony affair . It might even lead to a 
game show called Guess Where Your Data Will Go Next. 

“Guess where your data will go next . Hands on buzzers, ladies and gentleman . Go!”

Buzzz! “Oslo?” 

Buzzz! “Seville?” 

Buzzz! “Dubuque?”

“No, I’m sorry, contestants, the correct answer was Baku, Azerbaijan . Ed, tell our 
contestants what they get for being such lose . . .good sports .”

“Certainly, Bob . All contestants on Guess Where Your Data Will Go Next receive a 
year’s supply of pre-compromised firmware and a copy of our home game, Guess 
Where That Thumb Drive You Found in the Parking Lot Has Been .”

I should probably stop eating those habanero Brussels sprouts right before bed .
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BOOKS
Each chapter covers a high-evel task for the user . These 
correspond to the configuration of different Jenkins activi-
ties . They also match the timeline presented in Chapter 1 for 
gradually introducing continuous integration .

The first four chapters cover the introduction, preparation of 
the environment, and installation and configuration of Jen-
kins . The example project for the book is hosted on GitHub 
and the book instructs the reader to create an account and 
fork the sample repository . I’m not sure how I feel about 
reference books which depend on live commercial services . 
Realistically, the book is likely to be obsolete before GitHub 
goes belly up, but it bothers me somehow .

The remaining chapters cover creating build jobs, automated 
testing and notification, authentication and access control 
mechanisms, automatic code quality scanning and reporting, 
and automated deployment . The final chapter talks about 
updates, configuration backups, and storage management 
and server loading . I was glad to see that because I didn’t see 
anything about capacity planning at the beginning .

On top of the standard features there is a long and growing 
list of plugins for open source and commercial applications 
available, each of which will require some knowledge of the 
related software . I think this is a good thing, but it’s clear that 
this book (and this software) is not for the novice developer 
or sysadmin .

Jenkins was written in Java and to manage Java projects . 
This shows in the focus of the examples in the book . The 
plugin list, though, shows that Jenkins is being used to man-
age projects in a dizzying array of environments . All of the 
current major scripting languages and Web frameworks are 
represented, as are a number of more obscure (to me) tools . 
The book doesn’t cover these, but if a plugin exists for your 
language or environment it doesn’t look like it will be dif-
ficult to install or configure .

Jenkins is managed almost entirely through the Web user 
interface . The book is full of screen shots illustrating the 
text . One concern is that any changes to the visual layout of 
the user interface will make portions of the book obsolete . 

Jenkins: The Definitive Guide
John Ferguson Smart
O’Reilly Media, 2011 . 406 pp . 
ISBN 978-1-449-30535-2

Anyone who’s worked on the development side of system 
administration for any length of time has probably put 
together some form of automated build system . Those of us 
who are older probably did it from scratch .

A corollary of the Agile development process is the need for 
a strong automated build and test service . The popularity of 
Agile development has led to the improvement of services to 
manage the build and test process and to provide visibility 
at each step . To oversimplify, the idea is to rebuild and retest 
with every code check-in . Ideally, little bugs are discovered 
early and fixed before they grow into big problems . Of course, 
people have given this a name: continuous integration . Jen-
kins is a fairly recent addition to the tool set .

It’s important to understand at the outset that Jenkins 
doesn’t really do anything by itself . Jenkins manages and 
coordinates a series of activities that would otherwise be 
done manually or not at all .

Jenkins: The Definitive Guide is light on philosophy . The 
introduction and justification for using continuous integra-
tion in general and Jenkins in particular takes just eight 
pages . That includes a three-page seven-step timeline to get 
from no automation to complete continuous integration . The 
rest of the book actually does a fine job of filling in the outline 
but doesn’t waste any effort trying to proselytize .

The book is both sparse and dense . Jenkins integrates with 
dozens of other pieces of software, and the author doesn’t try 
to hand-hold the reader through any of them . For example, 
Jenkins is a Java application . Java installation and verifica-
tion take a single paragraph with a URL reference to the 
Oracle Web site for download and installation instructions . 
Likewise, Git installation and creation of a GitHub account to 
download the sample jobs for the next chapter take just over 
a page .

Book Reviews
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automation tasks and demonstrates the general script flow 
and how specific libraries function to get results . Some 
example projects here are price monitoring, form submission, 
aggregation, and email-reading/sending webbots . Section 
three covers advanced topics such as dealing with cookies, 
encryption, authentication, and macros . Finally, section four 
covers general webbot considerations such as fault tolerance, 
stealth, and webbot-friendly Web design .

As someone who has been writing PHP/cURL webbots and 
spiders myself for about seven years now, I was particularly 
excited to read this book . I think Michael does a good job of 
covering most of the basic techniques and challenges having 
to do with webbot scripting . Although there are a number of 
good chapters that will get you up and running quickly, I do 
feel that most of the chapters were a bit cursory, lacking some 
very important coverage of alternate tools and techniques . 
Also, Michael doesn’t delve deeply into topics such as AJAX 
and complex JavaScript-driven sites and forms . In my experi-
ence, a large number of sites use these kinds of techniques, 
and without the right tools they can be very difficult to parse .

Overall, Webbots, Spiders, and Screen Scrapers is well-writ-
ten, easy to follow, and will get you started quickly . Having 
said that, its lack of depth in certain areas definitely makes it 
most appropriate for beginning developers/scripters .

—Brandon Ching

A Culture of Innovation: Insider Accounts of 
Computing and Life at BBN
David Walden and Raymond Nickerson, eds .
Waterside Publishing, 2011 . 559 pp . 
ISBN 978-0-9789737-0-4

We owe a great deal to the concept of the industrial lab, the 
first of which was that of Thomas Edison in Menlo Park, 
NJ (now renamed Edison) . World War II gave rise to IBM’s 
Research Division in Manhattan and, since 1970, in York-
town Heights, NY . It also saw the start of Bolt Beranek and 
Newman in Cambridge, MA, in 1948 .

This volume incorporates the narratives of 19 of those who 
were involved in BBN over a period of 60 years . It is not 100% 
new material . Some of the contents originally appeared in 
two special issues of IEEE Annals of the History of Com-
puting (v . 27 .2 and v . 28 .1 [2005, 2006]), but many of those 
articles reappearing in this volume are expanded versions, 
and some of the chapters are completely original to this work .

Dick Bolt and Leo Beranek founded their partnership in 1948 . 
Their first job was the acoustical engineering of the not-yet-
built UN headquarters in New York . Bob Newman became 

User interface evolution isn’t a problem limited to books and 
software with graphical interfaces, but I think it could be a 
greater problem for them .

“Guide” is an appropriate term to use for this book if you take 
it in the sense of a tour rather than a reference . Each chapter 
shows you something important and concrete but then leaves 
you at the entrance to some new place for you to explore on 
your  own, since each subject is covered well elsewhere . Take 
the tour and then decide what parts you want to explore next 
and in greater depth .

This book is licensed by the author under the Creative Com-
mons license . The content is available on the Internet at 
DocBook . This is a case of Tim O’Reilly putting his money 
where his mouth is . He’s spoken out publicly against draco-
nian government-enforced content monopolies . He’s willing 
to publish CC licensed books . He knows how to decide what 
will make money, and he’s convinced that he doesn’t need an 
exclusive copyright to publish a book worth buying . And he’s 
right .

—Mark Lamourine

Webbots, Spiders, and Screen Scrapers: A Guide to 
Developing Internet Agents with PHP/cURL, 2nd 
Edition
Michael Schrenk
No Starch Press, 2012 . 362 pp . 
ISBN 978-1-59327-397-2

In the second edition of Webbots, Spiders, and Screen Scrap-
ers: A Guide to Developing Internet Agents with PHP/cURL, 
Michael Schrenk introduces you to the world of automated 
webbots and scripts that can filter, parse, store, and process 
Web-based information that suites your needs . Using the 
massive information available online and through the meth-
ods described in this book, you can wield that data almost 
any way you want . Need to collect metrics or parse and store 
content for your academic research? What about wanting to 
have an email sent to you when your bank account gets low? 
Perhaps you are watching the price on an eBay auction and 
you want to be notified—or even have your script automati-
cally bid for you—when it hits a certain amount . Webbots can 
do all of these things and more .

The book is broken up into four parts comprising 31 chap-
ters . While this sounds like a lot, most chapters are short 
and to the point, covering a specific topic and guiding you to 
external sources where appropriate . The first section covers 
foundational techniques and technologies and introduces 
you to the PHP language and the cURL library . The second 
section delves into some simple projects of common Web 
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The Tangled Web: A Guide to Securing Modern 
Web Applications
Michal Zalewski
No Starch Press, 2012 . 268 pp . 
ISBN 978-1-59327-388-0

Michal Zalewski succeeds in condensing into a single com-
prehensive volume topics that could easily fill several books, 
and he provides the right reader with exactly what he or she 
needs to know regarding the Web, the browsers we use to 
navigate it, and the considerations we need to be aware of to 
secure it . Depending on your experience with these topics, 
this is not a breeze-through read; this book requires time and 
attention to grasp and hold the topics covered .

The book is split into three parts: “Anatomy of the Web,” 
“Browser Security Features,” and “A Glimpse of Things to 
Come .” The first third of the book really lays the groundwork 
for the remaining portions, giving the reader the neces-
sary background to understand what makes the browsing 
experience work . Zalewski covers the basics, devoting entire 
chapters to the makeup of a URL, the Hypertext Transfer 
Protocol, HTML, Cascading Style Sheets, browser-side 
scripts, non-HTML document types, and browser plugins . As 
I’ll expand on later in this review, Zalewski crams enormous 
amounts of information into the 15–20 pages (on average) per 
chapter . Whether it is technical detail or history behind the 
design of a browser or standard, he leaves no stone unturned . 
The second third delves specifically into security features 
of browsers, languages, and plugins, with chapters on topics 
such as content isolation logic, origin inheritance, content 
recognition mechanisms, and handling rogue scripts . The 
last third of the book looks at security features and browser 
mechanisms that are expected to emerge . A chapter is 
devoted to common Web vulnerabilities .

The level of detail Zalewski goes into is excellent . Topics 
such as browser history, design considerations and behavior, 
HTML markup, security features in plugins, and secure cod-
ing are covered with minimal filler and with examples that 
illustrate discussions throughout . Only rarely is the reader 
left with questions, and the text provides detailed references 
pointing the reader toward additional information if neces-
sary . As an example of the depth that Zalewski provides for 
a given topic: the HTML chapter covers everything from 
a discussion of the RFC and subsequent HTML version 
evolution to browser parsing behavior in handling differ-
ent code segments, including the role UTF-8 characters can 
play in manipulating a browser’s parsing behavior . Zalewski 
acknowledges that the book is not all-encompassing in cer-
tain areas; however, I would argue that it’s as close to com-
prehensive as is necessary . For those who get spun around in 

a partner and the name was changed in 1950 . I am not going 
to discuss acoustics, but the Harvard Electro-Acoustics Lab 
and the MIT Psycho-Acoustic Lab underlie all the work of 
the following decades . BBN grew rapidly . By 1960, there were 
offices in Los Angeles and Chicago; there were 128 employees 
in Cambridge, 22 in LA, and three in Chicago .

One of the “bright young men” at MIT was J .C .R . Licklider . In 
1962, Lick went to Washington, to ARPA, where he became 
a prime mover in the expansion of computing and in what 
would become the ARPANET . In 1968 BBN’s response to the 
RFP for the ARPANET was complete . In October 1969 the 
first two IMPs (Interface Message Processors), one at UCLA, 
one at the SRI in Menlo Park, CA, communicated with each 
other: the 21-year-old corporation would make key contribu-
tions to a technology that was to change the world .

But the ARPANET/Internet was far from the end of BBN’s 
innovations .

BBN had been the “experimental” site for DEC’s PDP-1; 
thanks to Licklider, Dick Pew, and their cohort, the field of 
human-computer interaction came into being; networked 
email was born here (thanks to Ray Tomlinson; pay no atten-
tion to the Shiva Ayyadurai silliness); time-sharing was 
demonstrated here, etc .

I don’t want to turn what should be a review into a menu, but 
if you are reading ;login:, you owe a major debt to BBN: acous-
tic signal processing, control systems, torpedo data analysis, 
several medical applications, educational technology, speech 
processing, and natural language understanding are merely a 
few of the topics discussed in this volume .

Not everything is an easy read; some chapters are better than 
others . But the work is quite significant in that you can hear 
the voices of a number of remarkable individuals . I learned 
and profited from every chapter .

One of the most fascinating is Stephen Levy’s “History of 
Technology Transfer at BBN,” covering 1948–1997 (the last 
decade is covered in Walden’s “Epilog”) . I had not realized the 
number of business relations of various kinds BBN (and suc-
cessors) had entered into, nor what a large percentage of the 
exchange of agreements was profitable .

Although currently a branch of Raytheon, BBN still functions 
as a research and development facility, unlike Bell Labs or 
XeroxPARC . This volume is a fitting monument . If you are at 
all interested in technological history, A Culture of Innova-
tion is more than merely a worthwhile investment . All the 
contributors deserve my thanks; Walden and Nickerson, my 
gratitude .

—Peter H. Salus
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cally describing some rules of thumb by which the problem 
could have been avoided entirely .

So what types of bugs are we talking about here? Pretty much 
exclusively ones that fall into the category of memory cor-
ruption . While things like XSS and other higher-level bugs 
are very popular now (and are just as serious), they aren’t 
addressed in this book . These are “hard core,” low-level 
bugs which require an intimate knowledge of the languages, 
operating systems, and architectures being exploited . For 
those not very familiar with these types of memory corrup-
tion bugs, I highly recommend reading the article “Smashing 
the Stack for Fun and Profit .” It’s an older Phrack article, but 
really spelled out the basics of how memory corruption bugs 
can be leveraged by an attacker .

Of course the book isn’t perfect . The level of detail, while 
extremely impressive (and useful), can be a bit overwhelm-
ing . It’s not that there is too much information to take in; it’s 
more about presentation . Just about every page is half filled 
with code listings of some kind, which is great but also can 
make the flow of reading a little difficult . You will probably 
find yourself jumping back and forth between the code list-
ings and the descriptions several times before you have that 
“ah-ha” moment and see what the bug is . Fortunately, the 
author puts the most relevant lines of code in bold so at least 
you know what you are supposed to be looking at .

All in all, this is a great book, especially for those who have 
a strong background in C or C++ programming and want to 
learn how to think like a security engineer .

—Evan Teran

D is for Digital: What a Well-Informed 
Person Should Know About Computers and 
Communications
Brian Kernighan
DisforDigital .net, 2011 . 223 pp . 
ISBN 978-1463733896

Sporting a white cover with blue lettering, D is for Digital 
mimics the look of classic Kernighan books . But the target 
audience for this book is not programmers, but, rather, 
educated people who are not CS majors .

Brian writes in his foreword that he has been teaching a class 
at Princeton called “Computers in Our World” since 1999, 
and his experiences teaching what people need to understand 
about computers for over a decade really shows in his book . 
D is not a textbook, but a gentle and clear journey that covers 
hardware, software, and communications in 12 chapters . I 
kept picking the book back up and reading more, partially for 

the details, there are “Engineering Cheat Sheets” at the end 
of each chapter summarizing major points made throughout .

I would recommend this book without question for any Web 
application developer . The information within is essential 
knowledge to be applied in everyday efforts . I’d also pose it 
as essential reading for security professionals—researchers, 
analysts, penetration testers, etc .—who will touch the Web 
application space . As a member of this community, I can 
say the information presented is just another useful tool in 
the old shed that will be applicable at some point . Given the 
detail, you may want to keep it around to thumb through on 
the fly .

—Jeff Berg

A Bug Hunter’s Diary: A Guided Tour Through the 
Wilds of Software Security
Tobias Klein
No Starch Press, 2011 . 208 pp . 
ISBN 978-1593273859

A Bug Hunter’s Diary is a unique book . Its approach to dis-
cussing the topic of computer security is completely different 
from any other I’ve read, and that’s a good thing . Instead of 
the usual “this is what could be done,” this book says “this is 
what I did and why .”

What makes this book so different really boils down to two 
things:

v The level of detail given when discussing the bugs is 
extremely high . You will need a working knowledge of C or 
C++, and assembly (usually x86) wouldn’t hurt either .

v The format of the book is literally that of a diary, which 
makes it more of a unique read .

There are eight chapters—an introduction followed by in-
depth analysis of seven major bugs that the author found and 
developed successful exploits for .

The introduction is a good overview of the different 
approaches that are applicable to this type of work, ranging 
from static analysis to runtime analysis with a debugger to 
fuzzing . The author very much prefers static analysis but is 
quick to point out that each approach has its pros and cons 
and that everyone will have their preference .

Each “diary entry” is broken down into the steps that the 
author took to develop the exploit and closes each one with 
two very useful  things: “vulnerability remediation,” which 
discusses what the vendors did to patch the problem and how 
long it took, and “lessons learned,” usually a short list basi-
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There are no footnotes or references, in keeping with the 
style of the book . There is a list of resources at the back and a 
glossary . There is also an index, so if the reader knows what 
she is looking for, ADSL or “bit rot,” she can find a good expla-
nation for it in this book .

D makes a great gift for the person who is always asking 
questions, or perhaps for someone who really needs to know 
what he or she is talking about . I wish that this book were 
required reading for anyone attempting to write legisla-
tion related to computers, the Internet, and online privacy . I 
did find myself wondering what level of education should be 
expected of the target audience, and settled for anyone who 
has at least two years of college . Also, the book can be used as a 
reference, in that any part of the book can be read in isolation .

—Rik Farrow

the history embedded in it and partially because I enjoyed 
learning just how Brian approaches difficult topics . I had 
toyed with writing a book about computers a long time ago, 
but got bogged down in my explanation of binary . Brian has 
no problem with covering binary, assembler, file systems, 
JavaScript, Web bugs, and traceroute, while keeping the tone 
light and readable .

D is split into three sections: hardware, software, and com-
munications . Communications covers the Internet, but also 
some communication hardware, cryptography, security, and 
privacy issues . If this seems like a lot to cover in just over 200 
pages, the goal is not to overwhelm the reader, but to provide 
a solid background . The chapters on the Web and privacy are 
worth the price all by themselves .
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NOTES
USENIX Board of Directors

Communicate directly with the  USENIX 
Board of Directors by writing to 
board@usenix .org .

P R E S I D E N T

Clem Cole, Intel 
clem@usenix.org

V I C E  P R E S I D E N T

Margo Seltzer, Harvard School of Engi-
neering and Applied Sciences 
margo@usenix.org

S E C R E T A R Y

Alva Couch, Tufts University 
alva@usenix.org

T R E A S U R E R

Brian Noble, University of Michigan 
noble@usenix.org

D I R E C T O R S

John Arrasjid, VMware 
johna@usenix.org

David Blank-Edelman, Northeastern 
University 
dnb@usenix.org

Matt Blaze, University of Pennsylvania 
matt@usenix.org

Niels Provos, Google 
niels@usenix.org

C O - E X E C U T I V E  D I R E C T O R S

Anne Dickison and Casey Henderson 
execdir@usenix.org

USENIX Member Benefits

Members of the USENIX Association 
 receive the following benefits:

Free subscription to ;login:, the 
Association’s magazine, published six 
times a year, featuring technical articles, 
system administration articles, tips and 
techniques, practical columns on such 
topics as security, Perl, networks, and 
operating systems, book reviews, and 
reports of sessions at USENIX 
conferences .

Access to ;login: online from October 
1997 to this month: 
www .usenix .org/publications/login/

Discounts on registration fees for all 
 USENIX conferences .

Special discounts on a variety of prod-
ucts, books, software, and periodicals: 
www .usenix .org/membership/ 
specialdisc .html .

Contributing to USENIX Good Works 
projects such as open access for papers, 
videos, and podcasts; student grants and 
scholarships; USACO; awards recogniz-
ing achievement in our community; and 
others: http://www .usenix .org/about/ 
goodworks .html

The right to vote on matters affecting 
the Association, its bylaws, and election 
of its directors and officers .

For more information regarding 
membership or benefits, please see  
www .usenix .org/membership/ 
or contact office@usenix .org, 
510-528-8649 .

USENIX Announces New  
Co-Executive Directors

Margo Seltzer, Vice President and Presi-
dent-elect, USENIX Board of Directors

Greetings, USENIX Members . I am de-
lighted to let you know that the USENIX 
board has concluded its search for a new 
Executive Director .

One of the best signs of a healthy or-
ganization is when you can hire from 
within, and it is with great pleasure 
that I pre sent Anne Dickison and Casey 
Henderson as the new USENIX Co-Ex-
ecutive Directors . Anne and Casey have 
been with the Association for 8 .5 and 9 .5 
years, respectively . Anne has been our 
Marketing Director, while Casey has 
been our Information Systems Director . 
As Co-Executive Directors, they will 
continue to provide vision, oversight, and 
direction in their respective functional 
areas, as well as sharing the Executive 
Director’s responsibilities . Each of them 
has shown initiative in her job, creativ-
ity, and an ability to get things done, 
and has been instrumental in helping 
USENIX through the transition we’ve 
undergone in the past six months . Their 
complementary skill sets offer USENIX 
a unique opportunity to simultane-
ously ensure continuity and a smooth 
transition while setting us up for new 
initiatives . The Board and I are 100% 
confident in their ability to lead the orga-
nization into the future .

Anne and Casey have assumed the posi-
tion of Executive Director effective April 
2, 2012 . Mail to execdir@usenix .org will 



be directed to them, and that is the ad-
dress you should use to contact USENIX, 
when you aren’t looking for a particular 
person or function .

It has been my pleasure to have had 
the opportunity to serve USENIX as 
its Executive Director for the past six 
months . I have enjoyed working closely 
with Anne and Casey and the rest of 
the USENIX staff . They are all true 
professionals, who are deeply committed 
to the Association and its goals . I hope 
you will join me in congratulating Anne 
and Casey on their new roles and will 
continue to work with them as you have 
always done .

Notice of Annual Meeting

The USENIX Association’s Annual 
Meeting with the membership and 
the Board of Directors will be held on 
Wednesday, June 13, 2012, in  Boston, 
MA, during USENIX Federated Confer-
ences Week, June 12–15, 2012 .
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NOTES
Casey Henderson and Anne Dickison, USENIX Co-Executive Directors

Results of the Election for the 
USENIX Board of Directors, 
2012–2014

The newly elected Board will take office 
at the end of the Board meeting in June 
2012 .
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Margo Seltzer, Harvard School of Engi-
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V I C E  P R E S I D E N T

John Arrasjid, VMware

S E C R E T A R Y

Carolyn Rowland, National Institute of 
Standards and Technology (NIST)

T R E A S U R E R

Brian Noble, University of Michigan

D I R E C T O R S

David N . Blank-Edelman, Northeastern 
University

Alexandra (Sasha) Fedorova, Simon 
Fraser University

Niels Provos, Google

Dan Wallach, Rice University
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REPORTS
10th USENIX Conference on File and Storage 
Technologies (FAST ’12)

San Jose, CA 
February 14–17, 2012

Opening Remarks and Best Paper Awards

Summarized by Rik Farrow (rik@usenix.org)

Bill Bolosky began the conference with the statistics. FAST 
2012 set lots of records: largest number of submissions and 
accepted papers, lowest acceptance rate, and largest number 
of attendees. Bill wondered if it was just that the economy is 
getting better, or that the conference is that popular.

They also tried something new this year: short papers that 
are refereed the same way as longer papers. Bill then showed 
an image representing the words found in paper subjects and 
abstracts. Obvious words, such as “storage” and “system,” 
were most prominent, followed by “file,” “data,” “deduplica-
tion,” “flash,” and “performance” (approximately—check out 
the video). “Cloud” is still a tiny word, but Bill expects that 
will grow.

Jason Flinn took over and described the first Test of Time 
award, for ideas that appeared at FAST over 10 years ago; it 
was presented to Sean Quinlan and Sean Dorward for “Venti: 
A New Approach to Archival Storage.” Next, he announced 
the Best Paper awards: “Recon: Verifying FS Consistency at 
Runtime,” by Daniel Fryer et al., and “Revisiting Storage for 
Smartphones,” by Hyojun Kim et al.

Keith Smith of NetApp and Yuanyuan (YY) Zhou of UCSD 
will be the chairs of FAST ’12.

In this issue:

10th USENIX Conference on File and Storage  
Technologies (FAST ’12)  90
Summarized by Dulcardo Arteaga, Rik Farrow, Daniel Fryer, Doowon 
Kim, Michelle L. Mazurek, Dutch Meyer, Swapnil Patil, and Yiqi Xu

Conference Reports
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REPORTS is offset by the temporary mapping tables. Zhang explained 
that the overall metadata requirements are much smaller. 
Keith Smith from NetApp asked whether the authors had 
considered a richer interface, an idea that Zhang thought was 
promising. Ethan Miller from UCSC followed up on Smith’s 
question to note that an object interface would provide the 
same benefits, even though it moves much of the manage-
ment from the file system to the device.

The Bleak Future of NAND Flash Memory
Laura M. Grupp, University of California, San Diego; John D. Davis, 

Microsoft Research, Mountain View; Steven Swanson, University of 

California, San Diego

Laura Grupp presented her team’s ominously titled paper, 
“The Bleak Future of NAND Flash Memory.” Their goal is 
to project the evolution of NAND-based flash into the year 
2024 to determine if the current reliability and performance 
will be derailed by technical limitations. Their findings are 
mixed. By some metrics, flash will continue to improve, but 
in other ways it will decline.

It is widely understood that current NAND-based flash 
drives are fast and reliable but have a relatively high cost-
to-capacity ratio. Moving forward, capacity will no doubt 
increase, but with current processes and technologies, 
the increased density will incur increased error rates and 
decreased performance. To anticipate the future of NAND 
flash, Grupp and her team combined measurements of mod-
ern flash architectures with projected trends in manufactur-
ing to model the capacity, latency, and throughput of flash 
going into the future.

Grupp explained that capacity will increase with the bit 
density of each cell. Current technologies include single-
level cells (SLCs), which store a single bit; multi-level cells 
(MLCs), which store two bits; and triple-level cells (TLCs) 
which store three bits but are not really triple-level cells (they 
have eight levels). Cell size decreases by scaling, following 
Moore’s Law. Current processes are between 25 nm and 34 
nm, with industrial working groups predicting 6.5 nm by 
2024. These factors suggest a 43-fold increase in capacity 
over that period. To test performance, Grupp and her co-
authors used an in-house testing system to analyze 45 flash 
chips from six companies with a variety of bit densities and 
manufacturing processes. Fitting the results to an exponen-
tial curve suggests a twofold increase in latency for every 
order of magnitude increase in density. In concluding, Grupp 
noted that we can improve density and cost, but performance 
and reliability will decline.

Nauman Rafique from Google asked why the authors con-
sider the provided scenario to be bleak. Grupp replied that 

Implications of New Storage Technology

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

De-indirection for Flash-based SSDs with Nameless 
Writes
Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi 

H. Arpaci-Dusseau, University of Wisconsin—Madison

Yiying Zhang presented her research on a new “Nameless 
Writes” interface to solid state disks (SSDs). SSDs generally 
include a Flash Translation Layer (FTL) that maps logical 
to physical addresses. This allows the device to perform 
wear-leveling behind an opaque address space. However, this 
indirection incurs mapping table space cost and performance 
overheads. Zhang proposed eliminating these overheads by 
largely removing the address translation table and stor-
ing physical data addresses directly in the file system. In 
the proposed interface, file systems do not specify a logical 
address when issuing a write. Instead, the SSD acknowledges 
completed write requests with the data’s physical address.

Realizing a nameless writes interface required address-
ing a number of problems. Writes are always placed in new 
physical locations, which forces metadata modifications to 
cascade address updates to new physical references up the 
length of the file system tree. To address this problem, Zhang 
uses a traditional write interface for file system metadata, 
including traditional on-device address translation. Since 
file systems generally store far more data than metadata, the 
cascading updates can be eliminated while preserving most 
performance and cost advantages. Physical address migra-
tion is also a challenge. With nameless writes, SSDs move 
data beneath running file systems, just as they do today. This 
requires that callbacks be sent to the file system informing 
it of any planned moves, while a temporary mapping table in 
the SSD ensures that requests are routed appropriately.

To evaluate their system, Zhang and her team created an SSD 
emulator, ported ext3 to the nameless writes interface, and 
evaluated against a page-mapped FTL, a hybrid FTL, and a 
nameless-writes FTL. The effort required 4360 lines of code 
changes to ext3. Their SSD emulator operates as a pseudo-
block device and stores results in memory. They found that 
their nameless writes indirection mapping table required 
only 2%–7% of the metadata overheads and performed up to 
20 times better on a workload of random writes.

Following the talk, Geoff Kuenning from Harvey Mudd Col-
lege asked the community why we don’t simply write a file 
system that is designed specifically for the SSDs, and remove 
the FTL entirely. Zhang replied that she thought the device 
should control its own wear leveling. Margo Seltzer asked 
if the space savings from removing the FTL mapping table 
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completely, as is done today with GPUs. Yang said it was an 
interesting and likely effective approach, but that it would 
break the block interface, which has value. Steven Swanson 
from UC San Diego asked if the authors see potential benefit 
in increasing concurrency by using a polling thread with 
multiple outstanding requests. Yang believed the results 
would depend on the application logic. In some cases it might 
benefit, so it’s a scenario worthy of further consideration.

Back It Up

Summarized by Yiqi Xu (yxu006@cs.fiu.edu)

Characteristics of Backup Workloads in Production 
Systems
Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen 

Smaldone, Mark Chamness, and Windsor Hsu, EMC Corporation

Fred Douglis started by highlighting some special character-
istics of a backup system, e.g., it stores the data using aggre-
gation instead of small files. Other characteristics include 
that backup data is replicated and that the backup data on a 
weekend usually has full 100 GB tar-type, while workdays 
have incremental 1 GB tar-type. He pointed out that analysis 
of primary storage abounds, while there is little charac-
terization of backup systems. Their work can validate past 
design decisions using more extensive data and provide data 
for future analyses. The work is also motivated by the fact 
that it is predicted that there will be eight exabytes of data on 
disk-based, purpose-built backup appliances by 2015. Their 
two-pronged analysis covers a study of both breadth and 
depth, with statistics from over 10,000 systems and using 
detailed metadata traces from several production systems 
storing almost 700 TB of backup data.

Fred compared backup file size to primary storage file size. 
The former is orders of magnitude larger, so that traditional 
optimizations do not work for backups. Backup files also have 
many fewer files and directories, as well as flatter hierarchy 
because of many files per directory, and backup systems 
also use catalogs. The weekly churn is around 20%, so the 
system should be able to reclaim data on a regular basis. 
That’s why deduplication helps. Primary data deduplication 
is reported to be 3x–6x, while backup data is >60x dedupe 
for some, 384x max. He went on to sensitivity analysis of 
chunk size and cache size. With many different kinds of data 
sets, he proposed merging chunks to analyze deduplication 
rates across a range of chunk sizes without having to access 
the whole content. They used content-defined merging and 
considered the overhead of metadata with smaller chunks. 
The rule of thumb is 15% better deduplication rate for each 
smaller power of 2 in chunk size, but about 2x the metadata. 
The best deduplication chunk size is 4 KB, and 8 KB consid-

consumers are accustomed to technologies improving, but 
we will not see this with flash. Michael Jadon from Radian 
Systems was optimistic that future precision improvements 
in voltage measuring would lower SSD latencies, but Grupp 
reiterated that the model only tracks current trends and does 
not include assumptions about future discoveries. David 
Rosenthal from Stanford University added that there is 
insufficient manufacturing capacity for flash to completely 
replace magnetic disks anyway, and that many of the limita-
tions discussed apply to other technologies, such as Memris-
tor. Abhijit Paithankar from VMware asked if the authors 
studied power consumption, but they had not considered this 
extensively. Kirk McKusick asked how the memory lifetime 
changes as we move to MLC and TLC. The author referred 
him to the paper, saying “It’s a dramatic decline.” TLC will 
only survive 500 program-erase cycles per block.

When Poll Is Better than Interrupt
Jisoo Yang, Dave B. Minturn, and Frank Hady, Intel Corporation

Jisoo Yang explained how the next generation of NVRAM 
will see interrupt overhead as a major source of latency. His 
work seeks to quantify the costs and to reduce them.

Conventionally, disks use a hardware interrupt to notify the 
scheduler when an I/O operation completes. The scheduler 
correspondingly wakes the thread waiting on that operation. 
This implies that between requesting and completing the 
operation, the requesting thread loses its context, freeing 
other threads in the application to do work. With a very low 
latency device, Yang argues, the overheads of handling this 
asynchronous I/O will start to dominate. It may be more 
efficient for the CPU to directly poll the device for comple-
tion. To test the claim, the team experimented with proto-
type hardware. They measured a DRAM-emulated PCIe SSD 
using the new NVM Express interface. They found that tra-
ditional interrupt-driven I/O had a 6.3 microsecond latency, 
while polling had only a 4.4 microsecond latency. Further, 
the asynchronous nature of interrupt-driven I/O left only 2.7 
microseconds for an application to make any progress, limit-
ing the benefit of asynchronous I/O.

John Groves of Dell Storage asked whether it would be better 
to have a polling loop in place of the entire interrupt handler. 
Yang clarified that each CPU in their implementation has 
a dedicated polling loop. Yan Li from UC Santa Cruz asked 
how the results should be interpreted in light of the preced-
ing talk, “The Bleak Future of NAND Flash Memory.” Yang 
responded that he expects the next-generation processes to 
move away from NAND and to make significant improve-
ments in performance. Kai Shen from the University of 
Rochester noted that even with polling, OS overhead is sub-
stantial. He wondered if it is worthwhile to remove the OS 
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Philip compared the two approaches, replication with dedu-
plication and replication with deduplication and delta com-
pression. He discussed the properties of stream-informed 
delta compression, its pros being fast compression of data 
and small memory footprint, and cons being dependence on 
locality and cache, and some resource cost. The data set he 
used is very different from the previous one: multiple months’ 
backups with varying sizes. The results from delta compres-
sions are shown on multiple datasets, compared with a full 
index simulator. The results show that two super features are 
better than an index with one. More features do not necessar-
ily improve compression, because of a fixed cache size. The 
results also show that one feature compression is within 14% 
of using an index. As a result, delta improvement is from 1.8x 
to 3.1x and the effective network throughput is 1–2 orders 
of magnitude faster than the old approach without delta 
compression.

Overhead and limitations were also discussed, with more 
space requirement per chunk and more CPU and I/O con-
sumption on the source and destination. The sketching is 
also claimed to slow down the writes for non-duplicates by 
20% and scales linearly with the number of streams at the 
destination. They also discussed compression loss because 
of shared caching size and the real case results from custom-
ers. Philip concluded his talk by listing the related works 
and stating that delta locality closely matches deduplica-
tion locality for backup datasets; in addition, the work has 
low cost and good scalability, and it allows customers to 
protect twice as much data by moving it across a WAN. 
Cristian Ungureanu from NEC asked why 3.1x compression 
improvement results in 1–2 orders of magnitude in network 
throughput. Philip answered that it’s due to the performance 
variation in non-delta compressions.

Power Consumption in Enterprise-Scale Backup Storage 
Systems
Zhichao Li, Stony Brook University; Kevin M. Greenan and Andrew W. 

Leung, EMC Corporation; Erez Zadok, Stony Brook University

Zhichao Li claimed that disk backup is a prime candidate for 
power management, but there is no previous power measure-
ment research and so assumptions are often made that disks 
will dominate power. The authors measured four enterprise 
backup controllers and two kinds of enclosures. They used 
a power meter for accurate measurement while exclud-
ing other factors such as networking, cooling, and internal 
subcomponents. First, Zhichao presented numbers for idle 
power consumption—when deduplication is being performed, 
CPU and RAM cost power. He used watts per TB to measure 
the different models and found that newer controller models 
are more efficient. The case for enclosures is similar. He 
concluded that deduplication saves space, because it saves 

ering maintenance and cleaning. For caching, they proposed 
replaying traces with varying cache sizes and reported 
results on the warm cache. The results show that for writes, 
chunk-level LRU caching needs large chunks to be effective 
for writes and that container-level LRU caching works well. 
Read cache behavior is similar but for much larger caches, 
due to data caching.

Fred covered the related work on deduplication and data 
characterization and concluded that high churn means 
throughput must scale with primary storage capacity growth. 
Backup systems are very different from primary systems. 
They need high locality and deduplication for hit rate high 
performance; 8 KB is a sweet-spot chunk size.

Dutch Meyer asked if 8 KB chunk average is an effective 
average they would measure or a statistical average they 
expect to get (it makes a difference if chunks break on zeros 
very often). Fred said that they are actually pretty close, that 
their system doesn’t do anything special about zeros, and 
that if all zeros on a block define a block boundary, then it’s 
going to cause a problem. Primary storage often has many 
files whose last chunk is smaller than the rest. If we get TBs 
of data on one file, then the last chunk is just noise. Dutch 
Meyer did set chunk boundary on zeros when he did his 
work and found it interesting that EMC doesn’t. Dutch said 
it’s really dependent on what the average means, and they 
took the discussion offline. Geoff Kuenning asked if data 
is quite anonymized and can they have it. Fred replied that 
they cannot make any promises and cannot join in a reposi-
tory, at least for the foreseeable future, but they welcome 
interns to join them and have access to the data and work on 
it. Someone asked whether storage speed depends on chunk 
size. The answer was no. Arkady Kanevsky from Dell asked, 
if database churn is very quick in the dataset, is that charac-
teristic or anomalous? Fred reviewed the slides and said it’s 
an indication of how long the user would keep the backup, and 
it’s really a choice of the user. John Groves asked if they are 
chunking with bins and Fred answered yes.

WAN Optimized Replication of Backup Datasets Using 
Stream-Informed Delta Compression
Philip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu, EMC 

Corporation

Philip Shilane started his presentation by showing the 
demands and challenges in improving offshore replication 
performance. Afterwards he talked about his idea and dem-
onstrated an example of deduplication, with delta compres-
sion sketches matching similar chunks. He compared his 
work by searching through several sketch index options (full 
index, partial index, and stream-informed cache) and analyz-
ing their advantages and disadvantages. He further exempli-
fied his idea by animating a discovery of similarity in data.
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block bitmap and the block pointer should agree with each 
other. He further explained that the check happens on the 
transaction boundary just before the commit block reaches 
the disk. The design depends on the interpretation of meta-
data and comparison with the old version, without depend-
ing on the agnostic file system. He proposed an interface to 
invoke for different types of file systems. The write cache is 
used for delaying the update, and the read cache is for storing 
the hot cache of the read metadata. 

Daniel discussed the evaluation of the implementation, 
detection effectiveness, and performance overhead. They 
simulated metadata error corruption by injecting wrong 
metadata before it was written. The errors they catch are 
inclusive of all the errors found by e2fsck except for a special 
flag that isn’t being used in ext3. Cache size also affects one 
of the benchmarks evaluating throughputs, because the 128 
MB cache size takes away some cache from the system.

Wenguang Wang from Apple asked what happens after 
catching an inconsistency; is stopping all I/O an option? Yes, 
they hold and fail stop. Several other options are possible, 
including stopping all writes, remounting read-only, taking a 
snapshot and continuing, and micro-booting the file system 
or kernel. Ethan Miller from UC Santa Cruz asked what kind 
of issue to expect when delayed commit is implemented in 
the FS. Daniel responded that ext3 also group commits with 
5–10 thousands of blocks at a time. Keith Smith from NetApp 
asked for advice for future file system writers to make check-
ing easy. Daniel said they like Btrfs, with back pointers that 
require less data to track; he also recommended figuring out 
and writing consistency problems in a declarative language 
like SQL. Someone asked if this kind of delay is tolerable in 
synchronous, production workloads with increased latency 
for commit block; they took the discussion offline. Atul Adya 
from Google asked if they considered applying this tech-
nique to other applications such as distributed file systems. 
Daniel said that they thought about this and will probably 
find transaction models and distributed invariants. Chris 
from Nebula asked why they do this work in the block layer. 
He maintains a subset of this kind of code for xfs within the 
file system. Daniel admitted that it is more practical for real 
systems this way, but placing the function on the block layer 
also has the benefit of taking it out of the kernel and placing it 
with the hypervisor if they don’t trust the operating system, 
and that filesystem format doesn’t change quickly.

Understanding Performance Implications of Nested File 
Systems in a Virtualized Environment
Duy Le, The College of William and Mary; Hai Huang, IBM T.J. Watson 

Research Center; Haining Wang, The College of William and Mary

Duy Le started by pointing out an inadequacy in the investi-
gation of impacts of nested file systems. Existing literature 

hardware such as the controller/enclosure and networking 
devices. It also reduces disk I/Os. Zhichao went on to disk 
power management—spin down/power down of disks has 
limited savings on power consumption. Other components in 
the enclosure drain more power. Disk spin-down at scale also 
demonstrates that in order to save power, many enclosures 
in a controller need to spin down their disks. He then looked 
at power proportionality in the controller. The results show 
that power varies more by model than by workload, because 
the controller consumes more power than needed. And in 
the enclosure the percentage power increase is less than the 
workload change, which proves again that controller/enclo-
sures consume more power than disks. 

Zhichao’s conclusions were: (1) controller/enclosures are 
power hungry, (2) current systems are not power propor-
tional, and (3) new hardware is more efficient. Future work 
will focus on aged backup, primary storage, CPU, and RAM 
power consumptions when built-in sensors are available.

Brent Welch from Panasas asked how realistic it is for the 
controller to populate 50 enclosures, because the controller 
also has to do RAID to protect drives. At what point does the 
deduplication controller spend more time on RAID rebuilds 
than on decompression? Will they really recommend that 
customers load 50 enclosures? Zhichao replied, it depends 
on whether the customer wants larger capacity with lower 
power cost, and how much customers are willing to pay.

File System Design and Correctness

Summarized by Yiqi Xu (yxu006@cs.fiu.edu)

Recon: Verifying File System Consistency at Runtime
Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun 

Benjamin, Ashvin Goel, and Angela Demke Brown, University of Toronto

n  Awarded Best Paper!

Daniel Fryer presented work on an online filesystem-check-
ing layer between the file system and block layers. He showed 
us that metadata is important while fragile in file system 
consistency. And metadata is more error-prone because of 
file system bugs and will cause data loss. Current solutions 
rely on the correctness of file systems such as journals, 
checksums, and RAID. Offline checking is often used, but it 
is slow, requires taking the file system offline, and produces 
error-prone repair.

Daniel’s team proposes making sure that every update results 
in consistency. However, consistency properties are global 
and may require a full scan run; furthermore, fsck at every 
write is not possible. Thus, fast, local consistency invariants 
are introduced to keep data consistent before it becomes per-
sistent. Daniel demonstrated an example in ext3, where the 
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showed a crash scenario in which two files claim a shared 
block. He then introduced No-Order File System (NoFS), 
which uses back pointer-based consistency, where owners 
of objects are found through the back pointer; the important 
assumption is that object and back pointer are written atomi-
cally. He revisited the crash scenario to show how using a 
back pointer works. He then showed how allocation structure 
consistency is maintained. The creation of new objects can 
proceed without complete allocation information. The valid-
ity bitmap is used to track checked objects. He elaborated 
the case with a scenario determining allocation information. 
Implementation details include two threads responsible for 
metadata and data scan in the background. Note that sched-
uling of scans can be configured while idle or periodically.

In evaluating NoFS, Vijay answered three questions: is 
it robust? how much is the overhead? and does the back-
ground scan lower performance? They put a pseudo device 
driver between the file system and disk to discard writes to 
selected sectors to simulate crash. As a matter of fact, NoFS 
detected all the inconsistencies, and orphan structures were 
reclaimed. There proved to be minimal overhead in terms 
of throughput, and ext3 demonstrates lower throughput in 
cases where there are order points in writes. However, scan 
reads interleaved with file system I/Os really affect through-
put, and accesses on non-verified objects have penalties, such 
as stat. Vijay concluded that trust is implicit, and removing it 
is key to robust, reliable storage systems.

Peter Macko from Harvard asked about the memory over-
head of this approach. Vijay replied that one extra block 
for the bitmap is acceptable. Bill Bolosky from Microsoft 
Research asked how big the file system is. Vijay answered 
that it’s a 50 G partition with 1–5 GB of data. Bill responded 
that a 3 TB surface scan takes 4–5 hours. How does this 
system work when it’s close to full? Does it wait a long time 
for writing (finding a free block)? He mentioned the work he 
was doing on distributed file systems, which are often full. 
Ashvin Goel from the University of Toronto asked if this 
approach works for all disks. Vijay answered, as long as the 
back pointer is atomically written together with data block 
on the disk, it can be achieved on the device. Someone asked 
where the back pointer is stored. Vijay answered that in the 
implementation it is inside the data block. But when out of 
band area can be used, they can store it there. Keith Smith 
from NetApp commented that if a file system grows big 
enough, it will not be able to handle the extra block. He asked 
if files created on disk can be in the same order as created in 
the applications. Vijay said no, since it’s not the consistency 
they provide. Dave Anderson from Seagate Technology rec-
ommended that Vijay apply this technique to other problems. 
Vijay said yes, it’s applicable to hierarchy problem domains. 
Brad Morrey from HP Labs asked about the extra CPU cycles 

exists around I/O scheduler, storage allocation, and virtu-
alized FS on the virtual machines. However, assumptions 
made on one layer of file system may hurt two-layer schemes. 
The authors combine six file systems (ext2, ext3, ext4, rei-
serfs, xfs, and jfs) as host and guest file systems to find the 
best combination with varied I/O behavior and interactions.

In their setup, they partitioned the physical disk into equal 
partitions and formatted six of them to six different file 
systems, which in turn used a flat file to act as disk image for 
a virtual block device. The last partition was used as a direct 
block device for baseline measurement.

The results show that guest file system and host file system 
choice are bi-directionally affecting each other in perfor-
mance. While writes are more critically affected by the 
additional layer, read sometimes can achieve even better 
performance. Latency is sensitive to nested file systems. Duy 
then zoomed in on some specific combinations of guest and 
host file systems for detailed analysis on reads and writes. He 
showed some findings, including the effectiveness of guest 
file system block allocation, I/O scheduler’s effectiveness on 
the guest file system, and journaling performance impact. 
Finally, he listed five pieces of advice for file system choice/
tuning for different workloads and circumstances.

Erez Zadok from Stony Brook University asked why they did 
not shuffle the host file systems on each of the partitions. 
This could result in zone-constant angular velocity, which 
is said to have up to 25% marginal variance on performance. 
Duy replied that they have demonstrated a less than 5% 
performance difference and determined that it is a negligible 
factor in the evaluation, since 42 combinations will cost a lot 
more in time. Zadok then asked whether it will be different 
when they put different kinds of workloads/access patterns 
on the partitions. John Groves from Dell asked whether the 
container file is pre-allocated (yes) and did they use direct 
I/O to avoid upper-level I/Os going to page caches of the 
underlying file system (yes). Ric Wheeler from Red Hat com-
mented that NOOP is often used in the upper level in a virtu-
alized environment. Duy said that guest CFQ / host deadline 
was the best combination they found, so they tended to use 
this setting. Dutch Meyer (University of British Columbia) 
asked whether images are raw (yes) and can the findings/
approaches be generalized at the disk management layer. The 
topic was taken offline. Was disk flushing disabled for accu-
rate measurement? They made sure all caches got flushed.

Consistency Without Ordering
Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, and 

Remzi H. Arpaci-Dusseau, University of Wisconsin, Madison

Vijay Chidambaram pointed out that crash inconsistencies 
are caused by ambiguity about logical object identity. He 
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Optimizing NAND Flash-Based SSDs via Retention 
Relaxation
Ren-Shuo Liu and Chia-Lin Yang, National Taiwan University; Wei Wu, 

Intel Corporation

Ren-Shuo Liu presented a technique for optimizing flash 
performance by opportunistically relaxing the requirements 
for longterm data retention. He noted that there are two 
main reliability specifications in flash: bit error rate and data 
retention time. The latter specifies how long the data should 
stay durable on stable storage. Error correcting codes (ECCs) 
are used to ensure that both criteria are met, but as flash 
density increases, the raw reliability degrades. This forces 
manufacturers to slow down writes to mitigate the worsen-
ing bit error rate and to strengthen ECCs.

However, data retention time of one year is overly con-
servative for the majority of data. Liu’s team proposes a 
retention-aware FTL that initially relaxes the data retention 
specification to two weeks, and if data is not overwritten in 
one week, it can be reprogrammed with the stronger reten-
tion policy. The result is that long-lived data is eventually 
given the longer retention policy, but data overwritten within 
a week can use a weaker ECC to speed up writes by a factor 
of two.

To evaluate the approach, Liu used 11 workloads gathered 
from Microsoft Research Cambridge (MSR-C) and synthetic 
workloads, including TPC-C and Hadoop benchmarks, to 
estimate the average lifetime of a block of data. As a point of 
reference, in the MSR-C workload 86% of writes are over-
written in less than one hour. These workloads were evalu-
ated on disksim 4.0 and SSDsim, using the retention-aware 
FTL design. The results suggest that a 2 to 5.7-fold improve-
ment in performance is possible.

Several in attendance, including Sam Noh from Hongik Uni-
versity and Dave Anderson, asked Liu to clarify the durability 
assurances of long-lived data. Liu explained that background 
processes always convert long-lived data to normal reten-
tion mode, so there is no longterm relaxation of durability 
requirements. Another participant asked if any effort has 
gone into understanding the effects of the garbage collector. 
Liu responded that only writes originating from the guest 
use the weaker ECC. Data movement due to garbage collec-
tion always uses full ECC. Liu was also asked if the same 
performance improvement could be had if the controller was 
made more powerful, to accommodate stronger ECC, but that 
conversation was taken offline. Geoff Kuenning from Harvey 
Mudd College asked Liu to clarify the methodology around 
measuring the cleaning that occurs due to long-lived data 
being moved to a high retention cell. Liu assured Kuenning 
that the cleaning process was included in the simulation.

this approach introduces. Vijay answered that there is no 
noticeable increase, because the check occurs between the 
disk and memory. Someone from Seoul National University 
asked how the back pointers are removed when deleting files. 
Vijay said their approach is lazy deletion. He talked about 
having version number consistency if necessary. Vijay said 
that only bitmaps are kept in memory and they don’t keep any 
structures, so there is no need to free many objects.

Flash and SSDs, Part I

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

Reducing SSD Read Latency via NAND Flash Program 
and Erase Suspension
Guanying Wu and Xubin He, Virginia Commonwealth University

Guanying Wu presented his research on making the pro-
gram-erase cycle of NAND flash memory suspendable. To 
rewrite a page of NAND flash memory, the drive must com-
plete a program-erase cycle, which first erases the page and 
then reprograms it. The erase operation is performed with a 
long pulse of erase voltage to expel electrons from the cells. 
The subsequent programming requires a series of charges in 
which a short pulse is attempted, then tested. This program-
ming is retried with successively higher voltage pulses until 
it is successful. This process can be 10x–100x slower than 
a read, which only requires measuring the cell voltage. The 
problem is that a program-erase cycle blocks out all reads to 
the chip where the block exists, causing higher latency.

To improve read performance, Wu and his team developed 
a method for making the program-erase cycle suspendable. 
This allows read requests that arrive during a lengthy pro-
gram-erase operation to be quickly fulfilled and the rewrite 
to be resumed later. This suspension may occur at different 
points in the program-erase cycle, each requiring a different 
mechanism. If suspension is needed during a program opera-
tion, suspension occurs between program pulse and verify 
operations. During the erase cycle, the erase operation is 
stopped and the duration remaining is noted. The erase can 
continue when the interrupting read request completes. In 
evaluating the system, Wu found that write latency increased 
by a few percent, which he considered trivial. Read latency 
decreased by 50% or more. He concluded that suspending the 
program-erase cycle for reads is a feasible solution, and one 
that significantly improves read performance.

Umesh Maheshwari from Nimble Storage noted that this 
approach seems to work best for lightly loaded systems, and 
Wu agreed. Dave Anderson (Seagate Technology) asked 
if flash lifetimes are degraded because of the extra wear 
involved in restarting program-erase cycles, but Wu had not 
performed that experiment at the time of the presentation.



 ;login: JUNE 2012  Conference Reports   97

whether the design depends on deferring writes until a full 
erase block is available, and cited sync operations in TPC-C 
as an example. Min responded that in sync operations, the 
system works as best effort.

Poster Session I

Summarized by Dulcardo Arteaga (dulcardo@gmail.com)
Only posters that were not represented by papers are 
 summarized here. See static.usenix.org/events/fast12/ 
poster.html for PDFs and descriptions of all posters.

CSPE: Cloud Storage Provisioning Decided by Rate of 
Return and Workload Characteristics
Jianzong Wang, Rui Hua, Changsheng Xie, Jiguang Wan, Yanjun 

Chen, Peng Wang and Weijiao Gong, Wuhan National Laboratory for 

Optoelectronics 

This project presents a model that evaluates current work-
load on a cloud and its tendency to determine the benefit of 
purchasing/leasing new disks. They used the Internal Rate 
of Return (IRR) model used in economics to solve the “pur-
chase or not” problem. They also used one module to detect 
workload peaks and another to trace the workload.

Reliable Energy-Aware SSD-based RAID-6 System
Mehdi Pirahandeh and Deok-Hwan Kim, Inha University

This project presents an approach for periodic estimation of 
reliability and energy consumption and a model of RAID6 
that saves energy. The idea is converting pages into packages 
to reduce the amount of work during writes. Their evaluation 
shows that there is improvement in the energy consumption.

InnoDB DoubleWrite Buffer as Read Cache Using SSDs
Woon-Hak Kang, Gi-Tae Yun, Dong-In Shin, Yang-Hun Park, and Sang-

Won Lee, Sungkyunkwan University; Bongki Moon, University of Arizona

Woon-Hak Kang presented this work to extend and move 
the double write buffer of InnoDB to an SSD to exploit the 
capacity and low latency of this kind of device. Besides the 
functionality of writing dirty pages to guarantee atomicity, 
they propose using the double-write buffer as a cache for 
random reads, consequently improving the performance of 
reading and for writes. The evaluation shows a significant 
improvement in performance for reads but not for writes 
when comparing the use of HDD to SSD.

Mitigating the Network Impact in Large Scale DFSs
Gustavo Bervian Brand and Adrien Lébre, Ecole des Mines de Nantes

This project evaluates the performance of different distrib-
uted file systems based on different topologies, comparing 
when data servers/metadata servers are located behind a 

SFS: Random Write Considered Harmful in Solid State 
Drives
Changwoo Min, Sungkyunkwan University and Samsung Electronics; 

Kangnyeon Kim, Sungkyunkwan University; Hyunjin Cho, Samsung 

Electronics; Sang-Won Lee and Young Ik Eom, Sungkyunkwan University

Changwoo Min presented a new file system for solid state 
disks (SSDs) that’s designed to address two fundamental 
limitations of these devices—random write performance and 
limited lifespan. As SSD technology matures, lifespan is a 
concern because each bit added to a memory cell decreases 
the number of accurate rewrites by an order of magnitude. 
Meanwhile, random write workloads significantly degrade 
performance and further shorten the lifespan of SSD.

Min described SFS, which is a file system specifically 
designed to remedy these problems. The file system employs 
a log-based design, which is suited to the unique character-
istics of SSDs. By writing in a log structure and carefully 
grouping requests to match the size of an erase block, SFS 
effectively transforms random writes on the SSD into better-
performing sequential writes and removes most internal 
fragmentation. When writing, it groups data according to 
hotness, so that future updates are less likely to require mov-
ing otherwise cold data. As a metric for hotness, SFS tracks 
write count and divides by the age of the block. It groups 
blocks together using an iterative refinement technique 
inspired by k-means clustering.

Min’s team evaluated their system on three classes of SSD, 
using two synthetic workloads—TPC-C and a workload 
collected by UC Berkeley—and compared the results to ext3 
and Btrfs. The results showed that SFS requires up to 6.1x 
fewer erase operations. The system is effective at making 
segment fullness bimodal, with more segments being either 
completely full or completely empty. As future work, Min is 
applying the file system to magnetic disk-based storage. His 
early investigations show some “promising results.”

Min was asked if indirection at the file system level could 
cause additional write amplification. He answered that this 
is not what they have seen. In practice, total block erase 
counts are lower. Seungjae Baek from the University of Pitts-
burgh noted that grouping according to hotness has a long 
history and asked about comparisons to other schemes. Min 
directed Baek to comparisons in the paper. Umesh Mahesh-
wari from Nimble Storage asked how the designers matched 
their segment size to that of the flash drive, and was particu-
larly concerned about misaligned blocks. Min acknowledged 
that misalignment degrades performance, but the research-
ers had selected the file system parameters used by directly 
measuring the erase block size of their flash drives. Did Min’s 
team have any plans to productize the file system? They were 
still discussing that possibility. Finally, one attendee asked 
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Timeslices are grouped into epochs; an epoch ends when all 
tasks have spent their timeslice or there are no pending I/O 
requests. Because reads are faster than writes, reads are 
penalized more by interfering writes. The authors introduce 
interference management by servicing reads quickly and 
delaying writes until the reads complete. This minimizes the 
opportunity for interference.

To exploit I/O parallelism while still respecting their 
timeslice management, the authors require some cost 
accounting method for parallel requests. They have two 
models: a linear cost model, and probabilistic fair sharing. 
The linear cost model calculates I/O cost as a function of 
request size, calibrated by times to service reads and writes 
of different sizes. The probabilistic fair sharing model tries 
to estimate the amount of concurrency occurring. They used 
the linear cost model for the results in the rest of the talk.

Anticipatory I/O was used on disks to improve performance 
hits due to deceptive idleness. It’s not necessary for flash 
performance, but they use it for fairness. Deceptive idleness 
can cause an epoch to end early, robbing some process of the 
remainder of its timeslice. Also, a write issued immediately 
before a group of read requests is bad. The question is how 
long to wait, without wasting valuable I/O time. Their default 
is to wait for half of an average request service time. 

They evaluated fairness by measuring the I/O slowdown 
ratio—the amount a request’s response time is degraded 
compared to running alone. For N tasks, proportional 
slowdown means that each task should experience no more 
than a factor of N slowdown. They show that the NOOP, 
CFQ, and SFQ(D) schedulers slow down reads dramatically, 
while writes are faster than proportional; FIOS achieves 
fairness, with both reads and writes faster than propor-
tional slowdown. Quantum-based scheduling is fair, but 
relatively slower. Stan showed how FIOS also performs well 
under asymmetric read/write loads. Running SPECweb 
and TPC-C simultaneously showed that FIOS maintained 
fairness under real workloads. Finally, performance on a low-
power CompactFlash system showed better read efficiency 
than the other schedulers and fair write performance.

Stan reiterated that fairness was their primary concern. 
I/O anticipation is important for fairness, even though it’s 
not important for pure throughput. The I/O scheduler must 
be robust in the face of differing flash architectures. The 
authors believe that the FIOS approach to fairness might also 
be applicable to other domains such as virtual machines and 
the cloud.

Geoff Kuenning (Harvey Mudd) asked what their definition 
of fairness was on the slide showing asymmetric I/O. Their 
measure was equal latency—how much each task is slowed 
down. Geoff thought that this was a matter of opinion, but 

WAN/LAN. This evaluation attempts to demonstrate that 
there is a need to include the factor of topology when design-
ing a distributed file system.

Their experiments compared a variety of topologies with 
different numbers of nodes, and their performance, based 
on different configurations, varies considerably, due to the 
overhead in the network traffic.

vPFS: Bandwidth Virtualization of Parallel Storage 
Systems
Yiqi Xu, Dulcardo Arteaga, and Ming Zhao, Florida International 

University; Yonggang Liu and Renato Figueiredo, University of Florida; 

Seetharami Seelam, IBM T.J. Watson Research Center

Yiqi Xu proposed vPFS, which adds to existing parallel file 
systems the ability to differentiate I/O requests from differ-
ent applications, then meet per-application quality of service. 
This approach was implemented on top of PVFS, which is 
a user-level distributed file system. A proxy was created to 
intercept the I/O traffic and tag it according to the applica-
tions, and a scheduling algorithm is applied at that point to 
meet the quality of service.

Experiments show that using different applications with 
different QoS can meet application requirements without 
generating overhead in the I/O.

OS Techniques

Summarized by Daniel Fryer (dfryer@cs.toronto.edu)

FIOS: A Fair, Efficient Flash I/O Scheduler
Stan Park and Kai Shen, University of Rochester

Stan described the increasing adoption of flash-based stor-
age, and how there’s been very little work in I/O scheduling 
for flash. In particular, synchronous writes have been a 
bottleneck for I/O, and they continue to be on flash devices. 
Then he described the characteristics of flash devices that 
distinguish them from disks, particularly the lack of seek 
latency, the large erase granularity, the need to erase before 
write, and variations between vendors. He then gave an 
example of why “fairness” in flash I/O scheduling matters: 
during conflicting reads and writes both response time and 
variance increase greatly. Each vendor’s devices react dif-
ferently. This was also demonstrated for requests issued in 
parallel—some devices give better results than others.

This led to the development of FIOS, with fairness as a first-
class concern. They try to use fairness but also efficiency 
by exploiting I/O parallelism, and also use I/O anticipation 
(delaying I/O briefly) to help achieve this. The approach of 
FIOS is timeslice management: give tasks equal amounts 
of time to access the device (possibly non-contiguously). 
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speed, data needs to be fetched from global GPU memory into 
the local processing unit memory. Global memory is divided 
into interleaved banks, and threads accessing the same 
bank simultaneously cause a conflict, leading to serializa-
tion. Shredder’s solution is to coordinate threads so that 
they cooperate to fetch data for a task from separate banks, 
leading to parallel bank access. Then the threads can work in 
isolation on device local memory.

Shredder was implemented using C++ and CUDA, and bench-
marked on an NVIDIA Tesla c2050 hosted on a 12-way Xeon. 
The basic GPU approach achieved 1 GBps. Using pipelined 
CPU->GPU transfers, this can be improved to 1.75 GBps. 
Finally, using the coalesced threads loading local processing 
unit memory, they achieve 2.25 GBps. Pramod then presented 
a case study on incremental MapReduce, where some input 
has changed; they want to recompute along the path from 
this changed input using the other unchanged intermediate 
results. The problem is that using fixed-size chunking would 
throw all the chunk boundaries off if data is inserted or 
deleted, so they use content-based chunking to partition data 
before running the MapReduce process.

Someone from EMC BRS asked what their baseline multicore 
performance was, since OpenSSL gets 350 MBps on a single 
core for SHA1. Did they need all 12 cores to get 500 MBps? 
It seems slow for a multicore, and it was suggested that they 
could get the same performance by tuning their CPU imple-
mentation. Pramod disagreed, but discussion was deferred. 
Brent Callaghan (Apple) wanted to know whether they did 
hashing in the GPU as well as the chunking. Pramod clari-
fied that they are only finding chunk boundaries, although in 
theory they could do the hashing as well. Someone from UC 
Santa Cruz wondered what the difference was between this 
and scientific computation, since there has been work done 
on using GPUs for scientific workloads. Pramod differenti-
ated the two by suggesting that scientific applications are 
often N^3, N^4 while chunking is linear, so it’s all about trans-
fer bandwidth.

Adding Advanced Storage Controller Functionality via 
Low-Overhead Virtualization
Muli Ben-Yehuda, Michael Factor, Eran Rom, and Avishay Traeger, IBM 

Research—Haifa; Eran Borovik and Ben-Ami Yassour

Avishay noted the need for new functionality in storage con-
trollers (e.g., deduplication or compression) that has already 
been implemented elsewhere. The conventional approach has 
been to port the functionality from its original environment 
onto the storage controller itself. This has the advantage of 
low overhead but incurs a high engineering and maintenance 
cost. Another approach is to perform the function on a sepa-
rate machine, which he calls the “gateway” approach. This 
avoids the cost of porting the software, but incurs a runtime 

didn’t want to push the matter. Someone from Google asked 
whether they planned to look at ticket-based schedulers, 
where tickets are issued proportional to I/O sizes, to give 
them parallelism without anticipation. Stan explained that 
these policies aren’t specific to FIOS—FIOS was the artifact 
that came out of looking at these policies—and that they 
could try a ticket-based approach. Vasily Tarasov (Stony 
Brook) wanted to know whether they ran experiments with 
different priorities assigned to tasks. The authors had not, 
but Stan suggested that they could do scheduling within each 
priority class, or hand out different-sized timeslices.

Shredder: GPU-Accelerated Incremental Storage and 
Computation
Pramod Bhatotia and Rodrigo Rodrigues, Max Planck Institute for 

Software Systems (MPI-SWS); Akshat Verma, IBM Research—India

Pramod Bhatotia started with a fundamental problem: given 
that the total volume of data is growing rapidly, how can we 
efficiently store and process it all? One major technique is to 
eliminate redundancy. Redundancy elimination is expensive, 
however, and is a three-step process. First, a file is broken 
into chunks, then the chunks are hashed, and finally the 
hashes are matched to establish whether or not a duplicate 
exists. “Content-based chunking,” introduced in SOSP ’01, 
uses a sliding window over a file rather than fixed chunks. 
This can keep boundaries stable under small insertions or 
deletions in the data. Unfortunately, it is very CPU intensive, 
which can be a bottleneck. 

Content-based chunking throughput on a multicore machine 
is about 0.5 GBps, but about 1 GBps with a standard GPU-
based design. This is a 2x improvement, but still not good 
enough—the target I/O bandwidth they’re trying to support 
is 2.5 GBps! The reason for the performance gap is because 
GPUs are designed for compute-intensive workloads, not 
data-intensive workloads.

Buses run from host memory to CPU, from the CPU to GPU 
(PCI), and inside the GPU, which is divided into a set of mul-
tiprocessors with local memory and a global pool of shared 
memory. The CPU can only access this global memory, and 
not the private memory of the compute units. First, data 
is transferred to device memory, then the CPU launches 
threads on the GPU, which loads data from global GPU 
memory into its local memory for fast access, and eventually 
pushes results back to the host. 

There are several scalability problems here. The cost of data 
transfer across the PCI bus is comparable to the time spent 
in the chunking kernel. Shredder pipelines data transfer by 
dividing GPU global memory into two portions, and loads one 
while chunking is being executed on the other. The second 
problem is memory access conflicts on the device itself. For 
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add only 6 µs of latency to a random 4k synchronous write. 
They improve read throughput by a factor of 7 and write 
performance by 6 times. Finally, they present the incremen-
tal improvements of each of their optimizations, showing 
that after the work they’ve done they match the bare metal 
performance at the end. When they cut the controller down 
to four cores again, they take a performance hit because of 
the competing polling threads, but they can tweak thread 
priorities and affinities to overcome this.

Their conclusion is that virtual infrastructure can be used 
with near zero performance overhead. This provides the 
benefits of the high performance and low hardware cost of 
native integration combined with the shorter time to market 
and simpler development of the gateway approach. 

Lakshmi Bairavasundaram (NetApp) wanted to know, if 
cores were assigned statically, how would they deal with situ-
ations where VMs were being supplied by multiple vendors? 
Avishay responded that you only need to configure it once, 
when you figure out what software you are deploying on your 
controller. Dutch Meyer of UBC asked if the presenter could 
comment on virtual storage appliances. Avishay said that his 
understanding was that they run extra functionality outside 
of the controller. 

Mobile and Social

Summarized by Swapnil Patil (svp@cs.cmu.edu)

ZZFS: A Hybrid Device and Cloud File System for 
Spontaneous Users
Michelle L. Mazurek, Carnegie Mellon University; Eno Thereska, Dinan 

Gunawardena, Richard Harper, and James Scott, Microsoft Research, 

Cambridge, UK

In this talk, Michelle Mazurek presented a new file system 
for mobile/home networked devices through the use of new 
hardware components and a combination of storage system 
techniques. The goal of this file system, called ZZFS, is to 
provide spontaneous data access with good trust and control 
over data storage. Michelle first presented a user study from 
traces in the LiveMesh and Dropbox service; this study was 
driving the design of their ZZFS system. Key observations of 
this study include: (1) users are busy and want spontaneous 
response from the system, (2) users do not know their data 
needs a priori, and (3) users place/organize their data in a 
planned and reasoned manner.

Because battery life is a key concern on many mobile devices, 
ZZFS relies on an existing hardware component, the Somnil-
oquy NIC, that provides on-demand network interface card 
wakeup with some on-board flash. One hardware assumption 
ZZFS made was that users rely on broadband connections at 
home with weak 3G-based connections on mobile devices. 

performance cost as well as the additional cost of the gate-
way hardware.

A third way is a hybrid approach: running a VM on a storage 
controller. Unfortunately, virtual machines have a bad repu-
tation for overhead. Storage controllers are special-purpose 
devices with finely tuned resource control. Virtual machines 
provide a large number of features, not all of which are 
needed on a storage controller—they need the fault isolation 
and the separate environment, but they don’t need resource-
sharing, the ability to overcommit, or migration. So they 
thought that perhaps they could customize virtual machines 
to make them suitable for use on storage controllers.

Avishay defined external communication as the I/O between 
client and VM; internal communication is the communica-
tion between the VM and the controller. In their approach, 
the I/O interfaces are directly assigned to the VM, although 
servicing interrupts and I/O completions require a hypervi-
sor context switch. To communicate between the VM and the 
controller they use a virtual I/O block device built on top of 
shared memory, but it also requires hypervisor switches to 
handle the interrupts and I/O completions.

Their main approach to avoiding the latency of the hypervi-
sor is polling. They run a polling thread on the guest VM 
which polls the NIC, avoiding the need for an interrupt. 
The block request is put into shared memory by the VM; the 
host detects this request by its own polling thread. When 
the request on the controller is complete, the host process 
puts the completion in shared memory, where it is detected 
by the original polling thread on the VM, finishing the I/O 
path with no interrupts. They also statically allocate CPU 
cores and memory, since they can establish resource usage 
parameters beforehand. The VM is configured to poll when 
idle instead of sleeping, since they don’t need to share with 
other VMs. They minimize memory management overhead 
by backing the VM’s memory with HugePages.

To benchmark, they configured two servers, each with 
a pair of quad-core 2.9 GHz Xeons and 16 GB RAM. One 
server functioned as a load generator, the other served as an 
emulated storage controller. They compared their VM-based 
solution to a “bare metal” implementation with four cores 
assigned to the host. Storage was emulated by an 8 GB RAM 
disk to avoid the I/O bottleneck of a physical disk.

Their first evaluation is response latency during a ping flood. 
They show that with no polling, the bare metal solution takes 
24 µs, but the VM uses 89 µs. On the other hand, with polling 
enabled both solutions take 21 µs. On the Netperf bench-
marks, guest and host polling show the best performance 
among the configurations they tried, except on TCP receive 
throughput, which they claim is because no real work is 
being done. They calculate that in the optimized case, they 
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writes, most apps write sufficient random data that the appli-
cation performance is adversely affected. Application perfor-
mance is also dependent on the quality of the storage media. 
In terms of systems software, applications target their writes 
either to a file system (in-memory, cached file system) or to 
a SQLite database. Both FS and DB behave differently; in 
particular, the synchronous writes used by many apps cause 
the DB writes to be much slower than FS writes.

Geoff Kuenning (Harvey Mudd) said that an Apple I/O study 
showed that most apps do a lot of synchronous I/O. Since you 
make similar observations, is it just that plain stupid apps 
are the problem? Nitin said that the common theme is the 
presence of App-OS modularity and interface boundaries—
which is not good in all cases, particularly when performance 
is a victim of that modularity. Eno Thereseka (MSR) asked, 
does it really matter if storage is the bottleneck in end-to-
end experience? Nitin replied that as the users of the phones 
and apps, they found that app performance is highly variable 
depending on how one uses the apps and phones; since all 
measurement is at the user level, they captured as much end-
to-end performance as possible using black-box phones.

Serving Large-scale Batch Computed Data with Project 
Voldemort
Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and 

Sam Shah, LinkedIn Corp.

Roshan Sumbaly presented their large-scale batch process-
ing system built on a key-value store. LinkedIn runs large 
Hadoop applications that need to bulk-load massive amounts 
of data in a system that is online and is processing active 
requests. LinkedIn relies on the Voldemort key-value store 
that was inspired by Amazon’s Dynamo paper. In this work, 
LinkedIn developers extended Voldemort to overcome per-
formance degradation due to index creation and mutation.

Extensions to Voldemort included incremental bulk load-
ing, data error minimization and mitigation, and ease of 
use through configuration management. Two existing 
approaches, including a Hadoop-based insertion tool and 
multi-cluster deployment, failed due to performance interfer-
ence and management complexity. Instead, the authors used 
Hadoop’s parallelism and fault tolerance to build an inter-
mediate table construction phase that relied on easy rollback 
using versioned datasets. They also added simple rebalancing 
protocols to drive changes in the data-to-memory ratio to 
mitigate bottlenecks due to memory utilization. Results from 
their production system show that LinkedIn’s extensions 
help run large data pipelines while maintaining sub-5 ms 
latency for active users.

Konstantin Shvachko (eBay) asked how rollback worked 
with new versions. Roshan said that rollback is more than 

ZZFS used a combination of well-studied storage systems 
techniques, including flat namespace metadata service, 
policy-driven I/O director service, and I/O offloading for 
effective power management. The authors built a prototype 
of their ideas and evaluated the performance of ZZFS’s 
design for spontaneous and ad hoc data access.

Margo Seltzer (Harvard) asked about the few random slow 
requests in write latency. Michelle said the problem was 
probably with the WiFi router in the experimental setup. 
Jason Flinn (Michigan) said that centralized storage has 
advantages, but he agreed with Michelle’ about it being 
hard to trust and asked for thoughts on how that could be 
improved. Michelle said that all trust-based issues are more 
about the experience; several companies have had bad experi-
ences with user data and trust—this affects people’s attitudes 
toward using centralized systems. John Berry (Riverbed) 
asked about the cache coherency policies in the system: for 
example, updates to the shared music repository. Michelle 
answered that if a device is on, the updates are sync’d and 
serialized. John asked whether there could be races in the 
middle of a song. Michelle replied that ZZFS relies on the 
Everest system at MSR (published few years ago) which uses 
serialization through the primary copy of the data.

Revisiting Storage for Smartphones
Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu, NEC Laboratories 

America

n Awarded Best Paper!

Nitin presented work on the performance of storage systems 
in smartphones. Mobile devices are becoming increas-
ingly diverse in hardware, software, and application eco-
system. Most existing work has studied network and CPU 
performance; much work has also been adopted by system 
developers to make better use of these two resources. The 
authors studied the performanceof a suite of popular apps on 
a Google Nexus phone with Android OS. Although both the 
hardware and the systems software were commodity, the 
authors patched the OS with some measurement and moni-
toring extensions. To measure the storage I/O behavior, this 
work used different storage media devices (i.e., SD cards); 
this enhanced the study to be more device agnostic.

Several lessons emerged from this work. For SD cards, the 
results showed high disparity between random and sequen-
tial I/O performance; the device specifications are “bloated,” 
because vendors report sequential speeds instead of slow 
random I/O speeds. Furthermore, the authors also observed 
that the storage device performance has not improved as 
much as the network speed performance over the past few 
years. In terms of applications, it was observed that although 
there are only half as many random writes as sequential 
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Stripes are constructed based on arrival order, containing 
non-consecutive block numbers. Sub-stripe parity is used for 
write requests smaller than the stripe size. Evaluation shows 
DS-RAID results in fewer extra reads and writes, with less 
cleaning cost, than standard RAID5. 

The Peril and Promise of Shingled Disk Arrays (How to 
Avoid Two Disks Being Worse Than One)
Quoc M. Le, JoAnne Holliday, and Ahmed Amer, Santa Clara University

Shingled disks promise to increase storage density for disk 
drives, but must be used carefully because updates to written 
tracks may overwrite neighboring tracks. This work evalu-
ates the behavior of shingled disks when used in array con-
figuration or when faced with heavily interleaved workloads 
from multiple sources. There are three evaluation workloads: 
pure (sequential workloads), striped (interleaved workloads), 
and dedicated (one workload per disk). As might be expected, 
more interleaving results in more disk activity as bands are 
relocated. Proper use of shingled disks may therefore require 
rethinking traditional disk array layouts.

A Unified Object Oriented Storage Architecture
Andy Hospodor, Ethan Miller, Rekha Pitchumani, Yangwook Kang, 

and Darrell Long, University of California, Santa Cruz; Ahmed Amer, 

Santa Clara University; Yulai Xie, Huazhong University of Science and 

Technology

This work presents a unified storage architecture based on 
object-oriented storage. The goal is to decouple metadata 
from data, allowing management of objects rather than 
blocks. This architecture can apply to a range of devices 
including magnetic, optical, SSD, tape, and even shingled 
disks. The presenters suggest that such an architecture 
should be designed from scratch, rather than attempting to 
extend SCSI. The architecture will provide typical methods 
such as read and write, as well as new methods including 
find, append, replicate, merge, and sort. An OO storage device 
should use a publish-subscribe model to allow operating 
systems to access these methods. 

Challenges in Long-Term Logging and Tracing
Ian F. Adams and Ethan L. Miller, University of California, Santa Cruz

Long-term logs and traces are important, as some trends in 
system use aren’t apparent in the short term. We have good 
tools for capturing log and trace data, but not for maintaining 
it over the long term: it’s too much data, there are occasional 
hiccups in collection, and log formats change. The present-
ers propose periodically transforming older data to coarser 
resolution, so it takes less space and is easier to work with, 
while keeping fine-grained logs for particularly interest-
ing events. They also suggest annotating logs and traces to 
indicate events like maintenance, nodes or processes going 

just symlink repointing. It also involves closing an mmaped 
index, updating the current versions, and then updating 
symlinks. Rollbacks are worst-case scenarios to handle 
production problems. Dan Peek (Facebook) asked, why not 
have one large ring instead of many small rings? Roshan 
replied, because there is a chance that rebalancing work may 
increase for a single ring.

Work-in-Progress Reports (WiPs)

Summarized by Michelle L. Mazurek (mmazurek@cmu.edu)

Generating Realistic Datasets for Deduplication 
Analysis
Vasily Tarasov and Amar Mudrankit, Stony Brook University; Will Buik, 

Harvey Mudd College; Philip Shilane, EMC Corporation; Geoff Kuenning, 

Harvey Mudd College

Research and industry have developed many different 
deduplication protocols. Comparing them is difficult because 
evaluation depends so heavily on the dataset used. What 
is needed is a benchmarking dataset that is large, realistic, 
versatile, easy to distribute, and with parameters that are 
easy to tune. This work attempts to develop such a dataset 
by observing and emulating the way that real file systems 
mutate over time.

Disk-Failure Injection Framework for Fault-Tolerant 
Systems Research
Yathindra Naik, Mike Hibler, Eric Eide, and Robert Ricci, University of 

Utah

It is important to understand how modern complex stor-
age stacks will behave in the face of disk failures. This work 
builds a framework for injecting disk errors for testing. The 
framework should be realistic, controllable, repeatable, 
scalable, and scriptable. Using Emulab, the presenters model 
delayed I/O, corrupt reads and writes, and sector errors. In 
progress: more realistic failure models that reflect the real-
istic frequency and distribution of these errors. A prototype 
will be available soon.

DS-RAID: Efficient Parity Update Scheme for SSDs
Jaeho Kim and Jongmin Lee, University of Seoul; Jongmoo Choi, Dankook 

University; Donghee Lee, University of Seoul; Sam H. Noh, Hongik 

University

Current SSDs provide low reliability, a high error rate, and 
a limited erase count, with multi-level cells exacerbating 
the problem. Current approaches to applying RAID5 (strip-
ing) to SSDs have limitations related to small writes and 
the inability to write new data until a stripe becomes full. 
Parity pages must be written too frequently, increasing wear. 
This work uses dynamic striping to solve these problems. 



 ;login: JUNE 2012  Conference Reports   103

Signed certificates attest to the object’s properties, poli-
cies, and access history. Overhead for the implementation is 
expected to be below 3%.

Accelerating Data Deduplication by Exploiting 
Pipelining and Parallelism with Multicore or Manycore 
Processors
Wen Xia, Huazhong University of Science and Technology and University 

of Nebraska—Lincoln; Hong Jiang, University of Nebraska—Lincoln; 

Dan Feng, Huazhong University of Science and Technology; Lei Tian, 

University of Nebraska—Lincoln

Deduplication is important for storage efficiency, but the pro-
cess of chunking and fingerprinting data is time-consuming 
and CPU-intensive. The presenters propose P-Dedupe, which 
exploits parallelism and pipelines to avoid this computation 
bottleneck. P-Dedupe divides the data stream into multiple 
sections that can be chunked and processed in parallel, with 
the boundaries between sections requiring special process-
ing to account for the sliding windows used in chunking. 

High-Throughput Direct Data Transfer Between PCIe 
SSDs
Jun Suzuki, Masato Yasuda, Masahiko Takahashi, Yoichi Hidaka, Junichi 

Higuchi, Yoshikazu Watanabe, and Takashi Yoshikawa, NEC Corporation

Data reallocation and backup are examples of data being 
transferred between devices without modification. Cur-
rently, this transfer must traverse main memory of the server 
hosting the I/O devices; this link can become the bottleneck. 
The presenters propose DirectConnect, a method to trans-
fer this data directly, using memory in a PCIe-to-Ethernet 
bridge as an intermediate buffer for DMAs of the source 
and destination devices. Prototype evaluation shows high 
throughput even when server bandwidth is narrow.

Grouping Data for Faster Rebuilds: The Art of Failing 
Silently
Avani Wildani and Ethan Miller, University of California, Santa Cruz

In big systems with erasure coding for reliability, rebuild 
time after failure is inevitable and slow—up to six hours to 
rebuild a 300 GB disk. The goal of this work is to reduce the 
impact of rebuild by striping intelligently. Data is grouped 
into access groups that correspond to real-life working sets 
for applications, users, or projects. Striping these access 
groups strategically can ensure that a rebuild halts progress 
for only a few users or projects rather than all of them—one 
project must rebuild all of its data, rather than rebuilding 
some data for each of many projects. Ongoing work includes 
evaluation with probabilistic fault injection, modeling cor-
related failures, and measuring overall impact of rebuilds.

down, etc. Another idea is to combine traces with snapshots 
of system state, so you can use the trace as a record of the 
change between snapshots. Finally, it’s important to periodi-
cally check for format consistency and note anomalies and 
problems, so that log parsers don’t break or, even worse, fail 
silently when processing a lot of log data. 

Dynamic Block-level Cache Management for Cloud 
Computing Systems
Dulcardo Arteaga, Douglas Otstott, and Ming Zhao, Florida International 

University

Block-level network storage is used in cloud systems to pro-
vide VM storage and allow fast VM migration as well as VM 
availability. However, as cloud systems increase in size, there 
are scalability problems. This work uses dynamic, block-level 
client-side caching to improve performance at scale. This 
approach exploits data locality in VM data access, while sup-
porting dynamic and flexible cache configuration. Each host 
contains one cache, which all the VMs on that host share. 
Within this cache are virtual caches for each VM so they 
don’t interfere with each other. When the VM migrates, the 
virtual cache is flushed. Preliminary results show improved 
throughput using the IOzone benchmark. 

CASE: Exploiting Content Redundancy for Improving 
Space Efficiency and Benchmarking Accuracy in 
Storage Emulation
Lei Tian and Hong Jiang, University of Nebraska—Lincoln

Storage benchmarking is very sensitive to content, with the 
same operations on different content potentially inducing 
very different performance results. As a result, benchmarks 
must retain data content. CASE aims to provide flexible, 
space-efficient, timing-accurate, and content-aware storage 
emulation for benchmarking. CASE is implemented using 
data deduplication over fixed-size chunks. Preliminary 
results indicate that CASE saves up to two orders of magni-
tude in storage space.

Trusted Storage
Anjo Vahldiek and Eslam Elnikety, MPI-SWS; Ansley Post, Google; Peter 

Druschel and Deepak Garg, MPI-SWS; Johannes Gehrke, Cornell; Rodrigo 

Rodrigues, MPI-SWS

Storage is complex, involving millions of lines of code, 
operating systems, file systems, drivers, etc. This complex-
ity means vulnerability to bugs, viruses, and operator errors 
that threaten integrity, confidentiality, and durability. The 
presenters developed a trusted storage architecture that 
enforces user-provided policies for application objects like 
files. Policies may be based on user ID, hardware or software 
configuration, quota, time, or location, and govern the condi-
tions under which objects can be read, updated, or deleted. 
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becomes more of a concern, and since billing for storage is 
usually by quantity used, deleting unused data is important.

Their approach to providing a cloud-backed NFS service 
avoids modifying the client NFS/CIFS stack. Instead, they 
implemented a caching proxy server. The proxy can provide 
lower latency, perform write-back caching, and encrypt 
before forwarding requests to the cloud storage service. On 
the back-end, they use a log-structured file system. When 
writing, each segment is uploaded by the proxy all at once 
and is stored as an object in the cloud. For reads, they take 
advantage of the ability to do random access on the content of 
these segments. There is also a garbage-collecting log cleaner 
process, which can run on the proxy or on a compute node in 
the cloud. 

To maintain confidentiality, the log-cleaning process does 
not need to have the encryption key for the file system, which 
can remain safely on the proxy. They do need to make some 
metadata available, so they structure their metadata as a 
four-level tree. The top two levels are the log checkpoints 
and the inode map, which locate the most recent versions of 
inodes in the log. These levels are unencrypted. Below these 
are the inodes and data blocks, which do have encrypted 
contents. Michael then presented a diagram of the proxy 
architecture. At the front-end are NFS or CIFS interfaces 
to handle client requests. Since they do writeback caching, 
they write to the local disk before replying to the client to 
announce that a write is durable. Once they have accumu-
lated a log segment’s worth of data, they can encrypt it and 
use cloud-specific back-ends (S3, WAS) to store the log seg-
ment in the cloud.

Their design is predicated on high-bandwidth connections 
to the cloud service provider. One of the major problems is 
latency, which is partly a function of location. Measuring 
performance with varying object sizes and amounts of con-
currency, they showed that 32 concurrent connections could 
saturate a 1 Gbps link.

To benchmark their system, they ran a kernel source unpack, 
checksum, and compile process. Michael compared a local 
NFS server, a purely remote NFS server, BlueSky with a 
warm cache, and BlueSky with a cold cache. They also evalu-
ated cache hit ratios and the effect they had on client perfor-
mance. With about a 50% hit rate, they were able to keep read 
latencies within 2x or 3x of the purely local solution. They 
could write at local speed until the proxy ran out of disk space 
for logging, at which point they were limited by bandwidth to 
the cloud. Michael then presented a final benchmark, based 
on SPECsfs2008. BlueSky performed similarly to the local 
NFS system with unconstrained network bandwidth; with 
a constrained network it scaled to about 90% of the local 
throughput before dropping off and becoming erratic. They 

Toward an Economic Model of Long-Term Storage
Daniel C. Rosenthal, University of California, Santa Cruz; David S.H. 

Rosenthal, Stanford University Libraries; Ethan L. Miller and Ian F. 

Adams, University of California, Santa Cruz; Mark W. Storer, NetApp; 

Erez Zadok, Stony Brook University

People want to store their content indefinitely, but want to 
pay for that storage up-front rather than on a continuing 
basis. The cost of indefinite storage is difficult to predict, 
depending on future events ranging from regular disk 
replacement to natural disasters. The presenters use Monte 
Carlo modeling to simulate hypothetical futures for a storage 
system. They calculate tradeoffs between cost and the likeli-
hood of data survival, in an attempt to value the endowment 
needed to preserve data.

Emulating a Shingled Write Disk
Rekha Pitchumani, University of California, Santa Cruz; Yulai Xie, 

Huazhong University of Science and Technology; Andy Hospodor, 

University of California, Santa Cruz; Ahmed Amer, Santa Clara 

University; Ethan L. Miller, University of California, Santa Cruz

Shingled disks can more than double disk capacity, but, due 
to their architecture, random writes may destroy data. In 
particular, in-place overwrites can be destructive. Research 
and development of how to best manage shingled disks is 
hindered because they are not yet available for testing. The 
presenters’ goal is to emulate shingled disks by providing a 
device driver that mimics their operations. The driver uses 
a mapper that maintains knowledge of which tracks are 
overwritten by which writes, so reads to overwritten tracks 
return the overwritten rather than the original content. 
Future work includes adding the ability to report physical 
geometry. The emulator can be useful even after shingled 
disks become available as a platform for consistent and con-
trollable testing. The emulator is currently being evaluated 
and will be released soon.

Cloud

Summarized by Daniel Fryer (dfryer@cs.toronto.edu)

BlueSky: A Cloud-Backed File System for the Enterprise
Michael Vrable, Stefan Savage, and Geoffrey M. Voelker, University of 

California, San Diego

Michael introduced BlueSky by stating that since many ser-
vices are moving towards the cloud, they wanted to explore 
the idea of a network file server backed by cloud storage. 
Existing cloud storage acts like another level in the storage 
hierarchy, but with different characteristics. The interface 
usually only supports writing complete objects, but if one 
supports random reads, latencies are high enough that the 
additional penalty of random access doesn’t matter. Privacy 
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requiring the involvement of many devices. Existing erasure 
codes are not designed with minimal recovery I/O in mind.

Their solution is to create an algorithm that minimizes the 
amount of data needed for recovery under any XOR-based 
erasure code. Before describing the details, Osama presented 
an overview of the general process of erasure coding, start-
ing with a block of file system data. The encoding is done by 
a matrix multiplication, and then the result is distributed 
into stripes after encoding. He gave an example of the type 
of decoding equation that results from this process. Their 
algorithm finds a decoding equation for each failed bit while 
minimizing the total number of symbols needed for recon-
struction, given the code generator matrix and a list of failed 
symbols. They do this by constructing a directed graph, with 
the weights on the edges representing the number of symbols 
involved in the equation. The lowest-cost path through the 
graph minimizes the number of symbols involved. These 
solutions can be precomputed and stored for later use.

Their second contribution was to address the problem of 
degraded reads—disks that are temporarily unable to deliver 
data. To optimize read performance to deal with this, they 
invented a new class of codes  called “rotated Reed-Solomon 
codes.” Standard coding schemes compute different symbols 
from single rows, whereas rotated codes span multiple rows. 
This means that each coding disk is using slightly different 
symbol sets. Osama presented some examples of what kind 
of access has to be done during failure and how the rotated 
Reed-Solomon codes require fewer reads.

Jay Wiley asked how their graph-based algorithm compared 
to Hafner’s work using matrix methods. Osama couldn’t 
remember, so they took it offline. If their symbol size was 
100—500 MB for performance reasons, Jim Molina of West-
ern Digital wondered, what kind of correction capacity would 
they have? It was clarified that the block size doesn’t affect 
correction capacity, which is a function of redundancy.

NCCloud: Applying Network Coding for the Storage 
Repair in a Cloud-of-Clouds
Yuchong Hu, Henry C.H. Chen, and Patrick P.C. Lee, The Chinese 

University of Hong Kong; Yang Tang, Columbia University

Patrick noted how outages or vendor lock-in makes depend-
ing on a single cloud provider for storage risky. The obvious 
solution is to take advantage of multiple-cloud storage, using 
a proxy to stripe data across the clouds using an MDS encod-
ing scheme where any K out of N clouds can reconstruct the 
original data. Repair would then involve downloading all the 
data from the functioning clouds to determine what to write 
to a new cloud. This could incur a high repair cost due to 
bandwidth usage equivalent to the size of the whole dataset.

also found that while fetching full segments was helpful for 
the compile benchmark, it had a negative impact on SPECsfs.

Based on S3’s pricing model for bandwidth and operation 
counts, they calculated the costs of BlueSky. The main point 
was that by aggregating writes into log updates and by allow-
ing random reads, they decreased usage costs dramatically.

Brent Callaghan (Apple) asked whether they had thought 
about multiple proxies accessing the same data store; he also 
wanted to know if they had thought about backup. Michael 
explained that they’d thought about some of the issues but 
hadn’t implemented any of their ideas. There are several rea-
sons why you might want to have multiple proxies: for higher 
scalability or for geographically distributed access. One 
approach would be to have multiple proxies writing to sepa-
rate logs in the cloud and rely on some kind of opportunistic 
concurrency, or maybe implement distributed logging. For 
backups, as long as you don’t garbage-collect all your log seg-
ments, you can get information from a previous checkpoint. 

Someone from Nimble Storage wondered whether log struc-
turing was worth it, given the complications of cleaning. Why 
couldn’t you just increase throughput with higher concur-
rency? Michael explained that the major reason is cost; you 
pay an operation cost on a per-object basis. The cleaning can 
run in the cloud, so you don’t pay transfer charges.

Someone from Red Hat asked what their benchmark NFS 
server was, because the numbers looked horrible. They were 
referred to the numbers in the paper, but it was a Linux 
server with a couple of disks. The numbers might have been 
different had they used a high-performance storage server. 
Joe Tucek of HP Labs asked whether they had thought about 
the different consistency models provided by the different 
cloud services. Michael replied that, because BlueSky is log-
structured, they’re not overwriting data in place, so eventual 
consistency doesn’t cause them as much trouble. They don’t 
have different versions of objects; they’re either there or not 
there. If something just isn’t there, they could retry, timeout, 
or report an error to the client.

Rethinking Erasure Codes for Cloud File Systems: 
Minimizing I/O for Recovery and Degraded Reads
Osama Khan and Randal Burns, Johns Hopkins University; James Plank 

and William Pierce, University of Tennessee; Cheng Huang, Microsoft 

Research

Osama Khan discussed the rapid growth in the total quan-
tity of stored data, projecting a 44-fold growth over 10 years, 
particularly in the cloud. With this much data, replication 
is not a cost-effective means to achieve reliability. Erasure 
coding is a natural solution to this problem, but with tradi-
tional erasure-coding approaches, recovery is a slow process 
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focusing on operation, I/O size, and offset, but their approach 
is valid for any trace. Vasily said that there are two main use 
cases for traces: (1) workload analysis and characterization 
and (2) trace replay. He mentioned that trace replay has some 
problems.

Vasily showed why statistics matter.  Although traces col-
lected on the same machine and in the same environment 
might differ on Monday and Tuesday, for example, it’s the 
overall statistical modeling of properties such as I/O rate and 
read-write ratio that are important to consider in evaluating 
systems.

He explained their design goals: (1) accuracy, (2) concise-
ness, (3) flexibility, and (4) extensibility. Vasily explained 
that the first problem they encountered was that workload 
can change in the trace over time. He explained the feature 
functions within a chunk and said that they can put the value 
into a multi-dimensional histogram. He then said they could 
generate benchmark plugins and explained what the plugins 
are. In the evaluation of their work, he argued that the aver-
age relative error is less than 10% across all parameters and 
systems, and there was a 17x–25x size reduction. Vasily then 
discussed their future work: (1) more accurate parameters, 
systems, and traces; (2) file system traces; (3) automatic 
selection of parameters; and (4) operations on models.

Joe Tucek from HP Labs asked about the difference between 
Monday and Tuesday traces. Vasily replied that many 
assume the traces will be the same day-to-day, but there may 
be significant differences in the pattern of use, while the 
overall load remains the same. They want to develop meta-
cases and be able to work from that. Someone from VMware 
asked about the chunk sizes used in deduplication. Vasily said 
that he understood the issue, but that they didn’t include the 
information about chunk sizes in the paper. Someone from 
Microsoft asked if it takes an expert to choose from their 
library of functions that can create particular traces. Vasily 
said they had published a tool named Distiller that helps with 
this with good results. Josh Berry of Riverbed Technology 
asked if they had looked at latency-dependent workloads. 
Vasily said that this is a known problem with traces, and they 
did experiment with adding in random delays or having no 
delays (infinite speed).

scc: Cluster Storage Provisioning Informed by 
Application Characteristics and SLAs
Harsha V. Madhyastha, University of California, Riverside; John C. 

McCullough, George Porter, Rishi Kapoor, Stefan Savage, Alex C. Snoeren, 

and Amin Vahdat, University of California, San Diego

John McCullough started by explaining provisioning 
hardware for cluster applications. There are many goals for 
provisioning, but he focused only on achieving SLA (perfor-

Their system, NCCloud, applies the idea of “regenerating 
codes” to the problem of repair in bandwidth-constrained 
situations. Regenerating codes aim to reduce the amount of 
data needed to perform reconstruction of a failed node by 
selectively downloading portions of the data stored on each 
node, where the nodes themselves may perform some com-
putation on the data during the reconstruction process. Up 
to this point, regenerating codes have primarily been studied 
from a theoretical perspective. To keep NCCloud simple, they 
would like to avoid any computation on the storage nodes.

NCCloud relies on their implementation of a functional 
minimum-storage regenerating code (F-MSR). Reconstruc-
tion is based on random linear combinations of existing 
chunks. Unlike a “systematic” code, they don’t keep the 
original data around, but only the linearly combined code 
chunks. This makes actual decoding expensive. They propose 
F-MSR for rarely read long-term archival applications. One 
challenge that arises is ensuring that after reconstruction, 
the MDS properties of the original encoding are preserved 
and that any subsequent repair will preserve properties as 
well. F-MSR reduces repair bandwidth cost by 25%. They 
compare NCCloud with F-MSR to Reed-Solomon–based 
RAID-6. F-MSR has higher response time during writes, due 
to encoding overhead, which they expect will be masked by 
network latency unless N is very large. Reconstruction time 
is lower, due to less bandwidth use. In summary, NCCloud 
realizes an implementation of a regenerating code, which 
preserves storage cost but uses less repair traffic.

Someone asked what the odds were of losing data from a 
single cloud provider, much less two. Patrick argued that 
there are many new cloud providers, and we can’t guarantee 
that they are all equally reliable or available. The questioner 
said that he thought that the math was really interesting, but 
he didn’t think the economics of it made sense.

Poster Session II
See static.usenix.org/events/fast12/poster.html for PDFs and 
descriptions of all posters.

A Little Bit of Everything

Summarized by Doowon Kim (dwkim@cs.utah.edu)

Extracting Flexible, Replayable Models from Large 
Block Traces
V. Tarasov and S. Kumar, Stony Brook University; J. Ma, Harvey Mudd 

College; D. Hildebrand and A. Povzner, IBM Almaden Research; G. 

Kuenning, Harvey Mudd College; E. Zadok, Stony Brook University

Vasily Tarasov described what their traces look like. In gen-
eral, a timestamp is a common field, but other fields depend 
on what events are traced. The authors used block traces 
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iDedup: Latency-aware, Inline Data Deduplication for 
Primary Storage
Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti, 

NetApp, Inc.

Kiran Srinivasan began by explaining the overview and 
context of iDedup. He said that storage clients are connected 
to primary storage via NFS, CIFS, or iSCSI, and the primary 
storage is connected to secondary storage through NDMP 
or other methods. In this hierarchy, dedupe can save more 
than 90% in secondary storage. However, primary storage 
has some unique characteristics. First, performance and 
reliability are key features. Second, RPC-based protocols are 
very latency sensitive. Third, only offline dedupe techniques 
have been developed. He said iDedup is for inline or fore-
ground dedupe for primary storage and has little impact on 
latency-sensitive workloads. Kiran compared offline dedupe 
to inline dedupe. He explained why inline dedupe for primary 
storage is required. He said that this is because provisioning 
and planning is easier, with no post-processing activities, 
and allows efficient use of resources. He then explained the 
key features of iDedup. First, it minimizes inline dedupe per-
formance overheads. Second, it has a tunable tradeoff. Last, it 
can be combined with offline techniques.

Kiran talked about inline dedupe challenges. First, it has 
read path challenges. This is because dedupe causes disk-
level fragmentation. Second, it has write path challenges, 
because it produces CPU overheads in the critical write path 
and extra random I/Os in the write path due to the dedupe 
algorithm. He then talked about their approach: iDedup 
provides a solution to read path issues which are dedupe-only 
sequences of disk blocks, as well as keeping a smaller dedupe 
metadata as an in-memory cache to write path issues.

Kiran explained that the iDedup architecture has two 
design-tunable parameters: threshold and dedupe metadata 
(fingerprint DB) cache size. Kiran then explained the iDedup 
algorithm and its four phases.

In their evaluation setup, they replayed real-world CIFS 
traces. Kiran compared iDedup to a system with no iDedup 
and with full dedupe. They tested three dedupe metadata 
cache sizes: 0.25, 0.5 and 1 GB. Results showed less than a 
linear decrease in dedupe saving, and that the ideal threshold 
is the biggest threshold with the least decrease in dedupe sav-
ing. Fragmentation for other thresholds is between the base-
line and threshold 1. CPU utilization demonstrated a larger 
variance compared to the baseline, but the mean difference 
was less than 4%. Finally, Kiran showed that the result of 
latency impact for longer response times is larger than 2 ms.

Margo Seltzer asked about the result graph (in Figure 7) 
comparing the deduplication ratio to the minimum sequence 
threshold. Kiran answered that they chose to use 4 as the 

mance) goals and minimizing cost for a single application 
while emphasizing storage. He said that the challenge is a 
very large configuration space, making solving this problem 
non-trivial. The current state-of-the-art solution is just to 
apply rules-of-thumb from experience, and use trial-and-
error with various configurations. Their goal is to discover 
what a low-cost configuration is now and what a low-cost 
configuration will look like in the future. They do this by first 
measuring “in-the-small” and modeling application perfor-
mance, in order to predict “in-the-large.” He explained scc 
(Storage Configuration Compiler). If cluster building blocks, 
an application model, and SLA specification are put into scc, 
it produces a spectrum of cost for different configurations.

John explained cluster building blocks. Servers have many 
components, such as cores, RAM, storage, I/O, and network. 
You also need an application model to use scc. The model has 
tasks (computation), datasets (storage), edges between tasks 
and datasets (I/O), and edges among tasks (dependencies). 
In his example of the model, photo-sharing, there are three 
datasets: photos, thumbnails, and tags. The related tasks are 
single operations with known sizes for writing or reading 
from the datasets. John said that if you use only a hard disk 
and single core, the cost will be really low. However, if you 
use a lot of SSDs, the cost will be high. The guiding principle 
is to meet SLA. He said ILP minimizes cost.

John talked about validation. They built three applications: 
photo-sharing, product search, and Terasort. He showed that 
scc meets the SLA at lower cost for all three.

Sanghyun Cho from University of Pittsburgh asked whether 
the author had considered including costs such as power. 
John answered that currently they did not include power 
bills. Fred Douglis of EMC asked whether they can handle 
very large models and had tried perturbing the inputs. John 
answered that for larger models they use a gradient descent 
to pick the best solution. In terms of perturbing, some of 
that can be done by swapping out parts. Ben Reed of Yahoo! 
said that this work reminded him of the Starfish project 
in the database community, as they had both a process-
ing and a working-set model built by profiling. John said 
he wasn’t familiar with Starfish, but they did get feedback 
from unnamed storage providers. Ben said that just tuning 
the software configuration made huge differences. John 
said that this sounds interesting to pursue, but complex. 
Someone from Google wondered about using scc for a cluster 
that would have multiple, simultaneous uses. John said they 
planned to look into that in the future. Randal Burns (Johns 
Hopkins) pointed out that this is not the way people deploy 
in the cloud. John said they want to extend their model to 
support cloud deployments. Rik Farrow asked if scc is avail-
able for use, and John replied that he would have to ask his 
co-authors.
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case they used LRU, but, overall, the cost model will not be 
changed.

Lifetime Management of Flash-Based SSDs Using 
Recovery-Aware Dynamic Throttling
Sungjin Lee and Taejin Kim, Seoul National University; Kyungho Kim, 

Samsung Electronics, Korea; Jihong Kim, Seoul National University

Lee said that flash-based SSDs are becoming an attrac-
tive storage solution for enterprise systems, but poor write 
endurance results in the limited lifetime of SSDs hampers 
wideradoption of SDDs. The SSD lifetime is determined by 
the number of bytes that can be written to the SSD and the 
number of bytes written per day. Mobile phones and desktop 
PCs that are not write-intensive can achieve the required 
lifetime, but with write-intensive workloads such as on 
enterprise servers, a reasonable lifetime cannot be guar-
anteed. Flash has a self-healing capability that increases 
flash lifetime related to the logarithm of the time between 
erasures. Current schemes such as reducing WAF and 
incoming write traffic can improve overall SSD lifetime but 
cannot guarantee the required SSD lifetime. Static throttling 
limits the maximum throughput of SSDs but  is also likely to 
throttle performance uselessly and to underutilize the avail-
able endurance.  

Lee introduced Recovery-Aware Dynamic Throttling 
(READY). READY’s design goals are to guarantee the 
required SSD lifetime, minimize average response times, 
and minimize response time variations. READY consists of 
three modules: the write demand predictor, the throttling 
delay estimator, and the epoch-capacity regulator. The write 
demand predictor can predict future write traffic for throt-
tling by exploiting cyclic behaviors of enterprise applications. 
Throttling delay should match future write demand, increas-
ing if demand exceeds epoch capacity, decreasing if demand 
falls short of capacity, and remaining unchanged if demand 
equals capacity. The epoch-capacity regulator can throttle 
write performance by applying the same throttling delay to 
every page write and increasing a throttling delay later to 
reclaim the overused capacity.

The team evaluated four SSD configurations: NT, ST, DT, 
and READY. Results showed that NT cannot guarantee the 
required SSD lifetime, READY achieves a lifetime close to 
five years, and ST and DT exhibit a lifetime much longer than 
five years. NT exhibited the best performance, and READY 
performed better than ST and DT while guaranteeing the 
required lifetime. Finally, READY showed shorter response 
time variations than ST/DT, and ST exhibited the most 
significant response time variations. Future work involves 
implementing READY in a real SSD platform and supporting 
latency-aware performance throttling. 

best threshold. Margo then asked about prior work done on 
inline deduplication at UCB. Kiran answered that this work 
was similar, but completely redone. Joseph Glider of IBM 
Almaden Research asked whether their traces include con-
tent information. Kiran said that they used content hashes. 
Glider then asked whether they consider the age of an entry 
before ejecting it from the cache. Kiran answered that they 
do not use LRU. The policy they use is based on hashes for 
blocks that have been previously used for deduplication. Vas-
ily Tarasov (Stony Brook) asked if they preserve the dedup 
information when moving from primary storage to second-
ary. Kiran answered that they didn’t but it was a good idea.

Flash and SSDs, Part II

Summarized by Doowon Kim (dwkim@cs.utah.edu)

Caching Less for Better Performance: Balancing Cache 
Size and Update Cost of Flash Memory Cache in Hybrid 
Storage Systems
Yongseok Oh, University of Seoul; Jongmoo Choi, Dankook University; 

Donghee Lee, University of Seoul; Sam H. Noh, Hongik University

Yongseok Oh explained that hybrid storage systems ben-
efit from combining SSDs and HDDs. One of the important 
characteristics of flash-based SSD is that it maintains 
over-provisioned space (OPS). Typical SSDs have a fixed OPS 
size in which optimal size is unknown, so one of their goals 
was to determine the optimal size of OPS. According to Oh, 
as OPS increases, the performance cost of garbage collection 
(GC) decreases but the cache miss rate increases. Overall, 
the performance is going to be bad, but optimal OPS size can 
produce the best performance possible. 

Oh presented various cost models and then moved into 
an explanation of his evaluation setup. He used a hybrid 
storage simulator and flash cache layers (FCLs). OP_FCL 
shows near-optimal performance, and optimal performance 
depends on workload characteristics. OP-FCL dynamically 
adjusts cache spaces according to workloads. Considerable 
OPS is used to lower garbage collection cost. Most caching 
space is used to maintain read data. Optimizing the lifetime 
of the flash is left as future work. 

Umesh Maheshwari of Nimble Storage said the paper was 
very interesting and he thought it is very useful in real SSD 
developing. Then he asked whether read cost’s dependence  
on garbage collection cost was their assumption or their 
experience. Oh answered (with his advisor’s help) that in 
reality, the read should not be affected by garbage collection, 
but that their assumption was valid because they experi-
enced that. Someone from Google wondered how a cache 
policy like LRU or FIFO affects the cost model. Oh answered 
that they did not look at other replacement policies. In this 
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