
A P R I L 2 0 1 2 V O L . 3 7 , N O . 2

The Rise and Fall of Dark Silicon
N I K O S H A R D A V E L L A S

How Perl Added Unicode Support 10 Years Ago Without
You Noticing It
T O B I O E T I K E R

Data Integrity: Finding Truth in a World of Guesses and
Lies
D O U G H U G H E S

Conference Reports from USENIX LISA ’11: 25th Large
Installation System Administration Conference

U P C O M I N G E V E N T S

2012 Electronic Voting Technology Workshop/
Workshop on Trustworthy Elections
(EVT/WOTE ’12)
C O - L O C AT E D W I T H U S E N I X S E C U R I T Y ’ 1 2

August 6–7, 2012, Bellevue, WA, USA
http://www.usenix.org/evtwote12
Submissions due: May 11, 2012

3rd USENIX Workshop on Health Security and
Privacy (HealthSec ’12)
C O - L O C AT E D W I T H U S E N I X S E C U R I T Y ’ 1 2

August 6–7, 2012, Bellevue, WA, USA
http://www.usenix.org/healthsec12

6th USENIX Workshop on Offensive
Technologies (WOOT ’12)
C O - L O C AT E D W I T H U S E N I X S E C U R I T Y ’ 1 2

August 6–7, 2012, Bellevue, WA, USA
http://www.usenix.org/woot12

7th USENIX Workshop on Hot Topics in
Security (HotSec ’12)
C O - L O C AT E D W I T H U S E N I X S E C U R I T Y ’ 1 2

August 7, 2012, Bellevue, WA, USA
http://www.usenix.org/hotsec12
Submissions due: May 7, 2012

21st USENIX Security Symposium
(USENIX Security ’12)

August 8–10, 2012, Bellevue, WA, USA
http://www.usenix.org/sec12

10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’12)

October 8–10, 2012, Hollywood, CA, USA
http://www.usenix.org/osdi12
Submissions due: May 3, 2012

26th Large Installation System Administration
Conference (LISA ’12)

December 9–14, 2012, San Diego, CA, USA
http://www.usenix.org/lisa12
Submissions due: May 17, 2012

4th USENIX Workshop on Hot Topics in
Parallelism (HotPar ’12)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H A C M S I G M E T R I C S ,
A C M S I G S O F T , A C M S I G O P S , A C M S I G A R C H , A N D A C M S I G P L A N

June 7–8, 2012, Berkeley, CA, USA
http://www.usenix.org/hotpar12

2012 USENIX Federated Conferences Week
June 12–15, 2012, Boston, MA, USA

2012 USENIX Annual Technical Conference
(USENIX ATC ’12)
June 13–15, 2012
http://www.usenix.org/atc12

3rd USENIX Conference on Web Application
Development (WebApps ’12)
June 13–14, 2012
http://www.usenix.org/webapps12

4th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’12)
June 12–13, 2012
http://www.usenix.org/hotcloud12

4th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage ’12)
June 13–14, 2012
http://www.usenix.org/hotstorage12

4th USENIX Workshop on the Theory and
Practice of Provenance (TaPP ’12)
June 14–15, 2012
http://www.usenix.org/tapp12

6th Workshop on Networked Systems for
Developing Regions (NSDR ’12)
June 15, 2012
http://www.usenix.org/nsdr12

5th Workshop on Cyber Security
Experimentation and Test (CSET ’12)
C O - L O C AT E D W I T H U S E N I X S E C U R I T Y ’ 1 2

August 6, 2012, Bellevue, WA, USA
http://www.usenix.org/cset12

2nd USENIX Workshop on Free and Open
Communications on the Internet (FOCI ’12)
C O - L O C AT E D W I T H U S E N I X S E C U R I T Y ’ 1 2

August 6, 2012, Bellevue, WA, USA
http://www.usenix.org/foci12

F O R A C O M P L E T E L I S T O F A L L U S E N I X A N D U S E N I X C O - S P O N S O R E D E V E N T S ,
S E E H T T P : // W W W . U S E N I X . O R G / E V E N T S

E D I T O R

Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R

Jane-Ellen Long
jel@usenix.org

C O P Y E D I T O R

Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N

Arnold Gatilao
Casey Henderson
Jane-Ellen Long

T Y P E S E T T E R

Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N

2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
nonmembers are $125 per year.
Periodicals postage paid at Berkeley, CA,
and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth
Street, Suite 215, Berkeley, CA 94710.

©2012 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designa-
tions appear in this publication and USENIX
is aware of a trademark claim, the designa-
tions have been printed in caps or initial
caps.

A P R I L 2 0 1 2 , V O L . 3 7 , N O . 2

O P I N I O N

Musings R I K F A R R O W .2

H A R D W A R E

The Rise and Fall of Dark Silicon N I K O S H A R D AV E L L A S .7

S Y S A D M I N

IPv6: It’s Not Your Dad’s Internet Protocol P A U L E B E R S M A N . 18

Programming Unicode S I M S O N L . G A R F I N K E L . 25

How Perl Added Unicode Support 10 Years Ago Without You Noticing It T O B I O E T I K E R . 38

Data Integrity: Finding Truth in a World of Guesses and Lies D O U G H U G H E S 46

C O L U M N S

Practical Perl Tools: Warning! Warning! Danger, Will Robinson!
D AV I D N . B L A N K - E D E L M A N . 51

“R” is for Replacement D AV I D B E A Z L E Y . 56

iVoyeur: Changing the Game, Part 3 D AV E J O S E P H S E N . 62

Should You Care About Solaris 11? P E T E R B A E R G A LV I N . 70

/dev/random : Dark Rhetoric R O B E R T G . F E R R E L L . 75

B O O K S

Book Reviews E L I Z A B E T H Z W I C K Y, W I T H M A R K L A M O U R I N E , T R E Y D A R L E Y,

A N D B R A N D O N C H I N G . 78

C O N F E R E N C E S

USENIX LISA ’11: 25th Large Installation System Administration Conference 83

5th ACM Symposium on Computer Human Interaction for Management of IT 122

 2 ;login: VOL. 37, NO. 2

Rik is the editor of ;login:.

rik@usenix.org

While I was at LISA ’11, I ran into an old friend, Paul Ebersman . Paul was one of
the first employees at UUNET, and every time I ran into Paul, usually at a USENIX
conference, he would tell me how the UUNET office had grown onto another floor
of a building . Eventually, UUNETs growth was taking over entire buildings . Paul
would also tell me how fast the Internet was growing, with traffic doubling every
few months . UUNET was the fastest-growing ISP in the 1990s [1] and was founded
with help from USENIX .

These days, Paul is working for a company (Infoblox) that makes server appliances,
and his own focus is on IPv6 . Paul’s article about issues with making the transition
to IPv6 appears in this issue .

During our conversations at LISA, I asked Paul about security and IPv6, and Paul
said, “It’s like 1994 all over again .” What Paul meant was that back in the mid-’90s,
organizations were beginning to use the Internet without having more than the
vaguest notion of security . Also, most IPv4 software stacks were largely untested,
leading to root compromises and various denial-of-service (DoS) attacks, such as
the Ping of Death [2] . In many ways, as the momentum to enable IPv6 on Internet-
facing Web sites rolls onward, we will be facing another moment where most
people will not be familiar with the new security issues that come with using a new
network protocol .

Just the Same

Some things won’t be any different: there are still 65535 TCP and 65535 UDP ports
in IPv6, just as in IPv4 . If your client or server application has a bug that can be
exploited using IPv4, it most likely can also be exploited via IPv6 (once you have
connectivity) . But there may also be bugs, such as the PoD, lurking in relatively
untested IPv6 stacks .

IPv6 brings with it an enormous address space, with billions of network addresses
and four billion times four billion host addresses . Some people had hopes that this
enormous address space would make automatic scanning for hosts unfeasible .
Steve Bellovin, Bill Cheswick, and Angelos Keromytis explained in their 2006
;login: article [3] that there are a number of strategies worms could use to limit
their attacks to existing networks . These same strategies can also be used by
attackers when exploring networks they wish to attack .

Paul said that it is an excellent idea to monitor your existing networks to check for
IPv6 traffic that might already be there . I tried this, both on my home network,and

OPINIONMusings
R I K F A R R O W

 ;login: APRIL 2012 Musings 3

looking at traffic outside my firewall, and found a fair amount of IPv6 traffic . I
used tcpdump with the ip6 filter (Wireshark uses the same input filter) and dis-
covered that Macs and newer Windows systems are both pretty chatty . Both types
of systems would occasionally send out Router Solicitation ICMPv6 packets, and
both also looked for plug-and-play neighbors . Macs use MDNS (Multicast DNS),
Windows boxes are using SSDP (Simple Service Discovery Protocol), and both are
sending out IPv6 multicast packets looking for or advertising services . If you’ve
been on a public wireless network and noticed other people’s shared disks showing
up in a Finder or Explorer window, you have seen these protocols at play . And while
these protocols are very helpful in some cases, I consider them harmful when used
on non-private networks (hotels, coffee shops, airplanes, conferences, etc .) . Noth-
ing like an invitation to be hacked, and no scanning looking for victims required .
The victims advertise their presence and potentially vulnerable services .

Most modern operating systems support IPv6 and will automatically bring up a
link-local IPv6 interface on all network interfaces . Link-local addresses begin
with the prefix fe80::/10 and, as the name suggests, are valid only on the local sub-
net . Link-local packets cannot be routed and are important to IPv6; they are used
in network discovery protocol and for address assignment and DHCPv6 (see Paul’s
article) . The host portion of these IPv6 addresses (EUI-64) is constructed using
each interface’s MAC (Media Access Control) address, with the 2 bytes FFFE
inserted into the middle of these 6 bytes, and the 7th bit set to one [5] . Unless you
are using DHCPv6, your systems will use the MAC address when automatically
generating IPv6 addresses—unless you have a Windows 7 or newer OS .

Windows 7 systems use a randomly generated host suffix that changes every 15
minutes for privacy, since including your MAC address in a globally accessible
IPv6 address makes your system easy to track on the Internet, as well as possibly
identifying your system, since the first 3 bytes of the MAC address are assigned
to vendors [5] . David Barrera wrote about privacy extensions for IPv6 address for
;login: in 2011 [6], and perhaps the rest of the mobile system world—Linux, Mac,
and BSD laptops, smartphones, and tablets—may catch up to Microsoft’s ability to
maintain more privacy when using IPv6 .

IPv6 was designed so that we can use globally unique addresses, and this rightly
implies the end of NAT . There are available address ranges (site-local addresses
[7]), such as link-local addresses, that will not be routed over the Internet . But
having IPv6 allows you to do away with the problems that NAT has caused, such
as having to renumber networks when organizations merge or when once separate
networks are joined . This also implies that your firewall had better be IPv6-
enabled [8] and that you block packets destined for internal services at edges of
your network . NAT has provided some protection against clients being visible more
by accident than by design, but with IPv6, this limited protection goes away .

Negative NAT

Because you already have systems (Windows and Macs) on your network burst-
ing with eagerness to use IPv6 (just look at those router solicitations!), you are
already using IPv6—just inadvertently instead of intentionally . An attacker who
manages to gain the ability to run a router advertisement daemon such as radvd [9]
can announce whatever IPv6 prefix and routes the attacker desires . This allows
the attacker to perform man-in-the-middle (MITM) attacks by routing packets
through a system the attacker controls, while forwarding the packets using NAT-

 4 ;login: VOL. 37, NO. 2

PT [10] to convert them to IPv4 over your existing networks . This attack works
just as well in public networks and will work whenever a Windows or Mac system
decides to use IPv6 instead IPv4 (for example, as soon as an IPv4 DNS request
times out on a Mac) .

IPv6 brings with it a large share of annoyances, primarily the very long and
awkward 128-bit addresses . It is one thing to memorize an IPv4 numeric address,
expressible as four numbers, and another to memorize the IPv6 address for the
same network interface . I found a nice little tool called ipv6calc [11] you can install
to help you to interpret IPv6 addresses:

$ ipv6calc --showinfo fe80::21b:fcff:fefb:742c/64

No input type specified, try autodetection...found type: ipv6addr

No output type specified, try autodetection...found type: ipv6addr

Address type: unicast, link-local

Registry for address: reserved

Interface identifier: 021b:fcff:fefb:742c

EUI-48/MAC address: 00:1b:fc:fb:74:2c

MAC is a global unique one

MAC is an unicast one

$ []

In this example, I fed it the autoconfigured IPv6 address for a Linux server, and
ipv6calc did a nice job of explaining it .

Firewalls will be another annoyance . In the BSD world, you can have a single set of
firewall rules for both IPv4 and IPv6 . But in the Linux world you have two sets of
rules, one for each protocol, and you must remember that any changes you make to
one set of rules you must also make in the other .

If you look at some default rules in a Linux ip6tables firewall file, you will see rules
allowing all ICMPv6 packets . IPv6 relies on ICMPv6 for determining MTU, and
fragmentation will not work without it . Network discovery, like the router adver-
tisements, also rely on this, but this is something you may want to block at your
firewall [12] .

Older Linux kernels (pre-2 .6 .20) do not support stateful filtering of IPv6 packets
(CONFIG_NF_CONNTRACK_IPV6) and leave a gaping hole (ports 32,768–
61,000) in the ip6tables rules so that client packets can return through the firewall:

ACCEPT udp anywhere anywhere udp dpts:filenet-tms:61000

ACCEPT tcp anywhere anywhere tcp dpts:filenet-tms:61000

 flags:!SYN,RST,ACK/SYN

This charming behavior reminds me of old Cisco router packet filtering (ACL)
rules, back in the days before stateful packet filtering .

Another wonderful feature of IPv6, since deprecated, is the routing header (RFC
5095) . Routing header 0 (RH0) was included in IPv6 to support mobile devices so
that they can roam between networks and continue to receive response packets .
It also allows the construction of what we used to call source routing, a trick that
used to work wonders with ancient protocols that trusted the source address for
authentication . Today, RH0 headers can be used in amplification DoS attacks .

 ;login: APRIL 2012 Musings 5

The Lineup

We start off this issue with an article about dark silicon by Nikos Hardavellas . I’ve
read posts by people who consider dark silicon to be evil, but Nikos makes an excel-
lent case for why we will be seeing dark silicon in future CPU designs .

Paul Ebersman is up next, with the article I’ve already mentioned about IPv6 . Did
you know that June 6, 2012, is World IPv6 day [13]? And that someday your IPv4-
only servers will not be reachable by IPv6-only devices?

Simson Garfinkel approached me in December, wondering if we could publish an
article about Unicode . To be honest, I wasn’t excited about character encoding at
first, but as I read his article, I discovered lots of things (and many annoyances)
that I could finally recognize as Unicode artifices . I learned that my desktop dis-
play uses UTF-8, and the FFFE byte string I had been deleting from the beginning
of text files was actually an indicator of the type of Unicode character encoding
found in the file I was editing (UTF-16, little endian, mysteriously included in IPv6
EUI-64) . If you write programs, you need to know about Unicode .

While Simson covers C, Java, and Python, Tobi Oetiker discusses Unicode for Perl
hackers . Tobi tells us that there has been Perl support for Unicode for many years .
More importantly, he explains where you must actively write Perl code that prop-
erly encodes and decodes Unicode, with examples, as well as some surprises you
may encounter when dealing with Perl’s support for Unicode .

Doug Hughes approached me during LISA with an article idea . Doug, like many
of us today, works in an organization that manages huge amounts of data that,
naturally, must not be corrupted . But Doug had encountered silent data corrup-
tion—that is, errors not reported by disk drives . Doug explains how he discovered
this data and provides suggestions for how you can do this as well .

David Blank-Edelman takes us on a journey beyond Perl’s core functions for han-
dling error messages . If you have ever used Perl, you will be familiar with warn()
and die(), but David shows us much more helpful error functions—that is, ones that
provide more useful debugging information or allow you to catch errors the way
other programming languages often do .

Dave Beazley also steps outside the bounds of Python, exploring add-on Python
libraries . Python comes well-equipped with libraries, but Dave suggests two (cur-
rently) non-standard ones that extend regular expression (regex) and Web interac-
tion (requests), the first with new features, the second with both more features
and easier programming . I do want to note that I was unable to install regex on my
older CentOS (5 .7) system .

Dave Josephsen is still waxing enthusiastic about the features of Graphite, part of
a suite of monitoring software . In this article Dave shows us some neat tricks for
creating graphs using the URL interface to Graphite .

Robert Ferrell, having heard about Nikos’s article, decided to create his own spin
on dark silicon and other things considered “dark” today .

Many books are reviewed in this issue, including two by a new book reviewer, Mark
Lamourine, one by Trey Darley, one by Brandon Ching (back after a long break),
and five by Elizabeth Zwicky . Elizabeth covers intro to the command line and
Python, while Mark covers two programming-related topics . Trey volunteered to
read and review the massive second edition of Richard Stevens’s TCP/IP Illus-
trated, and Brandon Ching takes a look at an intro to HTML 5 .

 6 ;login: VOL. 37, NO. 2

This issue includes reports from LISA ’11 . We did not manage to cover all 34
sessions of LISA, but we covered most sessions . We also have a report from the
Advanced Topics Workshop at LISA and one from CHIMIT, an ACM workshop on
computer human interfaces as they apply to system administrators .

Now that you know that your network is already (hopefully) supporting IPv6 to a
limited extent, perhaps it is time to learn, and do, more about IPv6 . One of the best
papers at LISA covered how Google approached adding IPv6 support, first inter-
nally, then externally [14] . Learning about and using IPv6 is the best way not to be
surprised by attacks against your networks that utilize this protocol .

At the very least, you should be monitoring IPv6 traffic on your networks . As far
as switches are concerned, IPv6 is just another Layer 3 protocol, and routers and
firewalls are the only real barriers that prevent you from having a dark network,
one that you are unaware of . Don’t forget: it’s 1994 all over again .

References

[1] UUNET: https://en .wikipedia .org/wiki/Uunet .

[2] The Ping of Death (PoD): https://en .wikipedia .org/wiki/Ping_of_death .

[3] S . Bellovin et al ., “Worm Propagation Strategies in an IPv6 Internet,” ;login:,
vol . 31, no . 1, USENIX: https://www .usenix .org/publications/login/february
-2006-volume-31-number-1/worm-propagation-strategies-ipv6-internet .

[4] Link-local addresses: https://en .wikipedia .org/wiki/Link-local_address#IPv6 .

[5] IPv6 Extended Unique Identifier, 64 bit: http://wiki .nil .com/IPv6_EUI-64
_interface_addressing .

[6] D . Barrera et al ., “Back to the Future: Revisiting IPv6 Privacy Extensions,”
;login:, vol . 36, no . 1, USENIX:https://www .usenix .org/publications/login/
february-2011-volume-36-number-1/back-future-revisiting-ipv6-privacy
-extensions .

[7] Unique local address: https://en .wikipedia .org/wiki/Site-local_address .

[8] See the April 2008 issue of ;login: for two articles that discuss IPv6 firewalls:
https://www .usenix .org/publications/login/april-2008-volume-33-number-2 .

[9] Router advertisement daemon (radvd): http://www .litech .org/radvd/ .

[10] IPv6 MITM attack using NAT-PT: http://resources .infosecinstitute .com/
slaac-attack/ .

[11] ipv6calc homepage: http://www .deepspace6 .net/projects/ipv6calc .html .

[12] IETF, “Recommendations for Filtering ICMPv6 Messages in Firewalls,”
May 2007: http://www .ietf .org/rfc/rfc4890 .txt .

[13] Internet Society, World IPv6 Day: http://www .worldipv6day .org/ .

[14] Haythum Babiker et al ., “Deploying IPv6 in the Google Enterprise Network:
Lessons Learned” (Practice & Experience Report): https://www .usenix .org/
conference/lisa11/deploying-ipv6-google-enterprise-network-lessons-learned-
practice-experience .

 ;login: APRIL 2012 7

HARDWARE
Industry experts predict that transistor counts will continue to grow exponen-
tially for at least another decade . Historically we were able to harness all of these
transistors to deliver exponential increases in computational power by capitalizing
on both technological improvements and micro-architectural innovation . How-
ever, after decades of reaping Moore’s bounty, processors eventually hit a power
wall . Technological limitations will soon prevent us from powering all transistors
simultaneously, leaving a large fraction of the chip powered off ("dark") . Short of a
technological miracle, we head toward an era of “dark silicon,” able to build dense
devices we cannot afford to power . Without the ability to use more transistors
or run them faster, performance improvements are likely to stagnate unless we
change course .

In this article we (see Acknowledgments) discuss the technological trends that
give rise to dark silicon and outline our current efforts to curb them . One of the
most important realizations is that instead of wasting the dark silicon, we can
harness it to implement specialized cores, where each core is able to perform a
narrow set of tasks at significantly lower energy . We envision an architecture that
provides a sea of specialized cores, with the executing workload powering up only
the most application-specific hardware, while the rest of the chip is switched off
to conserve energy . The new architecture shows promise in solving the problem of
dark silicon for the foreseeable future, but requires us to overcome several chal-
lenges across the entire computing stack to realize it .

The Energy Cost of Computing

Computer systems have already become indispensable and ubiquitous in every
aspect of our life . Our continuous reliance on computers generates data at expo-
nential rates . For example, during March 2011, over 1 .6 PB of data was generated
and transferred for processing among the Tier-1 sites of CERN’s Large Hadron
Collider computing grid [1] . Typical business data sets have grown by 29% annu-
ally over the last decade, surpassing Moore’s Law [2], and personal data has been
shown to grow at similar rates . Processing all this data requires unprecedented
amounts of computation, with commensurate energy demands . To put the energy
demands into perspective, it suffices to note that a 1,000m2 datacenter is a 1 .5
MW facility . Gartner estimates that personal computers and servers consumed
408 TWh of energy globally in 2010 [3] . Computer energy consumption in the US
alone is estimated at 150 TWh annually, accounting for 3 .8% of domestic energy
generation, for a total of $15B . This appetite for energy has created an IT industry

The Rise and Fall of Dark Silicon
N I K O S H A R D A V E L L A S

Nikos Hardavellas is the June

and Donald Brewer Assistant

Professor of Electrical

Engineering and Computer

Science at Northwestern University. His

research interests include parallel computer

architecture, dark silicon, memory systems,

optical interconnects, and data-oriented

software architectures. Prior to joining

Northwestern University, he contributed to

the design of several generations of Alpha

processors and high-end multiprocessor

servers at Digital Equipment Corp. (DEC),

Compaq Computer Corp., and Hewlett-

Packard. Nikos holds a PhD in Computer

Science from Carnegie Mellon University.

nikos@northwestern.edu

 8 ;login: VOL. 37, NO. 2

with approximately the same carbon footprint as the airline industry, accounting
for 2% of the greenhouse gas emissions [3] . With a forecasted 10% annual growth
on installed computing systems [3], these figures rise rapidly, negatively impacting
both the environment and the economics of computing .

It is not surprising, then, that energy consumption is quickly becoming a limiter for
big science . Building an exascale machine with today’s technology is impractical
due to the inordinate power draw it would require, hampering large-scale scientific
efforts . The average energy-per-instruction needs to decrease 200-fold (from 2 nJ
to 10 pJ) for exascale machines to be within a reasonable (20 MW) power target
[4] . Even this target would require 3% of the output of an average nuclear plant to
feed a single machine .

Unfortunately, a large fraction of this energy is wasted . Processor chips account
for 38% of the power consumption of a typical computer system [5], but the general-
purpose computing substrate they provide is highly power inefficient . For example,
conventional multicore processors consume 157–707 times more energy [6] than
customized hardware designs (ASICs—application-specific integrated circuits) .
To enter an environmentally sustainable path and lower the operational costs of
large computing installations, we must find ways to eliminate these energy over-
heads .

While the energy demands of computing at the macro scale have received wide-
spread attention, there is another quiet revolution taking place at the chip level that
threatens to topple today’s hardware landscape .

The Rise of Dark Silicon

In the past several decades, technological progress and micro-architectural inno-
vation allowed processor performance to ride Moore’s Law . However, a few years
ago the semiconductor industry hit a power wall . When processors approached
the limits of air-cooling technologies, the on-chip frequency growth halted, and
micro-architectural techniques alone proved inadequate to continue the upward
performance trend . With the traditional performance driver gone, processor
manufacturers turned to multicores to satisfy users’ need for performance .

Since the number of transistors on chip is growing exponentially, fueling the mul-
ticore revolution, operating all transistors simultaneously requires exponentially
more power per chip . However, whereas the power requirements grow, chip power
delivery and cooling limitations remain largely unchanged across technologies [7] .
We are already at a point where we cannot deliver and cool efficiently more than
130 W per chip [7], and as a result we will soon be incapable of operating all tran-
sistors simultaneously, pushing multicore scaling to an end [8, 9] .

The reason behind this profound change is that while transistor counts grow
exponentially, the voltage required to power them does not decrease fast enough:
a 10-fold increase in transistor counts over the last decade was followed by only a
30% drop in supply voltage [7] . To the first order, power (P) is related to supply volt-
age (Vdd) by the equation

P = Pstatic + Pdynamic = a×N×Ileak×Vdd ×K + (1-a)×N×C×f×Vdd2

where N is the transistor count, a is the average fraction of transistors in the
off state (not switching), Ileak is the leakage current, K is a circuit-design-style
constant, C is the transistor capacitance, and f is the operational frequency . The

 ;login: APRIL 2012 The Rise and Fall of Dark Silicon 9

supply voltage Vdd cannot be reduced much, as it is limited by the threshold voltage
(Vth) required to switch transistors reliably . To reduce Vdd one needs to reduce Vth,
which itself cannot be reduced much as it will increase Ileak exponentially, raising
the power consumption . Thus, while Vdd is stuck at virtually the same voltage level,
the transistor count N grows exponentially, raising the power consumption of the
chip .

Unfortunately, the power consumption of the additional transistors can no longer
be mitigated through circuit-level techniques . Voltage-frequency scaling may
decrease power consumption by lowering the operating frequency (f) and voltage,
but its operational voltage range has shrunk by 70% over the last decade, rendering
it incapable of solving computing’s energy woes . At the same time, the frequency f
cannot be reduced sufficiently to keep the power consumption at bay and simulta-
neously deliver reasonable performance [9] . With the power envelope remaining
constant, and voltage scaling much slower than the exponential growth in transis-
tor density, we’ll soon be unable to power all transistors simultaneously . Short of
a technological miracle, we head toward an era of dark silicon, able to build dense
devices that we cannot afford to power [2, 8, 9] .

Modeling Methodology

To assess the extent of dark silicon, we developed first-order analytical models of
the dominant components of a processor’s power consumption, bandwidth utiliza-
tion, area occupancy, and performance, relating the effects of technology-driven
physical constraints to the performance of workloads running on future multi-
cores . We construct detailed parameterized models that conform to the projec-
tions of the International Technology Roadmap for Semiconductors (ITRS) [7] for
future manufacturing technologies . Detailed descriptions of the models appear
elsewhere [2, 9] . Our models have been independently vetted and used in a recent
study of heterogeneous computing [10] . Similar models were independently devel-
oped and validated against PARSEC benchmarks, demonstrating that multicore
performance will not scale with technology [8] .

The goal of the analytical models is to describe the processor’s physical constraints
and derive peak-performance designs by jointly optimizing the models’ parameters
(including core type and performance, core count, silicon area, memory hierarchy
characteristics, manufacturing process, transistor type, cache miss models, appli-
cation data-set growth, application parallelism, 3D-stacking, supply and threshold
voltage, and clock frequency) . The models facilitate the design space exploration of
multicores by relating a design’s performance to its power consumption, band-
width requirements, and area occupancy . The modeling methodology allows us
to select the design that attains peak performance, out of all the potential designs
that conform to technology projections and physical constraints . It is important to
note that the goal of this modeling effort is not to offer absolute numbers of cache
size or number of cores that produce the best design . Rather, the purpose of the
models is to capture the first-order effects of technology scaling and unveil the
trends that ultimately lead to dark silicon .

Example

To illustrate the use of the models, we explain the progression of the design-space
exploration algorithm based on the results plotted in Figure 1 . To develop Figure
1, we first constrain the models to a single technology node (20 nm), transistor

 10 ;login: VOL. 37, NO. 2

technology (high-performance double-gate FinFETs), core design (conventional
general-purpose cores modeled after Sun UltraSPARC), memory technology
(off-chip DRAM), die area (310 mm2), and application characteristics (cache miss
rates modeled after TPC-H on DB2, with 99% parallel code) . The plot shows the
aggregate chip performance as a function of the L2 cache size on the chip . Thus, for
each point in the figure, a fraction of the die area is dedicated to an L2 cache of size
denoted in the X-axis, 25% of the die area is used for supporting structures (e .g .,
memory controllers, interconnect, component spacing), and the remaining area
can be populated with cores .

The Area curve shows the performance of designs that are constrained only in
the on-chip die area (they have unlimited power and off-chip bandwidth) . These
designs can achieve high performance by populating the entire die with cores . As
the L2 cache size grows to the right, even though fewer cores fit in the remain-
ing area, each core’s performance is higher due to the higher hit rate of the bigger
cache, leading to an increase in aggregate chip performance . Eventually, the
performance benefit of a large cache is outweighed by the cost of reducing the core
count, leading to an aggregate performance drop at larger cache sizes .

Figure 1: Performance of a multicore with general-purpose cores running TPC-H queries
against a DB2 database at 20 nm

The Power curve shows designs populated with cores running at the maximum
frequency allowed for the corresponding technology node, with power constrained
by conventional forced-air cooling, but having unlimited area and off-chip band-
width . Running the cores at maximum frequency requires so much power that it
restricts these designs to a handful of cores, severely limiting the aggregate chip
performance .

The Bandwidth curve shows designs that are limited only in off-chip bandwidth,
permitting unlimited area and power use . The core count and core frequency are
jointly optimized to find the peak-performing configuration, subject to bandwidth
constraints . Larger caches reduce the off-chip bandwidth pressure, leading to
improved performance . Conversely, the Area+Power curve shows designs limited
in area and power but permitted to consume unlimited off-chip bandwidth . The
Area+Power curve jointly optimizes the core voltage and frequency, selecting the
peak-performing design for each L2 cache size .

 ;login: APRIL 2012 The Rise and Fall of Dark Silicon 11

Finally, the Peak Performance curve shows only the feasible multicore designs that
conform to all physical constraints . At small cache sizes, the off-chip bandwidth
is the performance-limiting factor . Beyond 24 MB, however, power becomes the
main limiter, and the peak-performance design lies at the intersection of the power
and bandwidth constraints . The gap between the Peak Performance and Area
curves at 24 MB cache indicates that the majority of the silicon area of the best
possible design for this technology node cannot be used for more cores, because
they cannot be powered up .

Forecasting Dark Silicon

Using an identical analysis, but varying all the other parameters as well (e .g ., core
type, transistor technology, memory technology, workload, etc .), we find the multi-
core design that attains the highest performance on average across all workloads
for a given process technology . We determine the technology trends by repeating
this process for each technology node . Our workload suite includes online transac-
tional processing (TPC-C on Oracle and DB2), Web servers (SPECweb on Apache),
and decision support systems (TPC-H on DB2) .

Figure 2 presents the results of this analysis, where the X-axis plots the year that
each corresponding technology becomes mainstream according to ITRS and the
Y-axis plots the number of cores . The dashed lines indicate the maximum num-
ber of cores that fit on chip, and the solid lines indicate the number of cores in the
peak-performance design estimated by our models . There are two pairs of lines,
one for multicore processors with conventional general-purpose (GPP) cores, and
one for embedded (EMB) cores modeled after ARM11 .

Figure 2: Number of cores for peak-performance designs across technologies

The gap between each pair of lines is an indicator of the impeding dark silicon .
Even though up to 1000 cores can fit in a single die at 20 nm, populating the chip
with an order of magnitude fewer cores is close to ideal . Placing more cores would
require more power and bandwidth, which would force the supply voltage down
and the entire system to run slower and lose performance .

The advent of dark silicon is even more pronounced once the bandwidth wall is
alleviated—for example, through the use of 3D-stacked memory . In this technol-
ogy, DRAM chips are stacked within the same package on top of the logic chip

 12 ;login: VOL. 37, NO. 2

that implements the processing cores . Communication between the stacked dies
is very fast: the signals propagate vertically for only a few microns, as the dies are
exceedingly thin . Retrieving data from a stacked DRAM is 60x more energy-effi-
cient than using the conventional pin interface to off-chip DRAM . Also, the tight
integration and small area footprint allow vertical buses to deliver three orders of
magnitude higher bandwidth .

As a result, processor packages with 3D-stacked memory realize superior perfor-
mance without the need for a large L2 on-chip cache, freeing both area and power
to be used by the cores . Even these systems, however, because of power limitations
can support only a fraction of the cores than can fit in a die . As a result, a signifi-
cant portion of the die real estate remains unutilized, or dark . Our models predict
that, under 3D-die stacking, as much as 54% of the die area may be left unutilized
at the 20 nm technology node (Figure 3) .

Figure 3: Dark silicon for peak-performance multicores with 3D-stacked DRAM

It becomes apparent that the power constraint is the main cause of dark silicon .
While techniques like 3D-die stacking and photonic interconnects push the
bandwidth wall far enough to practically free processor chips from the bandwidth
limitation, there is little we can do to free future chips from the perils of the power
wall . Even if exotic cooling technologies were employed, such as liquid cooling
coupled with microfluidics, power delivery to the chip would likely impose a new
constraint . Based on ITRS, power delivery poses significant challenges due to poor
signal integrity when large currents are delivered at low voltages, for which no
mainstream solutions have been proposed to date .

Without much hope of fixing the problem by raising the power budget, the only
solution to dark silicon seems to be frugality: we need to identify the sources of
energy overheads and remove them to increase the energy efficiency of computing .
Today’s processors are wasting energy at the circuit layer to provide reliable execu-
tion, and at the architectural layer to provide general-purpose computation and
transfer data to the cores . An ideal solution would attack all these overheads .

The Energy Overhead of the Circuit Layer

The power consumption of conventional processors is high in part because the
supply voltage is determined by conservative guardbands based on worst-case sce-
narios . To ensure the correct operation of circuits, designers supply the transistors

 ;login: APRIL 2012 The Rise and Fall of Dark Silicon 13

with a voltage high enough to guarantee that signals will be produced and com-
municated successfully through the chip under all operating conditions, no matter
how rare worst-case conditions may be . However, this design approach results in
significant power and area overheads . Even a 40% reduction in guardbands results
in 13–19% reduction in power consumption, and 13% reduction in area occupancy
and wire lengths [11] .

To mitigate the overheads of wide guardbands, recent research advocates the near-
threshold-voltage operation of circuits . Keeping all else constant, decreasing the
operating voltage (Vdd) reduces power consumption at a quadratic rate . However, as
Vdd approaches Vth, some transistors become slower than others, and some signals
are not propagated correctly through the circuit and violate timing constraints,
causing errors . The surge of errors at the circuit layer is for the most part the result
of process variations: material impurities and the uneven distribution of dopants
result in a variation in the electrical properties and switching speed of transistors,
making them unreliable . The smaller the transistors become, the more susceptible
they are to variations .

Building reliable circuits from unreliable components requires a host of techniques
to mitigate the influx of errors, including wide guardbands and specialized error
detection and recovery circuits . Unfortunately, these techniques induce signifi-
cant power overheads [11] . But, what if we let go of these guardbands and allow the
components of the processor to fail sometimes?

Elastic Fidelity

While traditional designs correct all errors and provide accurate computation,
not all computations and all data in a workload need to maintain 100% accuracy .
Rather, different portions of the execution and data exhibit different sensitivity
to errors, and perfect computation is not always required to present acceptable
results . For example, computations that involve human perception (e .g ., image,
audio, motion) provide a lot of leeway in occasional errors, as visual and auditory
after-effects compensate for them . Some applications (e .g ., networking) already
have strong built-in error correction facilities, as they assume unreliable compo-
nents [12] . Computations performed on noisy data (e .g ., from sensors) are typically
equipped with techniques to correct inaccuracies within reasonable error bounds .
Computations that iteratively converge to a certain value will continue to converge
successfully after the introduction of small errors, albeit a few iterations later .
However, the freedom to introduce errors allows the processor to operate compo-
nents at significantly lower voltage, quadratically reducing the dynamic energy
consumption .

Elastic Fidelity capitalizes on this observation by occasionally relaxing the reli-
ability guarantees of the hardware based on the software requirements, and judi-
ciously letting errors manifest in the error-resilient portion of an application’s data
set . Programming language subtyping designates error-tolerant sections of the
data set, which are communicated through the compiler to the hardware subsys-
tem . The hardware then operates components (e .g ., functional units, cache banks)
occasionally at low voltage to reduce the power and energy consumption . Por-
tions of the application that are error-sensitive execute at full reliability, while the
error-tolerant computations are scheduled to run on low-voltage units to produce
an acceptable result . Similarly, error-tolerant sections of the data are stored in

 14 ;login: VOL. 37, NO. 2

low-power storage elements (e .g ., low-voltage cache banks, low-refresh-rate DRAM
banks) that allow for the occasional error .

By not treating all code and all data the same with respect to reliability, Elastic
Fidelity exploits sections of the computation that are error-tolerant to lower power
and energy consumption, without negatively impacting executions that require
full reliability . Overall, 13–50% energy savings can be obtained without noticeably
degrading the output [13, 14], while reaching the reliability targets required by each
computational segment [14] .

The Energy Overhead of Data Transfers

While relaxing the conservative guardbands offers some respite from dark silicon,
there remain significant overheads in conventional multicore computing . One
of the most important ones is the high cost of data movement: fetching operands
requires orders of magnitude more energy than computing on them . While a typi-
cal integer arithmetic operation consumes 0 .5 pJ at 28 nm, and a 64-bit double-
precision floating-point operation consumes about 20 pJ, reading two operands
from a nearby cache memory requires around 100 pJ, which is 5x–200x more than
the floating-point and integer operations, respectively . Retrieving the data from a
cache 10 mm away requires 356 pJ, a 712-fold energy increase over an integer add,
while retrieving them from across a 400 mm2 chip requires 1100 pJ, a 55x–2200x
increase over the floating-point and integer operations, respectively [21] . Even
worse, retrieving the data from off-chip DRAM requires 16,000 pJ, three to five
orders of magnitude more energy than the energy required to compute on the data!

Elastic Caches

As a result of the high cost of data movement, there has been a significant research
effort to minimize data transfers . Aggressive scheduling techniques aim to sched-
ule data-sharing threads together [14], advanced caching aims to minimize trips to
main memory [18], and elastic data placement schemes [16] and memory hierar-
chies [17] aim to bring data and computation within physical proximity . Similarly,
recent efforts have shown the advantages of moving computation (i .e ., code, which
is typically small) close to the data (which is typically large), rather than the
reverse [19] .

Even simple optimizations to minimize data transfers with negligible implementa-
tion cost have been shown to reduce the energy demands by a large margin . Elastic
Caches, for example, adaptively co-locate data with computation [16] and can
reduce the energy demands of a processor by 17%; by placing the on-chip directory
entries close to the computation, they provide an additional 13% energy savings
[15] .

The Energy Overhead of General-Purpose Computing

While a simple arithmetic operation requires around 0 .5–20 pJ, modern cores
spend about 2000 pJ to schedule it . This tremendous source of overhead is the
price we pay for general-purpose computing . Fetching instructions described in a
generic ISA, decoding, tracking instructions in flight, discovering dependencies
and forwarding the right values, renaming registers, reordering instructions, and
predicting branch targets and target addresses all contribute to this overhead . As
a result, compared to ASICs, conventional multicore processors consume two to
three orders of magnitude more energy [6] .

 ;login: APRIL 2012 The Rise and Fall of Dark Silicon 15

This profound energy waste contributes not only to the excessive energy consump-
tion of modern computing, but also to the onset of dark silicon . We propose to har-
ness the second problem to fix the first: instead of wasting dark silicon, we should
embrace it and use it to realize energy-efficient computation .

Repurposing Dark Silicon for Specialized Computing

Our models indicate that chips will not scale efficiently beyond a few tens to low
hundreds of cores, while upwards of 1000 cores can fit in a single chip [2, 9] . Thus,
an increasing fraction of the chip in future technologies will be dark silicon . We
envision SeaFire, an architecture that implements a sea of specialized cores on
dark silicon, where each core is able to perform a narrow set of tasks at signifi-
cantly lower energy . The executing workload would fire up only the cores most
useful to the computation at hand, while the rest of the chip remains switched off
to conserve energy . Examples of specialized cores include cores to execute Java
bytecode and JVM natively (like Azul’s Vega and aJile’s JEMcore), or cores that
implement server functionality common in the target workloads (e .g ., compression,
encryption, video decoding) . Similarly, some cores could be ideally suited to data-
parallel computation (e .g ., SIMD), while others could be optimized for long-latency
operations (e .g ., memory accesses) or ILP (e .g ., out-of-order cores) . Finally, some
cores could simply provide commonly used principles (e .g ., string manipulation,
convolution, file scanning and filtering) .

To estimate the potential of SeaFire, we evaluate an extreme application of this
approach . Rather than representing a specific core design, we consider a het-
erogeneous multicore populated with specialized cores that exhibit ASIC-like
properties on the code they execute . We model such cores after ASICs running a
CABAC (Context-Adaptive Binary Arithmetic Coding) segment of the H .264 video
encoder . CABAC is a form of entropy encoding used in H .264/MPEG-4 AVC video
encoding . While it provides higher compression than most alternative algorithms,
it requires a large amount of processing, it is difficult to parallelize and vectorize,
and its highly control-intensive nature does not lend itself to an efficient hardware
implementation . Thus, we choose to model the specialized cores after CABAC in
order to obtain conservative bounds, as opposed to modeling them after data-
parallel computations that may provide significantly lower energy in a specialized
design .

While conventional multicores require extreme parallelism by the software to
be fully utilized, a processor with specialized cores on dark silicon attains peak
performance with only a handful of cores powered up at a time [2, 9] . This observa-
tion holds across technologies, and for applications with up to 99 .9% parallelism .
The low core count across technologies hints that peak-performance designs with
specialized cores can be realized in an increasingly smaller silicon area, leaving
an exponentially larger portion of the chip powered-off (dark) . SeaFire repurposes
the otherwise-dark silicon to implement a large collection of specialized cores to
increase the likelihood of finding a core suitable for the computation . Overall, we
estimate that SeaFire reduces the energy consumption 12-fold over homogeneous
architectures implemented within the same physical constraints [2, 9] . Thus,
SeaFire promises not only to reduce the energy consumption by a large margin,
but, in doing so, to utilize the otherwise wasted dark silicon .

 16 ;login: VOL. 37, NO. 2

Concluding Remarks

It is apparent that, unless we change course, we’ll soon find ourselves unable to
utilize fully the chips we build, and the inordinate energy consumption of com-
puting will make its expansion prohibitive . The culprits seem to be the overheads
associated with traditional implementation choices: we waste energy to guarantee
correct circuit execution under all circumstances, no matter how rare they may be
or how much correctness really matters; we waste energy to move data from far-
away locations because until now maybe we didn’t have a strong enough incentive
to solve the problem; we waste energy in computations, a price we have been will-
ing to pay until recently to gain generality in computing . However, our current path
is unsustainable and needs to change .

But change doesn’t come easily . Significant challenges need to be addressed to
realize the solutions identified above . Every aspect of computing will need to be
revisited to make this vision a reality . How to modify programming languages
and applications to identify and specify error tolerance? Which computations are
ideal candidates for off-loading to specialized hardware, and common enough to
be utilized by several workloads? What are the appropriate language and run-
time techniques to drive the execution migration across specialized cores? How
to restructure software and algorithms for heterogeneity? The list quickly grows
long, and the fight seems tough . However, the stakes are high enough to make it a
fight worth fighting .

Acknowledgments

The author acknowledges the contributions of his collaborators in various aspects
of this research: M . Ferdman, S . Roy, A . Das, K . Liu, T . Clemons, S .M . Faisal, B .
 Falsafi, A . Ailamaki, S . Parthasarathy, S . Memik, M . Schuchhardt, G . Tziantzio-
ulis, G . Memik, A . Choudhary, I . Pandis, R . Johnson, and the members of the
PARAG@N Lab .

References

[1] CERN, Worldwide LHC computing grid, realtime VO-wise data transfer:
http://lcg .Web .cern .ch/lcg/, 2011 .

[2] N . Hardavellas, “Chip Multiprocessors for Server Workloads,” PhD thesis,
Carnegie Mellon University, 2009 .

[3] Financial Times, “Computing: Powerful Argument for Cutting IT Energy
 Consumption”: http://www .ft .com/cms/s/0/4e926678-bf90-11df-b9de
-00144feab49a .html#axzz18EH%YGujk, September 2010 .

[4] B . Dally, “Power and Programmability: The Challenges of Exascale Computing,”
DoE ASCR Exascale Research PI Meeting, 2011 .

[5] X . Fan, W-D . Weber, and L .A . Barroso, “Power Provisioning for a Warehouse-
Sized Computer,” Proceedings of the 34th Annual International Symposium on
Computer Architecture, 2007 .

[6] R . Hameed, W . Qadeer, M . Wachs, O . Azizi, A . Solomatnikov, B .C . Lee, S . Rich-
ardson, C . Kozyrakis, and M . Horowitz, “Understanding Sources of Inefficiency in
General-Purpose Chips,” Proceedings of the 37th Annual International Sympo-
sium on Computer Architecture, 2010 .

 ;login: APRIL 2012 The Rise and Fall of Dark Silicon 17

[7] Semiconductor Industry Association, The International Technology Roadmap
for Semiconductors (ITRS): http://www .itrs .net/, 2008 .

[8] H . Esmaeilzadeh, E . Blem, R . St Amant, K . Sankaralingam, and D . Burger, “Dark
Silicon and the End of Multicore Scaling,” Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture, 2011 .

[9] N . Hardavellas, M . Ferdman, B . Falsafi, and A . Ailamaki, “Toward Dark Silicon
in Servers,” IEEE Micro, vol . 31, no . 4, 2011 .

[10] E .S . Chung, P .A . Milder, J .C . Hoe, and K . Mai, “Single-Chip Heterogeneous
Computing: Does the Future Include Custom Logic, FPGAs, and GPUs?” Proceed-
ings of the 43rd International Symposium on Microarchitecture, 2010 .

[11] K . Jeong, A .B . Kahng, and K . Samadi, “Impact of Guardband Reduction on
Design Outcomes: A Quantitative Approach,” IEEE Transactions on Semiconduc-
tor Manufacturing, vol . 22, no . 4, 2009 .

[12] A . Mallik and G . Memik, “A Case for Clumsy Packet Processors,” Proceedings
of the 37th International Symposium on Microarchitecture, 2004 .

[13] A . Sampson, W . Dietl, E . Fortuna, D . Gnanapragasam, L . Ceze, and D . Gross-
man, “EnerJ: Approximate Data Types for Safe and General Low-Power Compu-
tation,” Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2011 .

[14] S . Roy, T . Clemons, S .M . Faisal, K . Liu, N . Hardavellas, and S . Parthasarathy,
“Elastic Fidelity: Trading-Off Computational Accuracy for Energy Reduction,"
CoRR, abs/1111 .4279, 2011 .

[15] S . Chen, P .B . Gibbons, M . Kozuch, V . Liaskovitis, A . Ailamaki, G .E . Blelloch,
B . Falsafi, L . Fix, N . Hardavellas, T .C . Mowry, and C . Wilkerson, “Scheduling
Threads for Constructive Cache Sharing on CMPs,” Proceedings of the 19th
Annual ACM Symposium on Parallelism in Algorithms and Architectures, 2007 .

[16] N . Hardavellas, M . Ferdman, B . Falsafi, and A . Ailamaki, “Near-Optimal
Cache Block Placement with Reactive Nonuniform Cache Architectures,” IEEE
Micro, vol . 30, no . 1, 2010 .

[17] A . Das, M . Schuchhardt, N . Hardavellas, G . Memik, and A . Choudhary,
“Dynamic Directories: Reducing On-Chip Interconnect Power in Multicores,”
Proceedings of the Design, Automation, and Test in Europe, 2012 .

[18] A . Jaleel, K . Theobald, S .C . Steely Jr ., and J . Emer, “High Performance Cache
Replacement Using Re-Reference Interval Prediction,” Proceedings of the 37th
Annual International Symposium on Computer Architecture, 2010 .

[19] I . Pandis, R . Johnson, N . Hardavellas, and A . Ailamaki, “Data-Oriented Trans-
action Execution,” Proceedings of the VLDB Endowment, vol . 3, no . 1, 2010 .

[20] J .H . Patel, “CMOS Process Variations: A Critical Operation Point Hypothesis,”
Computer Systems Colloquium, Stanford University, 2008 .

[21] Stephen W . Keckler, "Echelon: NVIDIA & Team’s UHPC Project," DARPA
Ubiquitous High Performance Computing Program Meeting, Houston, TX, May
2011 .

 18 ;login: VOL. 37, NO. 2

SYSADMIN
Functionally, IPv4 and IPv6 seem pretty similar . They connect a bunch of virtual
wires or local networks together so that we can all run our favorite Internet apps .
But once you start looking under the hood, there are some obvious differences .
There are lots more subnets and addresses available in IPv6, and they are really big
and ugly and hard to type (try “ssh 2001:db8:a32:8f3e:3c32:abcd:829:1a” without a
typo) .

But there are some more subtle twists and turns that may surprise you, and some
old habits and “conventional wisdom” rules that we will all need to rethink and
relearn . There are also some changes in how addresses are configured, which will
change how we all design and build our networks .

Let’s crack open the hood and take a peek .

Don’t Get Tied Up in IPv4-Think

The Vast Reaches of Space

We are so used to constructing our networks from a patchwork of IPv4 ranges that
we’ve begged, borrowed, or acquired that we’ve forgotten that a subnetting plan can
actually make our lives easier . You can get enough IPv6 space to allow this .

Think about how you organize your company, define security zones, and delegate
control . Then subnet in a way that follows those boundaries, your process, and your
security model . It may be by department, function, or geography . Figure 1 provides
a simple example of a location-based subnet plan .

Figure 1: A subnetting scheme that takes advantage of the enormous addressing potential of
IPv6

IPv6: It’s Not Your Dad’s Internet Protocol
P A U L E B E R S M A N

Paul Ebersman first worked on

UNIX and TCP/IP for the Air

Force in 1984, serving at the

Pentagon. He was one of the

original employees at UUNET and helped build

AlterNet and the modem network used by

MSN, AOL, and Earthlink. He has maintained

his roots in the Internet and the open source

community, working for various Internet

infrastructure companies, including the

Internet Systems Consortium and Nominum.

Paul currently works in the Infoblox IPv6

Center of Excellence as a technical resource,

both internally and to the Internet community.

pebersman@infoblox.com

1

Sample /32 Plan by Geographry

– 2001:db8:abcd::/36
•  City: 4 bits = 16 possible locations

– 2001:db8:abcd::/40
•  Hub: 4 bits = 16 possible hubs per city

– 2001:db8:abcd::/48
•  Floor: 8 bits = 256 floors per hub.

– 2001:db8:abcd:12xx::/56
•  Switch: 8 bits = 256 Switches per floor.

– 2001:db8:abcd:1234::/64
•  VLAN: 8 bits = 256 VLANs per switch.

 ;login: APRIL 2012 IPv6: It’s Not Your Dad’s Internet Protocol 19

With the example in Figure 1, I can easily make ACLs at whatever level makes
sense—by city, VLAN, etc .—because my subnet boundaries match my delegation
scheme .

You can make your life easier by subnetting on nibble (4-bit) boundaries, just as we
used to do subnet IPv4 address on 8-bit boundaries in classful subnets .

In IPv4, the 32 bits are written as four decimal characters, separated by dots: e .g .,
192 .168 .1 .1 . Each one of those decimal characters is 8 bits . If you do subnets at 8-bit
boundaries (where the prefix length is divisible by 8, such as /24, /16, /8), you don’t
have to “split” within any of those decimal characters .

With IPv6 and the written representation of the 128 bits as 32 hexadecimal char-
acters (2001:0db8:0100:0000:1111:2222:3333:0001), if you use prefix lengths divis-
ible by four (i .e ., on nibble boundaries), you don’t have to “split” within any of those
32 hexadecimal characters .

There’s no technical reason you couldn’t use non-nibble prefixes; it’s just way
easier for humans to not have to split any of those hexadecimal characters .

Hosts No Longer Require a Single Hard-Coded Default Route

With IPv6, host network stacks now deal gracefully with having multiple
addresses on the same interface, with addresses coming and going without any
user-visible disruption of most apps . Interfaces can have multiple default routes at
the same time . And assignment of default routes is all done with router advertise-
ment messages; there’s no need to run an active routing protocol on each host . You
may even be able to simplify your current HSRP/VRRP setup by having redundant
default routes .

Changing My IP Address No Longer Breaks My Connections

In the old days of modems, you got users off a modem pool by letting existing calls
stay up but not taking new calls . As active users hung up, you wound up with an
empty modem pool for your maintenance window without having to hang up all of
your user calls . We called this quiescence .

With IPv6, each host can have multiple addresses per network interface, choosing
which to use based on RFC 3484 [1] and any local rule changes . Addresses come
and go, with old addresses kept open for existing connections but not used for any
new ones . As with modems, this quiescence allows new addresses to be used by the
host without any user-visible disruption in existing connections .

RFC 1918: Can We Please Kill It?

The “conventional wisdom” is that using private addresses is “more secure,”
because you hide multiple users behind one single public IP address . The bad guys
can’t tell how many users you have and can’t target one particular machine from
the outside .

While this does add a layer of security, the reality is that we’ve convinced ourselves
that RFC1918 [2] space is a security feature because we actually ran out of enough
IPv4 addresses years ago, and using private address space and NAT let the Internet
keep running . We’ve been trying to make the best of a bad situation .

With the abundance of IPv6 addresses, you can use public addresses in IPv6 for
everything . Use ACLs to prevent accidental or malicious traffic from getting into

 20 ;login: VOL. 37, NO. 2

or out of your network . You know that everything has a unique address, so merging
networks isn’t nearly as painful . And you do have the stateful firewall option if you
like things slow and complicated .

If you’re bound and determined to use private addresses, IPv6 does have Unique
Local Addresses (ULA) . However, they have the same issues as RFC 1918 (not
guaranteed to be unique, must be NAT’ed to get global connectivity, and break end-
to-end apps) .

DHCP: Not Just for Servers Anymore

In IPv4, you either statically configure all hosts, or you centrally manage your
network and network policy via DHCP server . With IPv6, you can still statically
configure hosts, but it’s sure painful . The two new choices are SLAAC (StateLess
Address AutoConfiguration) or DHCPv6 .

With SLAAC, you push all the configuration to the edges . Each host is given cer-
tain information via router advertisement (RA) messages, such as default route
and what network prefix(es) the host should create itself addresses from . Then the
host configures its own network interfaces .

RAs can come from either a router, a switch port configured to send RA messages,
or a server running RA daemon software (such as rtadvd) .

With DHCPv6, much like with DHCPv4, the DHCP server provides the client host
with most of the information it needs to configure itself . DHCPv6 can give you
addresses, rDNS server, TFTP server, and lots of other configuration information,
but it can’t (currently) give you a default route .

RA messages give you default routes and prefixes but, until recently (RFC 6106
[3]), couldn’t give the client a recursive DNS server . Even with RFC 6106, rDNS
via RA support in DHCP clients is not yet widespread . And you still can’t get NTP
server, TFTP server, and other information via RA messages .

Another big change from DHCPv4 is that clients don’t make DHCPv6 requests
unless they are told to via RA message flags using the M (ManagedAddress) flag
and/or O (OtherConfiguration) flag .

The end result is that you have to run both an RA and a DHCP server for most
installations . That means implementing network policy requires both DHCP
server configuration and router or switch configuration on every subnet with
clients .

Mac Address vs. DUID

DHCPv4 uses the client MAC (Media Access Control) address as the unique iden-
tifier to the DHCPv4 server . The problems with MAC addresses are well known:

v Not guaranteed to be unique
v Can be changed or forged
v Doesn’t identify a host with multiple network interfaces clearly

In spite of all these problems, there wasn’t a better answer in IPv4, and we’ve all
learned to deal with the problems . Most end hosts on the Internet use DHCP and
MAC address-based identification .

 ;login: APRIL 2012 IPv6: It’s Not Your Dad’s Internet Protocol 21

For IPv6, the IETF decided to try to tackle the flaws with MAC-based identifica-
tion by using a DUID (DHCP Unique IDentifier), one per DHCPv6 client and one
per DHCPv6 server .

For every network interface on a host, there is an Identity Association (IA) that is
the collection of all the addresses for that interface . The combination of DUID and
IA for any given host/network interface uniquely identifies that interface . That
allows you to use DHCPv6 for every interface, something that a MAC address-
based system can’t do .

DHCPv6 is a Layer 3 protocol (the client has a valid IPv6 link local address and
uses a multicast IPv6 address to reach a DHCP relay/server) . The client no longer
has to send a broadcast using its MAC address; it sends the DUID/IA pair instead .

Because DHCPv6 clients don’t need to broadcast with their MAC address in the
DHCPDISCOVER packet, and DHCPv6 doesn’t have the htype/claddr option that
DHCPv4 uses to pass a MAC address through DHCP relays, there is no longer a
way for the DHCP server to get the client’s MAC address . This makes it hard to
determine that a particular IPv4 and IPv6 address represent the same host .

Another problem is that you don’t generate the DUID until the first time you start
up DHCP (as server or client) . It is not based directly on the MAC address, nor can
you know in advance what the DUID will be until you contact DHCPv6 for the first
time . This makes reserved addresses or host statements hard to pre-provision .

There is a proposal at the IETF to address this [5], but it will take time before these
become standards and are available in production client and server code .

Failover

DHCPv4 failover was an attempt to deal with two issues: IPv4 client address
changes tend to be user-visible, and the shortage of IPv4 addresses made pool sizes
small/scarce . The failover protocol used by ISC was one attempt to solve these
problems .

In IPv6, both issues are no longer relevant . Any IPv6-compliant network stack will
deal gracefully with address changes with no user-visible impact . And a /64 subnet
has 4 billion times 4 billion addresses . If you are running out of addresses in a
network with that many to use, DHCP and failover aren’t the problems you need to
solve .

With IPv6, just assign half of the /64 to one DHCP server and half to the other .
Yes, if server A is down and a client of server A needs an address, it will wind up
getting a new IPv6 address from server B . But we’ve already established that new
addresses aren’t an issue for IPv6 clients . And 2 billion times 4 billion addresses
is probably still sufficient for the subnet . If you want more redundancy or a remote
server as backup, split the pool into three or four chunks and relay as needed .

This solves the problem of always having a working DHCP server on a subnet and
avoids much of the fragility and complexity of trying to synchronize a lease file
across a failover pair . The interim IETF draft that ISC based its failover on was
never finalized in the IETF, due to these complexities . The odds are good that an
IPv6 failover draft will not be finalized any time soon .

 22 ;login: VOL. 37, NO. 2

ICMPv6

Another place where the IETF has really taken lessons learned from IPv4 and
improved things is ICMPv6 . Function is much more precisely defined, making
filtering by type much more accurate .

But ICMPv6 is more than just improved with IPv6; it’s now a vital part of making
things work . In IPv4, if you filter all ICMP regardless of type, you make your NOC’s
life miserable but things still mostly work . With IPv6, if you filter ICMPv6, you
break:

v Duplicate Address Detection (DAD), the way you make sure two hosts aren’t us-
ing the same address on the same LAN segment

v SLAAC RA messages
v DHCPv6
v Path MTU Discovery (PMTUD), the replacement for fragmentation of large

packets
v Connectivity testing (echo request/response)
v Other network errors

There is a very useful RFC (RFC 4890 [4]) which has best current-practice recom-
mendations on what to filter with ICMPv6 .

Security

Meet the New Security Holes, Same as the Old Security Holes

While there are some complexion changes between IPv4 and IPv6 (arp cache
corruption vs . neighbor cache corruption, rogue DHCP server vs . rogue router
advertisements), most problems with IPv6 are the same as we’ve been living with
in IPv4 . Most issues with IPv6 are going to be due to lack of familiarity leading to
misconfigurations .

There are some administrative issues—double work in ACLs in a dual stack envi-
ronment, twice as many ports to check, etc .—nothing that says we should avoid
IPv6 completely .

The big problem seems to be the impression that we don’t already have IPv6 on our
networks . If you’re running a current OS X, Linux variant, FreeBSD, or Windows7/
Vista/W2008, you probably have hosts using IPv6 . If you specifically disable
IPv6 completely in Win7/Vista/W2008, Microsoft considers this an unsupported
configuration .

The best thing you can do for security is to turn on enough IPv6 that you can at
least monitor and see it . Validate your firewalls with your vendor to ensure that
they can detect and monitor IPv6, particularly various tunneling technologies . Get
a lab up with IPv6 so that your staff starts to build experience and test procedures
and toolsets .

IPsec Is Built into IPv6

Yup . Sure is . Per RFC, if you want to have a network stack that claims to support
IPv6, you must support IPsec . Sadly, OS vendors have chosen to interpret this as
meaning “We ship it with IPsec . If you want to actually enable it, knock yourself
out .”

 ;login: APRIL 2012 IPv6: It’s Not Your Dad’s Internet Protocol 23

The missing piece of IPsec is key management . There is no standard PKI infra-
structure . This leaves you with the same situation as in IPv4 . You have to config-
ure the end nodes and the VPN/tunnel termination point with a shared secret . No
worse than IPv4, no different from IPv4, just no better than IPv4 (at the moment) .

The ray of hope here is Microsoft . Since Microsoft Windows authentication
already has a built-in PKI, they can use the standard Windows login and creden-
tials to configure a client with no extra effort on the user end . DirectAccess uses
this to create an IPsec-secured tunnel from the end user to a W2008 server . The
user logs in and is able to securely see any shared resources on the W2008 server
as if on the local net, through firewalls, hotel NATs, etc .

If Microsoft can do this, surely the open source community can do it too .

Getting IPv6 on Your Network

How do you eat an elephant? One bite at a time .

By now, you’re probably itching to get started implementing IPv6 in your network .
The good news is that you don’t have to do it all at once . You can do the phases as
distinct projects and take time between them as you need to .

Start with an inventory of your IP address usage, subnetting, hardware, software,
apps, and make sure everything can support IPv6 . Upgrade or replace what can’t
(or figure out what transition technology might keep it limping along) . Then decide
on a new subnetting plan and network architecture, if needed .

You will next want to get the IPv6 addresses you need, working with your ISP(s) or
applying directly to an RIR (Regional Internet Registry) . Also make sure your ISP
provides full IPv6 connectivity and is willing to route your new prefix (if you got it
directly from the RIR) .

For most companies, the easiest place to start is their external Internet site:

v Ensure thatyour firewall/IDS is IPv6 ready .
v Get IPv6 connectivity to your site .
v Create a test site where you can run IPv6 experiments separate from your cur-

rent Internet-exposed production servers .
v Test in IPv4 to validate it reproduces your production site .
v Convert the test site to IPv6 only, put NAT64/DNS64 in front of the test site, and

see if it all still works .
v Remove the NAT64/DNS64, go to IPv6 only, and see what was using IPv4 that

you thought was using IPv6 .
v Do a beta version of your production site using a subdomain (ipv6 .example .com) .
v When everything works for your beta testers, add the AAAA record for www

 .example .com .

Once you know that your production servers can work with IPv6, and have imple-
mented IPv6 on your external Internet presence, you can work on adding IPv6 on
your internal (or more complicated) environment:

 24 ;login: VOL. 37, NO. 2

v Ensure that your firewall/IDS is IPv6 ready (if it’s different from your production
site) .

v Get IPv6 connectivity to your site .
v Get IPv6 running on just your core networking gear and switches .
v Make sure your network monitoring and logging infrastructure can monitor

IPv6 .
v Simulate your internal site in a lab as you did with your external site . Do the

IPV4/IPV6-NAT64-DNS64/IPv6-only dance .
v Work with your vendors on any bugs or lack of features .
v Rinse and repeat until it all works .

Conclusion

These are some of the issues you will encounter as you implement IPv6 . There
will probably be others, although I’d expect most of those to be hidden in internally
written code rather than in OS stacks or large commercial products . But the tech-
niques and experience you’ll gain dealing with the topics discussed here, especially
as you run pilot IPv6 operations in labs, will make you much better prepared to
find them in your own code .

IPv6 requires learning about the differences between the more familiar IPv4 and
IPv6, as you will undoubtedly be using both for years to come . And, in some ways,
it is 1994 all over again: you will be venturing into an unfamiliar networking tech-
nology, with a new set of warts to figure out how to overcome .

References

[1] http://tools .ietf .org/html/rfc3484 .

[2] http://tools .ietf .org/html/rfc1918 .

[3] http://tools .ietf .org/html/rfc6106 .

[4] http://tools .ietf .org/html/rfc4890 .

[5] http://tools .ietf .org/html/draft-halwasia-dhc-dhcpv6-hardware-addr-opt
-00 .txt .

 ;login: APRIL 2012 25

Many people I work with understand neither Unicode’s complexities nor how
they must adapt their programming style to take Unicode into account . They
were taught to program without any attention to internationalization or localiza-
tion issues . To them, the world of ASCII is enough—after all, most programming
courses stress algorithms and data structures, not how to read Arabic from a file
and display it on a screen . But Unicode matters—without it, there is no way to
properly display on a computer the majority of names and addresses on the planet .
My goal with this article, then, is to briefly introduce the vocabulary and notation
of Unicode, to explain some of the issues that arise when encountering Unicode
data, and to provide basic information on how to write software that is more or less
Unicode-aware . Naturally, this article can’t be comprehensive . It should, however,
give the Unicode-naïve a starting point . At the end I have a list of references that
will provide the Unicode-hungry with additional food for thought .

Unicode is the international standard used by all modern computer systems to
define a mapping between information stored inside a computer and the letters,
digits, and symbols that are displayed on screens or printed on paper . It’s Unicode
that says that a decimal 65 stored in a computer’s memory should be displayed
as a capital letter “A”; that a decimal 97 is a lowercase “a”; and that the “£” is hex
00A3 . Every Unicode character has a unique name in English that’s written with
uppercase letters—for example, POUND SIGN . Every Unicode character also has
a unique numeric code, which Unicode calls a “code point,” that’s written with a
U+ followed by a four or five character hex code . One of the most common Unicode
characters that will not fit in 8-bits is the EURO SIGN (E, or U+20AC); my favorite
character is SNOWMAN (☃, or U+2603) . Code points over 65,536 are particularly
troublesome . Fortunately, they are mostly used for unusual Chinese characters
and letters in ancient scripts, such as AEGEAN NUMBER SIX THOUSAND (𐄧, or
U+10127) [1] .

As the preceding paragraph demonstrates, Unicode is dramatically more complex
than the 7-bit American Standard Code for Information Interchange (ASCII) and
so-called “Latin1” (actually ISO 8859-1) systems that it replaces . But Unicode
brings more complexity than an expanded character set . For example, Unicode
accented characters can be represented with a single code point (for example,
LATIN SMALL LETTER E WITH ACUTE—é, or U+00E9), or with a character
followed by a so-called combining character (for example, Unicode character
LATIN SMALL LETTER E (U+0065) followed by Unicode character COMBIN-
ING ACUTE ACCENT (U+0301) .

Programming Unicode
S I M S O N L . G A R F I N K E L

Simson L. Garfinkel is an

Associate Professor at the

Naval Postgraduate School

in Monterey, California. His

research interests include computer forensics,

the emerging field of usability and security,

personal information management, privacy,

information policy, and terrorism. He holds six

US patents for his computer-related research

and has published dozens of journal and

conference papers in security and computer

forensics.

simsong@acm.org

 26 ;login: VOL. 37, NO. 2

The Unicode standard also has rules for displaying and correctly processing writ-
ing systems that go right-to-left such as Arabic, Hebrew, and Dhivehi . Before Uni-
code, it was a complex task to build computer systems that could properly display
text that way, let alone intermix right-to-left with left-to-right . Unicode’s support
for bidirectional text [9] largely eliminates these problems, making it possible
to freely use Arabic words like (Salam) in English text . What’s particularly
clever is that the characters are stored inside the computer in their logical order,
not in the order that they are displayed .

Because you can paste Unicode into Web browsers and email messages, Unicode
makes it relatively easy to embellish your writing with a wide variety of interesting
symbology, including boxed check marks (☑), circled numbers (both 1 1 and 1 1),
and even chess pieces (♛) . Some programmers discover that it’s significantly easier
to paste a well-chosen Unicode character on a button than to hire a graphic art-
ist to make an icon . And these icons look really great when magnified or printed,
because they are typically encoded in the font as vector graphics, not bitmaps .

So why do so many US programmers and technologists have a poor understanding
of Unicode? I suspect it is our cultural heritage at work: by design, most written
communications within the United States can be encoded in ASCII . Ever since the
move to word processing in the 1980s, it’s been exceedingly hard for Americans to
type characters that are not part of ASCII . As a result, many of these characters,
such as the CENT SIGN ¢ (U+00A2), are now rarely used in the US—even though
they were widely available on typewriters in the 1970s .

Indeed, for nearly 30 years it has been possible to have a very lucrative career in the
US using only ASCII’s 96 printable graphemes, never once having to venture into a
world where characters are 8, 16, or 32 bits wide . Alas, the ASCII-ensconced lives
of most US programmers is increasingly an anachronism, thanks to the integra-
tion of the world’s economies, the increasingly international aspects of the comput-
ing profession, and even simple demographic trends—more people in the US have
accented characters in their names and want those names properly spelled .

Code Points and Characters

Like ASCII and ISO8859-1, at its most fundamental level the Unicode standard
defines a mapping between code points and print characters . The big difference is
quantity: Unicode’s most recent version, Unicode 6 .1, defines more than 109,000
printable objects .

Most of the code points map to characters, which the standard sometimes calls
“graphemes .” A grapheme is a unit of written language such as the letter “a”
(U+0061), the number “1” (U+0031), or the Kanji for man “男” (U+7537) . Most
graphemes are displayed as a single glyph, which is the smallest printable unit of a
written language .

Unicode terminology is precise and frequently misused: the confusion is frequently
reflected by errors in Unicode implementations . For example, a grapheme (such
as the lowercase “a”) can be displayed by two distinct glyphs (in the case of an
“a”, one of the glyphs looks like a circle with an attached vertical line on the right,
while the other looks like a slightly smaller circle with a hook on the top and a tail
in the lower-right quadrant) . Both glyphs are represented by the same code point .
But some glyphs can represent two characters—for example, some typesetting
programs will typeset the letter “f” (U+0066) followed by the letter “i” (U+0069) as

 ;login: APRIL 2012 Programming Unicode 27

an “fi” ligature (U+FB01), which obviously has a distinct code point . Typesetting
programs do not expect to see a U+FB01 in their input file, for the simple reason
that people don’t type ligatures . It’s the typesetting program that replaces the
U+0066 followed by the U+0069 with a U+FB01, adjusting spacing as appropriate
for a specific font .

Arabic is even more complex . Arabic graphemes are written with different glyphs
depending on whether the grapheme appears at the beginning, at the end, or in the
middle of a word . In the case of Arabic, most of the letters actually have four code
points assigned: one that represents the abstract character and three “presenta-
tion” code points that represent each printable form . The abstract character might
be used inside a word processor document, while the presentation forms are used
in files that are rendered for display—for example, in a PDF file . Microsoft’s imple-
mentation of Arabic is different for various versions of Word, Excel, and Power-
Point on the Mac and PC . As a result, a file containing Arabic that looks beautiful
on one platform can look horrible on another . Google Docs has similar problems
when it is used to edit Arabic documents .

Every modern programming language supports Unicode, but frequently with types
and classes that are different from those taught in school . For example, C and C++
programmers should use the wchar_t type to hold a Unicode character (or any
other printable character, for that matter), defined in the <wchar .h> header . Uni-
code strings are best represented in C++ with the STL std::wstring class defined in
the <string> header . In Python3 the “string” type can hold 0, 1, or multiple Unicode
characters; there is no separate type for an individual character . If you are still
using Python2 (and you should stop), the “string” class holds ASCII and you need
to specify “unicode” (or u"") to create a Unicode character or string . In Java the
“char” primitive type and the “Character” class hold Unicode code points, but only
those characters with values less than U+FFFF—what’s called Unicode’s Basic
Multilingual Plane . Code points that require more than 16 bits are represented by a
pair of code points, as we will see below .

Expanding the Basic Multilingual Plane

Before Unicode, many manufacturers developed systems for representing Chinese
or Japanese using 16-bit characters, sometimes called “wide” characters . One of
the original goals of Unicode was “Han Unification”—that is, using the same code
points to denote ideographs that were the same in the two languages . The design-
ers were able to get nearly all of the characters they needed to fit into the 65,536
code points allowed by a 16-bit word . This 2-byte encoding was called UCS-2, for
Universal Character Set, 2-byte encoding .

Alas, 65,536 characters were not sufficient to represent all of the Chinese logo-
grams, let alone characters for all of the world’s ancient languages . Today, Unicode
supports a total of 17 “code planes,” each with 65,536 characters . Code Plane 0
is the Basic Multilingual Plane and covers Unicode characters U+0000 through
U+FFFF (although U+FFFF is explicitly not a valid Unicode character) . Code
Plane 1 is mostly used for additional symbols, Plane 2 for additional ideographs,
Plane 14 for special purpose, and Planes 15 and 16 for private use . Planes 3–13 are
currently unassigned . With so much room to grow, it is highly unlikely that Uni-
code will ever need to be expanded beyond the 17 code planes—even if we encoun-
ter an alien race that has 100,000 or more characters in its written language (see
Table 1) .

 28 ;login: VOL. 37, NO. 2

Plane 0: 0000–FFFF
Basic Multilingual Plane
(BMP)

Plane 1: 10000–1FFFF
Supplementary Multi-
lingual Plane (SMP)

Plane 2: 20000–2FFFF
Supplementary Ideo-
graphic Plane (SIP)

Planes 3–13: 30000–DFFFF Unassigned

Plane 14: E0000–EFFFF
Supplementary Special
Purpose Plane (SSP)

Planes 15–16: F0000–10FFFF
Supplementary Private
Use Area (S PUA A/B)

Table 1: Unicode code planes

The assignment of code planes is arbitrary, of course, but there is some sensibility
in the allocation . Plane 0 was first . The extension mechanism that the standards
body adopted allows an additional 4 bits to be optionally specified; Plane 1 has all
of those additional bits set to 0, Plane 16 has them all set to 1, and Plane 0 is marked
by the absence of those optional bits . Planes 1 and 2 are really the only additional
planes that were mapped out by the Committee . Because Planes 3–13 are unas-
signed, they can be trapped as errors . Frankly, I doubt that characters within
Planes 3 through 13 will ever be assigned, although these might conceivably be
used for some other purpose at some point in our lifetimes .

Many systems (e .g ., Java) were designed to be Unicode-aware back when Unicode
only had 16-bit characters . Unicode 2 .0’s creators thought that they would not be
able to get programmers to change their systems to use 32-bit characters—espe-
cially when most of the bits would always be 0 . Instead, a coding scheme was devel-
oped that allowed pairs of 16-bit code points in the BMP to represent characters
with code points greater than 65,535 .

Consider the SQUARED FREE (, or U+1F193) . This code point can be rep-
resented with 4 bytes using a sequence of four hex characters, 00 01 F1 93 . But
the code point can also be represented with a pair of Unicode characters called
“surrogates .” The 18 bits of code points outside the BMP can be divided into two
halves, with 9 bits encoded by a first surrogate in the range D800–DBFF and 9
bits encoded using a second surrogate in the range DC00–DFFF . In the case of
U+1F193, the two surrogates are U+D83C and U+DD93 . Java always uses surro-
gates to represent characters outside the BMP .

Python can be compiled to use either 16-bit or 32-bit Unicode code points for its
internal representation . If sys .maxunicode is 65535, then your Python interpreter
is using surrogates internally to represent characters outside the BMP; if sys .
maxunicode is 1114111, the Python interpreter can represent all Unicode charac-
ters without surrogates internally [4] .

No matter how it is compiled, Python allows code points outside the BMP to be
specified with a pair of 16-bit surrogates or as a single 32-bit value . Here we ask
Python to print a character string from the two surrogates using the Python “\u”
escape, which lets us specify any Unicode character in the BMP with its 4-charac-
ter hexadecimal code:

 ;login: APRIL 2012 Programming Unicode 29

>>> print(“\uD83C\uDD93”)

And here we use the Unicode “\U” escape and enter an 8-character hexadecimal
code to print the same character without the use of surrogates:

>>> print(“\U0001F193”)

>>>

The way C and C++ handle characters outside the BMP depends on the platform .
Under GCC/G++ 4 .2 on Mac and Linux systems, wchar_t is a 32-bit value, allowing
Unicode characters outside the BMP to be stored directly . But compile a program
with Microsoft’s Visual Studio or the mingw cross-compiler, and wchar_t is a
16-bit quantity . Frankly, it’s hard to notice the difference, provided you always allo-
cate memory in sizeof(wchar_t) chunks and never depend on the size of a Unicode
string being related in any way to the number of characters that it contains .

All of this is less complicated in practice if you use a high-quality Unicode imple-
mentation that hides these details . Indeed, I wrote and deployed several Unicode-
aware C++ programs before I realized that sizeof(wchar_t) was 4 on my primary
development system but 2 when cross-compiling for Windows .

Normalization and Collation

Since Unicode allows the same string to be represented with many different but
logically equivalent sequences of code points, the standard provides a way of
normalizing any Unicode sequence of code points so that different strings can be
compared for equivalency .

Actually, Unicode has two kinds of equivalencies between characters: “canoni-
cal equivalence” and “compatibility equivalence .” Canonical equivalence resolves
the ambiguity introduced by combining characters . LATIN SMALL LETTER E
WITH ACUTE (U+00E9) and LATIN SMALL LETTER E (U+0065) followed
by a COMBINING ACUTE ACCENT (U+0301) are considered to be equivalent .
Compatibility equivalence is used to denote sequences that have the same seman-
tic meaning but may appear visually distinct—for example, SUPERSCRIPT ONE
(“1”, or U+00B9) and DIGIT ONE (“1”, or U+0031) have compatibility equivalence,
as do the characters LATIN CAPITAL LETTER I (“Ⅰ” U+0049) and ROMAN
NUMERAL ONE (“Ⅰ”, U+2160) . One of the main uses of compatibility equivalence
is to improve the recall of string search, but it can also be used to address some of
the many security issues caused by having forms that are visually identical but
have different encodings [5a] . These two equivalence algorithms mean that deter-
mining whether or not two strings are equal is a multi-step process . First you must
decide what kind of equivalence you want . Then both strings must be normalized .
Finally, they can be compared [5b] .

Yet another issue is the sort order of Unicode characters, something known as “col-
lation .” The complexity here is that different languages (and sometimes different
usages within the same language) require different sorting of the same characters .
A common example is that Swedish sorts “z” (U+007A) before “ö” (U+00F6), but
German sorts “ö” before “z” . Unicode’s combining characters add to the complex-
ity . The Unicode Collation Algorithm provides a unified, locale-aware approach
to sorting . Although it’s described in Unicode Technical Standard #10 [6], most

 30 ;login: VOL. 37, NO. 2

programmers will be better off using a collation implementation that’s widely used
and well-debugged rather than implementing their own . For Python users, the
function locale .strcoll performs a basic implementation of the ISO 14651 collation
algorithm but not the full Unicode algorithm . For a more complete implementation,
use IBM’s International Components for Unicode library, which has bindings for C,
C++, Java, and Python [3] .

Encoding and Decoding

So far, this article has been discussing Unicode in the abstract and has avoided
the messy issue of reading and writing Unicode data . The issue is messy because
modern computer systems read and write data in 8-bit bytes, but Unicode needs a
minimum of 16 bits to represent characters in the BMP and 21 bits [10] to represent
all possible code points (or two 16-bit pairs, if surrogates are used) .

Early Unicode implementations, such as the one in Microsoft Windows, took the
rather straightforward approach of storing everything as 16-bit UCS-2 characters .
When Microsoft needed to store Unicode on disk—for example, in a file name—it
simply wrote the bytes in the same order that they were stored in memory . This
process of transforming abstract code points to a specific set of 8-bit codes stored
in a file or sent down a wire is called “encoding .”

Clearly, there are two ways for a 16-bit code point such as U+0061 to be encoded:
as a 61 followed by a 00 (called “little endian,” because the little end comes first),
or as a 00 followed by a 61 (“big endian”) . Rather than mandating that Unicode be
encoded one way or the other, Unicode supports both byte orders . UTF-16LE (UCS
Translation Format—16-bit Little Endian) is what Windows uses .

For example, the FAT32 file system stores both legacy ISO8859-1 8 .3 filenames
and UTF-16LE filenames that can be up to 255 characters long . NTFS file systems
store only UTF-16LE filenames . This means that the filename README .TXT is
stored as the UTF-16LE sequence 52 00 45 00 41 00 44 00 4d 00 45 00 2e 00 54 00
58 00 54 00 . Most of the Windows API functions that operate on files have two ver-
sions—one that takes ISO8859-1 names terminated with a 00, and one that takes
UTF-16LE “wide” names terminated with a 00 00 . For creating files, these are the
CreateFile() and CreateFileW() functions .

Similar to the 2-byte encodings, Unicode also supports 4-byte encodings UTF-
32LE and UTF-32BE . With the UTF-32LE encoding the string “READ” would
encode as 52 00 00 00 45 00 00 00 41 00 00 00 44 00 00 00 . Such encodings are
rarely used outside of a computer’s memory, because of the storage cost .

Unicode provides a special code called the Byte Order Mark (BOM, U+FEFF)
that can be stored inside a file and used to unambiguously indicate whether the
file is encoded as UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE, or using the
variable-length UTF-8 code (see below) . The BOM approach works because the
byte-swapped character U+FFFE is defined to be an invalid code point . Thus, by
looking at the first 2 or 4 bytes of a file, it is possible to determine the encoding (see
Table 2) .

 ;login: APRIL 2012 Programming Unicode 31

Initial Bytes Encoding

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

FE FF UTF-16, big-endian

FF FE UTF-16, little-endian

EF BB BF UTF-8 (see below)

Table 2: Unicode Byte Order Mark signatures, from http://unicode.org/faq/utf_bom.html

C programmers have the biggest problem with UTF-16 and UTF-32 encodings,
for the simple reason that the C standard library uses the NULL character (00) to
denote the end of a string . The obvious way to avoid this is by using the wide-char-
acter version of the string library—for example, use wcslen() instead of strlen() .
Personally, I recommend abandoning C-style strings and using the C++ STL
std::wstring type instead .

From the preceding examples it may seem that a program can trivially convert
between Unicode and ASCII by simply removing or inserting alternating NULL
characters . You should never do this!!! This simplistic approach will fail if the Uni-
code string contains anything other than code points in the range U+0001 through
U+007F . Instead, programs should explicitly encode Unicode strings from an
abstract internal representation when strings are transformed for operating sys-
tem APIs, sent over a network connection, or persisted into a file . Likewise, when
data is read from an external source it should be decoded from the wire format into
the program’s internal representation .

UTF-8

UTF-8 is a system for encoding Unicode code points using a variable-length
sequence of 8-bit characters . UTF-8 has the property that 7-bit ASCII characters
are directly coded as a single UTF-8 byte, making UTF-8 upwards compatible
from ASCII . Characters in the range U+0080 through U+07FF are coded as 2
bytes; the remaining characters in the BMP are coded as three bytes; characters
outside the BMP are coded as 4 (see Table 3) .

The UTF-8 scheme makes it possible to identify the start of a UTF-8 character
from within a randomly chosen block of UTF-8 encoded bytes . If the most signifi-
cant bit is a 0, then the character is a 7-bit UTF-8 character . If the high bits are
“10”, then it is a continuation character: move forward or backwards until a byte
is found that begins “0” or that begins “11” . The number of leading “1”s in the first
byte of a UTF-8 encoding indicates the number of bytes in the sequence .

As the table makes clear, UTF-8 is great for Americans, since documents coded in
UTF-8 are the same size as documents coded in ASCII . For Europeans, the advan-
tage of UTF-8 is that all of their accented characters can be displayed, with only
the non-ASCII characters taking up 2 bytes . For the Chinese, UTF-8 is not so good,
as for most text it results in a 50% increase in required storage space compared to
UTF-16 .

 32 ;login: VOL. 37, NO. 2

Bits Code Point Range Byte 1 Byte 2 Byte 3 Byte 4

 7 U+0000 - U+007F 0xxxxxxx

11 U+0080 - U+07FF 110xxxxx 10xxxxxx

16 U+0800 - U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 U+10000 - U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 3: UTF-8

One of the primary advantages of UTF-8 is that the NULL character is never used .
This means that the POSIX APIs can be used more or less transparently with
UTF-8 encoded Unicode . The confusion here, however, is that UTF-8 is not Uni-
code—it is a Unicode encoding . Keeping your program’s internal data encoded in
UTF-8 is fine as long as the strings are viewed atomically and no string operations
such as comparison, search, case change, or splitting ever need to be performed by
the program . All of these operations require decoding the UTF-8 sequences into
Unicode characters and then re-encoding the Unicode characters back to UTF-8 .

Source Code

Encoding and decoding comes up in two primary places when coding: the encoding
and decoding of files that are written and read by your program, and the program’s
source code itself . To see how this works in practice, consider this simple Java
program with some embedded Unicode characters:

class test {

 public static void main(String[] args) {

 String LETTER_A = “A”;

 System.out.println(“size(“+LETTER_A +”)=”+LETTER_A.length());

 String IDEOGRAPH = “男";

 System.out.println(“size(“+IDEOGRAPH +”)=”+IDEOGRAPH.length());

 String SQUARED_FREE = “ ”;

 System.out.println(“size(“+SQUARED_FREE+”)=”+SQUARED_FREE.length());

 }

}

Java programs are files, of course, so they need to be encoded with a particular
Unicode encoding when they are stored in the file system . This file was written
with Apple’s TextEdit application and saved in UTF-8 . In UTF-8 the LETTER_A
above takes a single byte, the IDEOGRAPH takes 3 bytes and the SQUARED
_FREE takes 4 bytes . So when we run this program we get this result:

size(A)=1

size(男)=3

size()=4

Whoops! The values in the Java String are not Unicode code points! Instead they are
literally the encoded bytes . This can be confusing (it’s confusing to me, at least) .

Instead of saving the file in UTF-8, the source file can be saved in UTF-16 . I’ve
done that, renaming the class from “test” to “test16 .” Now when the program is
compiled, the Java compiler needs to be told the encoding used by the file:

 ;login: APRIL 2012 Programming Unicode 33

$ javac -encoding utf-16 test16.java

$

When I run the program I get these confusing results:

$ java test16

size(A)=1

size(?)=1

size(?)=2

$

The question marks display result from the fact that the program was run inside
a UTF-8 terminal . The A takes a single UCS-2 character, as does the 男 . Java’s
runtime seems willing to convert the A to UTF-8, but not the 男 . The SQUARED
_FREE is represented in the Java source file with two surrogate pairs (I saved it as
UTF-16, remember?), so the length of the string is 2, not 1 .

I also tried saving my test program in UTF-32LE and compiling it with the Java
compiler, but I got this error:

$ javac -encoding utf-32 test32.java

test32.java:1: warning: unmappable character for encoding utf-32

???...

...

Clearly, my Java compiler does not support UTF-32 for input source encoding . For
more information about how Java does this, see the Java documentation for the
Character and String classes and the Java tutorial "Working with Unicode" [1a] .

Python source code encodings are defined with a “magic comment” [1b] like this:

#!/usr/local/bin/python

coding: utf-8

import os, sys

...

Reading and Writing Files

Similar problems occur when attempting to process files . Asked to open a file and
infer its coding, some programs will attempt to guess whether the file’s contents
are in ASCII, UTF-8, or one of the UTF-16 dialects . Unfortunately, it is not always
possible to guess correctly, for the simple reason that there are many hex sequences
that can be decoded using multiple coding variants . Consider the sequence of hex
bytes 41 42 43 44 . This could be the UTF-8 sequence “ABCD” (U+0041 U+0042
U+0043 U+0044), but it could also be the UTF-16LE sequence (U+4241
U+4443) or the UTF-16BE sequence (U+4142 U+4344) .

Python and Java address the encoding issue by allowing the programmer to
specify an encoding when a file is opened . For example:

f = open(“file.txt”,mode=”r”,encoding=”utf-8”)

(In Python2 .7, you can get the same functionality with the codecs .open function .)

In Java, one would use:

FileInputStream fis = new FileInputStream(“file.txt”);

InputStreamReader isr = new InputStreamReader(fis,”UTF8”);

BufferedReader in = new BufferedReader(isr);

 34 ;login: VOL. 37, NO. 2

Some file formats allow you to specify the encoding inside the file itself, which is some-
thing of a trick, because you need to know the encoding in order to decode the file .

For example, if you edit files with EMACS, you can put a local variables line at the
top of your file to tell EMACS which coding to use:

-*- coding: utf-8 -*-

In XML, encodings are specified on the first line of the file:

<?xml version=”1.0” encoding=”UTF-8”?>

Python’s XML parsers expect to read this line to determine the coding of the file .
As a result, to read an XML file with Python3 and process it with expat, it’s neces-
sary to open the file as a binary stream:

f = open(“file.xml”,mode=”rb”)

p = xml.parser.expat.ParserCreate()

...

p.ParseFile(f)

Encoding a Python Unicode string to a particular representation is quite simple .
Here’s how s, a Python3 Unicode string with my favorite Snowman character, looks
in UTF-8, UTF-16LE, and UTF-16BE:

>>> s = “This is a Snowman: ☃”

>>> s.encode(‘utf-8’)

b’This is a Snowman: \xe2\x98\x83’

>>> s.encode(‘utf-16le’)

b’T\x00h\x00i\x00s\x00 \x00i\x00s\x00 \x00a\x00 \x00S\x00n\x00o\x00w\

x00m\x00a\x00n\x00:\x00 \x00\x03&’

>>> s.encode(‘utf-16be’)

b’\x00T\x00h\x00i\x00s\x00 \x00i\x00s\x00 \x00a\x00 \x00S\x00n\x00o\

x00w\x00m\x00a\x00n\x00:\x00 &\x03’

>>>

For encoding and decoding in C++, I recommend using the open source UTF8-CPP
package [2] . The package contains C++ classes and iterators for interconverting
between UTF-8, UTF-16, and UTF-32 . If you want a more complete (and signifi-
cantly larger) implementation, IBM’s ICU is a better choice .

Encoding Errors

Many programmers get their first unpleasant taste of Unicode when they attempt
to read a file and instead of getting data, they get an exception . For example, con-
sider a file “file .txt” that contains the hex characters FF FE FE FF . Try to read this
file with Python, and Python will throw an exception:

>>> f=open(“file.txt”)

>>> f.read()

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

 File “/opt/local/Library/Frameworks/Python.framework/Versions/3.2/

lib/python3.2/codecs.py”, line 300, in decode

 (result, consumed) = self._buffer_decode(data, self.errors, final)

UnicodeDecodeError: ‘utf8’ codec can’t decode byte 0xff in position 0: invalid

start byte

>>>

 ;login: APRIL 2012 Programming Unicode 35

Python assumes the file is in UTF-8, and FF is an invalid UTF-8 character . Of
course, Python couldn’t read this file if opened in text mode with any encoding .

If you are unsure if a file contains valid Unicode encodings, one approach is to open
it in binary mode and convert it a line at a time . This approach works best with
files encoded as UTF-8, since it’s relatively easy to spot the line breaks, but it can
be applied to UTF-16 and UTF-32 encoded files as well . If a line contains invalid
Unicode, you can try converting it character by character . There are a number of
packages that will do this, such as BeautifulSoup’s UnicodeDammit class .

For longtime UNIX programmers, this need to open files in “text” or “binary”
mode might seem like a step backwards—or into the wacky world of Windows pro-
gramming . Sadly, the multiplicity of encodings leaves us no choice .

Problems resulting from improper encoding and decoding pervade modern
computing systems . If you have ever opened a Web page and seen it filled with
white question marks in black diamonds, your browser was showing the Unicode
REPLACEMENT CHARACTER (, U+FFFD), because the bytes on the
Web page couldn’t be decoded using the encoding the Web page specified . This
frequently happens on Web pages that specify no encoding at all but contain smart
quotes; the default HTTP encoding is ISO 8859-1, and 8859-1 doesn’t have any
smart quotes in it .

I encountered a more egregious case of bad encoding after a recent trip to Japan .
All of the little paper receipts had nicely printed katakana, hiragana, and kanji
characters . But the online statement for my American Express credit card for a
$39 .30 transaction at the Tokyo Muji store looked like this:

MUJIRUSHI RYOHIN * S L GARFINKEL 39 .30

TOKYOTO TOSHIMAKU

TOKYOTO TOSHIMAKU

Foreign Spend Amount: 3,064 JAPANESE YEN

Doing Business As: MUJIRUSHI RYOHIN

Merchant Address: ncgÔcn nÇuh

ÏfæÇbiÐæhã 4-27-10

Æ]ÊcÄæjæb1Ïæ× 3F

JAPAN

From the selection of characters, it seems that the merchant’s bank transmitted
the transaction information to American Express as an encoded UTF-8 string, but
the data was then decoded by a computer in the US that assumed ISO 8859-1 .

You don’t have to travel to Japan to see these kinds of problems . A growing number
of GNU tools now output UTF-8 error messages . Consider this buggy function:

int fail() {

 return “A”;

}

Here is the error message that g++ generates when it is compiled:

 36 ;login: VOL. 37, NO. 2

$ g++ -Wall fail.cpp

fail.cpp: In function ‘size_t fail()’:
fail.cpp:2: error: invalid conversion from ‘const char*’ to ‘int’
$

The compiler outputs the error messages with smart quotes because the environ-
ment variables LANG and LC_ALL are set to ‘en_US .UTF-8’ . The compiler notices
this encoding and sends the hex sequence E2 80 98 for the open quote and E2 80
99 for the close quote . If I unset both environment variables, the smart quotes go
away:

$ unset LC_ALL; unset LANG; g++ -Wall fail.cpp

fail.cpp: In function 'size_t fail()':

fail.cpp:2: error: invalid conversion from 'const char*' to ‘int’

$

One day I was running my compiles inside EMACS on a remote system and started
seeing error messages like this:

fail.cpp:3: error: invalid conversion from âconst char*â to âcharâ

EMACS was not expecting the compiler to be sending UTF-8, so it assumed the
default of ISO 8859-1 . It received the E2 and displayed the â character (U+00E2);
the 80, 98, and 99 have no mapping in ISO 8859-1, so they were not displayed . (A
more clever EMACS implementation might notice that the sequence E2 80 98 is
invalid ISO 8859-1 but valid UTF-8 and change the encoding mode for the buffer,
but that might cause other problems .)

Conclusion

The information here should help many C, C++, Java, and Python programmers in
developing Unicode-aware programs . There’s certainly a lot more to learn, though .
For those programmers with the time and the interest to delve deeply, here are
some suggestions for further reading . Even if you aren’t a Python programmer,
it’s quite instructive to read the Python “Unicode HOWTO .” While there’s lots to
criticize about the Python Unicode implementation, Python3 gets a lot of things
right . Python also includes a built-in Unicode database in a module named, aptly
enough, unicodedata (http://docs .python .org/library/unicodedata .html) . With the
database you can trivially convert from code points to Unicode names and access
other aspects of the standard .

Resources

Apple’s Character Viewer, built into Mac OS X, is a great way to find Unicode
characters . You can access it from the Apple menu bar if you enable the appropriate
option in the System Preferences .

Wikipedia’s articles on Unicode are really excellent .

The Unicode standard is available online . Start with the FAQs [7] and the Techni-
cal Reports [5, 6, 8] .

Stackoverflow .com is filled with good information about Unicode .

The Web site FileFormat Info contains detailed information on each Unicode
character, including test pages to see if your browser will display it . Find the snow-
man at http://www .fileformat .info/info/unicode/char/2603/ .

 ;login: APRIL 2012 Programming Unicode 37

References

[1] It’s quite possible that this character won’t show up properly on your system,
since many programs still do not properly display Unicode code points over
U+FFFF . You can see what AEGEAN NUMBER SIX THOUSAND is supposed to
look like and test your browser’s functionality at http://www .fileformat .info/
info/unicode/char/10127/index .htm .

[1a] The Java Unicode tutorial can be found at http://docs .oracle .com/javase/
tutorial/i18n/text/unicode .html . Documentation for the String and Character
classes is at http://docs .oracle .com/javase/7/docs/api/java/lang/Character .html
and http://docs .oracle .com/javase/7/docs/api/java/lang/String .html .

[1b] For more information on Python’s magic comments to specify file encoding,
see http://www .python .org/dev/peps/pep-0263/ .

[2] See UTF-8 with C++ in a Portable Way: http://utfcpp .sourceforge .net/ .

[3] IBM’s International Components for Unicode: http://site .icu-project .org/ .

[4] Python 3 .3 will be able to represent 1, 2, or 4-byte code points internally using
the most efficient representation . For more information, see PEP393 Flexible
String Representation: http://www .python .org/dev/peps/pep-0393/ .

[5a] For a complete discussion of Unicode security issues, please see Unicode Tech-
nical Report #36, Unicode Security Considerations: http://unicode .org/reports/
tr36/ . There is also a very short but somewhat informative Security Issues FAQ at
http://unicode .org/faq/security .html .

[5b] See Unicode Technical Annex #15: Unicode Normalization, for an in-depth
discussion of the different forms of equivalence and the Unicode Normalization
Algorithm: http://unicode .org/reports/tr15/ .

[6] TR10—Unicode Collation Algorithm, Unicode Technical Standard #10:
http://unicode .org/reports/tr10/ .

[7] FAQ: UTF-8, UTF-16, UTF-32, and BOM: http://unicode .org/faq/utf_bom
 .html .

Python Unicode How To—http://docs .python .org/release/3 .1 .3/howto/unicode
 .html .

[8] TR17—Unicode Character Encoding Model, Unicode Technical Report #17:
http://unicode .org/reports/tr17/ .

[9] See “Unicode Bidirectional Algorithm” (Unicode Standard Annex #9), which
formally defines the correct way for conforming Unicode implementations to dis-
play bidirectional text: http://unicode .org/reports/tr9 .

[10] Twenty-one bits are required to represent an arbitrary code point: 16 bits for
the character within the Plane; 1 bit indicating whether the code point is within the
BMP or uses one of the higher planes; and 4 bits to represent the higher plane that
is in use .

 38 ;login: VOL. 37, NO. 2

Imagine that your new German customer sends you a ton of text files that you have
to add to your document database . You write a Perl script which neatly imports all
the data into your shiny new PostgreSQL database . As you tell this to your DBA,
she wonders what had happened to all the German ä, ö, ü umlauts and ß characters
in the process . You had not suspected that there might be a problem, but, as you
look, all is well—this, despite the database being UTF-8 encoded while the German
text files were seemingly normal text files . Another shining example of Perl doing
exactly what you want even when you don’t know what you are doing .

All seems well, that is, until someone from accounting notices that all the Euro
symbols (€) have been turned into e symbols . That’s when you start digging into
how this really works with Perl and character encodings and Unicode .

A Short Introduction to Unicode

Back in the ’60s, the American Standard Code for Information Interchange (aka
ASCII) had become the lingua franca for encoding English text for electronic pro-
cessing outside the IBM mainframe world .

As the use of computers spread to other languages, the whole encoding business
became a jumbled mess . The vendors, as well as some international standardiza-
tion bodies, fell over each other to come up with sensible ways of encoding all the
extra characters found in non-English languages . Each language or group of simi-
lar languages got one or several encodings . In Western Europe, the Latin1, or ISO-
8859-1, encoding became popular in the ’80s and ’90s . It sported all the characters
required to write in the Western European languages .

Working with a single language, this was fine, but as soon as multiple languages
were in play, it all became quite confusing; data had to be converted from one
encoding to another, often losing information as some symbols from encoding A
could not be represented in encoding B .

In the late ’80s, work had begun to create a single universal encoding, capable
of encoding text from all the world’s languages in a unified manner . In 1991 the
Unicode consortium was incorporated, and it published its first standard later
that year . The current version of the standard is Unicode 6 .0, published in October
2010 . It covers 109,000 symbols from 93 different scripts . Each symbol is listed
with a visual reference, as well as a name made up from ASCII letters, and is
tagged with properties giving additional information as to the character’s purpose .

How Perl Added Unicode Support
10 Years Ago Without You Noticing It
T O B I O E T I K E R

Tobi Oetiker is the author

of several wel-known open

source applications: MRTG,

RRDtool, and SmokePing. He

co-owns and works at Oetiker+Partner AG,

a consultancy and development company in

Olten, Switzerland. Tobi’s current pet open

source projects are extopus.org, a tool for

integrating results from multiple monitoring

systems into a cool JavaScript-based

Web frontend, and remOcular.org, a slick,

interactive command line-to-Web converter.

Read more from tobi on @oetiker, G+ or tobi.

oetiker.ch

tobi@oetiker.ch

 ;login: APRIL 2012 How Perl Added Unicode Support 10 Years Ago Without You Noticing It 39

With its huge number of characters, Unicode requires multiple bytes to store
each symbol . A pretty wasteful undertaking, when you recall that most languages
written in Latin script will require only about 70 different symbols to get by .
Therefore, a number of different Unicode “encoding” schemes were proposed over
time . These days the UTF-8 and UTF-16 schemes are the most popular . Both are
variable length encodings, where symbols will use a varying number of bytes to be
stored .

UTF-16 is the “native” encoding used by Microsoft operating systems since
Windows 2000 . It requires at least 2 bytes per character . UTF-8 is the primary
encoding used in most Internet-based applications and also in the UNIX/Linux
world . Its main feature is that it encodes all of the original 7-bit ASCII characters
as themselves . This means that every US-ASCII encoded document is equivalent
to its UTF-8 counterpart . All other Unicode characters are encoded by several
bytes . The encoding is arranged such that most of the extra symbols required by
Western European languages end up as 2-byte sequences .

These days UTF-8 is widely used . XML documents, for example, are encoded in
UTF-8 by default . A lot of the Web content is encoded in UTF-8, and most Linux
distributions use UTF-8 as their default encoding .

Perl Unicode Basics

In July 2002, with the release of Perl 5 .8, Unicode support was integrated into the
language . Since everything was done in a nicely backward-compatible manner, the
six lines under the “Better Unicode Support” heading in the release announcement
went largely unnoticed . The good news is that, in the meantime, most people are
actually using Perl 5 .8 or a later version, so all the information in this article should
be readily applicable in your real-life Perl setup .

The fundamental idea behind Perl’s Unicode support is that every string is stored
in Unicode internally . If the string consists only of characters with code points
(numeric IDs) lower than 0x100, the string is stored with one byte per character .
Since the Unicode code points 0x0 to 0xff are equivalent to the Latin1 character
set, nothing much changed to the casual observer . If any characters with code
points 0x100 or higher are present, the string is UTF-8 encoded and flagged
appropriately .

On IBM mainframes, Perl uses the EBCDIC encoding, and thus a matching UTF-
EBCDIC was chosen to go with it . For the purposes of this article, if you are using
Perl on a mainframe just think "EBCDIC" when you read "Latin1 ."

Perl Unicode Internals

So the main new thing is that now strings can be stored either as sequences of
characters with one byte per character or as UTF-8 encoded character sequences
with a flag . The perlunifaq(1) suggests that you not even think about all these
things, pointing out that they will just work . This is largely true, but I found that
until I understood what was happening internally, I kept running into interesting
corner cases, driving me nuts . So here is your chance to get your mental picture
cleaned up as well .

But, as the perlunifaq suggests, the functions shown in the following examples are
not normally required in everyday tasks .

 40 ;login: VOL. 37, NO. 2

uft8::is_utf8($string) tells whether the UTF-8 flag is set on a string or not:

#!/usr/bin/perl

my %s = (

 latin1 => chr(228), # latin1 ä;

 utf8 => chr(195).chr(164), # utf8 encoded ä char

 smiley => “\x{263A}”, # unicode smiley

);

for (keys %s){

 print “$_: >”.utf8::is_utf8($s{$_}).”< $s{$_}\n”;

}

Terminals set to work in Latin1 encoding, will show:

latin1: >< ä

Wide character in print at p1.pl line 8.

smiley: >1< â☺ o

utf8: >< Ãe

Terminals running in UTF-8 mode will display:

latin1: ><

Wide character in print at p1.pl line 8.

smiley: >1< ☺

utf8: >< ä

The presentation of the characters is entirely up to the terminal, hence the
different rendering . Perl assumes that your output device is in Latin1 single-byte
mode and warns that it will have trouble displaying the smiley character, which
has no equivalent representation in Latin1 .

The example also shows that Perl will keep strings in single-byte mode unless it is
forced into UTF-8 encoding by the content of the string . Also, the UTF-8 encoded
string is not automatically recognized as such .

A few more functions help to get things sorted . The utf8 namespace holds a bunch
of utility functions that allow you to move strings between encodings:

utf8::upgrade($string) in-place converts from single byte to UTF-8 encoding
while setting the UTF-8 flag . If the UTF-8 flag is already set, this is a no-op .

utf8::downgrade($string[, FAIL_OK]) in-place converts from UTF-8 to single
byte while removing the UTF-8 flag . If the logical character sequence cannot be
represented in single byte, this function will die unless FAIL_OK is set .

utf8::encode($string) in-place converts from internal encoding to a byte-
sequence UTF-8 encoding, and removes the UTF-8 flag in the process . Since
Unicode strings are internally represented as UTF-8 already, all this really does, is
remove the UTF-8 flag from a string .

utf8::decode($string) checks if a single-byte (non-encoded) string contains
a valid UTF-8 encoded character sequence and sets the UTF-8 flag if this is the
case .

#!/usr/bin/perl

my %s = (

 latin1 => chr(228), # latin1 ä;

 utf8 => chr(195).chr(164), # utf8 encoded ä char

 ;login: APRIL 2012 How Perl Added Unicode Support 10 Years Ago Without You Noticing It 41

 smiley => “\x{263A}”, # unicode smiley

);

utf8::upgrade($s{latin1}); # latin1 A internal utf8

utf8::decode($s{utf8}); # set the utf8 flag

for (keys %s){

 print “$_: >”.utf8::is_utf8($s{$_}).”< $s{$_}\n”;

}

A UTF-8 terminal now shows:

latin1: >1<

Wide character in print at p1.pl line 12.

smiley: >1< ☺
utf8: >1<

All strings are in UTF-8 mode internally, so all should be well, but only the smiley
character gets printed; the ä character is lost . The Latin1 terminal, on the other
hand, shows:

latin1: >1< ä

Wide character in print at p1.pl line 12.

smiley: >1< â˜o

utf8: >1< ä

The reason for this effect is Perl assuming that our output device (STDOUT) is
working in single-byte mode . Perl is “doing what you want” by encoding all the out-
put strings into Latin1, and only if there is no Latin1 representation will it resort
to UTF-8 native encoding . This leads to the question of how to tell Perl about the
encoding in use on STDOUT . The binmode function helps:

#!/usr/bin/perl

binmode(STDOUT,’:utf8’);

my $smile = “\x{263A}”;

print “$smile\n”;

When running in an UTF-8 enabled terminal you now get properly encoded data
and Perl will also not complain about wide characters anymore:

☺

While this works fine if you are running on an UTF-8 terminal, it would not work
well for sites still running in Latin1 mode . Normally the LANG environment vari-
able gives an indication as to the encoding in use on the system . If you want Perl to
take this into account, you can use the open pragma and the :locale encoding:

#!/usr/bin/perl

use open ‘:locale’;

my $umlaut = chr(228);

utf8::upgrade($umlaut);

print “$umlaut\n”;

which will always output an “ä”, taking the default encoding into account when
reading and writing data on the system .

When interpolating a string containing material with the UTF-8 flag set (the
smiley gets an automatic UTF-8 promotion due to its content, which cannot be

 42 ;login: VOL. 37, NO. 2

represented in a single-byte encoding), then the resulting string will be upgraded
to UTF-8 mode as well:

#!/usr/bin/perl

use open ‘:locale’;

my $umlaut = chr(228);

my $smile = “\x{263A}”;

print “$umlaut $smile\n”;

Running this on a Latin1 system gives:

“\x{263a}” does not map to iso-8859-1 at p3.pl line 5.

ä \x{263a}

If you want to write your Perl scripts in UTF-8 encoding, you can use the UTF-8
pragma to tell Perl about this .

use utf8; # assume utf8 program text

no utf8; # assume native program text

Note, though, that this only affects how Perl treats the text of the program, so it
will understand an UTF-8 encoded “ä” in the program text, but it will still store it
in native encoding internally . The UTF-8 flag will only be set on strings that do
contain Unicode characters with code points above 0xff .

When a string has the UTF-8 flag set, all string handling functions will continue
to work in an intuitive manner, meaning they will act on characters and not on
bytes . This might cause some interesting side effects, as the length command will,
for example, not tell you anymore how many bytes are in a string, but how many
characters . Using the bytes pragma, you can force Perl to still look at the bytes and
not at the characters:

#!/usr/bin/perl

my $umlaut = “ä”;

print ‘plain: ‘,length($umlaut),”\n”;

utf8::upgrade($umlaut);

print ‘utf8: ‘,length($umlaut),”\n”;

use bytes;

print ‘byte length:’, length($umlaut),”\n”;

As expected the UTF-8 version of the string uses 2 bytes of memory .

plain: 1

utf8: 1

byte length:2

PerlIO and the Encoding Module

The real fun begins when interacting with data from outside the program . The
PerlIO layer goes a long way toward making this process as simple as possible .
It allows you to do elaborate data processing steps as you are working with file
handles . Using the three-argument open syntax and an appropriate PerlIO layer
definition is all it takes:

#!/usr/bin/perl

open my $fs, ‘<:encoding(latin15)’,’euro-test.txt’;

my $data = <$fs>;

print ‘utf8 flag: ‘,utf8::is_utf8($data),”\n”;

 ;login: APRIL 2012 How Perl Added Unicode Support 10 Years Ago Without You Noticing It 43

With this setup, PerlIO takes care of decoding the Latin15 encoded input file and
stores the result in UTF-8 mode internally:

utf8 flag: 1

Latin15 is another name for the ISO-8859-15 encoding . It is the single-byte encod-
ing commonly used in Western Europe these days . Latin15 is very similar to the
classic Latin1 encoding, but a few characters have been replaced . Most impor-
tantly, Latin15 includes the € (Euro) symbol .

Using the binmode command, the encoding of an open file handle can be changed:

#!/usr/bin/perl

open my $fs, ‘<’,’euro-test.txt’;

binmode($fs,’:encoding(latin15)’);

my $data = <$fs>;

The open pragma allows you to define the default encoding for commands creating
file handles:

#!/usr/bin/perl

use open IN => ‘:encoding(latin15)’, OUT=>’:utf8’;

open my $fs, ‘<’,’euro-test.txt’;

my $data = <$fs>;

The encoding and decoding process can also be controlled directly by using the
Encode module:

#!/usr/bin/perl

use Encode;

$x = decode(‘iso-8859-1’, chr(228));

print ‘flag: ‘,utf8::is_utf8($x),

 ‘ - ‘,encode(‘utf8’,$x),”\n”;

The decode step turns the “ä” character in Latin1 encoding into a Perl UTF-8
character sequence with the UTF-8 flag set . The encode step turns it into a UTF-8
multi-byte sequence without the UTF-8 flag set . A Latin1 terminal will show:

flag: 1 – Ãe

The Unicode Bug

The Unicode standard not only defines code points (numeric IDs) for its char-
acters, but it also provides properties such as Letter, Number, Uppercase_Letter,
Space_Separator . Perl has access to this information and can use it in regular
expressions and other commands . The example below demonstrates the behavior
of the “\w” (word characters) regular expression match:

#!/usr/bin/perl

my $a = ‘aäa’;

$a =~ /(\w+)/ and print “standard match: $1\n”;

utf8::upgrade($a);

$a =~ /(\w+)/ and print “utf8 match: $1\n”;

The result is a bit odd:

standard match: a

utf8 match: aäa

 44 ;login: VOL. 37, NO. 2

While Perl uses Unicode for its internal strings, it seems to use the Unicode meta-
information only when the string is in UTF-8 encoding . The “\w” does not match
“ä” . This can be fixed by using the good old “locale” module, but that is from a time
when Perl did not assume all strings to be in Unicode .

This behavior has become known as the “Unicode Bug”; it has been present for
quite some time and therefore could not just be fixed without breaking existing
code . Perl 5 .12 therefore introduced the unicode_strings feature, which “fixes”
the bug:

#!/usr/bin/perl-5.12.0

use feature ‘unicode_strings’;

my $a = ‘aäa’;

$a =~ /(\w+)/ and print “standard match: $1\n”;

utf8::upgrade($a);

$a =~ /(\w+)/ and print “utf8 match: $1\n”;

Now Perl uses the knowledge from the Unicode standard in all cases and the result
looks fine:

standard match: aäa

utf8 match: aäa

But also note that the bug does not affect you if you are using UTF-8 encoded and
flagged character strings, the format you would end up with when using the PerlIO
layer or the Encoding module functions .

CPAN and Unicode

When using CPAN modules, make sure to check their documentation for Unicode
support .

The DBD module for PostgreSQL (DBD::Pg), for example, will return all string
data with the UTF-8 flag set and properly decoded, unless the database encoding
is set to SQL_ASCII . You can use the pg_utf8_strings flag to override the
automated decision . The MySQL DBD module can deal with UTF-8 encoded
databases, but you have to tell it explicitly by setting the mysql_enable_utf8 flag
on the database handle .

XML::LibXML will also work with UTF-8 characters without further ado .

Mojolicious, Dancer, and other new kids on the CPAN block will, in general,
work graciously with Unicode . The only problem I ever ran into was that I was
incorrectly encoding data for output which had already been encoded by the
framework, ending up with doubly encoded data .

About That Missing Character...

And now, on to resolving the mystery from the beginning of this article . The
German text files were in Latin15 encoding, which is pretty similar to the Latin1
encoding Perl uses by default except for the Euro sign (and some other bits) . Your
script read the text in as if it was Latin1 encoded . As the data went via DBI into
PostgreSQL, the DBD::Pg module took care of properly UTF-8 encoding the data,
which worked fine except for the Euro sign, which is not in the Latin1 character
set . The fix for the problem is simple, though: the text files have to be opened with
the :encoding(Latin15) PerlIO layer and it all works .

 ;login: APRIL 2012 How Perl Added Unicode Support 10 Years Ago Without You Noticing It 45

Recap

The road to Perl Unicode bliss:

u Be aware that Perl internally treats everything as Unicode (and make sure to
keep all text information encoded in UTF-8 with the UTF-8 flag set to avoid the
Unicode Bug) .

u Whenever data enters the program from the outside, decode it from its outside
encoding .

u When data leaves the program, encode it according to the requirements of the
next step of processing .

u Consider that the modules you are using to access data might already be taking
care of all (or part) of the encoding and decoding business .

For further entertainment have a look at the Perl Unicode documentation on
http://perldoc .perl .org/ .

Thanks to USENIX and LISA Corporate Supporters

USENIX Patrons
EMC

Facebook

Google

Microsoft Research

VMware

USENIX
Benefactors
Hewlett-Packard

Infosys

Linux Journal

Linux Pro Magazine

NetApp

USENIX & LISA
Partners
Cambridge Computer

Google

USENIX Partners
Xirrus

http://perldoc.perl.org/perlunicode.html

 46 ;login: VOL. 37, NO. 2

At LISA ’11 in Boston, as I was sitting in a talk [1] on GPFS by Veera Deenadhaya-
lan of IBM, I saw something that I instinctively knew was incorrect . It wasn’t
anything fundamental to his talk . To the contrary, the work that IBM is doing on
GPFS is quite impressive and one of the reasons we had them come to give this
talk . There are two main, salutary features of upcoming GPFS versions coming
out of the IBM Almaden Research Center . The first is the de-clustering of RAID
stripes from full disks, which, to be brief, allows very fast rebuilding of stripes of
data across 100,000+ disk systems, where the expectation is that a RAID rebuild
will be happening every eight hours or so . The second, and the focus of my article
here, is the integration of superior integrity checks built into file systems .

This is nothing new, right? ZFS has been doing this for years . This is definitely
worthwhile work, and I’m extremely glad to see this being integrated into other
file systems, natively . The thing that struck me was about 33 minutes into the talk
on slide 26 . It was a reference to the paper “Evaluating the Impact of Undetected
Disk Errors in RAID Systems” [2] published in 2009 in the IEEE International
Conference on Dependable Systems . This publication clearly nailed the problem,
but models indicated that a 1000-disk system would experience an undetected cor-
ruption every five years . This is where my mind jumped the rails a little bit, but not
for the reasons you might think . I have practical experience that shows that this is
extremely optimistic, and my own recorded failure rate is much higher than this! I
mentioned this to Veera and he requested that I publish these results; I agreed .

The Problem

But first, it may be necessary to take a step back . What is an undetected error,
how does one catch it, and why is this a problem? You are probably more familiar
with the lengths to which most vendors will go to tell you how safe the data is that
they are writing to disk . They will quote MTBF or MTTDL [3] numbers, call your
attention to scrubbers for bad data, etc . But, from a data integrity perspective, the
question is this: how do you know that the data that you are reading back is what
you wrote? That’s the crux of the matter . Verifying correct writes at the time of the
write is obviously important, but equally so, or perhaps even more important in
some cases, is ensuring that you are reading back the correct data .

Disks Lie

Do you trust that your disks are returning to you what you wrote? When you read
back a file, there are a panoply of things intermediating between you and your data .
First, you have to get the data off the disk . Disks are incredibly complicated bits of

Data Integrity
Finding Truth in a World of Guesses and Lies

D O U G H U G H E S

Doug Hughes is the manager

for the infrastructure team

at D. E. Shaw Research, LLC,

in Manhattan. He is a past

LOPSA board member and was the LISA ’11

conference co-chair. Doug fell into system

administration accidentally, after acquiring a

BE in Computer Engineering, and decided that

it suited him.

doug@will.to

 ;login: APRIL 2012 Data Integrity 47

near black-magic . It’s amazing that they even work at all . They have little electro-
magnetic heads floating on air cushion mere microns above a rapidly spinning sur-
face of mirror-polished rust—a 7200 RPM 3 .59 disk is moving at about 100 km/h at
the outer edge . They have to be at exactly the right place at the right time to read off
little chunks of data that are probabilistically encoded and decoded via ultra-fine
magnetic fields at multiple depths using quantum effects [4] . The controller col-
lects all of this analog data, analyzes it on the fly, accounts for surface expansion
and contraction because of thermal effects, aligns the heads precisely, and uses
complex error correction codes to reconstruct the data and turn it into streams of
0’s and 1’s . What could possibly go wrong!? When your disks lie to you, and they
probably have already, do you know?

There are many things that could happen . You could write the data but, because
of head alignment or a firmware issue, the data that you wrote might turn into
a big chunk of 0’s . This is one of the reasons that GPFS writes the data and the
checksum to totally different disks . If the data and checksum were written to the
same place, and these blocks erroneously became 0’s, when you read it back the
checksum would match! The checksum or parity would be correct as far as what is
on the disk, but it would be wrong with respect to what you intended to be recorded
(unless, of course, you are in the habit of storing 0’s) .

Another possibility is that the magnetic field degrades to such a point that the
algorithms used to reconstruct the data guess incorrectly . After all, the retrieved
data is an evaluation based upon mathematical best guesses based upon congruent
magnetic fields . Add to this the possibility of firmware bugs and you’ve got a lot of
potential for something to happen .

But disks are not the only ant in the colony . Connecting the disk controller to the
rest of the system is a cable, which connects to a board with integrated circuits,
which passes it over a bus, which passes the data through memory (usually) on
its way through several levels of cache through the CPU to the operating system,
which has a driver for the disk and a file system to aggregate multiple disks and
which uses its own memory and usually passes through the CPU/memory systems
several times on its way to a user program, which usually resides on multiple sys-
tems (whew) . Sometimes there is also a RAID controller card with an ASIC, FPGA,
or CPU involved . It just so happens, out of all of these, the disk is complicated and
techno-magical enough that it is the most frequent source of errors .

What about client machines over the network? Some file systems, such as GPFS,
include network clients natively as an option . Others use the more common NFS
or AFS for remote access . These are beyond the scope of this article, for various
reasons .

How ZFS helps

In the remainder of this article, I’m going to illustrate the problem using ZFS . ZFS
has the advantage of telling you about prevarication up to and through the file
system . ZFS verifies the integrity of everything that it touches, including the CPU,
memory, cables, down to the disks . Since ZFS reports these problems in the form of
easily accessible checksum errors, I can easily share them with you . ZFS is freely
available . ZFS uses very strong checksums and verifies every single checksum on
read, so you know when there is a phantom flip in any subsystem . It may not know
exactly where the flip occurred . That would be hard . But it does associate the error
with the disk holding that block, even though it may not be the disk that is at fault .
We’ll get to that in a little bit .

 48 ;login: VOL. 37, NO. 2

But, you ask, if ZFS detects it, how can it be undetected? It is because the disk
(which I’ll use as shorthand for all of the various components connecting the
disk to the file system) did not detect that it was bad . It thinks that the data that
it is returning is perfectly fine . This is where “undetected” comes from . It is the
hardware’s inability to realize that the equivalent of mischievous gremlins have
been hopping through the data fields kicking over the bit grains without trigger-
ing any errors . This last part is important . There may be no other error! The head
is fine, the disk platters may be totally fine . There are no timeouts, no bad blocks,
etc . These physical media errors have been around for a very long time and systems
already know how to deal with these fairly well . (Yet, somehow the exact failure
states of disks, firmware issues, bus timeouts, and other ephemera still manage to
torpedo us even after all of these years .)

I have been able to collect checksum failure data on a population of about 1000
disks over the course of a couple of years, and hopefully you will gain some appre-
ciation that the scope of the problem is worse than the IBM people thought when
they designed GPFS . Serendipitously, my population of ~1000 disks matches the
prediction pool from the research paper mentioned earlier . A good detection and
correction strategy is a shield from the bit gremlins .

Interpreting the Data

A normal zpool status output for the generic pool zpool1 made of a two-way redun-
dant stripe (raidz2 in ZFS parlance, equivalent to RAID6) looks like this:

zpool status zpool1

pool: zpool1

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

zpool1 ONLINE 0 0 0

raidz2-0 ONLINE 0 0 0

c1t0d0s0 ONLINE 0 0 0

c2t0d0s0 ONLINE 0 0 0

c3t0d0s0 ONLINE 0 0 0

c5t7d0s0 ONLINE 0 0 0

c4t0d0s0 ONLINE 0 0 0

There are no read errors, no write errors, and no checksum errors . The checksum
error is conveniently stored in the last column for each disk in the pool and all of
the errors are tracked separately . Read and write errors are what you might expect:
head alignment, media error, controller failure, bus timeout, etc . Most of the read
and write errors are also visible to the system via normal error reporting: iostat
–E, /var/adm/messages, and the Solaris (if using that) event manager . Checksum
errors are as described earlier; the data read back from the disk does not match the
checksum that was stored when the data was written . This could be because the
checksum block is bad or because the data block is bad, but either way, ZFS flags
this as an error in the CKSUM column and automatically corrects the data, if pos-
sible, by reconstructing from parity . This is the part that makes ZFS so integral to
integrity . For the sake of space, I’ll be stripping the headers and other extraneous
rows for the following illustrations .

 ;login: APRIL 2012 Data Integrity 49

A P R 7, 2 0 1 1

c5t3d0 ONLINE 0 0 1

We had one checksum error on c5t3d0 . Was it the disk? Was it an undetected ECC
flip? Was it a bit flip on a bus somewhere? We don’t really know . We wait for further
flips and keep the disk under observation . But, had we not had ZFS here, bad data
would have been returned to the program—that is certain .

O C T 8 , 2 0 1 0

 c0t6d0 ONLINE 0 0 2 5K resilvered

Two checksum errors! We can reasonably conclude that this is the disk, because
in a many-disk system other subsystem errors would be randomly spread around
to other disks . Not only that, but ZFS informs us that it has resilvered the bad data
to other disks for us . It’s very polite and helpful . Resilvering is the name for the
process by which all of the proper data is reconstructed onto the new disk to repair
the raidz2 stripe, an homage to repairing old glass mirrors .

S E P 2 , 2 0 1 0

raidz2 DEGRADED 0 0 0

 c5t5d0s0 ONLINE 0 0 0

 c0t6d0s0 ONLINE 0 0 0

 spare DEGRADED 0 0 1.21M

 replacing DEGRADED 0 0 0

 c1t6d0s0/old FAULTED 0 0 0 corrupted data

 c1t6d0 ONLINE 0 0 0 2.95T resilvered

 c4t7d0 ONLINE 0 0 0 2.95T resilvered

 c2t6d0s0 ONLINE 0 0 20

 c3t6d0s0 ONLINE 0 0 20

We have a faulted disk, c1t6d0, that has been replaced, and a spare disk, c4t7d0,
that has been swapped in . c1t6d0s0/old represents the original failed disk . c1t6d0
and c4t7d0 are mirrored during the sparing process . We also see 20 checksum
errors each on c2t6d0s0 and c3t6d0s0 . This is odd, particularly the exact equiva-
lence, and most likely correlated with transient controller issues when the original
disk failed, but ZFS was able to correct them on the fly . We chose to ignore these
errors and clear them to see if there were any other issues after the resilvering was
complete . There were none .

A P R 5 , 2 0 1 0

c7t0d0s0 ONLINE 0 0 0

 spare ONLINE 220 0 212

 c7t1d0s0 ONLINE 25 2 212

 c7t7d0s0 ONLINE 0 0 432 373G resilvered

That’s a lot of checksum errors, above (April 5, 2010)! But also read (25) and write
(2) errors . You can see that c7t1d0s0 was erroring all over the place and likely
had fairly severe media defects, perhaps a head dip, a particle of dust, or a random
manufacturing defect . c7t7d0s0 was hot-swapped into place and experienced 432
checksum errors while resilvering . /var/adm/messages was quite popular that
day . Fortunately, the errors were corrected on the fly . That would have been a data

 50 ;login: VOL. 37, NO. 2

retrieval nightmare if they had been passed to the user program . It turns out that
this resilver got stuck and that the replacement disk had an issue . We replaced the
replacement and things worked much better .

D E C 1 5 , 2 0 1 1

c1t4d0 ONLINE 0 0 1

Another single corrected error while I write this article . This disk is under obser-
vation for further errors .

Conclusion

Of the events recorded above, we have five separate events in an 18-month period . I
think there are probably a few others that I was not able to find . Based upon rough
memory, it seems that we have a corrected checksum error every six months or so .
It would not be an over-stretch to call this 10 otherwise undetected bit flip events
in five years, if we aggregate the co-temporal events . However, if we use the raw num-
bers, the actual number of bit/block corruptions is much higher than this (432 in one
event alone)! The more conservative number is 10x the study projection, and I would
consider our overall disk reliability to have been pretty good over the last four years .

Hopefully, I haven’t frightened you too much with my tales of doom and gloom .
There are other ways that you can protect your data without ZFS, such as keep-
ing md5 checksums [5] on every file in the system . One thing that you should do
is demand that your storage vendor, who is implementing RAID6 [6], check all
reads and verify the parity on every block . This is relatively easy for them to do . It’s
slightly more overhead to read the blocks off the two parity disks and calculate the
codes, but it helps to verify the data is correct: ASICs and CPUs are fast and inex-
pensive . Parity isn’t as good as either the GPFS or ZFS checksum, which is verified
on the main CPU, but it’s better than nothing .

Many vendors will argue that they have strong guarantees that the data is written
correctly . This is not enough! However, in some cases (images and videos come to
mind), the bit flip phenomenon is inconsequential . Who cares if a pixel changes
color in a movie in a frame? You can make your own judgment about your tolerance
for data integrity and pick a solution that is appropriate for your enterprise .

References

[1] IBM talk on improvements to GPFS: http://www .youtube .com/watch?v
=2g5rx4gP6yU (or the LISA ’11 Web site) .

[2] Rozier et al ., “Evaluating the Impact of Undetected Disk Errors in RAID Sys-
tems”: https://www .perform .csl .illinois .edu/Papers/USAN_papers/09ROZ01 .pdf .

[3] Richard Elling, “A Story of Two MTTDL Models”: http://blogs .oracle .com/
relling/entry/a_story_of_two_mttdl .

[4] http://en .wikipedia .org/wiki/Giant_magnetoresistance .

[5] Andrew Hume, “How’s Your OS These Days?” ;login:, vol . 30, no . 3, June 2005,
USENIX: https://www .usenix .org/publications/login/june-2005-volume-
30-number-3/hows-your-os-these-days .

[6] Robin Harris, “Why RAID5 Stops Working in 2009,” July 2007: http://www
 .zdnet .com/blog/storage/why-raid-5-stops-working-in-2009/162 .

 ;login: APRIL 2012 51

COLUMNS
In late January, Dick Tufeld, the voice talent behind The Robot in Lost in Space
(and many other fine shows, Thundarr the Barbarian notwithstanding) died at
age 85 . I thought I would use the immortal phrase he spoke from that TV show as
inspiration for this issue’s column and dedicate it to Tufeld’s memory . For this col-
umn, we’re going to look at a number of ways you can (and perhaps should) handle
warnings and errors within your Perl programs .

When approaching a Perl question, my first inclination is to review what is avail-
able in the language directly and what ships with the distribution (i .e ., is “in core”)
before looking elsewhere for solutions . With that in mind, let’s start with the two
built-in functions for signaling that an error has occurred:

warn()

die()

The former lets you print an error message while letting the program continue, and
the latter does the same but under most circumstances (more on this later) termi-
nates the program run . Both take as an argument a list used for printing the error
message . In most cases, that list contains a simple scalar, as in:

open my $FILE, ‘<’, ‘ookla’ or die “Couldn’t open the file ookla:$!”;

open my $FILE, ‘<’, ‘ookla’ or die “Couldn’t open the file ookla:$!\n”;

In both of these examples, I’ve used the common convention of including the $!
variable in the error message . That variable gets set by Perl (to quote the docs) with
“the current value of the C ‘errno’ variable, or in other words, if a system or library
call fails, it sets this variable .” A slightly more subtle difference between the two
examples is whether the error message passed to die() or warn() ends in a newline
(“\n”) . If it does, the message is printed as written . If it doesn’t, Perl appends the
script name and line number where the error was encountered in your program to
the message:

“Couldn’t open the file ookla: no such file at column.pl line 1920”

The Perl documentation for die() recommends adding “, stopped” to your message
if you plan to leave off the newline . The error message then would be:

“Couldn’t open the file ookla: no such file, stopped at column.pl line 1920”

For most of your small-scale programming tasks, warn() and die() will do what
you need . But when you start to write longer, more compartmentalized programs,
you may find at least one of their standard properties may be less useful to you . Let

Practical Perl Tools
Warning! Warning! Danger, Will Robinson!

D A V I D N . B L A N K - E D E L M A N

David N. Blank-Edelman is

the director of technology at

the Northeastern University

College of Computer and

Information Science and the author of the

O’Reilly book Automating System Administration

with Perl (the second edition of the Otter

book), available at purveyors of fine dead

trees everywhere. He has spent the past 24+

years as a system/network administrator in

large multi-platform environments, including

Brandeis University, Cambridge Technology

Group, and the MIT Media Laboratory. He was

the program chair of the LISA ’05 conference

and one of the LISA ’06 Invited Talks co-chairs.

David is honored to have been the recipient

of the 2009 SAGE Outstanding Achievement

Award and to serve on the USENIX Board of

Directors beginning in June of 2010.

dnb@ccs.neu.edu

 52 ;login: VOL. 37, NO. 2

me show you a small example of what I mean . Let’s say I’m writing a program that
consists of a module I wrote and a script that calls the module . Here’s the super
simple module:

module.pm

sub feel_better {

 open my $DATA, ‘<’, ‘meditation_of_the_day’ or

 die “Can’t open my data file: $!”;

 print while (<$DATA>);

 close($DATA) or die “Unable to close data file:$!”;

}

1;

and an equally simple script to call it:

caller.pl

use module;

feel_better();

Let’s run caller .pl without the data file module .pm needs . When we do so, it com-
plains thusly:

Can’t open my data file: No such file or directory at module.pm line 3.

If we were trying to debug this situation, we’d be a little stuck . We’d know that
something in the module included by caller .pl reported an error, but we have
no indication just where in caller .pl that module had been invoked . What if
caller .pl was much longer and it called feel_better() in 20 different places in the
code? How would we know which call failed? This is where the Carp module comes
into play . Carp is a module shipped with Perl since version 5 .00 was first released .
It provides the following alternative error message routines:

carp()

croak()

confess()

cluck()

The first two, carp() and croak(), work just like warn() and die(), respectively,
but instead of adding location information to the message when called without a
newline based on where the error was encountered, they add it based on where the
erroring code was called . So, if I change module .pm to read:

use Carp;

sub feel_better {

 open my $DATA, ‘<’, ‘meditation_of_the_day’ or

 croak “Can’t open my data file: $!”;

...

the error message it throws in the absence of a data file is:

Can’t open my data file: No such file or directory at module.pm line 4

 main::feel_better() called at caller.pl line 5

Now we know not only where the error occurred, but also have an idea of just which
code got us to that point . If we wanted even more information, let’s say because

 ;login: APRIL 2012 Practical Perl Tools 53

we are trying to track down a situation where our program called code that called
something else, we could use confess() and cluck() . The confess() call is like die()/
croak() except that it will produce a full stack trace as it shuffles off this mortal
coil . cluck() does a similar thing but, like warn(), it lets the program continue to
run .

Before we move on to the next section, I think it is worth mentioning a number
of riffs on the Croak module that are available . Most of these take the idea in a
direction that makes them even more useful . For example, there are a number of
modules that redirect the output of carp() in some way . The first is one I’ve used
to great effect in the past: CGI::Carp . CGI::Carp modifies the croak()/confess()/
carp() trio so that the Web server’s error logs will contain useful error messages
from your script . It also has a special subroutine used like this:

use CGI::Carp qw(fatalsToBrowser);

die “Can’t open my data file: $!”;

This subroutine will send that error message to the browser of the person encoun-
tering the message instead of sending it to the error log . The fatalsToBrowser
subroutine handles all the magic necessary to make sure HTTP headers are sent
before the error message . There is a related subroutine available in CGI::Carp
called warningsToBrowser which will let you send the output of any warn() calls
to the browser as HTML comments (so they are not seen by the user, but are still
available for perusal if desired) . Both of these routines are really useful while
debugging a Web application during the development process .

Another Carp redirection module that tries even harder to let you direct error
messages in a useful fashion is Carp::Notify . Carp::Notify can actually email you
the error messages . It will also let you designate certain global variables in your
program as “storable,” meaning you want it to tell you the value of all of those vari-
ables when it is reporting an error . It is very helpful to have the runtime context of
an error at hand when examining an error report .

If you like that last idea, you are really going to like Carp::REPL . Carp::REPL will
modify your die() (and, optionally, warn()) calls so that when you call die(), instead
of having the program quit, you will find yourself in an interactive Perl session . In
this session you can poke and prod at the current state of the program to determine
just where and how things went awry .

Death Be Proud?

Some people prefer a programming style where Perl functions and their connected
system calls automatically throw errors if they fail . Instead of having to write:

open my $DATA, ‘<’, ‘meditation_of_the_day’ or

 die “Can’t open my data file: $!”;

 ...

close($DATA) or die “Unable to close data file:$!”;

they prefer to write:

use autodie qw(open close);

open my $DATA, ‘<’, ‘meditation_of_the_day’;

 ...

close($DATA);

 54 ;login: VOL. 37, NO. 2

safe in the notion that if open() or close() calls fail in some way, that will cause
the program to stop . The plus of this approach is your code looks a little cleaner
because it isn’t littered with tests for success/failure every step of the way . The
autodie distribution also contains a Fatal module, which is how people pulled this
trick off before autodie came along . It is worthwhile reading the docs for both mod-
ules so you will be aware of their individual gotchas .

This isn’t my preferred programming style, but there is one context where I do
make use of a similar behavior: DBI programming . If you open a connection to a
database as follows:

$dbh = DBI->connect(“ DBI:mysql:$database”,

$username, $pw,{RaiseError => 1});

DBI will automatically call die() if the connect() or other subsequent DBI calls
return an error . There’s an equivalent PrintError parameter that performs a
warn() instead of a die() if that is more to your liking .

Death Be Not Proud

The flip side of the previous topic is that sometimes when your program encoun-
ters a “fatal” error, à la die(), you may have a different idea for what the program
should do at that moment . If you are able to write code that can recover from an
error like this, you need a way to catch the error and proceed from that point with
your recovery . The usual way to do this is to wrap the operation that could poten-
tially fail in an eval()/eval{} block, as in this example from the DBI docs:

eval {

 ...

 $sth->execute();

 ...

};

if ($@) {

 # $sth->err and $DBI::err will be true if error was from DBI

 warn $@; # print the error

}

If the execute() fails, the eval() will trap its failure and set $@ accordingly . Eval()
also gets used like this when you want to test for a potentially fatal condition, e .g ., if
a module you plan to use isn’t available:

eval (‘use Mondok;’);

warn “Mondok module not available on this machine, skipping...” if ($@);

But eval() has a few issues (especially before Perl version 5 .14, where a key one
was addressed) . These issues mostly surround $@, which can be cleared, clob-
bered, and generally messed with in ways that don’t necessarily make it a reliable
semaphore . The easiest way to get around these problems is to use a module called
Try::Tiny (whose docs contain a lovely litany of eval() complaints) . Try::Tiny lets
you write code of this form:

try { something } catch { the results } finally { perform some clean up }

Real Perl code using Try::Tiny would look like this:

 ;login: APRIL 2012 Practical Perl Tools 55

try { this_might_die() }

catch { warn “had a problem: $_”;}

finally { $error_count++ if ($@); }

If you like the try-catch-finally construct—perhaps you miss it from other pro-
gramming languages—you might want to check out Try::Tiny’s more powerful
sibling, TryCatch . TryCatch has a larger list of dependencies, but it lets you do
things like put “return()” in your catch blocks, something Try::Tiny by itself cannot
do . To get that specific functionality from Try::Tiny you would need to add another
module, Error::Return .

But Maybe What You Really Want Is an Object

We’re almost out of time for this column, but I wanted to at least mention one other
approach to handling errors that you may wish to explore if you are writing larger
and more extensive OOP-based programs . There’s a good argument to be made for
passing around exception objects instead of the simple scalar error messages we’ve
seen throughout this column . With an exception object, you can define a persistent
interface for reporting back more detail on errors . This means that instead of hav-
ing to parse:

“Ran out of memory: 20k”

and then rewrite how you parse it when you decide the message should be:

“FATAL: memory exceeded max allocated by 20k”

you might want to use an object that can be queried for the error message and the
amount of memory separately . Here’s some example code:

use Exception::Class (‘ColumnException’ => { fields => [‘memory_used’] });

we wrap this in an eval because throw() does a die() with the given object

eval {ColumnException->throw(

 error => ‘FATAL: memory exceeded max allocated’,

 memory_used => ‘20000’

)};

my $e = Exception::Class->caught(‘ColumnException’);

print $e->error,”: “;

print $e->memory_used,”\n”;

There are a few modules that help make creating exception objects pretty pain-
less . I’d recommend you look at Exception::Class (used in the previous example)
or Exception::Base . If you decide to use the latter, you may want to check out
Exception::Died, because it will automatically hook all of the die() calls in your
program and cause them to return exception objects by default .

With that, we have to bring this column to an end . Thank you Mr . Tufeld for mak-
ing my TV-watching days richer with your voice . Take care, and I’ll see you next
time .

 56 ;login: VOL. 37, NO. 2

As Python programmers know, there has always been a “batteries included”
philosophy when it comes to Python’s standard library . For instance, if you simply
download Python and install it, you instantly get access to hundreds of modules
ranging from XML parsing to reading and writing WAV files .

The standard library is both a blessing and a curse . Because of it, many program-
mers find they can simply install Python and have it work well enough for their
purposes . At the same time, reliance on the library and concerns about backwards
compatibility tend to give it a certain amount of inertia . It is sometimes difficult
to push for changes and improvements to existing modules . This is especially true
if one tries to challenge the dominance of standard library modules for extremely
common tasks such as regular expression parsing or network programming .

In this article, I’m going to take a brief tour through two third-party libraries, re-
quests and regex, that have generated a bit of buzz in the Python world by aiming to
replace long-standing and widely used standard library modules . Both have gener-
ated buzz in the Python world and, coincidentally, both start with the letter “R .”

Interacting with the Web

Python has long included a module, urllib, that gives you simple access to the Web .
For example, if you want to download and print out the street address of every bike
rack in the city of Chicago, you can write code like this:

import urllib

u = urllib.urlopen(“http://data.cityofchicago.org/api/views/cbyb-69xx/rows.

csv”)

for line in u:

 fields = line.split(“,”)

 print fields[1]

This works fine if all you want to do is pull down a simple document and read it .
However, as you know, the Web is a complicated place . If you need to do almost
anything else, such as supply custom HTTP headers, provide form data, upload
files, perform authentication, or deal with cookies, you’re out of luck .

Some limitations of urllib are addressed by another standard library, creatively
named urllib2 . However, if you’ve ever used urllib2 you know that it feels “over
engineered” and that seemingly simple tasks like authentication can be tricky . To
give you some idea, here is a fragment of code that shows how you would initiate a
basic authentication login to the Python Package Index (http://pypi .python .org) .

“R” is for Replacement
D A V I D B E A Z L E Y

David Beazley is an open

source developer

and author of the Python

Essential Reference (4th Edition,

Addison-Wesley, 2009). He is also known as

the creator of Swig (http://www.swig.org) and

Python Lex-Yacc (http://www.dabeaz.com/

ply.html). He is based in Chicago, where he

also teaches a variety of Python courses.

dave@dabeaz.com

http://pypi.python.org

 ;login: APRIL 2012 “R” is for Replacement 57

import urllib2

auth = urllib2.HTTPBasicAuthHandler()

auth.add_password(“pypi”,”http://pypi.python.org”,”username”,”password”)

opener = urllib2.build_opener(auth)

r = urllib2.Request(“http://pypi.python.org/pypi?:action=login”)

u = opener.open(r)

resp = u.read()

From here. You can access more pages

As you can see, the process has become quite a bit more complicated . It gets far
more convoluted, if not practically impossible, if you want to do anything more
advanced, such as invoke other HTTP methods (e .g ., HEAD, PUT, DELETE, etc .),
upload files, or read streaming data .

Although you could continue to hack away on urllib2 to try to make it do what you
want, you might be better off looking at Kenneth Reitz’s requests library instead
(http://pypi .python .org/pypi/requests) . Rather than trying to emulate existing
functionality, requests provides an entirely different programming interface .

First, let’s just download a simple Web page:

>>> import requests

>>> r = requests.get(“http://www.python.org”)

>>> r.status_code

200

>>> r.headers

{‘last-modified’: ‘Fri, 27 Jan 2012 15:49:35 GMT’,

 ‘content-length’: ‘18882’,

 ‘etag’: ‘”105800d-49c2-4b7847185c1c0”’,

 ‘date’: ‘Sat, 28 Jan 2012 19:13:11 GMT’,

 ‘accept-ranges’: ‘bytes’,

 ‘content-type’: ‘text/html’,

 ‘server’: ‘Apache/2.2.16 (Debian)’

}

>>> page = r.text

>>> page

u’<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”...’

>>>

That was certainly easy enough . Although it looks easy, there are some subtle
things going on under the covers . First, access to the r .text attribute automatically
performs the appropriate Unicode decoding, returning a Unicode string . Thus, you
don’t have to worry about it . Similarly, you can easily obtain status code and header
information as shown .

Now, let’s make a HEAD request to see if the document has changed recently:

>>> r = requests.head(“http://www.python.org”)

>>> r.headers

{‘last-modified’: ‘Fri, 27 Jan 2012 15:49:35 GMT’,

 ‘content-length’: ‘18882’,

 ‘etag’: ‘”105800d-49c2-4b7847185c1c0”’,

 ‘date’: ‘Sat, 28 Jan 2012 19:23:08 GMT’, ‘accept-ranges’: ‘bytes’,

 ‘content-type’: ‘text/html’,

 ‘server’: ‘Apache/2.2.16 (Debian)’

}

http://pypi.python.org/pypi/requests

 58 ;login: VOL. 37, NO. 2

>>> r.text

u’’

>>>

That was also easy . Believe it or not, this is practically impossible to do using urllib
or urllib2, since they don’t provide an interface for changing the HTTP method .

Let’s look at an example of authentication . This example shows how to log in to the
Python Package Index using basic authentication as shown earlier:

import requests

r = requests.get(“http://pypi.python.org/pypi?:action=login”,

 auth=(“user”,”password”))

resp = r.text

If you wanted to know whether any cookies were set on a page, simply access the
cookies attribute:

>>> r = requests.get(“http://pypi.python.org/pypi?:action=login”,auth=(“user

”,”password”))

>>> r.cookies

{‘pypi’: ‘0bf0722dee2203ee3accf4fef9650b2f’}

>>>

To pass cookies back on subsequent requests, simply supply the r .cookies diction-
ary as an argument:

>>> r2 = requests.get(newurl, cookies=r.cookies)

>>>

Let’s write a request that reads real-time data from Twitter’s streaming API for
anything that mentions the word “python” . You’ll need to supply your own user-
name and password for this:

import requests

import sys

import json

url = “https://stream.twitter.com/1/statuses/filter.json”

parms = {

 ‘track’ : ‘python’,

 }

auth = (‘username’,’password’)

r = requests.post(url, data=parms, auth=auth)

for line in r.iter_lines():

 if line:

 print json.loads(line)

Here, requests will open a connection and simply feed you a stream of lines as they
are produced . Again, it’s relatively straightforward . However, don’t even try it with
urllib2 . There is far more that you can do with requests, but this should have given
you a small taste for it .

Regular Expression Pattern Matching

The standard library module for handling regular expression parsing is re . If I
recall correctly, it is the second implementation of regular expressions, first ap-
pearing about 14 years ago in Python 2 .0 . However, just when you thought re might
be the last word in Python regular expression handling, a new library called regex

 ;login: APRIL 2012 “R” is for Replacement 59

has appeared . regex is the work of Matthew Barnett and has recently been offi-
cially blessed for inclusion in the standard library starting with Python 3 .3 (not yet
released) . However, you can use it now if you simply download it from http://pypi .
python .org/pypi/regex . (Editor’s Note: You may not be able to install regex on top of
versions of Python older than 2 .6 .4 .)

regex is a drop-in replacement for the standard re library . Thus, any regex match-
ing code that you might have written before should still work . An easy way to try
regex without making too many changes is to simply change the import statement
as follows:

import regex as re

Use re library as before

...

The new regex library fixes a huge number of issues, annoyances, and bugs related
to the old re library . These include various convenience features, such as showing
you the pattern when pattern objects are inspected or printed, as here:

>>> pat = regex.compile(“[a-zA-Z_][a-zA-Z0-9_]+”)

>>> pat

regex.Regex(‘[a-zA-Z_][a-zA-Z0-9_]+’, flags=regex.V0)

>>>

You also get a much simplified way to refer to capture groups .

>>> pat = regex.compile(r”(\d+)/(\d+)/(\d+)”)

>>> m = pat.match(“1/29/2012”)

>>> m[0]

‘1/29/2012’

>>> m[1]

‘1’

>>> m[2]

‘29’

>>> m[3]

‘2012’

>>> m[1:]

(‘1’, ‘29’, ‘2012’)

>>>

Behind the scenes, limitations related to the number of capture groups, concur-
rent operation with threads, and other matters are fixed, in addition to a number of
tricky issues with Unicode (e .g ., proper case folding) .

However, besides subtle cosmetic and implementation improvements, regex offers
an interesting range of new functionality . There are too many additions to cover in
their entirety, but let’s look at a few of the more interesting enhancements .

Suppose you wanted part of a regex to match a set of possible words or symbols . For
example, suppose you wanted to match some of Python’s math operators (+, -, *, /,
and **) . You might be inclined to write a regex like this:

import regex

pat = regex.compile(r’**|*|\+|-|/’)

However, if you look at such a pattern, there are all sorts of tricky escapes (for * and
+) . Plus, you have to worry about matching in the right order (checking ** prior to *) .
Here is an alternate approach using named sets:

http://pypi.python.org/pypi/regex
http://pypi.python.org/pypi/regex

 60 ;login: VOL. 37, NO. 2

import regex

ops = { ‘+’, ‘*’, ‘-’, ‘/’, ‘**’ } # A set of everything you want to match

pat = regex.compile(‘\L<ops>’, ops=ops)

In this version, you don’t have to worry about escaping any of the possible matches
or their order . You simply pass a set using the \L escape and specify an appropriate
keyword argument (which contains a list or set of the literal symbols you want to
match) . regex will figure everything out, including the escaping and ordering, to
make it work .

If you have written regular expressions, you probably know about the specifica-
tion of character sets such as [a-zA-Z] or [^a-zA-Z] . regex takes this much further
by allowing common set operations (union, intersection, difference), as well as an
interface to the Unicode properties . Thus, you can start writing character set pat-
terns like this:

Match all letters except vowels

pat1 = regex.compile(“[[a-z]--[aeiou]]+$”,regex.V1)

pat1.match(“xyzzy”) # Matches

pat1.match(“plugh”) # Doesn’t match

Match any non-ascii character

pat2 = regex.compile(r”[^\p{ASCII}]+”,regex.V1)

pat2.search(u”That’s a spicy jalape\u00f1o”) # Matches

pat2.search(u”I want another torta”) # No matches

Finally, another interesting feature is support for fuzzy matching . This is a match-
ing technique where text with errors in the form of insertions, deletions, or substi-
tutions can be matched . Here is an example:

>>> pat = regex.compile(“(?:spam){s<=1}”)

>>>

This regex pattern specifies that the text “spam” is to be matched, but that, at most,
one letter substitution is allowed . Here’s what happens:

>>> pat.match(“spam”) # Exact match

<_regex.Match object at 0x100547850>

>>> pat.match(“slam”) # 1-letter substituted (match)

<_regex.Match object at 0x1005478b8>

>>> pat.match(“slum”) # 2-letters substituted (no match)

>>>

There are additional options to specify insertions and deletions . For example, here
is a pattern than allows, at most, one deletion, one substitution, and one insertion:

>>> pat = regex.compile(“(?:spam){s<=1,d<=1,i<=1}$”)

>>> pat.match(“spm”) # Matches. 1 deletion

<_regex.Match object at 0x1005478b8>

>>> pat.match(“sm”) # No match. 2 deletions

>>> pat.match(“spaam”) # Match. 1 insertion

<_regex.Match object at 0x100547850>

>>> pat.match(“slamm”) # Match. 1 insertion, 1 substitution

<_regex.Match object at 0x1005478b8>

>>> pat.match(“slum”) # Match. 1 deletion, 1 insertion, 1 substition

Each insertion, substition, or deletion is counted separately and can be combined
to match a wide range of words . If you wanted to narrow it down, you could just put
a limit on the number of combined errors . For example:

 ;login: APRIL 2012 “R” is for Replacement 61

>>> pat = regex.compile(“(?:spam){s,i,d,e<=1}”)

>>> pat2.match(“spam”) # Match exact

<_regex.Match object at 0x100547850>

>>> pat2.match(“spm”) # Match, 1 deletion

<_regex.Match object at 0x1005478b8>

>>> pat2.match(“spaam”) # Match, 1 insertion

<_regex.Match object at 0x100547850>

>>> pat2.match(“slum”) # No match

>>>

Needless to say, fuzzy matching opens up new areas of possible application to regu-
lar expression matching .

Putting It All Together

As a final example, it is now possible to present a short script that tries to identify
people drunk-tweeting from the city of Chicago:

drunktweet.py

‘’’

Print out possible drunk tweets from the city of Chicago.

‘’’

import regex

import requests

import json

Terms for being “wasted”

terms = { ‘drunk’,’wasted’,’buzzed’,’hammered’,’plastered’ }

A fuzzy regex for people who can’t type

pat = regex.compile(r”(?:\L<terms>){i,d,s,e<=1}$”, regex.I, terms=terms)

Connect to the Twitter streaming API

url = “https://stream.twitter.com/1/statuses/filter.json”

parms = {

 ‘locations’ : “-87.94,41.644,-87.523,42.023” # Chicago

 }

auth = (‘username’,’password’)

r = requests.post(url, data=parms, auth=auth)

Print possible candidates

for line in r.iter_lines():

 if line:

 tweet = json.loads(line)

 status = tweet.get(‘text’,u’’)

 words = status.split()

 if any(pat.match(word) for word in words):

 print tweet[‘user’][‘screen_name’], status

Final Words

Although this article has only focused on two modules, there are many other ef-
forts to improve upon the standard library (too many to list) . In a future issue, I
hope to discuss alternatives to some of the system libraries—especially use of the
subprocess module . Stay tuned .

 62 ;login: VOL. 37, NO. 2

During the riots in London (the most recent ones), a friend pointed out that the
top-selling items at Amazon .co .uk (as measured by their own “movers and shak-
ers” page) were baseball bats . Before that, if you were to give me a data dump of all
of Amazon’s sales data for the past whenever, I confess I’d probably be at a loss for
what to do with it . I would know that the data set held fascinating economic and
sociological truths, but I wouldn’t know the questions to ask to tease them out off
the top of my head .

Given, however, the baseball bat tidbit and the accompanying revelation that the
second highest selling item was baseballs, my head virtually spins with conjecture .
I imagine my own city aflame outside my hastily boarded up windows . The shouts
of looters and the screams of car-alarms penetrate my makeshift barricade while
I click the Next-Day Air option on my order of a Louisville Slugger . My heart goes
out to those people, truly, but what were they thinking? What UPS-man in his
right mind drives a delivery truck through hordes of looters? Were they really so
proper that they felt the need to buy some balls to keep up appearances while their
city burnt down around them? Were the recipients of these orders even in London?
Perhaps it was the surrounding burgs making preparations just in case?

At any rate, that little bit of knowledge makes me look at the larger data set with
new eyes . It invites me to explore possibilities that hadn’t occurred to me before,
and, for me at least, that’s the way it goes with data analysis . My imagination needs
a bit of a kick in the shins to get it going . In the example above, we took our inspira-
tion from the data itself, but it’s also possible that a better understanding of, and
easier access to, a few analysis techniques could inspire us to look at our data in
new ways . Herein lies what I feel is the most fundamental difference between
Graphite and RRDtool . The latter provides the means to perform whatever math
we wish on our data before we graph it, while the former gives us a bunch of stati-
cally defined analysis functions that we may apply as we graph it .

Normally, I would argue for RRDtool’s flexibility, but, in practice, Graphite’s pre-
defined functions do a much better job of kicking me in the shins and arousing my
curiosity . In this, the last article in my series on Graphite, I’d like to share a few of
these analysis functions with you, and hopefully show you how Graphite has me
thinking differently about my data .

We’ll start with the exception to the rule, the one area where Graphite is argu-
ably more flexible than RRDtool: derivatives and integrals . As you probably know,
RRDtool wants you to categorize your data into one of several types, including

iVoyeur
Changing the Game, Part 3

D A V E J O S E P H S E N

Dave Josephsen is the

author of Building a

Monitoring Infrastructure

with Nagios (Prentice

Hall PTR, 2007) and is senior systems

engineer at DBG, Inc., where he maintains

a gaggle of geographically dispersed server

farms. He won LISA ‘04’s Best Paper award for

his co-authored work on spam mitigation, and

he donates his spare time to the SourceMage

GNU Linux Project.

dave-usenix@skeptech.org

 ;login: APRIL 2012 iVoyeur 63

“GAUGE” and “COUNTER .” This is so that RRDtool can make some underlying
assumptions about the data you’re storing . For example, the reason RRDtool gives
you a “COUNTER” data type is so it can automatically compute the derivative from
counter data . So if you have a metric such as the number of packets passed through
an interface, RRDtool will automatically take the derivative of this counter and
provide you packets per second .

In Graphite, you’ll recall that all data is stored the same way RRDtool would store a
“GAUGE” data type, which is to say, Graphite just stores the raw data . This means
that if you want to compute packets per second from a counter metric, you need to
apply the “derive()” function to the data when you graph it . If this seems counter-
intuitive, well, it is at first . At least I thought so before I became familiar with the
rest of the functions, but first things first .

Graphite functions may be applied in the Graphite GUI via the “Graph Data” button
in the graph composer, but now that I’ve been using Graphite for a while, I find it
more expedient to work with the URLs directly . This is both because I type better
than I click, and because the function names in the documentation don’t exactly
match those in the GUI, so one avoids the need to hunt around in menus by simply
typing them into the URLs . To do this, I first get some data into the graph in the
graph composer, then right-click the graph itself and select “copy link location,”
and then I simply paste the URL into a new browser tab .

Functions apply in a C-like manner, as you would expect, and most of them accept
multiple metrics and even wildcards in lieu of lists . For example, I can apply the
derive function to “some .counter .data” like so:

&target=derive(some.counter.data)

Figure 1: The derivative of a router’s byte counter

 64 ;login: VOL. 37, NO. 2

Figure 2: Raw byte count values from two routers

This function yields rate data as depicted in Figure 1, but that brings me to my first
kick in the shins: namely, that sometimes looking at raw counter data is interest-
ing . This wouldn’t have occurred to me using RRDtool, but what if we compare
the raw byte counters of two different routers, as seen in Figure 2? This could be
useful capacity planning info, but it’s not a fair comparison, because the routers have
different total values, so one router will always appear to be growing at a smaller rate
than the other . That’s okay, Graphite provides us a “secondYAxis()” function, which
easily allows us to draw one of these two data sets on its own Y-axis . So by graphing:

&target=router1.bytes&target=secondYAxis(router2.bytes)

we can get a clear picture of comparative rate of growth of the byte counters for
these two routers, as seen in Figure 3 . There’s also an “integral()” function, which
allows you to take GAUGE-based data sources and get counter-style data . If, for
example you had a graph of widget sales per minute, you could apply the integral
function to graph total sales for a given time interval .

Figure 3: Raw byte counts from two routers compared with independent Y-axis

 ;login: APRIL 2012 iVoyeur 65

Now, if you’re adept at RRDtool, take a moment and think about what it would have
taken to “RRDtool graph” Figure 3, especially if you had been storing your counter
data as type “COUNTER”, as you should . It’s probably possible, but I admit I don’t
know how to do it off the top of my head, and the idea of puzzling it out in Reverse
Polish Notation somehow stops short of sounding appealing . Even if I did tease it
out, I wouldn’t be likely to apply the technique to other data sets for the benefit of
my own curiosity, and the various RRDtool-based frontends out there wouldn’t be
much help to me in that endeavor . Graphite’s functions invite me to visualize the
data in new ways by virtue of their existence and accessibility . That’s probably the
biggest way Graphite has been a game-changer for me .

The functions themselves are fully documented at [1], and I can’t cover all of them
here, but let’s take a look at some of my favorites, starting with “summarize() .”
This function allows you to re-compute the interval for a given set of time series
data . So given a metric such as the number of users registering for an online ser-
vice as depicted in Figure 4, we can imagine that the marketing team has a goal to
maintain X registrations per hour and would like to display this data on a kiosk in
the hallway, but they’ll want it graphed as “registrations per hour” to reflect their
goal . We can compute this graph, depicted in Figure 5, for them with:

&target=summarize(user.registrations,”1h”)

Figure 4: User registrations over time

 66 ;login: VOL. 37, NO. 2

Figure 5: User registrations summarized hourly

To make their progress more obvious, we could add a horizontal line (constant)
equal to their goal (Figure 6) with the “threshold()” function like so:

&target=summarize(user.registrations,”1h”)&target=threshold(400,”Goal”)

Figure 6: User registrations summarized hourly with a constant goal value

Functions are nestable, as in C, so we could add the data from last month to the
graph by nesting the summarized target inside a “timeShift()” function . This
would give the marketers some historical registration data from last month for
context, while still maintaining a two-week period on the X-axis . This graph,
drawn with the targets listed below, is depicted in Figure 7 .

&target=summarize(user.registrations,”1h”)&target=timeShift(summarize(user.

registrations,”1h”),”30d”)&target=threshold(400,”Goal”)

 ;login: APRIL 2012 iVoyeur 67

Figure 7: User registrations summarized hourly with a constant goal value and historical data

I really like the timeshift function . It’s such an easy way to gain some context for
almost any metric, and since I discovered it, every metric I graph seems to beg the
question, “What was it doing last week at this time?” It’s because of functions like
this that Graphite feels more like an introspective tool and, by comparison, RRD-
tool seems inflexible or perhaps even created for a different problem domain .

Various functions exist for combining multiple metrics into a single line: these are
“sumSeries(),” which creates a single line from multiple metrics by adding them
together, “averageSeries(),” which averages multiple metrics into a single metric,
and “minSeries()” and “maxSeries(),” which plot only the minimum or maximum
value data points in the series . All of these functions support wildcards in the data-
source field . For example:

&target=averageSeries(dc4.web.*.cpu)

plots a single line with the average CPU utilization of every Web server in dc4 .
Combinatorial functions are great for summarizing clusters or even datacenters .
I find myself combining multiple averageSeries() of different metric types (CPU
and disk, for example) using “secondAxis() .” In this way I can get multiple metrics
across entire datacenters on the same graph in a really usable way . Other functions
exist for filtering individual metrics out of large lists . For example:

&target=highestCurrent(dc4.Web.*.cpu,5)

plots the CPU utilization of only the five currently most utilized Web servers in
DC4 . Combining these:

&target=averageSeries(highestCurrent(dc4.Web.*.cpu,5))

plots the average CPU utilization of the five currently most utilized Web servers in
DC4 . These are awesome for dashboards where you’re just wanting to show things
that are misbehaving, or aberrant behavior in general . I’m sure you get the idea by
now . Although too numerous to offer a complete list here, filters include highest
and lowest max, average, and current; filters which plot metrics that fall above or
below static thresholds as measured by max, min, and average; and metrics that
are most deviant from the rest of the series .

 68 ;login: VOL. 37, NO. 2

There are also a few advanced functions that bear mentioning . Included are func-
tions for plotting the Holt-Winters Forecast, Confidence Bands (error bars), and
Deviation . Holt-Winters is a statistical forecasting technique based on exponential
smoothing . I wrote an article [2] about its inclusion in RRDtool, and I stand by
what I said in that article: it’s the coolest code that nobody ever uses .

I can’t go into great detail here, but suffice it to say that the technique does a
good job of predicting future data points based on existing data, even taking into
account long-term and seasonal patterns (such as spikes or slow periods caused
by human behavior on weekends and holidays) . For many metrics, and especially
system-based ones, problems can be detected by measuring their deviation from
the “expected” value given to us by Holt-Winters, and Graphite makes this more
accessible than it’s ever been before .

Using Holt-Winters, I could create a dashboard that told us not only the five most
utilized Web servers, but also their deviation, with:

&target=highestCurrent(dc4.Web.*.cpu,5)&target=holtWintersAberration(highest

Current(dc4.Web.*.cpu,5))

Figure 8: CPU utilization paired with Holt-Winters aberration

This graph might look something like Figure 8, where, while the lines on top would
tell us what the CPU values were, the bottommost line would give us an indication
of how “problematic” or at least how “unexpected” those values were .

There’s a lot more to say here, but I’m afraid I’m at my word limit (to say nothing of
having probably exhausted my Figures budget for all of 2012 (sorry, Jane-Ellen)) .
If my other articles on Graphite haven’t convinced you to check out this truly
excellent tool, I hope this last one has . I’m sure I’ll revisit Graphite as it continues
to mature, but I have so many excellent tools in the pipeline that I really must move
on . Next time, expect the first in a new series of articles on a Nagios plugin that I’m
really excited about called check_mk .

Take it easy .

 ;login: APRIL 2012 iVoyeur 69

References

[1] Graphite documentation—Functions: http://readthedocs .org/docs/graphite/en/
latest/functions .html .

[2] Dave Josephsen, “iVoyeur: Hold the Pixels,” ;login:, vol . 33, no . 4, USENIX, 2008:
https://www .usenix .org/publications/login/august-2008-volume-33-number-4/
ivoyeur .

USENIX Member Benefits

Members of the USENIX Association receive the following
benefits:

Free subscription to ;login:, the Association’s magazine,
published six times a year, featuring technical articles,
system administration articles, tips and techniques, practi-
cal columns on such topics as security, Perl, networks, and
operating systems, book reviews, and reports of sessions at
USENIX conferences .

Access to ;login: online from October 1997 to this month:
https://www .usenix .org/publications/login/

Discounts on registration fees for all USENIX confer-
ences .

Special discounts on a variety of products, books, software,
and periodicals: https://www .usenix .org/member-services/
discounts

Contributing to USENIX Good Works projects such as
open access for papers, videos, and podcasts; student grants
and scholarships; USACO; awards recognizing achievement
in our community; and others: https://www .usenix .org/good-
works-program

The right to vote on matters affecting the Association, its
bylaws, and election of its directors and officers .

For more information regarding membership or benefits,
please see https://www .usenix .org/membership-services or
contact office@usenix .org, 510-528-8649 .

 70 ;login: VOL. 37, NO. 2

With only minor fanfare, Oracle announced the first official customer-ready
release of Solaris 11 on 11/10/2011 . Oracle decided to announce on a Thursday
rather than a Friday, which is a shame because releasing Solaris 11 on 11/11/11
would have been epic . Back in the day, say around the turn of the century, a major
new Solaris release would have drawn quite a lot of attention from IT management
worldwide . The luster has been somewhat lost due to the Solaris is open/closed/
open/we-are-not-saying nature of its development history, the widespread growth
of Linux as an enterprise OS, and the potential customer nervousness about the
future of Solaris as now owned by Oracle .

However, that does not mean that Solaris 11 is uninteresting, unremarkable, or
un-innovative . Quite the opposite . Below, I delve into the details of Solaris 11, what
makes it pertinent, and why it should be given full consideration as a commercial-
grade, full-featured, and powerful operating system . Also not to be ignored are
the variants of OpenSolaris, each of which has an interesting take on the future of
operating systems .

Features

Oracle is touting Solaris 11 as “The First Cloud OS” [1] . Certainly that statement
comes with marketing hyperbole, but the features included in Solaris 11 (S11) do
provide the basis for a scalable and manageable operating system . When combin-
ing S11 with the Oracle Enterprise Manager Ops Center [2] (free to use on sys-
tems with Solaris support contracts), Solaris gains some site-wide management
features which help meet that claim .

Solaris 11 has several new features and enhances several older Solaris 10 features .
To understand the potential utility of Solaris 11 it is important to understand the
entire feature set . The list below is complete and indicates the nature of the feature
(updated (U) or new (N):

u Package management system (N)—The new image packaging system (IPS) starts
from scratch and solves many of the long-standing problems of the previous Sys-
tem V package management system . The new system is much more like Debian
Linux in that all packages have versions, are network-update-able via the Inter-
net package repositories, and are digitally signed for security . No before or after
scripting is allowed, resulting in packages that are independent, removable, and
reinstallable . The biggest overall change is the lack of a patching system . Rather
than a patch, a new version of a package incorporates any changes . Packages

Should You Care About Solaris 11?
P E T E R B A E R G A L V I N

Peter Baer Galvin is the CTO

for Corporate Technologies,

a premier systems integrator

and VAR (www.cptech.

com). Before that, Peter was the systems

manager for Brown University’s Computer

Science Department. He has written articles

and columns for many publications and is

co-author of the Operating Systems Concepts

and Applied Operating Systems Concepts

textbooks. As a consultant and trainer, Peter

teaches tutorials and gives talks on security

and system administration worldwide. Peter

is also a Lecturer at Boston University. He is a

Senior Contributor to BYTE and anewdomain.

net. Peter blogs at http://www.galvin.info and

twitters as “PeterGalvin.”

pbg@cptech.com

 ;login: APRIL 2012 Should You Care About Solaris 11? 71

understand dependencies and thus an update or install of one package might
result in a cascade of other updates or installations . Also, package installation
can occur in parallel, so updating a system with many zones, for example, is much
faster than before . The previous package and patching system still exists to allow
installation and updating of pre-S11 packages .

u Boot Environments (N)—Live Upgrade is gone, replaced by a new boot environ-
ment facility and boot environment manager . Now that ZFS is the only root file
system, its features are bearing fruit throughout the system, as exemplified in
the boot environment manager . A new boot environment is created automati-
cally by the package system if it is making major package updates, or manually
at any point by the sysadmin . It is a ZFS clone of the existing root pool, with the
new changes applied . The previous version is retained, allowing easy rebooting
to a pre-changed environment . Further, many versions are kept by default, but
are delete-able as needed . Booting to any of these reveals the system as it was at
the time of that boot environment . Package upgrades take place on a live system
(within the new clone), and just the downtime of a reboot is needed to switch
between environments .

u Automated Installer (N) replaces Jumpstart and its brethren with one uni-
fied automatic installation tool . The new tool, of course, understands the new
packaging and boot environment facilities . It also understands zones and can
automatically create zones after its automatic installation or update of Solaris
from the AI server .

u Network virtualization and quality of service (aka Project Crossbow) (N)—At
long last Crossbow is available for the masses, rather than just in the open source
preview releases . Crossbow is a breakthrough networking facility, layered on
top of the previous network stack redesign that brought better performance and
scalability . With Crossbow, the sysadmin can create an entire virtual network
within a Solaris instance, including, for example, virtual NICs, switches, routers,
firewalls, and load balancers . All those components can work together to route,
filter, and balance traffic between zones within a system . The quality of service
component gives fine-grained control over network flows, allowing bandwidth
management on a per-protocol or per-NIC basis . If the sysadmin wants ftp to use
at most 5 Mbps of network bandwidth, a couple of commands gets it done .

u DTrace (U) is now fully network-aware for exploration and debugging of network
code, and has other minor changes .

u Zones (U) and virtualization are a bit confusing . Oracle renamed LDOMS to
be Oracle VM for SPARC, while Oracle VM for x86 is a totally separate facility
based on Xen . Of course, Zones are fully distinct from those two as well . The
best course of action is to ignore the names and choose the right facility based
on your use case . Zones have been updated and have gained some features, but
also have lost some features . For example, Solaris 8 and Solaris 9-branded zones
were supported with Solaris 10 as a way to capture a previous-OS system and
run its apps within S10 . S8 and S9-branded zones are no longer supported, but
Solaris 10 zones within S11 are supported . That is, you can capture a Solaris 10
system and run it as a branded zone within S11 . Unfortunately, you can only do
so if the S10 system has no zones on it . If it does have zones, the best path is to
virtual-to-virtual (v2v) the zones to the S11 system, making them S10-branded
zones within an S11 system . Also gone from S11 are whole-root zones . Now that
we have ZFS file system cloning, whole-root zones are no longer needed, since all
S11 zones behave that way (they allow modification of even system directories) .
For sparse-zone-like operations, S11 zones have an “immutable” mode which

 72 ;login: VOL. 37, NO. 2

implements partial or complete read-only operation . Finally, zones now allow
NFS server services . Unfortunately, zones themselves still cannot be stored on
an NFS server .

u ZFS (U) is a revolutionary file system/volume manager that in S11 gets several
new features, including block-level encryption .

u Oracle Enterprise Manager 12c (U) adds a host of features and adds support for
some S11 features, including OS installation, package management, zone man-
agement, and system monitoring . Oracle’s goal for the tool is to provide complete
life-cycle management of Solaris .

There are many other changes within S11, including LDAP client and Active Direc-
tory client integration, improved role-based access control (RBAC), auditing and
logging, and more cryptographic functions with hardware acceleration when run
on SPARC hardware .

How to—and Should You?—Upgrade

It is important to note that there is no seamless upgrade path from S10 to S11 .
Rather, the zone management tools can capture S10 zones or the S10 global zone
and turn them into an S10-branded zone that can run within S11 . This method
should be sufficient for most uses, but it is disappointing that no direct upgrade can
take place . The lack of that upgrade path is an indicator of how major the changes
between S10 and S11 are .

Which brings us to one aspect of the OS wars: ISV support . Without ISV support, a
great operating system can become a footnote in history . ISVs need to understand
the potential of Solaris and to determine whether their products will be supported
on Solaris . To fully embrace Solaris 11 an ISV needs to adapt to the new package
management system, but the old System V package system still works, as do older
binaries . At a minimum, an ISV needs to test their existing application on Solaris,
which is a low barrier to entry .

Impacts and Choices

Oracle, while unclear on some areas of its product plans, is being very clear in one
area . Oracle is firmly committed to making Solaris and Oracle Linux the best
places to run Oracle’s other software products . The “run Oracle on Oracle” mantra
is heard loud and clear at their conferences and within their documents and
announcements .

Oracle is claiming, for example, that many internal changes were made to Solaris
to support Oracle Database, including performance, reliability, and security
improvements . Oracle also allows the use of specific features of Solaris to opti-
mize Oracle DB license use . Consider that the Oracle rules for what is considered
“hard partitioning” (and therefore is allowed to limit the CPU cores that need to
be licensed) include several Solaris and SPARC options but fewer options for other
technologies [3] . Certainly, running Oracle software products on Oracle hardware
and operating system products makes sense for support reasons, although a given
site should do a full analysis of price, performance, and features among the various
options to determine which platform is the overall “best” solution for them .

While considering the platform options, a site should also consider the new kids on
the block . (That is not an endorsement of the band by the same name .)

 ;login: APRIL 2012 Should You Care About Solaris 11? 73

Teams of engineers have started from the last release of OpenSolaris and are cre-
ating their own distributions from that base . They are coordinating their efforts,
in that they will contribute their changes into project illumos [4] . Think of that
project as the new OpenSolaris . From there, several distributions are advancing
rapidly, making use of the core and solving specific problems . OpenIndiana [5] is
a general-purpose release . Nexenta [6] is a commercial release mostly designed
to be a storage platform . And Joyent [7] recently released their SmartOS open
source and free variant of illumos, with rich cloud-computing features . SmartOS
keeps the core of OpenSolaris, replaces the new package management system
with the one from BSD, and adds KVM-flavored containers to allow other operat-
ing systems such as Windows and Linux to run unmodified . While SmartOS can
scale vertically, the design goals seem to be horizontal scaling with a management
framework that allows monitoring, management, and automation of a farm of
SmartOS systems .

The Future

No one outside of Oracle (and perhaps few inside) knows what the long-term future
of Solaris is . Will it become an embedded OS that is used only for Oracle’s Engi-
neered Systems/Appliances? Is there enough demand, ISV support, and Oracle
support for it to remain a leading general-purpose enterprise operating system?
Certainly my discussions with IT management range from “We’ve moved on from
Solaris,” through “If only we were still running Solaris,” and on to “We’re moving
back to Solaris .” Fundamentally, it’s my firm belief that no other common, com-
mercial operating system has a better feature set than Solaris, especially as those
features relate to production operation .

In the history of computing, there have been many failures of “better” engineering .
Even as far back as Multics [8], the operating system that launched thousands of
other operating systems, including UNIX, just having better functionality did not
mean commercial or even cult-following success . Domain/OS [9] from Apollo was
advanced for its time, as was TOPS-20 from Digital Equipment Corporation [10] .
And let’s not get started on the holy war of “operating system X was better than
Microsoft Windows .” In fact, all of the UNIX vendors of the time, in the 1990s,
were worried about Windows NT winning the operating system wars and practi-
cally becoming the only major operating system . This continued until Scalability
Day [11], when Microsoft tried and failed to prove that Windows NT could scale—
at least according to the entertaining and informative presentation/rant by Bryan
Cantrill at the LISA ’11conference [12] .

So where does that leave IT environments in terms of operating system choices?
As usual, the choice of operating system will depend on feature need, in-house skill
set, ISV support and recommendation, and a bit of arbitrariness . Solaris 11 does
score well in several of those areas at many companies, and thus should be part of
the consideration .

The Solaris offspring such as SmartOS, Nexenta, and OpenIndiana are worth con-
sidering if their features meet your goals . The case can be made for Solaris being
a cost-effective platform, considering its free zone functionality, which provides
very efficient virtualization, for example, or its capped zones, which can effec-
tively reduce the number of licensed cores for some software products (including
Oracle’s) . Add to that the production-ready functionality of DTrace and ZFS and it
becomes difficult to not have Solaris on a short list of operating system platforms .

 74 ;login: VOL. 37, NO. 2

I would love to hear your thoughts about Solaris 11 and its future, and whether it
makes your short list .

References

[1] The First [Oracle] Cloud OS: http://www .oracle .com/technetwork/server
-storage/solaris11/overview/index .html .

[2] Oracle Enterprise Manager Ops Center http://www .oracle .com/technetwork/
oem/grid-control/overview/index .html .

[3] Oracle partitioning options: https://www .oracle .com/us/corporate/pricing/
partitioning-070609 .pdf .

[4] illumos: https://www .illumos .org/ .

[5] OpenIndiana: http://openindiana .org/ .

[6] Nexenta, a commercial release mostly designed to be a storage platform:
http://www .nexenta .com/corp/ .

[7] Joyent, SmartOS with cloud computing features including KVM: http://
www .joyent .com/ .

[8] Multics: http://www .multicians .org/unix .html .

[9] Apollo Domain/OS: http://en .wikipedia .org/wiki/Apollo/Domain .

[10] DEC TOPS-20: http://en .wikipedia .org/wiki/Tops-20 .

[11] MS Scalability Day: http://news .cnet .com/Scalability-Day-falls-short/2100
-1001_3-279928 .html .

[12] Bryan Cantrill at the LISA ’11 conference: http://www .youtube .com/
watch?v=-zRN7XLCRhc .

 ;login: APRIL 2012 75

If I understand it (you probably don’t want to put any money on that), “dark silicon”
is what happens when you have more processing doohickeys on a chip than you can
afford to keep powered up continuously, because of the excess heat that gener-
ates—something like the effect of a close-in shot of all the Dallas Cowboy Cheer-
leaders gyrating simultaneously . To minimize this (chip heat, not gyrating heat),
manufacturers have taken to leaving parts of the chip that are unnecessary for the
current processing tasks powered off, or “dark .” That got me to thinking (keep your
haz-mat suit handy): perhaps this approach would work equally well in other areas
of technology .

Pray, let us take, by way of example, the nation’s urban highway systems . The vast
majority of these are lit by sodium vapor or halogen street lights . (Or, if they aren’t,
just pretend I’m right; my wife does it every day .) These things are bound to take
a lot of power to keep shining, power that is wasted if no one is on the street . I’m
talking about expressways and such with no routine pedestrian traffic or drive-
ways along them, of course—not the road in front of your house where the corner
streetlamp is burned out half the year, anyway .

Shoving aside (rudely) the considerable latency in firing up some of these lamps—
because it more or less ruins the argument I’m about to make and therefore in true
pundit style shall be tidily ignored—I propose that we install motion detectors
calibrated for whatever the minimum legal vehicle size is for that roadway, so that
the lights only come on when someone could actually need them . We could call this
“dark highways .” The motion detectors would be arranged in such a fashion that
the highways in question were divided into zones . Only a currently occupied zone
would be illuminated .

This would probably present a problem if you ran out of gas and tried to hoof it
to the nearest gas station because: (1) a single person walking along the highway
would not trip the motion detectors, so as soon as you left your zone you’d be in the
dark; (2) since your car would no longer be in motion, even that zone would be dark
by the time you got back . Maybe if you flapped your arms while you walked . . .

While this really isn’t a particularly viable proposal for municipal energy-savings,
people trudging up and down the bypass flapping their arms like goony birds try-
ing to take off would provide a lot of entertainment value when viewed from the
cameras that would almost certainly get posted every couple hundred feet or so
along the roadways . Not to mention traffic helicopter views . Oh, and International
Space Station videos of large cities blinking on and off in segments like mega-scale

/dev/random
Dark Rhetoric

R O B E R T G . F E R R E L L

Robert G. Ferrell is a fourth-

generation Texan, literary

techno-geek, and finalist for

the 2011 Robert Benchley

Society Humor Writing Award.

rgferrell@gmail.com

 76 ;login: VOL. 37, NO. 2

billboards would be sweet, too . I can envision flash mobs being formed to spell out
political or environmental messages as viewed from space . They might call them-
selves “flaptivists .” (That’s not what I would call them, mind you .)

We could further degrade this once useful principle by applying it badly to all sorts
of inappropriate systems, but I want to take things in a slightly different direction
now . The term “dark silicon” has put me in mind of the fate of other nouns that have
had “dark” placed in front of them . Setting aside fictitious concoctions like “the
dark side” and “dark lords,” we shall begin with “dark matter .”

This is a seriously messed-up concept . It’s still matter, so it has mass, but it doesn’t
seem to reflect any light or glow when it gets irradiated or experience, in fact, any
of the illumination-producing actions to which normal matter is subject . Zero
albedo, as it were: interesting attribute . If we ever manage to corral some of it I can
see a lot of covert operations applications, as well as just about any other activity
that benefits from an absence of light (mushroom-farming and politics spring to
mind) . They might even have to add a new color to the crayon box rainbow: “Dark
Black .” Since it reflects no light at all, however, it won’t be very popular for use in
coloring books . I’m not sure whether it would look transparent, or simply create
a gap in the optical field, as though that part of the page were missing and so was
everything behind it . Thinking about that makes my head hurt .

This segues inexorably if not neatly into the nebulous “dark energy .” I don’t know
what to say about this one except, “Excuse me?” This smacks of slapping a scien-
tific-sounding term on something that may not really even be there . You can’t just
go around putting “dark” in front of anything you don’t understand . If that ever
catches on we’ll have “dark algebra,” “dark probate,” and especially “dark romance .”
I’m not so sure that last one doesn’t already exist .

 . . .

“Sir, did you realize that you were going the wrong way on the street and speeding
back there?”

“I’m sorry, officer . Traffic signs are dark for me .”

 . . .

“I’m afraid I’m going to have to disallow this $4,500 deduction for therapeutic ice
cream sandwiches and the $875 one for marijuana-scented hair gel unless you
provide some rationale beyond ‘coz my old lady brings me down .’”

“I’m bummed about that, man . I guess this tax stuff is, like, dark .”

 . . .

At any rate, I think a much more descriptive term for it would be “missing energy”
or its more dramatic cousin “fugitive energy .” My own theory concerning dark mat-
ter, incidentally, is that the fundamental fabric of space itself has mass, and that
explains all the mathematical anomalies . Whoever heard of massless fabric, after
all? Problem solved . You can ship the Nobel Prize to my PO Box . Make sure to wrap
it in an old towel or something so it doesn’t get broken .

Last night I heard an odd noise in my backyard and went out to investigate . I real-
ized that the dark itself was a mystery to me, which this terminology scheme would
of course render as “dark dark .” Unfortunately for the further exposition of this

 ;login: APRIL 2012 /dev/random 77

thesis, the term “dark dark” reminded me of “Jar-Jar,” which made me nauseous
and I had to lie down .

It may well turn out that the culprit in my annoying middle-aged weight gain over
the past few years has not been excessive chocolate and beer coupled with lack
of exercise, after all, but “dark calories .” Or perhaps I haven’t really gained any
weight; I’m just a victim of “dark gravity .”

Here will I leave you all to your dark thoughts .

 USENIX Board of Directors

Communicate directly with the USENIX Board of Directors
by writing to board@usenix .org .

P R E S I D E N T

Clem Cole, Intel
clem@usenix.org

V I C E P R E S I D E N T

Margo Seltzer, Harvard University and Oracle Corporation
margo@usenix.org

S E C R E T A R Y

Alva Couch, Tufts University
alva@usenix.org

T R E A S U R E R

Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S

John Arrasjid, VMware
johna@usenix.org

David Blank-Edelman, Northeastern University
dnb@usenix.org

Matt Blaze, University of Pennsylvania
matt@usenix.org

Niels Provos, Google
niels@usenix.org

A C T I N G E X E C U T I V E D I R E C T O R

Margo Seltzer
execdir@usenix.org

 78 ;login: VOL. 37, NO. 2

Learning Python, 4th Edition
Mark Lutz
O’Reilly, 2009 . 1140 pp .
ISBN 978-0-596-15806-4

The Quick Python Book, 2d Edition
Vernon L Ceder, Daryl K . Harms, and Kenneth McDonald
Manning, 2010 . 322 pp .
ISBN 978-1-935182-20-7

If somebody had given me column A, with the book titles
complete with series names and subtitles, and column B, with
an accurate description of what each one covers, and asked
me to match them up, I would never have succeeded . I found
this group of books both startlingly diverse and oddly titled .

Beginning Python is in the “Programmer to Programmer”
series . It also starts with a description of how programming
a computer differs from using a computer, and spends pages
of its chapter on variables in a discussion of what a vari-
able is . On the other hand, lambda functions appear not long
after, and shortly after that you have left Python itself to
gallop through topics that drag in extra protocols and topics,
ranging from file typing and file system traversal through
XML parsing, and on to creating your own fully functioning
Web server with a database backend . (Input sanitization,
however, is out of scope, so it comes with XSS and SQL injec-
tion vulnerabilities .) The Python it teaches is 2 .6 with 3 .1
enhancements; it uses 2 .6 idioms, not 3 .1 idioms . I wouldn’t
recommend it to anybody, and I’d particularly advise against
it for anybody who is just learning to program . The example
of quotes, which illustrates single, double, and triple quotes
with something that’s either a single quote, two single quotes,
and three single quotes, or a single quote, a double quote, and
some punctuation mark I’ve never seen before, is particularly
problematic, especially since it is immediately followed by
examples which use triple double quotes .

If you want a rapid introduction to Python for an experienced
programmer, I’d suggest The Quick Python Book instead . It
covers the basics of Python, plus some of the key libraries

The Linux Command Line: A Complete
Introduction
William E . Shotts, Jr .
No Starch, 2012 . 432 pp .
ISBN 978-1-59327-389-7

Some books I like because they fill my personal needs, some
because they are good examples of something I have no
interest in, and some because I can give them to other people .
This book falls into that last category . This is the book that I
can give to people who want to know how to do “that UNIX-
y stuff you do .” It assumes that you are a reasonably bright
person with a grasp of how to use a computer, and you want
to make the leap from using Linux with a GUI to using Linux
from a command line . It introduces you to thinking like a
UNIX person, without dragging in lots of history, and covers
the most important commands you need to know, with a big
helping of bash scripting .

Careful selection of topics keeps this down to a reasonable
size . That means making lots of decisions I fully support,
such as deciding to only cover Linux, and only modern distri-
butions at that . Keeping the focus relatively narrow makes a
book that’s much more readable and usable . You’re not forever
skipping special cases . I am sad that this approach means
that awk is only mentioned in passing, but if I’m going to sup-
port the drawing of lines, I’m going to have to live with some
authorial choices that differ from mine .

I’ve been waiting for this book for quite a while, and will be
enthusiastically pressing it on several people .

Beginning Python: Using Python 2.6 and Python 3.1
James Payne
Wrox, 2010 . 558 pp .
ISBN 978-0-470-41463-7

Head First Python
Paul Barry
O’Reilly, 2011 . 445 pp .
ISBN 978-1-449-38267-4

BOOKSBook Reviews
E L I Z A B E T H Z W I C K Y , W I T H M A R K L A M O U R I N E , T R E Y D A R L E Y ,
A N D B R A N D O N C H I N G

 ;login: APRIL 2012 Book Reviews 79

that it is a good idea to build your own fully functioning
safety-free Web server, especially with a database backend .

Seven Languages in Seven Weeks
Bruce A . Tate
The Pragmatic Programmers LLC, 2010 . 300 pp .
http://pragprog .com/book/btlang/seven-languages-in-seven-weeks
ISBN 978-1-93435-659-3

When I was a freshman in college, I learned seven program-
ming languages . Computer concepts were taught in Pascal .
Engineering was in FORTRAN and VAX and 68000 Assem-
bly . Business used COBOL . Artificial Intelligence research
was done in LISP and Prolog . I have always been glad that
I had that grounding in the variety of ways it is possible to
express a problem .

Seven Languages in Seven Weeks offers a similar survey of
modern programming languages and language concepts . The
creators of these languages each feel that there’s something
that needs to be expressed and that no other language they
know does quite what they want . Tate sets out to show what
makes each one special . He’s chosen Ruby, Io, Prolog, Scala,
Erlang, Clojure, and Haskell . Except for Ruby, most of these
will be obscure or unknown to ordinary mainstream coders .

Tate’s introduction is very clear about what this book is not:
it’s not a tutorial or an installation guide . It’s not complete
or comprehensive . He didn’t pick the most popular or most
academically acclaimed languages . He apologizes up front
to those whose favorite working language isn’t included, and
explains that he was not interested in producing a “Best of”
book . He chose a set of languages which covers the range of
current practice . His goal is to explore the significant fea-
tures of each language, how those help express different ideas
clearly and concisely .

The book is divided into a section for each language . The
introduction to each section provides the resources and
information needed to install the language and to begin
interacting or coding . Each section is further broken down
into single-day sessions . Tate knows you have real work to do,
so each section only contains three days .

The daily sessions start with the common language con-
structs: variables, types, logic, flow control, and so on . Tate
glosses the basics and highlights how each language is spe-
cial . By the third day, you’re deep into the core concepts that
make each language unique . Each day ends with a summary
of the key concepts and a set of exercises to help you explore
for yourself and to set them in your mind . The sections con-
clude with a wrap-up of the significant features and a little
discussion of why they’re important .

(regular expressions, Tkinter, pickles, shelves) for Python 3
and Python 2 . It does so with enough Monty Python refer-
ences to suggest that the authors get the Python mindset,
but not an unbearable number . (Yes, reviewing Python books
will, perforce, involve evaluating them on the number of
Monty Python references . It is as inescapable as the Spanish
inquisition .) If you do not already understand some program-
ming language—preferably an object-oriented one—you will
not find it a rewarding experience .

I have not yet found a book I’d recommend as a Python
introduction for your average person new to programming .
Learning Python is only a reasonable introduction for some-
body with a computing background and a burning desire
for completeness . Its introductory chapter does not attempt
to introduce you to programming as a concept, but it does
list all the major varieties of Python implementations and
explain them . You get to “What is Jython?” before you get to
“Hello, world .” It’s a very complete introduction to Python,
taking 3 as its point of reference but with information on 2,
the differences, and how to code portably . It hews quite care-
fully to the language itself, avoiding more than the briefest of
brushes with common libraries . It’s a good, readable language
reference, and if you like learning languages systematically,
it’s an unusually good example of a careful guide to the whole
language .

Learning Python should put the other books’ lengths in con-
text . It takes a bit over a thousand pages to do a nice, thor-
ough job of explaining the language, just the language, with
explanations of the idioms, nice clear examples, and plenty
of whitespace, but no major detours and the assumption that
you already understand all the underlying concepts . Quick
Python covers that territory, plus common libraries, in a third
the space . Beginning Python does it in about a fifth the space,
and tries to begin with fewer assumptions .

And then there’s Head First Python, which I like better than
Beginning Python even though it is even more of a breathless
gallop . In fewer pages with more pictures, it not only walks
you through creating your own fully functioning Web server
with a database backend (and no input sanitization), it also
has you create an Android app and move your Web server
onto Google Apps . On the other hand, it does a believable
job of explaining the things it does explain, and it makes no
pretense to have taught you how these things work . It teaches
a number of general programming concepts (not just why
objects and exceptions are good ideas, but also some concepts
in software design), and it explicitly walks the reader through
a number of debugging situations, which is important for
novices . Like Learning Python, its audience as a book to learn
from is a relatively narrow one, but the right person will find
it a fun and educational ride . But please, please, do not decide

 80 ;login: VOL. 37, NO. 2

who’s ever read someone else’s code (or even their own after a
time) should be able to get behind that .

Sprinkled throughout the book are a set of “key ideas .” Each
one relates to the clarity of the style or structure of the code .
They range from choosing good names to knowing your
libraries . They also include a couple of examples of tradi-
tional structural refactoring . Some of this may sound quaint,
but the authors illustrate their points in practical ways .

The first three sections cover cosmetic and aesthetics, then
logic and branching structures, and, finally, application
structure .

There is a fourth section with two unrelated chapters . The
first makes a case for writing tests that can be read and that,
when they fail, indicate clearly what failed . They also include
a remarkably non-trivial application and work through three
phases of development .

In most books I don’t look at the table of contents much after I
begin reading, but in this one the chapter headings make the
best summary of those key concepts . It would have been nice
to see a cheat sheet or a one- or two-page compact summary
of the key ideas .

I’ve been coding for long enough that there’s not a lot here
that’s new to me, but I did pick up a few tips, and the book
presents the ideas in a concise and coherent way . For some-
one just starting out or who is interested in approaching
coding for readability in a systematic way, there’s something
here for you that I haven’t seen anywhere else .

My bookshelf is made up mostly of pure references . I have a
few classics which don’t get much use, but which I don’t feel
I can part with . I think this one may fit between those two
groups . I won’t be looking up function calls, but I can imagine
scanning it again when I find myself facing something ugly .

—Mark Lamourine

TCP/IP Illustrated, Volume 1, 2d Edition: The
Protocols
Kevin R . Fall and W . Richard Stevens
Addison-Wesley, 2011 . 1017 pp .
ISBN 978-0-321-33631-6

There’s no shortage of technical books . Most quickly fade
in value due to the constant churn of innovation . A select
few stand out, forming something like a canon of computer
science . It is a testament to W . Richard Stevens’s depth of
knowledge and communication style that after nearly two
decades people still refer to his books . Kevin R . Fall had big
shoes to fill when he undertook the ambitious task of produc-

The book closes with a summary of the families of modern
programming concepts and how each of these languages fits
into those families . Tate highlights each language’s strength,
but he doesn’t shy away from exposing the warts or showing
how one problem or another might not be suited to a given
language .

Tate’s style is conversational and tutorial . He writes as if he’s
sitting down with you to show you something cool . He opens
each day with some kind of informal anecdote or metaphor
that leads to the day’s topic . His preparation has included
interviews with the language writers or researchers, and in
some cases he includes portions of his interview if it high-
lights the character or taste of the language he’s teaching . In
at least one case he gets the author of a language to say what
he’d most like to change if he could go back and start again .

When you’ve finished with this book, you should have a clear
understanding of some of the more esoteric concepts of cur-
rent programming languages, and some sense of the flavor of
each of the individual languages . This book may be frustrat-
ing to someone who’s not already familiar with at least a
couple of programming languages . I’d steer away from it if
your interest is solely in writing application code in any one
of them .

I like exploring and understanding the capabilities of dif-
ferent programming languages, even ones I don’t expect to
use . There’s no example in any of these sections that could
not be implemented using one of the other languages . What I
enjoy is seeing the elegance that each one brings to solving a
problem . I suspect I’ll pass it on to friends who also like that
kind of thing .

—Mark Lamourine

The Art of Readable Code: Simple and Practical
Techniques for Writing Better Code
Dustin Boswell and Trevor Foucher
O’Reilly Media Inc ., 2012 . 190 pp .
ISBN 978-0-596-80229-5

This is my first experience with an O’Reilly book from the
“Theory in Practice” series . This series tries to “impart the
knowledge and wisdom of leading-edge experts” (http://shop
 .oreilly .com/category/series/theory .do) . The Art of Readable
Code does feel like a series of lessons or conversations with
a colleague or mentor . The authors claim that many of the
examples come from their own real applications .

The Art of Readable Code opens by making a case that code
should be written with the human reader in mind . Anyone

 ;login: APRIL 2012 Book Reviews 81

final chapter focuses exclusively on security issues . He starts
off with an excellent refresher in crypto, then goes on to deal
with EAP, IPsec, PKIs, DNSSEC, TLS, and DKIM . I would
buy the book on the basis of this chapter alone .

Some who buy this book will just stick it on a shelf and only
refer to it occasionally . But while this is most assuredly a
reference book (and an excellent one at that), you definitely
can read this book in its entirely, and I would argue that you
are cheating yourself if you don’t . Some material is a bit dense
by its very nature, to be sure, but the writing is incisive and
engaging . As I write this, we’re up to RFC 6528 . Nobody has
time to read all of that . Who among us isn’t constantly skir-
mishing with networks, be you coder, DBA, researcher, policy
wonk, or sysadmin? The network is pervasive . Perhaps, like
me, your knowledge of TCP/IP is an amalgamated hodge-
podge gained through years of experience . If you take the
time to read this book you will fill in your gaps and deepen
your understanding of not only the “whats” of the Net but also
the crucial whys and hows .

—Trey Darley

Head First HTML5 Programming: Building Web
Apps with JavaScript
Eric Freeman and Elisabeth Robson
O’Reilly Media, 2011 . 610 pp .
ISBN 978-1449390549

O’Reilly’s Head First series is a definite departure from
traditional technical publishing methods . Instead of pages
and pages of text and code, the Head First series uses images,
comedy, and a variety of methods to assist your brain in
remembering what it is that you are learning . Head First
HTML 5 Programming: Building Web Apps with JavaScript
is one of the latest in this series and, like its predecessors, it
does not fail to provide the reader with ample information in
an understandable format .

Weighing in at 610 pages, you might think that Head First
HTML 5 is a bit of overkill for a relatively simple updated
Web standard, and you’d be right . However, the extent of
what is possible in HTML 5 is highly dependent on associ-
ated technologies such as JavaScript . Thus, the vast majority
of this beefy text is actually focused on how JavaScript, in
combination with HTML 5, can be used to usher in a new
generation of Web applications and features .

In fact, of the ten chapters in the book, all but one are focused
primarily on JavaScript . The book opens with a history and
general overview of HTML 5 and how the HTML standard
has come to be what it is today . The next three chapters
offer a crash course in JavaScript . The overview provided

ing this updated edition . (Fall is certainly no slouch himself,
having served on both the Internet Architecture Board
and IETF .) The result is impressive, a true labor of love . It
remains true to the spirit of the original while bringing it up
to date .

Fall leads the reader gently up the OSI stack, from media
layer framing all the way up to DNSSEC and TLS . He
assumes a certain level of innate intelligence in his reader
but tries hard not to assume much knowledge about TCP/IP .
The text incorporates fascinating historical notes, from the
ARPANET days to the present, which illuminate both the
human politics and technical drivers for change .

One major difference between this and the former edition is
how much material Fall elected to remove . The first edition
was, in some respects, wider in scope, addressing such topics
as NFS, SNMP, SMTP, and dynamic routing protocols . Fall
has focused exclusively on core Internet protocols . One might
well object that dynamic routing protocols are core but, as
Fall explains in his preface, there’s a world of difference
between RIP and BGP/OSPF, and to properly treat the latter
would have made this already sizable tome an unreadable
doorstop .

While a good bit of material has been elided from this new
edition, much has been added . The core protocols have sub-
stantially evolved over the past two decades . Fall has done a
great service to his readers in assessing those changes . He’s
essentially read a great pile of RFCs, distilled the essence,
and highlighted further reading on topics most relevant to
you .

As in the first edition, this incorporates countless packet
traces (both tcpdump and wireshark) to illustrate what’s
going down on the wire . On the inside front cover are three
example network diagrams: a home network, a coffee house,
and an enterprise . Fall uses these throughout the book, and
it proves an effective trope . Back in Stevens’s day, there were
some pretty stark differences between different TCP/IP
stacks . Things have improved, but Fall keeps to Stevens’s
penchant for mixing traces from different OSes (OS X, Free-
BSD, Windows, and Linux), reflecting the heterogeneity of
the real world .

Fall has tried to make each chapter self-contained (each
chapter is followed immediately by its footnotes, for exam-
ple) . IPv4 and IPv6 are totally integrated within each chapter
(except in a few cases where the topic is only applicable to one
or the other, as with ARP vs . Neighbor Discovery) . Security,
too, is integral to the entire text .

It’s worth commenting on the final chapter . Although Fall
has made security an integral part of the entire book, his

 82 ;login: VOL. 37, NO. 2

written and on target throughout . If I had to raise a com-
plaint at all, it would be that all the examples are in standard
JavaScript, as opposed to a JavaScript library such as jQuery .
JavaScript libraries are so ubiquitous in the Web develop-
ment community that it seems very little new development is
done outside of them .

Head First HTML 5 is a book well suited to be on almost any
Web developer’s bookshelf . There is definitely something in
here for everybody, from the junior developer to the expert . In
the new era of HTML 5, JavaScript is no longer an option, it is
a necessity, and Head First HTML 5 Programming: Building
Web Apps with JavaScript offers a solid foundation .

—Brandon Ching

does assume some previous programming experience and
focuses primarily on DOM parsing, events and handlers, and
functions and objects . Chapters 5 through 9 provide a sort of
“greatest hits” for Web applications, covering such topics as
geolocation, canvas, AJAX and JSON, and video/media . The
book wraps up with coverage of local Web storage and Web
workers, for those beefy applications .

As with a lot of instructional texts, each new concept is sup-
ported by the construction of a dedicated mock project . All
code samples in the book are concise, well explained, and
relevant . One of the neat things about the Head First series is
that visually, important gotchas and side notes are made easy
to identify and remember and do much to help you under-
stand what you are learning .

There was no single chapter that I thought was better than
the rest . This is one of those rare books that I found to be well

 ;login: APRIL 2012 Conference Reports 83

CONFERENCES
USENIX LISA ’11: 25th Large Installation
System Administration Conference

Boston, MA
December 4–9, 2011

Opening Remarks, Awards, and Keynote
Address
Summarized by Rik Farrow (rik@usenix.org)

The 25th Large Installation System Administration Con-
ference began with the co-chairs, Tom Limoncelli (Google)
and Doug Hughes (D. E. Shaw Research) tag-teaming their
opening presentation. Carolyn Rowland will be the next
LISA chair, with the conference occurring in San Diego in
mid-December 2012. After many thanks to the organizers
and USENIX, they announced the three Best Paper award
winners: Herry Herry’s “Automated Planning for Configura-
tion Changes” won the Best Student Paper award, with his
advisor, Paul Anderson, accepting the award for Herry. The
Best Practice & Experience Report award went to a Google
team for “Deploying IPv6 in the Google Enterprise Network:
Lessons Learned” (Babiker et al.). Finally, Scott Campbell of
Lawrence Berkeley National Lab won the Best Paper award
with “Local System Security via SSHD Instrumentation.”

Phil Kiser, LOPSA President, presented the Chuck Yerkes
award to Matt Simon for his helpfulness and frequent activ-
ity on the mailing list. Matt said that he had never met Chuck,
but that he must have been one heck of a guy.

David Blank-Edelman (Northeastern University and USE-
NIX Board Liaison to LISA) presented the SAGE Outstand-
ing Achievement Award to Ethan Galstad, the creator and
principal maintainer of Nagios. Galstad said that he had
created Nagios to prevent system administrators from being
paged unnecessarily, and while he was pleased to receive
the award, he is introverted and receiving it was not easy. He
thanked his wife, family, friends, and the worldwide Nagios
community, and the Linux community for providing him
with a free compiler.

In this issue:

USENIX LISA ’11: 25th Large Installation System
Administration Conference 83
Summarized by Ming Chow, Rik Farrow, David Klann, Erinn
Looney-Triggs, Cory Lueninghoener, Scott Murphy, Timothy Nelson,
Thang Nguyen, Carolyn Rowland, Josh Simon, Deborah Wazir, and
Michael Wei

5th ACM Symposium on Computer Human Interaction for
Management of IT 122
Summarized by Kirstie Hawkey, Nicole Forsgren Velasquez, and
Tamara Babaian

Conference Reports

 84 ;login: VOL. 37, NO. 2

At this point, Ben was just getting warmed up. He suggested
Agile, said that the cloud has changed everything in the IT
world (partially because it supports agility), and went into
a history of operations management. In the next section of
his talk, a section he said he feared might be boring, Ben
explained where many of the ideas for scientific systems
management came from. It turned out to be a fascinating look
at the men who created this field and their contributions. He
ended this section by suggesting that we stand on the shoul-
ders of giants, and not ignore the lessons of the past. A simple
summary of where we are today would include lean, Scrum,
and agile operations concepts.

Ben concluded by bringing his focus back to DevOps, suggest-
ing that boundaries between development and operations
teams need to blur, and that both teams are fully accountable
for both successes and problems.

Mark Burgess (CFEngine) opened the discussion by praising
Ben for paying attention to great thinkers in history. He then
mentioned Alvin Toffler’s “Future Shock,” and Ben agreed
that people should read that book. Mark then asked if DevOps
is an expression of wanting to make a difference, not just
working in this monolithic tech environment. Ben responded
that DevOps allows us to do what we always wanted to do, but
were prevented from doing. Also, now more of the tools are
present and we have moved beyond just building assembly
lines.

Steven Levine (RedHat) commented on his world of tech
writing, where he has to bridge the gap between marketing
and engineering, and that DevOps concepts could address
one of his lifetime issues. Ben answered by referring to Sun
Microsystems tech writers, who had no access to engineers
and just had to figure things out on their own—certainly not
DevOps.

John Rouillard (Renesys) pointed out that if we don’t know
what went on before, we reinvent something else, perhaps
worse. Ben responded by saying the problem is more funda-
mental than that—we don’t know it exists! Ben told the story
of walking his baby while at church, noticing a book on opera-
tions management (OM), then taking it home and devouring
it. He hadn’t even known OM had existed. Now he has an
entire shelf in his office at Joyent devoted to OM books.

Keynote Address: The DevOps Transformation
Ben Rockwood, Joyent

Ben Rockwood, the Director of Systems Engineering at Joy-
ent, gave a stirring explanation of the way he sees DevOps—
not as a tool or a title, but as a cultural and professional
activity. DevOps is not something that we do, but something
that we are, said Ben. Ben declared that DevOps is more a
banner for change (displaying a picture of a knight), not sim-
ply a technique. It is a journey, not a destination.

Ben went on to present both an interesting slide show and
his detailed research into the history of systems studies. He
emphasized that DevOps begins with the “Why,” proceeds to
the “How,” and ends with the “What.” The “Why” refers to the
limbic system, the emotional seat of all animals, including
humans, as does the “How.” The “What” is the product, such
as building awesome services. Another way to see this is that
the “Why” represents motivation, such as quality through
collaboration, and the “How” and “What” are the process and
tools used. Ben said that DevOps does not mean starting with
the “What,” such as configuration management, and working
backwards to the “Why.”

Ben described Russell Ackoff’s five contents of the mind:
wisdom, understanding, knowledge, information, and data.
He then tied these content types to levels of sysadmin, with
System Architects related to wisdom and understanding,
Senior Sysadmins with knowledge, and Junior Sysadmins/
Support with information and data. Ben used these concepts
as a way to shift into talking about systems thinking, with
wisdom and understanding corresponding to synthesis and
knowledge, information and data to analysis.

DevOps is about the entire system, not just Dev and Ops
working separately, but with the two groups working together
toward the goal of quality. While Dev and Ops are often silos,
they truly are both part of the same system, but seeing this
can be difficult. Ben quoted W. Edwards Deming: “A system
cannot understand itself.” This implied standing outside of
both Dev and Ops to see how the two groups could work best
together.

Ben was not content with spouting platitudes, but discussed
methods for measuring quality in software and systems. You
could tell that Ben had spent a lot of time studying potential
metrics for measuring IT service, and after comparing many
complex standards, he selected ITIL as the most complete
and respected pattern for IT. Ben said that it is best to read
the entire ITIL set of books, although he did suggest reading
The Visible Ops Handbook, as a good place to get started.

 ;login: APRIL 2012 Conference Reports 85

packages are at least seven days old before moving between
unstable and stable. Currently, Pulp supports all RPM-based
distros. The Pulp developers plan to support arbitrary con-
tent (e.g., Debian packages).

During questions, one person asked how the authors col-
lected concrete evidence that packages were ready to go from
unstable to stable. Chris responded that they depend a lot on
HA to protect them, allowing the services to test themselves,
but agreed that testing could use some improvement. Could
the authors use RPM and yum to detect a rogue package
installation? Bcfg2 could report these packages and they
could be removed automatically; the authors are not cur-
rently doing this. How does the system know which pack-
ages are authorized? Bcfg2 has a list of base and specialized
packages. Someone pointed out that a rogue package would
only be detected if it were installed using RPM. The authors
responded that one could use tripwire to detect such anoma-
lies.

Does Pulp mirror the repositories or is there a separate tool
to do that? In most cases, Pulp can do the mirroring; for RHN;
the authors currently use mrepo. How can Pulp improve over
the Cobbler+ custom scripts method? Chris admitted that
Pulp was alpha code when they started (even as recently as
a month ago it wasn’t ready), but added, “We were also the
first to contribute code back to it.” How do the authors mir-
ror packages from one site to another and still keep package
consistency? Pulp has a content distribution system (CDS),
but they hadn’t used it in their efforts. How do the authors
maintain an older version of a package even after that pack-
age is no longer available? They break the mirror and set that
package aside. “We do have a couple of environments that
demand that stability.” Pulp uses hard-links to point to these
packages.

CDE: Run Any Linux Application On-Demand Without
Installation
Philip J. Guo, Stanford University

It’s hard to package your software so that other people can
reliably run it. You cannot predict someone else’s environ-
ment. The Internet is full of forums trying to solve this
problem. It’s also tricky to create a package that runs across
all Linux distros with no problems: missing dependencies
and different environments can require a tiered dependency
installation to resolve. Enter CDE, a tool that provides auto-
mated packaging of Code, Data, and Environment. Accord-
ing to Philip, there are three simple steps to using CDE to
package a piece of software: (1) use CDE to package your code
by prepending any set of commands with “cde”; (2) transfer
the package to the new computer; (3) execute software from
within the package on any modern Linux box using cde-exec

Perspicacious Packaging
Summarized by Carolyn Rowland (carolyn@twinight.org)

Staging Package Deployment via Repository
Management
Chris St. Pierre and Matt Hermanson, Oak Ridge National Laboratory

Matt began the presentation by talking about their HPC
environment and the concern for consistent security through
automated package management. Using yum for package
management did not allow for granular control of packages
nor did it allow for a period of testing before rolling a pack-
age into production. The solution Chris and Matt presented
included use of Bcfg2 for configuration management and a
new tool called Pulp. Pulp is part of RedHat’s CloudForms
and a lean replacement for Spacewalk (minus the GUI and
Oracle requirements). The authors wanted to control what
was really in the package repository and how it moved into
production, but they didn’t want to do it manually. The
repository has three areas: upstream—created daily from
sources; unstable—automatically synced into from upstream
filtering packages they don’t want; and, finally, stable—cop-
ied from unstable after about a week. Development machines
get their packages from unstable while everything else pulls
from stable. For an HA server, one node pulls from unstable
to test the package before the other node installs it. The only
exceptions are security patches, which receive immediate
attention. The authors said it was important to install the
security packages right away.

Downgrading with yum was difficult, as was rollback. The
authors examined and rejected a number of solutions, includ-
ing functionality built into yum and Bcfg2 and other reposi-
tory management systems. Pulp can do manual manipulation
of blacklisted packages from upstream which can then be
overridden with one command for machines that have an
exception to the blacklisting rule. The authors’ workflow
uses the Pulp automated sync facility to promote non-
blacklisted packages automatically. There are exceptions to
the automated package management. Impactful packages
(e.g., kernel packages) are not automatically promoted. The
authors found that servers using Pulp were far more up-to-
date with upstream package versions than the rest. Chris has
also written Sponge, a Web front-end (written in Python/
Django) to make configuration of Pulp more intuitive
(Sponge is available on github: http://github.com/stpierre/
sponge). Sponge is currently the largest instance of program-
ming for the Pulp API outside of the CloudForms project.
Matt and Chris aren’t finished: they’d still like to add an age
attribute to packages. Currently, packages move through the
stages weekly, so a package may only be in unstable for a day
before it is promoted to stable. They’d like to make sure that

 86 ;login: VOL. 37, NO. 2

from run to run to manually copy missing files. How would
things like plug-ins impact a package (e.g., eclipse)? Would it
change the distributed version in the cloud? You would have
to modify your own cached copy, or you could change the
cloud copy. Does Philip plan to continue to develop CDE or is
he done? Philip doesn’t rule out further development—“I’m
trying to graduate but maybe after that”—but he welcomed
community support to make CDE more robust. CDE was
really created to solve a specific problem but could have more
broad applicability in the field.

Improving Virtual Appliance Management through
Virtual Layered File Systems
Shaya Potter and Jason Nieh, Columbia University

Shaya started by asking some questions to make the audi-
ence think about how we manage virtual machines (VMs).
How do we provision? How do we update? How do we secure?
Virtual machines can increase complexity (sprawl) and this
can introduce security issues, giving hackers a place to hide.
Traditional package management works for a single system
but falls down with many heterogeneous systems. Deploying
virtual machines takes time; copying even a 1 GB VM takes
a significant amount of time. Copy on Write (COW) disks/
file systems are good solutions for provisioning homogeneous
machines but are not so good in a complex environment.
There are also no management benefits; once you snapshot/
clone, you create independent instances, each of which needs
to be managed.

Shaya introduced Strata, which models a Virtual Layered
File System (VLFS). In reality, machines are administered
at the filesystem level with large commonality even among
disparate, diverse environments. Strata decomposes the file
system into layers that can be shared out to VMs. There are
three parts to Strata: layers, a set of file-like packages (e.g.,
mySQL, Apache, OpenOffice, Gnome); layer repositories,
containing layers; and VLFS, which composes layers together
into a single namespace.

Shaya’s example of a VM used two VLFS layers consisting
of a MySQL VLFS and an Apache VLFS. To use Strata in
this example, perform the following three steps to build your
VM: (1) create template machines;)2) provision machine
instances;)3) maintain the VM. Updating the VM is easy.
Shaya used the example of a security patch for tar. First
you update the layer in the VLFS that contains tar, then the
update occurs in all VLFSes that contain tar. All VMs get the
update instead of having to update all individual instances
of tar. Using union file systems, Strata composes the various
layers together to form a single file system for a VM. The
various layers have different rw/ro attributes depending on
use. There is no copying of VM images, and the admin only

(root not required, installation not required). Step 1 creates a
CDE package in the current directory that copies all neces-
sary files into a self-contained bundle. This is similar to a
chrooted environment, because every file or environment
variable required to run the command is available within the
local CDE directory. A second user of the program can also
edit the script within the package and modify as needed, still
running it with all included dependencies. CDE uses ptrace
to hook onto the target process. It actively rewrites system
calls. When a call is made to the kernel, CDE intercepts and
copies the accessed files (e.g., “/home/bob/cde-package/
cde-root/lib/libc.so.7”) into the package, then returns con-
trol back to the program.

Addressing the impact of CDE on system resources, Philip
said it depends on the number of syscalls the program needs
to make. Having many files to access means more calls back
to CDE and the package. A user can run CDE packages like
any other command, so you can provide input or redirect
output outside of the package. An example of this is cde-exec
Python $CDE-package/var/log/httpd/access_log, which by
default looks in $CDE-package/var/log/httpd/access_log
first. If this doesn’t exist, it then chops the path to look for
the absolute path /var/log/httpd/access_log. You can stop
CDE from looking for $CDE_package/path using rewrite
rules to say ignore anything beginning with /var/log, which
will cause CDE to look at the absolute path without prepend-
ing $CDE-package first. CDE also includes a streaming
mode which allows the user to stream selected apps without
installing anything: (1) mount distro (e.g., sshfs) and (2)
cde-exec -s (streaming mode) eclipse. This will load from the
cloud or server. CDE will cache a local copy into cde-root on
the local machine. There have been ~4000 downloads of CDE
up till LISA ’11. (To find it, search for “cde linux”.)

How does CDE deal with environment variables? CDE
packages the environment variables first, from the original
package build, and loads them as part of the cde-exec process.
How does CDE keep the cache synced with the authorita-
tive package source on a server or in the cloud? A checksum
system would help this, but he hasn’t yet implemented it in
CDE. How does it rewrite the paths so that it knows where to
go? Does it rewrite LD_LIBRARY_PATH? Philip responded
that ptrace rewrites the strings to load the environment
and said as an aside, “It’s actually a big security hole,” which
made the audience laugh. How do you address signing? There
is currently nothing built in and no verification of content in
streaming mode. In capture mode, how do you know you’ve
run the command long enough to capture all of the environ-
ment necessary to rerun the command? The solution is pretty
low tech: you run some representative runs, do a find, and
discover that most apps are well-behaved. You can rsync

 ;login: APRIL 2012 Conference Reports 87

human intermediary is no longer around to be a rate-limiter;
mobile phones and PDAs originate transactions and submit
them directly via the Internet. OLTP systems today need to
be able to consume a million transactions per second. More
than just entering the transactions, the system must ingest
them, validate them, and respond to them, and do so with low
downtime. Broadly, there are three options available: “Old”
SQL databases, which provide ACID (atomicity, consistency,
isolation, and durability); NoSQL databases, which sacrifice
ACID for performance; and the “new” SQL approach, which
keeps ACID but uses new architecture to gain performance.

Traditional SQL products have problems, one of which is
bloat. They are legacy systems, and once a feature has been
added, they cannot easily remove it. They are also generic:
when used properly, specialized software can outperform
traditional SQL products by a factor of 50. Because of this
fact, Michael encourages selecting specialized database
solutions based on business needs. For data warehousing,
column-store databases are 50 times faster than row-store,
which is the standard approach. There are similar insights
for OLTP. Most OLTP databases are under 1 terabyte in size,
which is not an unreasonable amount of main memory.

Michael then discussed where traditional databases spend
their time on OLTP transactions. Nearly a quarter of the exe-
cution time is used by row-level locking. Similarly, latching
(to support multi-threading), crash recovery (maintaining
a write-ahead log), and running the buffer pool (maintain-
ing the on-disk store) each takes about 24% of the time.
This overhead means that traditional databases are slow for
architectural reasons, and we should rearchitect them when
we can. Faster B-trees alone will not give us much.

NoSQL is not a cure-all. SQL gets compiled down to the same
low-level operations that NoSQL requires, the compiler isn’t
a big source of overhead, and it’s actually hard to beat the
compiler these days. Giving up SQL will not give us much
performance. Sacrificing ACID can improve performance
(e.g., by abandoning row-level locking), but once an applica-
tion gives up ACID, it’s hard to recover if needed later. An
application needs ACID if it has multi-record updates or
updates for which order matters. For commutative, single-
record transactions, NoSQL is appropriate. NoSQL is a great
tool, and it is good at lots of things, but we should use the
right tool for the right job.

Michael’s company has a NewSQL product called VoltDB.
VoltDB has no traditional record-level locking. It keeps the
database (except for cold data) in main memory. Rather
than keep a write-ahead log, it defaults to always failing
over, which is what most OLTP applications do anyway. It
handles multiple cores without latching, by partitioning

has to monitor a single, centrally maintained template for
all VMs. The base layers are read-only (ro) while the user or
local sysadmin has access to read-write (rw) layers for local
system modification. These rw layers are sandwiched on
top of the ro layers (hiding files in the ro layers that occur in
both). This allows modification and deletion of files at the
VM level. This layering also provides visibility into unau-
thorized modifications; they appear in rw layers and can eas-
ily be cleaned. This also reduces or eliminates the need for
tripwire-like programs. Provisioning time is independent of
data size. Even large numbers of layers provision quickly. An
ssh server may have 12 layers while a desktop machine could
have 404 layers. Updating traditional VM appliances takes
time, while updates to Strata occur on system startup when
VMs grab the updated layers.

A member of the audience asked where the shared layers
were stored. Wherever you need, e.g., a SAN or NFS server.
Through initrd, the client mounts the SAN/NFS file system,
then determines the configuration and unions the layers.
This becomes the root file system. Initrd does all of the work
to connect the VM to the Strata VLFS. Another audience
member asked if the unionfs was accessing the layers on the
SAN to provide immediate updates. Shaya explained that
updates means creating a new layer which then updates the
configuration of the VM. The new layer becomes part of the
VM and the old layer is marked as unavailable. Any program
that is running currently will continue to run with the old
layer, but new programs will not have access to the old layer.
There was a concern from the audience that unionfs has had
trouble getting into the Linux kernel. Shaya admitted that
Stonybrook unionfs has been struggling to get support; there
are others, but Shaya didn’t know the status of these. Had
the authors considered pasting a configuration management
system into Strata? A CM system could be used with Strata
but it wasn’t part of the initial research. Is Strata limited to
virtual machines? Could this be used with clustering? Shaya
responded that he had presented a paper at USENIX ATC
using Strata with a desktop machine. It certainly could be
applied elsewhere.

Invited Talks I: Databases

NewSQL vs. NoSQL for New OLTP
Michael Stonebraker, MIT

Summarized by Timothy Nelson (tbnelson@gmail.com)

Michael began by reminding us what online transaction-
processing (OLTP) looked like in the past. We bought our
plane tickets on the telephone, and a human operator entered
the transaction. Thirty transactions per second was nor-
mal, and 1000 per second was unbelievably large. Today the

 88 ;login: VOL. 37, NO. 2

as spares. So techniques used on hard disks fail to work for
flash.

Recovery of data on SSDs is cheap: it costs a few hundred dol-
lars. To do the same thing on hard drives, instead of unsol-
dering a few chips, requires hundreds of thousands of dollars.
With SSDs, there is a lot of leftover data, which is easy to
recover. It is also possible to recover data at the physical level,
even overwritten data. You need to grind flash to destroy it.
SSDs write to the first free block, and to overwrite it SSD
writes to the next available block, leaving the original data
untouched. This is unlike hard drives, where original data
can be overwritten.

Their lab examined state-of-the-art mechanisms used in
SSDs to remove remnant data. First, they wrote some pat-
terns to SSDs. Then, they “‘sanitized”‘ the SSD, removed
flash chips, and used a custom hardware platform for reading
chips, bypassing the FTL entirely. If a drive completes its
sanitization successfully, there is no stale data left over.

Some drives worked correctly, but some drives didn’t apply
erase commands properly. They would report success, but
data would still be present. Some drives could be mounted
as if nothing had happened. Other drives could be reset
and some or all data could be recovered. Some drives used
a cryptographic scramble, which involves writing all data
using some form of encryption and then discarding the key.
But since they could not confirm that the key was actually
discarded, they didn’t trust this approach. Encryption is
actually commonly used in SSDs, as it has the effect of ran-
domizing data, which is desirable when writing to flash. For
this to work, the key must be durably stored somewhere, and
they could not prove that this key had been destroyed after a
cryptographic scramble.

They also found that ATA security erase worked sometimes
but not at other times on the same drive. They suggested com-
bining cryptographic erase and erasing data. First, scramble
the disk and delete the keys, then perform a block erase on the
entire disk, which then can be verified by reading all blocks
and checking for erasure. If done in parallel, a 256 GB disk
could be erased in 20 seconds. Perhaps drive manufacturers
would implement this.

If you try overwriting, you don’t know if you have written to
all blocks on the SSD. Their experiment showed that typi-
cally two passes were sufficient, but sometimes it took 20
tries. This had a lot to do with past errors on the drive and a
lot of things that the FTL hides.

Sanitizing single files is an even bigger problem. You want to
get rid of a confidential document, such as browser history
or files with credit card data or passwords for customers.

main memory between the cores. VoltDB can do a 200-record
transaction in microseconds, and it beats an unnamed tra-
ditional SQL database vendor by a factor of 50. The product
supports a subset of SQL; correlated subqueries are on the
way. Finally, VoltDB is open source.

Is Amazon a good application for NoSQL and eventual con-
sistency? Amazon implemented SimpleDB because, at their
scale, they can afford to build their own solutions. The rest
of us have to buy third-party engines. If there is no benefit to
building faster B-trees, someone from Mozilla asked, should
we work on improving latching instead? Better latching
would absolutely be an improvement, and we should work on
making our data-structures more concurrent, not just faster.
Two audience members asked about benchmarking VoltDB
in a data warehousing situation. Since warehousing is very
different from OLTP, VoltDB would not do well in that space.
For data warehousing, one should use a column store instead.

Eric Allman asked about the problem of moving data from
OLTP systems to a data warehouse; wasn’t it quite expensive?
Michael agreed, but he said that you often need to duplicate
the data anyway, since the warehouse schema may be differ-
ent from the OLTP schema. Also, you often want to use dif-
ferent hardware for response-time reasons. So ETL (extract,
transform, load) isn’t going away, but there may be a market
opportunity for seamless integration of separate OLTP and
data-warehousing solutions.

What is the revenue model for open source software? RedHat
has a good model: provide an enterprise edition with good-
ies that aren’t in the free version, and provide support for
the enterprise version. The free community version can be
viewed as a vehicle for sales.

Invited Talks II: Newish Technologies
Summarized by Rik Farrow (rik@usenix.org)

Issues and Trends in Reliably Sanitizing Solid State
Disks
Michael Wei, University of California, San Diego

Michael presented research from NVSL (Non-Volatile
Systems Laboratory), first reported during FAST ’11. The
takeaway is simple: deleting data on solid state disks (SSDs)
doesn’t actually remove it. We all have confidential data on
disk: private data, corporate and government secrets. We also
known how to destroy data on hard disks, as we’ve been doing
this for years with multiple overwrites. But SSDs are differ-
ent because of the complex controller, the flash translation
layer (FTL). The FTL maps page locations to physical pages,
and there are always more pages than a device advertises

 ;login: APRIL 2012 Conference Reports 89

build a traffic server, and once they had gotten the Inktomi
solution under Linux, it was many times faster than Squid.
They wanted to open-source their solution, but doing this
with existing code required a huge amount of work because
of patents. So they started over from source, and in 2010
they achieved this. Nginx is also an awesome proxy server,
Varnish is good, and Squid is still around. When you look at
traffic servers, what you want to do is comparison shop. Leif
presented a table showing features of various traffic servers
and suggested you pick the one that fits your tasks the best.

Rather than just consider requests per second, where most
traffic servers can do around 100,000 requests (and Apache
traffic server does best), you need to look at latency. If you
have 2 ms of latency per request and each page consists of
50 requests, that’s a total of 100 ms of latency, so latency is
important and a better benchmark (again, Apache traffic
server does better).

Leif then explained proxy servers. Forward proxy can rewrite
URLs which control which Web sites users visit, and cache
content. A reverse proxy is transparent to the Web browser
and uses rules to redirect, or forbid, access to remote servers.
A reverse proxy can also cache content and do keep-alives.
The last type of proxy is an intercepting proxy, which Leif
called a “mixed bag,” where the firewall forces users to go
through a proxy. This can be done through an ISP that wants
to save bandwidth through caching content. In general, when
you think about proxies, you want to take advantage of cach-
ing. But the content has to be cacheable.

Caching improves performance for three reasons. The first is
the TCP three-way handshake, which multiplies any latency
by three before any request can even be made. The second is
congestion control. If the server can only send three pack-
ets without getting an acknowledgment, and there is high
latency, then only three packets can be in flight over that
100 ms. Having the proxy server close to the clients reduces
latency to the client. The proxy server can also use keep-
alives with remote servers, avoiding the costs of the three-
way handshake. When Yahoo! tried a proxy with a keep-alive
in India, they got huge performance improvement. The final
issue is DNS lookups, which also involve latency. In particu-
lar, if you have, say, http://news.example.com and http://
finance.example.com, each requires its own DNS lookup. On
the other hand, if you use URLs such as http://www.example
.com/news and http://www.example.com/finance, only one
DNS lookup is required. In this case, you put a proxy near the
servers and it can redirect traffic to a particular server (news
or finance) as required.

The real problem is when you have millions of users all with
powerful machines. Varnish has a great proxy, but you have

When testing overwriting of a 1 GB file, they tried various
standards, and all left at least 10 MB. The NIST standard left
almost everything (overwrite once considered sufficient for
this standard). Their suggestion for sanitizing single files
involves adding a scrubbing command to the FTL. Scrub-
bing erases all stale data—that is, blocks that are unused but
have yet to be erased. But this is not as easy as it seems. Flash
is arranged in pages, and these are part of erase blocks. So
erasing a block could also erase pages in the block that are
still in use. In high reliability memory, they found they could
overwrite pages instead of erasing the entire block. But in the
more common MLC (a denser, less reliable flash), you have
a limited overwrite budget before the write fails. MLC is the
type of flash that is cheapest and most common.

They suggest overwriting using the scanning method, which
overwrites just the page. If this fails, the entire block must be
copied and the block erased (and likely linked to a bad block
list as it is now faulty).

In conclusion, Michael pointed out that verification is
necessary to prove sanitization effectiveness. Hard drive
techniques do not work, and having drive-level support for
sanitization is a requirement.

Someone mentioned a study that shows that you cannot
recover data from flash disks after they have been micro-
waved. Someone else asked if the trim command works.
Michael said they looked at that, as it appears very interest-
ing. The standard describes “trim” as a hint, meaning the
drive doesn’t have to implement it, and, in fact, most drives do
nothing when given a trim command. Is there any research
on recovering data from erased SSDs showing that particular
patterns work better? Flash is different from disk, and the
way erasure works involves using a higher voltage level that
makes distributions of bits impossible to recover.

Aren’t some of these issues, such as relocating bad blocks,
similar for hard drives? This is definitely an issue for hard
drives. The difference is that hard drives don’t do this very
commonly—perhaps 30 blocks, after a lot of use. SSDs have as
much as 10% of their capacity set aside for relocation of bad
blocks. Someone else pointed out there has been a lot of work
on extreme magnetic analysis on hard disks, where people
could go back and see data patterns and infer some of the
data. Michael repeated that flash is different.

Apache Traffic Server: More Than Just a Proxy
Leif Hedstrom, GoDaddy

Leif started with the history of traffic servers. Inktomi pro-
duced the first commercial version in 1998. Yahoo! acquired
Inktomi but ignored the traffic server initially, as all they
cared about was search technology. In 2005, Yahoo! began to

 90 ;login: VOL. 37, NO. 2

nodes. Nodes can be shut down using commands, such as
“ssh root@node halt”, while many devices (e.g., switches)
can only be shut down by turning off the power, using power
distribution units (PDUs), for example. Dependencies include
not shutting down a file server before the systems it relies
on have shut down, or not turning off network switches
before all network-delivered commands have been sent. The
sequencer also needs to be fast and robust.

His system has three stages: a Dependency Graph Maker
(DGM), an Instruction Sequence Maker (ISM), and an
Instruction Sequence Executor (ISE). The input to the sys-
tem consists of a table with one rule containing a dependency
rule per each row. The DGM accepts this as input and creates
graphs in the mathematical sense, then prunes the graphs.
The output is an XML file with <par> tags indicating which
sections can be completed in parallel. In tests on the Tera-
100, they could shut down the system in less than nine min-
utes, compared to more than 30 minutes previously. Vignéras
said this is an open source project.

Paul Krizak (AMD) asked what they use for feedback when
running ISE. Vignéras said they expected the written code
to provide feedback, the way a script provides return codes.
Paul then asked how they know that an instruction, such as
shutting down a system, has completed. Pierre said that the
sequencer assumes each action is atomic, but it may also poll
to ensure an action has been completed. Paul asked what type
of system they run the sequencer on. Pierre said they use a
Bull S6000, a big machine.

Automated Planning for Configuration Changes
Herry Herry, Paul Anderson, and Gerhard Wickler, University of

Edinburgh

Awarded Best Student Paper!

Paul Anderson ran a slideshow presentation, as Herry was
defeated by visa issues and wasn’t able to enter the US. Herry
(in a voice-over) began by pointing out that most com-
mon configuration management tools have a declarative
approach, and that poses a critical shortcoming. Declara-
tive tools imply an indeterminate order of execution which
may violate a system’s constraints. He illustrated this with
an example of wanting to switch a client node C from server
node A to server node B, then shutting down server A. If the
configuration management tool executes commands out of
order, shutting down server A before client C has a chance to
mount a file system from Server B, there will be trouble.

They developed a prototype that uses IBM’s ControlTier and
Puppet, where ControlTier schedules changes and Puppet
implements them. Their system works by collecting existing
system state, translating it into a Planning Domain Defini-

to have a single thread for each connection. Threaded code is
also difficult to write and to debug. Squid uses event process-
ing, which runs within one process, so there’s no locking or
potential races. But this doesn’t solve the concurrency prob-
lem, because it uses only one core. Nginx gets around this
by starting multiple processes, but then it has to deal with
resource sharing between processes.

Traffic server takes the worse possible route: it does both.
Traffic server has multiple threads, one or two per CPU, and
runs several different types of threads: resource, event han-
dling, and connection handling. Traffic server has lots less
overhead than we see in Varnish. Great coders are required to
work with multiple threads.

Configuration looks difficult, because there are many
config files, but Leif pointed out that you will only be con-
cerned with storage.conf, remap.config, and records.config.
records.config is a normal key-value style, with plenty of
comments, used to set flags, for example, and most of the
defaults will just work out of the box. You will have to change
storage.config since the server cannot figure this out itself.
You also need to configure remap.config, especially if you are
using the server in a reverse proxy environment.

Apache traffic server can use compression for stored objects,
only uses 10 bytes to map to stored objects, and uses raw disk
instead of the file system for performance. Traffic server
has full IPv6 support on the client side but uses IPv4 on the
server side. In the longer term, they want to add SSD to their
stack of caches, instead of having just RAM and disk.

In summary, traffic server, and proxy servers in general, are
great general-purpose tools. Proxy servers are outrageously
fast (except Squid).

Someone asked about two features that chew up resources:
content rewriting and header injection. Leif said that headers
get rewritten using marshaling buffers. For rewriting con-
tent, use a plugin in your data stream. The plugin can inform
the proxy if the content should be cached. Plugins are tricky
to write, but there are examples.

Clusters and Configuration Control
Summarized by Rik Farrow (rik@usenix.org)

Sequencer: Smart Control of Hardware and Software
Components in Clusters (and Beyond)
Pierre Vignéras, Bull, Architect of an Open World

Pierre Vignéras has built a system that shuts off power to
systems and devices in an order determined by dependen-
cies. The system was designed to work with one of the largest
clusters in the world, Tera-100, composed of more than 4,000

 ;login: APRIL 2012 Conference Reports 91

Paul Krizak asked if they had considered performing access
control at runtime, letting changes go into the system, but
refusing forbidden things at runtime? Bart said that it was
possible, but with constraint languages it is almost impos-
sible to determine which rules generated a forbidden action.
Paul Anderson followed up by asking if they store informa-
tion in the configuration about who made changes, and Bart
agreed, but said that they had that ability in ACHEL and
here they just wanted to test the tool. Anderson asked if they
just look at changes to configuration, and Bart replied that
they use the entire file, create the AST, and determine what
changes have been made. Bart said you can do anything in
XML if you are willing to write huge amounts of XML.

Invited Talks I: DevOps: Chef

GameDay: Creating Resiliency Through Destruction
Jesse Robbins, Opscode, LLC

Converting the Ad-Hoc Configuration of a
Heterogeneous Environment to a CFM, or, How I
Learned to Stop Worrying and Love the Chef
Dimitri Aivaliotis, EveryWare AG

No reports are available for these talks.

Invited Talks II: Panel
Summarized by Michael Wei (mwei@cs.ucsd.edu)

How University Programs Prepare the Next Generation
of Sysadmins
Moderator: Carolyn Rowland, National Institute of Standards and

Technology (NIST)

Panelists: Kyrre Begnum, Oslo and Akershus University College of Applied

Sciences; Andrew Seely, University of Maryland University College;

Steve VanDevender, University of Oregon; Guy Hembroff, Michigan

Technological University

The main topic of discussion was how the university, which
typically provides a rigorous formal education, could provide
the kind of practical problem-solving skills that are neces-
sary for effective system administrators. Each panelist
brought with them the experience they had in training sys-
tem administrators and the challenges they faced.

The first part of the panel covered the challenges of teaching
and evaluating system administrators. In the words of Caro-
lyn Rowland, “There’s more than one way to skin a cat, and
we all have the right answer.” Kyrre Begnum agreed—some-
times a class can be about a specific way to solve a problem,
but the student may have inherent knowledge on how to solve
that problem in another way. However, the exam may test

tion Language (PDDL), having an administrator specify a
declarative goal state, a planner generate a plan, and a map-
per generate a ControlTier workflow, which sends Puppet
manifest files that complete the work in the correct order.
They tested their prototype by migrating an application from
a private to a public cloud to address spikes in demand, with
the constraints that there be no downtime, that the firewall
be reconfigured, and that this be a true migration, not dupli-
cation.

Paul Krizak asked about the tools that make up the library,
and Paul Anderson replied that their prototype uses a combi-
nation of various tools that are glued together: the standard
planner, Puppet, and lots of glue. Someone else pointed out
that they were pushing work on people to write the actions
and prerequisites in order to produce the output. Paul
responded that someone has to define actions for Puppet, and
that the additional work to create prerequisites can be done
over time. Norman Wilson pointed out that getting used to
their system would not be that different from an earlier Sun
system he had used, and Paul agreed. Paul also mentioned
that sysadmins can forget things, and writing it down helps.
Norman replied that he had never seen a system where he
couldn’t screw up something by leaving out a step.

Fine-grained Access-control for the Puppet
Configuration Language
Bart Vanbrabant, Joris Peeraer, and Wouter Joosen, DistriNet, K.U. Leuven

Bart Vanbrabant pointed out that configuration manage-
ment replaces needing to have root access on each machine.
You manage configuration files on a central server, which
performs root actions. This implies that if an attacker can
insert malicious actions into the configuration, the attacker
can affect all systems without being root. Their goal is to add
access control to configuration management, but this is dif-
ficult to do, as there is no one-to-one mapping from configu-
ration files to actions.

This work builds on ACHEL, a tool presented at LISA ’09
(Bart Vanbrabant et al., “Federated Access Control and
Workflow Enforcement in Systems Configuration”) that they
built to prove that this works with a real configuration man-
agement tool, Puppet. They use Puppet’s compiler to produce
an abstract syntax tree (AST), then normalize the tree before
deriving the actions to be authorized. The normalization is
necessary because there are multiple ways to do things such
as user account creation. They use the XACML policy engine
to perform the checking. Bart said that their tool does not
support some Puppet constructs, such as switch cases that
are handled at runtime. But their tool does work.

http://static.usenix.org/events/lisa11/tech/techspeakers.html#Robbins
http://static.usenix.org/events/lisa11/tech/techspeakers.html#Aivaliotis

 92 ;login: VOL. 37, NO. 2

for instance. Two-factor authentication is the act of logging
in with two separate credentials, often something that you
“have” plus something that you “know” or “are.” For instance:
a password and a one-time-use code, or a keycard and a
fingerprint.

This work, tiqr, exploits the fact that nearly everyone has a
mobile phone, and those who have them tend to carry them
around. Even more, we tend to notice if they go missing,
which is more than we can say for authentication tokens.
However, most phone-based authentication solutions make
their user retype complicated codes that appear on the phone
screen. That requirement is an issue, especially for visually
impaired users. tiqr makes progress in that direction.

Since the room had two separate projection screens, we were
treated to a demo of tiqr. The screen on the left showed a Web
browser, and the screen on the right showed an iPad display.
Van Rijswijk showed tiqr scanning a QR code that appeared
on the Web browser to generate an authentication response,
which the iPad then transparently sent to the Web site via its
own Internet connection (protected by 256-bit AES encryp-
tion). The speaker closed by showing us how tiqr can facili-
tate SSH login using an ASCII-art QR-code, and he briefly
discussed an external security audit of tiqr. The external
auditors said that tiqr’s security was more than adequate.

What would happen if the user is already using the Internet
on their mobile device? The QR codes contain a URL schema,
and users merely have to click the code to switch apps. What
about tiqr’s API? They have a Web API, a demo version of
which is available in PHP. They are working on making the
API fully RESTful. What happens if the mobile device has
no Internet access? In that case, tiqr will fall back to classic
mode, giving the user a code to type into their browser manu-
ally.

Building Useful Security Infrastructure for Free
(Practice & Experience Report)
Brad Lhotsky, National Institutes on Health, National Institute on Aging,

Intramural Research Program

Brad Lhotsky, a recovering Perl programmer, is a Security
Engineer at the Institute on Aging. Nobody likes getting
“the call” from him, and his boss doesn’t care about security.
Lhotsky has found that security people need to justify their
existence beyond saying that they make things more secure—
to the organization, security is a minor concern compared to
actually doing research. Their paper is about tools their team
has built for useful security.

They do comprehensive, centralized logging of network
events. They used to use syslog-ng, but some of its features

only how well a student solves a problem in that particular
way. As a result, a student who comes in with the inherent
knowledge may actually be at a comparative disadvantage,
and it may take time to get that student to accept that there
are several ways to solve problems.

Andrew Seely felt that problem-solving in system adminis-
tration is not a thing that can be taught. In the world of com-
puter science, you can teach a student to build classes and
data structures, and they can apply that knowledge to build
a program. In the world of system administration, it is not
clear what those basic building blocks are. Carolyn asked the
rest of the panel whether they agreed. Kyrre Begnum and Guy
Hembroff both disagreed. They gave the example of script-
ing and network infrastructure courses as similar building
blocks that they teach at their universities, and felt that the
problem was more that the literature for teaching these skills
is limited and not necessarily practical.

The next section of the panel talked about the missing iden-
tity of system administration. Steve VanDevender pointed
out that there was no standard that defined what a system
administrator is, so attempting to figure out what skills are
necessary to train good system administrators may be a
futile question to ask until the identity of system administra-
tors has been hammered out. Kyrre agreed, further pointing
out that the lack of textbooks suitable for classroom use on
system administration means that what system administra-
tion programs teach ends up being a hodgepodge of what the
program administrators feel to be relevant at the time.

The panel ended with the difference between technical and
theoretical education. There was general consensus that a
good education in system administration would require both.
Andrew Seely finished by explaining that other disciplines
have fundamental theories, while system administration is
composed mainly of best practices. If best practices could be
changed so they did not expire with every new technology,
then system administration could be furthered as a disci-
pline with both a theoretical and a practical grounding on its
own.

Security 1
Summarized by Timothy Nelson (tbnelson@gmail.com)

Tiqr: A Novel Take on Two-Factor Authentication
Roland M. van Rijswijk and Joost van Dijk, SURFnet BV

Roland van Rijswijk began by reminding us of a painful fact:
we enter many username-password pairs throughout our
lives. Entering a username and password remains the stan-
dard login paradigm, in spite of its risks: password re-use,

 ;login: APRIL 2012 Conference Reports 93

asked whether they capture passwords. Campbell replied
that they can, but they try very hard not to. It is easier to cap-
ture passwords than not capture them, but they do their best
to preserve their users’ privacy.

Someone else asked what the false positive rate is. Campbell
replied that his team is paged very rarely. Had they actu-
ally captured any intruders? While they have not captured
anyone in the physical sense, they do intercept intruders 12 to
20 times per year. The full paper even contains some example
conversations between intruders. Do they capture everything
going on, because that would be a lot of traffic to log? They
try to reduce unnecessary logging, stopping recording replies
from the server after a period of user inactivity.

Invited Talks I: DevOps Case

The Operational Impact of Continuous Deployment
Avleen Vig, Etsy, Inc.

DevOps: The past and future are here. It’s just not evenly
distributed (yet).
Kris Buytaert, Inuits

No reports are available for this session.

Invited Talks II: Infrastructure Best Practices

3 Myths and 3 Challenges to Bring System
Administration out of the Dark Ages
Mark Burgess, CFEngine

Summarized by Michael Wei (mwei@cs.ucsd.edu)

Mark Burgess began by describing the dark ages, a time when
brute force was essentially the way problems were solved.
In system administration, brute force is still widely used in
many areas. For example, technicians are often attached to
service tickets and thrown at problems wherever they show
up. Mark proposed that there are three waves of innovation
in system administration: the manual, brute force wave of
the past; the automated wave that we are starting to move
into; and the knowledge wave, where we build machines to
serve us rather than just complete a singular task. Today we
are moving from the second wave to the third wave, but we
still face second wave myths that keep us tied to the first and
second waves and third wave challenges that keep us from
moving into the third wave.

Mark challenged three myths. The first is ordered sequen-
tial control. He believes that we are taught that sequentially
is better, when it is not always the best solution. In fact, we
sometimes artificially create sequentiality when no sequence
necessarily exists. Mark gave an ordered XML document as

are not free. They now use rsyslog, which supports native
encryption (among other things), but has a somewhat ugly
configuration. They use postgreSQL for long-term storage
of the events. Keeping logs in a RDBMS makes using the
data easier. For instance, they can execute R (a language for
statistical analysis) queries on the data.

This detailed logging lets them do correlation of data and
provide it in a way that is helpful to their help desk operators.
They answer questions such as “Where has a user logged in
from?” “What devices has a user been assigned?” “Where is
the user logged in now?” and “What is their network his-
tory?” They also feed the logs to Snort, an intrusion detection
system, to discover potential data-loss risks.

An audience member noted that building infrastructure is
one thing, but convincing auditors is another. They asked
whether Lhotsky’s team is externally audited. Lhotsky
answered that they are indeed audited by health and human
services.

Local System Security via SSHD Instrumentation
Scott Campbell, National Energy Research Scientific Computing Center,

Lawrence Berkeley National Lab

Awarded Best Paper!

Scott Campbell’s organization supports 4000 users world-
wide, all of whom have shell access. NERSC doesn’t want
to interfere with their users’ work, but does want to inter-
cept intruders on their machines. They modified their SSH
service to log sessions, authentication, and metadata, which
involved identifying key points in the OpenSSH code.

To filter the raw data, they use the Bro intrusion-detection
program, which is fed data from the captured SSH messages.
Multiple data sources are mapped to one log file, which is
then converted to a stream of Bro events. All the analysis is
done in Bro, which looks at each event atomically to find what
is considered hostile or insecure. For instance, they might
want to detect someone remotely executing “sh -i”. Their SSH
modifications also allow them to collect soft data, listening
in on intruders to learn their methods and skill levels. They
actually captured a discussion between two intruders on
their system.

Campbell’s team plans to extend the work they have already
done, to perform better analysis. For instance, they could
analyze user behavior or pass more information (such as
process accounting data) to Bro.

Someone asked about arbitrary whitespace, that is, what hap-
pens if an attacker uses “sh -i” (with extra spaces) instead of
“sh -i”? Campbell answered that they do not currently catch
that, but, with minor modifications, they could. Rik Farrow

http://static.usenix.org/events/lisa11/tech/techspeakers.html#Buytaert

 94 ;login: VOL. 37, NO. 2

Hadoop. Since then, there have been new database engines
such as Mango, Couch, and Cassandra. Andy asked the ques-
tion, “How do you pick the right engine for a specific work-
load?” He said we need frameworks and tools to characterize
workloads to match engines based on empirical character-
istics. This paradigm differs from “Oracle or MySQL is the
answer for everything”: now you need to stop and pick the
right engine before starting a project. For scientific data,
there are many options, including the traditional row store
engine, column store, file-oriented, document-oriented,
array-oriented, and federated.

Working with big data in a research and scientific environ-
ment is also much different from before: operations of new
engines require integrated skill sets, including database,
system administration, and clustering. Andy described the
Novartis IT Data Engineering teams, which do hands-on
application of new database technologies. The teams consist
of an interesting mix of people who work at several different
locations and frequently cross-train.

A significant issue with working with big data in a scientific
and research environment is that the cost of fixing errors
(e.g., quality) has grown exponentially. Andy stressed that
data quality starts at the point of data creation. For an appli-
cation, 70% of the work is creating or working with unstruc-
tured and structured data.

Andy noted a few myths, including “Oracle is the answer to
everything,” “one database for each app,” and “one integrated
database for everything.” Scaling has been a huge chal-
lenge in working with petabytes of data. Andy noted that at
Novartis, they have run out of space over 10 times this year
alone. Unfortunately, given the importance of scaling, he
has found it impossible to solve data challenges with Oracle.
Working with big data involves numerous schema changes,
and new data sets need loading and analyzing, which can be
problematic in Oracle. At Novartis, a number of new database
engines have been tested, including Vertica for gene expres-
sion, MapReduce, and CouchDB.

In-house, a few big questions have been asked as part of the
framework to determine which is the best database engine
to use in certain applications. The questions include the best
performers, solubility, scalability, performance, and ease of
adoption and integration. Andy and Novartis have taken a
quantitative approach to answering these questions when
working with new database engines.

Andy concluded the plenary by stressing the importance
of considering up-front which database engine matches
workload and that the operations of new engines require
integrated skill sets.

an example. The second myth Mark challenged was that of
determinism and rollback. Mark said there is a belief that we
can simply roll back changes to fix problems, but in reality
this is a myth. If we accidently change our firewall configu-
ration and a computer gets infected by a virus, we cannot
simply roll back the firewall configuration; we need to repair
the computer as well. This kind of rollback thinking is dan-
gerous because it forces us to focus on the mistake instead of
the outcome. The third myth Mark examined was “hierarchy
or bust.” The kind of hierarchical thinking that many system
administrators thrive on creates many points of failure
which are dangerous, while marginalizing problems.

After enumerating these three myths, Mark presented three
challenges. The first is emergent complexity: we have to be
able to accept that systems are becoming increasingly com-
plex and accept diverse systems as they are. The second chal-
lenge is commerce alignment: we have to accept commerce’s
role in IT if we are to allow systems to grow. The final chal-
lenge Mark presented is knowledge management. We must be
able to share knowledge efficiently, because individual skill is
not replaceable.

Linux Systems Capacity Planning: Beyond RRD and top
Rodrigo Campos

No report is available for this talk.

Plenary Session

One Size Does Not Fit All in DB Systems
Andy Palmer, Global Head of Software and Data Engineering, Novartis

Institute for Biomedical Research

Summarizedy by Ming Chow (mchow@cs.tufts.edu)

Andy Palmer talked about the changes and challenges of
database fitting for biomedical research and scientific
applications. The game has changed: the idea of one data-
base engine (e.g., Oracle) fitting all research and scientific
applications is no longer applicable. The reason for this is big
data. Over the years, the amount of data and information has
grown exponentially compared to storage of information,
which is near flatline. The traditional DBMS architecture
is roughly 25 years old and was designed mostly for write-
based applications. The architecture has largely ignored
CPU, disk, and memory trends. In short, while the RDBMS
market became a billion-dollar market, traditional DBMS
architecture has not caught up with the times. Vendors have
addressed the issues by adding band-aids to their products
such as bitmap indices.

The idea of OLTP (Online Transaction Processing) ran out
of steam in the 2000s with the introduction of Big Table and

http://static.usenix.org/events/lisa11/tech/techspeakers.html#Campos

 ;login: APRIL 2012 Conference Reports 95

many IPv6-related bugs during deployment and testing.”
Also, IPv6 was still processed in software in many vendors’
hardware platforms. Internally, training and education were
the biggest challenges, although early information helped
to fight FUD. They had some DevOps challenges as well;
the engineers wanted to deploy new technology immedi-
ately, while the operations people were not so interested in
early adoption. Words of wisdom: migration is not a Layer 3
problem, it is a Layer 7–9 problem. Migration is simple, but
it takes time. A phased approach gradually builds skills and
confidence. You want to make sure you design for the same
quality standards as with IPv4.

Has Google worked with any VOIP technology? The Google
Network Engineering Team is only responsible for migrating
networks. Rik Farrow asked how organizations can allocate
resources for an IPv6 migration. Irena admitted that most
resource allocation is for IPv4 projects. If you have eight proj-
ects and two are IPv6 and six are IPv4, people are going to go
for the v4 projects, because v6 is not a priority. An audience
member said that now it’s up to some other people to produce
the other half of the equation. If you build it, they will come.
So, are others starting to build stuff with IPv6? A lot of the
Google external products are IPv6-enabled now. You can go
to http://www.google.com/intl/en/ipv6/ to request access to
Google products over IPv6.

Bringing Up Cielo: Experiences with a Cray XE6 System,
or, Getting Started with Your New 140k Processor
System (Practice & Experience Report)
Cory Lueninghoener, Daryl Grunau, Timothy Harrington, Kathleen Kelly,

and Quellyn Snead, Los Alamos National Laboratory

Cory started his presentation with the obligatory HPC sta-
tistics slide. Cielo consists of 96 racks, 96 nodes per rack; two
8-core 2.4 GHz processors per node; 32 GB memory per node;
a Torus network: 4.68 GB/s links; 142,304 cores; 284,608
GB total compute memory; and 1.11 PFlops measured speed.
Cielo is currently used for simulations at Lawrence Liver-
more National Laboratory (LLNL), Sandia National Labo-
ratory, and Los Alamos National Laboratory (LANL). This
project was a collaboration between Los Alamos and Sandia
(but lives in Los Alamos). Other computers are used to
support the management of Cielo. Cielito is used for testing
before scaling up to the big system; Smog is used to try out
new Cray software stack releases, configuration manage-
ment, and other challenges of bringing up the big system; and
Muzia is Sandia’s one rack system (similar to Smog).

Cielo can be used as one big system to run one job or can be
used to run smaller jobs. They use CfEngine for configura-
tion management; this adds a layer of abstraction to make the
nodes all seem the same. Cray provided monolithic install

From Small Migration to Big Iron
Summarized by Carolyn Rowland (carolyn@twinight.org)

Deploying IPv6 in the Google Enterprise Network:
Lessons Learned (Practice & Experience Report)
Haythum Babiker, Irena Nikolova, and Kiran Kumar Chittimaneni, Google

Awarded Best Practice & Experience Report!

Irena’s first slide summed up the move to IPv6: 96 more bits,
no magic. She spoke of the IANA IPv4 exhaustion in Febru-
ary 2011 and how we are not reclaiming any of the current
IPv4 address space. Sometime between 2012 and 2015 we
will have assigned all IPv4 addresses. With the proliferation
of smartphones, IPTV, virtualization and cloud, P2P, and
network-aware devices, we are only increasing the demand
for addresses. Google was motivated internally because they
were running out of RFC 1918 addresses. They tried using
NAT as a solution, but this just increased the complexity of
the environment. Additionally, they thought that by imple-
menting support for IPv6, they would help us break out of
the chicken-or-egg problem: service providers in no hurry
to deploy IPv6 due to lack of content, and content providers
explaining the slow rate of adoption as being due to lack of
IPv6 access to end users. To make a positive contribution to
the Internet community, they knew they had to enable IPv6
access for Google engineers, to help them launch IPv6-ready
products and services. Google has an internal process they
call dogfooding—living the same experience as their users
(eating your own dogfood). Since their internal teams wanted
to work on IPv6 connectivity for Gmail and YouTube, etc.,
the networking team had a real need to provide them with a
network that was IPv6-ready, so that they could help develop,
test, and dogfood these products.

The Google approach was: IPv6 everywhere! They needed
to build tools, test and certify code for various platforms,
decide on routing protocols and policies, plan for IPv6 transit
(WAN) connectivity, create a comprehensive addressing
strategy, and request IPv6 address space. They began with
dual-stack, using tunneling as a last resort. They assigned
IPv6 address space as /48 to each campus, /56 at the building
level, further dividing into /64 per VLAN. GRE tunnels were
not a good option, because they created MTU fragmentation
and other issues. This was pretty challenging, because lots
of ISPs don’t yet support IPv6. They tried DS-Lite to encap-
sulate IPv4 packets inside IPv6 networks. They also used
SLAAC (stateless address autoconfiguration) instead of
DHCPv6 for host address assignment. Sometimes they were
the QA department for the vendors selling IPv6 products.
The vendors were not eating their own dogfood. “Nothing
could create a real-world scenario in the lab, so we discovered

 96 ;login: VOL. 37, NO. 2

Capacity Forecasting in a Backup Storage Environment
(Practice & Experience Report)
Mark Chamness, EMC

Mark pointed out that IT behavior is reactive. We react to
100% disk capacity, failed backups, and late-night alerts. In
those reactionary efforts, we take shortcuts such as deleting
files to make space on a volume or decreasing the retention
policy on backups so that we can hit our window. The solu-
tion to this is proactive prediction. First, start by choos-
ing a time frame (e.g., the past 30 days). Next apply linear
regression (e.g., over the next 90 days), then choose the time
frame for notification (e.g., the next 90 days). Finally, run
your analysis and generate a report. However, using a fixed
time frame results in poor predictions and doesn’t adapt for
behavior. They tried two time frames (60 days and 7 days)
and picked the best one. This also failed miserably, because
both were wrong. The optimal prediction occurs when you
use all possible models and choose the best one, selecting the
maximum value of R(squared) (regression sum of squares).
The maximum R(squared) occurs at the change in linear
behavior. This is the best model to fit the data and to use for
forecasting.

Mark showed some example graphs of different scenarios.
This painted a clear picture so that you could predict the
date of full capacity. The majority of systems were able to
be modeled using linear regression. Mark used an example
of a system that was at 60% for a long time and then started
to grow. The graph then displayed a rollercoaster behavior,
where system capacity went up and down. The schizophrenic
graph, where capacity varied all over the place, did not work
so well with linear regression as a predictor. In order for a
model to work, one needs the following: goodness of fit r^^2 >
0.90; positive slope; forecast time frame < 10 years; sufficient
statistics (15 days); and space utilization minimum of 10%.
Mark raised the gotcha that the last data point trumps all.
You can model a system fairly accurately using this method,
until the sysadmin deletes a bunch of data to create free
space. Then the system is no longer behaving in a predict-
able way. You can no longer predict behavior if the error is too
great between the last data point and previous data.

Were there models that could have been used other than
linear models (e.g., logistic regression)? If you attempt to use
a more complicated model and show it to sysadmins or cus-
tomers, it becomes too difficult to explain. More complicated
models also tended to behave erratically; they would often go
off exponentially and produce some strange predictions.

Why did Mark decide to model the percentage of capac-
ity instead of rate of growth? Linear regression provided
growth in GB/day: “Here’s how much it’s growing per day;
here’s when it is forecasted to reach capacity.” He had the

scripts, hard-coded RPMs, and versions. Cory said his team
asked lots of questions to try to understand the Cray configu-
ration tools (e.g., one of the default install scripts checked
whether it was being run on an interactive terminal, so you
couldn’t automate the install with | yes). Cray used a couple of
different schemes, such as /etc/alternative (Debian), module
files (more flexible and dynamic), and default links (links
within the software tree to different versions of software).
The question Cory’s team asked was, “Do we hack the scripts
so we can make it easier to automate?”

They began tackling these challenges with some CfEngine
hackery. This got them past 80% of the challenges. They were
able to tweak rules used on other production systems for the
Cray. They resorted to outside scripts for the parts CfEngine
didn’t handle. Still, CfEngine could run these scripts keeping
some form of automation. Sysadmins could still work with
module files and changes would trickle down. Cory said they
were basically telling Cray “your way is wrong,” which isn’t
the message they wanted to send. A lot of people use Cray’s
tools just as intended, but Cory’s team decided to do it a
different way. Despite this deviation from Cray’s standard
strategy, Cray was extremely helpful. Cory’s team submitted
bug reports, Cray was helpful with the weird stuff, “and there
were rainbows everywhere,” said Cory. Maintaining positive
vendor relations helped them. Cory admitted that the team
needed Cray’s support to do what they needed to do; without
them, the team would still be fighting about the answers.
Getting early access to test systems (Smog and Cielito)
allowed the team to solve problems early before moving to
the big system. Configuration management is a worthwhile
investment. The team was able to rebuild the whole system
in a day or two instead of weeks. They did this several times
when they were reviewing security.

One audience member pointed out that Cory had provided a
long list of things Cray did wrong. What did Cray give them?
Cray gave them a big integrated system that was able to run
jobs across the whole thing very quickly, and an underly-
ing control system to control the booting, the management,
reliability, and serviceability. They provided a lot of the
underlying pieces. How long did it take from first power-on to
production use of the system? Cory estimated 3–5 months. It
wasn’t something they tracked; there was a lot of shaking out
of the system. Did Cory know the cooling number per rack?
Cory looked to his teammates in the audience and someone
responded, “5 or 6 MWs total for the whole machine.”

 ;login: APRIL 2012 Conference Reports 97

it as long as the appliance wasn’t overloaded. If it had no
storage capacity, they searched round-robin from there to
find one with capacity. They took the best of 10 random
configurations, using a cost metric that considered capacity,
throughput, client movement, and other factors. After that,
they tried bin packing: assigning an appliance based on size
from large to small. Next, they tried simulated annealing,
which starts with the bin-packing configuration but then
iteratively adjusts the configuration to try to find a better
one. This model is willing to temporarily move through a
worse configuration to try to avoid local minima. To evaluate
the algorithms, they used a synthetic workload with clients
added incrementally. Appliances were occasionally added
as well, and 1/3 of the existing assignments were dropped
each time an appliance was added, to avoid always starting
with the older appliances already overloaded. “Make sure to
stress overlap affinity.” Cost was a first attempt at weighing
the relative impact of different factors, but it really has to be
evaluated in practice. All of the cases have a high cost, but
simulated annealing was the best of the worst. Fred referred
back to the paper for more information on overlap computa-
tion, more examples, overhead analysis of simulated anneal-
ing, how to penalize things for not fitting, and impact of
content awareness.

Matt Carpenter asked if Fred’s team looked at any analytics
other than simulating annealing. Fred responded that the
team started with bin packing. They wanted to understand
the right way to deal with the least movement while still get-
ting the best result. They admitted that there may be other
heuristics. Had they considered network latency issues in
terms of the cost, assuming flat space/local with no cost
to move data? Fred said that there was no assumption that
there would be a greater cost to move from one appliance to
another. They assumed the same cost per appliance. There
is a moderately high cost if you miss the backup window,
because moving a client to a different server means recopy-
ing data. This is still considered a moderate penalty com-
pared to not being able to perform the backup at all. Someone
commented that one of the issues is to understand exactly
what “cost” means. Fred replied that it would have to be
tuned for a particular environment. Rik Farrow asked if Fred
was looking at the size of the content, not the actual content
of the data. Fred said that they were looking at the size of
blobs to see how full an appliance was and at fingerprints of
the content to decide if a chunk of data on one client matched
a chunk on another client. He also said that you may need
to run something that scurries through the file system and
creates the fingerprints. If you are using Networker and it
writes one big file for a client, comparing the fingerprints
that correspond to that file would mean never having to go
to the raw file. Matt Carpenter asked about skipping over

ability to capture that data to model it. Did Mark consider
daily spikes? No, the model does not monitor daily spikes,
but his group uses Nagios to alert for 90% capacity, etc. On
what percentage of systems does this model work? He could
accurately model 60% of his systems. Did Mark see this as a
tool running all the time that you push out to a consumer or
is it a sizing exercise for presales (at EMC)? All of the above.
When people buy a system they get support; they can go to the
customer support portal and configure alerts. EMC will soon
be releasing a new product called DD Management Station.
It will allow a customer to manage 60 Data Domain devices.
The last questioner said he didn’t see any control for human
intervention. Mark reiterated his “Last data point trumps all
slides” statement. This is the example where the sysadmin
went in and deleted a bunch of data. The model would not
publish a prediction because of the error between previous
data and the last data point. It’s important for a model to
know when it doesn’t know.

Content-aware Load Balancing for Distributed Backup
Fred Douglis and Deepti Bhardwaj, EMC; Hangwei Qian, Case Western

Reserve University; Philip Shilane, EMC

Fred started with a primer on deduplication: basically, you
can avoid storing data at all if it already exists on backup.
Using hashes, the system can check for changes; if there are
none, then the system won’t transfer any data. Deduplication
is common in today’s backup products. But what is the impact
of deduplication? You desire affinity, sending the same client
to the same appliance so it will deduplicate well. If you send a
client to a new system, then all of the data will be transferred,
because there is no sameness. You can also send similar
systems to the same appliance, because they will deduplicate
well, due to similarities in the data. Doing this can reduce
capacity requirements and can improve performance of
backups, because you copy less data.

For performance reasons, you don’t want to send too much
data to one place, so ensure you support simultaneous backup
streams. One gotcha is not sending everything to the same
appliance just because it deduplicates well. When sizing a
system for load-balanced distributed backup, look for cases
of affinity with high overlap among a small number of hosts.
Virtual machines are a good example of good overlap. If you
have a lot of similar hosts, then you can probably put them
anywhere and they will deduplicate well. There are small
penalties for migration, but the biggest penalties come when
a client doesn’t fit on backup at all.

Fred posed the question, “What are some algorithms for
load balancing?” Fred’s team started with brute force; this
works okay if the system isn’t too loaded. The first approach
is “random.” They started at a random appliance and used

 98 ;login: VOL. 37, NO. 2

also mentioned that products that are approved the fastest
for handoff are those that worked with SREs early.

In order to make DevOps work at an organization like Google,
Tom listed management support and balance of power
between SREs and developers. Skills required include deep
understanding of engineering issues (system administration,
software design). An SRE role is half engineering and half
operations. Tom also presented how development life is made
easier at Google with tools, frameworks, monitoring, and
plenty of information resources, including training, launch
checklist, and mailing lists.

Tom went on to describe the release engineering policy at
Google. How it works is based on the idea of the canary in the
coal mine. A product or service is first run on a test cluster.
Then it is run on some percentage of machines in a cluster.
Product teams are given a reliability budget (tokens). New
pushes are based on budget. Tom has found that more pushes
during this phase equates to more rollbacks. The reliability
budget for release engineering is numbers-based and gives
incentives for developers to test harder.

In summary, Tom said that the model has worked well at
Google. First, there is joint responsibility even after adoption
of a product or service. For SREs, developers are committed
to fixing issues so they will not be supporting junk, and it
gives developers production experience. It has even removed
the adversarial quality of a lot of relationships. Tom advised
those in the audience that in order to have this model in their
organization, developers must be empowered, practices must
be adopted, and there must be management support.

Deployinator: Being Stupid to Be Smart
Erik Kastner and John Goulah, Etsy, Inc.

Erik Kastner started with an overview of Etsy. Etsy receives
over one billion page views per month, has approximately 100
engineers, values speed and agility, and tries to limit barri-
ers. The company believes in turning ideas into code within
minutes, in open source software, that optimizing now leads
to happiness, and that sad engineers are bad engineers. The
development process at Etsy is an embedded reaction to stu-
pidity; there is no fear, they don’t aim for perfection, and cor-
rectness the first time is not important. In fact, the idea is to
be wrong as fast as possible. Etsy accomplishes this by good
communication, trust, openness, and constant improvement.
In 2009, there was a single deploy master, developers rolled
back in fear, and all deploys took all day. Currently, anyone at
Etsy can deploy, there are no rollbacks, and developers deploy
all day. John went on to describe the culture at Etsy. Doing
the dumbest thing possible lets you learn as much as possible,
such as committing to trunk, putting configuration into code,
and having blameless post-mortems. Etsy feels that what

full devices: he said there might be value to moving stuff off
a full device, because the remainder might deduplicate well
with the data you need to store. Fred replied that this is what
simulated annealing might do, by moving one client away
from an appliance, then putting better data on the one that
just freed up space.

Invited Talks I: DevOps: Core

SRE@Google: Thousands of DevOps Since 2004
Thomas A. Limoncelli, Google NYC

Summarized by Ming Chow (mchow@cs.tufts.edu)

Tom Limoncelli started his DevOps talk by revisiting the
’80s, when there was no monoculture and the software
engineering methodology was based on the waterfall method.
Back in those days, developers didn’t care about opera-
tional matters after shipment, software developers were
not involved with operations, no bug tracking system was
necessary, and new software releases were far apart. Then
came the ’90s, with the Web and the modem. Software moved
to the Web, but servers required producers and operators.
The users used Netscape and Internet Explorer. Despite the
new software development shift, the waterfall method still
kind of worked. With the 2000s, everything changed: speed
mattered, there was pressure to be first to market, there was
feature one-upmanship, shipping constantly to compete,
and reliability mattered (which was also a selling point). The
major shift also caused tensions between developers and
operators, where developers stress changes while operators
stress stability.

Tom introduced how DevOps works at Google. The goal is to
improve interaction between developers and operators. He
introduced the Google Site Reliability Engineer (SRE) job
role. The model is based on extreme reliability, high velocity,
and high rate of change. In a nutshell, developers run their
own service, and SREs create tools and services. This creates
a workforce multiplier effect. Tom described the process of
product creation at Google. First there is creation, followed
by a live readiness review, then a launch to production, fol-
lowed by a handoff readiness review, considered only after
developers have run the product or tool for six months. Prod-
ucts and services that receive SRE support are those that
have low-operation burden or high importance (e.g., Gmail),
and those that address a regulatory requirement.

Tom also described the product handoff process at Google.
The process involves reviewing frequency of pages and
alerts, bug counts, maturity of monitoring infrastructure,
and production hygiene. If a product does not do well in some
of these areas, then it goes back to the drawing board. Tom

http://static.usenix.org/events/lisa11/tech/techspeakers.html#Limoncelli

 ;login: APRIL 2012 Conference Reports 99

After the demo, Cantrill discussed numerous specific
improvements added to ZFS, DTrace, and Zones, and new
features such as the port of KVM from Linux to illumos.
He also named and thanked the individual engineers who
worked on these features. He went on to discuss differ-
ent illumos distributions that are already available, which
complement each other by addressing different deployment
environments: desktop, server, and cloud.

Cantrill branched off from his prepared slides from time to
time, sharing his personal experiences and interpretation of
Sun’s engineering culture, the Oracle acquisition, and Oracle
leadership. These digressions received enthusiastic apprecia-
tion from the audience.

Afterwards, Cantrill was asked about the state of illumos’s
collaboration with other distros regarding DTrace. He replied
that the most complete port of DTrace is on the Mac, with
the FreeBSD implementation not quite as far along. illumos
is collaborating with other distros as well. Another audience
member asked if recent innovations to DTrace would flow to
Apple, and Cantrill said that he expected Apple to take all of
them.

GPFS Native RAID for 100,000-Disk Petascale Systems
Veera Deenadhayalan, IBM Almaden Research Center

Veera Deenadhayalan presented a feature recently added
to the GPFS parallel file system, GPFS Native RAID. The
presentation slide deck contains excellent diagrams that
clearly illustrate all the concepts discussed. He began by
explaining that disk drive performance has not kept pace
with improvements to other components such as CPU and
memory. Therefore, to produce comparable increases in sys-
tem performance, many more disks have to be used.

Before describing GPFS Native RAID, he covered some
background concepts and characteristics of the GPFS paral-
lel file system. He also discussed challenges to traditional
RAID, which leads to performance and integrity problems in
100,000-disk petascale systems. When you have that many
disks, disk drive failures are expected to happen daily, result-
ing in performance degradation when the disks are rebuilt.
There is also more incidence of integrity issues.

IBM’s solution to these issues is to remove the external
RAID controller and put native RAID in the file system. This
results in higher performance through the use of declustered
RAID to minimize performance degradation during disk
rebuilds. Extreme data integrity comes from using end-to-
end checksums and version numbers to detect, locate, and
correct silent disk corruption.

The physical setup is an enclosure with 384 disks, grouped
four disks to a carrier. RAID is set up such that each declus-

makes this works is to graph everything. John displayed a
graph on memcached and change-related incidents: there
were six in 2010.

Erik Kastner then described the Deployinator tool, which
is released on http://etsy.githib.com. The tool is based on
the Staples easy button, for building scalable Web sites and
for deployment and monitoring. The monitoring is done via
a dashboard, and practically everything is graphed. The
Deployinator uses a combination of technologies, including
SSH, rsync, and a number of Web servers that are synced to
the deploy host. Erik then discussed how Deployinator can
be used for iOS: it has been used successfully in that iOS code
was deployed to a Mac Mini, then to TestFlight. Finally, Erik
challenged the audience, “What’s stopping you?” Just know
what you’re optimizing for.

Invited Talks II
Summarized by Deborah Wazir (dwazir@gmail.com)

Fork Yeah! The Rise and Development of illumos
Bryan M. Cantrill, Joyent

Bryan Cantrill gave a lively presentation on the history and
current status of the illumos operating system. Beginning
with the transition at Sun from SunOS 4.x to Solaris, Cantrill
described the struggles to develop a version of Solaris that
worked well, which were hindered when management was in
charge, but was finally accomplished once the engineers took
over. At this point, radical engineering innovation ensued,
with features such as ZFS, DTrace, and Zones invented
because engineers felt they should be part of the OS. Once
Sun open-sourced the OS, the OpenSolaris community flour-
ished, until Sun became too hands-on. When Oracle bought
Sun, introducing a totally alien organizational philosophy
and mission, several key engineers left. These were followed
by many more, after OpenSolaris was effectively killed by
Oracle’s internal decision to stop releasing Solaris source
code.

Meanwhile, illumos development had begun, with illumos
meant to be an entirely open downstream repository of
OpenSolaris. After hearing Cantrill describe the engineer-
led culture of innovation at Sun, it became easy to under-
stand the exodus of engineers after Oracle took over, and why
illumos represents a continuation of that same culture. The
project greatly benefitted from the participation of engineer-
ing talent that had left Sun. Cantrill emphasized that illumos
provides innovations and bug fixes that will never become
part of Oracle Solaris. At this point, he brought up a terminal
window and demonstrated some of the new features and
enhancements.

 100 ;login: VOL. 37, NO. 2

spare db servers ready to go, you don’t have to wait 20–30
minutes for them to come up. To automate, you must have
DHCP, PXE, DNS, OS, and Patch provisioning, all with APIs
or script-based management.

Rik Farrow asked about their application. Erik responded
that it published a number of newspapers. Rik then asked
about the uncertainty involved in moving to the cloud. Erik
responded by talking about what happened when Michael
Jackson died, and one of their publications was the top hit on
Google News. Their applications could handle the first spike,
but it was the continuous pounding that led to slow death.
You definitely want to wake up a human at some point. They
also turned off parts of some pages, such as banners. Did they
have access to the TCP stack, and other aspects they could
optimize? They didn’t have control of that in most envi-
ronments, and generally just decided not to count on that.
Another person asked how to protect their data. Eric said
that there were lots of protection techniques, such as using
encrypted tunnels for LDAP. But if your data really must stay
private, don’t put it in the cloud.

Scaling on EC2 in a Fast-Paced Environment (Practice &
Experience Report)
Nicolas Brousse, TubeMogul, Inc.

Tubemogul has grown from 20 to 500 servers, four Amazon
regions, and one colo, and requires monitoring of 6000 active
services and 1000 passive. They like to be able to spin up or
shut down servers as needed, but it is difficult to troubleshoot
failures in Amazon. Nicolas described a single point of failure
where the image would get stuck in fsck on boot; they had to
revert to an earlier image, and that image didn’t match their
current configuration, requiring editing the configuration on
each instance.

They had started with a Tcl/Tk script called Cerveza and
rebuilt it in Python after the meltdown. Instead of using
customized AMI, they used public Ubuntu AMI images to
reduce maintenance, and cloud-init for easy pre-configura-
tion of new instances. They used Puppet for configuration
management, and Ganglia and Nagios for monitoring. In con-
clusion, Nicolas suggested using configuration management
tools early, keeping things simple, and not forgetting basic
infrastructure management, such as backup and recovery
processes. They are hiring: http://www.tubemogul.com/
company/careers.

Bill LeFebvre asked how their instances self-identified. Nico-
las said they start a server and keep this info in SimpleDB to
find the right profile. Bill then wondered what key info they
used per server. Nicolas answered that they provide a recog-
nizable hostname during the startup process. Someone else

tered array could tolerate three disk failures. In a declustered
array, disk rebuild activity is spread across many disks,
resulting in faster rebuild and less disruption to user pro-
grams. When only one disk is down, it is possible to rebuild
slowly, with minimal impact to client workload. When three
disks are down, only 1% of stripes would have three failures,
so only those stripes need to be rebuilt quickly, with perfor-
mance degradation noticed only during this time. Regarding
data integrity, Deenadhayalan not only discussed media
errors, but gave a thorough coverage of “silent” undetected
disk errors with their physical causes: distant off-track
writes, near off-track writes, dropped writes, and undetected
read errors. To cope with these issues, GPFS Native RAID
implements version numbers in the metadata and end-to-end
checksums.

GPFS Native RAID provides functions to handle data integ-
rity, such as disk rebuild, free space rebalancing upon disk
replacement, and scrubbing. Disk management functions
analyze disk errors and take corrective action. By maintain-
ing “health records” of performance and error rates, the
system can proactively remediate potentially failing disks.

To the Cloud!
Summarized by Rik Farrow (rik@usenix.org)

Getting to Elastic: Adapting a Legacy Vertical
Application Environment for Scalability
Eric Shamow, Puppet Labs

Eric explained that elastic means using a cloud as Infrastruc-
ture as a Service (IaaS that they get machines to use, perhaps
with an OS installed. He then said that elasticity requires
automation. You first need automated provisioning of serv-
ers, at a minimum. From power-on to application, startup
needs to be much more automatic. More complex issues
include when to expand or contract the number of servers.

As sysadmins, we tend to see the big picture, but devs
understand the metrics when an app is impacted. If you lose a
server but the business keeps running without interruption,
then you can wait until tomorrow morning. Eric then asked
how many people share logs with development teams. About
10% raised hands. Sysadmins need to help make developers
aware of the production environment so that they can make
decisions based on fact rather than assumptions.

Eric suggested monitoring everything, but not focusing on
anything at first. Latency is variable in the cloud. You need
to be prepared for change. Impose sanity limits on builds
and teardowns. How many and how fast can you provision/
destroy? Consider having a pool of offline servers. If you have

 ;login: APRIL 2012 Conference Reports 101

ber when you had time to figure out why something wasn’t
working? That method is no longer valid. A weak corporate
Web site 10 years ago is now 90–100% of your business today.
These are all things that lead to automation. Just because
this is the reality, it doesn’t mean automation will replace us.

You get to pick the kind of sysadmin you can be. You can be
a mechanic, know the rules, follow the rules, and not make
mistakes. That skill can be automated and eventually you
will be replaced. Artificial Intelligence (deciding and think-
ing) is difficult. AI is 10 years out, just like it has been for the
past 50 years. If you just know obscure items from the operat-
ing system, you will be replaced. If you just perform the
mechanical aspects of the job, you will be replaced. You are
not a key differentiator for your business. You need to be good
at understanding and deciding. You need to understand what
is normal in your infrastructure, why the infrastructure
exists, why the services are running and what is important to
the end users, the customers, and the employers. You need to
be good at deciding what to do based on the information you
have available. Your real value lies in making decisions, good
ones.

For example, the financial trading industry would love to
fully automate, but it can’t. We are talking big data, rapid
response, huge amounts of money. The skilled traders get
paid, make bonuses, etc., and if their function could be auto-
mated, it would happen. Why are they not automated? A lot of
what they do is, but this is a skill-based system. Consider it to
be the best video game in the world and they are skilled play-
ers and get paid to play games for eight hours a day. The soft-
ware systems provide huge amounts of information coming
in all day. They absorb this wealth of information and then
make quick decisions. The software then rapidly performs
the trades based on the decisions. The software gets data to
them and once a decision has been made, acts on it. It does
not make the decision; they do. This is their value.

In a similar way, you need to be the kind of sysadmin who is
good at understanding and deciding. This makes you valuable
to the organization. If you are good at following rules and
not knowing who those rules impact, probably you will be
replaced with software. It is likely that we all know somebody
who could be replaced with a shell script. As an observation,
this year is the first year that the majority of attendees are
running configuration management systems. The first work-
shop was 10 years ago. The scary part is that the LISA com-
munity is an early adopter and it’s taken 10 years to get here.
We’ve been moving very slowly and the world has moved
quickly. If we don’t start moving and move quickly, this will
end up with the developers taking over the operations role.

asked if they were using trending data for Nagios monitoring,
and Nicolas said they collected data into an RRD file, and
Nagios watches that.

Invited Talks I: DevOps: Puppet
Summarized by Scott Murphy (scott.murphy@arrow-eye.com)

Building IronMan, Not Programming
Luke Kanies, Founder, Puppet and Puppet Labs

Luke Kanies described how he went to his first LISA confer-
ence in 2001 and got hooked on configuration management.
Puppet was conceived at a LISA conference, and LISA and
other conferences influenced Puppet over the years and were
instrumental in its development.

Luke then said that he was not there to talk about Puppet,
but about DevOps/. He started with a description of what
DevOps is not. DevOps is not development. It’s poorly named.
It is not about developers becoming operations. It is not about
operations becoming developers. It is not about “not opera-
tions.” Operations is not going away; however, it will likely be
transformed over the next few years.

DevOps is about improving operations, primarily through
cultural change—not through new tools or the company
changing, but by the people at the company changing. A
major way to effect that change is by improving the sysad-
mins. Sysadmins are operations. You can’t talk about things
changing operations without talking about sysadmins
changing.

Another way to improve operations is to minimize process
through better tools. Sometimes you can trade off process for
tooling. The main way to improve is through collaboration. If
you are a sysadmin and you do not work with anyone else, you
are not doing what you can for the organization and you are
not doing what you can to get your job done better.

Automation shows up a lot in DevOps. In our jobs, automation
is a big part of what we need to be thinking about; it’s what we
need to be doing. It’s either there or it’s coming, and we can’t
avoid it—we need to embrace it, and scale is the reason. We
are dealing with numbers we couldn’t conceive of 10 years
ago; 100+ machines in 1999 was a decent-sized infrastruc-
ture. Today it’s barely a blip, as people run thousands, even
tens of thousands, of machines. Speed of scale is also an
issue. You can now add 1000 machines a week. Zynga added
1000 machines a week for months on end—imagine adding
that many machines from any vendor 10 years ago. Now we
want them in a week and to have them up and running, not
just sitting on the loading dock. Services are now critical.
Remember when we had maintenance windows? Remem-

 102 ;login: VOL. 37, NO. 2

and never worked with the customer to understand what to
build. Operations has a similar problem. We are very good at
building secure, stable systems that take 18 months to deploy,
often longer.

Kanies then talked about a customer that had invested in this
process to the point that they had forgotten how to deploy
software. Another customer had the problem of it costing
more to deploy their software than to write it. This was a
Web company and had been around a while.

If you can’t change, you can’t meet business needs. The
company exists for a reason and the company is paying you
to enable that. Operations needs to see the world in this light.
Operations needs to find a way to do the job better. If opera-
tions doesn’t, then the business will step in and tell you how
to do the job. This would not be a good thing.

Process is the bugaboo of the systems world. We all hate
it and we all follow it. Even more rarely is there a process
owner who will call us on not following process. This may
have happened when something went wrong and the business
decided that it didn’t want a repeat. This resulted in a process
to ensure that particular failure did not happen again. That’s
how process happens. Change management is an example of
these processes. The sysadmin writes up a technical change
procedure that needs to be signed off, typically by a non-tech-
nical person. How can a business person really understand
that? They sign off and the change is approved. Does this
make any sense?

This is the fault of operations. Operations made it extremely
difficult for business to be confident in the work we do. We
didn’t help them be confident in our work so they felt they
needed to be part of the process. They needed to have a non-
technical sign-off because we didn’t find a way to give them
the confidence they needed without that sign-off. A big part
of the cultural change we need is to find a way to give them
confidence that we are doing what they want us to do, as
well as providing security, compliance, and stability. One of
the best ways to build confidence is to trade out process for
tooling. Version control is a great example of this. It wasn’t all
that long ago that developers didn’t use version control. This
inspires confidence that the versions in development and
deployment are the same.

In the systems world we can also use tools to manage the
change control process without requiring sign-off.

In general, sysadmins are very conservative, as in, nothing
should be done for the first time. The thought process is,
“This is new, so we need to move slowly until we are confi-
dent about the technology.” We need to find ways to get that
confidence so that we can move quickly and be confident

In 2001, a group of developers wrote the Agile Manifesto.
They all worked in a similar way and they were breaking all
the best practices and doing dramatically better. They didn’t
do it because they had a plan; it was because they recognized
their own behaviors. This is not scrum. It’s not extreme
programming. It’s not a tool or practice. It’s a way of thinking.
Read the Agile Manifesto. It doesn’t describe practice, but,
rather, the way you think about the world and applies that to
how you interact with your team and the teams around you,
which is why it is related to DevOps.

The Agile Manifesto has four main principles:

1. Care more about individuals and interactions than about
processes and tools. Processes matter and they exist for a
reason. Having good tools is great. However, if the pro-
cesses get in the way, they are not doing their job. If the
tools interfere with why you exist as an organization, you
have the wrong tools. This is important for agile develop-
ment, as there tended to be good tools and tightly defined
processes in old-school development. If you are good at
making decisions, then you don’t need inflexible processes
or to use the world’s best tools. If you are bad at decisions,
then you need processes to double-check you and better
tools to keep you on track.

2. Value working software over comprehensive documenta-
tion. Documentation is great and typically very valuable.
However, if the infrastructure is down, the best documen-
tation in the world will not help you. The software must be
running and must work. If the software doesn’t match the
documentation, it has limited value. You are far better off
building software than documenting software.

3. Value customer collaboration over contract negotiation.
This seems more applicable to software developers than
system administrators, since software developers tend to
do more consulting, bring in a team, write the software,
and then move on, but sysadmins also have contracts and
customers. We tell the employers we will keep the services
and systems up, we will deploy the software, we will keep
the systems stable and secure. We have customers we need
to help.

4. Respond to change over following a plan. No plan survives
contact with the enemy. Reality often changes while we
are doing something important. New technologies show
up. Facts on the ground change and you need to be able to
adapt to that. Change happens all the time. You need to be
thinking about the change and not the plan. Build a plan
but realize that the plan will not last. It is a guideline, not
an absolute.

Waterfall development was good at building an application
under budget and on time but building the wrong software.
They never talked to the customer about what they wanted

 ;login: APRIL 2012 Conference Reports 103

make intelligent decisions about how to interpret what
they’re asking, whether what they are asking is complete
bonkers, and of course you can’t do that. It’s very important
that you understand what they are saying and that you decide
how to act on that. It’s a lot like design. One of the things we
are doing at Puppet Labs is that we are really pushing our
whole organization behind design and design is about the
user experience. It’s like the famous quote by Henry Ford: if
he had done what people wanted, he would have built a faster
horse. He knew what they needed and built that. It’s about
understanding. You have to trust yourself and you can’t just
mechanically follow rules. That’s how you get replaced by
software. Humans are great at making intelligent decisions
based on complex situations

Someone said that he is scared of self-service going so fast
and giving developers free rein, because it’s very easy to get
yourself into technical debt. Yes, it’s very easy to get some-
thing functional very fast, but backups, documentation, and
all these non-functional pieces still need to be done. Opera-
tions typically takes care of that, but it takes time. What are
some ways that we can work faster to be able to deploy faster
but still take care of all these nonfunctional bits that are
important and that we know are important but which they
may gloss over? Luke replied that the first thing is to figure
out where your time is going. Most places I’ve been, people’s
time is going to things that aren’t critical to business—a lot of
what amounts to menial work that you can automate. To me
this is the best place to automate. Where is time going and
is it valuable time? Is it adding real value or is it time that is
not that valuable? If you can automate it and make it go away
right now you have more time. And this is the time you are
reclaiming without increasing budget, which you can then
reuse and add on to things such as building self-service infra-
structure, building better monitoring, and building more
information for the user.

Kent Skaar (VMware Inc.) asked if Luke had seen new areas
where he was surprised to see self-service. Luke replied that
he isn’t surprised by very much of it. Most money is spent
on maintaining existing resources, 80–85% vs. adding new
resources. It’s about agility and moving quickly. It’s about
responding to the needs of the organization. People want to
move things faster.

Betsy Schwartz (e-Dialog Inc) asked if Luke could talk a little
bit about the intermediate stage. Right now we have a lot of
human beings in QA who sign off on accepting the QA stage
and managers who sign off on rollouts. Luke said that there
is no such thing as a non-intermediate stage. All this stuff is
asymptotic. You can always be better; you can always move
faster. Greg LeMond has a great quote: “It never gets easier—
you just go faster.”

without sacrificing the things we have to deliver. Needs are
changing faster than we do, resulting in higher pressure on
the operations people.

There is a huge amount of discussion of cloud computing.
Luke’s opinion is that the two most interesting versions are
Software as a Service (SaaS) and the self-service cloud.

Two SaaS examples are Salesforce and Zendesk. SaaS is
where you take things that are not your core competencies
and have someone else do it. Very few companies take CRM
as a core competency. You need to be able to talk to your
customers, but it isn’t critical that you be able to maintain the
CRM system yourself. SaaS providers have operations people
and consider it to be a core competency. They know they have
to be fantastic at operations, so they hire the best, train the
best, constantly adopt new technology, and require opera-
tions to adapt quickly.

The self-service cloud—I want to be able to do it myself, I
don’t want to have operations do it. I want the developers
able to get a new machine or a new operating system without
involving operations. I want to get 500 new machines right
now without having to deal with operations. Self-service is
more threatening for operations.

Developers like the self-service cloud, since they get what
they want on request. The best case is that the operations
group has provided a system that allows developers to get
what they want while ensuring that business requirements
are met. This is about collaboration, finding ways to deliver
what your business needs and what you need to deliver to
your organization.

Remember that operations is not why your organization
exists. You exist to enable people and fulfill the purpose of
your organization. You need to understand who you are try-
ing to help. You are in the service industry. You do not directly
produce; you assist other people to produce. If you don’t think
of your job as helping people, you need to be afraid of automa-
tion. Every day you need to decide what kind of sysadmin you
want to be. If you decide not to decide, it will get decided for
you.

Tim Kirby (Cray Inc.) said that “somewhere along the line it
started to feel here as though your stance was that we should
do everything they ask without saying, ‘That may not be the
right thing to do.’ And I just want to make sure that I wasn’t
hearing that, because I think we have a role, not necessar-
ily as gatekeepers, but as facilitators.” Luke replied that it’s
absolutely not about just doing what they tell you to do or
doing what they ask you to do. If you aren’t great at your job,
then your choices are to follow the rules or to do everything
the customer asks. You want to be in a place where you can

 104 ;login: VOL. 37, NO. 2

The Scholastic team described their previous MSP envi-
ronment as a nightmare: a virtualized environment in a
managed-hosting datacenter with limited visibility to the
backend systems, no access to network or storage configura-
tions, and, of course, no administrative access to anything.

The environment from which they migrated included
untenable support issues. Operations team leader Elijah
Aydnwylde described a scenario where they decided to build
a workaround to mitigate network trouble that the MSP
wouldn’t help troubleshoot: Scholastic customers were
reporting network trouble when accessing an application.
Scholastic troubleshooting pointed to the load balancer in
front of the app servers. The MSP disagreed: “Nope, can’t be
the load balancers.” End of story…almost. The team built and
deployed a layer that bypassed the load balancer, and suc-
cessfully mitigated the trouble. Unfortunately, the time spent
troubleshooting (in person-weeks), and the ongoing poor
performance resulted in lost revenue and lost customers.

The Scholastic team, led by infrastructure team leader, Pat-
rick McAndrew, chose not to build a datacenter from scratch.
But they wanted all the elements and access they were
missing at the time. They described choosing a datacenter
partner who would perform all the initial heavy lifting, and
subsequently turn over management and administration of
the systems to Scholastic.

The panel described several keys to completing this chal-
lenge. One was the concept of merging development and the
operations groups. They actually thought they invented the
term “DevOps” (or “OpsDev” as they called it). By way of
example, their operations team would lob an operations task
over to the development folks, often a difficult or inefficient
one. The pain of having to do the manual task would get them
to automate it.

The team, led by Jesse Campbell (who was also the lead coder
for the team), wrote its own configuration management tools.
With the goal of creating an automated control engine for the
existing underlying technologies, they created a system using
NFS, git, Puppet, VSphere, Bash, and Perl.

They discussed two key points about working in the “agile”
environment they created. First, every project needs an
advocate to usher it along. Second, communicate the require-
ments by actually doing the job. Software engineer Alastair
Firth said that the developers were directly involved in writ-
ing specifications so that “nothing gets lost in the translation
from the stakeholders.” Firth also asserted that “personality
matters” with respect to building teams. Pay attention to
teams’ personalities.

At the end of their six-month project, the team chalked up all
kinds of wins. Use of their new tools and improved processes

Invited Talks II

IPv6, DNSSEC, RPKI, etc.: What’s the Holdup and How
Can We Help?
Richard Jimmerson, IETF ISOC

No report is available for this talk.

Honey and Eggs: Keeping Out the Bad Guys with
Food

DarkNOC: Dashboard for Honeypot Management
Bertrand Sobesto and Michel Cukier, University of Maryland; Matti

Hiltunen, Dave Kormann, and Gregg Vesonder, AT&T Labs Research;

Robin Berthier, University of Illinois

A Cuckoo’s Egg in the Malware Nest: On-the-fly
Signature-less Malware Analysis, Detection, and
Containment for Large Networks
Damiano Bolzoni and Christiaan Schade, University of Twente; Sandro

Etalle, University of Twente and Eindhoven Technical University

Auto-learning of SMTP TCP Transport-Layer Features
for Spam and Abusive Message Detection
Georgios Kakavelakis, Robert Beverly, and Joel Young, Naval

Postgraduate School

Using Active Intrusion Detection to Recover Network
Trust
John F. Williamson and Sergey Bratus, Dartmouth College; Michael E.

Locasto, University of Calgary; Sean W. Smith, Dartmouth College

No reports are available for this session.

Invited Talks I: DevOps Case: Scholastic
Summarized by David Klann (dklann@linux.com)

Fixing the Flying Plane: A Production DevOps Team
Calvin Domenico, Marie Hetrick, Elijah Aydnwylde, J. Brandon Arsenault,

Patrick McAndrew, Alastair Firth, and Jesse Campbell, Scholastic, Inc.

Seven members of the DevOps team at Scholastic, Inc.,
described their heroic effort to “Webify” an entire applica-
tion set while simultaneously switching datacenters. In six
months. With a single weekend of down time.

The team of 10, led by Calvin Domenico and Marie Hetrick,
took control of more than 20 custom-developed applications
for 10,000 school districts. The apps were originally devel-
oped as locally run client-server applications that had been
“jammed into” a hosted, managed service provider (MSP)
environment. At the time they moved the application set from
the MSP environment, there were about 400 school districts
using the apps.

http://static.usenix.org/events/lisa11/tech/techspeakers.html#Jimmerson
http://static.usenix.org/events/lisa11/tech/techspeakers.html#Domenico
http://static.usenix.org/events/lisa11/tech/techspeakers.html#Hetrick
http://static.usenix.org/events/lisa11/tech/techspeakers.html#Aydnwylde
http://static.usenix.org/events/lisa11/tech/techspeakers.html#Arsenault
http://static.usenix.org/events/lisa11/tech/techspeakers.html#McAndrew
http://static.usenix.org/events/lisa11/tech/techspeakers.html#Firth
http://static.usenix.org/events/lisa11/tech/techspeakers.html#Campbell

 ;login: APRIL 2012 Conference Reports 105

Barber, and Andrew Mundy from their managers at the US
National Institute for Standards and Technology (NIST). It
turns out it was a bit more complicated than it first seemed.

The initial design requirements included a site for photos,
videos, and PDF documents primarily to satisfy US Free-
dom of Information Act (FOIA) requests. The constraints
included time and money. The deadline: September 11, 2011
(the tenth anniversary of the terrorist attack on the US). The
budget: about US $25,000.

The team consisted of four systems developers who worked
with a research team at NIST. Their usual workload included
support for robotics, sensor networks, and related manu-
facturing projects. This request came during a significant
structural reorganization at NIST. The request to create the
Web site seemed a simple additional task while integrating
two disparate IT organizations.

The Building and Fire Research Lab had collected a “pile of
stuff” (1.5 terabytes of data spread over 350 DVDs) during
their investigation of the World Trade Center attacks. This
request was an afterthought that was proposed as a way of
satisfying all the different labor-intensive FOIA requests.
One significant constraint was that NIST staff was not
permitted to alter the source material in any way (including
adding metadata to files). This limitation, along with the fact
that there was almost no text accompanying the images and
videos, led to the realization that conventional search tools
(such as a Google search appliance) would be of very limited
value. The team settled on a different approach to the Web
site.

They considered using an existing open source content
management system. After evaluating several, they settled
on Gallery version 2 because of Gallery 2’s rich MIME-type
support. Using the Model-View-Controller architecture of
Gallery 2, they configured a MySQL database to hold and
organize the metadata. On poring through the data, the team
found that the data and the small amount of metadata they
had “were a mess.” Rowland noted that they found they had
all the metadata for the objects (images, videos, etc.), but that
they couldn’t release all the objects themselves due to copy-
right and other restrictions. Only 13,000 out of 90,000 files
had any kind of metadata or tags.

Pullman described the iterative series of tests they wrote
(in Perl) to match metadata to objects. At the end of the
exercise they were left with only 200 of the original 13,000
unmatched objects.

Pullman remarked on their perspective as system adminis-
trators working on a development project. They put the task
into a sysadmin’s perspective: “How will we rebuild this?

resulted in time reductions in all aspects of provisioning
and deploying services and applications. In some cases, such
as patch application, the time savings were several orders
of magnitude (4,500 hours reduced to 3 hours), and many
processes were automated. Project manager and database
designer J. Brandon Arsenault presented a slew of impressive
statistics, dramatically showing the improvements in the
entire application suite.

What recommendations did they have for those who can’t
start over in a new datacenter? Virtualization is your friend.
Start small, get bigger. Build a small-scale functional model,
then prove it out at scale (Scholastic didn’t have a datacen-
ter for the first three months of the six-month time frame).
Someone else noted that it’s relatively unusual to integrate
Dev and Ops; how did that happen? Hetrick said it was a
conscious decision. This was the only way that it would work.
The operations team was four people; the core software
was developed by many houses of outsourced stuff. Their
only chance to get this done right and on time was to bring
developers into the operations team. They were excited about
the LISA theme and how their model fit the notion being
presented at the conference. Hetrick described their concept
of culture: they had a really large development staff, but the
wrong culture; they had a month to turn a set of apps into the
SaaS model—just hire new developers. Domenico said that
it really comes down to culture. The Scholastic staff needed
to be able to get developers into operations to understand the
scale of the thing.

Someone else pointed out that there are different types of
developers (applications, systems, etc.). They focus on dif-
ferent aspects of the systems. Application developers spend
much more time doing UI than anything else, while system
developers spend no time on UI. Application skills aren’t
really applicable to systems development. Domenico said
that’s a great point. The core software engine was more than
six years old, but some parts of it were completely opaque;
how do we run hundreds of these right next to each other?
Aydnwylde said that it was mind-blowing that we had no
control—a terrible, terrible place to be. Getting control of
infrastructure was the game changer.

Invited Talks I: Case Study: Big Launch
Summarized by David Klann (dklann@linux.com)

Releasing 9/11 Data to Satisfy FOIA: It’s Just a Simple
Web Site, Right?
David Pullman and Carolyn Rowland, NIST

All they wanted was a photo gallery Web site. It seemed a
simple request of David Pullman, Carolyn Rowland, Stephen

 106 ;login: VOL. 37, NO. 2

Next, the team performed load testing with an Ixia traffic
generator. They tuned the setup so that responsiveness would
degrade under extreme load, but would recover gracefully as
the load decreased. Great! The site was ready to go. Andrew
Mundy, one of the team, was in Boulder preparing for the
launch. The rest of the team gave the NIST director one last
demo. The NIST director asked, “What about availability?
Won’t a successful DoS attack make the agency look bad?” He
was right, but nobody had asked that question until then.

Add another requirement, but this one came with some cash.
The NIST director was able to dig around and said, “Here’s
some money. Put the app in the cloud.” Unfortunately, even
with the additional funding, the security-certified cloud
solutions were still too expensive, due to content delivery
network add-on charges. They decided to go directly to CDN
provider Akamai.

The Akamai deployment was easy; figuring out caching
issues, not so much. They discovered lots of errors, and
rework was needed for the shopping cart application. The les-
son they learned was not to cache dynamic content. Having
satisfied the layer upon layer of additional requirements, they
were finally ready.

They performed some last-minute legal due diligence (copy-
right holder notices resent, legal review, etc.). More changes:
two primary content providers asked the team to remove
their content due to lack of embedded copyright notices. The
FOIA people delivered a new 75 GB data set full of high-
resolution video from the FBI to add to the repository (in file
sizes up to 15 GB).

They launched the site on August 12, a mere five months
after the original target.

Lessons learned:

“We’re Ops, not Dev.”

“Getting data from people is really hard!”

Getting requirements is also difficult. The team was driving
requirements by showing work as it progressed.

Getting data from others is messy, but can be automated to
normalize the information.

Many stakeholders. This was difficult, but useful in order to
get as much input as possible before the launch.

Real stress-testing beats any theory (stress-testing was
contrived, but useful).

Last-minute stakeholders: get buy-in from as many inter-
ested parties as early as possible; identify stakeholders as
well.

What if the import process crashes?” and similar questions.
They described designing scripts and processes to survive
the bottom falling out during batch runs, and having to start
the processes over (which Rowland noted happened “quite a
few times”).

A few months into the project, the laboratory hired a new
director. The new director involved a slew of additional play-
ers, who brought with them all kinds of different and compet-
ing requirements. They learned Agile development via “trial
by fire.”

While showing off the live site at http://wtcdata.nist.gov/,
Pullman commented that the collection of data includes
over 100,000 objects and continues to grow, as objects are
released by their owners.

Someone asked if a third party could take this and Rowland
answered that archive.org already has it. Rowland noted
again that the primary requirement was the integrity of the
data. “Integrity is of the utmost importance, not availability
or confidentiality.”

Pullman described the development path. The path started
with the golden copy of the data on a private server. From
this pristine copy they imported data and metadata into the
database. From there they copied things to the development
server for testing, and finally to the production server (a cast-
off Dell server running CentOS). This (largely automated)
process enabled them to incorporate changes and additions
quickly.

By March of 2011 they felt the project was well on its way
to completion. Then the NYPD “helicopter video” went
viral. Suddenly (“Oh my god!”) scalability, availability, and
performance became part of the requirements. The team also
re-evaluated the potential demographics of the site’s visitors.
They reconsidered their deployment strategy and considered
options like the Amazon’s EC2 service. They eliminated this
option after receiving Amazon’s quote: between US $200,000
and US $600,000 per year. Performance on a limited budget
became the new top priority.

They settled on a hardware and software configuration of
two load-balanced servers running nginx (which raised the
eyebrows of the resident NIST security officer).

The team also considered various ways of restricting down-
load traffic in order to avoid being “slashdotted.” They ended
up moving the site to a combined NIST and NOAA site in
Boulder, CO. This move was based on a search for bandwidth:
at their Maryland location they had only 10 Mbps available;
the site in Boulder offered a full gigabit link out of the 11 Gbps
total bandwidth.

 ;login: APRIL 2012 Conference Reports 107

Invited Talks II: Security

Can Vulnerability Disclosure Processes Be Responsible,
Rational, and Effective?
Larissa Shapiro, Internet Security Consortium

No report is available for this session.

Network Security
Summarized by Timothy Nelson (tn@cs.wpi.edu)

Community-based Analysis of Netflow for Early
Detection of Security Incidents
Stefan Weigert, TU Dresden; Matti A. Hiltunen, AT&T Labs Research;

Christof Fetzer, TU Dresden

Stefan Weigert noted that attacks are especially insidious
when they are targeted rather than random and stealthy
rather than immediately destructive. They assume that
attackers know what they want, that they have incentive not
to be noticed, and that they want to compromise machines in
more than one company at a time. These attackers are hard to
detect! Finding a single infected machine in a large organiza-
tion is a needle-in-a-haystack problem. This work focuses on
attackers who target a community instead of a single organi-
zation: for instance, compromising multiple banking or retail
establishments at once.

If an IP address communicates often with many companies
inside a community, it may be suspect. The problem is the
sheer volume of data involved. Weigert’s group begins by
discarding non-community traffic and allowing certain
addresses to be whitelisted. They also borrowed a concept
called community-of-interest graphs from telephony, which
allows them to focus on the most important addresses. In
these graphs, a weighted, directed edge is drawn from outside
addresses to community addresses. Weights decline over
time, and are reinforced by net flows from source to sink. In
the end, the graph will be sparse, with edges from only the
most common external addresses. They construct a separate
graph for each determining factor (e.g., ports used or number
of transferred bytes).

For this work, Weigert’s group looked at a heavily sampled
one-day segment of traffic. They manually examined the
list of suspicious IPs that their analysis produced. Weigert
showed us two suspicious examples. The first address con-
nected to many different addresses within the community,
but very few addresses outside. After looking at whois data,
they concluded that that address was indeed acting suspi-
ciously. The second address turned out to be an anonymous
FTP server. Wegert underscored that only the community
members will be able to truly tell an attacker IP from a

Having an exit strategy from Akamai was helpful in order to
migrate away from their CDN after the initial push.

“We’re operations.” This was the team’s first real “develop-
ment project.” They got to see firsthand how to do DevOps.
Final word: “The DevOps paradigm really works.”

The first question at the end of the presentation was about
boiling down lessons learned to a sound bite, such as “Never
demo anything until you launch.” Rowland replied that there
are two sides to it: launching without showing to enough
stakeholders may result in more changes after the launch. It
may be better to demo late in the project and delay the launch
a bit. Someone else asked about avoiding all the stakeholders
popping out of the woodwork. Rowland commented that the
team didn’t really know the customers, due to the reorganiza-
tion. Normally, they would have worked harder at this, and
now they would know who the stakeholders are. Rowland
further noted that there were two kinds of stakeholders:
researchers issuing reports, and directors awaiting the site.
Look more proactively for stakeholders. In the future, this
team will get them involved sooner.

The next person wondered if they really need to go to Aka-
mai. Pullman said, “It probably would have been fine.” On
September 11, 2011, they experienced a peak of 29,000 daily
total page views, with almost 350,000 cumulative views.
Total site volume has now exceeded 9 TB of downloaded
data. Someone else wondered about the continue Link, and
Pullman said that it was necessary. Without this mechanism
it would be easy for other sites to link directly to images and
videos. The NIST legal department wanted this “wall” to pre-
vent sites from making these links. Pullman noted that there
may be a better solution to this constraint, but the current
implementation works fine. The final question was, “Where
is the biggest performance bottleneck?” Pullman answered,
“We haven’t hit any bottlenecks at this point.” Rowland added
that not everything is cached, but Akamai helps a lot. Traffic
spikes didn’t cause “running hot.” Pullman added, “We’ll see
how it performs when Akamai goes away.”

Invited Talks II: Storage

My First Petabyte: Now What?
Jacob Farmer, Cambridge Computer

No report is available for this session.

http://static.usenix.org/events/lisa11/tech/techspeakers.html#Shapiro

 108 ;login: VOL. 37, NO. 2

use genetic algorithms, and they wanted to see how they
could extend them. Tim also asked whether they were wor-
ried about obfuscation, since their sensors are bred to detect
syntax. Danforth answered that they had considered obfus-
cation, which is one reason why their sensors can see the
number of “%” characters. There should still be indications
of attack left in the URI, even after obfuscation. Someone
else asked how they determine what traffic is “normal” when
removing sensors that misclassify normal traffic. Danforth
said that is a challenge, and they had to work hard to develop
their normal-traffic data set.

Invited Talks I: Networking

Ethernet’s Future Trajectory
John D’Ambrosia, Force10 Networks

No report is available for this session.

Invited Talks II: IPv6

IPv6: No Longer Optional
Owen DeLong, Hurricane Electric Internet Services

Summarized by Thang Nguyen (thang@ccs.neu.edu)

Owen DeLong came to LISA ’11 to speak about the imminent
depletion of IPv4 addresses, and how prepared we actually
are. APNIC has already run out, with IANA following closely
behind. Several technologies are also not ready for IPv6,
including current WiMax handsets/providers, DSL systems,
most IT staff/management, and various others. Technologies
that are ready include current operating systems, DOCSIS
3, the WiMax specification, LTE, CPE, and early adopters/
industry experts.

Following his intimidating statistics and graphics about how
IPv4 is running out, Owen began talking about how people
should be preparing. “We need to get everyone to a fully
production dual-stack environment before IPv4 runs out.”
To reach new participants, services will need to be able to
provide IPv6. While workarounds do exist to make IPv4 work
for a little longer, they come with bad tradeoffs—mainly NAT
on a carrier level being an absolute nightmare to work with.
Continuing on the IPv6 bandwagon, there are several advan-
tages compared to IPv4, including not needing to count hosts,
a better address issue methodology, no need for NAT v4, and
a stateless auto-config. Owen also reviewed the strengths
and weaknesses of several different relevant technologies,
including 6to4, Teredo, and RA Guard and noting that 6to4
was one of the last solutions people should use.

benign IP, and that the goal of this work is to provide data to
the community.

Someone from EMC asked whether a clever attacker could
produce random traffic as a countermeasure. Weigert said
that they could do that, but their work isn’t meant to detect all
possible attackers.

WCIS: A Prototype for Detecting Zero-Day Attacks in
Web Server Requests
Melissa Danforth, California State University, Bakersfield

Melissa Danforth presented an attack-detection method
based on an artificial immune system. Immune systems are
all about pattern matching. Just as a real immune system
looks for certain protein shapes, Danforth’s system looks for
shapes in the syntax of URIs. Artificial immune systems are
mostly worried about distinguishing “self” from “non-self.”
They extended the idea to detect specific classes of attacks:
information gathering, SQL injection, read-only directory-
traversal, buffer overflows, cross-site scripting, and attempts
to execute scripts on the Web server.

Danforth’s system uses genetic algorithms to breed sensors
for these attack types. Each URI is reduced to a fingerprint
involving features such as length and number of times “%”
occurs, and this fingerprint is consumed by the sensors.
The sensor-generation process begins by randomly picking
features and initializing them with random values. To reduce
the chance of false-positives, newly generated sensors that
trigger for a random set of normal traffic are discarded and
regenerated. The system then feeds the sensors a representa-
tive sample of a single attack type and begins to breed sen-
sors with an affinity for catching that attack type, adding a
small amount of random mutation. After several generations
the process stops, leaving the system with a set of sensors
likely to find attacks.

They were unable to test their system on a live environment;
permission to do so arrived too late. Instead, they analyzed
existing Web-server logs. Effectively, this means that they
tested the accuracy but not the scalability of the approach.
They found that their sensors were best at detecting scripting
and traversal attempts, but had difficulty detecting passive
information-gathering attacks. In the near future, Danforth’s
group hopes to use the live data that have become available.
They plan to have students try to craft attacks that evade the
sensors. They also discovered that it was hard to distinguish
read-only directory traversal and script-execution, and may
lump the two classes together. Finally, they plan to look at
more of each request than just the URI.

Tim Nelson asked why they opted to use genetic algorithms.
Danforth replied that traditional artificial immune systems

 ;login: APRIL 2012 Conference Reports 109

figuration Server (NCS) to act as a central place to manage
NETCONF-compatible products. This system was imple-
mented in Erlang on top of a configuration database that
acts as the authoritative source of configuration data. When
initially run, NCS connects to a device, finds out what YANG
modules it has, grabs the device’s configs, and stores a copy.
From there the device’s configuration can be changed within
the NCS system, human-checked with a diff, and commit-
ted to the devices being changed. Bad changes can easily be
rolled back to a previous revision, giving the admin a useful
security net.

Noting that running large network tests in the Amazon cloud
is much cheaper than building an actual large network, Claes
finished by describing their performance tests on a network
of 10,000 virtual routers. They found that performing an
entire NCS configuration sync took less than three hours
on the 10,000 devices, and that after the initial sync was
complete they were able to perform day-to-day operations
(such as adding an IP address to every device) in a handful of
minutes.

Are the protocols vendor-specific and are general-purpose
OSes that act as routers supported? Many vendors are getting
behind the same standards, and it would be great if more
general-purpose OS systems would start supporting it.

How generic are the configurations? For example, how does
NCS handle Juniper and Cisco devices that call the same
thing by different names? NCS handles this abstraction at its
service manager level.

An attendee doing a lot of load balancing in his environment
wondered whether YANG supported ACLs. Claes responded
that it absolutely does, and that there is continuing work in
IETF on that support.

Adventures in (Small) Datacenter Migration
(Practice & Experience Report)
Jon Kuroda, Jeff Anderson-Lee, Albert Goto, and Scott McNally,

University of California, Berkeley

Jon Kuroda described his group’s experience moving a 600
square-foot machine room one floor down in a very short
period of time. A group at his university decided to remodel
half of a floor of their building, which included remov-
ing an existing machine room. When they were notified of
this, Jon’s group followed the usual steps one follows when
kicked out of an apartment: first they filed a complaint, and
when that didn’t help they started looking for a new place
to house their machines and friends to help move them. Out
of the places they found, they chose the “least bad” one and
prepared the move without the luxury of datacenter help,
network admin, or offers of help from those doing the remod-

Implementing IPv6 on a Global Scale: Experiences at
Akamai
Erik Nygren, Akamai

Erik Nygren spoke about his experiences with implement-
ing IPv6 on a global scale, and the upcoming transition. Erik
pulled several figures from www.potaroo.net/tools/ipv4 to
display APNIC exhaustion in 2011. “Think of IPv4 and IPv6
as two different Internets that don’t have direct compatibility
with each other.”

Erik then segued into IPv6 user adoption today, showing
native IPv6 preference vs. 6to4 and Teredo (google.com/intl/
en/ipv6/statistics). Adding to that, he mentioned that very
few home routers today properly support IPv6,never mind
actual service providers. With potentially broken IPv6 being
a real problem, “Happy Eyeballs” was born. “Happy Eyeballs”
is a proposed Internet draft to work around broken IPv6, with
rules to fall back to IPv4 when necessary. Akamai addresses
this by providing a dual stack to deliver content to users
regardless of protocol.

The final part of Erik’s segment was about how IPv6 has
widespread implications: people and training are important,
along with feature gaps and bugs. In September 2012, the US
government will issue a directive to upgrade their services to
support IPv6. Erik closed by saying it is critical to make prog-
ress with IPv6, but to also remember that IPv4 will be here
for a long time. Prioritize your IPv6 on the most important
areas now, and focus on the rest when you need to.

Refereed Papers: Networking 1
Summarized by Cory Lueninghoener (cluening@lanl.gov)

Automating Network and Service Configuration Using
NETCONF and YANG
Stefan Wallin, Luleå University of Technology; Claes Wikström, Tail-f

Systems AB

Claes Wikström started the session by describing his team’s
experience using NETCONF and YANG to improve their net-
work configuration efficiency. He began with a description of
their problem: managing and automating a large network of
devices is a difficult task, and previously they had been rely-
ing on a lot of screen scraping to make automation possible
on interactively configured devices. When they went looking
for more efficient ways to manage their network devices, they
quickly settled on a solution using NETCONF (an XML-
RPC-like network device configuration protocol) and YANG
(a hierarchical modeling language).

To make managing their NETCONF and YANG system
easier, the authors built a system named the Network Con-

 110 ;login: VOL. 37, NO. 2

back to a pull model. Their final model has the router nodes
contact a central server at boot time or when their configu-
ration is stale to check for updates. By deploying this setup
across around 60 outdoor antennas, they were able to meet
the needs of both users and researchers.

With the network deployed, Thomas described how the
authentication layer on the testbed works. They used Free-
RADIUS as the basis for their authentication system, and
they found that authenticating against many accounts from
several different organizations got complex very quickly.
Troubleshooting the system was especially difficult, and
Thomas ran through the process they used to debug one
issue to illustrate this difficulty. After weeks of work, they
were able to find the subtle problem: one server certificate on
the university side had expired. From this experience they
learned the importance of version control and making step-
wise changes to their authentications system.

Thomas finished with a few lessons they learned through
their testbed rollout experience. One suggestion was, when
designing a research testbed, use it in a realistic way. That
helps make the transition to real life easier. He also noted
that robust autoconfiguration takes a lot of work and that
they found that pulling configurations was much more reli-
able than pushing them from a central server. Finally, he
concluded that having a general router image with individual
configs is much faster and more flexible than having an indi-
vidual image for each router.

There were no questions for this talk.

Invited Talks I: Panel

What Will Be Hot Next Year?
Moderator: Narayan Desai, Argonne National Lab

Panelists: Kris Buytaert, Inuits; John D’Ambrosia, Force10 Networks;

Jacob Farmer, Cambridge Computer

Summarized by Thang Nguyen (thang@ccs.neu.edu)

Narayan started the panel by asking about the biggest
changes people should be looking into. Jacob Farmer said
that SSDs will significantly replace spinning disks. John
D’Ambrosia talked about the chips that are driving all of
the new technology. Kris Buytaert is eagerly waiting to see
DevOps move into the enterprise world.

Narayan then asked how the industry is going to change
for small- to mid-sized enterprises. Jacob asserted that the
balance between performance and cost was highly in favor
of SSDs. This launched a discussion about where people hit a
plateau of diminishing returns in terms of networking, CPU,
or storage speed. John noted, “By 2015 we will produce more

eling. He described the move as being like DevOps, but with
facilities: FacOps.

Due to university class schedules, there was a very small
window of time in which the move could happen. Jon gave
a great description of what had to happen during this time:
electrical work, cleaning, carefully orchestrated machine
shutdown, move, reconfiguration, and bring-up. He also
described some of the nice things about the move: the ability
to make a more sensible layout in the new room, reinforce
hot-aisle containment, and generally clean up their area.

The move went much as one might expect: some things went
very well (the electrical work, for example, was done quickly),
but other parts put them behind schedule. Eventually, the
team had to do work that they had expected others to do (such
as network reconfiguration) to get it done in time, and they
succeeded. However, Jon noted that he would try his hard-
est never to let this happen again. His strongest suggestions
after the experience were to maintain good relationships
with those around you, to be ready for external delays, and to
work on good collaboration tools before starting something of
this complexity.

Several people related similar experiences during the Q&A.
One attendee was surprised that they had enough server
room elsewhere to get rid of one machine room. Jon noted
that he was surprised by that too and that they need to do bet-
ter space planning in the future. Another attendee wondered
if Jon’s group had the opportunity to clean up the new room
before moving in, and he said that, thankfully, they did.

Experiences with BOWL: Managing an Outdoor WiFi
Network (or How to Keep Both Internet Users and
Researchers Happy?)
(Practice & Experience Report)
T. Fischer, T. Hühn, R. Kuck, R. Merz, J. Schulz-Zander, and C. Sengul, TU

Berlin/Deutsche Telekom Laboratories

The final talk of the session was given by Thomas Hühn
about his group’s experience providing researchers with
a wireless testbed. He began by describing how the Berlin
Wireless Network Lab was created to meet this goal, giving
researchers a flexible testbed with realistic traffic and full-
campus roaming abilities. In doing this they had to balance a
developer’s freedom for change with the operator’s desire for
a robust and reliable network.

Thomas continued with a description of their final product:
a network with three levels of production (desktop develop-
ment, indoor testing, and outdoor deployment) and a flexible
configuration with multiple OS images. Their initial attempt
at configuration management involved pushing new configu-
rations to the routers, but after this didn’t work well they fell

 ;login: APRIL 2012 Conference Reports 111

with individual teams and grew the business with customer
support and word of mouth. That set the stage for some suc-
cess, and they built on this. They believe that they stumbled
onto something that Web startups do not do well.

Wade went on to observe that the audience was composed of
people who supported both internal and external customers.
Regardless of the type, customers are not only the people who
pay the company money (internal customers also pay, usually
through some other mechanism), but they are the people
whose lives you must make easier.

Wade continued with the question, “What is great customer
service?” starting with examples of bad customer service
from the audience. They included problem-report black holes
(no response), reading from the script, automation hell, rigid-
ity, and not taking responsibility for the problem report. This
was followed by good customer-support examples, including
setting expectation levels, making a connection with the
customer, admitting to the customer that they did not have
the answer right now, fast turnaround, and non-scripted
follow-up. There are trends in both categories.

During this discussion, Wade had a slide up that para-
phrased Clarke’s Third Law. The slide said, “Any sufficiently
advanced technology is indistinguishable from crappy cus-
tomer service.”

Wade went on to ask, “What can you do even if you are not
directly answering external customer calls?” You can get
engaged, treat the customer like a real person, follow up, and
have a real dialog. Those are the positive things we remember
from our own good customer-service experiences. You should
strive to give this experience to your customers. Examples of
customer comments from actual TeamSnap customers were
shown that indicated that they follow this methodology.

He observed that we (the audience) are good at technology,
even things we are unfamiliar with. He went on to describe a
few situations where we may not be expert and how we’d feel
about situations where we would need support. That is how
our customers feel. Put yourself in their shoes. Empathy is a
key skill in this area and we don’t value it sufficiently. This
will resonate with the customer and they will want to do
business with you. Don’t forget that business models are easy
to copy, so you need to have a differentiator that attracts cus-
tomers when a well-funded startup comes in to compete with
you. People will go with the folks they want to deal with. The
business or group that typically wins is the one the custom-
ers want to deal with.

Wade went on to ask why sysadmins are typically bad at
customer service. In addition to lack of empathy, we are
impatient with other people’s technology issues (“It’s just a

data than we can store. How much data do we need? What
data do we need to back up?” The discussion shifted to future
bandwidth requirements, and utility of the upcoming growth
of data to users.

The issue of power consumption arose as well. John said
that hardware is simply one aspect, but intelligent software
design is also an important factor to consider. The topic
shifted to the future of data mining with the rising popular-
ity and plausibility of SSDs. Better disk performance will
allow faster indexing, enabling users to read and sort through
information faster.

The panel continued on a broader topic: the different and
exotic things we will be experiencing in the future. The con-
sensus seemed to be that the future is already here, and not
much is going to change. Narayan pointed out that pervasive
computing, sensor networks, distributing computing nodes,
etc. would be changing storage, power, and networking needs
for future infrastructures. Kris made a valid point in that
these sensor networks exist and significant data collection
is happening today, but we still need to turn this into salient
information for the user.

An audience member posed a final question about the future
of supply chain manufacturing, highlighting recent natural
disasters in Thailand and Japan which have interfered with
the supply of hard drives and tape media. Jacob spoke of
those events potentially being enough of a catalyst for SSDs
to succeed hard drives, as the entry barrier for SSD produc-
tion is lower than hard drives.

Invited Talks II: Beyond Technology
Summarized by Scott Murphy (scott.murphy@arrow-eye.com)

Customer Service for Sysadmins
H. Wade Minter, TeamSnap Inc.

Wade Minter got off to a quick start by asking, “How many
people here think they are good at customer service?” and
followed up with a few questions and comments that set the
tone for the talk. Wade mentioned that his style is a little
more interactive than the standard tech talk.

At TeamSnap they say, “You only have to talk to the cus-
tomers you want to keep.” Unlike most Web startups, they
effectively started with a dedicated support person. They
stumbled into it by accident. The wife of one of the founders
was looking for some extra work, and she was hired to help
out with customer support. That helped them quite a bit, as
they were able to carve a niche in customer support. The
competitors were large, well funded, and targeted to sell to
big organizations. They took the opposite tack. They started

 112 ;login: VOL. 37, NO. 2

Colin Higgs (University of Edinburgh) pointed out that from
personal experience on automation vs. live interaction, it
costs more to have live support.

Wade replied that having people interacting with people vs.
having machines interacting people does cost more money.
You are investing in people and there needs to be buy in on
this from the top down; if there’s no buy-in from the top down
to support this type of methodology, you’re just going to have
to do what you can. If there’s only one of you and the support
load is going up like this, you’re probably not going to be able
to take 20 minutes for every person and make them feel like a
unique snowflake. Apply some of the principles. If you have to
blow them off, blow them off politely.

Jay Faulkner, Rackspace, said, “I am a Racker, and top-to-
bottom customer support has to be in everything we do.
People tend to overlook that uptime is the primary method
of serving your customers. If you build stable systems that
do not crash and your customers never have to call, then
you have reached the nirvana of customer support. Your
customers are happy and you are happy, with no interac-
tion required. Wade said that’s an excellent point; you help
yourself quite a bit by making systems that do not cause
people pain. Eric Radman, D. E. Shaw Research, asked how
you manage feature requests. Sometimes feature requests
contradict what you just said. Wade said that they do, and if
you are like TeamSnap you have three developers and a fea-
ture list of 200. You won’t get to everything. Generally, say we
are strapped for resources, we have serious uptime consid-
erations, and we will consider the request. Promise that you
will review the request and then really review it—don’t just
blow it off.

Marc Staveley asked, Isn’t it true that this is one reason
people like open source? You can track your feature request.
You know what happens to it. Wade replied that open bug
tracking may be a way to give your customers a view into
what is really going on. If you are not going to get to it for
years, or it’s a single user request, mark it as such. Be honest.
Other things may have higher priority, it may not be a good
fit, etc. Marc then asked if Wade thought that visibility of
the process is important. Other people chimed in and also
said they would listen. Wade replied, “I think for us it is, but
not for the Muggles. They will lob it over the wall and forget
about it, unless it is critically important to them. It’s a nice
thing to have, especially if you are an internal person and
you have technical customers, it would be a great thing to let
them know things are being worked on; in a non-technical
environment, not so much.” Someone commented that it can
backfire. He had an open bug open. There are a thousand
people watching this bug that goes nowhere.

computer: how hard can it be?”), we have a propensity to say
no, we tend to be overworked, we’ll get to it later, we are reluc-
tant to call people, and we resent being asked about things
that can be answered with a short search. We value expertise
and we need to remember that not everyone can be an expert.

A summary of customer types was shown: power users—you
can respond with short technical answer); regular old every-
day users—you need to respond, but they will accept “I’ll get
back to you easily); reluctant users, those using tech because
they are forced to—empathy works well here; the totally clue-
less, whiteout on the screen, crayon on the big screen, etc.—
they are difficult to deal with and you may not be able to give
them an answer that works, so be patient, prompt response,
etc.; asshats, the people who hate you personally, etc.—since
you don’t seem to be capable of giving them an answer they
will accept, refer them to your manager. Wade then told
a story about one customer who was less than impressed
regarding language support and compared them to Gaddafi.
With a little care and discussion on the issue, this customer
was converted to a raving fan. The point being that if they
can get upset enough to complain, they have an investment in
success and want to use your product. This is an opportunity
to create a fanatical supporter, sowork with them.

Wade then said that you should build tools for your users,
make them nice to use; Twitter’s bootstrap (http://twitter
.github.com/bootstrap/) is useful, simple, and incapable of
doing damage. This can reduce your nuisance calls. Another
item that has good mileage is to make it super easy to interact
via email. Make this happen even if you have a good phone
system or a fantastic ticketing system. This is how a lot of
people expect things to work.

Another TeamSnap practice is to put everyone in the com-
pany on customer support, where feasible. Have the CEO,
marketing people, etc., do a customer-support shift once a
month. You don’t understand the customer’s problems unless
you are on the front line. Everyone should have a stake in the
customer. Don’t withhold support from free customers. If you
can impress them with your support, then they are likely to
think “these are the people I want to work with” when they
are in a position to purchase support. You don’t want them
to get the idea that you will nickel and dime them to death.
While they may want the world, you just need to manage
expectations. When the answer is no, say no, but nicely. You
don’t need to be a jerk about it. When you say no, give a rea-
son, be sympathetic.

Wade finished the talk with a short summary: be empathetic
with your customers; listen to your customers; treat every-
one the way you want to be treated; don’t be the BOFH. Your
career and your company will benefit from this.

http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/

 ;login: APRIL 2012 Conference Reports 113

can take someone who knows nothing about a topic and they
can be brought up to speed. The scary part is when we are
dealing with system administration. You don’t want some-
one who knows absolutely nothing about a topic very quickly
coming up to speed, getting the piece of paper saying, “Oh yes,
I know how to do this.”

Brain dumps are also bad. If you search, you can find a list of
the questions and answers for many certifications. Just by
reading and memorizing you can be certified for something
you have no ability to do.

Then she started getting into the ugly. What is involved in a
particular program? The only way to pass an exam is to take
the official training program, typically only available from
the vendor, usually a week long, and costing several thousand
dollars. This portion is not ugly, as who knows the product
better than the vendor? The ugly part is if the only way to
pass the exam is to take the program. Either the information
is unavailable elsewhere or the official published informa-
tion material has nothing to do with the exam, which you do
not find out until you actually take the exam. The training is
actually training on how to answer the exam questions. This
type of exam is really an expensive brain dump.

More ugly are psychometrically invalid exams. Psychomet-
rics is the science of assessment. The point of psychometrics
is to see that if you have published a list of skills that are
required to pass an exam, then the exam should test to see if
you are able to perform the list of required skills, not to trick
you into not passing the exam. The exam should test the skill
level, not your ability to determine what question is being
asked. That is not psychometrically valid.

Dru proceeded to give a number of examples of psychometri-
cally invalid exams. Exams with pick lists, badly translated
from another language or written by someone who is not a
native speaker of the language the exam is written in, techni-
cally inaccurate, or possibly written by the sales team after a
few beers.

More ugly, the current “hot” certification is required. This is
seldom about content but, rather, the current trend. Expe-
rienced people have seen cycles of technologies go around.
New terms for old concepts, new acronyms, and shiny new
marketing spin generate new certifications that are unneces-
sary—clouds, virtualization, etc. No actual increase in your
skill set results from the certification.

Dru then went on to talk about costs, not just for the holders
of a certification, but for the maintainers of the certification
programs. Psychometrics is expensive to achieve and not
marketed as a value for certifications. This should change.
Exams are expensive to maintain, and the bank of questions

Somebody else asked for Wade’s thoughts on transparency.
He said he erred on the side of being open personally in terms
of telling people, we don’t have the money to do this, or, I can’t
do this because it has repercussions beyond what you know
you’re asking for. You’re asking me to change the database.
The more transparent you can be, the more users will think,
“Okay, I’m not just getting a canned script blow-off. There is
actually a reason behind why this is the way it is.” If you give
people a reason, the vast majority of the time they will be cool
with that. People like knowing things. People like knowing
that there’s a reason behind something.

Jay Faulkner, Rackspace, said that the nutshell version is not
just having empathy but also inducing empathy in others.
In most cases, we want to fill that feature request but can’t.
Wade agreed, saying that by being open and honest, you allow
them to understand that there are constraints. It helps your
case and people no longer consider you to be an automaton.

Marybeth Griffin (Carnegie Mellon) pointed out that people
in larger organizations have distributed responsibilities and
everybody is a customer of everybody else. Due to the nature
of the bureaucracy, things take time, and sometimes the
customer service sucks. Tickets opened can sit in the queue
past when the response time has elapsed. Shouldn’t respect
for each function be a two-way street? Wade responded that
if you have groups that do not practice good customer service
it will frustrate everyone and could severely limit your ability
to do the same for other folks. That’s a tough one to solve. His
advice was to take care of your stuff and be an example, and
other people may take notice.

Playing the Certification Game (No Straitjacket
Required), a.k.a How to Become Certified Without
Becoming Certifiable
Dru Lavigne, iXsystems, PC-BSD Project, FreeNAS Project, FreeBSD

Foundation, BSD Certification Group

Dru Lavigne provided her background, which includes
system administration, training, and writing and developing
certifications (she’s Chair of the BSD Certification Group).
The tenet of the talk is that a person can derive value from
certification. The session concentrated on system adminis-
tration certifications, the message being that it’s not all bad
and ugly. There are good certifications out there.

Dru started with the bad. “Paper” certifications are a prime
example of bad certification. What gives certifications a bad
name is the idea that the certification itself is not worth the
paper it’s written on and that people who don’t know what
they are doing are getting certifications.

She used the “Dummies” book series as an example. The
books themselves are not all bad. The basic idea is that you

 114 ;login: VOL. 37, NO. 2

Aleksey Tsalolikhin asked if there is a list of the good pro-
grams. Dru replied that she thinks the BSD certification is a
good program. Aleksey then asked her to tell us briefly about
it. The BSD certification program was founded seven years
ago. Prior to that, on BSD community mailing lists somebody
would bring up a thread about every six months asking why
there was no certification program for BSD, and that would
immediately result in a flame war where people would list
all the reasons why certification is a terrible thing. And some
people would pipe in and say, “But you know there is some
value in that.” That went on for a couple of years. Finally, a
couple of us got together and said, “We know there’s some
value; somebody just needs to sit down and do something,”
so we contacted all the people who said good things for years
and we formed a nonprofit group.

That group was composed of system administrators and
academics, and trainers and people who write programs. We
had no idea what we were doing, but we just knew that this
needed to be done, and we learned a lot along the way. We’ve
run it like an open source project; all of our processes have
been out there in the open, and we’ve written them down so
other programs know what to do. Obviously, the questions
themselves aren’t open source and transparent, but every-
thing else is.

We’ve always worked with the system administration com-
munity and psychometricians to find out how to make an
exam very practical. What is it that people actually do in
their day-to-day jobs, and what is it that employers and HR
people are looking for in their employees? That’s what we use
to build the exams. Everybody’s a volunteer, so we are on a
shoestring budget. The only person we pay is a psychometri-
cian, as I’ve never found a psychometrician who worked for
free, but we pay for the exams through the cost of the exams
themselves. And we offer a DVD where people have the tools
to set up their own labs and practice skills they need to know.

Aleksey then asked if they found it necessary to keep updat-
ing the exam. Dru answered yes. The first step in creating
exams is to define skills, and out of that there is a process
for you to turn those skills into exam questions. After a set
period of time, or after a certain number of people have taken
the exam, you need to take all the psychometric data on how
people respond to questions and see if there are any ques-
tions that need to be rewritten because they are too easy or
too hard. You also have to look at those skills and say, “Since
the last time we defined those skills, have new tasks been
required of system administrators? Are there new features
they need to know what to do with?”

Have they created training programs as well for this certifi-
cate? They decided they were only going to create the ques-

will eventually get leaked. A lot of programs only have one
version of the exam and it doesn’t change. Over time, this
cheapens the exam as more people are familiar with the con-
tent. Rectification in order to remain valid/current is expen-
sive, especially when all that is changing is the feature list.

Having said all of that, Dru started covering the good side
of certification. There is value in quantifying the tasks
that make up a skill set. If you are aiming to become a good
system administrator, you have a catalog of skills to measure
against. If you are missing skills, then you have a learning
map. If you are hiring people and they have a certification
and there is a list of tasks that make up that skill set, then
the candidate will have to prove that they can do these tasks.
Chances are you learned your system administrator skills by
doing the job. Chances are that there are knowledge gaps due
to lack of exposure to some tasks. This skills catalog and a
good certification program will help you fill in those gaps.

Dru described what to look for in a good certification pro-
gram: Are the objectives available? Are they skill-based? Are
there third-party reviews that indicate that the exam adheres
to the objectives? What forms of training and study material
are available?

If you are looking at certifications, you want to receive value.
Sometimes the goals are different. Why are you doing it? Is
this something your boss told you to get? Do you need it to
get a job? Few training programs are geared toward skills,
so build a lab setup. Find others who are skilled in this area.
They can help you. Check IRC, forums, the local user groups,
and system administrator groups.

You can gain from any certification, even the bad ones. Your
employer wants you to have it, HR requires it, the vendor
requires so many certified people, etc. You might even learn
something new or develop the skills to wrestle that system
into submission.

Dru advocates reinventing the certification game. The first
system administrators didn’t learn from a training program.
Skills were developed by doing. How will the next generation
of system administrators learn their skills? There are few
practical programs, and while certification programs have
improved, they are mostly vendor-specific. Look for and pro-
mote quality certifications. If you have the time, contribute
to them. Most training is boot-camp based—three to five days
training and you become certified. This is not sufficient time
to be good or proficient at a task.

A good certification program is a tool that can be used to
bridge the post-secondary knowledge-skill gap or bring new
hires up to speed.

 ;login: APRIL 2012 Conference Reports 115

with certain attributes using whatever tools you want; at the
end of the day, they want to see your number of users, does
spam filtering work, etc. A lot of certification programs are
either promoting memorization or they’re promoting how you
get to a certain screen. There’s really no value if you end up
with monkeys who don’t know what they’re doing. They try to
test more concepts.

Aleksey Tsalolikhin wondered if anybody has experience
with the O’Reilly certification for Linux/UNIX system
administration and could talk about it. He has a new hire pro-
moted from the help desk that he’s apprenticing, is trying to
make it go a little faster, and is looking at what resources are
available. Dru asked Aleksey if they published any objectives.
Aleksay said they have a course syllabus posted, but he didn’t
see any objectives. Someone suggested that Aleksey check
out LPI (Linux Professional Institute); Dru said that their
program is very similar to BSD’s. LPI started before they did,
it’s Linux system administration, and they also started very
open source. Their exam objectives are very well detailed,
with the skills you need to know.

Migrations, Mental Maps, and Make
Modernization
Summarized by Ming Chow (mchow@cs.tufts.edu)

Why Do Migrations Fail and What Can We Do About It?
Gong Zhang and Ling Liu, Georgia Institute of Technology

The goal of their paper was to understand the cause of incor-
rect migration. They hypothesized that the cause of most
incorrect cloud migrations has to do with incorrect configu-
ration. Gong said that his tool, CloudMig, analyzes configu-
ration errors. Gong first discussed the cloud, which is utility
driven, pay-as-you-go, and has elastic scalability. However,
unlike in the past, physical nodes are connected to virtual
nodes, and there are even virtual nodes to virtual nodes in
datacenters. Thus, system migration is non-trivial, con-
sidering we are now dealing with a multi-tier, multi-server
architecture. Alas, single host migration is not enough.
Component checklists and knowing dependencies are more
important than ever, as migration is a multi-step process
and error rates are reportedly high and time-consuming. To
make matters even worse, there are a plethora of dependen-
cies and implicit things that occur. Currently, manual pro-
cesses are used to fix migration errors. Unfortunately, this is
very error-prone and the larger the data set, the longer it will
take to fix them.

Their paper proposed a policy-based migration validation.
The setup for the experiment included physical machines,
one Hadoop server, and one Rubis machine. The aim was to

tions, the objectives. They have open sourced their objectives
so that anybody can take them and create their own training
programs and either contribute those freely or sell them com-
mercially.

Christian Bauernfeind, Freudenberg IT, said that they are
hiring, and he’s been realizing that each interview is a kind of
free-form certification exam that he’s coming up with on the
fly. How would psychometrics, doing proper exams, and basi-
cally testing for skill and not the ability to pass an exam apply
to the interview process? Dru suggested two things: look at
your own exam objectives and go through them, as they are
basic system administration tasks. Their exam concentrates
on BSD systems, but a lot of that would translate into any
system administration. She suggested finding a subset that
is important to you and have that as part of your process to
make up your own mini exam. Second, if you find that a lot of
the objectives would apply to the skills that you would want
to see, the certification group could set it up to have a proctor
come in and you could offer the exam to new hires. So do a
dozen or so at a time and maybe make it a requirement of
employment to be able to become certified.

Christian then wondered if they have a good source on how
to turn a given skill set into a good set of interview or exam
questions. Dru replied that they haven’t looked at it that way.
They have had some people in their group who actually work
for very large companies that deal with a lot of new hires and
have taken what they start with, something they call a JTA (a
Job Task Analysis), and they have used the JTA list basically
to see how people respond to those tasks. It’s usually a list of
200 tasks, and if an applicant could answer 120 of these, that
would indicate they have a very good skill set.

Eric Radman, D. E. Shaw Research, asked if they found they
have to give some people hints that you can type “man ls” or
“man intro” to find the answer. Dru said that’s an interest-
ing question; even when they put together their program
they have two levels of exams. The first-level exam is very
introductory, for junior-level sysadmins, and is a paper-based
exam. It’s multiple choice, but it was important that they put
together a program that wasn’t promoting memorization
over understanding. You wouldn’t get a question, for example,
saying, “Which switch to ls do you use to do X?” That really
is not for information. In the real world nobody memorizes
those, and in the real world you’ve heard of “man” before. You
do a “man ls” and you find your switch.

Their second level of exam is actually going to be lab-based
and more involved with concept testing. The rules of the test
will be that we won’t tell you which operating system you
use and we won’t tell you what tools to use. They will ask test
takers to meet an objective: for example, set up a mail server

 116 ;login: VOL. 37, NO. 2

of thousands of nodes? Marc proposed ranking edges based
on the likelihood that the inputs affect expected behavior. A
statistical approach is used: the number of times input F is
read by program P divided by the number of times program P
is invoked. As time progresses, rank is refined.

Marc also noted a few caveats with this approach, including
that inputs of many programs can be changed by options or
shell redirections, thus skewing the ratios. The solution is to
treat invocations in which these differ as separate programs.
In addition, for new executables such as different versions
of applications, Marc proposed using a stack approach. In
his work, many first-order dependencies for programs have
been ranked (e.g., ssh). Edge-to-files residing in well-known
directories may be increased (e.g., /etc/), while edge-to-files
in log or temporary directories should have rank decreased.
Popular objects are less likely to be the singular cause of
problems. Using this statistical approach, users can explore
“what if” scenarios by ranking paths and subgraphs. That is,
take the arithmetical average of all of its edges.

Marc also introduced the PQL (pronounced “Pickle”) lan-
guage to query the graph. He showed an example to retrieve
all the processes’ output objects that use sendmail.

Marc concluded by reiterating building a model of interac-
tions between system-like components. There are a number
of works in progress, including performance, integrating the
query warehouse with trouble ticket systems, exploring other
methods for extracting patterns in provenance graphs, and
making this work on a system with hypervisor.

Debugging Makefiles with remake
Rocky Bernstein

There was no presentation of this paper.

Invited Talks I: Security

Surveillance or Security? The Risks Posed by New
Wiretapping Technologies
Susan Landau, Visiting Scholar, Department of Computer Science,

Harvard University

Summarized by Erinn Looney-Triggs (erinn.looneytriggs@gmail.com)

Historically centralized technologies such as the telephone
network lent themselves easily to wiretapping. As technology
has progressed, certain facets, such as decentralized point-
to-point networks, have removed that ease, while others, such
as cloud architectures, have increased the ease of intercep-
tion. The US government, attempting to keep pace with a
perceived growing threat, has enacted laws broadening the
scope of wiretapping and easing oversight on wiretapping.

observe migration errors. Their paper put forth a categori-
zation of errors: dependency preservation (which includes
things like typos in dependency files), platform differences,
network connectivity, reliability, shutdown and restart,
and access control and security. They found that 36% of the
migration errors are due to dependency preservation. Tools
to manipulate and check configuration errors are critical,
and this is the goal of CloudMig.

CloudMig is based on the idea of policy validation. It helps
operators to weave important configuration constraints into
continual query-based policies and periodically to run these
policies to monitor the configuration changes, detecting and
alerting for possible configuration constraint violations.
CloudMig is semi-automated migration, and the architecture
is two-tier: one server and one client. CloudMig has been
tested on the same setup described above. Gong illustrated
a configuration policy layer and an installation layer on the
server. The experiment eliminated a good number of network
and performance difference errors and mitigated platform,
software, and hardware issues in Hadoop. The big lesson
learned was that implicit and hidden errors are paramount in
distributed apps.

Provenance for System Troubleshooting
Marc Chiarini, Harvard SEAS

Marc provided an overview of troubleshooting in a nutshell:
troubleshooting is hard and frequent triage is detrimen-
tal to the construction of good mental models. The ideal
way to develop such models is exposing hidden dependen-
cies between components and build modes of component
interactions that one can query. To accomplish this, Marc
introduced the idea of provenance. “Provenance” means col-
lecting and maintaining a history of interactions over time
(i.e., where do things come from?). A provenance for system
troubleshooting is a recorded history of digital process
creation, including environment variables, execution time,
parent process, arguments, and process destruction.

Marc described the use of an acyclic graph to organize all the
information, where nodes are objects and edges are potential
dependencies. It is important to note that the content passed
between objects is not analyzed. Marc illustrated a simple
example called wire_test that started with resolv.conf and
led to net manager, which in turn led to netman socket end-
point on the left and other inputs on the right. Netman socket
endpoint led to DBUS, which had two child nodes: dhcli-
ent socket endpoint as the left child and other inputs as the
right child. The dhclient socket endpoint led to the dhclient,
which led to the dhclient.conf file. Opening the dhclient.conf
file revealed that someone commented out domain-search,
host_name line. But what if a provenance graph has hundred

 ;login: APRIL 2012 Conference Reports 117

intelligence or talent are just fixed, so they focus on docu-
menting these qualities rather than developing them, and
they believe that success and perfect results will come from
innate talent alone, without effort. Mistakes and great effort
are then viewed as signs of failure.

People with a growth mindset view innate talent as the
foundation, so abilities can be developed through hard work.
Since working hard and making mistakes are considered to
be necessary for improvement, they are viewed as signs of
progress toward mastery, encouraging further effort.

Blank-Edelman emphasized that making mistakes is the
way to innovation. He summarized the way that individuals
can practice replacing fixed mindset thoughts with growth
mindset actions.

Intrinsic vs. extrinsic motivation was discussed next, refer-
ring to Daniel Pink’s book Drive. Although sysadmin work
can contain many algorithmic (repetitious) tasks, quite a
bit of it is more heuristic and can contain a lot of intrinsic
reward. External rewards can motivate for a while, but the
effect will wear off and result in poorer work quality overall.
Elements of a work environment that can boost motivation
are autonomy, mastery, flow, and having a sense of purpose.

Keeping these elements in mind, the discussion turned to
making change. Blank-Edelman suggested changing just
one thing as a way to start, such as increasing autonomy by
negotiating to own a whole project rather than just helping
with part of it. Mastery of new technology could be developed
by using virtual machines to create an environment safe for
experimentation that would not affect production. To effect
change in the organization, the focus should be on persuad-
ing the large group of people who are neither advocates nor
opponents of the new idea, as this would give a clear majority
in favor.

Finally, Blank-Edelman explained ways to change your own
perception—especially necessary as a sysadmin, where
continually changing goals can become frustrating. He gave
examples of ways to turn tasks into games and to increase
motivation to do them. Several books were displayed for fur-
ther reading and inspiration.

After the talk, one audience member recommended the
“Quantified Self” Web site as an additional resource.

Project Cauã
Jon “maddog” Hall, Linux International and Project Cauã

No report is available for this session.

The legal framework that underlies both the right to privacy
and the laws that enable wiretapping starts with the Fourth
Amendment, which grants the right to privacy. The first
wiretapping laws were not enacted until 1968, with a revision
in 1978. Since the 1994 advent of CALEA, there have been an
escalating number of laws enhancing and broadening wire-
tapping capabilities.

As the use of wiretapping has increased, equipment from
manufacturers such as Cisco has commoditized wiretapping
abilities. This has in turn increased the attack surface for
illegitimate use of said equipment for nefarious purposes. In
short, with the increasing ease of wiretapping has come the
increasing ease of illegal or unwanted wiretapping from third
parties.

These increased risks have to be balanced against the need
for wiretapping, just as increased encroachment onto privacy
needs to be carefully balanced against the legitimate needs
for encroaching upon said privacy.

How is law enforcement coping with the use of encryption?
It appears that other tools, including pattern analysis, are
able to extract enough information in some cases; in others,
law enforcement will simply have to spend more time and
money. The use of BlackBerry devices in India and how they
were coping with RIM’s end-to-end encryption was also
discussed. The banning of BlackBerries and the changes
that RIM is putting into place specifically for India should
assuage the country’s concern. Concern was also voiced
about the costs of CALEA enforcement on ISPs; in a world
using carrier-grade NAT, a larger ISP may generate up to a
terabyte of tracking data a day. Susan responded that CALEA
may have to be reworked to take this concern into account.

Invited Talks II: Sysadmin in/and the World

Copacetic.
David N. Blank-Edelman, Northeastern University College of Computer

and Information Science

Summarized by Deborah Wazir (dwazir@gmail.com)

David Blank-Edelman presented several ways sysadmins
could become happier at work, despite the stress, setbacks,
and roadblocks we all experience in this line of work. The
techniques were organized around the themes of mindset,
motivation, and making change.

First, drawing on work published by Dr. Carol Dweck, Blank-
Edelman covered the differences between a fixedand a
growth mindset.

 Dr. Dweck explains (http://mindsetonline.com) that people
having a fixed mindset believe that basic qualities such as

http://static.usenix.org/events/lisa11/tech/techspeakers.html#Hall

 118 ;login: VOL. 37, NO. 2

and whether that evidence appeared in more documents.
How did they monitor such a complex system? There was
a team of about 20 people working on various aspects of
certain engines, and if something was wrong with an answer,
they could direct the result to the person or persons handling
the related engine. An audience member pointed out that
categories themselves can have puns built into them, and
Michael agreed, saying that categories have to be analyzed by
pun engines, just like words surrounded by quotes. Some-
one asked how much they studied humans, and the answer
was “a lot.” There are lots of strategies in Jeopardy, and they
compared their strategies to human strategies. Humans
frequently start at the top and work down. Watson doesn’t.
Watson goes to the bottom rows, going for the Daily Doubles,
which allow players to double their winnings.

Michael then displayed a graph showing Watson’s progress
compared to human winners. Over the four years of the
project, Watson went from very poor to the territory of the
best human players. Michael said that he was worried that
Watson would get too good, and that could result in a back-
lash against devices like Watson. On a single node, a single
question would take about 2 hours on a 2.6 GHz to run. They
parallelized the task over 2880 cores, reaching 2.6 seconds,
which is what they needed to compete with humans. Adding
more cores may not help much, as there is a certain amount of
overhead.

The real goal is to make Watson useful. One of the first
areas of interest would be in answering health questions.
Other areas could be tech support, business intelligence,
and improved information sharing in government. Someone
quipped, “Skynet,” at the mention of government, but the goal
is improving citizens’ ability to get answers quickly from gov-
ernment. Someone else asked how much time it would take to
specialize Watson for something else. Michael answered that
they have built tools for analyzing data and could reuse those
tools. The same person pointed out that the Jeopardy version
had betting that relied on the confidence that an answer is
correct. Michael said that the betting engines wouldn’t be
needed, but a lot of other engines would prove useful.

Michael saved the hardware slide for last: 90 Power 750 serv-
ers, 2880 POWER7 cores at 3.6 GHz, with 16 TBs of memory
and 20 TBs of disk, in 10 racks. These run SUSE Linux,
UIMA (Unstructured Information Management Architec-
ture) software, their own software, and Hadoop. Watson is
good, but it takes 80 kW of power and 20 tons of cooling. The
human brain fits in a shoebox, can run on a tunafish sand-
wich, and can be cooled with a hand-held paper fan. We have
a long way to go, Michael said.

Closing Session

What Is Watson?
Michael P. Perrone, Manager, Multicore Computing, IBM T.J. Watson

Research Center

Summarized by Rik Farrow (rik@usenix.org)

Michael gave the closing talk, thanking his audience for
sticking around. He explained that although he had worked
on Watson, he wasn’t responsible for most of the algorithms
that provided the magic sauce. He then went on to tell his
audience how Watson is different from other forms of search.

Michael began by asking how many people in the audience
had seen the PBS show, then if anyone was not familiar with
Jeopardy? One man from Scotland piped up, another person
said he lived under a rock. Michael dodged, then went on to
say that in the past, grep was his search tool. Next, Google
became the tool of choice, but using Google requires putting
some thought into the proper search terms.

Jeopardy poses much more difficult problems to solve.
Michael provided some example Jeopardy answers, using
them to illustrate the importance of being able to parse
natural language and tease out the important parts of each
answer. Winning at Jeopardy also requires broad knowledge
and quick answers.

Over 350 TBs of text were parsed to create syntactic frames,
and the results processed again to create semantic frames. A
semantic frame might be “Water is a fluid (.9)” or “Ships sink
(.5),” where the number represents the degree of certainty.
As more text is processed, it is cross-correlated with existing
frames, increasing or decreasing certainty. Simply matching
frames with answers doesn’t work, because finding matches
may involve temporal or geospatial reasoning, statistical
paraphrasing, decomposition, and synthesis.

Michael took a break for questions, most of which he said he
would answer later in the presentation. Then he presented
some examples of early responses by Watson, provoking
laughter and applause because certain key engines were lack-
ing. For example, under the category Milestones, the answer
“In 1994, 25 years after this event, [one] participant said,
‘For one crowning moment, we were creatures of the cosmic
ocean.’” While the correct question was, “What was the
Apollo 11 moon landing?” Watson posited, “What is the Big
Bang?” as Watson had no engine at that point that took time
into account as a constraint. There are hundreds of engines
in Watson.

Someone asked how they measured reliability, and Michael
sighed and said they don’t have a good answer for that. One
way was how many times some particular evidence appeared

http://static.usenix.org/events/lisa11/tech/techspeakers.html#Perrone

 ;login: APRIL 2012 Conference Reports 119

there to keep my data” is a good definition. This isn’t new to
most of us. Businesses with certain regulatory requirements
(FERPA, HIPAA, and SOX) may have requirements prevent-
ing them from moving certain data (and thus the processing
thereof) to the cloud. The ability to spin up a machine and
provision it via some configuration management system
without having to do actual work (racking, connecting cables,
and so on) is a good thing. We’ll probably come up with differ-
ent terminology in the industry.

Next up we discussed increasing regulation of Internet activ-
ity. Governments don’t seem to have a clue about the Internet;
each country doesn’t seem to understand that they don’t
control the whole Internet. There’s a lot more censorship
on national boundaries (Australia, China, and Egypt were
mentioned, and before we went to press the USA had legisla-
tion pending as well), and we’re concerned where this might
be leading. SAGE-AU managed to get the Australian legis-
lation put on hold. The room seemed to be split on whether
lobbying would really have any effect, though stewardship
(such as ARIN for IP addressing) might be a good thing. This
was a fairly gloomy discussion. One person noted that we
have to give politicians an alternative; they’ll take the most
expedient thing. We need more companies to help enable the
environment we want.

Our annual lightning round of new-to-you tools seemed to
fall into two categories: software (Augeas, cloud-based VM
systems, Dropbox, Evernote, f.lux, git, Google+ Hangouts,
Internet in the pocket (any smartphone), OneNote, Open-
Stack, Puppet, Trac, vimdiff, vpnc, WordPress) and non-
technological (changing jobs, getting engaged, new mattress,
paying others to do work for you, taking vacations, and team-
building exercises at shooting ranges).

That segued into career paths. The general question was how
to move out of a too-stable, unchanging environment where
there’s no opportunity for growth without going into manage-
ment; several believe they’re in that kind of workplace. Com-
panies increasingly claim, “We’re interested in people who’ve
been around for a while,” but the reality is that they’re hiring
younger, inexperienced people who are more willing to work
ridiculous hours for less money. Becoming senior often leads
to becoming siloed. We took a straw poll: one person has been
at his job for 17 years; about half a dozen were at seven years
or more. Having a technical growth path is important. The
problem with even tall technical tracks is they get narrow
pretty quickly. Having other senior people around (even in
different silos) to learn from can be helpful.

On the subject of interviewing, understanding the deeper
concepts is much better than trivia; make the interview ques-
tions open-ended so you can see how the candidate thinks.

How cost-effective was this project? Michael said he didn’t
know, but the publicity was priceless. Does Watson teach us
anything about human brains? Michael answered that he
likes to think about this. The algorithms they use are statisti-
cally driven, and he wouldn’t want to tie this to human brains
too tightly. Michael said perhaps he could discuss this over a
beer later.

Someone asked about the buzzer. Michael showed the setup
for Jeopardy, and explained that buzzers are not active until
the game host has finished reading the answer. Watson has
control of a solenoid that presses its button. Michael also
pointed out that humans can hit their button when they intuit
that they know the answer, while Watson will not answer
until it has calculated the answer. Were linguists involved?
No, that while natural language experts were involved,
what was most important was to create a system that could
learn. How many sysadmins were used? Just one or two, as
the whole project was run on a shoestring. Had they rated
provenance? Yes, they ranked their import sources, where an
encyclopedia was rated with more confidence than Twit-
ter, as an example. How had they handled software updates?
Michael didn’t know for certain.

Workshop Report

Advanced Topics Workshop
Summarized by Josh Simon (jss@clock.org)

Tuesday’s sessions began with the Advanced Topics Work-
shop; once again, Adam Moskowitz was our host, modera-
tor, and referee. We started with our usual administrative
announcements and the overview of the moderation software
for the new folks (more than in any past year). Then we went
around the room and did introductions. Businesses (includ-
ing consultants) outnumbered universities by about 9 to 2 (up
from 4 to 1); over the course of the day, the room included 6
LISA program chairs (past, present, and future, the same as
last year).

For the third year in a row, our first topic was cloud comput-
ing. We still don’t have a common definition, though the room
seemed to agree that we’re moving toward the “Whatever as
a Service (WaaS)” model with software, platform, and infra-
structure as the most common. One problem is the relatively
low amount of data on the scalability of the services; when
the cloud is abstracted away from our control, there can be
problems if production has capacity or bandwidth or speed
requirements. When you grow in 18 months as big as the
current cloud, that won’t work. Anything with growth may
not be appropriate for the cloud, though that’s not necessarily
true for well-understood and well-behaved Web applications.
For some, the consumer view of “A place somewhere out

 120 ;login: VOL. 37, NO. 2

a universal professional identity is missing from the field.
The medical profession (doctor/nurse) was brought up as
an example. However, humans only work in specific known
ways; IT can work in many different ways, so it’s more com-
plicated.

One tangential discussion was on the term DevOps. Some see
it becoming as much a buzzword as cloud. We’re not integrat-
ing the big DevOps communities into the USENIX/SAGE/
LOPSA community. Is it “deploy multiple times a day to Pro-
duction”? “Continuous integration via Hudson or Jenkins”? It
should also be remembered that what works (or not) for Web
sites definitely won’t for larger enterprises. Even configura-
tion management hasn’t penetrated as much as people seem
to think it has. We don’t have best practices for CM yet. We
don’t have best practices for code review yet. There are no
white papers on this.

After our lunch break we took a quick poll: only 11 of the 26
present at the time still run their own email service (either at
home or offsite), and nine more have stopped doing so in the
past year. One hasn’t outsourced because it keeps his skills
sharp. Another has his public blog adminned by someone in
Romania for $50 every time the blogging software needs to
be updated.

Our next discussion was on large scalable clustered stor-
age. One company represented generated a lot of data (1 TB/
day) that they need to keep forever, and they see that growing
to 10 TB/day. The question was, what are people looking at
for data? Are they staying with spinning media or moving
toward flash or other solid-state drives? Much depends on
your use profile; one site uses EMC Celera for non-parallel-
ized storage, but their profile is user home directories and
scientific data in an NFS model. Most people with large stor-
age needs seem to be using GPFS. Other mentioned products
include Fusion I/O cards, Infiniband, NetApps, and Violin.
The network wonks present wondered about the network
behind this large storage; consensus seems to be to use dedi-
cated networks, though some have upgraded their network
switches to terabit backplanes. On the subject of failover,
most seem to be failing over the servers but not necessarily
the storage independently from the servers.

Next we took a quick lightning round asking what the next
useful fad will be in the next two years. Answers included
configuration management, death of tape, decline of social
networking, increasing use of app store-like software
distribution within companies, infrastructure as a service
(IaaS) increasing, IPv6 deployment, JSON APIs, mobile
security, more private cloud products, moving away from big
iron databases toward NoSQL/MongoDB, moving away from
running machines toward providing APIs, moving away from

When you interview for a new job, always target the job after
that. Remember that you’re interviewing them as much as
they’re interviewing you. It’s also probable that you know
more than you realize. Practice interviews are good. Honing
your higher-level thinking and problem-solving skills is also
useful. We all have contacts; use your networks and possibly
bypass the formal recruiting process.

On the subject of hiring, several have had problems finding
enough high-quality people in the pipeline. Finding those
who’re interested in looking at the big picture is problematic
and frustrating. One person believes that intelligent com-
panies don’t care so much about you knowing everything
already but just being “clue-ready” to pick up their oddities
(although HR has been filtering a lot on the specifics). Hiring
managers working with HR to build the filter may be helpful.
However, another is seeing the opposite: word on the street is
that managers want very specific things. This may be region-
specific. Any company needs to understand there’s a learning
curve, and hire people with clue so they can learn the specific
technology. It’s not a bad thing to come in understanding the
space even if you don’t have specific expertise. Demonstrate
proficiency on the stuff you’re doing now and how you’ve been
able to pivot in the past. However, it may depend on where
you’re going: Big outsourcing organizations nowadays seem
to look for the specifics so they can hit the ground running
at the client, whereas research organizations or universities
may be more willing to hire clue-ready people without spe-
cific skills or experience in a specific technology. One person
had a senior position open for six months; they’d find a can-
didate they liked, but would take too long to get back to them
and the candidate would slip away. They wanted to hire a
candidate to revitalize and reinvigorate the team. They got a
new recruiter on the HR team and within a month they filled
all three open positions with amazing people. Sometimes you
really do need a good recruiter.

The next major discussion was about what the DevOps and
sysadmin community needs but doesn’t have. We already
have contacts, national and regional conferences, some sorta-
magazines, a mentoring program (LOPSA), and mailing lists.
One immediate response was lobbyists, linking back to the
previous discussion on regulation. Some disagreed, believ-
ing that improving public perception of what we do would
be helpful even without political lobbying. One believes that
“sysadmin” is too narrow a term; many of us do more than
just systems. We’d be better served as a community if we
had better labels (for example, service administration): it’s
systems, databases, services, networking and connectivity,
and so on. DevOps is another facet of the whole, and it’s being
integrated, but names are important and the “sysadmin”
name may be too restrictive. One possible problem is that

 ;login: APRIL 2012 Conference Reports 121

its. The company president’s general attitude is that if there’s
a crisis of technology, he asks whether anyone’s going to die if
it isn’t fixed immediately. The trick is convincing your man-
agement of that. However, if management doesn’t support
having a work-life balance, you’re working in the wrong place.
The final comment was that you get more respect by respect-
ing yourself and enforcing your own work-life balance.

We had a very brief discussion about patents. There have
been a lot of lawsuits about technology. One person was sub-
poenaed in a patent suit between two companies he’d never
heard of; having written a PAM module a decade ago was
apparently evidence of prior art. Do software patents help or
hinder innovation? The way the (US) law is written and the
decision is done, except for clear prior art the Patent Office
has to grant the patent because something isn’t prohibited,
which can hinder innovation. How sysadmins look at things
is different from how the law is written. LISA is important
because papers help show prior art. A couple of years back a
commercial company tried to patent configuration manage-
ment, but Anderson’s 1994 paper was prior art such that the
patent was denied. The best way to fight this is publish your
work; once it’s published, it’s prior art. However, many are
held back by fear of being sued for violating someone else’s
patent.

Next someone asked if there was management-level publicity
about sysadmins going away. Some are seeing a lot of this, in
part because developers see that cloud services let them jump
right to release. Others noted that the thought of some new
technology making sysadmins obsolete has been around for
the past decade, such as with autonomic computing. One per-
son suggested that we could change the sysadmin role away
from “operations drone” toward “architect.” With the auto-
mation and configuration management tools we have today,
many of the “mindless” tasks can be automated away, and
the sysadmin can take on more of a higher-level architect,
designer, or decider role and improve the service and infra-
structure. Another idea was to have a gatekeeper between
Development and Production, selling that their knowledge
of security, process, scalability, and so on is important and
relevant. One person’s environment bills every product and
service back to the requesting department. It was noted that
the real answer depends on the actual cause. What’s tickling
management’s nerves? If it’s cost, argue about the cost to the
business in the event of outages, in terms of financial impact,
publicity, and goodwill.

After the afternoon break, we discussed women in tech-
nology. One of our participants is involved in a number of
research areas and focus groups. They asked if we’re seeing
women in technology, if they are showing up in applicant
pools (under- or overqualified), if we have any outreach

the cloud back to local, SSD not spindles as primary storage,
statistical analysis about systems, UI improvements (facial
recognition, motion detection, and Siri- or Watson-like inter-
faces), and virtualization.

We next discussed workstation replacement. Only four peo-
ple said they use virtualized desktops. Some environments
reimage the workstation on logout (mainly in public labs), and
most seemed to prefer physical workstations, due to perfor-
mance issues. Environments that use spare CPU cycles for
processing (such as Condor) prefer physical to virtual work-
stations for performance reasons. Virtual desktops assume
high-bandwidth and low-latency networking between the
user and the physical hardware, which is not universally true.
Furthermore, most seem to think virtualized desktops don’t
save money; hardware costs are falling and local processors
and capabilities are getting cheaper, so centralizing the ser-
vices for anything other than administrative overhead may
not have a benefit except in areas where power and cooling
are your expensive limiting factors.

Next we discussed life balance and stress management. IT
culture seems to still be 60- to 80-hour work weeks, which
leads to a lot of burnout. Some places bought toys like ping-
pong tables (“startup mentality”), but we should change
the culture more toward mentoring the younger or juniors,
learning how to say “No” despite pressure, and educating
management to have them cause less stress. There’s a dif-
ference between good stress (“I bet you can’t do this over the
weekend...”) and bad stress (“... or you’ll be fired on Monday”).
At one represented employer it’s good to hit or be within some
percentage of the service-level agreement, but bad to be out-
side that percentage, even if it’s responding too fast. In other
words, meet but don’t exceed your SLAs.

IT often manages to pull a magic solution when backed into
a corner, so expectations are set (perhaps unreasonably)
high. One method of pushback is to say, “Here’s what I’m
working on; what do you want me to drop to work on this
new thing?” and let management make the call. If your work
runs into your personal time, you can use some of the work
day to recover (such as running errands, making doctor’s
appointments, etc.). One person noted that adding a fitness
regime can help with stress as well, though not even half of
those present have a regular fitness routine. Another person
pointed out that there are strict rules for what overtime is
allowed in Europe, and there was a brief tangent on cultural
differences between US and European time expectations.

One person’s employer allows everyone to take one day
per month to not come to work (managing their time); the
requirement is to remain in town and available if you’re
needed. They tend to use it for kids’ functions or doctor’s vis-

 122 ;login: VOL. 37, NO. 2

included architecture design and development, career plan-
ning (finding better jobs, increasing team visibility in a good
way, managing the existing job, moving between general-
ized and specialized), data mining and statistical research,
decommissioning old hardware, delegating everyday tasks,
doing more DevOps type work, hiring more people, managing
more data, publishing new books, recreating one’s environ-
ment from the ground up, and training interns. However, for
some, not much is changing that quickly.

5th ACM Symposium on Computer Human
Interaction for Management of IT

Boston, MA
December 4–5, 2011
Summarized by Kirstie Hawkey (hawkey@cs.dal.ca), Nicole Forsgren
Velasquez (nicole.velasquez@pepperdine.edu), and Tamara Babaian
(tbabaian@bentley.edu)

The 5th ACM Symposium on Computer Human Interaction
for Management of Information Technology (CHIMIT) was
held in Boston, Massachusetts, on December 4–5, 2011 (visit
chimit.acm.org for detailed information about its organiza-
tion and program). Information technology (IT) is central
to modern life and occurs in our homes as well as in enter-
prises. It is important that we develop usable solutions for
those using, configuring, and maintaining the software and
hardware components (e.g., wireless access points, network
routers, firewalls, virus scanners, databases, Web servers,
storage systems, and backup systems) that support our work
and personal lives. CHIMIT has been addressing human-
computer interaction for IT management since 2007. As in
past years, the CHIMIT symposium was held adjacent to the
USENIX LISA (Large Installation System Administration)
conference to encourage attendance by the system adminis-
trators whom CHIMIT researchers aim to support. However,
it is important to note that CHIMIT research also consid-
ers the problems of home users, who too often take time and
resources away from the real work at hand in order to manage
the underlying IT infrastructure.

The morning session began with a keynote address by Marti
A. Hearst, “Bringing HCI to the Federal Government.” Marti
is an HCI professor in the UC Berkeley School of Informa-
tion who has been on leave of absence to serve as the Chief
IT Strategist at the US Patent & Trademark Office. Her talk
focused on how the infusion of usability techniques helped
the current administration transform the way US federal
agencies design and build information technology. In the
afternoon, Kyrre Begnum (Oslo and Akershus University)
presented the invited talk, “What a Webserver Can Learn

ideas, and so on. One environment has a lot of women in both
tech and leadership roles and is seeing qualified candidates
of both genders, although women tended to be more on the
development than the sysadmin side, and there were almost
no women DBA candidates. Another environment has a lot of
female developers and project and program management, but
practically none in service engineering/SA.

Some say that IT in general has a lot of unfriendliness toward
women. One person observed that when we say, “We’re not
creating a hostile work environment,” it may be untrue. We
need to treat candidates or colleagues solely on their techni-
cal merits, not on their gender. In the past, women needed
to be aggressive enough to get past the Old Boys’ Network
to get in. Also there’s the culture of “She’s not that good”
from guys, which may be subconscious from many men. One
person noted that the unconscious gender-biased behavior
is learned. One job he was at had 40% women in technology.
They felt little to no bias against them because so many were
there it was considered “normal.”

One person has been interviewing students for a decade and
in that time he’s had all of three female applicants. He was
able to hire one; the other two weren’t the best for the job at
the time. That one has since left, in part because she didn’t
have the skill set yet. It’s too late if we wait until they’re in
industry; we need to get them involved earlier. We need to
instill the interest in technology at a younger age (college is
too late). He sees no non-US females and only a small number
of women overall. Most in the room seem to agree that we
need more women in the field; we need to get more women
(girls) involved in science, technology, engineering, and math
(STEM), especially where there are no tech classes. However,
we’ve observed that SEM is easier than T.

Tangentially, someone was triggered to think about statistics
by a previous discussion. We’re likely to look at more com-
plex metrics over time that are statistically defined (95% of
requests under n milliseconds, 99% under m milliseconds,
and so on). Running large-scale services, you can’t use “10%
above peak” as a metric. It’s also an educational problem. We
need to think statistically about latency and capacity and
what’s “good enough.” Similarly, we need to move from “I ran
this test 10 times and got results of x” and toward “I have a
95% confidence that...,” which is a better metric. We’re also
seeing a drive for comparisons (such as this week versus last
week) and trending analysis. Several people think this could
make a good Short Topics book. The final comment was
that you have to know what’s normal before you can define
abnormal.

We ended the workshop with our final lightning round, ask-
ing what is going to be new-for-you in the next year. Answers

 ;login: APRIL 2012 Conference Reports 123

u The importance of mental models in system administra-
tion. How can we help with the documentation and devel-
opment of tools and visualizations?

u Related to mental models is complex system visualization.
How can tools help system administrators “see” their sys-
tem at various levels of detail and from different perspec-
tives?

u Knowledge management and knowledge sharing, both
within teams and across organizations. How can we more
easily capture the information? How can we better struc-
ture that information for both browsing and searching?

u Communication and collaboration. System administrators
work at the intersection of several groups of stakeholders:
how can we better understand their work and responsi-
bilities to help them communicate and collaborate more
effectively and efficiently?

u User experience in system administration. Many of us
focus on graphical user interfaces, which are very im-
portant, but what does a good user experience mean for a
command-line interface? How can we improve the user
experience in text-based environments? As an extension,
how can we use usability studies to help us identify the
pitfalls in scripting languages? What heuristics are useful?

Feedback from the workshop has been very positive, with
participants indicating they were pleased with the topics,
mix of participants, the opportunity to network and test
ideas, and the overall concept of mixing the two groups. Out-
comes of the workshop include joint research projects and
a possible magazine article. The workshop organizers offer
a special thanks to ACM SIGCHI, who provided a grant to
allow this workshop to take place.

All in all, we consider CHIMIT to have been successful
this year, as we achieved our goal of fostering collaboration
between researchers in fields such as human-computer
interaction, human factors, and management and service
sciences, and practitioners in the management of large IT
systems. However, we continue to seek ways to increase
the number of submissions to CHIMIT and the number of
attendees as we look to the future. We are currently in the
process of restructuring CHIMIT to try to better meet the
needs of a greater cross-section of its constituents. Kirstie
Hawkey, General Co-Chair (hawkey@cs.dal.ca), and Paul
Anderson, Technical Co-Chair (dcspaul@ed.ac.uk), are
beginning their second terms on the Organizing Committee.
They would welcome suggestions about how to improve the
next CHIMIT.

from a Zebra and What We Learned in the Process” on behalf
of his co-author Johan Finstadsveen (University of Oslo).
This engaging talk had the audience considering how the
defensive tactics of wildlife species can inspire new defense
mechanisms for our IT infrastructure. We also enjoyed two
invited presentations that exposed CHIMIT attendees to
relevant research published in other venues last year. These
included “The Margrave Tool for Firewall Analysis” (T.
Nelson et al.), which was prsented at LISA in 2010, and “Heu-
ristics for Evaluating IT Security Management Tools” (P.
Jaferian et al.), which won the Best Paper award at the Sym-
posium for Usable Privacy and Security (SOUPS) in 2011.

The technical program included three presentations of
papers related to the work of system administrators. The
first, “Understanding and Improving the Diagnostic Work-
flow of MapReduce Users” (J.D. Campbell et al.) was a
joint submission from nine researchers from Intel Labs
Pittsburgh, Carnegie Mellon University, and DSO National
Laboratories in Singapore. This was followed by research
from IBM, “Description and Application of Core Cloud User
Roles” (T. Bleizeffer et al.). Another presentation by IBM
Research Brazil (C. de Souza et al.), “Information Needs of
System Administrators in Information Technology Service
Factories,” provided a novel perspective on the work in large
IT service factories. We had one presentation, “Third-Party
Apps on Facebook: Privacy and the Illusion of Control” (N.
Wang et al., Pennsylvania State University) that focused on
end users and the privacy issues they face on Facebook due to
the actions of third-party applications.

The poster session included four posters from academic and
industrial research and generated a lively exchange between
the conference attendees and poster presenters. Lance
Bloom from Hewlett Packard presented design principles
for IT storage capacity management. Ryan Dellolio from
George Washington University described a service-oriented,
user-centered approach to business process management for
back-office IT operations. Kurt Keville from MIT described
the technologies he and his colleagues used to create and test
a High Performance Embedded Computing (HPEC) cluster.
Kirstie Hawkey from Dalhousie University presented her
research agenda in visual analytics for system administrators.

On Monday, December 5, a special joint workshop was held
with LISA, bringing the CHIMIT research community and
practicing system administrators together to discuss current
topics and interests. The workshop hosted 12 participants
hailing from several sectors, including academia, govern-
ment, and both large and small organizations. Overlapping
areas of interest identified in the workshop included, but are
definitely not limited to:

Do you know about the USENIX Open Access Policy?

USENIX is the first computing association to o	er free and open
access to all of our conferences proceedings and videos. We stand
by our mission to foster excellence and innovation while supporting
research with a practical bias. Your membership fees play a major
role in making this endeavor successful.

Please help us support open access.
Renew your USENIX membership

and ask your colleagues to join or renew today!

www.usenix.org/membership

BECOME A USENIX SUPPORTER AND REACH YOUR TARGET AUDIENCE
The USENIX Association welcomes industrial sponsorship and offers custom packages to
help you promote your organization, programs, and products to our membership and
conference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted
audience, we offer key outreach for our sponsors. To learn more about becoming a
USENIX Supporter, as well as our multiple conference sponsorship packages, please
contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical
excellence and innovation in neutral forums. Sponsorship of USENIX keeps our
conferences affordable for all and supports scholarships for students, equal
representation of women and minorities in the computing research community, and the
development of open source technology.

http://www.usenix.org/usenix-corporate-supporter-program

Each issue delivers technical solutions to the

real-world problems you face every day.

Learn the latest techniques for better:

on Windows, Linux, Solaris, and popular varieties

of Unix.

Admin: ReAl SolutionS
foR ReAl netwoRkS

• network security

• system management

• troubleshooting

• performance tuning

• virtualization

• cloud computing

LinUx ProS read

LINUX PRO
Enjoy a rich blend of tutorials, reviews,
international news, and practical
solutions for the technical reader.

Subscribe now!

linuxpromagazine.com/trial

 3 issues
 + 3 DVDs
 for only

 $3

Find Admin mAgAzine on a newsstand near you!

SubScribe now At admin-magazine.com/subs

ad_login_admin+lpm.indd 1 3/5/12 8:33:47 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

STAY CONNECTED.. .

USENIX Federated Conferences Week will feature:
• USENIX ATC ’12: 2012 USENIX Annual Technical Conference
• WebApps ’12: 3rd USENIX Conference on Web Application Development
• HotCloud ’12: 4th USENIX Workshop on Hot Topics in Cloud Computing
• HotStorage ’12: 4th USENIX Workshop on Hot Topics in Storage and File Systems
• TaPP ’12: 4th USENIX Workshop on the Theory and Practice of Provenance
• NSDR ’12: 6th Workshop on Networked Systems for Developing Regions

www.usenix.org/conferences/fcw

REGISTER
BY MAY 21
AND SAVE!

JUNE 12–15 • BOSTON, MA

2012 USENIX FEDERATED CONFERENCES WEEK

