
F E B R U A R Y 2 0 1 2 V O L . 3 7 , N O . 1

Server Message Block in the Age of Microsoft Glasnost
C H R I S T O P H E R R . H E R T E L

Tasting Client/Network/Server Pie
S T U A R T K E N D R I C K

Three Years of Python 3
D A V I D B E A Z L E Y

Conference Reports from the 14th International
Workshop on High Performance Transaction Systems
(HPTS)

U P C O M I N G E V E N T S

3rd USENIX Conference on Web Application
Development (WebApps ’12)

June 13–14, 2012
http://www.usenix.org/webapps12

4th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’12)

June 12–13, 2012
http://www.usenix.org/hotcloud12
Submissions due: March 8, 2012

4th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage ’12)

June 13–14, 2012
http://www.usenix.org/hotstorage12
Submissions due: March 12, 2012

4th USENIX Workshop on the Theory and
Practice of Provenance (TaPP ’12)

June 14–15, 2012
http://www.usenix.org/tapp12
Submissions due: March 31, 2012

6th Workshop on Networked Systems for
Developing Regions (NSDR ’12)

June 15, 2012

21st USENIX Security Symposium
(USENIX Security ’12)

August 8–10, 2012, Bellevue, WA, USA
http://www.usenix.org/sec12

15th Workshop on Cyber Security Experimenta-
tion and Test (CSET ’12)
C O - L O C AT E D W I T H U S E N I X S E C U R I T Y ’ 1 2

August 6, 2012, Bellevue, WA, USA
http://www.usenix.org/cset12
Submissions due: April 19, 2012

3rd USENIX Workshop on Health Security and
Privacy (HealthSec ’12)
C O - L O C AT E D W I T H U S E N I X S E C U R I T Y ’ 1 2

August 6–7, 2012, Bellevue, WA, USA
http://www.usenix.org/healthsec12
Submissions due: April 10, 2012

In Cooperation: EuroSys 2012
S P O N S O R E D B Y A C M S I G O P S I N C O O P E R AT I O N W I T H U S E N I X

April 10–13, 2012, Bern, Switzerland
http://eurosys2012.unibe.ch

2nd USENIX Workshop on Hot Topics in Man-
agement of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE ’12)
C O - L O C AT E D W I T H N S D I ’ 1 2

April 24, 2012, San Jose, CA, USA
http://www.usenix.org/hotice12

5th USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET ’12)
C O - L O C AT E D W I T H N S D I ’ 1 2

April 24, 2012, San Jose, CA, USA
http://www.usenix.org/leet12

9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’12)
S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H A C M S I G C O M M A N D
A C M S I G O P S

April 25–27, 2012, San Jose, CA, USA
http://www.usenix.org/nsdi12

In Cooperation: 5th Annual International
Systems and Storage Conference (SYSTOR 2012)
I N C O O P E R AT I O N W I T H A C M S I G O P S (P E N D I N G) A N D U S E N I X

June 4–6, 2012, Haifa, Israel
http://www.research.ibm.com/haifa/conferences/
 systor2012

4th USENIX Workshop on Hot Topics in
Parallelism (HotPar ’12)

S P O N S O R E D B Y U S E N I X I N C O O P E R AT I O N W I T H A C M S I G M E T R I C S ,
A C M S I G S O F T , A C M S I G O P S , A C M S I G A R C H , A N D A C M S I G P L A N

June 7–8, 2012, Berkeley, CA, USA
http://www.usenix.org/hotpar12

2012 USENIX Federated Conferences Week
June 12–15, 2012, Boston, MA, USA

2012 USENIX Annual Technical Conference
(USENIX ATC ’12)

June 13–15, 2012
http://www.usenix.org/atc12

F O R A C O M P L E T E L I S T O F A L L U S E N I X A N D U S E N I X C O - S P O N S O R E D E V E N T S ,
S E E H T T P : // W W W . U S E N I X . O R G / E V E N T S

E D I T O R

Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R

Jane-Ellen Long
jel@usenix.org

C O P Y E D I T O R

Steve Gilmartin
proofshop@usenix.org

P R O D U C T I O N

Arnold Gatilao
Jane-Ellen Long
Casey Henderson

T Y P E S E T T E R

Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N

2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

http://www.usenix.org
http://www.sage.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
nonmembers are $125 per year.
Periodicals postage paid at Berkeley, CA,
and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth
Street, Suite 215, Berkeley, CA 94710.

©2012 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designa-
tions appear in this publication and USENIX
is aware of a trademark claim, the designa-
tions have been printed in caps or initial
caps.

F E B R U A R Y 2 0 1 2 , V O L . 3 7 , N O . 1

O P I N I O N

Musings R I K F A R R O W .2

F I L E S Y S T E M S

Btrfs: The Swiss Army Knife of Storage J O S E F B A C I K .7

Data Availability and Durability with the Hadoop Distributed File System R O B E R T J .

C H A N S L E R . 16

Server Message Block in the Age of Microsoft Glasnost C H R I S T O P H E R R . H E R T E L 23

NFSv4 A L E X M C D O N A L D . 28

S Y S A D M I N

Tasting Client/Network/Server Pie S T U A R T K E N D R I C K . 36

Netflix Heads into the Clouds: Interview with Adrian Cockcroft R I K F A R R O W 44

C O L U M N S

Practical Perl Tools: CSV and the Spreadsheet Go A-Wanderin’ D AV I D N .

B L A N K - E D E L M A N . 47

iVoyeur: Changing the Game, Part 2 D AV E J O S E P H S E N . 55

Three Years of Python 3 D AV I D B E A Z L E Y . 60

/dev/random R O B E R T G . F E R R E L L . 68

B O O K S

Book Reviews E L I Z A B E T H Z W I C K Y, W I T H S A M S T O V E R . 71

C O N F E R E N C E S

14th International Workshop on High Performance
Transaction Systems (HPTS) . 75

 2 ;login: VOL. 37, NO. 1

Rik is the editor of ;login:.

rik@usenix.org

I just finished reading about how humans managed to survive, just barely, a robot
revolution [1] . A quick and easy read, it was just what I needed after immersing
myself in file systems and the cloud . And fortunately, after a grim beginning, the
book focuses more on the puny humans’ successes than on their failures .

We already live in a world where robots are becoming more common . Some exam-
ples, such as factory robots, are obvious . But others, such as Google’s self-driving
Prius [2], don’t look at all like robots . But then, neither do factory robots look at all
like Robbie the Robot, nor do the robots that help to care for old folks that are gain-
ing acceptance in Japan .

Thinking about robots, not the virus-infected bloodthirsty type, got me to thinking
about automation and autonomous systems . For several years, autonomic systems
were the rage in some parts of the sysadmin world, while being anathema in others .
Many sysadmins felt that bringing autonomy into their networks would make the
sysadmin redundant . That won’t happen, any more than the fifth-generation pro-
gramming languages [3] managed to do away with programmers back in the 1980s .

Automation

If we go back to the 1950s, we have early examples of computerized automation
that go well beyond card-punch readers . ADP, for example, was selling Software
as a Service (SaaS) by 1957, with their payroll-processing business . ADP quickly
expanded to offer other services, all SaaS .

To stick to something more in the world of system management, I began managing
multiple systems in 1985 and used UUCP [4] to share data between these systems .
Each system was installed independently, configured independently, and updated
independently . UUCP was a serial line protocol, and I had wired the office where
I consulted with lots of telephone wire terminating with RS-232 connectors . Any
change, such as adding a user or a new host, involved manually editing files on each
existing host .

After Ethernet arrived, at a blistering 10 megabits/second, we had real networking
at last, but still no automatic administration . We could use Sun’s Network Infor-
mation Service, but only on the Suns .

But as TCP/IP networking evolved, we began to see what might not at first look like
automation, but certainly worked that way . DNS is a great example, as it replaced
fetching and installing the /etc/hosts file with a system where updates appeared

OPINIONMusings
R I K F A R R O W

 ;login: FEBRUARY 2012 Musings 3

almost immediately . Having MX records really helped deal a death blow to UUCP’s
bangpath addressing, where you needed to know every host along the path if you
wanted to send email to someone .

DHCP is another wonderful example of network automation . Instead of having
to configure each system with an IP address, DHCP does that for you, and more .
Note that IPv6 does support automatic address assignment, but fails to provide the
other key features that DHCP currently serves (such as host and domain name, and
the addresses of key network services) .

In 1994, Sun Microsystems introduced Jumpstart: instead of installing each sys-
tem, you used network boot and network installation of computers . We now have
similar systems, such as Kickstart, for installing Linux systems .

None of this automation put sysadmins out of work, as far as I know .

The Cloud

While ADP got an early start as a “cloud” provider, almost 50 years before the buzz-
word became popular, the cloud is a real game changer today . I attended the High
Performance Transaction Systems (HPTS) workshop in October (see the reports
in this issue) and heard many fascinating talks about how the ability to host your
applications with various cloud providers is transformative . Yes, this too has to do
with automation .

Instead of gangs of sysadmins installing system images, we now have Web inter-
faces that allow us to point-and-click our way through the process . There are more
elaborate versions of this, such as the offerings of VMware, which allow you to
build and control your own clouds . There are also custom interfaces, built on top
of cloud providers’ interfaces, that make installing your system images, complete
with your own applications and data, as easy as filling in Web forms .

Adrian Cockcroft, during HPTS, told the fascinating story of how Netflix has
migrated away from datacenters using SQL databases into the cloud [5] . Adrian
described several reasons for the migration: reliability, flexibility, and cost . That a
cloud-hosted service could be more reliable than a traditional datacenter service
surprised me . But if you read more about the Netflix story, you too will begin to
understand how this works .

The NoSQL (not-only SQL [6]) databases also support a movement to both clouds,
and to farms of low-cost servers . NoSQL-style databases are good when you need
to scale beyond what can be done with a single server, no matter how many proces-
sors, gigabytes of RAM, and SANS you throw at the problem . HPTS also had a
debate contrasting scaling up (the SQL database model) with scaling out (the farm
of servers running one of many varieties of NoSQL) .

Robots and Jobs

Today, people roam the hot and noisy aisles between racks in datacenters, replac-
ing hard disks, power supplies, and entire systems . Datacenters are noisy envi-
ronments, and not the nicest places to work . As James Hamilton (Amazon) said
during his HPTS talk, if your datacenters look nice enough that you invite people to
see them, you have paid too much for your datacenter [7] . It seems to be that data-
center system wranglers might someday be replaced with robots .

 4 ;login: VOL. 37, NO. 1

Robots would also make much safer drivers, instead of the multi-taskers we have
today who reserve most of their attention for the person on the far end of a cell
phone connection .

The Lineup

I was also able to attend the SNIA Storage Developers Conference [8] this Septem-
ber, where I learned some amazing things that I might have missed had I not gone .
Even though SDC is long over, I did ask several people to write about some of the
topics covered that I felt would be relevant to USENIX members .

First up, Josef Bacik (Red Hat) explains Btrfs . I had first heard about Btrfs (pro-
nounced “butter FS”) four years ago, during a Linux File System workshop run-
ning alongside FAST . At the time, I thought that Btrfs would be the Linux clone of
Sun’s ZFS, but, if anything, Btrfs is a new file system that resembles Sun’s, but with
simpler administration and the features of ZFS . When I learned that the “Btr” in
Btrfs referred to B-trees (as used in Mac file systems), I asked Josef to include an
explanation of B-trees as well . Knowing that Btrfs uses B-trees for almost every-
thing makes developing Btrfs easier and administering it easy, and it helps you
decide which of your file-system needs best match Btrfs instead of ext4 or XFS .

I didn’t meet Rob Chansler at SDC, but he too has a filesystem-related article . Rob
has worked on HDFS development at Yahoo!, and wanted to share his experience
with very large HDFS installations . HDFS is a distributed file system designed to
work with Hadoop, and Yahoo! is not just the initial developer of Hadoop but one of
its larger users as well .

I encountered Chris Hertel in the hallway at SDC, shortly before he was scheduled
to speak . I had met Chris many years before in Minneapolis, where I was teach-
ing Linux security . While catching up with Chris, I learned that he is a Samba
developer, had written the book on the SMB protocols, and had become familiar
with SMBv2 . SMB, Microsoft’s file sharing protocol, had pretty much stagnated
for many years . SMBv2 has changed that, with many times the performance, and
many of the features one expects to find in modern file-sharing services . Chris
not only explains the advantages of using SMBv2 but also shows Microsoft in a
new perspective which I think will surprise you . It certainly did me, as did the live
demonstration of SMBv2 .2 beta between a bunch of disks over bonded channels
with automated failover .

 Alex McDonald (NetApp) finally provided something that I had long searched
for: an explanation of NFSv4, along with motivation for moving to it from NFSv3 .
NFSv4 has been around for years now, but adoption has been glacial . Too many
people have spent too many years learning how to deal with the eccentricities of
NFSv3 and are not anxious to try something new . As you read Alex’s article, you
will realize that some of the features appearing in beta in SMBv2 .2 have long been
a part of NFSv4 . NFSv4 makes managing NFS simpler, its security better, and its
performance much faster, as well as adding support for HPC . Alex’s article also
contains a link to his SDC white paper on migrating to NFSv4 from v3 .

I also met Stuart Kendrick at SDC, although he was not there as a presenter . Stuart
also learned about the improved performance of SMBv2, and this appears in his
article . But the focus of his article is not SMB, but discovering where the problem
might lie in client-server transactions . Stuart describes, and provides scripts for,
slicing up client-server pie, a nice visible method for seeing whether it is the client,

 ;login: FEBRUARY 2012 Musings 5

the server, or the network, that is responsible for bad performance . Note that Stu-
art has written for ;login: before .

I met Adrian Cockcroft (Netflix) at HPTS . Adrian was very excited about Net-
flix’s move from big iron in datacenters to Amazon’s AWS and EBS cloud services .
I talked with him during the reception, listened to his HPTS talk, read his other
online slide presentations, and read his Netflix blog . And I still had more questions,
which Adrian took some time out of his crazy-busy schedule to answer .

David Blank-Edelman provided me with some timely help . David discusses Perl
modules for manipulating spreadsheets and CSVs (Comman Separated Values) . I
was very happy about this, as someone had just dumped an Excel spreadsheet in
my lap, suggesting that I extract some useful data from it . Somehow I have never
learned much about spreadsheets, including how to extract just two columns from
many rows . David also explains, for the Perl-inspired and spreadsheet-averse, how
you can write to spreadsheets as well—just what I needed .

Dave Josephsen continues with the explanation of Graphite that he started in the
December 2011 issue . Graphite is one of a trio of tools for monitoring a large num-
ber of systems, and one that Dave waxes enthusiastic about because it fulfills many
of the items on his long list of features desired in distributed monitoring systems .
Dave explains how to integrate Graphite with Nagios and Ganglia, as well as link-
ing Graphite up to a number of other packages useful in analyzing monitoring data .
Very cool .

Dave Beazley presents his first ;login: column, with a reprise of his earlier ;login:
article that covers Python 3 . Dave has many years of experience writing and teach-
ing Python, and has plans to include columns about data analysis, libraries, the
language itself, and system programming . In this column, Dave focuses on features
of Python 3 that he particularly appreciates, contrasting them with how they might
have appeared in Python 2 .

Robert Ferrell muses about the process of writing columns, especially when he
can’t find his muse .

Elizabeth Zwicky reviews a pile of books, covering skills for software architects,
five big data titles, and programming Pig . Sam Stover covers two books, one about
MongoDB with Python, and the second a different take on Privacy and Big Data, a
book Elizabeth also reviewed .

We conclude this issue with reports from the HPTS workshop . We worked on
producing these reports because we felt that many of the issues addressed in this
workshop would be relevant to USENIX members .

While I was searching for a link to Wilson’s book about the robot revolution, I
learned that in a year or so Steven Spielberg will have a movie out based on the
book . I am sure the movie will have lots of cool special effects, and likely much bet-
ter character development than Wilson’s book had (after all, Wilson got his PhD in
robotics), but it really was a fun read, even if the robots in it were not just murder-
ous, but a little like Nazis from the 1940s .

We will certainly be living in a world with many more robots, ones that will
perform work that human beings generally dislike doing . But that also begs the
question: once robots have replaced factory workers, stoop labor, seamstresses, and
even system wranglers, how are all those people going to make a living? When the
problem was just factory workers, with many of those jobs going to poorer nations,

 6 ;login: VOL. 37, NO. 1

the white collar workers weren’t too worried . But those days may soon be over . Or,
to put it another way, when was the last time you called a business and a human
answered the phone? The robots are taking over .

Good thing most of them don’t have guns [9] .

References

[1] Daniel Wilson, Robopocalypse (Doubleday, . 2011) .

[2] Google’s self-driving Prius: http://www .greencarreports .com/news/1067485
_how-googles-self-driving-car-works .

[3] Fifth-generation programming language: https://secure .wikimedia .org/
wikipedia/en/wiki/Fifth-generation_programming_language .

[4] UUCP Project: http://www .uucp .org/info .html .

[5] Adrian Cockcroft, “Migrating Netflix from Datacenter Oracle to Global
 Cassandra” : http://www .slideshare .net/adrianco/migrating-netflix-from
-oracle-to-global-cassandra .

[6] Greg Burd, “NoSQL,” ;login:, vol . 36, no . 5: http://db .usenix .org/publications/
login/2011-10/openpdfs/Burd .pdf .

[7] Photo tour of the Facebook datacenter: http://scobleizer .com/2011/04/16/
photo-tour-of-facebooks-new-datacenter/ .

[8] SNIA SDC 2011: http://www .snia .org/events/storage-developer2011 .

[9] Samsung SGR-A1: https://secure .wikimedia .org/wikipedia/en/wiki/
Samsung_SGR-A1 .

 ;login: FEBRUARY 2012 7

Btrfs is a new file system for Linux that has been under development for four years
now and is based on Ohad Rodeh’s copy-on-write B-tree . Its aim is to bring more
efficient storage management and better data integrity features to Linux . It has
been designed to offer advanced features such as built-in RAID support, snapshot-
ting, compression, and encryption . Btrfs also checksums all metadata and will
checksum data with the option to turn off data checksumming . In this article I
explain a bit about how Btrfs is designed and how you can use these new capabili-
ties to your advantage .

Historically, storage management on Linux has been disjointed . You have the
traditional mdadm RAID or the newer dmraid if you wish to set up software RAID .
There is LVM for setting up basic storage management capable of having separate
volumes from a common storage pool as well as the ability to logically group disks
into one storage pool . Then on top of your storage pools you have your file system,
usually an ext variant or XFS . The drawback of this approach is that it can get
complicated when you want to change your setup . For example, if you want to add
another disk to your logical volume in order to add more space to your home file
system, you first must initialize and add that disk to your LVM volume group, then
extend your logical volume, and only then extend your file system . Btrfs aims to fix
this by handling all of this work for you . You simply run the command

btrfs device add <device> <file system>

and you are done .

The same thing can be said about snapshotting . With LVM you must have free
space in your volume group to create an overflow logical volume which will hold
any of the changes to the source logical volume, and if this becomes full the volume
becomes disabled . With Btrfs you are still limited to the free space in the file sys-
tem, but you do not have to plan ahead and leave enough space in your file system
in order to do snapshots . A simple df will tell you whether you have enough space
to handle the changes to the source volume . Btrfs simply creates a new root and
copies the source root information into the new root, allowing snapshot creation on
Btrfs to take essentially the same time no matter how large the source volume .

Btrfs’s B-tree

Btrfs breaks its metadata up into several B-trees . A B-tree is made up of nodes and
leaves and has one or more levels . Information is stored in the tree and organized

FILESYSTEMSBtrfs
The Swiss Army Knife of Storage

J O S E F B A C I K

Josef is the lead developer

on Btrfs for Red Hat. He cut

his teeth on the clustered file

system GFS2, moving on to

help maintain ext3 for Red Hat until Btrfs was

publicly announced in 2007.

josef@redhat.com

 8 ;login: VOL. 37, NO. 1

by a key . Nodes contain the smallest key and the disk location of the node or leaf in
the next level down . Leaves contain the actual data of the tree (see Figure 1) .

Figure 1: An example of a B-tree with four nodes and two levels

The top level, referred to as the root, acts just like a node . The entries in each node
will tell you the first key in the node or leaf below it . In this example each key has
three values, which is specific to Btrfs . We break the key up into objectID, the
most important part of the key; the type, the second most important; and then the
offset, which is the least important . So, as you can see in the above example, we
have [30,0,0], which is smaller than [30,0,1] . This is important because for things
such as files, we set the objectID to the inode number, and then any inode-specific
information can also have the inode number as its objectID, allowing us to specify
a different type and offset . Then any metadata related to the inode will be stored
close to the actual inode information .

Figure 2: A leaf containing keys and data

The leaf’s items contain the key and the size and offset of the data within the leaf
(Figure 2) . The items grow from the front of the leaf toward the end, and the data
grows from the end of the leaf toward the front . Items can have an arbitrary data
size, so you could potentially have one item in a leaf and have the rest of the leaf
taken up with data .

This is a great advantage to Btrfs when it comes to dealing with small files . All
Linux file systems address storage in arbitrary block sizes (e .g ., 4 kilobytes) . That
has traditionally meant that if you create a file that is less than 4 kilobytes you will
be wasting the leftover space . With Btrfs we can stash these smaller files directly
into our B-tree leaves, so you will have the inode information and the data in the
same block, which gives Btrfs a tremendous performance advantage when creating
and reading small files .

The following is a basic list of the B-trees you get with a newly created file system:

u Tree root B-tree: This keeps the location of the roots of all of the various B-trees .
u Chunk B-tree: This keeps track of which chunks of the devices are allocated and

to what type .
u Extent B-tree: This tree keeps track of all of the extents allocated for the system

and their reference counts .
u Checksum B-tree: This tree stores the checksums of all of the data extents in the

file system .
u File system B-tree: This holds the actual filesystem information, the file, and

directory information .

We have all of these various B-trees to allow us a great deal of flexibility . For
example, instead of having to come up with ways to stash extent reference count

[5,0,0]|[20,12,30]|[30,0,1]

[5,0,0][5,0,1][8,0,10] [20,12,30][25,0,1][30,0,0] [30,0,1]

item0|item1|item2 data2|data1|data0

 ;login: FEBRUARY 2012 Btrfs: The Swiss Army Knife of Storage 9

information alongside file information, we simply store the two different sets of
data in different trees . This makes everything easier for the developers and gives
us a nice set of rules for offline error recovery . If we know how each tree should
look generally, it makes it trivial to build tools to put things back together if some
sort of catastrophic failure occurs .

Snapshotting

Btrfs’s snapshotting is simple to use and understand . The snapshots will show up
as normal directories under the snapshotted directory, and you can cd into it and
walk around like in a normal directory . By default, all snapshots are writeable in
Btrfs, but you can create read-only snapshots if you so choose . Read-only snap-
shots are great if you are just going to take a snapshot for a backup and then delete
it once the backup completes . Writeable snapshots are handy because you can do
things such as snapshot your file system before performing a system update; if the
update breaks your system, you can reboot into the snapshot and use it like your
normal file system .

When you create a new Btrfs file system, the root directory is a subvolume . Snap-
shots can only be taken of subvolumes, because a subvolume is the representation
of the root of a completely different filesystem tree, and you can only snapshot a
filesystem tree . The simplest way to think of this would be to create a subvolume
for /home, so you could snapshot / and /home independently of each other . So you
could run the following command to create a subvolume:

btrfs subvolume create /home

And then at some point down the road when you need to snapshot /home for a
backup, you simply run

btrfs subvolume snapshot /home/ /home-snap

Once you are done with your backup, you can delete the snapshot with the com-
mand

btrfs subvolume delete /home-snap/

The hard work of unlinking the snapshot tree is done in the background, so you
may notice I/O happening on a seemingly idle box; this is just Btrfs cleaning up the
old snapshot . If you have a lot of snapshots or don’t remember which directories
you created as subvolumes, you can run the command

btrfs subvolume list /mnt/btrfs-test/

ID 267 top level 5 path home

ID 268 top level 5 path snap-home

ID 270 top level 5 path home/josef

This doesn’t differentiate between a snapshot and a normal subvolume, so you
should probably name your snapshots consistently so that later on you can tell
which is which .

Future Proofing

Btrfs uses 64 bits wherever possible to handle the various identifiers within the
B-trees . This means that Btrfs can handle up to 264 inodes, minus a couple of
hundred for special items . This is a per filesystem tree limit, so you can create
multiple subvolumes within the same file system and get even more inodes . Since

 10 ;login: VOL. 37, NO. 1

you can have a total of 264 subvolumes, you could potentially have 2128 inodes in
one file system, minus a negligible amount for reserved objects . This is scalability
far above what could previously be achieved with a Linux file system .

The use of 64 bits also applies to how Btrfs addresses its disk space, enabling it to
address up to 8 exabytes of storage . This makes Btrfs very future proof; it will be
useful for many years to come as our storage capacities increase .

Directories

Directories and files look the same on disk in Btrfs, which is in keeping with the
UNIX way of doing things . The ext file system variants have to pre-allocate their
inode space when making the file system, so you are limited to the number of files
you can create once you create the file system . With Btrfs we add a couple of items
to the B-tree when you create a new file, which limits you only by the amount of
metadata space you have in your file system .

If you have ever created thousands of files in a directory on an ext file system and
then deleted the files, you may have noticed that doing an ls on the directory would
take much longer than you’d expect given that there may only be a few files in the
directory . You may have even had to run this command:

e2fsck -D /dev/sda1

to re-optimize your directories in ext . This is due to a flaw in how the directory
indexes are stored in ext: they cannot be shrunk . So once you add thousands of
files and the internal directory index tree grows to a large size, it will not shrink
back down as you remove files . This is not the case with Btrfs . In Btrfs we store a
file index next to the directory inode within the file system B-tree . The B-tree will
grow and shrink as necessary, so if you create a billion files in a directory and then
remove all of them, an ls will take only as long as if you had just created the direc-
tory .

Btrfs also has an index for each file that is based on the name of the file . This is
handy because instead of having to search through the containing directory’s file
index for a match, we simply hash the name of the file and search the B-tree for
this hash value . This item is stored next to the inode item of the file, so looking up
the name will usually read in the same block that contains all of the important
information you need . Again, this limits the amount of I/O that needs to be done to
accomplish basic tasks .

Space Allocation

Like many other modern file systems, Btrfs uses delayed allocation to allow for
better disk allocation . This means that Btrfs will only allocate space on the disk
when the system decides it needs to get rid of dirty pages, so you end up with much
larger allocations being made and much larger chunks of sequential data, which
makes reading the data back faster .

Btrfs allocates space on its disks by allocating chunks, usually in 1 gigabyte chunks
for data and 256 megabyte chunks for metadata . A chunk will have a specific pro-
file associated with it: for example, it can be allocated for either data or metadata
and then also have a RAID profile component . Once a chunk is allocated for either
data or metadata, that space can only be used for one or the other . This allows Btrfs
to have different allocation profiles for metadata and data .

 ;login: FEBRUARY 2012 Btrfs: The Swiss Army Knife of Storage 11

For example, say you have a four-disk setup and you want to mirror your metadata
but stripe your data . You can make your file system and specify RAID1 for meta-
data and RAID0 for data . Then whenever you write your metadata it will be mir-
rored across all of your disks, but when you write your data it will only be striped
across the disks .

This split of metadata and data can be confusing to some users . A user may see that
she has 10 gigabytes of data on her 16 gigabyte file system but only has 2 gigabytes
free . In order to help clear up the confusion, Btrfs has its own df command which
will show exactly how the space on the file system is used . Here is an example
output from a full 7 gigabyte file system:

btrfs filesystem df /mnt/btrfs-test/

Data: total=6.74GB, used=6.74GB

System: total=4.00MB, used=4.00KB

Metadata: total=264.00MB, used=121.34MB

This only shows allocated chunks and their usage amount . So with the above file
system, if I add a disk with

btrfs device add /dev/sdc /mnt/btrfs-test/

and then re-run btrfs filesystem df, I will see basically the same thing:

btrfs filesystem df /mnt/btrfs-test/

Data: total=6.74GB, used=6.74GB

System: total=4.00MB, used=4.00KB

Metadata: total=264.00MB, used=121.35MB

This is because the new disk I added has not been allocated for either data or
metadata . So I can use another command, btrfs filesystem show, and see the
following:

btrfs filesystem show /dev/sdb

Label: none uuid: 5eb80e04-26b9-4bb2-bd0f-a90a94464d6b

 Total devices 2 FS bytes used 6.86GB

 devid 1 size 7.00GB used 7.00GB path /dev/sdb

 devid 2 size 2.73TB used 0.00 path /dev/sdc

The size value is the size of the disk, and the used value is the size of the chunks
allocated on that disk . So the new disk is 2 .73 TB but hasn’t had any chunks allo-
cated from the disk, potentially allowing 2 .73 TB of free space for allocation . You
will see this reflected in the normal df command:

df -h

Filesystem Size Used Avail Use % Mounted on

/dev/sdb 2.8T 6.9G 2.8T 1% /mnt/btrfs-test

Once you add a device, it is generally a good idea to run a balance on the file system
with the command:

btrfs filesystem balance /mnt/btrfs-test

This command, which can be run at any time, is used to redistribute space and
reclaim any wasted space . If you add a disk, running balance will make sure every-
thing is spread evenly across the disks .

 12 ;login: VOL. 37, NO. 1

Checksumming

Since Btrfs does checksum all of its data, it uses several worker threads to offload
this work . When writing big chunks of data, the work will be split up among all of
the processors on the system to calculate the checksums of the chunks . The same
happens for reading: on completion of the read, the pages are handed off to worker
threads which calculate and verify the checksums of the data so that the work is
spread out, and this makes checksumming a much smaller performance hit than
normal . For metadata checksumming, the checksum is calculated at write time as
well, but is stored at the front of the metadata block .

Checksumming is great because it keeps the file system from crashing the box by
reading bogus data, and also allows users to know that they need to be looking for a
new hard drive or new memory . If you have a RAID profile that gives you multiple
copies of the same data or metadata, such as RAID1 or RAID10, Btrfs will automat-
ically try one of the other mirrors so that it can find a valid block . If it does find a
valid block, everything will continue on as normal and the application will be none
the wiser . The checksum mismatch will be logged so the user or administrator can
be aware of the problem . If there are no other mirrors or all of the other mirrors
are corrupt as well, Btrfs will return an error and the application will deal with it
accordingly .

Compression

Btrfs currently supports two compression methods, zlib and lzo, with lzo being the
default . You simply mount the file system with

mount -o compress

and any new writes will be compressed . Sometimes small writes will not compress
well and will actually require more space compressed than uncompressed . Btrfs
will notice this sort of behavior and turn off compression on the file in an effort to
give the user the best possible space usage while using compression . Sometimes
this is not what the user wants, however, so it can be changed by using the mount
option:

mount -o compress-force

This option will force Btrfs to always compress the data no matter how it looks
when compressed . Generally speaking, Btrfs does a good job balancing what should
and shouldn’t be compressed . The benefit of this compression infrastructure is
that it is well abstracted, which makes adding support for new compression algo-
rithms relatively easy, and hopefully it will be used to add encryption support in
the future .

Solid State Drives

Solid state drives are changing how we think about storage, and Btrfs is no excep-
tion . Btrfs will automatically detect if it is on an SSD and will appropriately adjust
how it allocates space . On spinning disks it is important to get good data locality,
that is, to store related data as close together as possible to reduce seeking . With
SSDs this is not as much of an issue, since the seek penalty is almost nothing . So
instead of Btrfs wasting CPU cycles trying to get good data locality on an SSD,
it will simply keep track of the last used free space for an allocation and start its

 ;login: FEBRUARY 2012 Btrfs: The Swiss Army Knife of Storage 13

search there . Btrfs also supports TRIM, but this is turned off by default until more
vendors can handle it reliably and quickly .

Filesystem Consistency

Traditional Linux file systems have used journals to ensure metadata consis-
tency after crashes or power failures . In the case of ext this means all metadata is
written twice, once to the journal and then to its final destination . In the case of
XFS this usually means that a small record of what has changed is written to the
journal, and eventually the changed block is written to disk . If the machine crashes
or experiences a power failure, these journals have to be read on mount and re-run
onto the file system to make sure nothing was lost . With Btrfs everything is copied
on write . That means whenever we modify a block, we allocate a new location on
disk for it, make our modification, write it to the new location, and then free the old
location . You either get the change or you don’t, so you don’t have to log the change
or replay anything the next time you mount the file system after a failure—the file
system will always be consistent .

Journaled file systems can only ensure metadata consistency by writing to the
journal . If your application uses fsync() to ensure data integrity, any other meta-
data changes that have happened recently must also be written to the journal . If
you have other threads on the system modifying lots of metadata, you will have
inconsistent fsync() times on a journaled file system . On Btrfs there’s a special
B-tree called a tree log that we use for fsync() . Any time you call fsync() on a file,
Btrfs will go through and find all of the metadata that is required for that given
file, copy it to the tree log, and write out the tree log . Because other threads that are
modifying the metadata on the system will not affect the application doing fsync(),
the application should see consistent fsync() performance . The only exception is if
there are multiple applications doing fsync() on the same file system . They will all
be logged to the same tree log, but this is the same as on a journaled file system .

Performance

Btrfs strives to have great performance in all workloads, but some workloads work
better than others . One area where Btrfs has problems is with random overwrite
workloads (i .e ., writing to a file and then writing over a part of that file, and doing
this often and randomly) . Because of the copy-on-write design, this will lead to bad
fragmentation and could result in slow cold cache reading . There is work to fix this
shortcoming, and you can mount with the option autodefrag and Btrfs will notice
this behavior and attempt to defragment the file in the background .

Btrfs also has quite a bit of latency associated with doing direct I/O to files . This,
coupled with the copy-on-write nature of the file system, means that any enter-
prise database workload is likely to be slower on Btrfs than on XFS or ext4 .

Btrfs tries to provide the most consistent performance possible as the file system
fills up . For example, Figure 3 (next page) shows a workload where 16 threads are
creating 512-kilobyte files across 512 subdirectories on a 7 gigabyte disk with ext4,
Btrfs, and XFS .

 14 ;login: VOL. 37, NO. 1

Figure 3: Btrfs, ext4, and XFS performance comparison

With small files Btrfs can really shine, since it will inline the data into the
metadata . So you get a graph that looks like Figure 4 .

Figure 4: Btrfs, ext4, and XFS performance comparison using small files

Streaming writes onto Btrfs should be close to disk speeds . For example, writing
20 gigabytes directly to my local disk gives me a speed of 148 MB/s, and then writ-
ing to the same disk with Btrfs on top gives me 145 MB/s . Btrfs does very well at
saturating the link to the disk .

Since Btrfs is still under heavy development, much of the effort is focused on fin-
ishing features and fixing stability issues . Performance is very much an important
part of development, but, unlike XFS and ext4, Btrfs has not had years of wide-
spread use to hammer out the kinks and optimize performance . In most common

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5

Fi
le

s
pe

r S
ec

on
d

Run iteration

16 threads creating 512k files across 512 directories

Btrfs
Ext4
XFS

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

1 2 3 4 5

Fi
le

s
pe

r S
ec

on
d

Run iteration

16 threads creating 3k files across 512 directories

Btrfs
Ext4
XFS

 ;login: FEBRUARY 2012 Btrfs: The Swiss Army Knife of Storage 15

workloads, Btrfs should perform much like its counterparts, but there is still a lot
of work that needs to be done before it is a fair comparison .

Acknowledgments

Thanks to Chris Mason and Rik Farrow for checking the accuracy of this article
and reading all of my drafts .

Thanks to USENIX and LISA Corporate Supporters

USENIX Patrons
EMC

Facebook

Google

Microsoft Research

USENIX
Benefactors
Admin Magazine: Net-

work & Security

Hewlett-Packard

Infosys

Linux Journal

Linux Pro Magazine

NetApp

VMware

USENIX & LISA
Partners
Can Stock Photos

DigiCert® SSL
Certification

FOTO SEARCH Stock
Footage and Stock
Photography

Xssist Group Pte. Ltd

USENIX Partners
Cambridge Computer

Xirrus

LISA Partner
MSB Associates

 16 ;login: VOL. 37, NO. 1

The Hadoop Distributed File System at Yahoo! stores 40 petabytes of application
data across 30,000 nodes . The most conventional strategy for data protection—just
make a copy somewhere else—is not practical for such large data sets . To be a good
custodian of this much data, HDFS must continuously manage the number of repli-
cas for each block, test the integrity of blocks, balance the usage of resources as the
hardware infrastructure changes, report status to administrators, and be on guard
for the unexpected . Furthermore, the system administrators must ensure that
thousands of hosts are operational, have network connectivity, and are executing
the HDFS Name Node and Data Node applications . How well has this worked in
practice? HDFS is (almost) always available and (almost) never loses data .

A Survey of HDFS Availability

The Grid Operations team tracks each cluster loss-of-service incident . Many of
these incidents are “caused” by facilities other than the file system . But for some
incidents, the immediate problem is that HDFS is unavailable or not perform-
ing well . Sometimes the initial incident report originates with a user frustrated
that HDFS is not performing as well as expected . Automated tools are better at
monitoring whether individual host machines and network switches are opera-
tional . Yahoo! uses Nagios for alerting . An internal tool called Simon is used for
time series collection and presentation from Nagios; Ganglia is a popular tool used
elsewhere for this purpose . HDFS itself provides several statistics streams avail-
able via JMX and collected by Simon . An introduction to using Nagios and Ganglia
for cluster monitoring is available from IBM developerWorks (see Resources) . The
logs from cluster hosts—both the operating system logs and the HDFS application
logs—can be used for fault diagnosis .

Table 1 summarizes all of the “grid down” events recorded during the 500 days
preceding 5 April 2011, where loss of HDFS service is the initial or primary com-
plaint . The table includes some data about the aggregate size of the clusters for
perspective . This somewhat arbitrary interval was chosen to be long enough to
collect an interesting data set, but not so long as to include much data from when
HDFS was—to be frank—not so good . Roughly, this corresponds to the deployment
Hadoop 0 .20 versions .

The HDFS Name Node is a Java application . As such, there is always concern
that garbage collection might interrupt service . Indeed, garbage collection (GC)
represents 44% of the reported loss-of-service incidents . In a GC event, HDFS is

Data Availability and Durability with the
Hadoop Distributed File System
R O B E R T J . C H A N S L E R

Robert J. Chansler is

Senior Manager of Hadoop

Infrastructure at LinkedIn.

This work draws on Rob’s

experience as manager of the HDFS

development team at Yahoo!. A Caltech

graduate, Rob earned a PhD in computer

science at Carnegie Mellon University

investigating distributed systems. After

a detour through compilers, printing

systems, electronic commerce, and network

management, Rob returned to distributed

systems, where many problems were still

familiar but all the numbers had two or three

more zeros.

rchansler@yahoo.com

 ;login: FEBRUARY 2012 Data Availability and Durability with the Hadoop Distributed File System 17

unavailable for a few (less than 10) minutes . The system resumes normal opera-
tion without intervention . The nature of the Java Virtual Machine is such that
there can be no promise that GC will not interrupt service . Most GC events are
close to the threshold of observability, about five minutes . During mid-2010, the
biggest grids (about 4000 nodes) had short interruptions once or twice a week,
although only one report was generated each month . Careful provisioning and
some thoughtful software changes have reduced the frequency of interruptions,
so that today big clusters have fewer than one event every other month . GC issues
were nagging problems from time to time, but among HDFS developers the consen-
sus is that HDFS has benefited from the choice to implement the system in Java .
Development efficiency was higher, and inconvenient service interruptions that
did occur were not the kind of faults that might threaten the integrity of the file
system .

Table 2 summarizes each of the “Other HDFS Down Incidents”; HDFS was
unavailable for an hour or two while the fault was repaired and the cluster
restarted . HDFS ought to be excused from 16 of the events . There is not much the
file system can do if LDAP, NFS, power, or a switch fails . Two of the events are
attributed to software faults where code did the wrong thing . Nine events occurred
when system storage resources were exhausted . Either the data nodes ran out of
available space or the name system could not create additional names or blocks .
User application behavior was implicated in five cases, where either the rate of
requests was extraordinary or the required response to a request was exceptionally
large . There is still no good protection from the former, but the latter problem is
eliminated . There is no convincing explanation for the remaining four cases . The
longest unexcused absence was 3 .2 hours .

Clusters
19 April 2011 GC

Other HDFS
Down

 Incidents Nodes
Blocks
(×106)

New Files
Per Day

(×106)

Research clusters 15 22 10,404 299 .2 16 .1

Production clusters 9 14 19,720 357 .1 30 .6

Totals 24 36 30,124 656 .3 46 .7

Table 1: Loss of HDFS service incidents for 500 days preceding 5 April 2011. Scheduled
maintenance events are not included. Multiple Hadoop clusters have been aggregated into two
classes: “research clusters,” generally available to the engineering community, and “production
clusters,” restricted to approved jobs and serving more time-critical processes.

Four continuing initiatives have helped to reduce the number of incidents and the
duration of incidents that do occur .

1 . Operations now have better guidance on what the practical limits are and can
better manage the clusters to avoid encountering the hard limits .

2 . Better-provisioned servers have been tested with higher practical limits .
3 . The time necessary to restart the name system has been reduced . This involved

reducing the minimum necessary time to restart the name system, and better
tools to validate the integrity of the system before resuming service .

4 . The garbage collection parameters for the Java VM have been more carefully
tuned .

 18 ;login: VOL. 37, NO. 1

Is HDFS getting better? There were seven unexcused absences in the last 100
days of this survey, but only two in the earliest 100 days . But HDFS has over twice
as many nodes and clusters under management at the end of the survey as at the
beginning, and the introduction of the Security feature means HDFS is more
dependent on infrastructure like LDAP and Kerberos servers . Certainly garbage
collection is much better, as explained previously . And if resource usage is care-
fully managed, the likelihood of a surprise is reduced by half .

HDFS can be satisfyingly resistant to multiple insults . In one recent incident, a
journal storage volume was lost when the volume filled up under extraordinary
client demand and a rack switch died . HDFS continued service and re-created the
missing block replicas, although there was a user complaint that the file system
was slow .

Down Incidents Number Details

Garbage collection 24 JVM “promotion failures” interrupted service .

Excused absence 16 Loss of power, hardware failure,
misconfiguration, operation error, network
faults, and the like; HDFS restarted .

Bugs 2 Software did wrong; system was restarted
without software change .

Space/objects
exhausted

 9 Insufficient resources for users; sometimes
system continued when resources were freed .

User applications 5 HDFS was unable to service demand
effectively, but system recovered without
intervention when excess demand was
removed .

Unknown 4 No convincing explanation; HDFS restarted .

Table 2: Loss-of-service incidents categorized. The apparent cause of the incident was deter-
mined by inspection of logs and reports from the Operations team.

An initiative is underway to bring conventional “high availability” to the HDFS
name system . The general idea is that a second host is provisioned and able to
execute the name system application with only a modest delay (a few seconds) and
without interrupting user applications . This would not remedy all of the incidents
that have been described here . The loss of a critical infrastructure component
would not be remediated, and some operational problems of the name system
(resource exhaustion, say) would just be transferred to the other host with no
benefit . Leaving aside the question of garbage collection events, 7 of the 16 excused
absences would be remediated as would 1 of the 4 unattributed events . Whether to
failover to the second host in case of a garbage collection event is a difficult policy
question . The decision rests on whether the transfer really is a low-risk activity,
and to what extent the transfer really is transparent to user applications . But if
transfer in the case of garbage collection is a Good Thing, the number of incidents
will not be reduced, but the duration of the interruption will be bounded by the
transfer time .

 ;login: FEBRUARY 2012 Data Availability and Durability with the Hadoop Distributed File System 19

The larger context for this discussion considers not just adventitious interrup-
tions of the file system, but also the many other causes of service interruptions for
a cluster . With our problem child as an example (a large cluster with an especially
diverse user community), there were 13 reports of file system interruptions, but
a total of 86 cluster service interruptions when scheduled maintenance activi-
ties are included along with surprises attributed to the job system and other
facilities . Twelve of the maintenance windows were for deployment of Hadoop .
If Hadoop—including HDFS—were engineered for continuous service during soft-
ware updates, many of these interruptions could be eliminated . Also, some of the
maintenance windows were scheduled to perform administrative functions (e .g .,
change VM size) that could have been performed with less interruption if a high
availability solution had already been at hand .

A Survey of HDFS Data Durability

Data stored in HDFS may become unavailable either because it is not possible to
access the bytes on disk that are the data, or else the bytes have inadvertently been
changed so that the bytes accessed are not the data originally stored . Since data
storage in HDFS is organized as files composed of a sequence of large blocks (256
megabytes is typical), missing data is manifest as “lost” blocks . As the typical file
has one or two blocks, the loss of a block is the same as the loss of a file for present
purposes .

The failure of a data server does not result in the loss of blocks, as each block has
replicas at other nodes . The usual case is that there are two other replicas . But if
the application program requested exactly one replica, then loss of the node hosting
the single replica must necessarily result in the loss of the block . The failure of a
rack switch does not result in the loss of blocks, as each block has a replica at some
other rack . The core switches connecting racks are provisioned so that component
failures do not isolate a slice of nodes across racks or among multiple racks . Since
each node hosts about 50,000 block replicas, it’s near certainty that the loss of a
slice of the cluster—or multiple racks—will cause data to be unavailable . Fortu-
nately, in the case of switch failures, the switch will be repaired and the lost block
replicas will be available again .

When a node fails, new replicas are created for blocks where a replica was hosted
on the failed node . All is well if the re-replication process keeps up with the occa-
sional failure of a node . (One percent of nodes fail each month .) Of course, it might
just happen that a number of nodes fail during a short interval . How likely is the
loss of blocks due to uncorrelated failures of multiple nodes? A statistical model
(Table 3, next page) suggests that it is improbable that any cluster has observed
the loss of a block with three replicas due to uncorrelated failure of nodes . Nor is
there any record of this having happened . There can be correlated failures of nodes .
Experience suggests that several nodes of a cluster will not survive a power-on
restart . In that case a few (~10) blocks with three replicas will be lost, consistent
with the statistical model for simultaneous failures .

 20 ;login: VOL. 37, NO. 1

Probability of losing a block on a
large (4000 nodes) cluster

In the next 24 hours 5 .7×10-7

In the next 365 days 2 .1×10-4

Table 3: Probability model for predicting data loss due to uncorrelated failure of nodes. The details
of the model are in the HDFS issue tracking system; a link can be found in the Resources section
of this article.

The remaining opportunity for losing blocks is when HDFS just does the wrong
thing . HDFS has certainly matured in the past couple of years, from when one
bad circumstance might cause a block to be lost to where at least a couple of bad
circumstances must occur before the loss of a block is threatened . Two aspects of
the HDFS architecture are especially pertinent . First, the strategy of replicating
blocks is critically dependent on the correctness of the replication monitor . Second,
if a client application begins writing a file but later abandons it, the writer’s lease
for the file must be recovered . In the former case, the number of different circum-
stances that might be the proximate cause for needing a new replica is large, and
so making the correct diagnosis as to which replica ought to be replaced is difficult
logic . In the latter case, the intervening hour presents a long interval when various
misfortunes can happen, again complicating the logic .

One type of catastrophic failure requires special mention . If the file system meta-
data were ever lost, all data in the entire cluster would be compromised . Briefly, the
metadata is actively managed by two hosts, the data is written to multiple volumes
on different hosts, the integrity is periodically tested, and snapshots are retained
for long periods . There is no record of having lost any piece of system metadata
in the past two years . If the name system server fails and cannot be immediately
restarted, a new host can begin service using the saved metadata . The metadata
is managed by a write-ahead log, and so name system server failure will not cause
loss of even the most recent metadata records .

A Review of 2009

Table 4 summarizes the record of lost blocks for the clusters managed by the Grid
Operations team during 2009 . This data has the weakness that reporting is certainly
incomplete . With that in mind, the total number of lost blocks in 2009 is likely to
be less than 1 .5 times the number reported here . To provide some perspective, the
table indicates an estimate of the number of blocks managed by the clusters and
the number of new files created each day (recall a typical file is one or two blocks) .

Clusters
October 2009

Blocks
Reported Lost Nodes

Blocks
(×106)

New Files
Per day (×106)

Research clusters 631 11,890 222 10 .9

Production clusters 10 5830 107 5 .7

Totals 641 17,720 329 16 .6

Table 4: Reported loss-of-data events for 2009. In one curious case, an unexplained fault
changed a host directory into a regular file. The greater number of nodes in Table 1 is due to the
increased usage of Hadoop resources during 2010 and early 2011.

 ;login: FEBRUARY 2012 Data Availability and Durability with the Hadoop Distributed File System 21

In one of the research clusters, for a short period (a few days), client applications
were abandoning an extraordinary number of files . An error in recovering the lease
for a small fraction (10-4) resulted in losing the block being written . This fault
accounted for 533 of the total number of lost blocks . On another cluster, a single
user experimented with setting the replication factor for many files to one . He lost
his gamble—and 91 blocks—when a node failed . On other clusters, two blocks were
lost when a data node reported replicas as too big; four blocks were lost when nodes
failed during a cluster cold start; four blocks were lost due to a faulty write pipeline
recovery; an unreported (but tiny) number of blocks were lost when nodes returned
to service with corrupt replicas . For 2009, maybe two dozen blocks were lost due to
all other software faults .

A Review of 2010

It was not possible to repeat this analysis for 2010—well, not impossible, but con-
siderably less convenient, because the apparent loss of blocks became dominated
by a new operating procedure . There is never too much space, and when space is
short, the third replica of a block looks to be an excess of caution . Blocks with two
replicas are, in fact, pretty durable . Furthermore, in our practice it is not uncom-
mon for a file in one cluster to already have a copy on another cluster . If each
of those files has only two replicas at each of two clusters, space is saved while
durability is enhanced . Therefore we moved to a practice whereby many files have
replication set to two . Any two nodes are likely to each have a replica of some block .
When many blocks have only two replicas, if any two nodes fail to start, some
blocks (in proportion to the fraction of blocks with replication two) will be lost . In
this context, it is important to consider two sources of correlated failures of data
nodes .

A power-on restart of a big cluster begins by switching on each of the cluster hosts,
and if the hosts successfully start the operating system, the administrator will
issue commands to begin execution of the HDFS Data Node and Name Node appli-
cations . In practice, a few dozen nodes will not immediately restart . Also, consider
a circumstance where a host can continue service but cannot restart the operating
system or Data Node application . This might occur if the system disk volume has
failed, for instance . In this case even a warm restart of the cluster (without power
interruption) will cause the un-restartable nodes to fail together .

When many blocks have only two replicas, if several nodes fail to join the cluster
after a cluster start the number of lost blocks will be in proportion to the number of
pairs of failed nodes . The result may be thousands of missing blocks . It is probable
that those blocks can be recovered by copying from another cluster or by persuad-
ing the failed nodes to join the cluster, but that effort requires a day—or more—of
work by an administrator . We are investigating automated recovery! This process
dominates reports of lost blocks; no one pays attention to other possible causes
anymore . For over a year, no one has done a block-by-block analysis of missing
blocks as was done in 2009 . The new disk fail-in-place feature of HDFS helps to
alleviate the problem of un-restartable nodes .

But what of those problems that were previously known causes of missing blocks?
All have been fixed in Hadoop 0 .20 .204 . Only one new cause of missing blocks has
been discovered in 2010 . A data node that is unable to reliably read data from other
nodes might attempt to read each replica of a block and report each replica as cor-
rupt . In this case, the block looks to be missing even though all existing replicas are

 22 ;login: VOL. 37, NO. 1

good . It is possible for an administrator to recover from such false reports . HDFS
has adopted the policy that a report of a corrupt block is only accepted from a node
that has read a good replica .

Know Your Neighbors

Can users do anything to improve the robustness and availability of their own
data? There is a wide variance among clusters of incidence of service or data
unavailability . The clusters that host a more experimental user community experi-
ence more untoward events . The “production” clusters with restricted access are
more robust than the “research” clusters available to all engineers . Especially with
the introduction of permissions two years ago, HDFS users have substantial pro-
tection from the carelessness of others . The most immediate threat to data avail-
ability comes from an application job that exhausts some cluster resource . The
quota features of HDFS are partial protections . How to yet better manage system
resources is an area of active investigation . That said, HDFS operated by skilled
administrators is a reliable custodian of Yahoo!’s petabytes .

Resources

K . Shvachko, H . Kuang, S . Radia, and R . Chansler, “The Hadoop Distributed File
System,” 26th IEEE Symposium on Massive Storage Systems and Technologies
(MSST2010), May 2010 .

Konstantin V . Shvachko, “HDFS Scalability: The Limits to Growth,” ;login:, vol . 35,
no . 2, April 2010: http://www .usenix .org/publications/login/2010-04/openpdfs/
shvachko .pdf .

Konstantin V . Shvachko, “Apache Hadoop: The Scalability Update,” ;login:, vol . 36,
no . 3, June 2011: http://www .usenix .org/publications/login/2011-06/openpdfs/
Shvachko .pdf .

Using Ganglia and Nagios: http://www .ibm .com/developerworks/linux/library/
l-ganglia-nagios-1/ .

HDFS tracking system: “HDFS-2535: A Model for Data Durability”: https://
issues .apache .org/jira/browse/HDFS-2535 .

http://storageconference.org/2010/Presentations.html
http://www.usenix.org/publications/login/010-04/index.html
http://www.usenix.org/publications/login/2011-06/
http://www.ibm.com/developerworks/linux/library/l-ganglia-nagios-1/
http://www.ibm.com/developerworks/linux/library/l-ganglia-nagios-1/

 ;login: FEBRUARY 2012 23

The EU anti-trust case against Microsoft concluded in late 2007 . Related or not,
that’s when things started to change . One pleasant surprise for third-party devel-
opers was the release of hundreds of specifications covering Windows file formats,
system internals, and protocols . Microsoft was opening up . Four years later, about
400 specifications have been published . It took a while for some of those docu-
ments to appear, mostly because Microsoft didn’t actually have them all written
yet . And now they have surprised us again . Well before the beta release of Windows
8, they have provided preview documentation for an overhauled and compelling
new version of the venerable Server Message Block Protocol: SMB2 .2 . This is going
to be epic .

A Gathering of Storage Geeks

Once a year, typically in September and typically somewhere near San Jose,
California, the Storage Networking Industry Association (SNIA) hosts the Stor-
age Developer Conference (SDC) . The season and location don’t really matter all
that much, since many of those who attend never leave the confines of the hotel
until the conference is over . As its name implies, the SDC is aimed at data storage
engineers .

As a sideshow to the SDC, the SNIA hosts the annual SMB/CIFS/SMB2 Plugfest,
an opportunity to bring together different products from different vendors and
open source groups and do some heavy-duty interoperability testing .

The Plugfest is housed in its own conference room . The room is filled with network
cables and switches, computers, tables with black tablecloths, a whiteboard, racks
of storage equipment (with fans that sound like jet engines), and engineers . A badge
is required to get in, but for those who participate there are only a few simple rules:
Don’t take stuff that’s not yours, don’t talk about your competitor’s test results out-
side the Plugfest room, but do take a shower at least once every two days . They’re
serious about that last rule . They need to be . It gets intense in there .

The Ice Age

The Plugfest has been an annual event for more than a dozen years—longer, in
fact, than the SDC—but for most of those years Microsoft, the “owner” of the SMB
protocol suite, was conspicuous by their absence . While they were in the throes of
legal battles (with not one but two major world governments) they kept their SMB
code monkeys locked in their cages in Redmond .

Server Message Block in the Age of
Microsoft Glasnost
C H R I S T O P H E R R . H E R T E L

Christopher R. Hertel is a

long-haul member of the

Samba Team and co-founder

of the jCIFS project. He is also

the author of Implementing CIFS—The Common

Internet File System, the only developer’s guide

to the SMB/CIFS protocol suite. Not too long

ago, he had the opportunity to work directly

with Microsoft’s File Server team when the

company he founded, ubiqx Consulting,

Inc., was tapped to write Microsoft’s official

SMB/CIFS specifications. Chris has also

been adjunct faculty at the University of

Minnesota College of Continuing Education

(CCE) and is currently a member of the CCE IT

Infrastructure Advisory Board.

crh@ubiqx.com

 24 ;login: VOL. 37, NO. 1

During that time, SMB also suffered a dearth of documentation . There were some
vintage OS/2 and DOS docs, and an unpolished, incomplete draft specification that
Microsoft had presented to the IETF in 1996/97 . The SNIA made a valiant attempt
to create an updated version of the IETF draft, but without a solid commitment
from Microsoft it too suffered from inaccuracies and omissions . There was also an
implementer’s guide (written by yours truly) that leveraged the collected knowl-
edge of the third-party SMB development community . Since Microsoft’s engineers
weren’t allowed out to play with the rest of the development community, and since
there were no official specifications, SMB remained a protocol shrouded in myth
and obscurity .

To make matters worse, when Microsoft lost in the US courts they furthered the
divide by creating a licensing program that provided some of their competitors
with access to Microsoft-internal information . That licensing program originally
required signing an NDA (and possibly paying a fee, but we don’t know for sure,
because that part fell under the NDA) . A couple of companies opted in, several others
opted out, and open source groups such as the Samba Team were left without any
options . The licensing program effectively split the SMB development community .

Those were the dark times—ash fell from the sky, a biting frost covered the land,
the sun was only seen dimly behind the clouds, and SMB developers became melo-
dramatic and prone to hyperbole . The Plugfest almost came to an end .

After Microsoft conceded in the EU in late 2007, things changed again . This time,
however, Microsoft surprised just about everyone (who was paying attention) by
going in completely the opposite direction . One of the first moves they made was to
publicly release hundreds of documents covering Windows file formats, proto-
cols, and software internals . They simply started posting them on the Web . Then
they unlocked the cages and let their code monkeys out . Not only did they send
engineers to the Plugfest, they went so far as to sponsor it so that others—notably
smaller companies and open source groups—could afford to attend as well .

It was like springtime . The ice melted, the sun shone, the divide was healed, and
the community started to come back together . In 2008, when Microsoft first sent
a contingent to the Plugfest, a total of 14 organizations participated . By 2011 there
were 27, almost twice as many .

Quick Sync: SMB and CIFS

Just to make sure we’re all on the same page here, the SMB protocol is what Win-
dows systems use to connect the Q: or Z: “drive” to a shared directory on a server—
possibly a Windows server or, thanks to those storage engineers at the Plugfest, it
could be any of several third-party implementations .

The naming could use a little clarification as well . Just before the start of the SMB
Ice Age, when Microsoft submitted the draft specification to the IETF, they gave
the protocol a marketing upgrade . That is, they renamed it . They decided that they
needed to have the word “Internet” in the acronym, so they re-dubbed it Common
Internet File System: CIFS . These days, the CIFS name is used interchangeably
with SMB . They essentially mean the same thing .

SMB Evolution

In the computing industry, we measure time in nanoseconds . By that standard
SMB is a fossil . It was originally created by IBM (not Microsoft!) in the 1980s as a
network file protocol for PC-DOS, yet somehow it survives today as a key compo-

 ;login: FEBRUARY 2012 Server Message Block in the Age of Microsoft Glasnost 25

nent of Microsoft’s Windows products . Not only is it still around, it is probably the
most widely used and most successful network file system there is . Apple AFP?
Novell Netware? Gone by the wayside . The only real competition still out there is
NFS, which is as old and wizened as SMB .

All Windows systems, of course, support SMB . In addition, every major NAS
platform and every major server OS (as well as many of the minor ones) supports
SMB . Mainframes and desktops and tablets and cell phones support SMB . It’s an
interoperability requirement these days . If you find a NAS appliance for the home
or enterprise or anything in between that doesn’t support SMB, you should buy a
lottery ticket—it’s your lucky day .

Despite its importance, development of the SMB protocol remained relatively stag-
nant for years . In fact, SMB hasn’t changed much at all since it was ported from
OS/2 to Windows NT back in the early 1990s . When Windows 2000 was being
developed, there were rumors that it would have a completely overhauled version of
SMB to go along with the new CIFS name, but the overhaul didn’t actually happen
then . Windows 2000 introduced a few enhancements to access additional Win-
dows OS features, improvements to the authentication subsystem, and changes
to the entourage of protocols that support SMB . At the core, however, the SMB
protocol remained the same .

Somewhere in the deep of the dark times, Microsoft finally decided that they
needed something better . So, as part of Windows Vista, they introduced SMB
version 2 (SMB2) . SMB2 is a complete rewrite . The number of commands sup-
ported has been cut to 25% of its predecessor’s, a reduction in bulk made possible
by consolidating redundant commands and (hurray!) jettisoning support for DOS
and OS/2 semantics . SMB2 also offers some useful new features, though none of
those features are immediately visible to the user; SMB2 is a transparent upgrade .
It is so transparent, in fact, that users and system administrators often don’t even
know it’s there . It runs automatically instead of SMB if both the client and server
agree to use it .

So SMB2 was a major cleanup but not a paradigm shift . A few additional features
were added in SMB version 2 .1, which appeared with Windows 7, but those were
seen as incremental improvements . One major step forward, however, was docu-
mentation . Windows 7 came out after Microsoft had started to open up . That, and
the realization that Windows XP was the only supported Windows OS that did not
include SMB2 encouraged third-party developers to start thinking of SMB version
1 as the old reliable family minivan—it still runs, but it’s too big and it’s getting a
little rusty around the edges . Time to move up to something sportier and more effi-
cient, but we’ll keep the old one parked in the back until it stops running entirely .

Call Me Triceratops

There are several presentation tracks at the SDC, covering all manner of stor-
age technologies, from the mechanics of disk drives to the problems of defining
standards for content-addressable archive metadata . There are also, of course,
keynote speeches . At the 2010 SDC, a keynote slot opened up at the last minute and
the organizers asked Samba Team luminary Jeremy Allison to fill the gap . Never
fear, Jeremy’s here . Somehow, he quickly threw together a remarkably memorable
talk in which he asserted that the NFS and SMB developers in the room, himself
included, were a herd of dinosaurs all trying to eat one another before the asteroid
collision and the rise of the rodents .

 26 ;login: VOL. 37, NO. 1

Jeremy pointed out that most of the new and interesting work in network file
systems was being done to create targeted solutions like Gluster, Hadoop HDFS,
Ceph, and any number of other efforts aimed at solving specific sets of problems
rather than trying to do a good enough job at everything to handle every use-case .
General-purpose network file systems, he asserted, were a dying breed . A handful
of them are still out there, but (as noted above) the mainstream market has nar-
rowed its interest down to just two: NFS and SMB .

The Age of the Dinosaurs

During the dark times, while Microsoft was hibernating, the Internet Engineering
Task Force (IETF) was busy overhauling NFS and doing so out in the open as part
of a standards process . NFSv4 and 4 .1 were getting snazzy new features such as
parallel data access and transport over RDMA . SMB was getting left behind .

That was something else that changed when Microsoft let their engineers out to
play with the other engineers . They saw the bright shiny things going into NFS,
and they saw that the Samba Team had somehow managed to implement SMB
clustering . Perhaps Microsoft had been planning an advanced feature set for
SMB2 from the very start, but it wasn’t until they announced version 2 .2 at the
2011 SDC that it became clear that they, too, had been hard at work re-evaluating
the market for general-purpose network file systems .

One year after Jeremy’s keynote (which they made a point of acknowledging),
Microsoft gave their own SDC keynote titled “The Future of File Protocols: SMB
2 .2 in the Data Center .” The presentation was full of surprises . In addition to pro-
viding an overview of new SMB2 .2 features in Windows 8 and giving a live demo
that actually worked, they also announced the availability of preview documenta-
tion so that others could start building implementations right away .

Here’s some of what will be in SMB2 .2:

u SMB2 .2 supports clustering: Multiple SMB servers can be connected to multiple
application servers, providing scalability as well as failover .

u SMB2 .2 supports multi-path: There can be multiple connections between the
client and the server .

u SMB over RDMA: SMB2 .2 I/O commands can use machine-to-machine remote
direct memory access (RDMA) to perform read/write operations over iWarp,
InfiniBand, or plain old Ethernet .

u SMB2 .2 provides lightweight WAN acceleration: This feature, called Branch-
Cache, was introduced in SMB2 .1, but needs to be enabled in order to be used .
SMB2 .2 supports an updated version of BranchCache that allows for improved
content caching algorithms .

The most surprising thing about these features is that they were demonstrated live
using a pre-alpha version of Windows 8 that had been compiled the night before
by a guy named Dave, and the system never crashed . (It’s also surprising that we
know Microsoft SMB developers by name, even if only first name . That was never
the case back in the dark times .) It’s hard enough to get a live demo working with
production code, so using pre-alpha code is downright scary . Just to make things
more fun, they were connecting and disconnecting cables during the keynote to
show how well the system failed over and scaled .

It was a very impressive demonstration, and fun to watch in the way that a
daredevil act is fun to watch . For Windows users, SMB2 .2 will be a major—and

 ;login: FEBRUARY 2012 Server Message Block in the Age of Microsoft Glasnost 27

visible—step forward . However, a quick look through the list of key features shows
that there is nothing actually new here, technology-wise . SMB2 .2 is running fast
to catch up .

The Battle for the Niche

So if Jeremy is right, what we are about to witness is a battle for dominance
between two large tyrannosaurs in what remains of the general-purpose file proto-
col ecosystem . NFS is ahead on features, but NFS implementers have been slow to
create products, and users have quite reasonably been slower to adopt them . SMB
has the advantage of Windows 8—when that comes out, both clients and servers
will have SMB2 .2 already installed and ready to deploy . It will simply “be there .”

What this means for developers is that there is a lot of work to be done . On the NFS
side, more v4 implementations need to become available on more platforms . Soon .
On the SMB side, there are not enough third-party SMB2 implementations, and
those that do exist will need to be updated to handle the fancy SMB2 .2 feature set .

And there is one more logistical difference to consider . The rumor among Silicon
Valley recruiters is that you can put up a sign saying “NFS Coders Needed” and
a line will form, but that there simply aren’t enough SMB developers to be found .
Universities often teach basic NFS internals, and the specifications have long been
available, so NFS know-how is a relatively common skill .

Not so with SMB . Most SMB developers are either senior engineers who have
spent years working with the protocol and have learned it from the ground up, or
senior engineers who became senior working on some other protocol and were then
tapped by their employer to learn SMB . There are a few, but very few, newcomers in
the SMB world .

Place your bets, the stakes are high . Data storage isn’t the most glamorous field in
modern computing, but it is fundamental . What happens in this arena in the next
few years will have implications . Rodents take note: the dinosaurs still rule .

Resources

Christopher R . Hertel, Implementing CIFS—The Common Internet File System
(online book), 2003: http://www .ubiqx .org/cifs/#Contents .

Christopher R . Hertel, 2011 SNIA SDC Report: Summary (blog post), Samba Team:
http://www .samba .org/samba/news/developers/2011-snia-sdc-report .html .

Microsoft Corporation, [MS-CIFS]: Common Internet File System (CIFS) Protocol
Specification, 2009: http://msdn .microsoft .com/en-us/library/ee442092 .aspx .

Microsoft Corporation, [MS-SMB]: Server Message Block (SMB) Protocol Specifi-
cation, 2007: http://msdn .microsoft .com/en-us/library/cc246231 .aspx .

Microsoft Corporation, [MS-SMB2]: Server Message Block (SMB) Version 2 Proto-
col Specification, 2007: http://msdn .microsoft .com/en-us/library/cc246482 .aspx .

Microsoft Preview Specifications (includes SMB2 updated to include SMB2 .2
specifications; SMBD, which specifies SMB2 over RDMA Transport Protocol;
MS-SWN: SMB2 Witness Protocol Specification; MS-SWN cluster failure/
recovery notification): http://msdn .microsoft .com/en-us/library/ee941641 .aspx .

http://msdn.microsoft.com/en-us/library/cc246482.aspx

 28 ;login: VOL. 37, NO. 1

NFSv4 has been a standard file-sharing protocol since 2003 but has not been
widely adopted . Yet NFSv4 improves on NFSv3 in many important ways . In this
article I explain how NFSv4 is better suited to a wide range of datacenter and HPC
uses than its predecessor NFSv3, as well as providing resources for migrating from
v3 to v4 . And, most importantly, I make the argument that users should, at the very
least, be evaluating and deploying NFSv4 .1 for use in new projects and, ideally,
should be using it wholesale in their existing environments .

The Background to NFSv4.1

NFSv2 and its popular successor NFSv3 (specified in RFC-1813 [1], but never an
Internet standard) was first released in 1995 by Sun . It has proved to be a popular
and robust protocol over the 15 years it has been in use, and with wide adoption
it soon eclipsed some of the early competitive UNIX-based filesystem protocols
such as DFS and AFS . NFSv3 was extensively adopted by storage vendors and OS
implementers beyond Sun’s Solaris; it was available on an extensive list of systems,
including IBM’s AIX, HP’s HP-UX, Linux, and FreeBSD . Even non-UNIX systems
adopted NFSv3; Mac OS, OpenVMS, Microsoft Windows, Novell NetWare, and
IBM’s AS/400 systems . In recognition of the advantages of interoperability and
standardization, Sun relinquished control of future NFS standards work, and work
leading to NFSv4 was by agreement between Sun and the Internet Society (ISOC)
and is undertaken under the auspices of the Internet Engineering Task Force
(IETF) .

In April 2003 the Network File System (NFS) version 4 protocol was ratified as an
Internet standard, described in RFC-3530, which superseded NFSv3 . This was the
first open file system and networking protocol from the IETF . NFSv4 introduced
the concept of state to ameliorate some of the less desirable features of NFSv3 and
offered other enhancements to improve usability, management, and performance .

But shortly following NFSv4’s release, an Internet draft written by Garth Gibson
and Peter Corbett outlined several problems with it [2]: specifically, that of limited
bandwidth and scalability, since NFSv4, like NFSv3, requires that access be to a
single server . NFSv4 .1 (as described in RFC-5661, ratified in January 2010) was
developed to overcome these limitations, and new features such as parallel NFS
(pNFS) were standardized to address these issues .

NFSv4 .2 is now moving towards ratification [3] . In a change to the original IETF
NFSv4 development work, where each revision took a significant amount of time

NFSv4
A L E X M C D O N A L D

Alex joined NetApp in 2005,

after more than 30 years in

a variety of roles with some

of the best-known names in

the software industry (Legent, Oracle, BMC,

and others). With a background in software

development, support, and sales and a period

as an independent consultant, Alex is now part

of NetApp’s Office of the CTO, which supports

industry activities and promotes technology

and standards-based solutions, and is chair of

the SNIA CSI Education Subcommittee and co-

chair of the SNIA NFS Special Interest Group.

alexmc@netapp.com

 ;login: FEBRUARY 2012 NFSv4 29

to develop and ratify, the work group charter was modified to ensure that there
would be no large standards documents that took years to develop, such as RFC-
5661, and that additions to the standard would be an ongoing yearly process . With
these changes in the processes leading to standardization, features that will be
ratified in NFSv4 .2 (expected in March 2012) are available from many vendors and
suppliers now .

Adoption of NFSv4

While there have been a number of advances and improvements to NFS, many
users have elected to continue with NFSv3 . NFSv4 is a mature and stable protocol
with significant advantages over its predecessors NFSv3 and NFSv2, yet adoption
remains slow . Adequate for some purposes, NFSv3 is a familiar and well under-
stood protocol; but with the demands being placed on storage by exponentially
increasing data and compute growth, NFSv3 has become increasingly difficult to
deploy and manage .

So, What’s the Problem with NFSv3?

In essence, NFSv3 suffers from problems associated with statelessness . While
some protocols, such as HTTP and other RESTful APIs, see benefit from not asso-
ciating state with transactions—it considerably simplifies application development
if no transaction from client to server depends on another transaction—in the
NFS case, statelessness has led, among other downsides, to performance and lock
management issues .

NFSv4 .1 and parallel NFS (pNFS) address well-known NFSv3 “workarounds”
that are used to obtain high bandwidth access; users who employ (usually very
complicated) NFSv3 automounter maps and modify them to manage load balanc-
ing should find that pNFS provides comparable performance that is significantly
easier to manage .

Extending the use of NFS across the WAN is difficult with NFSv3 . Firewalls
typically filter traffic based on well-known port numbers, but if the NFSv3 client
is inside a firewalled network and the server is outside the network, the firewall
needs to know what ports the portmapper, mountd, and nfsd servers are listening
on . As a result of this promiscuous use of ports, the multiplicity of “moving parts,”
and a justifiable wariness on the part of network administrators to punch random
holes through firewalls, NFSv3 is not practical to use in a WAN environment . By
contrast, NFSv4 integrates many of these functions and mandates that all traffic
(now exclusively TCP) uses the single well-known port 2049 .

One of the most annoying NFSv3 “features” has been its handling of locks .
Although NFSv3 is stateless, the essential addition of lock management (NLM) to
prevent file corruption by competing clients means that NFSv3 application recov-
ery is slowed considerably . Very often, stale locks have to be manually released,
and the lock management is handled external to the protocol . NFSv4’s built-in lock
leasing, lock timeouts, and client-server negotiation on recovery simplify manage-
ment considerably .

In a change from NFSv3, these locking and delegation features make NFSv4
stateful, but the simplicity of the original design is retained through well-defined
recovery semantics in the face of client and server failures and network partitions .
These are just some of the benefits that make NFSv4 .1 desirable as a modern data-
center protocol and for use in HPC, database, and highly virtualized applications .

 30 ;login: VOL. 37, NO. 1

The Advantages of NFSv4.1

The Gibson and Corbett paper [2] identified some issues with NFSv4 that were
successfully addressed in NFSv4 .1, and NFSv4 .1 is where the focus for end-user
evaluation and implementation should be . References to features in NFSv4 apply
equally to NFSv4 .1, since it was a minor version update, unlike the changes from
NFSv3 to NFSv4 . Many of these base NFSv4 features, such as the pseudo file
system, are covered by my SNIA white paper “Migrating from NFSv3 to NFSv4”
[4] and will not be covered here .

Internationalization Support: UTF-8

In a welcome recognition that the ASCII character set no longer provides the
descriptive capabilities demanded by languages with larger alphabets or those that
use an extensive range of non-Roman glyphs, NFSv4 uses UTF-8 for file names,
directories, symlinks, and user and group identifiers . As UTF-8 is backwards
compatible with 7-bit encoded ASCII, any names that are 7-bit ASCII will continue
to work .

Compound RPCs

Latency in a WAN is a perennial issue and is very often measured in tenths of a
second to seconds . NFS uses RPC to undertake all its communication with the
server, and although the payload is normally small, metadata operations are largely
synchronous and serialized . Operations such as file lookup (LOOKUP), the fetch-
ing of attributes (GETATTR), and so on, make up the largest percentage by count of
the average workload (Table 1) .

Table 1: SPECsfs2008 %ages for NFSv3 operations [5]

This mix of a typical NFS set of RPC calls in versions prior to NFSv4 requires that
each RPC call be a separate transaction over the wire . NFSv4 avoids the expense

NFSv3 Operation SPECsfs2008

GETATTR 26%

LOOKUP 24%

READ 18%

ACCESS 11%

WRITE 10%

SETATTR 4%

READDIRPLUS 2%

READLINK 1%

READDIR 1%

CREATE 1%

REMOVE 1%

FSSTAT 1%

 ;login: FEBRUARY 2012 NFSv4 31

of single RPC requests, and the attendant latency issues, and allows these calls
to be bundled together . For instance, a lookup, open, read, and close can be sent
once over the wire, and the server can execute the entire compound call as a single
entity . The effect is to considerably reduce latency for multiple operations .

Delegations

Servers are employing ever more quantities of RAM and flash technologies, and
very large caches, on the order of terabytes, are not uncommon . Applications run-
ning over NFSv3 can’t take advantage of these caches unless they have specific
application support . With increasing WAN latencies, doing every I/O over the wire
introduces significant delay .

NFSv4 allows the server to delegate certain responsibilities to the client, a feature
that allows caching locally where the data is being accessed . Once delegated,
the client can act on the file locally with the guarantee that no other client has a
conflicting need for the file; it allows the application to have locking, reading, and
writing requests serviced on the application server without any further commu-
nication with the NFS server . To prevent deadlocking conditions, the server can
recall the delegation via an asynchronous callback to the client should there be a
conflicting request for access to the file from a different client .

Migration, Replicas, and Referrals

For broader use within a datacenter, and in support of high availability applica-
tions such as databases and virtual environments, copying data for backup and
disaster recovery purposes and the ability to migrate data to provide VM location
independence are essential . NFSv4 provides facilities for transparent replication
and migration of data, and the client is responsible for ensuring that the applica-
tion is unaware of these activities . An NFSv4 referral allows servers to redirect
clients from this server’s namespace to another server; it allows the building of a
global namespace while maintaining the data on discrete and separate servers .

Sessions

Sessions bring the advantages of correctness and simplicity to NFS semantics . In
order to improve the correctness of NFSv4, NFSv4 .1 sessions introduce “exactly-
once” semantics . Servers maintain one or more session states in agreement with
the client; a session maintains the server’s state relative to the connections belong-
ing to a client . Clients can be assured that their requests to the server have been
executed, and that they will never be executed more than once . Sessions extend
the idea of NFSv4 delegations, which introduced server-initiated asynchronous
callbacks; clients can initiate session requests for connections to the server . For
WAN-based systems, this simplifies operations through firewalls .

Security

One area of great confusion is that many believe that NFSv4 requires the use of
strong security . The NFSv4 specification simply states that implementation of
strong RPC security by servers and clients is mandatory, not the use of strong RPC
security . This misunderstanding may explain the reluctance of users to migrate
to NFSv4, due to the additional work in implementing or modifying their existing
Kerberos security .

 32 ;login: VOL. 37, NO. 1

Security is increasingly important as NFSv4 makes data more easily available over
the WAN . This feature was considered so important by the IETF NFS working
group that the security specification using Kerberos v5 [6] was “retrofitted” to
NFSv2 and NFSv3 and specified in RFC-2623 .

Although access to an NFSv2, 3, or 4 filesystem without strong security such as
provided by Kerberos is possible, across a WAN it should really be considered only
as a temporary measure . In that spirit, it should be noted that NFSv4 can be used
without implementing Kerberos security [7] . The fact that it is possible does not
make it desirable! A fuller description of the issues and some migration consider-
ations can be found in the SNIA white paper [4] .

Many of the practical issues faced in implementing robust Kerberos security in a
UNIX environment can be eased by using a Windows Active Directory (AD) sys-
tem . Windows uses the standard Kerberos protocol as specified in RFC 1510; AD
user accounts are represented to Kerberos in the same way as accounts in UNIX
realms . This can be a very attractive solution in mixed-mode environments [8] .

Parallel NFS (pNFS) and Layouts

Parallel NFS (pNFS) represents a major step forward in the development of NFS .
Ratified in January 2010 and described in RFC-5661, pNFS depends on the NFS
client understanding how a clustered filesystem stripes and manages data . It’s not
an attribute of the data, but an arrangement between the server and the client, so
data can still be accessed via non-pNFS and other file access protocols . pNFS ben-
efits workloads with many small files, or very large files, and is suitable for a range
of HPC-type workloads .

Clients request information about data layout from a metadata server (MDS) and
get returned layouts that describe the location of the data . (Although often shown
as separate, the MDS is not normally a standalone system but is part of the facili-
ties the cluster provides .) The data may be on many dataservers and is accessed
directly by the client over multiple paths . Layouts can be recalled by the server, as
is the case for delegations, if there are conflicting multiple client requests .

By allowing the aggregation of bandwidth, pNFS relieves performance issues that
are associated with point-to-point connections . The parallel nature of the client
connecting directly to multiple dataservers ensures that no single storage node is a
bottleneck and that data can be better load-balanced to meet the needs of the client
(see Figure 1) .

The pNFS specification also accommodates support for many different layouts .
Currently, three layouts are specified: files as supported by NFSv4, objects based
on the Object-based Storage Device Commands (OSD) standard (INCITS T10)
approved in 2004, and block layouts (either FC or iSCSI access) .

Many vendors have provided vendor-specific modifications that provide similar
functionality to pNFS . So although pNFS is relatively new and there may appear to
be a limited amount of best practice advice for employing it, the experience of users
with proprietary extensions to NFSv3 systems shows that high bandwidth access
to data with pNFS will be of considerable benefit .

Potential performance of pNFS is definitely superior to that of NFSv3 for simi-
lar configurations of storage, network, and server . The management is definitely
easier, as NFSv3 automounter maps and hand-created load-balancing schemes are

 ;login: FEBRUARY 2012 NFSv4 33

eliminated and, by providing a standardized interface, pNFS ensures fewer issues
in supporting multi-vendor NFS server environments .

Figure 1: Conceptual pNFS data flow

Some Proposed NFSv4.2 Features

NFSv4 .2 promises many features that end users have been requesting, which will
make NFS more relevant as not only an “every day” protocol, but one that has appli-
cation beyond the datacenter .

Server-Side Copy (SSC)

SSC removes one leg of a copy operation . Instead of reading entire files or even
directories of files from one server through the client and then writing them out to
another, SSC permits the destination server to communicate directly to the source
server without client involvement, and it removes the limitations on server-to-
client bandwidth and the possible congestion they may cause .

Application Data Blocks (ADB)

ADB allows definition of the format of a file: for example, a VM image or a data-
base . This feature will allow initialization of data stores; a single operation from
the client can create a 300 GB database or a VM image on the server .

Guaranteed Space Reservation and Hole Punching

As storage demands continue to increase, various efficiency techniques can
be employed to give the appearance of a large virtual pool of storage on a much
smaller storage system . Thin provisioning, (where space appears available and
reserved, but is not committed) is commonplace but is often problematic to man-
age in fast-growing environments . The guaranteed space reservation feature in
NFSv4 .2 will ensure that, regardless of the thin provisioning policies, individual
files will always have space available for their maximum extent .

While such guarantees are a reassurance for the end user, they don’t help the stor-
age administrator in his or her desire to fully utilize all available storage . In sup-
port of better storage efficiencies, NFSv4 .2 will introduce support for sparse files,
commonly called “hole punching”: deleted and unused parts of files are returned to
the storage system’s free space pool (Figure 2, next page) .

 34 ;login: VOL. 37, NO. 1

Figure 2: Thin-provisioned and hole-punched data

Availability of Servers and Clients

With this background on the features of NFS, there is considerable interest in the
end-user community for NFSv4 .1 support from both servers and clients . Many net-
work attached storage (NAS) vendors now support NFSv4, and in recent months
there has been a flurry of activity and many developments in server support of
NFSv4 .1 and pNFS . For NFS server vendors, refer to their Web sites, where you
will get up-to-date information .

On the client side, there is Linux Red Hat 6 .2, which has an NFSv4 .1 Technical
Preview [9], and Fedora 15 and 16, available at fedoraproject .org . Both distributions
support files-based NFSv4 .1 and pNFS . For the adventurous who wish to build
their own kernels and want to explore the latest block or objects access, there is
full file, block, and object-based pNFS support in the upstream 3 .0 and 3 .1 Linux
kernels .

For Windows, Microsoft has publicly indicated that it will be supporting NFSv4 .1
in Windows 8 . An open source client implementation preview is available from the
Center for Information Technology Integration (CITI) at the University of Michi-
gan [10] .

Conclusion

NFSv4 .1 includes features intended to enable its use in global wide area networks
(WANs) . These advantages include:

u Firewall-friendly single port operations
u Advanced and aggressive cache management features
u Internationalization support
u Replication and migration facilities
u Optional cryptography quality security, with access control facilities that are

compatible across UNIX and Windows
u Support for parallelism and data striping

The goal for NFSv4 .1 and beyond is to define how you get to storage, not what your
storage looks like . That has meant inevitable changes . Unlike earlier versions
of NFS, the NFSv4 protocol integrates file locking, strong security, operation
coalescing, and delegation capabilities to enhance client performance for data-
sharing applications on high-bandwidth networks .

 ;login: FEBRUARY 2012 NFSv4 35

NFSv4 .1 servers and clients provide even more functionality, such as wide striping
of data, to enhance performance . NFSv4 .2 and beyond promise further enhance-
ments to the standard that will increase its applicability to today’s application
requirements . It is due to be ratified in March 2012, and we can expect to see
server and client implementations that provide NFSv4 .2 features soon after this;
in some cases, the features are already being shipped now as vendor-specific
enhancements .

With careful planning, migration to NFSv4 .1 and NFSv4 .2 from prior versions can
be accomplished without modification to applications or the supporting opera-
tional infrastructure, for a wide range of uses—home directories, HPC storage
servers, backups, and so on .

Resources

[1] NFSv3 specification: http://tools .ietf .org/html/rfc1813 . Other IETF RFCs
 mentioned in the text can be found at the same site .

[2] The “pNFS Problem Statement”: http://tools .ietf .org/html/draft-gibson-pnfs
-problem-statement-01 .

[3] NFSv4 .2 proposed specification: http://www .ietf .org/id/draft-ietf-nfsv4
-minorversion2-06 .txt; the draft as of November 2011 .

[4] Alex McDonald (SNIA white paper), “Migrating from NFSv3 to NFSv4”:
http://www .snia .org/sites/default/files/Migrating_NFSv3_to_NFSv4-Final .pdf .

[5] http://www .spec .org/sfs2008/docs/usersguide .html#_Toc191888936 gives a
typical mix of RPC calls from NFSv3 .

[6] “Kerberos Overview—An Authentication Service for Open Network Systems”:
http://www .cisco .com/application/pdf/paws/16087/1 .pdf .

[7] For examples of NFSv4 without Kerberos, see Ubuntu Linux, https://help .
ubuntu .com/community/NFSv4Howto, and SUSE Linux Enterprise, http://
www .novell .com/support/dynamickc .do?cmd=show&forward=nonthreadedKC
&docType=kc&externalId=7005060&sliceId=1 .

[8] Windows Security and Directory Services for UNIX Guide v1 .0: http://technet
 .microsoft .com/en-us/library/bb496504 .aspx .

[9] Red Hat 6 .2 NFSv4 .1 Technical Preview: http://docs .redhat .com/docs/en-US/
Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch12s02 .
html .

[10] NFSv4 Client for Windows at CITI: http://www .citi .umich .edu/projects/
nfsv4/windows/ .

 36 ;login: VOL. 37, NO. 1

“The system is slow .” How often do we hear those words? Here is one technique I
use to start narrowing the fault domain, to better focus my attention on where the
cause of the slowness resides . This approach relies on comparing packet traces
taken near the client and near the server .

From a high level, I see three players contributing to the performance character-
istics of an application: the client, the network, and the server . With this model in
mind, I calculate how much time the client spends formulating requests, how much
time the server spends formulating responses, and how much time the network
spends flinging the packets back and forth . From there, I can represent the rela-
tive contribution of each component as a slice in a pie, which naturally focuses my
attention on the largest slice (slowest component) .

I will sketch three techniques (manual, semi-automated, mostly automated) for
constructing the pie and illustrate how this approach can be useful for analyzing
application performance issues .

Capture the Pie

The Campus Network (Figure 1) in this article consists of a classic access/distri-
bution/core layer design, where the access layer functions at Layer 2 (k2-esx and
s4-esx) and the distribution and core layers function at Layer 3 . In this diagram I
hide the distribution and core layers inside the cloud . In the pies below, the clients
Europa and Deimos copy files across the Campus Network to the server Mars,
while the probes Hale, Bopp, and Tempel capture the relevant traffic .

Figure 1: Campus Network

SYSADMINTasting Client/Network/Server Pie
S T U A R T K E N D R I C K

Stuart Kendrick works

as a third-tier tech at the

Fred Hutchinson Cancer

Research Center in Seattle,

where he dabbles in trouble-shooting, deep

infrastructure design, and developing tools

to monitor and manage devices. He started

earning money as a geek in 1984, writing in

FORTRAN on Cray-1s for Science Applications

International Corporation, worked in desktop

support, server support, and network support

at Cornell University, and reached FHCRC in

1993. He has a BA in English, contributes to

BRIITE (http://www.briite.org), and spends

free time on yoga and CrossFit.

skendric@fhcrc.org

Deimos

Campus Network
1GigE / 10GigE

k4-esx

K4 Data Center

s2-esx

S2 Data Center

Vela

Mars

Europa

T1

Hale Bopp

Tempel

 ;login: FEBRUARY 2012 Tasting Client/Network/ Server Pie 37

To make pies, I capture [1] two simultaneous packet traces of the experience from
separate locations: one near the server (via the probe Hale), the other near the cli-
ent (via the probe Tempel in the case of Europa, or via the probe Bopp in the case of
Deimos) . I filter the two traces, such that they include only traffic between client
and server and only traffic relevant to the application I’m analyzing:

hale# dumpcap –i eth0 –w server.pcap –f “ip host europa and ip host mars”

Make the Pie from Scratch

This technique relies heavily on the DeltaT column in a trace . Here are the first
handful of frames from a 10 MB SMB file copy from the client Europa to the server
Mars across a T1 incurring 250 ms of latency .

Client-side trace:

No. DeltaT RelT Bytes Src Dst Info

1 0.000000 0.000000 70 Client Server TCP SYN

2 0.253718 0.253718 70 Server Client TCP SYN/ACK

3 0.000386 0.254104 64 Client Server TCP ACK

4 0.000007 0.254111 217 Client Server Negotiate Protocol Request

5 0.252704 0.506815 64 Server Client TCP ACK

6 0.256627 0.763442 226 Server Client Negotiate Protocol Response

Server-side trace:

No. DeltaT RelT Bytes Src Dst Info

1 0.000000 0.000000 70 Client Server TCP SYN

2 0.000059 0.000059 70 Server Client TCP SYN/ACK

3 0.254032 0.254091 64 Client Server TCP ACK

4 0.000272 0.254363 217 Client Server Negotiate Protocol Request

5 0.000410 0.254773 64 Server Client TCP ACK

6 0.257468 0.512241 226 Server Client Negotiate Protocol Response

The DeltaT (Delta Time) column records the time that has elapsed since the previ-
ous frame . The RelT (relative time, sometimes called cumulative time) column
records time elapsed from the beginning of the trace through that frame .

Consider the trace taken close to the client . When the source address is the client,
then DeltaT fairly closely represents the amount of time the client spent processing
the previous message from the server . When the source address is the server, then
DeltaT represents the time the server spent processing the client’s request plus the
time the network spent transmitting the server’s response .

The converse holds for the trace taken close to the server . By using a little arithme-
tic, we can estimate the time the network contributed to the experience .

1 . Filter the client-side trace so that we see only frames sourced from the client:

No. DeltaT RelT Bytes Src Dst Info

1 0.000000 0.000000 70 Client Server TCP SYN

3 0.000386 0.254104 64 Client Server TCP ACK

4 0.000007 0.254111 217 Client Server Negotiate Protocol request

 38 ;login: VOL. 37, NO. 1

2 . Sum the DeltaT column to produce the client time estimate:

0.000000 + 0.000386 + 0.000007 = 0.000393s

3 . Filter the server-side trace so that we see only frames sourced from the server:

No. DeltaT RelT Bytes Src Dst Info

2 0.000059 0.000059 70 Server Client TCP SYN/ACK

5 0.000410 0.254773 64 Server Client TCP ACK

6 0.257468 0.512241 226 Server Client Negotiate Protocol Response

4 . Sum the DeltaT column to produce the server time estimate:

0.000059 + 0.000410 + 0.257468 = 0.257937s

5 . Estimate the network’s contribution by grabbing the relative time from either
trace and subtracting the client and server contributions:

Relative – (Client + Server) = Network

0.763442 – (0.000393 + 0.257937) = 0.505112s

6 . Calculate the size of each slice in the CNS Pie:

Client Time 0.000393s

Server Time 0.257937s

Network Time 0.505112s

Total Time 0.763442s

Client% = Client Time / Relative Time = 0.000393 / 0.763442 = 0%

Server% = Server Time / Relative Time = 0.257937 / 0.763442 = 34%

Network% = Network Time / Relative Time = 0.505112 / 0.763442 = 66%

The skeptical reader may question why I plucked relative time from the client-side
trace rather than from the server-side trace—in this trivial example, I agree that
the choice makes a difference (using server-side RelT results in 50% server time
and 50% network time, as opposed to the 66% and 34% produced above) . However,
I claim that the two will be identical, or nearly so, across large traces, and thus we
can arbitrarily choose either one .

Naturally, my fingers become tired of punching buttons on a calculator, so I script
[2] the process, invoking tshark (part of the Wireshark suite) to produce appropri-
ately filtered text files containing just the summary lines, per above, then crawling
through those text files while summing DeltaT . Attentive readers who examine
the code will notice that I use a more laborious method for estimating the network
contribution than the one sketched here .

As it turns out, once we chew [3] through all 10,776 frames in each of these traces,
the results turn out as follows:

Client % 2.8s / 63.5s = 4%

Server % 5.7s / 63.5s = 9%

Network % 55s / 63.5s = 87%

 ;login: FEBRUARY 2012 Tasting Client/Network/ Server Pie 39

Use a Food Processor

Alternatively, tshark will perform the calculation for us [4], delivering numbers
that are within a few percent of the ones I produce above using my home-grown
code .

guru> tshark -nlr europa-to-mars-T1-250ms-at-europa.pcap –o

tcp.calculate_timestamps:TRUE -R “(tcp.dstport==445)”

-qz io,stat,600,”SUM(tcp.time_delta)tcp.time_delta”

==

IO Statistics

Interval: 600.000 secs

Column #0: SUM(tcp.time_delta)tcp.time_delta

 | Column #0

Time | SUM

000.000-600.000 2.6

==

guru>

guru> tshark -nlr europa-to-mars-T1-250ms-at-mars.pcap –o

tcp.calculate_timestamps:TRUE -R “(tcp.srcport==445)”

-qz io,stat,600,”SUM(tcp.time_delta)tcp.time_delta”

==

IO Statistics

Interval: 600.000 secs

Column #0: SUM(tcp.time_delta)tcp.time_delta

 | Column #0

Time | SUM

000.000-600.000 6.0

==

guru>

Capinfos, another Wireshark utility, tells us how long the trace lasted:

guru> capinfos europa-to-mars-T1-250ms-at-europa.pcap

File name: europa-to-mars-T1-250ms-at-europa.pcap

[…]

Capture duration: 63 seconds

[…]

Knowing that client time is 2 .6 seconds, server time is 6 .0 seconds, and total time
is 63 seconds, we can calculate network time:

Network Time = 63s – 2.6s – 6s = 53.4s

Calculate percentages:

Client % 2.6s / 63s = 4%

Server % 6.0s / 63s = 10%

Network % 53.4s / 63s = 85%

Finally, in Figure 2 (next page), we use our favorite charting program to produce
the first pie .

 40 ;login: VOL. 37, NO. 1

Figure 2: Our first pie

Buy the Pie from a Bakery

For those of us with money to spend, consider purchasing commercial software
to provide a more sophisticated estimate of these three components . With these
tools, we import the two traces into the analysis software, which then performs
the tedious work described above . In Figure 3, I use Fluke Networks’ ClearSight
Analyzer to produce a stacked chart, functionally equivalent to a pie .

Figure 3: Bottleneck analysis chart from ClearSight Analyzer

More subtly, there are a range of issues which the home-baked or food-processed
approaches miss, including TCP window size, TCP congestion window, application
block size, packet loss, and parallel threads . As these factors arise in your situa-
tion, the manual approaches become increasingly inaccurate, and this is where the
introspection baked into the commercial applications shines . Commercial pack-
ages also support importing more than two traces, captured at various points along
the path between client and server, and are smart enough to track transactions
through middleware (e .g ., browser to Web server to back-end database) .

Try a Slice

In these pies, Deimos copies files to Mars using NFSv3 . Figure 4 illustrates situa-
tions in which I want to focus attention on the client, as it contributes 80–90% of
the total transaction time .

Figure 4: Copy big files across Campus Network

Client

Network

Server

Copy 10 MB File using SMBv1 over a T1
exhibiting 250ms of latency

63 seconds

TCP/IP Performance

Summary
Source: C:/Users/Operator/Documents/skendric/Pie-Paper/europa-to-mars-T1-250ms.adc
Description: SMB: 10.1.1.11 <--> 140.107.43.150. Last command: Write AndX Response
Flow 1: Cabrini
Flow 2: K4
ClearSight Version: 8.0.0.63
Report Generated On: Nov 13, 2011 6:57 AM

Bottleneck Analysis
Timing(%) Value

Transaction Time(sec) 63.587945
Network Time(sec) 52.619447
Client Time(sec) 5.662746
Server Time(sec) 5.305752
Network time counts for 82.75% of the total transaction time.

Performance Matrix
Flow 1 Flow 2

Throughput(Kbps) 1378.461 1371.722
Network Time(sec) 0.127052 0.127045
Client Time(sec) 5.662746000 58.155364000
Server Time(sec) 57.796762000 5.305752000
TCP Connection(sec) 0.254104 0.254091
First Byte Downloading(sec) 0.506815 0.254773
Min Client Window Size(KB) 8192 8192
Max Client Window Size(KB) 16425 16425
Min Server Window Size(KB) 43800 43800
Max Server Window Size(KB) 49640 49640
Retry 0 0
Out of Sequence Count 0 37
Packet Loss 0 0
TCP Turns 2104 7082

Slow application throughput is caused by several factors, TCP connection time usually indicates the network delay between the Client and Server is
impacting the application performance.
Small Window size of the server increase the TCP turns, consequently increase the network time.

21/ 11/13/2011 06:57Version 8.0.0.63

Client

Network
Server

1GB File Copy / NFS

Client

Network

Server

15 seconds

Client

Network Server

10MB File Copy / NFS

Client

Network

Server

.2 seconds

 ;login: FEBRUARY 2012 Tasting Client/Network/ Server Pie 41

In Figure 5, I want to focus attention on the server, as it contributes 60–70% of the
total time .

Figure 5: Copy small files across Campus Network

The Many 8K Files test involves copying a thousand 8K files, while the Ineffi-
cient App copies a single 1K file one byte at a time, closing and re-opening the file
between each byte:

#!/usr/bin/perl

Inefficient application

[…]

$destination = ‘/mnt/server’;

$source = ‘/var/tmp/test_file’;

open $read_fh, ‘<’, $source; # Open source file

while (read $read_fh, my $tmp, 1) { # Read next byte from the source file

 open $write_fh, ‘>>’, $destination; # Open destination file

 print {$write_fh} $tmp; # Write this byte to destination file

 close $write_fh; # Close destination file

}

For the one repository I analyzed during this job, Inefficient App turned out to be a
dead-ringer for Subversion, making it useful for modeling Subversion behavior (see
Figure 6) when testing new client / network / server combinations .

Figure 6: Subversion across Campus Network

Direct Our Attention

The pies suggest that for large file copies—a streaming application—we direct our
attention toward Deimos . On investigation, we might find that beefing up its CPU
or giving it a faster drive reduces the total transaction time .

For transactional applications, such as copying many small files or Subversion, the
pies suggest that we direct our attention toward Mars . On investigation, we find
that Mars is backed by the mass storage device Vela, which contains ~500 spindles
of 1 TB and 2 TB 10 K SATA drives working in parallel . Vela divides each disk into
~700 MB chunklets, picks at least one chunklet from each disk, and glues them
together to produce the LUN which Mars exposes to Deimos .

Client

Network

Server

Many 8K Files / NFS

Client

Network

Server

5 seconds

Client

NetworkServer

Inefficient App / NFS

Client

Network

Server

2.3 seconds

Client

Network

Server

Subversion / NFS

Client

Network

Server

27 seconds

 42 ;login: VOL. 37, NO. 1

As a result, Mars performs well for streaming applications and poorly for trans-
actional applications . Why? When we copy a big file to Mars, 500 spindles work
together to swallow the datastream: the single spindle inside Deimos cannot keep
up, making Deimos the primary contributor to the pie . When we copy many small
files one at a time, the two systems are more evenly matched: only a single spindle
inside Vela handles each write request, and that request must complete before
Deimos can forward the next request .

For Mars, we might experiment with adding a LUN serviced by small, fast
spindles—say, a dozen 15 K 250 MB drives—and moving Subversion to a volume
hosted on that LUN . These platters are small and they rotate rapidly, reducing seek
latency . For transactional applications, we might predict that such a LUN would
deliver faster performance .

The CNS Pie provides a visually intuitive tool for narrowing the fault domain and
for communicating the contours of the issue to our colleagues [5] .

Too Much Sugar

Yes, I’ve been oversimplifying . Sure, sometimes the CNS Pie accurately directs our
attention to the bottleneck . But the real world can be complex, and there are plenty
of times when the CNS Pie misdirects our attention .

In Figure 7, both pies suggest that we focus on the network in order to improve
performance, but notice how the transaction time drops from 64 seconds to 14
seconds when we upgrade from SMBv1 to v2 .

Figure 7: SMBv1 vs. SMBv2 over T1 with 250 ms latency

A simplistic reading of the left-hand CNS Pie would have focused our attention on
the network, which might have pushed us to purchase a network pipe with more
throughput . This would not have helped: SMBv1’s application block size is 61 K,
and so once latency reaches ~40 ms, no amount of fatter pipe will improve perfor-
mance [6] . We could have purchased a 10 GigE network service (assuming latency
remained the same) without improving total time . On the other hand, by upgrading
the client and server to run SMBv2 (available in Windows Vista+ and Samba 3 .5+),
we improved performance by a factor of ~5 . This new version of SMB auto-tunes
its application block size and streamlines metadata operations, thus improving
performance .

While I find the CNS Pie useful in shedding light on application performance
issues, it remains only one tool in the toolkit: there are no silver bullets .

Appreciation

I feel particular gratitude to Mike Pennacchi of Network Protocol Specialists for
teaching me to make my first CNS Pie . (As far as I can tell, Mike invented the

Client

Network

Server

Copy 10MB File / SMBv1 over T1

Client

Network

Server

64 seconds

Client

Network

Server

Copy 10MB File / SMBv2 over T1

Client

Network

Server

14 seconds

 ;login: FEBRUARY 2012 Tasting Client/Network/ Server Pie 43

CNS Pie back in the 1990s . If you know of prior art, please drop me a note .) I also
appreciate the professionals who have given their time to coach me on the topics
covered in this article: Glenn Boyle of BT Global Services for opening my eyes to
how I could bake at home, for refining my recipes, for teaching me how to use a
food processor, and for helping me understand numerous subtleties; Gary Kaiser
of Compuware for help understanding yet more subtleties plus the sophistication
which commercial products bring to this space; and my colleagues Robert McDer-
mott, for teaching me about the complex world of storage systems, and Wolfe
Maykut, for the Inefficient App .

Thank you also to the community active on the LinkedIn Protocol Analysis and
Troubleshooting group—I appreciate your contributions to the rich discussions
there .

References

[1] I use dumpcap, tcpdump, and tshark interchangeably, depending on mood—their
syntax is almost identical . For those interested in high-performance capture,
check out Corey Satten’s gulp: http://staff .washington .edu/corey/gulp .

[2] Data mangling code is available at http://www .skendric .com/app/code/
extract-summary-lines-from-pcap and http://www .skendric .com/app/code/
calculate-cns-pie .

[3] For a detailed description of this process, see http://www .skendric .com/app/
make-cns-pie/Make-Client-Network-Server-Pie .pdf .

[4] Requires Wireshark 1 .7 .1 or later .

[5] For more examples of how the CNS Pie can direct our attention, see the “Make
Client/Network/Server Pie” article at http://www .skendric .com/app .

[6] Bandwidth Delay Product calculation: 1,544,000 b/s * .04s = 61,760 bits =~ 61K .

 44 ;login: VOL. 37, NO. 1

I first heard about Netflix’s remarkable journey into the cloud in Adrian Cock-
croft’s presentation at HPTS (see the reports in this issue) . Adrian explained why
Netflix was moving to the cloud after having had their own datacenter: the cloud
was both easier to work with and more reliable . Adrian’s presentation slides [1]
as well as very detailed blog entry [2] do a great job of explaining where Netflix is
today, and where they plan to go . I suggest that you read both of these resources;
the slides present an overview, and the blog gets into details . What is missing from
these resources is a bit of history, which Adrian provides here .

Rik: I am guessing that Netflix started out using a big server in a datacenter, pretty
much the way other companies had always done, and you gradually learned about
the advantages of not having your own servers . Could you tell us a little about the
past that led you to this point?

Adrian: The history of how we got to the cloud is that our original datacenter
systems were based on a few large Oracle servers with a Java front end . The load
at that time was dominated by the DVD business . We had a storage data corrup-
tion bug in the summer of 2008 which took Netflix down for several days, and
we also saw that in the future we would need to rebuild our site for higher avail-
ability to support the demands of streaming . It was clear that we needed large-
scale redundant datacenters, but we couldn’t easily predict how much datacenter
capacity we would need for the rapidly growing streaming business and where it
should be located . We had also had a fairly painful experience moving from a single
datacenter to a pair of small ones (leased cages), and needed to decide whether to
invest heavily in the staff and skills needed to run a large and high-growth-rate
datacenter infrastructure, or outsource and leverage an external cloud supplier .
In parallel we ran a large upgrade of datacenter capacity and an investigation into
the feasibility of using cloud . We quickly settled on AWS as the largest cloud and
established an executive-level relationship as a foundation for the business and
technical relationship .

Through 2009, we explored the cloud platform with several pathfinder projects
and non-customer-facing workloads such as encoding and Hadoop-based log
analysis . In early 2010 we brought up the first customer-facing workloads, starting
with the simplest ones with fewest dependencies, and gradually filling in the data
sources until almost everything is running in the cloud, but with the data resident
in both cloud and datacenter . In 2011 we gradually moved the “source of truth”
systems into the cloud, with copies in the datacenter as needed . The final stages of
that are currently being completed .

Netflix Heads into the Clouds
Interview with Adrian Cockcroft

R I K F A R R O W

Adrian Cockcroft is the

director of architecture for the

Cloud Systems team at Netflix.

He is focused on availability,

resilience, performance, and measurement

of the Netflix cloud platform. Adrian is also

well known as the author of several books

while a Distinguished Engineer at Sun

Microsystems: Sun Performance and Tuning,

Resource Management, and Capacity Planning

for Web Services. From 2004 to 2007 he was a

founding member of eBay Research Labs. He

graduated with a BSc in Applied Physics from

The City University, London.

acockcroft@netflix.com

 ;login: FEBRUARY 2012 Netflix Heads into the Clouds: Interview with Adrian Cockcroft 45

Rik: I understand that you have built many tools for managing and monitoring your
servers and software in the cloud, and that you have made them open source . Can
you briefly tell us about them?

Adrian: We have built a platform that runs on the AWS cloud but provides abstrac-
tions and patterns that are more portable and convenient for the developers at
Netflix . I describe this PaaS in a presentation given at QConSF in October; slides
are at http://www .slideshare .net/adrianco/global-Netflix-platform .

The platform is primarily based on Java running in Tomcat on Linux . We also sup-
port the Groovy/Grails environment, primarily for building internal tools . We use
open source components combined with custom code . The Netflix Global PaaS has
the following features:

u Global distribution of traffic, processing, and data
u Localized support for multiple languages and jurisdictions
u Support for dynamic and ephemeral cloud resources
u Data migration mechanisms from datacenter to cloud and between regions
u Continuous backup and secure distributed archive of cloud-based data
u Dynamic security key management with multi-level key protection
u Fine-grained least privilege security based on AWS security groups and IAM
u Scalable to many thousands of instances, autoscaled with load

The components that we are open sourcing at github .com include:

u Curator: a distributed coordination framework based on Apache Zookeeper
u Priam: Tomcat-based automation for simple management of Apache Cassandra

on AWS
u Astyanax: a Java client library for Cassandra that improves on an earlier client

called Hector
u Honu: a high throughput streaming data logging system based on Apache

Chukwa

Rik: In your presentations you mention two tools your developers use: Jenkins
and Perforce . Could you tell us more about those tools? For example, why did you
choose Perforce over an open source solution?

Adrian: Netflix has been using Perforce as its in-house source code control system
for many years, and when we moved to the cloud we didn’t change it . We use Jen-
kins to run our build system for the cloud . Carl Quinn presented on this at Devoxx
[4] . Carl’s team runs Perforce, Jenkins, Ivy, Artifactory, and related tools for our
cloud developments .

Rik: You’ve made it clear that your move to AWS is as much about reliability as it is
about flexibility . Yet even AWS can fail, as seen in the April 2011 partitioning event
that occurred in Amazon’s East Region datacenter [3] . That event was related to
a specific network configuration that exacerbated the initial problem, a problem
that occurred because the failover hadn’t been tested under full load . What do you
recommend that other organizations that plan on, or have moved to, cloud opera-
tions do to prepare for such events?

Adrian: We have published a Tech Blog that summarizes what we learned from
that outage [5] . There is a lot of detail there that answers your question .

Rik: What’s coming next?’

 46 ;login: VOL. 37, NO. 1

Adrian: We are currently working on the backend infrastructure to support our
UK and Ireland launch, which leverages the AWS Europe region located in Ireland .
Netflix has no employees in Ireland, and the flexibility this gives us in contrast to
owning our own datacenters is extremely valuable . From a technical perspective,
the Netflix Global Cloud Platform is being polished, hardened, and tuned to run
more efficiently, and we have several additional components we are planning to
open source during 2012 .

Resources

[1] Slides for Cockcroft’s presentations: http://www .slideshare .net/adrianco .

[2] Cockcroft’s blog entry: http://techblog .Netflix .com/2011/11/benchmarking
-cassandra-scalability-on .html .

[3] Summary of the Amazon EC2 and Amazon RDS Service Disruption in the US
East Region: https://aws .amazon .com/message/65648/ .

[4] Carl Quinn at Devoxx: http://www .devoxx .com/display/DV11/Carl+Quinn .

[5] Netflix blog regarding lessons learned from AWS outage: http://techblog
 .netflix .com/2011/04/lessons-netflix-learned-from-aws-outage .html .

 ;login: FEBRUARY 2012 47

I can’t predict this for sure, but if I were a betting man I’d lay even money that at
some point in your career you are going to be handed data in CSV or Microsoft
Excel format and be asked to parse it . You may even be asked to produce data in one
of those formats .

CSV, which can either mean “comma-separated” values or “character-separated”
values, depending on whether you woke up on the pedantic side of the bed in the
morning, is one of the more ubiquitous data formats on the planet . Similarly, there
are people in the business world who treat Excel as their mother tongue, so being
able to read and write spreadsheets in this format will definitely make you a hit
among the suits . By the way, I am aware there are more open and liberty-leaning
alternatives to Excel around . Much of what we’ll talk about in this column will
still be useful if those alternatives are your tools of choice, but I mostly won’t be
addressing them directly .

C D CSV

The canonical, most basic module for processing CSV in Perl is Text::CSV . If you
are going to use this module and there are no pure-Perl restrictions in place, you
will definitely want to also install the Text::CSV_XS module at the same time .
Text::CSV_XS is a replacement backend for Text::CSV written in C that is much,
much faster than the pure-Perl parsing routines found in Text::CSV . These two
modules are perfectly intertwined: Text::CSV will automatically use Text::CSV_
XS with no change of syntax if it notices it is available .

You might wonder why someone has gone to the trouble of writing an entire module
to parse CSV data when it seems as though a few simple split() functions would do
the trick . Take a moment to read the documentation for the module . Right around
the time your eyes start to glaze over from reading all of the possible options, you’ll
probably come to the conclusion, “Hey, the CSV format isn’t as simple as I thought .
There are many different ways it could be implemented .” And, indeed, I’ve talked
to Perl programmers who have related horror stories about how different program/
systems they had to mesh had slightly different interpretations of how CSV should
be parsed/written . Using Text::CSV and its copious options can help to shield you
from this unpleasantness .

Let’s look at the basics of how Text::CSV is used, check out one advanced feature,
and then look at a few other more sophisticated modules that use Text::CSV to do
the dirty work . To use Text::CSV, we start with code that looks like this (slightly
modified from the example in the doc):

COLUMNSPractical Perl Tools
CSV and the Spreadsheet Go A-Wanderin’

D A V I D N . B L A N K - E D E L M A N

David N. Blank-Edelman is

the director of technology at

the Northeastern University

College of Computer and

Information Science and the author of the

O’Reilly book Automating System Administration

with Perl (the second edition of the Otter

book), available at purveyors of fine dead

trees everywhere. He has spent the past 24+

years as a system/network administrator in

large multi-platform environments, including

Brandeis University, Cambridge Technology

Group, and the MIT Media Laboratory. He was

the program chair of the LISA ’05 conference

and one of the LISA ’06 Invited Talks co-chairs.

David is honored to have been the recipient

of the 2009 SAGE Outstanding Achievement

Award and to serve on the USENIX Board of

Directors beginning in June of 2010.

dnb@ccs.neu.edu

 48 ;login: VOL. 37, NO. 1

use Text::CSV;

use Data::Dumper;

my $c = Text::CSV->new({ binary => 1 })

 or die Text::CSV->error_diag();

open my $FILE, ‘<’, $ARGV[0] or die “Can’t open $ARGV[0]: $!\n”;

row will be an array ref pointing to an array of parsed fields

while (my $row = $c->getline($FILE)) {

 print Dumper($row);

}

$c->eof or $c->error_diag();

close $FILE;

Here’s one section of output showing my local airport when I run it against the
airports .csv file provided by OurAirports at http://www .ourairports .com/data/:

$VAR1 = [

 ‘3422’,

 ‘KBOS’,

 ‘large_airport’,

 ‘General Edward Lawrence Logan International Airport’,

 ‘42.36429977’,

 ‘-71.00520325’,

 ‘20’,

 ‘NA’,

 ‘US’,

 ‘US-MA’,

 ‘Boston’,

 ‘yes’,

 ‘KBOS’,

 ‘BOS’,

 ‘BOS’,

 ‘http://www.massport.com/logan/’,

 ‘http://en.wikipedia.org/wiki/Logan_International_Airport’,

 ‘General Edward Lawrence Logan International Airport’

$VAR1 =];

Let’s walk through the Text::CSV code above so you can see how this all works .
After loading the module (with Text::CSV_XS being loaded implicitly), we cre-
ate a parser object using new() . There are quite a few options available but in
this case I’m setting “binary,” the one option that I think makes sense to include
in every Text::CSV script you write (I’d be hard-pressed to think of a case where
you wouldn’t want it) . Using the binary option will allow the parser to parse fields
that contains non-ASCII characters without choking . You never know when José
Feliciano or Björk Guðmundsdóttir might show up in your data, so it is safer to set
that option .

The code then opens up a file handle using the preferred three-argument form of
open() . From this file handle, we have Text::CSV read and parse each line using
getline() . The getline() function reads a line, then parses it into fields, with each
field occupying a position in an array . It returns a reference to this array, the con-
tents of which we dump out in the loop . The getline() call will return “undef” if it

 ;login: FEBRUARY 2012 Practical Perl Tools 49

can’t read any more data or if the parsing process crashes and burns . This explains
the line after the loop that says:

$c->eof or $c->error_diag();

If getline() exited because it hit the end of file, everything is peachy (and the first
part of that statement is true so it shortcuts to the next line) . If not, we call a func-
tion that will print the failure information to STDERR . We close the file and go
home, a job well done .

I dumped the contents of the array within the loop, but you can imagine doing all
sorts of intricate and productive things by accessing $row->[$someposition] . If
we want to get a little more sophisticated with Text:CSV we can use getline_hr()
instead of getline() to return a hash reference along the lines of:

$VAR1 = {

 ‘iso_country’ => ‘US’,

 ‘municipality’ => ‘Boston’,

 ‘home_link’ => ‘http://www.massport.com/logan/’,

 ‘local_code’ => ‘BOS’,

 ‘keywords’ => ‘General Edward Lawrence Logan International

Airport’,

 ‘iata_code’ => ‘BOS’,

 ‘latitude_deg’ => ‘42.36429977’,

 ‘iso_region’ => ‘US-MA’,

 ‘id’ => ‘3422’,

 ‘longitude_deg’ => ‘-71.00520325’,

 ‘name’ => ‘General Edward Lawrence Logan International Airport’,

 ‘elevation_ft’ => ‘20’,

 ‘ident’ => ‘KBOS’,

 ‘wikipedia_link’ => ‘http://en.wikipedia.org/wiki/Logan_

 International_Airport’,

 ‘scheduled_service’ => ‘yes’,

 ‘continent’ => ‘NA’,

 ‘type’ => ‘large_airport’,

 ‘gps_code’ => ‘KBOS’

$VAR1 =];

It is soooo much easier to read code that says:

$row->{‘longitude_deg’};

instead of:

$row->[5];

In order for getline_hr() to work its magic, it has to know what each of the fields
represents . To set this information, we have to call column_names() with an array
reference to an array with the list of field names prior to calling getline_hr() . In
our case, we were working with a .csv file that had a descriptive header row at the
beginning of the file:

“id”,”ident”,”type”,”name”,”latitude_deg”,”longitude_deg”,”elevation_ft”,

“continent”,”iso_country”,”iso_region”,”municipality”,”scheduled_service”,

“gps_code”,”iata_code”,”local_code”,”home_link”,”wikipedia_link”,”keywords”

 50 ;login: VOL. 37, NO. 1

so we could include this right before our parsing loop changed to use getline_hr()
instead of getline():

my $header = $c->getline($FILE);

$c->column_names($header);

or, if we wanted to be terser, just:

$c->column_names($c->getline($FILE));

If you decide neither an array ref nor a hash ref floats your boat, you can take a
page from the DBI playbook (truth be told, I don’t know which came first) and use
bind_columns() instead . With bind_columns() your code looks like this:

$c->bind_columns (\$id, \$ident, \$type, ... \$keywords);

while ($csv->getline ($FILE)) { ... }

Each time through the loop, the data is parsed and then assigned to each of those
scalars in order .

Earlier in this section I suggested that there might be more sophisticated modules
for each task . In the case of Text::CSV there are quite a few modules that build
upon it . Let’s look at two that try to make it even simpler to use for the most com-
mon cases:

1 . Text::CSV::Simple attempts to collapse down the code we saw before into a very
simple set of lines:

use Text::CSV::Simple;

my $c = Text::CSV::Simple->new({ binary => 1 });

my @rows = $c->read_file($ARGV[0]);

At this point @rows is an array of arrays . Well, more precisely it is an array con-
taining references to other arrays that represent the rows . The row arrays have one
field per position . But all of this is easier if you think of it as an array of arrays, so
that $rows[0][2] would refer to the third field in the first header row (the string
“type”) .

If we didn’t want to capture all of the fields in each row, we could instead use the
want_fields() method to specify just the field numbers desired . Text::CSV::Simple
can also do the equivalent trick with a hash reference if you use the field_map()
method:

$c->field_map(

 “id”, “ident”,

 “type”, “name”,

 “latitude_deg”, “longitude_deg”,

 “elevation_ft”, “continent”,

 “iso_country”, “iso_region”,

 “municipality”, “scheduled_service”,

 “gps_code”, “iata_code”,

 “local_code”, “home_link”,

 “wikipedia_link”, “keywords”

);

my @rows = $c->read_file($ARGV[0]);

Now @row contains hash references instead of array references, so you can say:

 ;login: FEBRUARY 2012 Practical Perl Tools 51

we could leave out the arrow, but it is harder to read

$row[1]->{ident};

To perform the equivalent function of want_fields() in the last example, we could
specify “null” in the field_map() statement, as in:

$c->field_map(‘id’, null, null, ‘name’, ...);

and those fields will simply be ignored in each row .

2 . If you liked Text::CSV::Simple’s ability to grab data and place it into a data
structure in one fell swoop, but didn’t like that it changed data structures based on
whether another method had been run before it, you might like Text::xSV::Slurp
better . It gets used like this (to mimic functionality we’ve seen so far):

use Text::xSV::Slurp ‘xsv_slurp’;

open my $FILE, ‘<’, $ARGV[0] or die “Can’t open $ARGV[0]:$!\n”;

my $aoa = xsv_slurp($FILE, shape => ‘aoa’,

text_csv => { binary => 1 });

The key magic here is the “shape” parameter . That can be one of these:

aoa - array of arrays

aoh - array of hashes

hoa - hash of arrays

hoh - hash of hashes

We’ve seen the first two before; the third allows you to essentially invert the data
so that there is a hash that uses the name of the column (from the header informa-
tion) as a key and a list of all of the values in that column for the value of that hash
element . The “hoh” shape lets you pick arbitrary columns to use as keys in an (often
multiply nested hash) data structure . It also allows you to provide code to handle
“non-unique key combinations .” For all of these shapes, the module gives you the
opportunity to specify code for col_grep and row_grep parameters that will be
used to select certain columns or rows for inclusion in the data structure returned
by xsv_slurp() .

Are you getting tired of CSV modules yet? Me too, so let me wrap up a few small
details and we can move on . The first is that all of the modules we’ve been discuss-
ing have “un-parse” methods that will take a data structure of some sort (e .g ., an
array) and collapse it into a CSV row for writing . There’s nothing very sophisti-
cated in how they work, so I’ll pass on providing an example . The second detail I’d
be remiss if I didn’t mention is that there are other alternatives to Text::CSV-based
modules that are worth exploring . For example, Text::xSV makes it easier to cope
with CSV data that contains newlines in a field (technically allowed, but usually
a pain if you have to deal with it) . And finally, there are several modules designed
to just slurp CSV files right into databases (e .g ., DBIx::TableLoader::CSV) that you
should consider if that happens to be your use case .

And Now, the Spreadsheet: Reading

Let’s visit our second data format . Despite any misgivings you might have about
Microsoft and its business practices, and no matter how much you’ve tried to avoid
sullying your hands by touching only non-proprietary formats, your delicate ocular
nerves must have at one time or another lost their innocence and gazed upon an
Excel spreadsheet . Or perhaps you think Excel is the coolest thing since Daedalus’s

 52 ;login: VOL. 37, NO. 1

wings and you absolutely adore Excel . No matter where on the continuum you find
yourself, at some point you may still be called upon to either read or write an Excel
spreadsheet . We’re now going to explore how this can be done from Perl .

One quick plot twist before we get there: Excel spreadsheets come in two basic
flavors . Prior to Excel 2007, the file format was a relatively intricate binary format
(Wikipedia tells me this was called “BIFF,” for Binary Interchange File Format, so
hey, learn a new thing every day) . This was the format of the beloved .xls exten-
sion . After that version, Microsoft switched to an XML format (albeit compressed
essentially into a zip file) that used an extension of .xlsx by default instead .
Although it might be a bit informal or imprecise to refer to the file format by its
extension (i .e ., .xls-formatted), I’m going to do so because I think it is clearer .

The old .xls format is still opened seamlessly by the newer versions and most any-
thing that processes Excel spreadsheets . The Perl module landscape has far more
modules to deal with .xls files than it does with .xlsx files . You can assume that
the modules we’ll be talking about deal primarily with .xls files unless I mention
otherwise .

Just as Text::CSV was a core CSV-parsing module, I think it is safe to say that
Spreadsheet::ParseExcel can be considered the equivalent for Excel spreadsheets .
The example from the documentation does an excellent job of demonstrating the
basic operating principles of the module:

use Spreadsheet::ParseExcel;

my $parser = Spreadsheet::ParseExcel->new();

my $workbook = $parser->parse(‘Book1.xls’);

if (!defined $workbook) {

 die $parser->error(), “.\n”;

}

for my $worksheet ($workbook->worksheets()) {

 my ($row_min, $row_max) = $worksheet->row_range();

 my ($col_min, $col_max) = $worksheet->col_range();

 for my $row ($row_min .. $row_max) {

 for my $col ($col_min .. $col_max) {

 my $cell = $worksheet->get_cell($row, $col);

 next unless $cell;

 print “Row, Col = ($row, $col)\n”;

 print “Value = “, $cell->value(), “\n”;

 print “Unformatted = “, $cell->unformatted(), “\n”;

 print “\n”;

 }

 }

}

Basically, we create a new parse object and point it at an .xls-formatted file . In
return, we get a workbook object (if not, we bail) . From that workbook we can
further home in on a specific worksheet . Using the worksheet object, its meth-
ods allow us to determine the row and column ranges present in that worksheet .
We then iterate over the rows and columns, retrieving a specific cell as we move

 ;login: FEBRUARY 2012 Practical Perl Tools 53

through it . For each cell object, we can retrieve its value and also examine how
that cell is formatted . This workbook->worksheet->cell sort of approach to dealing
with spreadsheets is also present in Spreadsheet::XLSX, the .xlsx equivalent to
Spreadsheet::ParseExcel . The documentation says, “It populates the classes from
Spreadsheet::ParseExcel for interoperability; including Workbook, Worksheet, and
Cell,” but its example code shows it can also support a slightly different syntax .

Based on our experience with CSV-parsing modules, you can probably guess that
there exist other modules slightly higher up in the food chain designed to make
working with these parsers easier . The first of them has the entirely predictable
name of Spreadsheet::ParseExcel::Simple . Working with the ::Simple version con-
sists of the following model, according to the documentation: “You simply loop over
the sheets, and fetch rows to arrays .” Like so (again, from the docs):

use Spreadsheet::ParseExcel::Simple;

my $xls = Spreadsheet::ParseExcel::Simple->read(‘spreadsheet.xls’);

foreach my $sheet ($xls->sheets) {

 while ($sheet->has_data) {

 my @data = $sheet->next_row;

 }

}

A second module that attempts to provide a simpler interface deserves men-
tion, not for the module itself but for a sample script that ships with it that has
tremendous utility . Spreadsheet::BasicRead comes with xslgrep .pl, a script that
will search all contents of all of the cells in the .xls-formatted spreadsheets in a
directory hierarchy for a specified regular expression—tremendously helpful if you
know you have the information embedded in a spreadsheet someplace but can’t
recall which file it is in .

Spreadsheet::ParseExcel::Stream is a module that may come in handy if you are
parsing very large spreadsheets . By default, Spreadsheet::ParseExcel will suck a
spreadsheet into memory as part of its parsing process . There’s a whole section in
its doc, called “Reducing the memory usage of Spreadsheet::ParseExcel,” which
describes a slightly more complicated way of using Spreadsheet::ParseExcel that
does not retain this behavior and its drawbacks . Spreadsheet::ParseExcel::Stream
implements that recommendation and provides a simpler interface to boot .

And, finally, one last Excel-reading helper module to end this subsection:
Spreadsheet::Read . Spreadsheet::Read attempts to be one interface to rule them
all . If you point it at an .xls-formatted file, it will call Spreadsheet::ParseExcel,
 .xlsx: Spreadsheet::XLSX, .csv: Text::CSV_XS, and, yes, open source fans, .ods
(OpenOffice format) files will be parsed by a module we haven’t discussed,
Spreadsheet::ReadSXC . See the documentation for various fiddly options that can
be set . If you are a big fan of “single interface” modules, this module may please you .

And Now, the Spreadsheet: Writing

In my experience, it is far more common to be asked to parse Excel spreadsheets
created in Excel than it is to be asked to actually produce those documents . Still,
that need also arises on occasion . For those requests, there is a similar wolf pack of
modules . Unlike our previous problem domains, this is one place where there isn’t
a clear base module that can be considered the one true central module every-
thing else uses . As far as I can tell, there are two: Spreadsheet::Write (and its fork,

 54 ;login: VOL. 37, NO. 1

Spreadsheet::Wright—more on that in a minute) and Spreadsheet::WriteExcel .
Both of these are used for writing .xls-formatted files . The choice for .xlsx files is a
little clearer: Excel::Writer::XLSX .

Here’s how you can choose between Spreadsheet::Write/Spreadsheet::Wright and
Spreadsheet::WriteExcel . If you care about being able to write not only .xls files but
also OpenDocument (i .e ., OpenOffice/LibreOffice) files, Spreadsheet::Wright will
be your best bet . If you find that having example code will be useful to your devel-
opment process, you will want to choose Spreadsheet::WriteExcel because it ships
with 80+ samples (Excel::Writer::XLSX, by the same author, ships with a measly 64
example scripts) .

My inclination is to use the latter module, because I appreciate distributions that
have that superior level of documentation, especially when I am pressed for time .
Also, Spreadsheet::WriteExcel plays nice with Spreadsheet::ParseExcel (same
author—John McNamara clearly rocks) . In the Spreadsheet::ParseExcel distribu-
tion there is a Spreadsheet::ParseExcel::SaveParser module that allows you to
“rewrite an existing Excel file by reading it with Spreadsheet::ParseExcel and
rewriting it with Spreadsheet::WriteExcel .”

Let’s see a teeny Spreadsheet::WriteExcel example from its doc so you can get a
quick sense of how one goes about creating an Excel spreadsheet from Perl:

use Spreadsheet::WriteExcel;

Create a new Excel workbook

my $workbook = Spreadsheet::WriteExcel->new(‘perl.xls’);

Add a worksheet

$worksheet = $workbook->add_worksheet();

Add and define a format

$format = $workbook->add_format(); # Add a format

$format->set_bold();

$format->set_color(‘red’);

$format->set_align(‘center’);

Write a formatted and unformatted string, row and column notation.

$col = $row = 0;

$worksheet->write($row, $col, ‘Hi Excel!’, $format);

$worksheet->write(1, $col, ‘Hi Excel!’);

Write a number and a formula using A1 notation

$worksheet->write(‘A3’, 1.2345);

$worksheet->write(‘A4’, ‘=SIN(PI()/4)’);

It is basically taking the process we saw in parsing an Excel file and throwing it
into reverse . Create a workbook, add a worksheet to it, and then create cells with
certain values and formats .

Although we are basically out of time, I will mention that there are a few
modules, such as Spreadsheet::SimpleExcel, that attempt to make creating
simple Excel spreadsheets easier . There are also single-task modules such as
Spreadsheet::WriteExcel::FromDB for converting database tables into spread-
sheets . I encourage you to try out any of these Excel creation modules, because
being able to create spreadsheets on the fly from Perl is a neat trick that is sure to
impress your coworkers . Take care, and I’ll see you next time .

 ;login: FEBRUARY 2012 55

Near the end of his poem “The Talking Oak,” Tennyson alludes to the oldest of the
pagan oracles: Jupiter at Dodona . It was quite different from the oracles that fol-
lowed it in that no temple, altar, or human contrivance was ever constructed there .
It was merely an oak grove on an island in the Aegean Sea . The Selli tribal priests
who lived there could decipher the word of Jupiter himself from the sound of the
wind rustling the leaves of those sacred oak trees (some stories say wind-chimes
were also employed) .

I’d read Tennyson’s poem in high school but, that being pre-Google, I never under-
stood his reference to “that Thessalian growth” until I recently happened to read
about the oracle at Dodona . The resolution of that long-forgotten enigma must
have made an impression on my subconscious, because I subsequently dreamt that
I visited that ancient oracular forest and heard the whisper of its long-dead deity .
His message to me? “Your Web server is down .”

I often tell people, when the subject of my occupation arises, that I’m a plumber .
This saves me from having to hear about their brother-in-law “the computer guy”
with whom I must have so much in common, but really I say this because I often
feel like plumbing is what I do for a living . My chimerical jaunt to Dodona, however,
has me wondering whether what I do for a living, especially in the context of sys-
tems monitoring, has more in common with divination than craftsmanship .

How often, after all, do the systems just tell us what’s wrong with them? My
troubleshooting technique is invariably a murky blend of experience, data analy-
sis, intuition, and luck . Things will strike me as “wrong,” sometimes without my
being able to articulate why, and I’ll eventually arrive at root cause by following up
on the “wrongness .” Maybe this works because the systems and their components
are both more dependent on each other than we realize and related to each other
in ways we don’t expect . We can stumble across some wrongness that eventually
leads to an answer because everything is ultimately tied together . A deep under-
standing of the relationship between our systems is what allows us to hear the
trouble in the wind, and we’re fascinated by the interplay between systems as a
result .

Event correlation work like [1] and [2] are related endeavors, but what I’m really
thinking about is work like that presented by Adam J . Oliner [3] from Stanford at
LISA ’10 wherein they attempt to identify and quantify the extent of “influence”
between components of complex systems . Once identified and quantified, cause

iVoyeur
Changing the Game, Part 2

D A V E J O S E P H S E N

Dave Josephsen is the

author of Building a

Monitoring Infrastructure

with Nagios (Prentice

Hall PTR, 2007) and is senior systems

engineer at DBG, Inc., where he maintains

a gaggle of geographically dispersed server

farms. He won LISA ’04’s Best Paper award for

his co-authored work on spam mitigation, and

he donates his spare time to the SourceMage

GNU Linux Project.

dave-usenix@skeptech.org

 56 ;login: VOL. 37, NO. 1

and effect can be inferred . If you’ve seen the presentation, you know what I’m talk-
ing about; that isn’t plumbing, it’s divination .

A less mathematically rigorous, more organic version of the same thing goes on
between a sysadmin and his graphs . Influence is being explored, cause and effect
inferred, answers divined . This, I think, is why we get so excited about new ways to
visualize our data, especially if we’re provided some means to include data that we
weren’t visualizing before . Properly understood, every new data point provides an
opportunity to understand more deeply the interoperability of a complex system .

In my last article I introduced Graphite, a data storage and visualization system
that does an amazing job of giving us the means to visualize data we wouldn’t have
considered previously, either because it was outside the domain of Ops (e .g ., sales
data), or because it didn’t fit RRDTool’s storage paradigm (e .g ., temporally asyn-
chronous or inconsistent data) . In this article I’d like to explore some of the ways
we might integrate Graphite with our existing tools .

Nagios Integration

You’ll recall that Graphite’s Carbon daemon listens on port 2003 for a string with
the form “name value date” and automatically creates a whisker database within
which to store the data . It’s trivial to push data from any sort of classical monitor-
ing system into Graphite using netcat as a client . Nagios, for example, will export
“performance data” for host or service checks . Performance data is officially
defined as anything that follows a pipe character (“|”) in the output of a check
result, but the performance data command can easily be modified to include the
entire text of the check result .

For example, my Nagios “process_performance_data” command looks like this:

command_line /usr/bin/printf “%b\n” \

 “$LASTSERVICECHECK$::$HOSTNAME$::$HOSTNOTES$::$SERVICEDESC$::\

 $SERVICEOUTPUT$::$SERVICEPERFDATA$” \

 >> /var/log/nagios/service-perfdata.out

This captures the entire output of the check result (including any performance
data) and logs it to /var/log/nagios/service-perfdata .out . I then use logsurfer [4] to
parse data out of the log and ship it to a Graphite sender . Here’s the logsurfer defini-
tion to parse the output of the Nagios check_ping command:

‘^([^:]+)::([^:]+)::([^:]+)::([^:]+)::PING [A-Z]+ - Packet loss = ([0-9]+)%, RTA

= ([^]+) ms::.*$’ - - - 0 continue

 exec “/usr/local/bin/gclient.sh $4.$3.$5-loss $6 $2 graphitebox 2003”

gclient .sh is a simple shell script that uses netcat to push data to Graphite like so:

#!/bin/sh

#send data to carbon

SERVER=$4

PORT=$5

[“${SERVER}”] || SERVER=graphitebox

[“${PORT}”] || PORT=2003

echo “$1 $2 $3” | /usr/bin/nc -c $SERVER $PORT

 ;login: FEBRUARY 2012 iVoyeur 57

Ganglia Integration

When I went to look for Graphite/Ganglia [5] integration I came up a bit bare . Cur-
rent versions of Ganglia support using Graphite instead of RRDTool as a render-
ing and storage engine for GWeb, but this isn’t really what I was looking for . In
my mind, Ganglia fits the bill for Ops guys looking for an easy way to get metrics
across all of their hosts, and Graphite is a more corporate-wide, general-purpose
data visualization solution . I wanted an easy way to export my Ganglia metrics on
the fly to Graphite while still keeping the former in its native format . The options
were not what I’d consider viable [6] .

It seemed to me that the shortest path would be to modify gmetad with an option
to export the metrics directly to Graphite as it writes them to RRDTool locally, so
I took a look at the gmetad source and submitted some patches to the mailing list
a few hours later [7] . These still need work, but they’re functional, and have been
merged into Ganglia monitor-core [8], so you can get them by checking monitor-
core out from git, or taking the patches from the mailing list in the usual way . I’ve
added the following four configuration options to gmetad .conf, two of them being
optional:

1 . carbon_server should be set to the remote hostname or IP address of the graphite
server .

2 . graphite_prefix should be whatever you want to prefix your graphite path with
(ganglia .<gridname> or something like that) .

3 . You can optionally specify a “carbon_port .” This defaults to 2003 if you don’t
specify it .

4 . You can optionally specify a “carbon_timeout” to timeout connection attempts
if/when the Graphite server is down . This defaults to 500 ms if you don’t specify it .

Statsd

Graphite makes it feasible for developers to instrument their code to send
metrics to Graphite relating to the inner workings of their applications . If the
foo() function gets called every time someone makes a $5 purchase on a Web
site, it might be interesting to maintain a counter of the number of times foo()
gets called . If bar() might cause performance problems, it might be interesting to
keep a gauge for how long bar() takes to execute . A problem with these scenarios
is what happens when the application gets distributed to hundreds of servers .
Suddenly the foo() counters need to somehow be aggregated and the bar() gauges
need to be averaged . The people at Etsy [9] wrote a very popular NodeJS-based
metrics aggregation daemon called StatsD [10] to deal with this problem, and Jeff
Buchbinder ported it to C [11] .

StatsD libraries now exist for most popular programming languages (Perl, PHP,
Python, Java, Ruby, Lua, etc .) . These make it easy for developers to create and
maintain counters and gauges (called “timers” in StatsD) in their application .
The metrics are sent to the StatsD server, where they are aggregated on normal
intervals and sent on to Graphite . StatsD has the additional advantage of using
UDP, so the application servers can “fire and forget .”

StatsD and developer interaction makes it possible to collect some interesting
business metrics . Questions like “How many users did we register?” or “How many
SKU4242s did we sell?” can now be easily visualized on the same graph with

 58 ;login: VOL. 37, NO. 1

system metrics (e .g ., network utilization) or other dev metrics (e .g ., release cycles)
imported from integration systems like Hudson .

Logster

The guys at Etsy also created a dedicated log-parser for Graphite called logster [12] .
Logster is a forked and simplified version of ganglia-logtailer which uses logcheck
[13] along with external definitions for parsing metrics out of log files and sending
them to Carbon . It comes with parsers for the Apache Web server and is intended
to be run every minute from cron .

Collectd Integration

Joe Miller wrote a Graphite plugin [14] for collectd [15] that bears mentioning . I
haven’t personally used collectd, so I can’t really provide any details, but it’s there .

Reverse Integration

I’m referring here to our ability to take graphs from Graphite and re-purpose them
back into your monitoring tools . Once your metrics are in Graphite, the easiest way
to get graphs back out is the excellent URL interface . Every feature and function
available in the Graphite CLI or Web interface is exposed as a CGI attribute in the
URL interface, making it possible to graph any combination of metrics, apply func-
tions like “average” or “derive,” and control the look and feel aspects of the graph
such as image size, fonts, colors, etc ., all with URL parameters .

These graphs can be referenced by any external dashboard or monitoring system
that will take a URL . For example, I use the “action_url” attribute in the Nagios
service description for this purpose . Taking our ping example from above, we can
reverse-integrate our ping data back into the Nagios UI by adding an action_url
attribute in the ping service description that looks like this:

http://graphitebox/render?from=-6h&target=dc2.linux.$HOSTNAME$.PING

-rta&width=1024&height=768&hideGrid=true

The $HOSTNAME$ parameter is a Nagios macro that will be replaced at runtime
with the hostname of the host to which it refers . The rest should be self-explana-
tory .

I doubt I’ll begin introducing myself as an oracle anytime soon . Not because it’ll
make me sound like a crazy person (I’m sure I sound like a crazy person anyway)
but, rather, because if I think too hard about the metaphor I find it a bit depressing .
I realize the Selli priests had it way better than we do, because their oracles would
sometimes deliver them a propitious message . Ours, on the other hand, rarely have
anything but bad news .

Take it easy .

References

[1] Paul Krizak, “Log Analysis and Event Correlation Using Variable Temporal
Event Correlator (VTEC)”: http://www .usenix .org/events/lisa10/tech/
full_papers/Krizak .pdf .

[2] Ariel Rabkin and Randy Katz, “Chukwa: A System for Reliable Large-Scale Log
Collection”: http://www .usenix .org/events/lisa10/tech/full_papers/Rabkin .pdf .

 ;login: FEBRUARY 2012 iVoyeur 59

[3] Adam Oliner and Alex Aiken, “Using Influence to Understand Complex Sys-
tems”: http://www .usenix .org/multimedia/lisa10oliner/ .

[4] Logsurfer: http://www .crypt .gen .nz/logsurfer/ .

[5] Ganglia: http://ganglia .sourceforge .net/ .

[6] Vladimir Vuksan, “Integrating Ganglia with Graphite” (blog post): http://
blog .vuksan .com/2010/09/29/integrating-graphite-with-ganglia/ .

[7] Dave Josephsen, Graphite support for gmetad (mailing list thread): http://
www .mail-archive .com/ganglia-general@lists .sourceforge .net/msg06964 .html .

[8] Github Ganglia Monitor Core: https://github .com/ganglia/monitor-core/pull/1 .

[9] Etsy: http://www .etsy .com/ .

[10] StatsD: https://github .com/etsy/statsd .

[11] StatsD-c: https://github .com/jbuchbinder/statsd-c .

[12] Logster: https://github .com/etsy/logster#readme .

[13] Logcheck: http://logcheck .org/ .

[14] Collectd-graphite: http://joemiller .me/2011/04/14/collectd-graphite-plugin/ .

[15] Collectd: http://collectd .org/ .

 60 ;login: VOL. 37, NO. 1

First, I’d like to offer a general welcome . This is the first of what I hope will be an
ongoing series of articles about all things Python . This year marks the 21st anni-
versary of Python’s first release . Although Python has been around for some time,
its popularity has been growing by leaps and bounds—especially if one looks at the
soaring attendance at Python conferences worldwide .

I first discovered Python in 1996 when I was still a graduate student . Since then,
it’s become my tool of choice for, well, just about everything (although I still do a
fair bit of C programming for occasional projects involving embedded systems or
high performance computing) .

In this column I hope to explore a variety of topics related to modern Python soft-
ware development . This includes advances in the language itself, interesting new
add-on libraries, useful programming techniques, and more . No topic is off-limits,
although I’ll admit that I do have a certain preference for problems involving data
analysis and systems programming . In this issue I start by sharing some of my
experiences working with Python 3 . In future issues, I hope to look at a variety of
other topics, including the PyPy project, the state of Python concurrency, and hid-
den secrets of the standard library .

Python 3

It’s hard to believe, but last December marked the three-year anniversary of the
first release of Python 3 . Judging by the glacial rate of adoption, you might hardly
notice . Honestly, most Python programmers (including most of Python’s core
developers) are still using various versions of Python 2 for “real work .” Neverthe-
less, Python 3 development continues to move along as the language is improved
and more and more libraries start to support it . Although you might look at the
adoption rate with some dismay, it has always been known by Python insiders
that it could take five years or more for a significant number of users to make the
switch . Thus, we’re still in the middle of that transition .

A few years ago, I presented a tour of Python 3 (see ;login: April 2009) . At that time,
it wasn’t all rosy . I noted some major problems, such as horrible I/O performance
and complications in the bytes/Unicode interface . For the most part, Python 3
was simply a curiosity and something far too experimental to rely on for “real”
work . Since then, a lot of problems have been addressed and the implementation
improved . However, if you’ve been sitting on the sidelines, it’s still hard to know
exactly what Python 3 offers .

Three Years of Python 3
D A V I D B E A Z L E Y

David Beazley is an open

source developer and author of

the Python Essential Reference

(4th edition, Addison-Wesley,

2009). He is also known as the creator of Swig

(http://www.swig.org) and Python Lex-Yacc

(http://www.dabeaz.com/ply/ply.html). He

is based in Chicago, where he also teaches a

variety of Python courses.

dave@dabeaz.com

 ;login: FEBRUARY 2012 Three Years of Python 3 61

About a year ago, I made a conscious decision to write all new projects in Python
3 to get a better sense of working with it in practice and to explore issues involved
in porting existing code . So, in this article, I hope to revisit the topic of Python 3,
but with a slightly different spin . Rather than simply rehashing a long list of new
language features, I thought I would simply focus on the specific parts of Python
3 that have, through experience, actually proven to be rather useful, surprising, or
problematic .

Useful Features

There are certain language features unique to Python 3 that I now find myself
using with some regularity . Few of these features have been backported, and they
are unlikely to appear in any future version of Python 2 .

Sequence Unpacking Wildcards

If you have a Python tuple (or other sequence), you can easily unpack it into vari-
ables . For example:

>>> row = (‘ACME’,50,91.15)

>>> name, shares, price = row

>>>

In Python 2, such unpacking only works if the number of items in the sequence on
the right exactly matches the number of storage locations on the left . However, in
Python 3, you can introduce a wildcard that will match any number of items and
collect them into a list . For example:

>>> name, *last = row

>>> last

[50, 91.15]

>>> *first, price = row

>>> first

[‘ACME’, 50]

>>>

Although this feature might seem minor, unpacking sequence data comes up quite
a bit in the context of working with tabular data: for example, reading data out of
databases, reading lines from CSV files, and so forth . Using the wildcard can be a
convenient means to write code that only wants to work with some of the fields or
with data that has a varying number of columns .

I have also found wildcard unpacking to be a useful technique for treating Python
tuples as a kind of prefixed data structure akin to a Lisp S-expression . Here the
first element might be some kind of operator, tag, or identifier, while the remaining
elements are data . Thus you can write code that processes the data like this:

>>> s = (‘+’,3,4,5)

>>> op, *data = s

>>> op

‘+’

>>> data

[3, 4, 5]

>>>

 62 ;login: VOL. 37, NO. 1

In Python 2 you could achieve the same effect by writing op, data = s[0], s[1:] .
However, the new version is just a bit more elegant, so why not use it?

Keyword-only Function Arguments

Consider the following Python function:

def recv(block=True, timeout=None):

 # Receive a message

 ...

One issue with using the above function is that subsequent calls can potentially
lead to cryptic code where the meaning of the arguments is not entirely clear to
someone reading it . For example:

msg = recv(False) # What does False mean?

msg = recv(1,5) # 1? 5?

Huh? ...

To avoid this, you can force keyword arguments by inserting a * into the argument
signature:

def recv(*,block=True, timeout=None):

 # Receive a message

 ...

For all arguments after the *, users are forced to use keywords when calling:

msg = recv(block=False) # Ok

msg = recv(block=1,timeout=5) # Ok

msg = recv(1,5) # Error

Although you could achieve a similar effect in Python 2, it was always rather
clumsy . For example, this old code implements the same functionality, but with
much less elegance:

dec recv(**kwargs):

 block = kwargs.pop(‘block’,True)

 timeout = kwargs.pop(‘timeout’,None)

 if kwargs:

 raise TypeError(“Unknown argument(s): %s” % list(kwargs))

 ...

One of the reasons I like this feature is that it allows you to write functions that
have more precise calling signature and less underlying magic related to fid-
dling around with various forms of *args and **kwargs . It even plays nice with
documentation and IDEs . For instance, if you ask for help(recv), you’ll get more
descriptive output showing the argument names as opposed to a vague descrip-
tion of **kwargs . Believe it or not, this is one of my most-used Python 3–specific
language features . It’s nice .

Dictionaries, Sets, and Views

One feature of Python 3 that has taken some time to fully appreciate is the bet-
ter unification of dictionaries, sets, and the newly introduced dictionary “view”
objects . Under the covers, sets and dictionaries are implemented in an almost
identical manner . Essentially, a set is just a dictionary, but with keys only .

 ;login: FEBRUARY 2012 Three Years of Python 3 63

In Python 2, sets always felt kind of bolted on to the rest of the language (somewhat
true, as sets weren’t actually introduced until Python 2 .3) . In Python 3, they are
much more integrated with all of the other data types . First, there is new syntax for
writing a set:

>>> fruits = { ‘pear’, ‘apple’, ‘banana’, ‘peach’ }

>>>

Dictionaries now support a different mechanism for working with the keys, values,
or key/value pairs . Consider a simple dictionary:

>>> a = {

 ‘x’ : 1,

 ‘y’ : 2,

 ‘z’ : 3

 }

>>>

If you ask for the dictionary keys, Python 3 gives you a “key-view” object . What’s
unusual about a view is that it’s not a distinct container . Instead, it gives you a win-
dow on the current set of keys defined on the associated dictionary . If the diction-
ary changes, so does the view . For example:

>>> k = a.keys()

>>> k

dict_keys([‘y’, ‘x’, ‘z’])

>>> a[‘t’] = 4

>>> k

dict_keys([‘y’, ‘x’, ‘z’, ‘t’]) # Notice the change

>>>

Key-view objects also support a core group of set operations, including unions,
intersections, and differences . This means that you can start to mix dictionary
data with sets and easily perform more complex operations (e .g ., identifying com-
mon keys, finding missing values, etc .) . Here are some examples of such operations:

>>> b = { ‘w’ : 10,

 ‘x’ : 20,

 ‘y’ : 30 }

>>> a.keys() & b # Find keys in common

{‘x’, ‘y’}

>>> a.keys() - b # Find keys in ‘a’, not in ‘b’

{‘t’, ‘z’}

>>> assert a.keys() == {‘x’,’y’,’z’,’t’}

True

>>>

Such operations are actually highly relaxed in their type checking . In fact, they
work if the other operand is any kind of sequence .

>>> a.keys() - [‘x’,’y’]

{‘t’, ‘z’}

>>> a.keys() - “xy” # “xy” is a sequence of chars ‘x’, ‘y’

{‘t’, ‘z’}

>>>

 64 ;login: VOL. 37, NO. 1

Tied into this whole picture are set and dictionary comprehensions . These mimic
similar functionality found in list comprehensions . For example, here is a set com-
prehension:

>>> fruits = { ‘pear’, ‘apple’, ‘banana’, ‘peach’ }

>>> { f.upper() for f in fruits }

{‘PEAR’, ‘BANANA’, ‘PEACH’, ‘APPLE’}

>>>

The above code runs about 30–40% faster than equivalent versions using list com-
prehensions such as set([f.upper() for f in fruits]) . This is mainly due to not
having to build the intermediate list first .

Dictionary comprehensions can be used similarly to construct new dictionar-
ies . Here is an example that creates a dictionary consisting of keys not found in
another dictionary:

>>> {key:a[key] for key in a.keys() - b }

{‘z’: 3, ‘t’: 4}

>>>

I should note that general use of dictionary comprehensions seems to be a little
tricky . Coming up with good use cases seems to be something that requires a bit
more thought .

The New super()

For object-oriented programming, Python 3 features a new shorthand super()
function that takes no arguments . For example:

class A:

 def bar(self):

 ...

class B(A):

 def bar(self):

 r = super().bar() # Call bar in parents

In past versions, you had to type super(B,self).bar() . Although this might seem
like a minor feature, I find myself using it a lot—mainly taking advantage of the
reduced typing .

Surprising Features

Certain subtle features have caught me by surprise . In most cases, I didn’t discover
these until I started porting libraries .

Changes to Exception Handling

Python 3 makes numerous changes to how exceptions get handled . Some changes
are more subtle than others . For instance, the scope of exception variables has
changed so that such variables do not exist beyond the associated except block:

>>> try:

 int(“N/A”)

except ValueError as e:

 print(“Error!”)

 ;login: FEBRUARY 2012 Three Years of Python 3 65

Error!

>>> e # Exists in Python 2, not in Python 3

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

NameError: name ‘e’ is not defined

>>>

Similarly, exceptions can no longer be indexed as tuples:

>>> try:

 int(“N/A”)

except ValueError as e:

 print(e[0]) # Works in Python 2, not in Python 3

Traceback (most recent call last):

 File “<stdin>”, line 2, in <module>

ValueError: invalid literal for int() with base 10: ‘N/A’

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

 File “<stdin>”, line 4, in <module>

TypeError: ‘ValueError’ object is not subscriptable

>>>

Both of these changes have the potential to break old code in a very subtle way—
especially in unit tests involving exception handling .

The error message in the last example demonstrates yet another new feature of
exception handling: chained exception messages . If an exception occurs while han-
dling another exception, you will get a traceback that includes information about
both exceptions (in this case, the original ValueError exception and the TypeEr-

ror that occurred while trying to subscript the exception value) . This is actually a
welcome feature that should help people debug exceptions in complicated applica-
tions and libraries .

Bizarre Scoping Behavior of exec()

In Python 2, the exec() function executes a string of code as if it had been typed in
place . For example, you could write the following code and it will produce exactly
the output you expect:

def foo():

 y = 10

 exec(“x = y + 42”)

 print(x) # Outputs 52 (in Python 2)

 # NameError exception in Python 3

In Python 3, exec() no longer executes in quite the same way—in fact, you’ll get an
exception if you try the above example . This is because it now executes the associ-
ated code in a dictionary that is a copy of the actual local variables (the result of
the locals() function) . If changes are made to any of the values in this dictionary,
they are simply discarded instead of being written back to the original local vari-

 66 ;login: VOL. 37, NO. 1

able . Thus, to execute the above code, you actually have to manage the variables
yourself, as shown here:

def foo():

 y = 10

 lvars = locals()

 exec(“x = y + 42”,globals(),lvars)

 x = lvars[‘x’] # Get the changed value of x

 print(x)

Admittedly, use of exec() doesn’t come up that often in most code, but if you do use
it, you’ll need to be aware that it doesn’t work in quite the same way .

Subtle Differences Between Bytes and Strings

In Python 3, all strings are Unicode by default . However, there is a byte-string
object for use with binary data . You might think that the Python 3 byte string is the
same as the Python 2 string (str) object . This would be wrong . It actually behaves
in some surprising ways, as shown below:

>>> s = b”Hello World”

>>> s[0] == b’H’

False

>>> s[0]

72

>>> s[:1]

b’H’

>>> t = bytes(13)

>>> t

b’\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00’

>>>

In this example, you’ll find that byte strings return integers when indexed but
return new byte strings when sliced . In addition, converting values to bytes might
not do what you expect (e .g ., supplying an integer value to bytes makes a string of
that size filled with zeroes) .

Changes to bytes/Unicode handling have been, by far, the biggest headache in
porting existing libraries to Python 3, especially libraries related to any kind of
network programming or I/O . Not only do you have to make sure you’re dealing
with Unicode correctly, but you also need to account for the changed semantics of
bytes to make sure your code works correctly .

The State of Third-Party Libraries

Perhaps the most major issue standing in the way of Python 3 adoption has been
its lack of support for third-party libraries . A lot of Python programmers rely on
packages such as numpy, Twisted, matplotlib, not to mention the plethora of Web
frameworks . In this department, Python 3 is still a bit of a mixed bag and probably
not for everyone .

Coming from the sciences, I have an interest in data analysis packages . For this,
you’re starting to see a lot more Python 3 support . For example, the popular numpy
extension has supported Python 3 for at least the past year, and a recent coding

 ;login: FEBRUARY 2012 Three Years of Python 3 67

sprint has been working to produce a Python 3–compatible version of matplotlib
(https://github .com/matplotlib/matplotlib-py3) .

For many modules, you can find experimental Python 3 support hidden away in a
project fork or patch set . For example, if you’re browsing around a project on a site
such as GitHub, go look at the different project forks and pull requests . Sometimes
you’ll find an experimental Python 3 version just sitting there .

The one big caution with third-party packages is that much of the ported code is
unproven or experimental . At this time, there just isn’t a critical mass of Python
3 programmers to really iron out bugs . Thus you might find that you have to fix a
lot of things on your own . For this, it helps to be comfortable with Python 3 itself
(especially its I/O handling), makefiles, setup .py files, Python code, and even C
programming . Frankly, it’s probably best to keep your expectations low so that you
aren’t disappointed when something doesn’t work as expected .

On the subject of low expectations, Web developers should probably avoid Python
3 for now . None of the large Web frameworks seems to support it or even provides
a timeline of when Python 3 support might be added . If you’re using a small HTTP
framework or library, you might have more luck . For example, you can find Python
3 support in CherryPy (http://www .cherrypy .org/) .

Final Words

Three years ago I recommended that it might be best to sit back and watch Python
3 development for a bit to see what happens . Today, my recommendation is not
much different . If you’re working with a lot of existing Python code involving vari-
ous library dependencies, working in Python 3 certainly won’t be easy . On the other
hand, if you’re starting something new or don’t mind tinkering, you’ll find a lot of
neat stuff waiting for you . As for Python 3’s future, the next few years should be
interesting to watch as Python’s grand experiment continues to unfold .

If you’re interested in working in Python 3, there are a few books and resources of
interest—for example, Lennart Regebro’s Porting to Python 3 (http://regebro
 .wordpress .com/porting-to-python-3) and the official “What’s New in Python 3”
documentation (http://docs .python .org/dev/whatsnew/) . I have also given some
PyCon tutorials on Python 3 I/O handling (http://www .dabeaz .com/python3io/)
that may be useful for understanding some important issues that will arise in
 porting .

Finally, it’s probably worth noting that much of the excitement in the Python
world is currently focused on PyPy (http://pypy .org) . PyPy is an implementation of
Python 2 .7 that features a just-in-time compiler and offers a substantial perfor-
mance boost over CPython for many kinds of problems . Will PyPy be the future of
Python? Only time will tell . However, I hope to take a closer look at PyPy in a future
issue .

http://regebro.wordpress.com/porting-to-python-3/
http://docs.python.org/dev/whatsnew/
http://www.dabeaz.com/python3io/

 68 ;login: VOL. 37, NO. 1

I think it’s high time I gave my loyal reader(s) a tantalizing peek at the little
cobweb-draped corner of ;login: in which I lurk . Approved eye protection is advised .
Three months before every issue hits the mail room/Web site, Rik sends out to his
columnists the overall theme and expected content of that upcoming issue, in the
overly optimistic hope that we will tailor our columns accordingly . Every author
has her or his own way of dealing with deadlines; of coming up with devastatingly
clever and technically on-target copy; in short, of doing that voodoo that we do so . . .
um . . .well . Sharing my own process with you, rather than, say, writing an actual
column, might enable me to discharge this issue’s obligation without thinking too
much: a welcome break from my usual routine . Oh, who am I kidding? “Without
thinking too much” nails my modus operandi with uncanny accuracy .

Proceeding apace, let us examine the soft underbelly of yon columnist . Lint there
is and in abundance, but we shall hold our breath and step over that damp and
unsightly goo, for what we really hope to discover here are the arcane mental
gymnastics that somehow lead to words being put to paper . Usually the theme or
principal topic Rik gives us (us as in we columnists, not you the reader and I, unless
you’re another columnist, in which case you may as well stop reading this now and
play Angry Birds) to work from is a term I’ve either never heard of or heretofore
vaguely believed to be connected with a rare tropical skin condition .

This leads to a flurry of Internet-facilitated self-education, at the conclusion of
which I have decided that I can’t possibly learn enough about whatever it is to
squeeze out a thousand-word column in time . (Not that cutting and pasting from
Web sites hasn’t crossed my mind: a lot of what passes for factual material in
cyberspace is pretty funny in and of itself . But the next link up in the plagiarism
chain might get all cross .) So I fall back on a literary technique that has served me
well for over 20 years: making stuff up .

I occasionally consider writing an actual technical article, rather than this
travesty, but I did a fair amount of technical authoring eight or ten years ago and
managed hopelessly to confuse an entire generation of potential IT professionals
who now have little recourse but to appear on reality shows or attend law school .
I’m not too clear on the details, but I believe as a result several nations have passed
statutes limiting the distribution of technically oriented publications with my
name anywhere in the table of contents . Fortunately, these same countries have
mysteriously reverted to an abacus-based computational infrastructure and thus
have no real use for ;login: except, perhaps, as kindling . No harm, no foul .

/dev/random
R O B E R T G . F E R R E L L

Robert G. Ferrell is a fourth-

generation Texan, literary

techno-geek, and finalist for

the 2011 Robert Benchley

Society Humor Writing Award.

rgferrell@gmail.com

 ;login: FEBRUARY 2012 /dev/random 69

There is most likely not an old Norse aphorism that translates roughly (a little
sandpaper might well do wonders here) to “word fame is word fame,” apropos of the
proposition that there is no such thing as bad publicity . I have friends who are inor-
dinately fond of repeating this . Sometimes they repeat it so often I have to leave the
room and get chicken enchiladas mole from a nearby (or, if they’re really getting on
my nerves, not so nearby) Mexican restaurant . You can’t have chicken enchiladas
mole without a margarita, and you can’t have just one of those . At this juncture the
day is effectively shot and there is nothing for it but to go home and crawl into bed .

Let’s just presume, for the sake of getting on with it, that I have somehow achieved
a meager understanding of the esoteric topic du jour . The next step in my column-
generation protocol is doing research to fill in the gaps in my knowledge, some of
which are so large they can be seen from the International Space Station . In the
olden days this involved heading down to the library, cajoling my way past the staff
who remember what happened the last time I was there, and spending an after-
noon locating and reading books that have nothing whatever to do with the subject
at hand . Now, thanks to our society’s maniacal obsession with providing access to
Wikipedia to every last person on the planet (except those with abacuses . . .abaci?
abacera? whatever), I can just open up a half-dozen browser windows and let the
irrelevant, unverified information flow over me like bad movie dialogue . I often
lose track of both time and purpose during these forays, a condition I call “cyber-
spatial disorientation .”

It usually requires about three hours (six, if I have the Xbox fired up as well) of
clicking on links and reading about Android exploits, dark matter, Islay scotch,
Mayan ruins, unexplained phenomena, and video game previews before I’ve col-
lected enough background information to feel well prepared to write . At this point
I take a nap .

Awake and refreshed, I wander back over and sit in front of the keyboard for a
while, trying to remember what I was doing earlier . Then it’s time to invoke the
browser windows and hit the Interwebs again, avoiding anything that contains
the words “Republican,” “Democrat,” “Deficit,” “Congress,” “Bailout,” “Sanctions,”
“Occupy,” or “Licorice” (I hate licorice) . Most of the remaining Web sites are
devoted to dead celebrities, but I’ve forgotten what the topic was anyway, so this
has almost no impact on operations .

Along about now the cat will saunter in and rub against my legs, pretending to
be affectionate in an attempt to con me into getting up and making the long trek
into the kitchen to produce another sacrificial offering of the same indeterminate
slurry of grain and meat by-products she haughtily refused to ingest yesterday .
When I fail to take the demanded action, she leaves in a feline huff, having during
her brief tenure deposited fine, dander-laden hairs in each and every interstitial
space on my keyboard .

By this point the deadline is looming . By looming, I mean tracking it no longer
requires a calendar, but, rather, an egg-timer . I stare at the ceiling for inspiration .
This gives me a nosebleed, which wastes another good half-hour while I staunch it
and clean up the attendant mess . Finally, I can conjure no further distractions and
reluctantly put fingers to keys . I start typing, aiming in the general direction of this
issue’s theme . Sometimes I manage to get in a few sentences that have a modicum
of relevancy, but more often I miss that mark by a wide margin .

 70 ;login: VOL. 37, NO. 1

Eventually, by dint of sheer perseverance (or is it perversion? I always get those two
confused), I cobble together a sufficient number of words arranged in such a way
that they can be mistaken by the incautious observer for a column, if one ignores
the total lack of cohesion . The result looks a lot like . . .

This .

USENIX Member Benefits

Members of the USENIX Association receive the following
benefits:

Free subscription to ;login:, the Association’s magazine,
published six times a year, featuring technical articles,
system administration articles, tips and techniques, practi-
cal columns on such topics as security, Perl, networks, and
operating systems, book reviews, and reports of sessions at
USENIX conferences .

Access to ;login: online from October 1997 to this month:
www .usenix .org/publications/login/

Discounts on registration fees for all USENIX confer-
ences .

Special discounts on a variety of products, books, software,
and periodicals: www .usenix .org/membership/
specialdisc .html

Contributing to USENIX Good Works projects such as
open access for papers, videos, and podcasts; student grants
and scholarships; USACO; awards recognizing achievement
in our community; and others: http://www .usenix .org/about/
goodworks .html

The right to vote on matters affecting the Association, its
bylaws, and election of its directors and officers .

For more information regarding membership or benefits,
please see www .usenix .org/membership/ or contact office@
usenix .org, 510-528-8649 .

 ;login: FEBRUARY 2012 71

Designing Data Visualizations
Noah Iliinsky and Julie Steele
O’Reilly Media, 2011 . 93 pp .
ISBN 978-1-449-31228-2

Big Data Glossary
Pete Warden
O’Reilly Media, 2011 . 43 pp .
ISBN 978-1-449-31459-0

Building Data Science Teams: The Skills, Tools,
and Perspectives Behind Great Data Science
Groups
DJ Patil
O’Reilly Media, 2011 . 25 pp .
ISBN 978-1-449-31623-5

Big Data Now: Current Perspectives from O’Reilly
Radar
O’Reilly Media, 2011 . 125 pp .
ISBN 987-1-449-31518-4

Here’s a whole heap of short books, published by O’Reilly,
about “big data .” I will follow the example of the authors and
leave the definition of “big data” vague; it’s definitely more
data than will fit on your laptop, probably more data than you
have at home, and maybe more data than you feel comfortable
having in one place for somebody to poke through . Aside from
the common theme, the books vary greatly .

Privacy and Big Data tells you (most of) why you should
be worried about big data, what the rules around it are,
and where those rules come from . Its primary audience is
not big data processors but other people who are thinking
about how these giant data collections affect them . I found
it competent, but as somebody whose employer’s business
is based on big data, I felt that there were some important
omissions . The authors reliably fail to distinguish between

12 Essential Skills for Software Architects
Dave Hendricksen
Addison-Wesley, 2011 . 242 pp .
ISBN 978-0-321-71729-0

This is a book about non-technical skills for technical types
who want to get into the higher reaches of designing soft-
ware . It’s not a book about managing, and it’s not a book about
architecting software, either . It’s about what are often called
“soft skills” (as if programming were inexorably scientific
and talking to people nicely was easy) . It lays out, carefully
and clearly, the non-technical skills you need to succeed in
getting things done in groups of people you are probably not
in charge of: how to get along with people, how to talk to man-
agement, how to think about and talk about risk and failure .

I agree with the author almost all the time, and I think the
book is a useful guide for people who may find themselves
blocked for mysterious reasons . If you know you’re right but
you’re not winning, this book will tell you why and will give
you a good idea of what the winning strategy would be . It is as
non-political as it is possible to be; that is, it advises that you
think about strategies, personalities, and implications, but it
does not advise you to be devious or manipulative .

What it won’t do is get you all the way to implementing these
skills . It’s one thing to know that being right is not the most
important thing; it’s another thing entirely to manage to
implement that in a meeting . If these skills don’t come natu-
rally to you, you’re going to need to do some follow-up reading
to pick up implementation strategies, and then you’re going
to need practice and probably assistance to get good at using
them . It’s not impossible to do, but it’s not easy, either .

Privacy and Big Data
Terence Craig and Mary E . Ludloff
O’Reilly Media, 2011 . 79 pp .
ISBN 978-1-449-30500-0

BOOKSBook Reviews
E L I Z A B E T H Z W I C K Y , W I T H S A M S T O V E R

 72 ;login: VOL. 37, NO. 1

for a terribly cohesive document . But there were several
pieces here I found particularly useful or illuminating: Mike
Loukides on “Data hand tools” (yes, I work at the home of
Hadoop, but sometimes knowing how to run grep correctly
over a terabyte of data is still faster than moving that data
onto a Hadoop cluster), Pete Warden on “Why you can’t really
anonymize your data,” and Alistair Croll on “There’s no such
thing as big data .”

Programming Pig
Alan Gates
O’Reilly Media, 2011 . 193 pp .
ISBN 978-1-449-30264-1

(Disclaimer: I am employed by Yahoo!, the primary location
of Pig development and the copyright holders for this book .
My corporate overlords have not, however, expressed an
opinion on this book to me .) If you need to program in Pig, you
are going to want a copy of this book around . If you’re not sure
whether you need to program in Pig, it’s a scripting language
used with Hadoop; and if that doesn’t help, either you don’t
deal with big data or you need a copy of the Big Data Glossary .

Pig is an odd little language (and it is definitely a little lan-
guage; 193 pages is enough to explore the entire language,
the common extensions to it, and the ways to write your
own extensions) . It has a glancing resemblance to SQL, from
which it borrows some syntax, but in spirit it’s more like R:
mind-bendingly fitted to its problem domain, to the extent
of introducing new data types . When I utter sentences like,
“Remember, that’s not a bag, it’s a tuple,” I begin to wonder
what non-obscene nouns have not yet been used to describe
data structures, and whether I will some day in all technical
seriousness borrow a cup of data from my neighbor .

Pig’s strong point is its ability to express a lot of data trans-
formations simply and in such a way that the software can
do a reasonable job of optimizing them, sometimes with your
assistance . Its corresponding weak point is its specialization .
It’s very easy to learn enough Pig to express simple queries,
but then there tends to be a wall of non-comprehension where
it seems like things must be expressible but you’re not quite
sure how . This is a good book for getting you past that, to
the point where you can tell a bag from a tuple, write nested
filters, and use Pig to manage complex data flows (the abil-
ity to handle multiple inputs and outputs is one of the great
advantages of Pig over straightforward Hadoop streaming) .

intentional actions by companies and accidents, present-
ing (for instance) Google’s collection of wireless data while
doing Street View photos as if it were an intentional policy .
This is important not only because it paints big data holders
as worse than they actually are, but also because it implies
that you only have to worry about companies that intend to
invade your privacy . In fact, as in most things, well-meaning
ineptitude, accidents, and oversights do as much damage
to consumers as intentional violations . In addition, there is
little discussion of the loopholes and inconsistencies of data
privacy law; almost all data privacy rules have an exception
for data collection to provide security measures and detect
fraud . Those exceptions are very important and useful, but
they also lead to piles of tempting data that would otherwise
be uncollectable left lying around .

Designing Data Visualizations is a nice overview of the
issues . It isn’t the only data visualization book you’ll ever
need, but if you’re looking for a good, short lead-in to the
processes and issues, it’s a nice place to start, with a practical
bent and a helpful bibliography to take you to the next level . If
you’re staring at your Excel charts with a sinking feeling and
no idea what to do to fix them, this will show you where to go .

Big Data Glossary is another introduction . It is not, as you
might have expected, a glossary . Instead, it’s an introduction
to big data tools and languages; sort of a tour guide to the land
of big data, detailing the main hotels and attractions, impor-
tant phrases in the language, and how to get there . Again, this
is a nice starting point; it’s not going to get your data ready for
human consumption, but it will at least enable you to under-
stand the pieces of the problem and contemplate which ones
you want more information on .

Building Data Science Teams is free, which is good; it’s short;
and it details one very specific approach . When it says “data
science teams,” it means it; silly of me, I guess, but I was
hoping for something about teams that deal with big data
in general, and the author is really only interested in teams
where you put “people who think about big data” on one team
and people who’re related to particular subjects elsewhere .
And he’s very biased towards advanced degrees in the people
who think about big data . It’s a valid approach, and he has
some interesting ideas about running teams and selecting
people, but as a detailed description of a single approach, it’s
only going to be useful as a whole if you happen to have the
right problem and the right environment .

Big Data Now is also free, and it’s an anthology of short pieces
already published . They contain their original advertising,
which is a slightly odd effect, since they’re often talking
about conferences which are now over . As you can see from
this collection of reviews, “big data” as a topic doesn’t make

 ;login: FEBRUARY 2012 Book Reviews 73

in typical O’Reilly fashion . Chapter 2 gives you the basics of
interacting with a MongoDB: connecting, getting a database
handle, insertion, queries, etc . MongoDB is a document-
oriented database, and this chapter does a decent job of
explaining how that is different from a relational database .
Two things I really liked about this chapter were (1) compari-
sons to SQL concepts and (2) consistently putting things into
Pythonic terms . I might not know what a JSON document is
(well, I didn’t then), but I know what a Python dictionary is .
This is a database book written for people who know data-
bases—which I am not . Keeping things in Python style made
it much easier for me to follow what was going on .

Chapter 3 goes a little deeper into different ways to use Mon-
goDB more efficiently: The concept of embedding documents,
while mentioned previously, is explained in depth, and there
are some suggestions for making your queries more efficient
with proper indexing, among others . The really cool feature
though, which I was totally not expecting, was the section on
geospatial indexing, which is supported out of the box . Mon-
goDB uses a public domain algorithm (geohashing), which
“translates geographic proximity into lexical proximity .” This
is a pretty cool capability and it’s not hard to use—examples
given in Python (grin) .

Chapter 4 discusses integrating MongoDB with three Web
frameworks: Pylons 1 .x, Pyramid, and Django . Pylons and
Pyramid are somewhat similar, and it seems that Pyramid
is the more active of the two . Django differs from them in
that it is “one well-integrated package” with its own set of
templates, interfaces, etc . Regardless of what your needs are,
chances are good that one of these will fit .

Overall, a solid book with lots of examples and code . Install-
ing and setting up MongoDB, Pylons, Pyramid, and Django
are all covered well and should make getting started pretty
simple and fast for anyone . As a Python guy with a little data-
base experience, I still found the book very accessible and am
already coming up with ideas on what I can use MongoDB for .
IMHO, MongoDB does not replace or compete with Hadoop
but, as a document-oriented database, provides answers to
different questions .

—Sam Stover

Privacy and Big Data
Terence Craig and Mary E . Ludloff
O’Reilly and Associates, 2011, 79 pp .
ISBN 978-1-449-30500-0

Right out of the gate, the authors give the disclaimer that they
are executives from a “growing startup in the big data and
analytics industry,” which caught me off guard . I was expect-

Pluralism in Software Engineering: Turing Award
Winner Peter Naur Explains
Edgar G . Daylight
Lonely Scholar Scientific Books, 2011 . 119 pp .
ISBN 978-94-9138-600-8

This is a transcription of an interview with Peter Naur, best
known to most of us as the Naur in Backus-Naur notation .
The interview covers the rest of his career, never mentioning
the notation . It breaks into roughly three topics: a section on
the early history of computing, one on issues about comput-
ing and formalism, and one on Naur’s theories of neurology .

I expect that not very many people will find all three equally
gripping . I understand that there are people who are fasci-
nated by the early history of computing, but I am not one of
them; sadly, I would rather hear the interpersonal gossip that
Naur carefully (and very appropriately) avoids discussing .
And while his theories about neurology are interesting, I have
a well-earned distrust of very smart people who hypothesize
outside the fields they are expert in .

From that you can deduce that I liked the section on formal-
ism, particularly Naur’s assertions that as far as he can tell,
it’s not terribly useful for programming—programming is an
idiosyncratic process—and most of the people who describe
neat, beautiful ways they arrive at solutions to problems are,
if not lying, creatively rearranging the truth to make better
reading .

If this sounds gripping to you, I recommend searching it out;
if you’re on the fence, it’s probably not going to win you over .
The interview format is always a little clunky, and it is not
perfectly implemented here .

MongoDB and Python
Niall O’Higgins
O’Reilly Media, 2011, 66 pp .
ISBN 978-1-449-31037-0

Since I started messing around with Hadoop, I’ve been
exposed to a couple of other similar technologies, and one of
them was MongoDB . I’ll admit (more than) half the reason
I picked this book up is the Python part, and I figured I’d
see what MongoDB can do . Now that I see how easy it is to
use MongoDB with Python, I really need to learn it from the
ground up . That aside, this book packs a lot into its 66 pages
and certainly wasn’t a waste of my time .

There are just four chapters, and the first gets you started
with a brief intro to MongoDB and some comparisons with
both traditional and NoSQL databases . Installing, running,
and setting up a Python environment round out Chapter 1

 74 ;login: VOL. 37, NO. 1

ing this to be a Top Technical Tips for preserving online
privacy, and what I got was something different—very inter-
esting and educational, but different . It’s a short book—five
chapters and fewer than 80 pages, but chock full of interest-
ing facts and tons, I mean tons, of references . Not that a book
should be judged by end/foot notes, but there are a lot: 218 by
my count . This makes for a lot of research potential, should
you want to go chasing down the facts they present .

Chapter 1 starts with ARPANET and takes you to today;
from zero personal data online to the mess we all live in now .
It’s an interesting chapter . While at first glance you might
think it doesn’t bring anything that we aren’t all aware of, one
point that really jumped out at me was that it’s not just about
advertising . There are lots of other ways to use our personal
information out there, and they’re probably scarier than pre-
senting you with a targeted ad (which no one likes anyway) .

Chapter 2 deals with privacy in the digital age, with an
emphasis on US vs . EU stances . It’s probably the driest of the
chapters but, again, was just full of stuff that I didn’t know .
The authors are of the opinion that in the US, privacy is a
commodity that we can use to barter for stuff/conveniences
we want for “free .” In the EU, privacy is a basic human right
“that transcends commoditization .” Pretty heady stuff, but it
does make you think . Well, it made me think .

Chapters 3 and 4 deal with The Regulators and The Players,
respectively: lots of discussion on who is doing the regulat-
ing, how they are doing it, pros and cons of the different
approaches, as well as how the Players deal with (or ignore)
the Regulators . It gives plenty of examples, some that you
might not be aware of, some you probably have seen on the
news .

Chapter 5 wraps everything up and lays out the most impor-
tant point of all . Whether you view your privacy as a right or
a commodity, the fact still stands that once you release infor-
mation into the Internet, it will (probably) never go away . No
matter what legislation comes about, no matter what rights
you think you may have, “you can’t unring the bell .” It might
not be scary, or it might be, depending on how paranoid you
are, but either way, this book is a good read . It’s not going to
walk you through protecting yourself, although there is some
discussion on ways to make it harder for your privacy to be
invaded . But I think after you read this, you might just start
looking at how much of you exists on the Internet, and what
you can do about it . Plus, it’s pretty non-technical, so if you’re
already paranoid but know people who aren’t, you may have
just found a great present for them .

—Sam Stover

 USENIX Board of Directors

Communicate directly with the USENIX Board of Directors
by writing to board@usenix .org .

P R E S I D E N T

Clem Cole, Intel
clem@usenix.org

V I C E P R E S I D E N T

Margo Seltzer, Harvard University and Oracle Corporation
margo@usenix.org

S E C R E T A R Y

Alva Couch, Tufts University
alva@usenix.org

T R E A S U R E R

Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S

John Arrasjid, VMware
johna@usenix.org

David Blank-Edelman, Northeastern University
dnb@usenix.org

Matt Blaze, University of Pennsylvania
matt@usenix.org

Niels Provos, Google
niels@usenix.org

A C T I N G E X E C U T I V E D I R E C T O R

Margo Seltzer
execdir@usenix.org

 ;login: FEBRUARY 2012 Conference Reports 75

CONFERENCE
14th International Workshop on High
Performance Transaction Systems (HPTS)

Pacific Grove, CA
October 23–26, 2011

Datacenter Trends 101
Summarized by Eugenia Gabrielova (eugenia.g@uci.edu)

Internet-Scale Datacenter Economics: Where the Costs
& Opportunities Lie
James Hamilton, Amazon

James kicked off HPTS by saying it is his favorite conference,
primarily because of the people in the room. He then claimed
there has been more innovation in the past five years than
in the previous fifteen, primarily due to advances in cloud
computing and the accessibility it provides to application
developers. Datacenters are expensive and don’t really help
innovation—when you are spending millions or billions of
dollars, you do things the way you know it will work.

At Amazon, there are always multiple datacenters under
construction. In the past four years, AWS has evolved into a
phenomenal business generating tons of revenue and passing
on savings to customers. Amazon was approximately a $2.7
billion annual revenue enterprise in 2000. Now, every day
Amazon Web Services adds enough capacity to have support
ed all of Amazon.com’s infrastructure in the company’s first
five years. There is a competitive advantage in having better
infrastructure.

The talk shifted to everything below the OS, because that is
generally where the money goes. Charts often show people
costs, but at a really large scale these costs are very minor
relative to the costs of servers and power distribution. As a
rule of thumb, “If you want to show people your infrastruc-
ture, you’re probably spending too much.” In the monthly
costs of a datacenter, servers (not power distribution) domi-
nate. However, server costs are decreasing, while network-
ing costs are creeping up. Networking is a problem precisely
because it is “trending up,” so it is broken—this is a huge
opportunity for innovation.

In this issue:

14th International Workshop on High Performance
Transaction Systems (HPTS) 75
Summarized by Michael Armbrust, Yingyi Bu, Aaron Elmore, Rik
Farrow, Eugenia Gabrielova, Hatem Mahmoud, Andy Pavlo, Steve
Revilak, and Pinar Tozun

Conference Reports

Every two years, 75–100 systems, database, and applica-
tion developers and researchers gather at Asilomar for the
Workshop on High Performance Transaction Processing
Systems (HPTS). The name, something of a misnomer,
stems from its origin in 1985, when Jim Gray, Dieter
Gawlick, Andreas Reuter, and other luminaries invited
practitioners and academics to discuss the challenges and
successes in the area of large, scalable, high-throughput
systems. Today, I think of HPTS as the place where people
with large-scale problems come to talk with people who
like to solve large-scale problems. The crowd is a seamless
blend of researchers and practitioners and infrastructure
suppliers and consumers.

Each HPTS seems to have a dinstinctive flavor. A few years
back, it seemed that all the large online service providers
were talking about how they used Lucene to solve large-
scale problems. This year, there was a lot of talk about inte-
grating NoSQL solutions into large-scale services. HPTS
feels a lot like HotOS, but with more emphasis on data and
less emphasis on operating systems. This year Rik Farrow
went to HPTS to soak in the ambience, learn a bit about
the community, and coordinate student scribes so that we
could bring a taste of HPTS to the USENIX community.
Unlike many USENIX workshops, HPTS is not based on
paper submissions; the written record mostly consists
of personal blog postings, a collection of presentations,
and some less-than-one-page submissions. These reports
are the closest thing you’ll find to an HPTS proceedings,
although Web surfing will reveal several personal blog
reports.

—Margo Seltzer, USENIX Acting Executive Director

 76 ;login: VOL. 37, NO. 1

found in finance, automation, and measurement. The pur-
pose of IEEE 1588 is simple installation, support for hetero-
geneous clock systems, and minimal resource requirements
on networks and host components.

PTP uses a master/slave model to synchronize clocks
through packets over unicast and/or multicast transport. It
follows a simple protocol: master and slave devices enabled
with PTP send messages through logical ports to synchro-
nize their time. Of the five basic PTP devices, four are clocks.
Each clock determines the best master clock in its domain,
including itself. It is very difficult to achieve high precision,
so some hardware-assisted time stamping can be used to
help accuracy (which is more complex than it sounds). A few
key lessons in working with PTP are that shallow, separate
networks are preferable; anything too hierarchical will prove
difficult to manage and synchronize. Accuracy depends
largely on hardware and software abilities and interaction.
Additionally, GPS satellite visibility is needed for the GMC
(Grand Master Clocks, the most accurate).

Krishna closed by encouraging audience members to submit
to ISPCS 2012, which will take place in San Francisco. Learn
more at http://www.ispcs.org. A central theme of the Q&A
was whether these time precision techniques are accessible
to the average application developer. How can an average
application, subject to layers of virtualization and delays,
take advantage of precision timing? The main takeaway
was that, with some planning, developers can certainly take
advantage of advances in time synchronization. The slides
for this talk can be found at http://www.hpts.ws/sessions/
Synchronization.pdf.

Not Your Traditional Data Management Session
Summarized by Andy Pavlo (pavlo@cs.brown.edu)

Enterprise Supercomputing
Ike Nassi, SAP

Ike began with a harsh denunciation and lamentation about
current enterprise computing hardware, which supports only
a single TB of DRAM on a single motherboard. That limita-
tion makes it difficult for servers to be used for enterprise
computing systems, because they often have a much greater
working set size. Ike strongly believes it is time to re-exam-
ine our current predilection for shared-nothing architectures
and that the database research community should take
advantage of developments in high-performance computing
research from the past 25 years, which has favored a shared-
everything architecture. Large memory systems on the scale
required by SAP are simply not being built; thus Ike sought to
create one himself.

Ike presented a new DBMS server architecture, currently
under development at SAP, which uses a virtual shared-

Another area with great potential for innovation is cooling
systems, which have remained the same for about 30 years.
Fans moving air is expensive, and moving water is also
fairly expensive. Datacenters of the future could be designed
beautifully with eco-cooling, no AC required. In the mean-
time, modular and pre-fabricated datacenters are regaining
popularity, because of how quickly they can be deployed.
Making datacenters better isn’t just a technical advantage, it
is an enormous business advantage.

Bruce Lindsay (Independent, ex-IBM) commented on the
declining cost of network ports. Someone asked about Open-
Flow, and James said that Google supports Quagga for rout-
ing, and OpenFlow comes from Stanford. Both open up the
infrastructure by allowing the control plane to run centrally,
with cheap hardware for running the data plane.

Someone noted that standard practice in the computer indus-
try is to “prepare for the worst.” James replied that there
are test sites running with high-voltage direct current and
many high-profile datacenters have very robust strategies for
ensuring uptime (such as fully dedicated power generators).
However, due to high demand, it can be hard to know which
workloads will be running in a datacenter at a given time.

Slides from this talk can be found at http://mvdirona.com/
jrh/TalksAndPapers/JamesHamilton_HPTS2011.pdf.
James can be reached at James@amazon.com.

The Rise of Dark Silicon
Nikos Hardavellas, Northwestern University

Dr. Hardavellas was unable to make it to HPTS this year but
has made the slides for his talk available at www.hpts.ws/
sessions/Hardavellas.pdf.

The Hitchhiker’s Guide to Precision Time
Synchronization
Krishna Sankar, Egnyte

Before he become Lead Architect at Egnyte, Krishna was a
Distinguished Engineer at Cisco Systems. In his free time
he enjoys working as a technical judge for FIRST LEGO
League Robotics. He began his talk by emphasizing that time
synchronization is different from time distribution. There
is incredible value in offering time precision in an applica-
tion. Ocean observatory networks, industrial automation,
cloud computing, and many other fields would benefit. Time
synchronization is also slowly finding its way into routers
and blade server fabrics.

Krishna gave an overview of IEEE 1588 v2 PTP (Precision
Time Protocol), which concerns the sub-microsecond syn-
chronization of real-time clocks in components of a network
distributed measure and control system. This capability is
intended for relatively localized systems, like those often

 ;login: FEBRUARY 2012 Conference Reports 77

Margo Seltzer asked whether making certain assumptions
about the physical layout of the graphs could be exploited.
That is, could performance be improved if the system stored
the data in a way that optimized for a particular processing
algorithm? Randal responded that such techniques would be
unlikely to work for attribute-rich graphs, since there is no
optimal ordering. Roger suggested that he put the answer in
their database and be done with it, eliciting laughter. Mike
Ubell asked whether the cache was throttling IOPS, and
Randal said yes, that there is lots of bookkeeping and page
structures to manage. James Hamilton asked why not have
the database use memory directly, and Randal said that is
where they are going. They want to get away from local and
global data structures. James pointed out that databases had
already done this. Mohan asked about latches, and Randal
replied that they want only locks that matter, such as a read
lock on dentry and on mapping.

Someone suggested proper indexing, declaration of graph
processing, having the database make decisions in advance.
Randal replied that that is ground that has been trod before.
Someone else pointed out that it seemed they were looking for
storage memory that had DRAM-like characteristics. Randal
agreed, saying that without a memory hierarchy his talk
would be a no-op.

Flexible Hardware for Flexible Data Intensive Software
Arun Jagatheesan, Samsung

Arun Jagatheesan from Samsung shared his perspective
on new hardware trends and configurations for big-data
systems and supercomputing platforms. He was specifi-
cally focused on the flexibility of both the hardware systems
(i.e., allowing administrators to configure the hardware)
and the software platforms that they support (i.e., allowing
users to execute variegated workloads). Arun began with an
overview of the flash-based Gordon system that he helped
to develop while at the San Diego Supercomputer Center in
2009. Arun said that the three main lessons that he learned
from this project were (1) not all the configuration options
that one needs are available in hardware, (2) there is a nebu-
lous tradeoff between flexibility and performance, and (3)
manufacturers, applications, users, and administrators are
unprepared for new hardware.

From this, Arun then introduced his more recent work on
Mem-ASI at Samsung. Mem-ASI is a memory-based storage
platform for multi-tenant systems that is designed to learn
the access patterns and priorities of applications and react to
them accordingly in order to improve throughput. Such pri-
orities could be either service-level hints from applications,
service-level requests from the computing platform’s infra-
structure, or simply how the individual application accesses
data. This additional information could be used by the

everything paradigm built on a single rack cluster. In SAP’s
new system, the database executes on a single instance of
Linux, while underneath the hood the ScaleMP hypervisor
routes operations and data access requests over network-
ing links (i.e., no shared buses) to multiple, shared-nothing
machines. By masking the location of resources through a
coherent shared-memory model, Ike argues that they are able
to minimize the amount of custom work individual applica-
tion developers have to do in order their database platforms.

The early morning audience was languid, but several
skeptics, such as Margo Seltzer, were concerned that the
data links between machines would not match the speed of
DRAM. Ike assured these doubters that high-performance
communication links such as InfiniBand would be sufficient
for this system. He also remarked that the system currently
does not support distributed transactions; thus there is no
message passing needed between nodes. Roger Bamford
(Oracle) asked, why divide the system into so many cores, and
Ike replied that they need the RAM. Adrian Cockcroft asked
how common failures are. Ike said that this is a lab test so
far, and in thirty days there were no failures. Margo Seltzer
said she loved this project, which reminded her of late ’80s
shared memory multiprocessor systems such as Encore. Ike
said that unlike the early systems, which used busses, their
system is using fast serial connections, and he suggested
that people not be blinded by what happened in the past. Both
Margo and James Hamilton wondered about the problem
of having a NUMA architecture, especially when the ratio
of “near” memory to “far” memory reaches 10 to 1. Ike said
that he lied, that all memory is used as if it were L4 cache.
Roger pointed out the cost of going to the cache coordinator,
and Ike replied that identifying the location of memory has a
constant cost.

Forget Locality
Randal Burns, John Hopkins University

Randal Burns, a systems research professor at Johns
Hopkins, raised the issue that the canonical optimizations
used in DBMS systems were insufficient to achieve high-
performance data processing (i.e., > 1 million IOPS) on large
and complex graph data sets. This is because any algorithm
that must perform a scan of the entire data set or a random
walk in the graph cannot take advantage of locality in the
data. Thus, optimizations such as partitioning, caching, and
stream processing are rendered impotent.

Randal then discussed ongoing work at Hopkins that seeks
to understand the main bottlenecks that prevent modern
systems from scaling to larger I/O operation thresholds.
His work shows that low-level optimizations to remove lock
contention and interference can improve throughput by 40%
over file access through the operating system.

 78 ;login: VOL. 37, NO. 1

ficulties in programming against eventual consistency.
HBase also provides a simple consistency model, flexible
data models, and simplified distributed data node manage-
ment. MongoDB usage for Craigslist archival and Foursquare
check-ins were briefly highlighted.

After detailing NoSQL databases and use cases, Adam
presented takeaways for the database community. First, and
most contentiously, is developer accessibility. Adam said
that the ability of a programmer to set up and start using a
NoSQL db really mattered. Bruce Lindsay (ex-IBM) strongly
objected to the question on “whether first impressions made
within five minutes of database setup and use matter.” Margo
Seltzer (Harvard) countered that a new generation of devel-
opers, who use frameworks such as Ruby on Rails, do make
decisions on accessibility and that these developers should
matter. Adam furthered the argument by claiming acces-
sibility will matter beyond minutes in schema evolution,
scaling pains, and topology modifications. Database devel-
opment should also examine the ecosystem of reuse found
in some NoSQL projects. This is exemplified in Zookeeper,
LevelDB, and Riak core becoming reusable components for
systems beyond their initial development. Lastly, the NoSQL
movement espouses the idea of polyglot persistence, where
a specific tool is selected for a task. Selecting various data
solutions can create painful data consistency issues, as an
enterprise’s data becomes spread among disjoint systems.

In closing, Adam presented several open questions. These
focused on data consistency, datacenter operational trade-
offs, assistance for scaling up, the ability to compare NoSQL
data stores, and next-generation databases. A question by C.
Mohan (IBM) about the need for standardization of a query
language drew mixed reactions.

The Present and Future of Apache Cassandra
Jonathan Ellis, DataStax

Jonathan Ellis, of DataStax and a major contributor to
the Apache Cassandra project, outlined developments in
the recent version 1.0 release and goals for future Cassan-
dra releases. Inspired by Google’s BigTable and Amazon’s
Dynamo, Cassandra began as a project at Facebook before
becoming an Apache incubator project. Cassandra’s popu-
larity is partly due to the ability for multi-master (and thus
multi-datacenter) operation, linear scalability, tunable
consistency, and performance for large data sets. Cassandra’s
user base today includes large companies such as Netflix,
Rackspace, Twitter, and Gamefly.

For release 1.0 of Cassandra, leveled compaction was intro-
duced to improve the reconciliation of multiversion data files.
Advantages over the previous size-tiered compaction include
improved performance due to lower space overhead and
fewer average files required for read operations. Addition-

system for more intelligent scheduling and resource manage-
ment. Arun believes that such a model could both improve
performance and possibly reduce energy consumption.

James Hamilton said he could understand the power savings,
but not the factor of 4 for performance gains. Arun said that
the idea is that you can change something on the memory
controller to change what is happening at the transport layer.
James asked if this had to do with the number of lanes com-
ing off the core, and Arun replied that it is not about lanes but
about what you can do behind those lanes.

Mapping the NoSQL Space
Summarized by Aaron Elmore (aelmore@cs.ucsb.edu)

The NoSQL Ecosystem
Adam Marcus, MIT

Adam Marcus provided a brief history of the origins of
NoSQL, beginning in the late 1990s with Web applications
developed using open source database systems. Applica-
tions that saw increased load began wrapping stand-alone
DBMSes to allow for sharding to achieve scale. Additionally,
relational operations were removed and joins were moved to
the application layer to reduce costly database operations.
These modifications led to the creation of databases that
went beyond traditional SQL stores and came to be referred
to as Not Only SQL (NoSQL). With a plethora of recent
NoSQL options, Adam lightheartedly introduced Marcus’s
Law, which tells us that the number of persistence options
doubles every 1.5 years.

The majority of NoSQL stores rely on eventual consistency
and are built using a key-based data model, sloppy sche-
mas, single-key transactions, and application-based joins.
However, exceptions to these properties were highlighted,
including alternatives to data models, query languages,
transactional models, and consistency. For example, while
many NoSQL databases utilize eventual consistency, many
alternatives exist, such as PNUTS’s timeline consistency or
Dynamo’s configurable consistency based on quorum size.
With a basic understanding of NoSQL properties, real-world
usage scenarios were outlined.

Recently, Netflix has undergone a transition from Oracle to
Cassandra, to store customer profiles, movie watching logs,
and detailed customer usage statistics. Key advantages that
motivated the migration include asynchronous datacen-
ter replication, online schema changes, and hooks for live
backups. More information about this migration is detailed
in Adrian Cockcroft’s paper at http://www.slideshare.net/
adrianco/migrating-netflix-from-oracle-to-global
-cassandra. Contrasting Cassandra, Facebook chose HBase
for the new FB Messages storage tier, primarily due to dif-

 ;login: FEBRUARY 2012 Conference Reports 79

major key are clustered on the same replication group of stor-
age nodes. Operations are simple CRUD (create, read, update,
and delete), read-modify-write (or compare-and-set style),
and iteration. CRUD may operate on one or more records
with the same major key. ACID transactions are provided
but may not span multiple API calls. Iteration is unordered
across major keys and ordered within major keys. Manage-
ment and monitoring of the system are available through a
command-line interface and Web-based console. Oracle’s
NoSQL database is built upon the battle-tested, high-
throughput, large-capacity, and easy-to-administer Berkeley
DB Java Edition/High Availability. Since Berkeley DB JE/HA
was built for a single replication group, features such as data
distribution, sharding, load balancing, multi-node backups,
and predictable latency (which was highlighted as a difficult
goal) were required to achieve better scaling.

Hashing a major key, modulo the number of partitions, iden-
tifies the group of nodes responsible for storing replicas of
a data record; this group provides high availability and read
scalability. The Rep[lication] Node State Table (RNST) iden-
tifies the best node to interface within a replication group.
The RNST is stored at the driver and is updated by responses
sent to the client. From the RNST the driver can determine
a group’s master, staleness of replicas, last update time,
number of outstanding requests, and average trailing time for
a given request. Replication is single-master, multi-replica,
with dynamic group membership provided by election via the
Paxos protocol. Durability can be configured at the driver or
request level, and there are options for disk sync on both the
master and replicas and replica acknowledgment policies.
Consistency can be specified on a per-operation basis as well,
with options to read from (1) the master, (2) any replica that
lags no more than a specified time-delta from the master, (3)
any replica that is at least as up-to-date as a specific version,
or (4) any replica (i.e., with no consistency guarantees). The
presentation concluded with an evaluation of the database’s
performance and scale-out capabilities.

Mohan asked about multi-node backup. They can do that, but
it will not be consistent. As with Cassandra, they can take a
snapshot for a consistent backup. Roger asked how they are
supporting read-modify-write. Charlie said that the applica-
tion does a get, does operations, then a put-if-version, and,
conditionally, updates. Mohan wondered if reads are guaran-
teed to see the final versions, and Charlie answered that he
would cover that later, but there are no guarantees.

There was vigorous discussion after Charlie finished. Mohan
asked if the data and operations log were stored on the same
disk. Margo Seltzer, who is also involved with Oracle NoSQL,
said that they use a log-structured data store and that data
and log are stored the same way. James Hamilton wondered
if they could migrate off a node if it gets hot, and Charlie

ally, individual nodes can construct local secondary indexes
on columns; however, denormalization and materialized
views are necessary to avoid join operations. Improvements
mentioned but not discussed were compression, expiring
columns, and bounded worst-case reads.

An interesting application that was developed for Cassandra
was the ability for eventually consistent counters. Every
node in the system maintains a list of counter values associ-
ated with each node. Any local modification for the counter
performed only modifies the replica’s value of the counter.
To ascertain the value of the counter, all replica values are
summed. This allows for concurrent modifications to the
counter without needing synchronization between nodes.

Heavy optimizations were undertaken to improve read and
write performance for Cassandra, including JVM tuning
and garbage collection. Future advances in Cassandra will
involve easing administration and use, improving the query
language, support for range queries, and introducing entity
groups. Pat Helland (ex-Microsoft) asked how to improve the
performance of random reads for large data sets. Jonathan
said a reliance on SSD would be needed to make significant
gains. Someone wondered why Facebook had moved from
Cassandra to HBase; Jonathan answered that it was mostly
a personnel issue within Facebook. Mehul Shah (Nou Data)
asked about the advantages of developing in Java. Jonathan
said they included core consistency, memory management,
immutable collections, and a rich ecosystem. The last ques-
tion was about the largest install of Cassandra. Jonathan
thought that it was around 400 nodes and 300 TB of data.

Oracle’s NoSQL Database
Charles Lamb, Oracle

Charles Lamb began the presentation on Oracle’s latest data
store with what NoSQL means to Oracle. A NoSQL database
encompasses large data, distributed components, separation
of OLTP from “business intelligence,” and simplified data
models, such as key-value, document stores, and column
families. Lamb said that Berkeley DB alone does not meet
all of these requirements and that the focus of the Oracle
NoSQL DB is a key-value OLTP engine. Requirements for the
database include support for TB to PB scale data sets, up to
one million operations per second, no single point of failure,
predictably fast queries, flexible ACID transactions, support
for unstructured or semi-structured data, and the ability to
have a single point of support for the entire stack, from hard-
ware up to the application.

The system has multiple storage nodes, potentially residing
in multiple datacenters, and is accessed by a jar deployed
within the application. This jar, or driver, maintains informa-
tion about the state of each storage node. Data is accessed
using major and minor keys, and all records with the same

 80 ;login: VOL. 37, NO. 1

writes; or (3) scraping the commit log and writing it to EBS
every 30 seconds. Also, there are multiple restore modes,
multiple ways to do analytics, and multiple methods for
archiving. Backups are PGP encrypted and compressed, with
the lawyers keeping the keys for encryption. If S3 gets broken,
they also make an additional copy to another cloud vendor.

Adrian pointed out that they find cloud-based testing to be
frictionless. As an example, he asked a Netflix engineer to
spin up enough Amazon instances to perform one million cli-
ent writes per second. It took a couple of experiments to come
up with the correct number of nodes, 288, to do this, and a
total of two hours and about $500 of Amazon charges.

Margo Seltzer asked the size of their biggest database. It is
currently 266 GB. Adam Marcus (MIT) asked if engineers
had their own machines, to which Adrian replied that they
used Jenkins for build testing,and had a special Eclipse plu-
gin for working with EC2.

Towards Improved MySQL Scalability and Reliability
Ryan Huddleston, RightNow

Summarized by Rik Farrow (rik@usenix.org)

Ryan described RightNow as a company that provides
MySQL as a service. Located in Bozeman, Montana, the
one-thousand-person company provides database services,
on the company’s servers, for over two thousand customers
worldwide. The US military is one of their larger customers.
RightNow uses the Percona Server MySQL port and has paid
companies like Percona to add features to MySQL. In 2001
they paid to have the Innodb file-per-table feature added.
They found they needed to switch from ext3, the default
Linux filesystem, to XFS, because file deletion time was scal-
ing with file size. Someone asked if this is still an issue with
ext4, and Ryan said it was. James Hamilton asked if create

table was an issue, and Ryan said it never had been an issue.

Ryan discussed their technique for migrating customers
between shared servers when a customer’s load becomes too
great. James Hamilton wondered how they prevent a single
customer from dominating a server. Ryan said they had a
system that keeps track of load and can migrate a customer to
another node. It keeps track of queries and can queue queries
that will take a long time and move the queries from real-
time to batch. Ryan said that their goal is to remain an open
source company and that they plan to push all patches up to
Maria DB (a branch of MySQL).

Bruce Lindsay asked whether adding a column requires them
to delete a table. Ryan said it does. They add tables/columns
on a slave server, move data in batches, cut over columns and
tables, then drop tables and columns. Then they snap the cus-
tomer to the slave and alter the master while doing updates.
The entire process appears to occur with no delay for queries.

replied, Not in this version. They do use hashing for even data
distribution. Shel Finkelstein (SAP) asked about time-based
consistency. Charlie explained that data is tagged with a
Java-based timestamp. Mehul Shah wondered if they can
continue operations after a partition, and Charlie said they
could do reads but not writes without access to the master for
that major key. Mehul then wondered if they can move parti-
tions around and Charlie replied, Not in this release.

Someone asked if the drivers knew about all partitions. They
get initialized on the first request and can connect to any rep-
lication nodes. Roger asked Charlie to describe their access
control model. Charlie said that the assumption is that the
system is in a DC, producing an “OMG” response.

Big Data Experiences & Scars

Netflix Goes Global
Adrian Cockcroft, Netflix

Summarized by Hatem Mahmoud (hatem@cs.ucsb.edu)

Adrian Cockcroft described the process of migrating Netflix
to a public cloud in order to provide highly available and glob-
ally distributed data with high performance. The migration
focuses on the control plane (e.g., users’ profiles, logs), not the
actual movie streaming, which is done using CDN. Amazon
AWS was chosen as the public cloud to host Netflix’s services
because it is big enough to allocate thousands of instances
per hour as needed. Adrian mentioned a remarkable idea in
his presentation: the notion of design anti-patterns, that is,
that design is better defined by undesirable properties than
by desirable ones.

The Netflix migration involved a bi-directional replication
phase in which data was replicated between Oracle and
Simple DB, while backups remained in the datacenter via
Oracle. Later on, replication of new account information to
the datacenter was eliminated. Each data item is replicated
to three different zones (i.e., different buildings with differ-
ent power supplies within the same datacenter). This keeps
all the copies close for fast synchronization. There is a trad-
eoff between recoverability and latency; to achieve the lowest
latency a write operation must acknowledge once it is done
on at least one replica, while to achieve the highest recover-
ability a write operation has to wait for all three replicas to
be updated before acknowledging the user. The middle path
is to use a quorum of two replicas. Overall, Netflix’s data
are distributed across four Amazon regions, plus a backup
region. Remote replication can be also achieved through log
shipping.

Backup is done by: (1) taking a snapshot (full backup) periodi-
cally by compressing SSTable and storing it to S3; (2) doing
incremental compressed copying to S3 triggered by SSTable

 ;login: FEBRUARY 2012 Conference Reports 81

second. Their load is 55% read and 45% write, over 6 PB of
data (2 PB with three replicates), all compressed using LZH.
Margo asked if they lose all the users within a DC if it goes
down, and Kanna replied that they do offline backups to
other DCs. Cris Pedregal-Martin asked if they had non-peak
hours. Kanna answered that Monday between 12 and 2PM is
their peak, so in a sense, yes. Adam asked if they planned on
upstreaming their patches to HBase. Kanna said that they do,
as most of what he talked about is open source.

Someone asked about network speed. Kanna said they use
1G at hosts and 10G at the top of racks. Mike Caruso asked
what type of changes they made to the schema. Kanna said
that making threads longer meant writing metadata back to
HBase, so they fixed that as an example. Then he said there
is lots more work to be done, such as fixing the problem of a
single HDFS Name Node and having fast hot backups. Mohan
asked if all users are mapped to US DCs, and Kanna said yes.
Cris asked if they ever lose messages, and Kanna said that
they don’t know, but they do sample, and sampling looks good.

Big Analytics
Summarized by Michael Armbrust (marmbrus@cs.berkeley.edu)

Big Data at eBay
Tom Fastner, eBay

There are a number of important use cases for analytics over
big data at eBay, spanning daily decisions such as A/B testing
for experiences or treatments on ebay.com all the way to sup-
porting long-term and multi-step programs such as the buyer
protection plan. Tom Fastner described the architecture of
their system and some of the challenges they have experi-
enced operating at such a large scale (50+ TB/day of new data
and 100+ PB/day processed by 7,500+ users and analysts).

Analytics at eBay is supported by three separate platforms,
each with its own strengths but with some common capa-
bilities. At the high end they run EDW (Enterprise Data
Warehouse) systems based on Teradata for all transactional
data, sharing it with a wide user base and supporting >500
concurrent requests per minute. For the application logs and
other structured or semi-structured data, they use a low-end
enterprise-class Teradata system. The world’s largest Tera-
data installation (256 nodes, 36 PB of spinning disks able to
hold 84 PB of raw data with compression) is supporting use
cases on very large, but still structured, data. This platform
is called Singularity. The dominating data use today is user
behavior information. It also serves as a DR for the EDW
data, as most of that data is required to be joined to the user
behavior data for analytics.

The ability to easily work with semi-structured data is
important for several reasons. First, the use of semi-struc-

Someone exclaimed, “This was all fixed 25 years ago!” Ryan
calmly replied that if they were doing this on Oracle, it would
cost them $25 million a year. Instead it costs them $100,000
for support of MySQL.

Storage Infrastructure Behind Facebook Messages
Kannan Muthukkaruppan, Facebook

Summarized by Hatem Mahmoud (hatem@cs.ucsb.edu)

Kannan Muthukkaruppan explained why Facebook has
moved from Cassandra to HBase as a storage system for
Facebook messages, the architecture used, and the lessons
learned from that experience.

HBase is used to store small messages, message metadata
(thread/message indices), and the search index, while large
messages and message attachments are stored in Hay-
stack. HBase was chosen for its high write throughput, good
random read performance, horizontal scalability, automatic
failover, and strong consistency. Besides, by running HBase
on top of HDFS the system takes advantage of the fault toler-
ance and scalability of HDFS, as well as the ability to use
MapReduce to do analytics.

Each of the datacenters that host Facebook’s data is con-
sidered a cell that is managed by a single HBase instance. A
cell contains multiple clusters, and a cluster spans multiple
racks. Each user is assigned initially to a random datacenter,
although the user may later be migrated to another datacen-
ter via a directory service. Typically, a datacenter consists
of several buildings. Thus each data item stored in HBase is
replicated three times, in three different buildings.

The migration to HBase took more than a year. Shadow test-
ing was used before and after rollout. To account for potential
bugs, Scribe was used to write offline backups to HDFS,
both locally and at remote datacenters. The developers had
to introduce several modifications to HDFS to improve reli-
ability, including sync support for durability, multi-column-
family atomicity, several bug fixes in log recovery, and a new
block replacement policy to reduce the probability of data
loss. Also, to improve availability, the developers introduced
rolling upgrades to account for software upgrades, online
alter table to account for schema evolution, and interrupt-
ible HFile compaction to account for cluster restarts and load
balancing. The developers also added several modifications
to improve performance and solicit fine-grained metrics.

Someone asked whether they have an additional sharding
layer on top of HBase. Kanna said yes, but that HBase only
works within a single DC. Margo Seltzer asked if users are
mapped to cells randomly. Kanna said yes and that they can
migrate users later. Overall, they average 75+ billion read-
write IOPS per day, with a peak of 1.5 million operations/

 82 ;login: VOL. 37, NO. 1

Finally, at the top of the stack is the SCOPE language. Influ-
enced heavily by SQL and relational algebra, SCOPE provides
developers with a declarative language for manipulating data
using a SQL-like language extended with C# expressions.
The SCOPE optimizer, which is based on the optimizer found
in Microsoft SQL Server, decides the best way to parallelize
the computation while minimizing data movement.

Since Cosmos is a hosted service, it’s important to allocate
resources fairly among the system’s many users. This is
accomplished by defining the notion of a virtual cluster (VC).
Each VC has a guaranteed capacity, but can also take advan-
tage of idle capacity in other VCs. Within any given VC the
cost model is captured in a queue of work (with priority).

Harumi Kuno from HP Labs asked Ed to elaborate on how
they divide cluster resources. Ed responded that each VC is
provided with tokens that represent some amount of process-
ing cores, I/O bandwidth, and memory. Mike Caruso asked
if they do any migration of data, and Ed said that they have,
because they bring up or shut down clusters.

Scal(a)ing up Big Graph Analytics
Tyson Condie, Yahoo! Research

Tyson Condie presented ScalOps, an embedded domain-spe-
cific language in the Scala programming language designed
for running machine-learning algorithms over big data.
ScalOps expands on current systems such as MapReduce and
Spark by providing a higher-level language based on rela-
tional algebra that natively supports successive iteration over
the same data.

A motivating example for their system is performing spam
classification for Yahoo! Mail. Their first prototype used Pig
to extract labels and generate a training set which was then
used to train a model using sequential code. This code was
executed repeatedly until a satisfactory model was found.
Unfortunately, this process was suboptimal, for several
reasons. First, since their tools did not natively support the
iteration, they needed to construct a fractured workflow
using Oozie. Second, the sub-sampling required to fit the
data on a single machine hurt the accuracy of the classifier.
Finally, copying data to a single machine can be very slow.

An obvious improvement is to parallelize the training algo-
rithm. This, however, does not fit nicely into the MapReduce
model. Thus, real-world implementations often involve using
fake mappers that cross-communicate, eliminating many
of the fault-tolerance benefits of the MapReduce model.
While systems like Spark provide an improvement over such
practices, by allowing users to explicitly cache data for sub-
sequent iterations, explicit caching is a point-solution that
limits opportunities for optimization. In contrast, ScalOps is
a Scala DSL that is capable of capturing the entire analytic
pipeline. It supports Pig Latin and has a looping construct

tured data greatly simplifies the process of modeling the data
and results in a system that is less vulnerable to changes.
Additionally, the resulting de-normalization of the data can
result in improved performance, as the data is already joined.
Singularity enables processing over this semi-structured
data by providing developers with SQL functions that extract
individual items and sequences from the key/value pairs
stored in a given row.

The final platform of their data analysis system is a Hadoop
cluster running on 500 commodity nodes, used primarily for
structuring unstructured data and for finding patterns that
are difficult to express in SQL.

There is no silver bullet to cover all forms of analytics on a
single platform. Integration across the three platforms is key.
eBay deployed a self-service data shipping tool and is working
on a transparent bridge between Teradata and Hadoop.

Mike Caruso asked if they had ever compared performance.
It is not worth the effort; Hadoop is cheaper but less efficient
than Teradata or EDW. Stephen Revilak (University of Mas-
sachusetts) asked how big their DBA team was. Tom said
they had four DBAs and an offshore support contract.

Cosmos: Big Data and Big Challenges
Ed Harris, Microsoft

Ed Harris presented Cosmos, a multi-petabyte storage and
query execution system. Used in Microsoft’s Online Service
Division, Cosmos is designed for large-scale back-end com-
putation, such as parsing data from Web crawls, processing
search logs, and analyzing clickstream data. Cosmos is run
as a service within Microsoft; users provide the data and que-
ries to be run, without having to worry about the underlying
infrastructure. At a high level, Cosmos is broken into three
major layers: storage, execution, and the SCOPE language.

The storage layer is organized around the concept of extents.
An extent is an immutable block of data, up to 2 GB in size.
The storage layer automatically handles compression and
ensures that each extent is replicated to three different
extent nodes for fault tolerance. Multiple extents are concat-
enated to form a stream, and the storage layer is also respon-
sible for maintaining the namespaces of available streams.

On top of the storage layer, the execution engine is respon-
sible for taking a parallel execution plan and finding comput-
ers to perform the work. For better performance, the system
ensures that computation is co-located with data when
possible. The execution model is based on Dryad, which is
similar to MapReduce but more flexible, since it allows the
expression of arbitrary DAGs. The execution engine, by man-
aging failures and restarting computation as needed, also
shields the developer from some of the flakiness inherent in
running jobs on large clusters of commodity machines.

 ;login: FEBRUARY 2012 Conference Reports 83

concurrency control. Shah answered that larger transactions
could be built out of ACU primitives if needed.

Not all operations need the strong consistency of ACU, so
applications can mix strong and weak consistency operations
for the same data store. This introduces subtle interactions,
such as weakly consistent operations that are not serialized
against strongly consistent operations. Developers are not
used to thinking about these interactions, and that typically
results in workarounds in higher layers. Armando Fox (UC
Berkeley) asked if the operations are not serializable, due to
core operations checking different targets. Shah answered
that they are serializable, because a read-write dependency
exists between the operations. If they were strongly consis-
tent operations, they would be serialized by the system.

With the assumption that partitions will occur, CAP presents
a choice between consistency and availability. However, the
terms in CAP are not crystallized. Consistency could include
notions of recency, isolation, or integrity. Availability could
encompass uptime, latency, or performance. Partition tolera-
tion could be supporting a single node or a minority partition.
Shahed claim that CAP is not a theorem to be applied, but
more of a principle. With the many semantics that exists for
consistency and availability, an ideal single system should
support various consistency options that span a spectrum
from consistency (transactions) to availability (eventual
consistency). This was likened to isolation levels, which are
easy to understand, configurable, and compatible.

Several options exist when adding consistency to a weakly
consistent system. Layering services, coordinated compo-
nents, and an integrated approach are techniques to provide
a consistency primitive, such as ACU, to a weakly consistent
database. The integrated approach still requires insight into
mixed consistency operations, but these complexities are
abstracted from application developers. Shah said that if
you are starting over, your system design would benefit from
relaxing a strongly consistent core rather than strengthening
a weakly consistent core. Eventual consistency is required
and, at the same time, is not enough, and now is the time to
rigorously examine our understanding of consistency.

Flexible OLTP Data Models in the Future
Jags Ramnarayan, VMware

Jags Ramnarayan presented his view of the future of OLTP
databases. He noted the high demand that exists currently for
databases that can support low latency, predictable perfor-
mance, graceful handling of large spikes in load, big data
support, and in-memory operations on commodity hard-
ware. Data input is increasingly trending toward streaming
and bi-temporal behavior. Additionally, rapid application
development requires a more flexible schema to support
frequent changes. Most significantly, while a single database

that can efficiently capture iteration. It runs on top of the
HyracksML + Algebricks runtime, which provides the system
with a relational optimizer and a data-parallel runtime.

Ed Harris (Microsoft) asked how they knew when iteration
for a given algorithm was complete. Tyson replied that for
global models the UDF would specify completion, and for
local models computation terminates when all messages
stop. Mike Stonebraker asked why they didn’t use R, given its
popularity with analysts. Nothing in their system precludes
the use of R UDFs. Mike Caruso asked how opaque UDFs are
and if this is a problem for optimization. There is no visibil-
ity into the UDFs, but the looping construct can look at the
underlying AST and perform algebraic optimizations.

Consistency Revisited
Summarized by Aaron Elmore (aelmore@cs.ucsb.edu)

Eventually Consistent Is Eventually Not Enough
Mehul Shah, HP

In an analysis of eventual consistency, Mehul Shah shared
experiences and insights with building a large distributed
key-value store at HP. Some applications need scalable solu-
tions to support high availability and globally distributed
data. Traditional DBMSes have limited scalability, due to
their consistency requirements, resulting in the creation of
NoSQL databases that dropped ACID and traditional mod-
els to achieve scale. This equates to traditional databases
providing CP and NoSQL databases providing AP. Eventual
consistency then becomes the standard tool to enable avail-
ability in a distributed environment. There are two myths
about NoSQL today: eventual consistency is enough, and
adding stronger consistency later is easy.

Shah described a database built at HP as a geo-distributed,
highly available, large object store that supports a large user
base and versioned keys by use of timestamps. Conceptually
the database is similar to S3, with unique accounts owning
multiple buckets, and each bucket having a unique name
and containing many objects. Buckets have unique owner-
ship and can be shared with other users via bucket permis-
sions. With this context, two partitioned users attempting to
concurrently create the same bucket is a conflict simplified
by strong consistency, whereas eventual consistency for
metadata operations, such as bucket creation and deletion,
could result in a user viewing unowned objects.

To facilitate strongly consistent operations and prevent
undesirable situations, the Atomic Conditional Update
(ACU) was introduced as a primitive for achieving consis-
tency. Multi-key and atomic get/test/put are operations that
ACU needed to satisfy with a single RPC call. Pat Helland
asked whether this was effectively concurrency control, or
a strongly consistent tool that can be used for optimistic

 84 ;login: VOL. 37, NO. 1

mind at the same time, and still retain the ability to func-
tion.” Similarly, the goal for database systems should be to
maintain functionality despite having potentially inconsis-
tent data sources. To understand whether data is inconsis-
tent, a complete view of the data’s context may be required.
A set of weather measurements without location or time
may seem like inconsistent data but is simply lacking event
details and provenance. After challenging notions of con-
sistency, Shel provided Jim Gray’s definition of consistency:
“A transaction is a correct transformation of the state. The
actions taken as a group do not violate any of the integrity
constraints associated with the state.”

Data inconsistencies can occur for a variety of reasons. First,
inconsistencies can derive from integrity constraint viola-
tions, such as impossible address information, corrupted-
entity foreign relations, violated business rules, or domain
constraints. Second, logical impossibilities can occur. This
can include unanticipated data unknowingly being trans-
formed, incomplete data, or real-world data contradictions,
such as a location changing that clearly could not relocate.
Third, replication issues include asynchronous data feed
corruption and relaxed consistency models for replication
protocols. Fourth, many databases run with read committed
as the default isolation level, which does not guarantee serial-
izability and can result in data inconsistencies. Normann
and Ostby’s A Theoretical Study of Snapshot Isolation in
EDBT 2010 was given as a reference for inconsistencies that
can arise even when using snapshot isolation.

In an ideal world inconsistencies in data would not exist,
but databases reside in the real world and need to handle
inconsistent data sources. Every application operates with
assumptions about the consistency of data, and disjoint
applications can make different assumptions about the
same inconsistent data source. Shel introduced the concept
of outconsistency, which involves providing an “outwardly
consistent view of the data” and guidelines for how applica-
tions should operate on inconsistent sources. This provides a
regimen that enables different applications to operate on the
same data source with some understanding of methods for
dealing with inconsistencies.

Approaches for addressing outconsistency were defined
as the following techniques, which are likely to be used in
combination. Preventing inconsistent data provides an identi-
cal view to the data, relying on approaches such as strong
integrity constraints, checking business rules, and utilizing
“transactional intent” (CIDR 2011) to prevent inconsisten-
cies at the source. Tolerating inconsistent data utilizes
expected inconsistencies to transform data for the outward
view. Ignoring inconsistent data filters the outward view to
include only data consistent for the purposes of the applica-
tion. Fixing inconsistent data requires the application to take
an active role in correcting the inconsistencies in the source

instance is ACID, rarely does ACID hold for enterprise-wide
operations. This results in data silos and duplication across
databases, so enterprises must live with cleaning and de-
duplication of data. Jags concluded that people actually do
not want ACID but, rather, deterministic outcomes.

Having outlined trends, Jags provided a brief overview
of VMware’s GemFire and the similar SQL-interfaced
SQLFire. GemFire is a highly concurrent, low-latency,
in-memory and distributed key-value data store. Keys and
indexes are stored in memory, with persistence of the data
handled by compressed rolling logs. Tables can be parti-
tioned or replicated, with replicas acting as active-active
for reads, but using serialized writes by a single master for
any given key. Distributed transactions are supported, but
effort is undertaken to prune queries to a single partition for
co-located transactions. Jags mentioned that GemFire sup-
ports asynchronous WAN replication and a framework for
read-through, write-through, and write-behind operations;
however, no details were given.

While hash partitioning typically provides uniform load bal-
ancing, databases should exploit OLTP characteristics to go
beyond key-based partitioning. Jags made a key observation:
the number of entities typically grows, not the size of each
entity. Additionally, access is typically restricted to only a
few entities. If related entities can be grouped, they can be co-
located and thus minimize the number of distributed trans-
actions. To build entity groups, compounded primary keys
should be constructed, using foreign keys to capture relation-
ships between entities. Grouping will largely prune opera-
tions to single-entity groups that are co-located, allowing
for scalable cluster sizes, transactional write sets on entity
groups, serializabilty for entity groups, and joins within
a group. This does not eliminate distributed transactions
across entity groups, since access pattern complexity invari-
ably goes beyond grouping semantics. Despite the promise of
hashed keys and grouping, hotspots and complex queries cre-
ate difficult scenarios for “partition aware” designs. Smart
replication of reference data, which is frequently joined with
partitioned data, can help with this.

Looking forward and beyond the traditional SQL models,
Jags described a polyglot OLTP database. This multi-purpose
data store should support (1) continuously changing, complex
object graphs, (2) structured transactional data, and (3) flex-
ible data models, such as JSON.

Inconsistency and Outconsistency
Shel Finkelstein, SAP, and Pat Helland

Shel Finkelstein’s presentation focused on approaches to
handle views based on inconsistent data sources. He began
with a quote by F. Scott Fitzgerald, “The test of a first-rate
intelligence is the ability to hold two opposed ideas in the

 ;login: FEBRUARY 2012 Conference Reports 85

from the pseudo-code in the paper. Finally, Chris showed
that the TLA tool can automatically check Cahill’s algo-
rithm. Chris also suggested that the audience read Lamport’s
book Specifying Systems as well as TLA+ Hyperbook (http://
research.microsoft.com/en-us/um/people/lamport/tla/
hyperbook.html).

Margo Seltzer said that the testable pseudo-code actually is
a specification, and TLA+ could be thought of as a specifica-
tion language. Chris replied that the word “formal” is like
death for many people, and he steers away from using that
word. He claimed to be an escaped video game programmer
who has never proven anything in his life. Mike Caruso asked
if Lamport’s TLA+ can generate code to the state machine
level, and Chris replied that Lamport designed his tool to
be very expressive declaratively, but it cannot be used to
compute. Adrian Cockcroft wondered why he couldn’t find
Lamport’s book at Amazon, and Ernie Cohen replied that the
PDF is available for free.

Verifying Real-World Transaction-Processing Code with
Microsoft VCC
Ernie Cohen, Microsoft

Ernie Cohen argued that testing sucks, and, instead, deduc-
tive verification should be widely used in production soft-
ware development. He proposed that programmers should
be able to write contracts such as pre-conditions, post-con-
ditions, and invariants in their code. Therefore, verification
could be done in a program-centric way. Ernie clarified that
the cost of deductive verification should be comparable to
complete functional testing.

After giving the high-level vision, Ernie briefly introduced
VCC (Verified Concurrent C), which was developed by his
group. VCC allows programmers to annotate their original
C code with contracts. Then he did a live demo to show how
VCC can find bugs in a C binary search program. Ernie added
several preconditions and invariants as annotations to the
code, and then bugs such as race conditions, buffer overflow,
and value overflow were quickly caught. After the live demo,
Ernie illustrated several useful constructs in VCC, such as
data invariants, ownership, and ghost data and code. Data
invariants are invariants on objects and can be defined as
part of type declarations. Ownership is mostly used for speci-
fying the contracts of concurrent reads/writes. Ghost data
usually represent abstract states, while ghost code is actually
executable contract and only run at verification time. Ernie
also showed how to add annotations such as invariants and
ghosts to make a piece of lock-free, optimistic, multiver-
sioned transaction processing code verifiable. Finally, Ernie
said that they should add prophecy support in VCC in order
to verify properties such as “whether a timestamp obtained
from the DB will be its final timestamp.”

data. For each approach a set of challenges were discussed.
A final claim was that all data, and subsequently transaction
processing, consists only of events, reports, and decisions.
Transactions and consistency should be discussed in this
context. The work presented is just the beginning of examin-
ing the fluid relationship between applications and data.

Graefe Goetz wondered whether “kicking the can down the
road” really means “eventually consistent”? Shel countered
that “kicking the can down the road” means that something
else deals with it. It can be data cleansing applications, ser-
vices with alerts, interpolation and extrapolation, or renewal
processes, such as SAP’s APO. Roger Bamford (Oracle) asked
if Shel would consider compensating transactions, and Shel
said that this fits into this category. Shah said that he had
experience with fixing these problems, and that it comes
down to cost, earlier versus later. Can you comment a little
on costs? Shel replied that the tradeoff has to do with coping
with inconsistencies or fixing them. Mike Caruso mused that
you could have an outconsistency in one system that would
be an inconsistency in a second. Shel concluded by asking the
audience to consider whether his factoring is correct, and if it
is whether we should write applications based on it.

It May Be Fast, But Is It Right?
Summarized by Yingyi Bu (yingyib@ics.uci.edu)

Debugging Designs
Chris Newcombe, Amazon

Chris Newcombe presented a model checking–like approach
for finding bugs at the design stage. He used Stoica et al.’s
2001 Chord paper as an example. “Chord: A Scalable Peer-to-
Peer Lookup Service for Internet Applications” is one of the
most cited computer science papers (8,966 cites as of Nov. 11,
2011). However, Pamela Zave from AT&T Research recently
found eight major defects in the Chord ring membership
protocol, using exhaustively testable pseudo-code (written
using Alloy). The testable pseudo-code is remarkably simple.
The example reveals that even top work done by the best
people and reviewed by very smart peers can still have bugs!
In particular, those systems bundling concurrency control,
recoverability, failure handling, and business logic together
are very hard to debug. However, test tools can help.

Chris proposed that pseudo-code should be written in a sup-
port tool rather than only in design documents, and people
should use the tool to do exhaustive testing on the pseudo-
code so that bugs could be found at the design phase. He
proposed that TLA+ and PlusCal should be the pseudo-code
language, and he used Michael J. Cahill’s SIGMOD 2008
paper “Serializable Isolation for Snapshot Databases” as a
running example to show how to get testable pseudo-code

 86 ;login: VOL. 37, NO. 1

Trusting the Cloud
Summarized by Steve Revilak (srevilak@cs.umb.edu)

Clouds & Condos
Pat Helland

Pat asked, “What can condos teach us about cloud comput-
ing?” Quite a few things! Condos place constraints on living
environments, but they also provide benefits: for example,
most repair and maintenance work is taken care of for you.
One can take advantage of these benefits, as long as there’s a
willingness to live within the constraints. Similar trends can
be seen with other types of buildings. Retail space and office
parks are built with a notion of how the space will be used but
without knowledge of who will be using them. This allows
building developers to support a wide variety of tenants; they
build to a common set of usage patterns and impose a few
constraints on what the building tenants can do.

Cloud computing can develop along similar lines. Cloud com-
puting can provide basic services, such as stateless request
processing, session management, load balancing, provision-
ing, and scalability. These services may not fit the needs of
every conceivable cloud user, but they will fit the needs of
most cloud users. We can design cloud computing systems
according to common patterns of use, just as we do for build-
ings, even if we don’t know who the cloud’s users will be.

Laws and norms governing landlord-tenant relationships
have evolved over time and work to the advantage of both
parties. Pat believes we could benefit from a set of common
rules that govern cloud providers and cloud users. Such rules
would provide fair treatment to users and offer protection to
service providers.

In summary, our relationship with buildings has changed
over time. As we’ve done with buildings, we need to develop
usage models and constraints, as well as rights and responsi-
bilities, governing the cloud computing environment.

Mike Caruso pointed out that customers will need to tell the
cloud providers what they want/need. Pat agreed, but said
that we already know some patterns. Someone pointed out
that it took many years for landlord-tenant law to evolve.
Armando Fox said that he already uses Heroku, and it pro-
vides many of the things he wants.

Go Fast and Don’t Break Things: Ensuring Quality in the
Cloud
Scott Hansma, Salesforce.com

Salesforce began life as a CRM application. It has evolved
into a full-blown development platform that conducts 575
million transactions per day. All Salesforce customers run
in a hosted environment, and all customers use the same

Armando Fox (UCB) asked if VCC can handle runtime poly-
morphism. Ernie pointed out the C includes runtime poly-
morphism, such as function pointers. Armando asked if VCC
works for languages other than C. They may port it to C++.

Data Without Provenance Is Like a Day Without
Sunshine
Margo Seltzer, Harvard University

Margo Seltzer argued that provenance is playing an increas-
ingly important role in computer systems. It is the “how,
when, why” metadata about the data. She used Wikipedia
revision history to illustrate provenance: by looking at the
editors historically, one can gain someconfidence about the
Wikipedia content. Provenance can come from instruments,
application software, system software, or software tools.
Provenance reminds people what has happened and gives
people a way to understand why something happened. Margo
pointed out that nowadays provenance is usually managed
manually, implied, embedded, or part of a workflow system.

Margo emphasized that provenance is everywhere! Every
day, people ask questions such as “Why does Facebook rec-
ommends this ad to me?” “Where does this file come from?”
“What did the customer do before she hit this bug?” Margo
advocates that provenance be built into every system in a
layered way. The key concept there is that each layer collects
provenance and each layer associates its provenance objects
with both upper- and lower-layer provenance objects. The
example systems Margo’s group has built include a prove-
nance-aware storage system, simple provenance in Post-
greSQL, and a provenance-aware Python workflow engine.

Rusty wondered why the person who wrote an algorithm
couldn’t supply provenance, and Margo said she wants the
algorithm to include the generation of the provenance, so that
the information generated can be used to improve the algo-
rithm. Pat Helland said that machine learning is like Mul-
ligan stew, it’s “ginormous,” and Margo agreed. But Margo
said she still wants everything, which is why disk vendors
love her. Jim Waldo (Harvard) said that for non-disk vendors,
transporting all the provenance data will not be wonderful
(or cheap). Margo pointed out that this is HPTS, so with a
provenance handle you can make distributed queries on rep-
licated stores wherever you want. Margo’s group has worked
on how much provenance you are likely to want. Jim asked if
this was a ratio of provenance to data. Margo answered that
it depends. Someone asked if provenance was like using CVS,
and Margo replied that CVS is “the poor man’s provenance.”

 ;login: FEBRUARY 2012 Conference Reports 87

eliminating the need for a central provider (all of your data
lives on your mobile phone) and by encrypting communica-
tions. During the talk, Monica set up a social networking
group for HPTS attendees; several people joined and began
exchanging messages.

Monica also demonstrated how smartphone applications
could be turned into collaborative social applications. She
presented an application called We Paint, which is a collab-
orative drawing application.

Stanford has conducted several usability studies with
Musubi. The reactions have varied by age group. Some adults
believe that this is the future of social networking. College
students were indifferent; they preferred to use Facebook
and found nothing new and attractive in Musubi. Elemen-
tary school students were the most receptive; they thought
Musubi was “awesome.”

An attendee who worked at Facebook was very upset with
Monica for suggesting that Facebook might sell user data.
Monica said that people should be free to use Facebook if
they want to, but she also believes that users should have the
freedom to use different social networking platforms if they
choose to do so.

Debate Panel: Scale Up vs. Scale Out
Summarized by Pinar Tozun (pinar.tozun@epfl.ch)

Panelists: Michael Stonebraker, MIT; Mark Callaghan, Facebook; Michael

Cahill, Wired Tiger; Andy Gross, Basho

The debate panel of this year’s HPTS was about whether to
focus on scaling up, utilizing a single node in the system with
useful work as much as possible, or scaling out, increasing
the performance of the system by adding more machines. A
node was initially defined as a single processor by the panel
but during the panel it was sometimes also referred to as
a single multiprocessor machine. The panel chairs, Margo
Seltzer (Harvard) and Natassa Ailamaki (EPFL), had a
slider where 0% indicated total focus on scaling up and 100%
indicated focusing only on scaling out. The chairs asked the
panelists where on this slider they stood while building their
systems.

Michael Stonebraker chose 15% on the slider. Focus on using
all the cores available in your processor as efficiently as
possible first, but also think about how to scale out: unless
you have both in your database today, you are not going to be
successful. One size does not fit all. Different markets should
optimize their systems for their needs. In OLAP (online ana-
lytical processing), for example, a column-store beats a row-
store, and you need clever overhead cleanup and, in scientific
databases, array-based designs. He emphasized getting rid
of the shared-data structures (buffer pool, B-trees, etc.),

version of Salesforce’s software. This scenario makes qual-
ity control extremely important; upgrades must work for all
users, and upgrades cannot break functionality users have
come to depend upon.

Salesforce is intensely focused on software quality, and this
commitment to quality manifests itself in several ways.
Salesforce uses a continuous integration (CI) system to test
changes as they are committed to their source code reposi-
tory. This CI system runs 150,000+ tests in parallel across
many machines, and it will do binary searches across revi-
sion history to pinpoint the precise check-in that caused a
test to fail. Developers do not get off easy—once the CI system
has identified an offending check-in, it will open a bug for the
developer to address the problem.

Salesforce allows customers to customize their applications
with a programming language called APEX. As a best prac-
tice, Salesforce requires customers to test their APEX code
prior to deployment. These customer-written tests provide
an excellent way to regress new releases; Salesforce can run
customer-written tests against new releases to identify prob-
lems prior to deployment. (Salesforce developers are given
access to information about failing customer-written tests,
but they are not given access to the underlying customer
data.)

Finally, Salesforce maintains a Web site (http://trust
.salesforce.com) where they publish availability metrics and
service announcements. The company believes that this
transparency—publishing their uptime metrics—helps to
promote user confidence in the platform and keep the com-
pany focused on quality.

A Non-Proprietary Social Internet
Monica Lam, Stanford University

Cloud computing offers a long list of benefits, but that
list does not always include privacy. Take Facebook as an
example: Facebook provides a great user experience, and a
great platform for application development. But Facebook is
also a social intranet—all interactions pass through Face-
book’s servers, and Facebook controls access to user data.
Monica believes that social networking should be more like
email. Two people can exchange email without having to use
the same email provider, so, why should two users need to
use the same social network provider in order to have social
interactions?

Monica presented an application called Musubi, to demon-
strate how open social networking could work. Musubi is a
mobile application that runs on the Android platform and
permits peer-to-peer social networking. Social networks are
created through the users’ address book and do not require a
central service provider. This platform preserves privacy by

 88 ;login: VOL. 37, NO. 1

machines to have more IOPS is a waste of machines and
power. Mark said if they tried to get rid of the disk and be
in-memory they would need 10 times as many machines as
they have now. Michael Stonebraker said that if they are I/O
bound, they should use what is optimal for the data-ware-
house market, have column-stores with better compression,
and reduce their I/O load. Mark argued that having compres-
sion does not reduce the number of IOPS you need linearly,
and it does not solve the random I/O problem. On the other
hand, Margo Seltzer opted for focusing on scaling up first:
if you have a system that cannot saturate the memory and
CPUs you have, then you have a badly built system.

All the panelists thought open source products were great.
However, Michael Cahill said that his team cannot maintain
an open source product for their own needs. Open source
products such as MySQL also might end up having so many
versions around that it will not be clear which one should be
used. However, Mark Callaghan argued for MySQL, since
there is one main MySQL version and only two or three other
versions to choose from.

Someone asked, If you have a 160-core machine, how is
scaling up within that machine different from scaling out?
Michael Cahill said it is the same, but there are more failure
cases when you have more machines. Andy Gross said that
such a machine will make you use ideas from distributed
systems in a single machine. Another person asked what
academic researchers should focus on. Andy Gross argued
that the interesting papers are the applied ones and they are
mostly about scaling out. Michael Stonebraker advised that
academics should talk to real customers, understand their
problems first, and then try to solve them in their research.
What should we do if we had non-volatile main memory?
Andy Gross said that SSDs can be thought of in that way.

There was discussion about the NoSQL databases and
database knobs that require DBAs. Mark Callaghan argued
that NoSQL systems are good, because even though they do
not focus on performance they are easier to manage, and that
is what matters for some users. Andy Gross also supported
NoSQL systems. On the other hand, C. Mohan (IBM) argued
that NoSQL systems made users optimizers of databases,
and Stonebraker argued that SQL provides an abstract layer
on top of a database for their customers. Stonebraker also
supported the need to get rid of as many knobs as possible so
as not to be dependent on the database vendor and the DBAs.
However, Armando Fox (UC Berkeley) argued that as a cus-
tomer he would prefer not knowing about the database design
details and that people who can tune are good if they know
how to do it well.

locking, and latching bottlenecks in database management
systems in order to scale up to many cores in a node, as they
do in their VoltDB-related work. He claimed that Facebook
could have done what they are doing with a 4000-machine
cluster with only 40 machines if they had been using VoltDB.
He believes that in the next 20 years: there will be around five
gigantic public cloud vendors, so we should trust the cloud
and try to adapt our systems to its environment.

Mark Callaghan picked 90%. He leads the MySQL engineer-
ing team in Facebook; they run the MySQL at Web scale
across many machines. He tried to answer why they were
using that many machines to handle Facebook’s workload.
They know they can never be working on a single node with
Facebook’s enormous scale, so as long as the software is effi-
cient enough, they focus on how to scale out rather than how
to scale up. He believes their market requires a focus on scal-
ing out. They are mostly I/O bound and not CPU bound, and
he does not think using database designs focused on in-mem-
ory databases, such as VoltDB, will help them. To have better
IOPS and provide lower latency to their customers they need
to buy more machines and think about how to scale out.

Andy Gross put his choice at 70% , arguing for focusing on
both but favoring scaling-out. His background is in distrib-
uted systems; he likes Dynamo-like systems. Naturally, he
said, he is interested in more than one machine. He also
pointed out different ways of scaling out and scaling up: not
just thinking how to use one node or more machines better
but also dealing with how to exploit different technologies,
such as SSDs, GPUs, and FPGAs. He also said that some peo-
ple who do not have the choice of using specialized solutions
need to use general-purpose products. Public cloud environ-
ments such as EC2 are good spaces as general-purpose solu-
tions, and they also try to address problems related to power
and energy consumption for general-purpose systems.

Michael Cahill chose 0%. Working inside the storage engine,
he argued that we need to revisit the assumptions we make
in storage engines to ensure serializable isolation among
transactions. We have to find non-blocking algorithms to
get the best out of a single processor. People mostly focus on
scaling out across multiple machines, but he wants to make
contributions within a single node. People should design their
software in a way that it will work well on new hardware. He
said that big companies such as Facebook have the luxury to
focus on scaling out, but smaller companies should focus on
the storage engine first and do their best to scale up there.

Natassa Ailamaki asked for an example of a technique that is
good for scaling up but not good at all for scaling out. Michael
Cahill answered that optimistic concurrency control is
definitely a good technique for scaling up in a single node,
but since it is hard to coordinate across nodes, it is not good
for scaling out. Natassa wondered whether buying more

 ;login: FEBRUARY 2012 Conference Reports 89

and asynchronous checkpointing and a log that keeps the
stored procedures executed with their inputs so that they
can re-execute those after a failure, starting from a check-
point. Moreover, for the databases which are too big to fit in
memory, they are investigating how to do semantic caching
for the current working set of the workload. In addition, they
work on WAN replication, compression, and on-the-fly repro-
visioning in VoltDB.

Bruce Lindsay exclaimed that the CPU cycles breakdown on
the presentation was not true for the big OldSQL vendors.
Stonebraker replied that they cannot do that measurement
with the products of major vendors, since the source code is
not available, and Oracle does not permit benchmarking of
its products. C. Mohan (IBM) asked whether they support
partial rollbacks in VoltDB. Stonebraker said no. Bruce also
wondered how VoltDB will do semantic caching if indexes are
not subsetted.

HyPer-sonic: Combined Transaction AND Query
Processing
Thomas Neuman, T.U. Munich

Neuman described a main memory database system that
combines the execution of OLTP and OLAP workloads, called
HyPer, which they built at T.U. Munich. OLTP and OLAP
workloads have different characteristics. OLTP has frequent
short-running transactions that observe high data locality in
accesses and require high performance with updates; OLAP
has a few long-running transactions that touch a lot of data-
base records and need to see a recent consistent state for the
database. Most of today’s systems are optimized to be good
in either. Two separate systems are kept for each workload,
and data is transferred from the OLTP side to the OLAP side
with an ETL (extract, transform, load) process. However, this
causes both high resource consumption and the OLAP copy
to see an older version of the data.

HyPer tries to bring the query processing from OLAP
workloads to an efficient OLTP system. It has an in-memory
database design, wherein the data is partitioned and only a
single thread operates on a partition at any time. This way
they can run OLTP transactions lockless and latchless, very
similar to VoltDB design. Whenever an OLAP query needs
to be executed, the OLTP process is forked to create a virtual
memory snapshot of the database and the query processing
is done on that snapshot, which provides a fresh version of
the database for query processing. Updates from the OLTP
side to the database while a query is running are not reflected
in the database snapshot seen by the OLAP query. This is
handled efficiently because the initially forked OLAP process
shares physical memory with the OLTP process. Only when
there are updates from the OLTP process does a copy-on-
update take place and only on the updated memory locations,

New Age OLTP
Summarized by Pinar Tozun (pinar.tozun@epfl.ch)

All the Rules Have Changed
Michael Stonebraker, VoltDB

Michael Stonebraker started his talk by categorizing the
OLTP market: OldSQL, NoSQL, and NewSQL. OldSQL rep-
resents the major RDBMS vendors, which Stonebraker called
the “elephants.” They are disk-based and use ARIES (Algo-
rithms for Recovery and Isolation Exploiting Semantics),
dynamic record-level locking, and latching mainly to ensure
ACID properties. On the other hand, NoSQL is supported
by around 75 companies today and favors leaving SQL and
ACID. Finally, NewSQL suggests not leaving SQL and ACID
but changing the architecture of the traditional DBMS used
by OldSQL.

He pointed to an earlier study that shows that in OldSQL-
like databases only 4% of the total CPU cycles go to useful
work, with the remainder almost evenly shared by latching,
locking, logging, and buffer pool management. He argued we
cannot benefit much from trying to optimize those archi-
tectures, so a redesign of the DBMS architecture without
compromising SQL and ACID is needed to increase the per-
centage of the useful work. This is what NewSQL databases
are trying to achieve. Some examples of the NewSQL move-
ment are VoltDB, NuoDB, Clustrix, and Akiban.

He focused on his own work on VoltDB in this field. VoltDB is
a shared-nothing database which has hash or range parti-
tioning on the data. It gets rid of the buffer pool by deploying
an in-memory database design, because most of the OLTP
databases today can fit in the aggregate main memory of few
commodity machines. Main memory is statically divided per
core, and there is a single partition for each core in a machine.
Only a single worker thread executes transactions within
a partition. There are no shared data structures, hence, no
need for locking and latching. K-safety measures are used
by replication of the data to ensure durability. VoltDB uses
stored procedures for transactions, but on-the-fly compila-
tion of ad hoc queries is possible with minor overhead. Specu-
lative execution can be used for distributed transactions to
reduce their overhead, although VoltDB does not have such a
technique yet. Overall, in terms of performance, the NewSQL
database VoltDB achieves a 60x improvement compared to an
OldSQL vendor, offers an 8x improvement over Cassandra,
which belongs to the NoSQL movement, and has the same
performance as Memcached. Stonebraker argues that VoltDB
is good for both scaling up and scaling out.

Stonebraker also discussed some of the recent tech-
niques they introduced in VoltDB and some future work.
To deal with cluster-wide failures, they have continuous

 90 ;login: VOL. 37, NO. 1

Even though such a design is good for scaling out, the simple
way of doing it has bottlenecks. Optimistic concurrency con-
trol can hinder performance severely if the conflict rates are
high. However, this is dependent on the application. Reading
from and writing to the log might be bottlenecks, but these
can improve in the future with technology trends. On the
other hand, the meld operation, as a single-threaded opera-
tion that reads many entries in the log, might become a huge
bottleneck, because the speed of a single processor no longer
improves, so the meld operation should be optimized first.

The main idea was for the meld process to have a lot fewer
log records to check for conflicts for a transaction, by storing
more information about the transaction in each transaction’s
intention. This is mainly done by keeping version numbers
for each node of the binary tree.

Mohan asked if they broadcast the log. Everybody has to
read it. Margo Seltzer noticed a potential conflict on a slide,
and Bernstein responded that she had found a bug. Someone
asked how they handle scan operations. They currently do
not support scans.

Mobility Trends & Implications
Summarized by Yingyi Bu (yingyib@ics.uci.edu)

Data Management Challenges in Location Based
Services
Srinivas Narayanan, Facebook

Srinivas Narayanan talked about the status and vision of
location-based services in Facebook. Mobile users usually
add location check-ins, upload photos, and create events.
Srinivas emphasized that location is not only latitude and
longitude, but also people, activities, and places. In the future,
social events will be built on top of locations, and interesting
applications such as social events/friends discovery on top of
places will become very popular.

Srinivas listed several challenges. First, a good location
search needs to address queries with either strong location
bias or weak location bias, and considers rankings. Second,
social queries need to scale up and scale out; currently Face-
book uses a MySQL back-end but does not use complex que-
ries. In the future, Facebook wants to support queries more
complex than NoSQL queries. Third, everybody can have pri-
vacy policies for every data point, and to apply rules to each
data point would be expensive. Fourth, social recommenda-
tions add a new dimension (location) to personal data, which
advanced machine learning and data mining algorithms
should leverage. Fifth, data quality will be challenging;the
true real-world location for many data sources (which get
tagged by user annotations), and crowd-sourcing or machine
learning might be a solution.

to separate the update done by the OLTP (parent) process
from the OLAP (child) process.

They use a datacentric query execution model rather than
the iterator model. There is a pipeline of operators for a query.
They have a producer and consumer interface: the former
pushes the data to the current operator and the latter accepts
the data and pushes it further up to the next operator. The
functions are generated in assembly code at compile time
using LLVM, which is fast when you want on-demand compi-
lation and creates portable code. Moreover, it achieves better
data and instruction locality than the iterator model.

To evaluate HyPer they designed the CH-benchmark. This
mainly keeps TPC-C database schema and its transactions
with some additional tables from TPC-H schema, and it con-
verts TPC-H queries to be compatible with this schema. The
performance numbers are good, although the memory price
might be high unless the working set is fairly small.

Bruce Lindsey wondered how they could run serialized
transactions. It’s easy if the transactions are not touching
the same data. Mohan asked how they knew this statically
at runtime; Neuman said, Through partitioning. Mike Ubell
asked how they could get copying without copying all the
data. They used the MMU to detect when a write would occur
and created a copy only at that time. Russell Sears (Yahoo!)
commented on the use of LLVM to create queries, saying that
code generators blow away the instruction cache.

Scaling Out with Meld
Phil Bernstein, Microsoft

Phil Bernstein presented a database design where a shared
binary-tree log is the database. The log supports multiversion
concurrency control, and the most recently used parts of it
are cached in each server’s memory. In this design there is
no need for cross-talk between the servers, so the design is
very suitable for scaling out without dealing with the burdens
of partitioning, which is the more common technique for
scaling-out today.

Each server has its local (partial) copy of the log in-memory,
and it has the last committed database state. Transactions
executing on these servers append their intention log records
to these local copies of the log. At the same time, the meld
operation takes place at each server that processes the log
in log order to see whether there are any transactions that
conflict with each other. Depending on this process, the meld
operation decides which transactions to commit or abort. If
a transaction is to be committed, then the meld merges its
updates (intention log records) to the database state. The
meld operation basically performs optimistic concurrency
control for the transactions.

 ;login: FEBRUARY 2012 Conference Reports 91

The volume of road sensing data is huge, and personal trajec-
tory data is sometimes sensitive. Madden’s group developed
software to efficiently store and access such data while
providing users control over privacy.

One subproject of CarTel is CTrack, which transforms
sensed raw data to meaningful trajectories. CTrack handles
cell phone signal location points with incorrect data, using
probability-based estimation techniques, and pre-processes
this data to visualizable road traces. The other subproject
is TrajStore, a storage system for indexing and querying
trajectories. TrajStore recursively divides a region into grid
cells and dynamically co-locates/compresses spatially and
temporally adjacent segments on disk in order to minimize
disk I/Os.

Sam pointed out that there are more and more location-aware
mobile devices, from a database researcher’s view: cleaning,
matching, filtering, visualizing, and animating mobile data
at large scale is challenging.

Mehul Shah wondered why they didn’t put all the data into
a database. Sam replied that some of the group are machine
intelligence experts trained in tools that don’t look like SQL.
If you push the data into SQL, they won’t use it. Adam Mar-
cus asked to what extent this is an interface problem. Sam
said that some of the algorithmic issues haven’t been figured
out yet.

Scalability Under the Hood at Foursquare
Jorge Ortiz, Foursquare

Jorge Ortiz introduced Foursquare, a location-based social
networking service provider which has general social
networking utilities, games, and city guides At the launch
in March 2009, Foursquare used a single-node PostgreSQL
database, which served 12,000 check-ins/day and 17,000
users. At the beginning of 2010, carrying a workload of
138,000 check-ins/day and 270,000 users, the system broke
trying to serve all the reads/writes on a single database.
From then on Foursquare used MongoDB to serve reads but
still used one PostgreSQL node to serve check-in writes. In
2011, with 2.8 million check-ins/day plus 9.4 million users,
Foursquare began to use MongoDB for both reads and writes.
By October 2011, there were over 13 million users and more
than 4 million check-ins per day. Drawbacks of PostgreSQL
include connection limits, VACUUM (free space recovery),
and lack of monitoring tools; advantages of MongoDB include
auto-balancing, shard routing, and synchronization.

Jorge explained that MongoDB does not shard geography
queries. Therefore they use Google’s s2-geometry library,
which turns polygons into sets of covering tiles and turns the
geography index problem into a search problem.

Harumi Kuno (HP Labs) asked if Srinivas could say more
about the index used for queries. Srinivas said you can use
lots of predicates. Adam Marcus (MIT) pointed out that the
information is both sensitive and has many compelling use
cases, and he wondered about privacy. Srinivas said Facebook
provides you with complete control over who sees your data.
Mike Caruso wondered if they could use the location data to
reveal where someone lives. Srinivas said that he didn’t have
a specific answer for Mike, and he pointed out that Facebook
is not just an urban product.

Urban Data Analysis—Projects, Methods and Tools Used
to Describe 21st Century Cities
Oliver Senn, MIT SENSEable City Group

Oliver Senn described several interesting projects built by
their group. The Copenhagen Wheel includes sensor devices
on bikes that continuously collect data from the bikes. With
gathered sensor information from all bikes, the back-end sys-
tem can do real-time data analysis, considering both traffic
and social information. Co2go uses accelerometer traces in
smartphones to estimate CO2 emissions and enables aggre-
gated CO2 emission analysis among users. LIVE Singapore!
is an enabling platform for applications that collect, combine,
distribute, analyze, and visualize either historical or real-
time urban data. Applications such as realtime call locations,
formula one city, and raining taxis have been built on top of
LIVE Singapore! (http://senseable.mit.edu/livesingapore/).

After describing those interesting urban data analysis
applications, Oliver mentioned software tools they used in
the project, including Matlab, R, OpenMP, MPI, Boost Graph
Library, GNU Scientific Library, C++, Java, Python, awk, sed,
Oracle, MySQL, and PostgreSQL. One challenge is that the
project group has only a few computer science people, and
everyone is sticking to some tools; thus, to integrate different
components requires a lot of work. The other challenge is to
understand the data set in terms of what system produced
the data, what parts of the data should be included/excluded,
and how inconsistency should be resolved.

Someone asked about future problems/challenges. Oliver
said that one challenge is that they don’t have access to huge
clusters, so for certain tasks (e.g., graph analysis) they are
currently restricted. Also, certain data sets (such as the
LIVE Singapore data) belong to the owners (are under NDA)
and cannot be exported offshore.

Mobile Data Management in the CarTel System
Sam Madden, MIT CSAIL

Sam Madden talked about problems in mobile data manage-
ment and their solutions in the CarTel system. Applications
of mobile data management include smart tolling insurance,
urban activity monitoring, and personal medical monitoring.

At EMC, innovative thinking is sustained through diverse perspectives. The
EMC workforce is a world of more than 52,000 thought leaders working
together to drive the future of cloud computing and information management
solutions.

Through innovative products and services, EMC accelerates the journey to
cloud computing, helping IT departments to store, manage, protect and
analyze their most valuable asset – information – in a more agile, trusted and
cost-efficient way.

To learn more about EMC, visit www.emc.com. To learn about working at EMC,
visit www.emc.com/careers.

CONVERGE
GO WHERE UNIQUE TALENTS

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

