
;login:
v o l . 3 9 , n o . 1F E B R U A R Y 2 0 1 4

File Systems and Sysadmin
& An Overview of Object Storage

Matthew W. Benjamin, Casey Bodley,
Adam C. Emerson, and Marcus Watts

& Hadoop 2
 Sanjay Radia and Suresh Srinivas

& Loser Buys, Two Tales of Debugging
Mark Bainter and David Josephsen

& Improving Performance of Logging
Reports and Dashboards
David Lang

& Change Management
Jason Paree and Andy Seely

Columns
Practical Perl Tools: Redis Meets Perl
David N. Blank-Edelman

Python: The Wheels Keep on Spinning
David Beazley

iVoyeur: Counters
Dave Josephsen

For Good Measure: Measuring Security Book Value
Dan Geer and Gunnar Peterson

/dev/random: Cybertizing the World
Robert Ferrell

Conference Reports
LISA ’13: 27th Large Installation System Administration
Conference

Advanced Topics Workshop at LISA ’13

U P C O M I N G
E V E N T S

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

FAST ’14: 12th USENIX Conference on File and
Storage Technologies

February 17–20, 2014, Santa Clara, CA, USA
www.usenix.org/fast14

2014 USENIX Research in Linux File and Storage
Technologies Summit
In conjunction with FAST ’14
February 20, 2014, Mountain View, CA, USA

NSDI ’14: 11th USENIX Symposium on Networked
Systems Design and Implementation

April 2–4, 2014, Seattle, WA, USA
www.usenix.org/nsdi14

2014 USENIX Federated Conferences Week
June 17–20, 2014, Philadelphia, PA, USA

HotCloud ’14: 6th USENIX Workshop on
Hot Topics in Cloud Computing
June 17–18, 2014
www.usenix.org/hotcloud14
Submissions due: March 6, 2014

HotStorage ’14: 6th USENIX Workshop
on Hot Topics in Storage and File Systems
June 17–18, 2014
www.usenix.org/hotstorage14
Submissions due: March 13, 2014

WiAC ’14: 2014 USENIX Women in Advanced
Computing Summit
June 18, 2014
www.usenix.org/wiac14

ICAC ’14: 11th International Conference on
Autonomic Computing
June 18–20, 2014
www.usenix.org/icac14
Paper titles and abstracts due: February 26, 2014

USENIX ATC ’14: 2014 USENIX Annual Technical
Conference
June 19–20, 2014
www.usenix.org/atc14

UCMS ’14: 2014: USENIX Configuration Management
Summit
June 19, 2014
www.usenix.org/ucms14

URES ’14: 2014 USENIX Release Engineering Summit
June 20, 2014
www.usenix.org/ures14

23rd USENIX Security Symposium
August 20–22, 2014, San Diego, CA, USA
www.usenix.org/sec14
Submissions due: February 27, 2014

Workshops Co-located with USENIX Security ’14
EVT/WOTE ’14: 2014 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections
USENIX Journal of Election Technology
and Systems (JETS)
Published in conjunction with EVT/WOTE
www.usenix.org/jets
Submissions for Volume 2, Issue 3, due: April 8, 2014

HotSec ’14: 2014 USENIX Summit on Hot Topics
in Security

FOCI ’14: 4th USENIX Workshop on Free and Open
Communications on the Internet

HealthTech ’14: 2014 USENIX Workshop on Health
Information Technologies
Safety, Security, Privacy, and Interoperability
of Health Information Technologies

CSET ’14: 7th Workshop on Cyber Security
Experimentation and Test

WOOT ’14: 8th USENIX Workshop on Offensive
Technologies

OSDI ’14: 11th USENIX Symposium on Operating
Systems Design and Implementation

October 6–8, 2014, Broomfield, CO, USA
www.usenix.org/osdi14
Abstract registration due: April 24, 2014

Co-located with OSDI ’14:
Diversity ’14: 2014 Workshop on Diversity
in Systems Research

LISA ’14: 28th Large Installation System
Administration Conference

November 9–14, 2014, Seattle, WA, USA
www.usenix.org/lisa14
Submissions due: April 14, 2014

E d i t o r
Rik Farrow
rik@usenix.org

M a n a g i n g E d i t o r
Rikki Endsley
rikki@usenix.org

C o p y E d i t o r
Steve Gilmartin
proofshop@usenix.org

p r o d u C t i o n M a n a g E r
Michele Nelson

p r o d u C t i o n
Arnold Gatilao
Casey Henderson

t y p E s E t t E r
Star Type
startype@comcast.net

u s E n i X a s s o C i at i o n
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2014 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designations
used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designations
appear in this publication and USENIX is aware
of a trademark claim, the designations have
been printed in caps or initial caps.

F E b r u a r y 2 0 1 4 v o l . 3 9 , n o . 1

E d i t o r i a l
3 Musings Rik Farrow

F i l E s y s t E M s
6 A Saga of Smart Storage Devices: An Overview of Object Storage

Matthew W. Benjamin, Casey Bodley, Adam C. Emerson, and Marcus Watts

12 HADOOP 2: What’s New
Sanjay Radia and Suresh Srinivas

s y s a d M i n
16 The Evolution of Managed Change in a Complex IT Enterprise

Jason Paree and Andy Seely

20 Logging Reports and Dashboards
David Lang

26 Loser Buys: A Troublesome Retrospective
Mark Bainter and Dave Josephsen

30 When Data Is a Risk: Data Loss Prevention Tools and Their Role
within IT Departments
Klaus Haller

35 Using a Database to Store Data Captured with tcpdump
Mihalis Tsoukalos

C o l u M n s
38 Practical Perl Tools: Redis Meet Perl David N. Blank-Edelman

42 The Wheels Keep on Spinning David Beazley

46 iVoyeur: Counters Dave Josephsen

49 Margin of Safety or Speculation? Measuring Security Book Value
Dan Geer and Gunnar Peterson

52 /dev/random Robert Ferrell

b o o K s
54 Book Reviews Elizabeth Zwicky, with Mark Lamourine

u s E n i X n o t E s
59 Transition of USENIX Leadership

Anne Dickison and Casey Henderson

60 2014 Election for USENIX Board of Directors
Margo Seltzer and Niels Provos, 2014 USENIX Board Nominating
Committee

60 Thanks, Rikki Endsley
Casey Henderson

C o n F E r E n C E r E p o r t s
61 LISA ’13: 27th Large Installation System Administration Conference

90 Advanced Topics Workshop at LISA ’13

2  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

EDITORIALMusings
r i K F a r r o w

Rik is the editor of ;login:.
rik@usenix.org I like to attend the SNIA Storage Developer Conference [1], looking for

ideas and authors for the February issue of ;login:. Although the main
focus of SDC continues to be Microsoft SMB, I get to learn about other

network/distributed file systems while there. Not that SMB 3 is not amazing.
If you are still using older versions of Microsoft’s networked file system, you
are living in the dark ages. But I was after other prey, topics of greater inter-
est to file system and storage researchers.

I’ve long been interested in Parallel NFS (pNFS), the long-awaited set of standards that
allow the venerable NFS to work over a collection of storage servers. So I attended the pNFS
BoF one evening at SDC, only to find that I was one of only five people there. I did say this
was mainly an SMB conference.

Fortunately for me, the people there, Brent Welch (Google), Matt Benjamin, Adam Emerson,
and Marcus Watts (all with CohortFS) were willing to talk about distributed file systems.
When I asked the CohortFS people what they were working on, the talk turned to object
 storage systems.

File Systems
I have a confession to make: I had no idea what a file system was by the end of the operating
systems class I took in 1978. The class textbook covered IBM only, and years later, the class’
professor heavily criticized my chapter on file systems for my system administration book.
That was certainly ironic, as he had totally failed to cover the topic. Then again, perhaps that
was why he had commented that the material was “unnecessary.”

In the 1970s, file systems were a bit alien. Really. People in the operating system course
labs carried cases of punch cards. These weren’t their backups: they were the storage system.
The ability to store files online was just beginning at the University of Maryland. So when I
was tasked with writing a file system, I was stumped. I knew I had to build data structures
that held lists of blocks, but beyond that, I had no idea what to do. I had never knowingly
interacted with a file system.

Three years later, I had my own, home-built, microcomputer system, which ran CP/M on
floppy disks, using a flat file system. My computer had built-in 51/4-inch drives, but most of
my customers used 8-inch floppies (with a capacity of more than 200 kilobytes!). I had both
an external 8-inch drive and a Morrow DJIO card, and because I had written the manual for
the DJIO, I thought I could patch in access to the 8-inch drive. What I did was build a device
driver and CP/M file system, all in two pages of C code. Things were a lot simpler then. And,
fortunately for me, there were other sources of knowledge about file systems (magazine
articles in Byte!) than the professor who had ignored this topic.

Object Stores
As you will learn when you read the object storage article in this issue, object stores have been
around since work done by Garth Gibson in 1990. His initial research into network attached
storage devices (NASD) grew into Panasas, and later into object storage standards. Gibson and

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 3

EDITORIAL
Musings

his cohorts had built a POSIX-compatible interface that allowed
access to distributed object storage as if they were a more tradi-
tional file system. The interface hid the behind-the-scenes work
of distributing data among different devices to produce fast, reli-
able, and scalable storage systems for super computers.

Although the Gibson work was one way of presenting an object
store, another one showed up many years later, with Amazon S3.
Again, the interface hides all of the behind-the-scene implemen-
tation details. But instead of a POSIX interface, Amazon chose
an almost flat system of buckets and keys that refer to objects
up to five terabytes in size. Each object can be represented, and
fetched, via a URL that names the bucket and key. In general, S3
is clearly a long way away from the POSIX interface, with path-
names, permissions, reads, writes, and seeks.

And yet, is this really so different? I’m reminded of the impos-
sible (it seemed at the time) task of organizing the blocks on a
PDP 11/45 in my operating system class. I needed to create col-
lections of blocks, organized using some higher layer of software,
into something coherent, so I could eventually store and execute
programs using my primitive OS.

Today, we take file systems for granted, and typically use what-
ever the OS we have installed has provided for us. Even the
Hadoop Distributed File System (HDFS) uses the underlying file
system for its object store, and the newer version now presents a
POSIX-style (NFSv3) interface.

There certainly are places where object stores make a lot of
sense. Object stores can be used for storing large amounts of
data, such as photos or movies, for a database. They have worked
well in supercomputing, as well as in distributed file systems
such as HDFS. But what both Panasas and HDFS use is direct
attached storage devices (DASD). As I was preparing to write
this column, Seagate announced something quite different:
Kinetic Open Storage.

With Kinetic, Seagate will provide 4 TB Enterprise drives
without a SAS or SATA interface. Instead, these drives support
two one-gigabyte Ethernet interfaces, and apparently have an
interface similar to Amazon’s S3, with PUT, DELETE, and
GET for objects specified by keys—no buckets. Seagate’s soft-
ware will turn groups of Kinetic drives into a distributed storage
system, handling sharding and some form of reliability feature,
like erasure coding or replication.

I find myself feeling conflicted by Kinetic. On the one hand, mov-
ing the intelligence for managing objects right onto the drive itself
appears to be a brilliant idea. Modern enterprise drives already
have a lot of processing power, including multiple embedded
CPUs. On the other hand, I wonder how many people will want
to let go of the illusion of control over their drives. Currently, we
know how to replace a drive when it fails. What happens when a

Kinetic drive fails? Not that the long-favored scheme of RAID for
reliability works with drives as large as four terabytes. And repli-
cation is expensive in terms of space for reliability.

You can read about other peoples’ opinions about Seagate’s
Kinetic at the StorageMojo blog [2]. I had asked Robin Harris to
write for ;login:, and Brent Welch too. Neither actually wrote for
us, but you can find both Brent’s and Robin’s thoughts on Seagate
Kinetic in the blog entry and the comment section.

The Lineup
We begin this issue with the article about object storage systems
by the CohortFS folks mentioned above, who have been working
on Ceph, adding their own extensions to the project. They’ve
done a great job of explaining the history of object storage, the
standards, both official and de facto, that exist, and where Ceph
and their own projects are headed.

I also met Suresh Srinivas during SDC, and he agreed to write
about the new features of Hadoop 2. Working with his partner,
Sanjay Radia, they outline features of Hadoop 2 that take the
original version and make it a better match for more generalized
types of distributed programming, including models such as
MPI and streaming. They also explain how HDFS has been made
more durable and much faster, along with the addition of an NFS
interface for sharing access.

Jason Paree and Andy Seely approached me with the desire
to share a process that they participated in within their work
environment. They explain how their group implemented change
management, a method for controlling changes to configuration.
Whereas configuration management is a method for applying
configuration, change management adds a level of control that
has helped their organization reduce the growth in both the
number of changes and the number of mistakes made.

David Lang continues his series on enterprise logging. David dis-
cusses reports and dashboards, where both can be much slower—
actually, disk hogs—if not designed properly to use summaries.

Mark Bainter and Dave Josephsen agreed to each write about
one of their most difficult experiences with debugging system
problems. Although Doug Hughes has written similar articles
for ;login: [3, 4], we are hoping that articles about debugging dif-
ficult system problems can become a regular feature. Mark and
Dave have written their stories as a discussion, and a bet, with
me as the judge.

Klaus Haller volunteered an article about data loss prevention.
Klaus thought this might be interesting, given the still-ongoing
disclosures by Edward Snowden. Klaus writes based on his
own experiences, and there are other systems available for data
loss prevention.

4  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

EDITORIAL
Musings

Mihalis Tsoukalos also volunteered an article, this one on
importing packet traces into a database. Although this has been
done before, in products and tools such as Argus, I thought his
work was interesting enough to include in this issue.

David Blank-Edelman joins the ranks of the cool by describ-
ing how Redis works. As with his other recent columns, David
spends much of his time describing Redis itself, as the interface
to Redis in Perl closely matches Redis’ command-line interface.
Redis certainly has some powerful features.

David Beazley takes a look at wheel, a new packaging system for
Python. Although there are already common methods for creat-
ing packages, wheel adds new features and abilities that David
felt were worthwhile learning about.

Dave Josephsen covers a specific aspect of monitoring. Dave looks
at counters, the various types, and why they are so important.

Dan Geer and Gunnar Peterson take an interesting look at a way
of measuring risk. They borrow from the financial industry to
calculate a margin of safety by comparing the cost of a system to
the amount spent on securing that system. Using this, you can
compare how much your organization has spent on securing dif-
ferent systems reasonably.

Robert Ferrell writes about a new security phenomenon: cyber.
Well, not so new, as Gibson’s Neuromancer introduced the term
in the ’80s. But that’s nothing compared to what can be done
with cyber today.

Elizabeth Zwicky begins book reviews with Perl One-Liners,
which she likes, then dives into two books on data science which
offer complementary approaches to the topic, one introductory,
the other Agile. With Designing for Behavior Change, Elizabeth
considered a book for developers. She closes with a review of a
basic book on Linux which in her view came up short.

Mark Lamourine has reviewed three books. He starts with an
advanced college textbook on programming distributed systems,
then describes a new book on DNS that includes alternatives
to the venerable BIND. Finally, Mark takes a long, hard look at
Mark Burgess’ In Search of Certainty.

We have the summaries for LISA 2013 in this issue, along with
the Advanced Topics summaries. Originally, I had planned on
including them in the April 2014 issue, but surprised myself by
getting them edited in time to make this issue. They will appear
online in their entirety, including the the workshop summary for
the Summit for Educators in System Administration.

As the amount of data we create continues to grow, we will need
to find new ways of dealing with it. Object stores are certainly
one way, and I’m sure that other methods will continue to arise
over time, and through necessity.

As for my professor who taught about IBM, and I will confess I
did learn some useful things, I do wish he had been more up to
date. While struggling with the class assignments, I asked his
assistant if there were better examples of operating systems for
machines like the PDP 11. He said there were not, even though
the John Lion’s commentary on UNIX had been published a year
earlier [5]. I would have to wait until someone shared a blurry,
multi-generation photocopy of the Lion’s book a couple of years
later to have an example of the operating system that would
provide a model for future file systems.

References
[1] SNIA Storage Developer Conference: http://www.snia.org/
about/calendar/2013-storage-developer-conference.

[2] StorageMojo on Kinetic: http://storagemojo.com/
2013/11/21/seagates-kinetic-open-storage-vision/.

[3] Doug Hughes and Nathan Olla, “When Disasters Collide,”
;login:, vol. 37, no. 3 (June 2012): https://www.usenix.org/
publications/login/june-2012-volume-37-number-3/
when-disasters-collide-many-fanged-tale-woe.

[4] Doug Hughes, “When Disasters Collide, Continued,”
;login:, vol. 37, no. 4 (August 2012): https://www.usenix.org/
publications/login/august-2012-volume-37-number-4/
when-disasters-collide-many-fanged-tale-woe.

[5] John Lions, Commentary on UNIX Sixth Edition with Source
Code (Peer to peer Communications, 1977): http://www.amazon
.com/Lions-Commentary-Unix-John/dp/1573980137.

Publish and Present Your Work at USENIX Conferences
The program committees of the following conferences are seeking submissions. CiteSeer ranks the USENIX Conference Proceedings
among the the top ten highest-impact publication venues for computer science.

Get more details about each of these Calls for Papers and Participation at www.usenix.org/conferences/calls-for-papers.

ICAC ’14: 11th International Conference on Autonomic
Computing
June 18–20, 2014, Philadelphia, PA
Paper titles and abstracts due: February 26, 2014, 11:59 p.m. EST
ICAC brings together researchers and practitioners from dispa-
rate disciplines, application domains, and perspectives, enabling
them to discover and share underlying commonalities in their
approaches to making resources, applications, and systems more
autonomic.

USENIX Security ’14: 23rd USENIX Security Symposium
August 20–22, 2014, San Diego, CA
Submissions due: February 27, 2014, 8:59 p.m. EST
The USENIX Security Symposium brings together researchers,
practitioners, system administrators, system programmers, and
others interested in the latest advances in the security of com-
puter systems and networks.

HotCloud ’14: 6th USENIX Workshop on Hot Topics
in Cloud Computing
June 17–18, 2014, Philadelphia, PA
Submissions due: March 6, 2014, 9:00 p.m. EST
HotCloud brings together researchers and practitioners from
academia and industry working on cloud computing technolo-
gies, and provides a forum for them to share their experiences,
leverage each other’s perspectives, and identify new/emerging
“hot” trends in this important area.

HotStorage ’14: 6th USENIX Workshop on Hot Topics
in Storage and File Systems
June 17–18, 2014, Philadelphia, PA
Submissions due: March 13, 2014, 11:59 p.m. PDT
HotStorage ’14 will showcase the latest in storage systems design,
implementation, management, and evaluation, and provide a
forum where researchers can exchange ideas and engage in
discussions with their colleagues.

JETS Volume 2, Number 3: USENIX Journal of Election
and Technology and Systems
Submissions due: April 8, 2014, 11:59 p.m. PDT
JETS is a new hybrid journal/conference, in which papers will have
a journal-style reviewing process and online-only pub lication.
Accepted papers for Volume 2, Numbers 1–3, will be presented
at EVT/WOTE ’14, which takes place August 18–19, 2014.

LISA ’14: 28th Large Installation System Administration
Conference
November 9–14, 2014, Seattle, WA
Submissions due: April 14, 2014, 11:59 p.m. PDT
If you’re an IT operations professional, site-reliability engineer,
system administrator, architect, software engineer, researcher,
or otherwise involved in ensuring that IT services are effectively
delivered to others—this is your conference, and we’d love to
have you here.

OSDI ’14: 11th USENIX Symposium on Operating Systems
Design and Implementation
October 6–8, 2014, Broomfield, CO
Abstract registration due: April 24, 2014, 9:00 p.m. PDT
OSDI brings together professionals from academic and industrial
backgrounds in what has become a premier forum for discuss-
ing the design, implementation, and implications of systems
software.

File SyStemS

6  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

A Saga of Smart Storage Devices
An Overview of Object Storage

M a t t h E w w . b E n j a M i n , C a s E y b o d l E y , a d a M C . E M E r s o n ,
a n d M a r C u s w a t t s

Object storage systems have become quite popular, with implemen-
tations ranging from Amazon’s S3 to backends for NFSv4.1. We
describe the history of object storage, the practice and standards in

use today, and work being done by groups such as the Ceph project, as well as
some of our own development.

Object storage fills a gap between block storage and file systems. Simple block storage con-
sists of fixed-size blocks as provided by traditional disk drives. Blocks can be accessed ran-
domly but must be allocated by some scheme. Most modern file systems provide a directory
hierarchy that contains variable length byte-array “files” as the leaves. Modern network appli-
cations frequently need a higher abstraction than can be provided by simple block storage, yet
don’t need all the complexity and limitations of a traditional file system. Object storage fills
this gap by providing for larger variable-sized segments and a simple flat-naming scheme.

The most common object abstraction provides one or more collections of uniquely named
objects of arbitrary size associated with some amount of metadata. Object storage tends to
emphasize getting or putting entire objects, rather than reading and writing byte-ranges as
is more common in file systems.

We will talk about object storage systems as two groups, which we will call the “device-like
family” and the “HTTP-like family.” The device-like family exposes a cluster of individual
devices to clients. One example of device-like objects is the SCSI T10 object standard. The
HTTP-like family presents a single interface, hiding details of how data is distributed. The
best-known example of the HTTP-like family is Amazon’s S3.

History and Character
Our two divisions of object storage grew up independently but have crossed over and stimu-
lated each other.

The Device-Like Family
The modern device-like object storage paradigm traces back to work by Garth Gibson and
others on the NASD (Network Attached Secure Disks) project at CMU, whose goal was the
creation of a scale-out storage system. They designed intelligent drives storing variable-
length objects with access being granted by a cacheable token; this allowed scale-out similar
to a SAN but without clients having to be involved with actual block allocation, and so allow-
ing disk devices to perform on-platter optimization [3]. In NASD (and its direct descendant
PanFS) the file server was responsible for assigning objects to devices; NASD used a middle-
ware to stripe virtual objects across real devices. Even in the beginning, objects were used
for more than just building file systems. For example, the NASD project built a distributed
streaming MPEG2 server. The SCSI T10 committee standardized the Object Storage Device
command set (drawn from the NASD model), a second version has been finalized (OSDv2),
and a third is currently in development.

Matt Benjamin is chief architect
of CohortFS, and a founder
of CohortFS, LLC. Matt is a
contributor to numerous open
source software packages

and tools, including the NFS Ganesha and
OpenAFS. Matt holds a master’s degree from
the University of Michigan, and a bachelor’s
degree (summa cum laude and Phi Beta
Kappa) from the University of Missouri.
matt@cohortfs.com

Casey Bodley studied computer
science at Eastern Michigan
University. He then worked
for the Center for Information
Technology Integration at the

University of Michigan to develop a Windows
client for NFSv4.1. He joined the CohortFS
team in 2012, and has been working on parallel
metadata enhancements to Ceph.
casey@cohortfs.com

Adam C. Emerson studied
mathematics at the University
of Michigan. While at CohortFS
he has worked on the Ganesha
NFS server, especially

improving support for NFSv4.1 and pNFS.
He also collaborated in the CohortFS design
process for data placement, encryption, and
metadata striping. aemerson@cohortfs.com

Marcus Watts is a programmer
at CohortFS. He previously
worked for a large education
institution where he worked
with AFS and identity

management. Way back when, he wrote a
computer conferencing program, PicoSpan,
which was the basis for the Well in California.
mdw@cohortfs.com

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 7

File SyStemS
A Saga of Smart Storage Devices

Further research in the device-like family of object storage
focused on decentralizing placement of objects on devices [4].
Other work included scaling objects to more devices as the
amount of storage grew, and responding to failures and grace-
fully reorganizing data as devices were added or removed, as in
the RUSH [5] family of algorithms. The Ceph project builds on
previous work, with a cluster of OSDs cooperating to perform
automatic replication, recovery, and snapshots.

CleverSafe implements its own object storage system (with a
proprietary protocol) where object names are effectively hierar-
chical addresses within a cluster. CleverSafe makes heavy use
of Cauchy Reed-Solomon erasure codes [7] for fault tolerance as
well as information dispersal. Information dispersal starts with
a piece of data and derives multiple chunks from it, some number
of which are needed to reassemble the original. CleverSafe
optionally performs encryption, integrity, and compression as
part of the write operation.

The HTTP-Like Family
The most successful (and current de facto standard) represen-
tative of the HTTP-like object storage family is Amazon’s S3,
which, like the Elastic Compute Cloud, was launched to expose
and sell access to the global infrastructure Amazon developed
to run its own business. S3’s operations (getting, putting, and
deleting, generally of entire objects at once) fall naturally out
of the common REST architecture, which structures APIs
around the standard methods of HTTP [2]. This gives S3 a
high-level abstraction free from many assumptions or implied
structures, similar to T10 OSD. S3 provides a flat namespace of
objects within “buckets,” which both partition objects into flat
namespaces and dictate policy.

S3 has been enormously successful, not just as a service but as
an API, and it has been adopted by other cloud service provid-
ers and by software such as the CloudStack framework and the
Eucalyptus cloud computing system.

OpenStack’s Swift service fills a similar niche. Even though
it provides storage implemented by members of a cluster to
members of that cluster, all requests go through an HTTP proxy
server that hides the details of distribution and abstracts away
the clustered nature of access from the client.

Hybrid Models
As both these families have been developed, they’ve borrowed
from each other. Ceph’s RADOS protocol implements object
pools that function much like S3’s buckets, and they map directly
onto buckets in the RADOS Gateway, a Web service that hides
the clustered nature of Ceph behind a Web proxy.

Huawei’s Universal Data Storage goes one step further, selling
hardware (clusters of smart disk drives) that speaks S3 to clients
while providing enterprise functionality and management.

Anonymity Networks
Anonymity networks such as Freenet and GNUnet have con-
verged on the object-like semantics of publishing and retrieval
of blobs of data in a flat namespace on a wide-scale cluster.
Clients interact with the individual nodes on the peer-to-peer (or
friend-to-friend) network, but may have their interactions with
the ultimate endpoints obscured by layers of onion routing and
cover traffic depending on their security settings. New designs
(referred to in GNUnet documentation and source as “multicast”)
for trusted replication among peers allow HTTP-like functional-
ity, such as resilience or distributed service of resources in high
demand, while preserving anonymity and privacy.

Current Uses
Many object storage systems can be used as arbitrary key-value
stores with good performance for large values. T10 OSDv2 is
a notable exception as it uses 64-bit integers to name objects
within a partition; it requires an index, which may be imple-
mented in the object system, to link more interesting names to
integers. Object stores are also often used as building blocks for
richer systems.

Database Integration
BLOB (Binary Large OBject) fields store mostly uninterpreted
data in database records and have always been awkward due to
their large size, which can drive other data out of cache in the
database client. The BLOBs themselves are often served more
slowly than would be ideal since they have to be pulled through
that database connector interface. Many database programmers
address this by storing objects in files and then storing the file
names in the database.

One major downside of storing BLOBs as files is that most file
systems don’t offer the same reliability, integrity, or replication
features that cover data stored in the database. Developers are
using object stores and any replication and reliability that the
store in question might provide to get around this limitation.
Often the object will be named with a hash of the BLOB’s content
to provide implicit integrity checking and deduplication. This
approach has become so popular that it’s starting to become
integrated into database backends. OblakSoft’s Cloud Stor-
age Engine for MySQL introduces a “WEBLOB” field type that
integrates storage of BLOBs using Amazon’s S3 protocol directly
into the database. Using HTTP-accessible objects specifically
also allows Web assets to be displayed to a client by passing a
URL, without proxying the data through the application.

8  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

File SyStemS
A Saga of Smart Storage Devices

Streaming Storage
Video streaming from object stores was prototyped with MPEG2
on NASD but hit great commercial success with Netflix’s adop-
tion of Amazon S3 to back its streaming video service. This
has become successful enough that Amazon has pursued the
streaming market by adding RTMP access to S3 objects [1].

Virtual Machine Images
One of Ceph’s biggest current successes is the RADOS Block
Device. This is a set of conventions for organizing Ceph objects
into disk images that can then be booted from or mounted by
virtual machines in a cloud environment. This allows the use of
the object store’s capabilities, such as snapshots and replication,
to provide checkpointing and resilience. Snapshot layering pro-
vides a crude approximation (due to snapshots being read-only)
for copy-on-write storage and deduplication.

File Systems
OSDv2 is used by Panasas in PanFS and by the free ExoFS
project as the backing store for their file systems. Ceph follows
this same approach, building a file system on top of the RADOS
object access protocol.

The S3 FUSE utility builds a file system on top of cloud-based
storage, and Tahoe LAFS’s RAIC (Redundant Array of Inexpen-
sive Clouds) plans to build a highly reliable, secure file system
that straddles the object storage systems of multiple cloud pro-
viders for reliability in the event of a provider’s failure.

pNFS
T10 OSDv2-based object-backed file systems have been stan-
dardized as a scale-out and reliability component of NFSv4.1
through Parallel NFS (pNFS). pNFS introduces the concept of
recallable layouts to represent both permission to and details
on how to access data directly at the point that it is stored [8].
Clients then access back-end storage directly without going
through a front-end server. pNFS allows differing access pro-
tocols, like striping data over several NFSv4 servers, accessing
data as block ranges on SCSI devices, and arranging data in
recursive RAID configurations over T10 objects.

The OSD layout type lets clients be aware of, participate in, and
take advantage of replication and erasure coding. Clients can
read stripes from multiple devices for improved speed or perform
erasure coding at the time of writing.

Ceph
As Ceph is of current interest in the storage community, and
because we are basing much of our work on it, we give Ceph some
special mention.

Contrast with T10
Ceph’s architecture can be contrasted with that of T10 OSDv2.
Object storage devices in T10 are independent of each other
and under the control of some director that grants access
through security tokens. Replication occurs when clients write
the same data to several devices, and parity is calculated on the
client and written as normal data. How data and parity blocks
are distributed among devices is outside the scope of the T10
OSDv2 standard.

Ceph organizes object storage devices into a cooperative group
under control of a small number of servers called monitors. In
Ceph, monitors keep globally known data coordinated through
Paxos. Data is distributed over devices under the control of a
globally known collection of rules and data structures, which
are maintained consistently by the monitors. Administrators
describe the organization of storage devices, breaking them
down hierarchically into zones of potential failure. Administra-
tors also set the number of replicas and policies about where to
place objects. The placement logic shared between clients and
storage devices combines this policy with a monitor-maintained
map of storage device status (operating, temporarily down, out
of service) to calculate where individual objects are located. Cli-
ents perform writes to one object storage device, and the storage
devices coordinate between themselves to perform replication
and data recovery [9]. Ceph currently lacks support for erasure
coding, but multiple efforts are underway to add it.

The present RADOS protocol lacks access control beyond a
 public key needed to communicate with the cluster at all. There
are designs for access control on extremely large scale object
storage systems [6].

Immediate Applications
Ceph is a large, complex system currently undergoing active
development and gaining new capabilities. There are several
use-cases it can address out of the box.

Ceph provides an immediately replicated file system in a single
datacenter environment. A stable write to a file is considered to
be complete when it has been stably recorded on all devices rep-
licating the given block, giving resilience against drive failure.
Per-directory immutable snapshots can be made by unprivileged
users allowing them to version their data.

Even without the file system, Ceph can be used in the construc-
tion of private clouds that leverage the large number of applica-
tions made to work with the S3 protocol. Ceph can be dropped
in as a replacement for public cloud services simply by setting
up a cluster and configuring applications to use the RADOS
Gateway server as the target for requests. Also, Ceph can be used
as a proxy server for Swift requests in OpenStack installations,
though its Swift interface is less complete than its S3 interface.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 9

File SyStemS
A Saga of Smart Storage Devices

RADOS block devices (RBD) have full Linux kernel support,
and can be used any way you would use any other block device,
but with replication and a snapshot capability. Some people
have experimented with re-exporting RADOS block devices
over iSCSI to make them available to other operating systems,
such as FreeBSD or Windows. RBD’s biggest success has been
in virtualization environments. In addition to providing an RBD
device as a normal block device, RBD support has been inte-
grated into virtualization and cloud computing systems, such as
OpenStack, and any systems using libvirt (such as CloudStack
and virt-manager).

CohortFS Development
Our goals at CohortFS include development in the field of object
storage. Currently, we’re focusing on improving the capabilities
of Ceph as both an object store and a file system, and on improv-
ing NFS to take the best advantage of advanced functionality
that a file system provides.

Ceph via NFS
We have added NFS access to the Ceph file system and to the
Ganesha user space NFS server, and have implemented pNFS
access for objects striped over Ceph OSDs. In the future, we
will be developing a new layout type to better take advantage
of placement strategies other than repeated striping patterns;
we will also be adding support to Ceph for a recallable layout
that better matches the requirements of NFS than do current
Ceph capabilities.

Volumes
We are adding an implementation of volumes to Ceph, which will
allow a single cluster to hold multiple independently rooted file
systems or collections of objects, each with its own administra-
tive domains of control to support delegated multi-tenancy. Our
future development in this area includes automatic allocation of
object-storage devices with different capabilities to fill adminis-
trator-specified quality-of-service requirements.

Erasure Coding and Client Offload
We are currently adding erasure coding support to Ceph, using
the Jerasure library. In CohortFS, clients will be able to perform
replicated writes and generate erasure codes rather than having
to leave those to the OSDs. This frees us of the requirement to
have multiple OSDs coordinate in a computation for each write,
while still allowing OSDs to repair faults automatically. This is
in contrast with another erasure coding project for Ceph where
erasure codes are generated cooperatively by the OSDs.

Dynamically Generated Placement Functions
We take the notion of a globally known placement function to
its logical conclusion by dynamically generating placement

functions as fragments of executable code that are distributed
throughout a Ceph cluster and to clients. This allows us to tailor
data placement specifically to the requirements of the use-case.
Additionally, expensive optimization of the function against the
cluster description can be performed once, centrally. This gains
faster placement calculation without loss of generality. Finally,
this allows us to change the behavior of the system radically
without having to go through the expensive and error-prone
operation of a cluster-wide upgrade.

Availability
Much of the software mentioned here is available with source on
the Internet. An implementation of a T10 OSD target is available
from http://www.open-osd.org. They also developed an initiator
and a scale-out network file system built on top of the T10 OSD
protocol called ExoFS. ExoFS and the T10 initiator have been
integrated into recent Linux source trees.

Ganesha is a user-space server for versions 3 and 4 of the NFS
protocol and for 9P, a file-system protocol originally used for the
Plan 9 operating system that is now seeing some use in high-
performance computing environments. Ganesha’s design is
centered around a File System Abstraction Layer, allowing it to
serve systems as diverse as the Linux open-by-handle interface,
ZFS (through libraries), and even a proxy to other NFS servers.
It is used as an NFS front-end for both free and proprietary file
systems, and also functions as a platform for development of
new server functionality. Ganesha is available from http://
nfs-ganesha.github.com.

The Ceph distributed object store and file system is available
from http://ceph.com.

OpenStack is a free Infrastructure-as-a-Service framework that
implements the Swift object storage service as well as integrat-
ing well with other object storage systems, such as S3 and Ceph.
OpenStack is available from http://www.openstack.org.

The Jerasure library implements many freely available erasure
codes and is available from http://Web.eecs.utk.edu/~plank/
plank/papers/CS-08-627.html.

Much of our work is available in the Ganesha NFS server, and
some has (or will shortly be) submitted to Ceph. Other parts of
CohortFS will become freely available as they are completed.

Acknowledgments
We would like to thank the National Science Foundation, which
has funded our work on CohortFS through a Small Business
Innovation Research grant, Peter Honeyman for his work in
helping to design CohortFS, and the Ceph community for provid-
ing a flexible and open platform for development. We would also
like to thank the Ganesha community for embodying everything
that is good about collaborative, free software development.

10  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

File SyStemS
A Saga of Smart Storage Devices

References
[1] Amazon.com, “Working with RTMP Distributions,” Octo-
ber 2013: http://docs.aws.amazon.com/AmazonCloudFront/
latest/DeveloperGuide/WorkingWithStreamingDistributions
.html.

[2] R. T. Fielding, and R. N. Taylor, “Principled Design of the
Modern Web Architecture,” ACM Transactions on Internet
Technology 2 (2002), pp. 115-150.

[3] G. A. Gibson, D. F. Nagle, W. I. Courtright, N. Lanza, P.
Mazaitis, M. Unangst, and J. Zelenka, “NASD Scalable Stor-
age Systems,” Proceedings of USENIX 1999, Linux Workshop,
 Monterey CA, June 9–11, USENIX Association.

[4] R. J. Honicky, “A Fast Algorithm for Online Placement and
Reorganization of Replicated Data,” Proceedings of the 17th
International Parallel & Distributed Processing Symposium
(IPDPS 2003).

[5] R. J. Honicky and E. L. Miller, “Replication Under Scalable
Hashing: A Family of Algorithms for Scalable Decentral-
ized Data Distribution,” Proceedings of the 18th International
 Parallel & Distributed Processing Symposium (IPDPS 2004).

[6] A. Leung and E. L.Miller, “Scalable Security for Large, High
Performance Storage Systems,” Proceedings of the 2nd ACM
Workshop on Storage Security and Survivability (StorageSS
2006) (Alexandria, VA, October 2006), ACM.

[7] J. Plank, “Erasure Codes for Storage Systems: A Brief Primer,”
USENIX ;login: (December 2013, Volume 38, Number 6).

[8] S. Shepler, M. Eisler, and D. Noveck, Network File System
(NFS) Version 4 Minor Version 1 Protocol, RFC 5661 (Pro-
posed Standard), January 2010.

[9] S. A. Weil, “Ceph: Reliable, Scalable, and High-Performance
Distributed Storage,” Ph.D. thesis, University of California at
Santa Cruz, December 2007.

Buy the Box Set!
Whether you had to miss a conference, or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the technical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at:
www.usenix.org/boxsets

12  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

HADOOP 2
What’s New

s a n j a y r a d i a a n d s u r E s h s r i n i v a s

Sanjay is co-founder and
architect at Hortonworks, and
an Apache Hadoop committer
and member of the Apache
Hadoop Project Management
Commitee (PMC). Prior to co-

founding Hortonworks, Sanjay was the chief
architect of core-Hadoop at Yahoo and part
of the team that created Hadoop. In Hadoop
he has focused mostly on HDFS, MapReduce
schedulers, high availability, compatibility, etc.
He has also held senior engineering positions
at Sun Microsystems and INRIA, where he
developed software for distributed systems
and grid/utility computing infrastructures.
Sanjay has a Ph.D. in Computer Science from
the University of Waterloo in Canada.
Follow Sanjay on Twitter: @srr
sanjay@hortonworks.com

Suresh is an Apache Hadoop
committer and member of
the Apache Hadoop Project
Management Commitee
(PMC). He is a long-term
active contributor to the

Apache Hadoop project. Prior to co-founding
Hortonworks, he served as a software
architect at Yahoo! working on Apache
Hadoop HDFS, where he developed features
and supported some of the largest installations
of Hadoop clusters. Suresh also worked for
Sylantro Systems in various senior technical
leadership roles and developed scalable real-
time infrastructure for hosted communications
services.
Follow Suresh on Twitter: @suresh_m_s
suresh@hortonworks.com

Hadoop 2 contains fundamental changes in the architecture that sig-
nificantly extend the platform, taking the compute platform beyond
MapReduce and introducing new application paradigms. Similarly,

the storage subsystem has been generalized to support other frameworks
besides HDFS. The new version significantly improves scalability and per-
formance in both the compute and storage layers, with disk performance up
to five times faster and the compute layer scaling to clusters with more than
100k concurrent tasks. Automatic failover of master servers now provides high
availability. We cover all these and other key Hadoop 2 features in this article.

Quick Background
Apache Hadoop is a scalable framework for storing and processing data on a cluster of com-
modity hardware nodes. Hadoop is designed to scale up from a single node to thousands of
nodes. Hadoop has two main components: a computing framework and Hadoop Distributed
File System (HDFS). HDFS uses the commodity server nodes and JBOD (Just a Bunch Of
Disks) storage drives to store the data and provide large aggregated I/O bandwidth to data.
The compute framework uses the same set of server nodes for computation. The key idea is
to move computation to where the data is. This enables scalable and efficient ways of storing
and processing data. Storage capacity, compute capacity, and I/O bandwidth can be scaled by
adding more servers.

HDFS has had a single master server for storing the file system metadata called the
NameNode. The files stored on HDFS are split into one or more blocks, typically of size 128
MB. These blocks are stored on slave nodes called DataNodes. To ensure data reliability,
multiple replicas of blocks are stored on a set of DataNodes. A client performs file system
operations such as creating, modifying, and deleting files at the NameNode. The NameNode
records these transactions in a journal, and the data for the files are written by the clients at
the DataNodes. The NameNode actively monitors the DataNodes, so if a replica of a block is
lost due to disk failures or node failures, new replicas are created.

Computation framework has a master server that manages the compute resources in the
slave nodes. It supports parallel, distributed programming paradigms over which a vast
amount of data can be processed in a reliable and fault-tolerant manner. Typically, the data
is processed in parallel using multiple tasks where each task processes a subset of the data.
Traditionally, the MapReduce paradigm is used to process the data in parallel. Hadoop 2.0
has a new compute framework called YARN, which supports MapReduce and other pro-
gramming paradigms.

Hadoop 2 Improvements
Architectural Evolution
Hadoop 2 has made fundamental architectural changes for both the compute and storage
sides of the platform.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 13

File SyStemS
HADOOP 2: What’s New

YARN—ARCHITeCTURAL evOLUTION IN THe
COMPUTe LAYeR
Previously, compute resources on Hadoop were only available to
MapReduce programs and forced non-MapReduce applications
to be modeled as MapReduce. The YARN component generalizes
the compute layer to execute not just MapReduce style but other
application frameworks. As a result, YARN allows analytics
queries to be executed significantly more efficiently and has
allowed a new breed of applications, such as stream processing,
to be supported in a first-class manner. The new architecture is
more decentralized and allows Hadoop clusters to be scaled sig-
nificantly to more cores and servers. Further, it promises to offer
another significant future improvement: the IT department will
be able to consolidate other non-Hadoop clusters (such as HPC
or virtualization clusters) with the Hadoop cluster.

Decentralized Resource Management
Hadoop 1 had a single master server called a JobTracker to
manage both the compute resources and the jobs that use
the resources. YARN splits that function so that a Resource
Manager (RM) focuses on managing the cluster resources and
an Application Master (AM), one-per-running-application,
manages each running application (such as a MapReduce job).
The AM requests resources from the RM based on the needs
and characteristics of the application being run. For example,
a MapReduce application needs compute resources close to the
data and has Map and Reduce functions that can be scheduled in
phases. On the other hand, an MPI job may be compute-intensive
and requires all resources to be scheduled together.

First-Class Support for Different Application Types
Because the AM is separate from the RM, it can be customized
per application type. Hadoop 2 has a specialized AM for MapRe-
duce and another more generalized application framework
called Tez that allows generic directed-acyclic-graphs (DAGs)

of execution. Tez allows Hive and Pig
programs to be executed more naturally
as a single job instead of multiple MapRe-
duce phases, resulting in many orders of
magnitude performance improvements.
New breeds of applications for stream
processing, such as Samza and Storm on
YARN, also run as first-class applications
(Figure 1). This allows a consolidation of
clusters and compute resources to run het-
erogeneous applications, resulting in less
resource fragmentation and more efficient
utilization. For the IT department, this
means improved hardware capitalization
and simplified management.

Generalized Resource Modeling
Whereas Hadoop 1 modeled compute resources as Map or
Reduce slots, YARN allows a more generalized notion of
resources. YARN has started with the memory resource
(because it was closest to Hadoop 1’s “slot”) but will soon be
extended to support CPU, I/O, and network resources.

ARCHITeCTURAL evOLUTION IN THe STORAGe LAYeR
Hadoop cluster’s storage resources were previously available
only to HDFS. Similar to YARN, the new storage architecture
generalizes the block storage layer so that it can be used not only
by HDFS but also other storage services. The first use of this
feature is HDFS federation, which allows multiple instances of
HDFS namespaces to share the underlying storage. In future
versions of Hadoop, other storage services (such as key-value
storage) will use the same storage layer.

Another fundamental storage change that is being worked on is
support for heterogeneous storage. Hadoop 1 treated all storage
devices (be it spinning disks or SSDs) on a DataNode as a single
uniform pool; although one could store data on an SSD, one could
not control which data. Heterogeneous storage will be part of the
2014 release of Hadoop 2.x, where the system will distinguish
between storage types and also make the storage type informa-
tion available to frameworks and applications so that they can
take advantage of storage properties. Indeed, the approach is
general enough to allow us to treat even memory as a storage tier
for cached and temporary data.

Classic Enterprise Features
Hadoop was initially adopted by Web companies for large-scale
data processing. With Hadoop crossing the chasm, different use
cases and enterprises are migrating to Hadoop. With that comes
the expectation of support for features that enterprise users have
come to expect.

Figure 1: Comparison of Hadoop 1 and Hadoop 2 architectures

14  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

File SyStemS
HADOOP 2: What’s New

NAMeNODe HIGH AvAILABILITY
While the raw storage layer in HDFS (the block storage layer) is
fully distributed and fault-tolerant, the file system metadata was
stored in a single master server called the NameNode. When the
NameNode is brought down for planned maintenance, or on rare
software or hardware failure, the cluster would be unavailable
until the NameNode is restarted. Distributions such as Horton-
works Data Platform (HDP) had cold failover for the NameNode
using industry standard frameworks, such as Linux HA and
VMware vSphere, in their Hadoop 1 distribution. Hadoop 2
adds support for a hot standby NameNode along with a journal
service. In case of failure of the active NameNode, automatic
failover is triggered and the standby NameNode becomes active.

FAILOveR CONTROLLeR
A new watchdog daemon called the ZKFC (ZooKeeper-based
Failover Controller) manages failover of NameNodes. This
daemon runs on each of the NameNodes and maintains a session
with the ZooKeeper. Using ZooKeeper for coordination, one of
the ZKFC becomes the leader and elects the local NameNode
as active. The ZKFC performs a periodic health check of the
NameNode. When the active NameNode fails health check, the
local ZKFC resigns as the leader. Similarly, when the active
NameNode machine fails, ZooKeeper detects the loss and
removes the ZKFC from the failed node as the leader. This results
in automatic failover; the ZKFC running on standby becomes the
leader and makes the local standby NameNode active.

QUORUM JOURNAL MANAGeR
In Hadoop 2, the file system journal no longer needs external
NAS storage. The NameNode writes the journal to external
daemons called Journal Nodes. The Quorum Journal Manager
ensures every transaction is written to a quorum number of jour-
nal nodes using a distributed commit protocol based on Multi-
Paxos. Because only one NameNode can successfully write to a
quorum number of Journal Nodes, the corruption due to a split-
brain condition is avoided. This ensures that the redundant and
consistent copies of journal are persisted on the journal nodes.
The standby NameNode reads the transactions from the journal
and updates its state to stay in sync with the active NameNode.

NFS SUPPORT
Access to HDFS is usually done through the HDFS client library
or over HTTP REST APIs. Lack of seamless integration with the
client’s file system makes it difficult for users and impossible for
some applications to access HDFS. Hadoop 2 adds NFS version 3
support to make this integration easy.

NFS access is enabled using stateless NFS gateways. The NFS
gateway’s main functionality is translation of the NFS protocol
to the HDFS native protocol. The gateway is started as a daemon
on the slave nodes in a Hadoop cluster. The gateway supports
three services: rpcbind (or portmap), mountd, and nfsd. HDFS is
mounted on the client system, and applications can access HDFS
through the local file system.

Figure 2: ZKFCs monitor NameNodes, and while the active NameNode writes to JournalNodes, the standby NameNode reads from JournalNodes to keep
its state updated.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 15

File SyStemS
HADOOP 2: What’s New

HDFS SNAPSHOTS
Hadoop 2 adds support for file system snapshots. A snapshot is a
point-in-time image of the entire file system or a subtree of a file
system. A snapshot has many uses:

◆◆ Protection against user errors: An admin can set up a process to
take snapshots periodically. If a user accidentally deletes files,
these can be restored from the snapshot that contains the files.

◆◆ Backup: If an admin wants to back up the entire file system or a
subtree in the file system, the admin takes a snapshot and uses
it as the starting point of a full backup. Incremental backups are
then taken by copying the difference between two snapshots.

◆◆ Disaster recovery: Snapshots can be used for copying consistent
point-in-time images over to a remote site for disaster recovery.

The snapshots feature supports read-only snapshots; it is imple-
mented only in the NameNode, and no copy of data is made when
the snapshot is taken. Snapshot creation is instantaneous. All
the changes made to the snapshotted directory are tracked using
modified persistent data structures to ensure efficient storage
on the NameNode.

RPC IMPROveMeNTS AND WIRe COMPATIBILITY
Hadoop 2 has several improvements to the RPC layer shared
by HDFS, YARN, and MapReduce v2. The on-the-wire proto-
col now uses protocol buffers and is no longer based on Java
serialization. This helps in extending the protocol in the future
without breaking the wire protocol compatibility. RPC also adds
support for client-side retries of the operation, a key functional-
ity for supporting highly available server implementation. These
improvements help in running different versions of daemons
within the cluster, paving the way for rolling upgrades.

Other HDFS Improvements
I/O IMPROveMeNTS
Improvements to HDFS speed and efficiency are added on an
ongoing basis. There are many improvements to HDFS interfaces.
A better short-circuit interface based on UNIX Domain Sockets
allows clients to read from the local file system directly instead
of inefficiently over a socket from the DataNode. This interface
also now supports zero copy reads. The CRC checksum calcula-
tion done during both reads and writes is now optimized using
the Intel SSE4.2 CRC32 instruction. All of these improvements
have made I/O 2.5 to 5 times faster than the previous releases.

APPeND SUPPORT
Hadoop 1 required HDFS files to be immutable once they were
created. Hadoop 2 allows one to append data to a previously
 created file.

Expanding the Community and Use Cases
YARN in Hadoop 2 expands the ecosystem beyond MapReduce
and allows new kinds of applications to run on the cluster. Simi-
larly the generalization of storage promises Hadoop storage to be
used beyond HDFS.

WINDOWS SUPPORT
Hadoop was originally developed to support the UNIX family
of operating systems. With Hadoop 2, the Windows operating
system is natively supported. This work is simplified by the fact
that Hadoop was written in Java. The dependencies on UNIX for
compute and storage resource control now has been generalized
to support Windows. This extends the reach of Hadoop signifi-
cantly to a sizable Windows Server market.

OPeNSTACk CLOUD SUPPORT
There is a growing trend to run Hadoop-on-demand and shared
infrastructure. Hadoop 2 supports the OpenStack Swift file sys-
tem, and it has topology improvements for virtualized environ-
ments. With OpenStack support for spinning Hadoop clusters up
and down, Hadoop can now be run on virtualized hardware, both
in public and private datacenter clouds.

Next Steps
Hadoop, which was originally designed around batch processing
using commodity disks and servers, is changing in the face of a
number of trends. The Big Data application space and Hadoop
usage pattern, along with the underlying hardware technol-
ogy and platform, are rapidly evolving. Further, the increasing
prevalence of cloud infrastructure, both public and private, is
influencing Hadoop development. Hadoop is evolving to deal
with changes in how clusters are being built. HDFS and YARN
architecture are growing to adapt to such changes.

Hadoop has become the de facto kernel for the Big Data platform.
These exciting developments are being driven by a dedicated
Apache community, all in the open. People interested in par-
ticipating in this technological revolution are welcome to visit
http://hadoop.apache.org.

16  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

SySADmiNThe evolution of Managed Change in a
Complex IT enterprise
j a s o n p a r E E a n d a n d y s E E l y

Jason Paree is a Release and
Deployment Manager and
is responsible for controlling
change in operational network
environments. He received his

BS in Criminal Justice Administration in 2011,
but switched career goals and is currently an
MBA student. This is his first published work.
jasonparee@hotmail.com.

Andy Seely is the manager
of an IT engineering division,
customer-site Chief Engineer,
and a computer science
instructor for the University of
Maryland University College.

His wife Heather is his init process and his sons
Marek’s and Ivo are always on the run queue.
andy@yankeetown.com.

W e are members of a contract team charged with performing all
aspects of the operations and maintenance of a complex and
diverse enterprise network at a Department of Defense customer

site. After years of rapid reaction to mission updates, management changes,
and varying requirements for governance of technical change in the environ-
ment, we found ourselves managing an enterprise that was not well under-
stood and becoming prone to unexpected failures. Over the past two years,
our team developed a managed service transition process for change imple-
mentation, navigating technological complexities and influencing workplace
culture to create a mature process that has delivered positive and predictable
results for effective change.

Our contract team operated the enterprise for several years without strong and consistent
processes for managing and implementing changes across the operational environment.
Our top priorities were always to support the mission first, which sometimes resulted in IT
process discipline becoming a secondary priority. Although proposed enterprise changes
received formal approval, they were sometimes executed with inadequate planning and were
frequently implemented suddenly and without understanding of the second- and third-order
effects. This led to situations in which technicians were sometimes working without coordi-
nation, resulting in technical problems that couldn’t be traced definitively and successes that
could not be quantified easily.

This inconsistent change process created a working culture for our team of reacting to
uncertainty as our “normal.” Although we never had a catastrophic, sustained failure, we
spent considerable resources in damage control after deploying changes. A second-order
effect of this was that we frequently increased overall complexity by adding technology tools
to “fix” our problems rather than directly focusing on our root problem of change control.

These challenges became highly visible when technicians began making preventable mis-
takes during change deployment, sometimes resulting in a reduction of enterprise services
to key user groups for the time it took for problem isolation and resolution. Even though these
events usually only lasted minutes, they gained enough negative attention from senior lead-
ership that disciplinary actions were taken for some contract team members. Often, we were
forced to stop all change to the environment and review and report any proposed change
meticulously, resulting in even more instability to the network as planned critical patches
and improvements became backlogged.

To address increasing leadership pressures and head off a perception of growing instabil-
ity in the environment, we started having a daily change review meeting. Approvals were
granted based on well-informed, technical discussion. The culture at this time placed con-
siderable burden on a small group of select, trusted experts on our team and largely sidelined
others, resulting in staff frustrations and growing attrition rates. These daily meetings
didn’t significantly reduce the number of failures or increase overall stability, but they did
raise awareness of the number of changes happening, and they helped us gain control over
awareness of change success rates and resulted in fewer surprises. This first step helped us
to realize the importance of cross-discipline communication and coordination.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 17

sysadmin
The Evolution of Managed Change in a Complex IT Enterprise

Understanding What’s Important,
and What Is Critical
As we continued to struggle through change implementation,
winning small battles and making incremental improvements,
pressure to dedicate resources to managing and controlling
change began mounting. To address this need, the operations
manager for our contract designated one technician to take
on an additional duty to start a change management cycle that
would start with a regular “Subject Matter Expert (SME) meet-
ing,” with the necessary and relevant technicians from each IT
section required to attend and discuss change details. SMEs
began to help collaborate to develop the process and meetings
by staying engaged and taking the process and its purpose
seriously. This was not without challenge given the fluidity
of operational requirements and changes in personnel and
responsibilities that slowed any real cultural change. After about
four months, the instability of the group and the early process
started to gel; after six months, we were starting to receive
change requests from across the team and even other organiza-
tions, leading toward our process becoming the focal point for all
IT change implementation across the site. Because the process
introduced independent rigor, which resulted in a slowed pace of
change, we received initial resistance from internal stakehold-
ers. This required us to instill more formality into the process
and to develop stronger management commitment for process
deadlines, and we started focusing on building customer buy-in
for the importance of process discipline.

During this evolution of building, strengthening, and enforcing
process requirements, more pressure was applied to implement
change with even greater reliability. This pressure resulted in
a more formalized meeting structure for change review and
more scrutiny on implementation procedures. Our early and
loose “SME meetings” became more formal cross-divisional
“Technical Review Meetings” that mandated attendance from
all IT sections, including Engineering, Cyber Security, and
the implementing sections. One Technical Review Meeting
became two, an Initial Technical Review and a Final Techni-
cal Review meeting to provide “check and balance.” Simple
PowerPoint slides explaining the details of the changes evolved
into Remedy ticket reports with detailed documentation show-
ing execution plans, validation steps, and back-out plans. We
developed, documented, and disseminated formal, program-level
procedures clearly defining the terms, roles, responsibilities,
workflows, and much more of how change is processed for imple-
mentation. As this progressive evolution was occurring, our
changes were becoming more organized, predictable, and more
visible. Our change implementation success rate rose steadily
and dramatically.

A Formal Training Program emerges
Although the process at this point had been documented and was
becoming established, we still lacked a formal training program.
Technicians were still sometimes applying changes outside of
formal change control procedures. The process and procedures
were there, but unless the technician understood them, the
process was all but useless. Several examples became apparent
where technicians applied uncoordinated changes, thinking that
corrective actions and routine tasks would not require change
control. These kinds of events led to increased pressure and
scrutiny on changes and the processes governing them.

After another thorough review, we concluded that the process
was sound but that there was no programmatic way for new
employees to learn it, so it was time for formalized training and
communication. Over a period of a couple of weeks, we devel-
oped a comprehensive and detailed training program, complete
with workflows as shown in Figure 1, terms and definitions,
requirements, roles and responsibilities, and timelines. This
solidified the process and provided a road map and reference for
people to use to submit change requests and to understand the
timeline they should expect for planning purposes. After formal
documents were disseminated and mandatory formal training
provided, our change management workload increased dramati-
cally. Over time, with an improved understanding of how the
process worked, people began to better manage expectations,
better plan their changes, and slow the overall rate of change.
This led the different work sections to become more organized
and to decrease the number of “emergency” changes that would
circumvent process.

A Formal Process Is Finalized, with Room
for Growth
The next phase in our implementation plan included developing a
post-review process to identify, document, and disseminate les-
sons learned when planned change did not complete as expected.
We had developed a strong process that worked well for produc-
ing success and rolling back from failure, but the process had no
provision for anything other than success. This resulted in a lack

Figure 1: The initial workflow we developed for our change management
process

18  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

SYSADMIN
The Evolution of Managed Change in a Complex IT Enterprise

of real understanding of failures and loss of opportunity to revise
techniques and procedures based on lessons learned. We added an
after-action review “post-mortem” branch to our formal process, as
shown in Figure 2. When a planned change has any result besides
full success, we call a post-mortem meeting with all the people who
were part of planning and executing the change, as well as people
responsible for system monitoring, service desk, storage, and other
relevant technology families. This post-mortem meeting is orga-
nized and facilitated by the change implementation manager with
senior operations and engineering leadership support, resulting in a
collective approach to understanding the problem. The overall envi-
ronment is explored, frequently with whiteboard diagrams. These
reviews explore the need for process or procedural adjustments,
the specific plan for the failed change is examined, and a play-by-
play of the actual change event is discussed. This is all reviewed
with a focus on discovering failure points where wrong decisions

were made or where a test plan didn’t reflect the operational
environment. The culture of the post-mortem discussion is
non-retributive: technicians are encouraged to “own your
failure” so all can learn from the event.

Our Managed Change Process Today
Over the years, this natural growth of a process benefitted
from some good decisions, and a little luck. The decision by
senior leaders to encourage the development of the process, to
prove it, formalize it, and then get it sanctioned from the bot-
tom up rather than the top down led to broad buy-in from our
contract technical staff. The early decision to keep meaning-
ful records of change over time was essential for “proving”
the value; we learned that results matter.

Over the past three years, we have made approximately 1,000
changes to our enterprise. Of those, we have had 4% com-
pleted unsuccessfully. Figure 3 shows the three-year trend
of changes and failures. Noting that the presence of a strong
process was an influence on reducing the rate of changes
made is important. Although our actual change numbers con-
tinue to increase over time, the number of changes relative to
the consistently growing complexity of the enterprise is actu-
ally decreasing. Things that would have been casually done
three years ago are now scrutinized and planned meticu-
lously. If these “casual” changes are no longer being done and
the environment is more stable, concluding that we’re avoid-
ing unnecessary change, reducing the opportunity for change
failure, and preserving stable systems in stable states is easy.
By ensuring all change follows a rigorous review process, we
gain much deeper understanding of the overall environment
and better knowledge of what actually needs to change.

Conclusions and Future Work
Our enterprise was grown organically, driven by reactive,
operational imperatives. Leadership changes over time
resulted in different focus areas and new tools layered one
on top of the other, creating a complex, poorly understood
environment. Concepts such as the Information Technol-
ogy Infrastructure Library (ITIL) were known, but over the
years there was little time to formalize process. The change
implementation process grew the way the enterprise did, by
necessity and in reaction to challenges. Once we slowed the
pace of attempted change, and after we had an opportunity
to reset the technology baseline with a major overhaul of the
datacenter, we were able to apply real rigor to a process that
guides change implementation rather than just focusing on
the change itself. Although ITIL informed and influenced our
new change process, ours is not specifically an ITIL process.
In the coming year, we will be growing our change process to
encompass other key ITIL areas, such as release management

Figure 2: Our workflow after adding in feedback to deal with failed changes

Figure 3: During the three years of this process, we have reduced the
rate-of-change for new changes, while increasing our success rate.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 19

sysadmin
The Evolution of Managed Change in a Complex IT Enterprise

and configuration management, and we will tune existing steps
to ensure ITIL alignment.

The future of IT change in our enterprise is becoming such
that the environment is always understood, changes are always
tested where possible, and change failures are always embraced
as learning opportunities. Our goal is 100% change success
through a living process that is embraced by all levels of our
team and is easier to follow than to bypass. With improve-
ments in the speed of change approvals and increases in overall
throughput, such a process would allow an increased rate of
successful IT change.

xkcd

xkcd.com

20  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Logging Reports and Dashboards
d a v i d l a n g

David Lang is a Site Reliability
Engineer at Google. He
spent more than a decade at
Intuit working in the Security
Department for the Banking

Division. He was introduced to Linux in
1993 and has been making his living with
Linux since 1996. He is an Amateur Extra
Class Radio Operator and served on the
communications staff of the Civil Air Patrol
California Wing, where his duties included
managing the statewide digital wireless
network. He was awarded the 2012 Chuck
Yerkes award for his participation on various
open source mailing lists.
david@lang.hm

Once you have set up a system to gather your logs, are able to filter and
route the logs, and are alerted to the contents of the log messages [1],
the next step is to figure out how to mine the logs for useful informa-

tion to help you understand what your systems are doing and be proactive in
dealing with problems. In this article, I will present strategies you can use to
generate reports and dashboards from your logs as efficiently as possible.

Problems to Overcome
Before going into details on how to best generate reports, let’s first examine the problems
that you are going to be facing in a large environment.

High Log Volume Results in Reports that Take a Long Time to Generate
In an active network, generating anywhere from hundreds of GB to several TB worth of logs
per day is easy. Doing anything with this much data is expensive, both in CPU time and, most
noticeably, in the disk I/O required to read the data from disk in order to generate a report.
The volume of data that you are dealing with is large enough that you are not going to have a
machine with enough memory to cache all the logs for a day, let alone for reports covering a
longer time frame.

Ending up with a situation in which it takes longer to produce your report than the period the
report is supposed to cover is also easy. A system that requires 25 hours to produce a daily
report leaves only the weekend to catch up—that is, if your weekend traffic is light enough.
The stock response is that this is a “Big Data” problem; throw the data into a noSQL datas-
tore and then query that datastore. This doesn’t actually solve the problem, however, it just
pushes out the wall that you will be running in to a bit. There are easier and simpler ways to
deal with the volume issue.

Dashboards
A dashboard is a screen (usually in a browser) that is intended to give you an at-a-glance
summary of your system, usually with graphs, dials, and other graphical elements to present
the data. Dashboards frequently, but not always, have drill-down capabilities, allowing you
to get more information about a particular element being displayed. This is the type of thing
that managers love and put on large screens for everyone to see. Properly used, they are a
wonderful tool for providing an overview of the health of your system, but improperly imple-
mented, they can be a huge performance headache. And if the performance is bad enough,
dashboards can end up misleading people working on the systems, reporting the health of
your system sometime in the past.

Dashboards take a hard problem, resource issues, and make it even worse. Dashboards are
best thought of as predefined reports that are run repeatedly, by several people at once.

The most common problem is that these different people are not asking for the exact same
report. If an element of a dashboard is reporting how many hits your Web server has had over
the past five minutes and you have 20 people viewing the dashboard, you will produce 20
different sets of results because no two people have started the report generation at exactly

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 21

SYSADMIN
Logging Reports and Dashboards

the same time (one person is looking at the data from 9:20:00–
9:25:00, the next is looking at 9:20:10–9:25:10, etc.). This can
become a catastrophic performance problem if the data that
needs to be retrieved to produce these reports (the working set)
is larger than the RAM that your reporting system has available
to cache the data, as each report will need to retrieve the raw
data from disk separately.

The next biggest problem with dashboards is that, because they
display their data graphically, putting a lot of information on a
page is easy, but each item is generated independently of every
other item. This means that if you have one dial that shows the
total number of hits to your Web servers, and another that shows
the number of dynamic pages being accessed, they will each go
through all your Web server logs separately for the reporting
period to get their results.

And, finally, dashboards frequently refresh faster than the
length of the time on which they are reporting. So a dashboard
reporting how many hits your Web servers have had over the
past five minutes, but refreshing once per minute, will count
each minute five times (once in each of five different refreshes
until the data has aged enough not to be relevant). Because dif-
ferent elements may show data covering different time frames,
this cannot be addressed by just changing the refresh time.

I have seen dashboards created that refresh every five minutes,
have 10 dials, graphs, or tables on them, with each item covering
logs for a 24-hour period and summarizing hundreds of mil-
lions of log events. Each item alone is a terrible resource hog, and
when combined into a single screen and refreshed together, they
can crush even large farms of servers. This is why the noSQL
datastore is not the full solution; it will let you throw more hard-
ware at the reporting problem, but inefficient algorithms can
outrun Moore’s Law no matter what your budget.

Ad Hoc vs. Pre-Planned Log Reporting
Ad hoc reports look for things that you did not think of ahead of
time, and pre-planned reports cover what you know you are going
to need, and can therefore plan for ahead of time. Most of the strat-
egies in this article can only be applied to pre-planned reports.

Ad Hoc Reports
Ad hoc reports are the sort of thing that members of your secu-
rity department are going to want to do frequently. They get a
report of a problem with a given account, and then want to look
at all the activity that happened on that account in the suspected
time frame. They will then want to do further investigation to see
what other activity happened from the IP addresses used to access
that account (frequently over a larger time frame), and then are
likely to want to look at activity on other accounts that those IP
addresses accessed. Like tugging on a piece of yarn in a sweater,
this activity can widen and unravel lots of interesting things.

Ad hoc reports also are commonly used during troubleshoot-
ing. You start off looking for all logs relevant to the place you see
a problem, look for logs related to that place on other systems,
and run similar reports for a time frame when you didn’t have a
problem to see what looks different.

Unfortunately, the only way to optimize ad hoc reports is to try
to segment the logs into categories that match the likely ad hoc
reports you will need to generate, partition them by time so that
you don’t have to look at logs outside of the required time frame,
and try to make searching through the logs as efficient as possible.

The simple approach to this is to split the logs by category (so
that your firewall logs are separate from your Web server logs,
for example), and then rotate the log files every minute. This
gives you a reasonable base to start from to grep through the logs
and find things you didn’t plan. Make sure you keep a copy of the
logs that isn’t split by category; although log events can and will
get reordered a bit as they are delivered, the order they arrive in
is the best approximation that you will have of the order in which
they are generated, and sometimes you need to see what hap-
pened across wildly different systems.

Your archive analysis farm is a good place to do this. Log every-
thing to one file and then have a series of filters in rsyslog match
a particular type of log event, usually by program name [2]. You
may want to have more sophisticated filters, especially ones that
use metadata that you’ve added, so that your production, DR, QA,
and development logs are separated from each other.

Ad hoc reports are where the Big Data approach to log storage
can be a wonderful win. If you can have your logs in some sort
of structured storage with full-text indexing (such as Splunk,
Elasticsearch, Hadoop, etc.), you can run queries against the logs
much more rapidly than you can with grep against flat files; how-
ever, these Big Data approaches tend to be very resource hungry
(and, therefore, expensive), and although they are absolutely
wonderful for ad hoc reports, using them for reports that you
know about ahead of time is far more expensive (and can end up
being significantly slower) than taking other approaches.

Pre-Planned Reports
The solution to the problems of generating pre-planned reports
efficiently is easy to articulate, but much harder to implement.

The Golden Rule of Reporting: Never process a log event more
than once.

This is an ideal to strive for, but you need to recognize that you
will never achieve this in practice. As a result, you need to look
carefully at the costs involved and work to minimize the overall
expense of generating the report.

Because you only want to examine a given log message once, the
Big Data approach to logs is not appropriate. If you use Splunk,

22  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

SYSADMIN
Logging Reports and Dashboards

Elasticsearch, or Hadoop to produce your reports, you end
up sending multiple queries for the same logs or types of logs,
retrieving them, and generating one report item per query. In
addition to the fact that your multiple queries all have to retrieve
the same data, you also have the problem that the logs that you
need to query to get one answer are going to be intermingled
with other logs that have nothing to do with the report you are
interested in, and the systems will need to read those logs to get
the logs that they need to respond to the query.

So instead of throwing all the data in one place and then query-
ing it, the idea is to split the data as early (and cheaply) as pos-
sible. This benefits you in a couple of ways.

1. The volume of logs is going to be large enough that no single
process can keep up, so you want to be able to split the work
across multiple processes to take advantage of the multiple
CPU cores in modern systems and, if needed, multiple systems.

2. The analysis that you will need to do on each type of log is going
to be very different, so it makes your report definitions much
simpler if a given report only needs to deal with one type of log.

After you have split the logs by category, you can have a process
go through each category. This process should not generate the
reports themselves, but should instead summarize the logs to
generate the data that the reports are based on. These summaries
can be fed back into the logging system so that all of your analysis
engines can benefit from one system summarizing the data.

If you do not have dashboards to support, running reports hourly
or daily is practical; however, dashboards are valuable enough
that it is worth complicating your hourly/daily reports to be able
to support your dashboards efficiently, too. To do this, frequently
create summaries of the logs you know you are going to be
reporting on. For example, if you have a set of Web servers that
are generating hundreds of millions of lines of logs per day, but
you produce per-minute summaries of these logs, your reports
only have to query and parse the summary data, not the raw data.
Because the data is per-minute, dashboard reports also stop
being different for different people; everyone who gets a report
in a given minute will see the same results. The summary data is
also much smaller, easily fitting in RAM, so you are not going to
have to do much disk I/O when generating the reports.

There are two fundamental approaches to producing summary
data: (1) storing the data, then summarizing it or (2) processing
the data in real time and summarizing it.

STORe THe DATA, THeN SUMMARIze IT
With this approach, you write the data someplace (as per-minute
flat files or in a Big Data system), then run the summary routines
against this storage.

If you use flat files, compressing them is a good idea. Using gzip,
I find that it’s faster to retrieve the compressed data off of disk
and then uncompress it than it is to retrieve the uncompressed
data off of disk. This is because (1) system RAM can hold a lot
more data in its disk cache when it’s compressed, so uncom-
pressing something that the system already has in RAM is more
likely than needing to retrieve the data from disk; and (2) CPU
power is relatively cheap, so any system that has lots of RAM
and a high performance disk subsystem usually has extra CPU
power available.

Using flat files, you can have your summary routine make one
pass through the data for a time frame and produce all the differ-
ent stats that you are interested in for that time frame.

If you use a Big Data system, you can schedule queries to perform
the various queries against the datastore to produce the results
that you need. This is far more expensive because each query
will be run independently from the others, requiring the data be
accessed multiple times, but if you are doing this every minute
against the last minute’s data, the data you are querying should
all be in RAM, so you at least avoid the expensive disk I/O. In
any case, this is far more efficient than having each report issue
independent queries against all the logs for the time frame the
report is interested in.

Note that if you are using a Big Data system, you are paying (in
license costs with Splunk, and in processing overhead and hard-
ware for all systems) for the volume of all the log events, even if
you end up only querying the summary data. In most cases you
are probably better off summarizing external to your Big Data
system and only putting the results into that system.

PROCeSS DATA IN ReAL-TIMe, THeN SUMMARIze IT
Instead of storing the data and then querying it, you can have
rsyslog deliver the logs in real-time to your summary routines,
have them parse and count the logs as they arrive, and then dump
out the summary data periodically.

With this approach, the ability of rsyslog to normalize the logs
with mmnormalize should be looked at carefully. This module
lets you define log patterns and extract variables from those
patterns. Having rsyslog dump out the data in a nicely structured
and easily parsed format for your summary scripts to deal with,
and might end up being far more efficient than parsing the raw
formats in your summary scripts.

The best way to do this sort of summary is to have rsyslog run
your program and deliver the logs directly through stdin. The
rsyslog configuration for this looks like:

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 23

SYSADMIN
Logging Reports and Dashboards

Module (load=”omprog”)

action(type=”omprog” binary=”/pathto/omprog.py

--parm1=\”value 1\” --parm2=value2” template=”RSYSLOG_

TraditionalFileFormat”)

Your program needs to exit when stdin gets closed, otherwise
you will end up with a copy of it running after rsyslog restarts.

Note that if you use the old config format, you cannot have any
spaces in the command line, so you will probably need to use an
external script to start your program. Because you only need to
do this on your analysis farms, you can be running a current ver-
sion that supports the new syntax.

If you write your own summary script, you must have some
method of having your script output its data on schedule. This
can be as “simple” as having a cron job send it a signal and having
a signal handler dump the data out and reset counters; however,
you don’t have to write this yourself. Simple Event Correlator
(SEC) works well for this task and includes the ability to do
things at specific times [3].

For example, the following SEC config file looks for Cisco ASA
http log entries; creates a log entry containing total HTTP
requests, number of servers accessed, and number of URLs
accessed; then creates one file containing all the URLs accessed
(and how many times they were accessed) and a second file for
the servers accessed:

On startup, zero the counters

type=Single

ptype=RegExp

pattern=(SEC_STARTUP|SEC_RESTART)

context=SEC_INTERNAL_EVENT

desc=Init counters with 0

action=eval %o %counters=()

type=Single

ptype=SubStr

pattern=%ASA-5-304001 \S Accessed URL ([^/])([^?^]+)

desc=gather most frequently accessed URLs

action=eval ($counter{urls}{%1%2}++;

$counter{httpconnections}++; $counter{servers}{%1}++)

output summary data and clear stats every minute

type=Calendar

time=* * * * *

desc=output summary data

context=!SEC_INTERNAL_EVENT

action=eval %a (scaler keys $counter{urls}); \

 eval %b (scaler keys $counter{servers}); \

 udgram /dev/log <30>summarydata: \

 CiscoLogCount=$counter{CiscoLogCount} \

 HttpConnectionCount=counter{httpconnections} \

 URLsAccessed=%a ServersAccessed=%b ;\

eval %o (\

 open(output,”>/var/log/urlcount”); \

 while (($key,$value) = each %counter{urls}) { \

 print “$key=$value\n”; \

 }; \

 close(output); \

 open(output,”>/var/log/servercount”); \

 while (($key,$value) = each %counter{servers}) { \

 print “$key=$value\n”; \

 }; \

 close(output);\

 %counters=(); \

)

Using the Summary Data
Dashboards
If you use this summary data to drive the dials and graphs for
your dashboards, you can cheaply create the dials and graphs, so
when a lot of people want to look at the dashboard, it won’t take
your system down.

Reports
You should create reports for people using this data. Instead of
creating reports structured around particular data sets, you
should create reports structured around the needs of the user of
that particular report, because aggregating the summary data,
making calculations using that data, and inserting the data into
a report is cheap.

Alerting
One obvious thing you can do is have a tool like SEC alert you if
these numbers cross a given threshold. There are limits to how
useful this is, however; numbers that might worry you at 2 a.m. on
Sunday because they are so high that they indicate something is
wrong or you are under attack, may be numbers that you would also
want to be alerted to in prime-time on Monday morning because
they are so low that they indicate that something is broken and you
aren’t serving your users. Such alerting is useful, but in practice
is limited to notifying you when you are exceeding capacity.

Aberrant Behavior Detection
The round-robin database tool (RRDtool) [4] not only makes
producing a wide range of time-based graphs to display the sum-
mary data you have generated easy, but it also has the interesting
ability to take the historic data that you feed it, predict a range
in which new data should fall, and flag when the new data is
outside of this range. This uses the Holt-Winters Time Series
Forecasting Algorithm to predict what the next value should

24  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

SYSADMIN
Logging Reports and Dashboards

be, and allows you to calculate confidence limits from this so
that you can do things like alert if the measured value is more
than two standard deviations away from what is expected. This
algorithm will detect repeated patterns in your data so that it not
only matches your daily usage pattern variation but, once it has
about 10 cycles worth of data, can detect the difference between
weekdays and weekends, for example, while still accounting for
a continuing increase in use over time. The details of how to do
this are out of scope for this article, but there is a good writeup at
http://cricket.sourceforge.net/aberrant/rrd_hw.htm.

Artificial Ignorance
In addition to counting how many times something happens,
another useful report to have is an “unknown log report” of the
type produced by the “artificial ignorance” approach described
by Marcus Ranum [5]. This consists of deliberately filtering out
log entries that you understand, then prioritizing the remaining
log entries based on what shows up the most:

1. Filter any log entries that you want to report on to a process to
generate the appropriate report for that type of log entry.

2. In what’s left, filter out any log entries that you know are not
important, but count them and report this count. If the number
of times that an insignificant event happens changes drasti-
cally, this may be significant.

3. Take what’s left and sort the logs based on their contents, and
produce a report that shows the most common logs.

A person can then look at this report and quickly spot strange
things that have happened.

Taken to the extreme, you can tune your artificial ignorance
report to the point that you have no logs in it at all. At that point,
anything that shows up in the report becomes significant.

Getting there is a lot of work, and you quickly reach the point of
diminishing returns. Even on a large network, surprisingly few
different log entries are produced. Large networks tend to have
a lot of the same thing on them, so once you identify what should
be done with a given log entry, you don’t care whether you have
two servers producing that log entry or 2000; either way, it’s
handled. A few days’ worth of effort filtering the log messages
probably can get you down to a report that shows you events that
have happened fewer than a dozen times in the first couple of
pages of the report. Also, the report probably will show you some
errors that are happening on your network that you were not
aware of and want to fix before going a lot further.

Running separate artificial ignorance reports against each cat-
egory of log messages is best. Dump all the messages that don’t
match your reporting rules into a file for that category and then
periodically run this data through a filter along the lines of:

cut -c 17- |sed -e s/”port [0-9]* “/”port PORT “/g \

 -e s/\[[0-9]*\]/”[PID]”/g -e s/”pid=[0-9]*”/pid=PID/g\

 |sort |uniq -c |sort -rn >other-logs.report

You may find that on your network, there are some other fields
that are in frequent log messages that make otherwise identical
messages look different, which is what the sed statement in this
filter chain is addressing.

Then take a look at the results. If you have a log message that
shows up a lot (or a lot of similar log messages that show up a lot),
add a rule to match them. Repeat until you can scan the entire
report in a short enough time that you no longer care; you don’t
need to drive it all the way to empty.

Summary
Producing dashboards and reports from a high volume of logs—
and doing so efficiently—is possible, but if you are not careful,
you easily could find yourself with a system that is orders of
magnitude larger than you would need for efficient generation,
and still running into performance problems.

Split up the work, and try to make it so that no log ever needs to
be examined in detail more than once, and try to limit the num-
ber of times it must go through a filter.

At this point, I have covered the basics of a full enterprise log-
ging system. In future articles I will go into the various topics
in more detail, which includes covering performance tuning of
different tools. If you have specific topics on which you would
like me to focus, please email Rik Farrow (rik@usenix.org) or
me and let us know.

References
[1] “Enterprise Logging,” ;login:, vol. 38, no. 4, August 2013:
https://www.usenix.org/publications/login/
august-2013-volume-38-number-4/enterprise-logging.

[2] “Log Filtering with Rsyslog,” ;login:, vol. 38, no. 5, Octo-
ber 2013: https://www.usenix.org/publications/login/
october-2013-volume-38-number-5/log-filtering-rsyslog.

[3] “Using SEC,” ;login:, vol. 38, no. 6, December
2013: https://www.usenix.org/publications/login/
december-2013-volume-38-number-6/using-sec.

[4] RRDtool: http://oss.oetiker.ch/rrdtool/.

[5] Artificial ignorance: http://www.ranum.com/security/
computer_security/papers/ai/.

mailto:rik@usenix.org

OCTOBER 68, 2014
BROOMFIELD, CO

The 11th USENIX Symposium on Operating Systems Design and Implementation seeks to present
innovative, exciting research in computer systems. OSDI brings together professionals from aca-
demic and industrial backgrounds in what has become a premier forum for discussing the design,
implementation, and implications of systems software.

Want to participate? Check out the Call for Papers!

www.usenix.org/osdi14/cfp

Sponsored by USENIX in cooperation with ACM SIGOPS

SAN DIEGO, CA • AUGUST 20–22, 2014

The USENIX Security Symposium brings together researchers, practitioners, system administrators,
system programmers, and others interested in the latest advances in the security of computer
systems and networks. The Symposium will be held August 20–22, 2014, in San Diego, CA, and
includes a technical program with refereed papers, invited talks, posters, panel discussions, and
Birds-of-a-Feather sessions. Workshops will precede the Symposium on August 18 and 19.

Interested in participating? Check out the Call for Papers!

www.usenix.org/sec14/cfp

26  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Loser Buys
A Troublesome Retrospective

M a r K b a i n t E r a n d d a v E j o s E p h s E n

Mark Bainter is the Director of
Global Support and Operations
at Message Systems Inc.,
where he works with a talented
team of sysadmins to provide

support and outsourced monitoring and
management for Message Systems’ cross-
channel messaging software. In his spare time
he currently enjoys woodworking and tinkering
with Arduino hardware.
mbainter+usenix@gmail.com

David Josephsen is the
sometime book-authoring
developer evangelist at
Librato.com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

Dave: Rik Farrow wants some troubleshooting stories for the next ;login issue. Loser buys?

Mark: You sure about that, son? Need to check your balance first or anything?

Dave: Just for that, I’ll let you go first.

Mark: Your funeral. First, a bit of background—the company I currently work for has a tool
called “Gimli” [1], which you can link against your application and then use to ensure that it
remains up and functioning, similar to “supervise.” Gimli also does heartbeat monitoring,
however, and if it crashes or has to be killed and restarted for being unresponsive, will take a
snapshot of the stack, along with various details about the process for later review.

Dave: Nice. I bet that comes in handy.

Mark: Oh, it does. It’s helped us resolve all sorts of weird issues that would otherwise require
you to sit and watch and wait for the problem to happen. Best of all, you don’t have any of the
unpleasant side effects of some alternative methods of catching intermittent issues. Not to
mention increasing the resilience of your application.

Anyway, a while back, in the middle of the night, I get an alert—the /var partition on one of
the servers I manage is filling up quickly. That’s definitely not good. Investigating, I find the
disk is already nearly full, and in moments I find the culprit to be the log file for this Gimli
process. The process it’s managing is wedged, and Gimli is in a loop logging the same error
over and over into the log, reporting that it has received a TERM signal and is terminating.
That’s really odd—I’ve never seen this failure condition before. I kill both processes, clean the
Gimli log, and restart.

Reviewing the logs subsequently offers no clues as to what happened. There’s no stack trace
either. Curiouser and curiouser. I don’t like unexplained activity like this, but it’s the middle
of the night and I’m at a dead end. I turn in.

The next morning it happens again. Same time. Now I have a hint. After I restore service, I
start looking through the application’s activity during that window, into the system logs, cron
jobs, etc. It doesn’t take me long to correlate the log rotation with the time window where this
is occurring.

Dave: Ah, 4 a.m., when the logrotate bugs come out to play.

Mark: Exactly. This process that Gimli is monitoring is set up with a fairly standard daily
rotation, followed by compression and then a postrotate instruction to send a HUP signal to
force reopening of the logs.

I spin up a VM and start doing some testing and at first I can’t reproduce the problem. I run
the log rotation and everything works fine. Then it hits me. Some time back I made a modi-
fication to the logrotate script! By default we were not rotating the error log for this process,
because it is almost never written to. This node, however, was throwing a lot of errors which
another team had been investigating, so in the interim I had set up log rotation to keep it from
filling the disk.

I add the path to the error log in the logrotate script on my virtual machine, rotate the logs,
and sure enough, the rotate failed, and the log was filling up. Now I have a readily reproduc-

mailto:mbainter+usenix@gmail.com

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 27

SYSADMIN
Loser Buys: A Troublesome Retrospective

ible problem. Of course, this still doesn’t explain the why, or the
why now. After resetting the test, I do some tests with GDB,
which is frustrating because the heartbeat method used by this
app was sending a USR1 signal which kept causing GDB to stop.

Dave: You know, you can set a nostop pass signal handler in GDB
to get around that [2].

Mark: Yeah, but at the time I wasn’t aware of it, and there’s
another favored tool to reach for that could readily report those
without being interrupted—namely, strace. In short order I dis-
cover that there are actually two HUP signals being sent in short
succession.

Dave: Right. Logrotate would have sent one signal for each logfile
unless you set the sharedscripts option.

Mark: Yeah, well, I didn’t remember that when I set up the config,
but I remembered it now. The full explanation here of what was
happening requires some understanding around how the Gimli
process interacts with the processes it monitors, so I’m going
to gloss over some of that for the sake of not boring our readers.
Basically, when Gimli saw the HUP come in, it created a new ver-
sion of itself to take over monitoring the process, but the second
HUP came in before that execve could complete. As a result, the
two copies of Gimli would become confused, and continuously
try to kill each other in a vicious loop, resulting in flooding the
error log with the termination messages. Since neither would
honor the TERM signal fully as a protective measure for a moni-
toring process, the loop never ended. Thankfully, more recent
versions have addressed this weakness.

Dave: Heh, if you’d named it “Claudius” instead of “Gimli,” it
might have been more adept at fratricide. Okay, so now I under-
stand the why, but I’m confused why it suddenly started happen-
ing. Wouldn’t it have begun delivering a double HUP as soon as
you first modified logrotate? Why didn’t it happen right after you
made the change?

Mark: That’s the real kicker isn’t it? Luckily, this was the easy
part to figure out. When I first implemented it, as I said, this
node was throwing a lot of errors, forcing me to implement the
rotation. Since then, the problem causing those errors had been
fixed, unbeknownst to me.

Dave: Oh! It was a race condition. When the log files had content,
the time logrotate spent copying and compressing them would’ve
given Gimli enough time to fork, so everything was fine. It was
only when the log files were empty that the HUPs would win. Nice!

Mark: Got it in one!

Dave: Damn…that’s a great story, and I’m not sure I can top it, but
here’s my favorite troubleshooting story. I like it because there’s a
bit of dramatic panache at the end.

Anyway, we were having trouble with a Web application that
we’d just put in production. The setup looked like Figure 1. The
problem presented as some intermittent latency when using the
app. Sometimes it worked fine, other times it was very slow, and
still other times it didn’t work at all. And this wasn’t like, over
the course of one hour it’d be slow and the next it’d work fine, this
was like, one HTTP request might work fine while two others
executing concurrently did not.

Mark: Sounds fun.

Dave: It wasn’t. And for the first and only time in my professional
career, when the developers started blaming “the network,” it
looked like they were actually right. Working our way down the
stack we were pretty convinced that packets weren’t getting
to the application server. Somehow this network was eating
packets, and obviously it wasn’t any sort of ACL or filtering stuff
because some requests were making it through just fine.

So here’s the background you need to understand: the internal
core routers were two OpenBSD systems running CARP (Com-
mon Address Redundancy Protocol) with pfsync. It’s pfsync’s
job to replicate the firewall state table between the master and
failover nodes, such that, if they ever fail over, the failover router
will know about all the active and authorized connections. With-
out pfsync, the backup router would drop all the existing network
connections and force them to re-handshake. We have a physi-
cal network port on each router configured specifically just for
pfsync, and the two routers are directly connected to each other
via a crossover cable on this port.

CARP creates a magical virtual network device whose sta-
tus is shared between the two routers. CARP is what actually
enables the backup router to detect and take over for a failed
master router without the MAC or IP address changing for other
 network entities.

The balancers meanwhile operated using a multicast MAC
address…

Figure 1: In Dave’s troubleshooting conundrum, packets were disappearing
somewhere between the load balancers and app servers. One of the pair
of firewalls is a backup, using CARP to share state with the active firewall.

28  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

SYSADMIN
Loser Buys: A Troublesome Retrospective

Mark: Was there IGMP?

Dave: No, and that’s important. As you know, in the absence of
IGMP the default behavior of a Cisco router is to broadcast the
multicast packets to all live switchports in the same VLAN.

Mark: I think I see where this is going.

Dave: Shut up. Anyway, there I was, stumped. I could tcpdump
the traffic as it came from the Internet to the balancers. That
looked okay. But only a subset of the traffic was making it to the
application tier nodes. It was maddening because I couldn’t seem
to narrow it down to any one device. Watching the firewalls
carefully I could see that they weren’t failing over. Watching the
packet traces in the apptier, it looked like traffic worked fine for
a while and then every so often, a good connection would just
freeze. Eventually, when this happened the apptier node would
send an RST and stuff would start working again. The balancers
seemed to be getting traffic okay, but they were also freezing and
RSTing every so often.

I had a bit of an ah-hah moment when I started looking at the
packet traces on the failover firewall. It appeared to be getting a
copy of all the multicast traffic that was destined for the balanc-
ers. This was odd because in CARP backup mode, the failover
router isn’t answering ARP on its CARP virtual devices, and
should therefore not receive any of the traffic for those shared IPs.

Mark: Even if the failover was getting traffic, it shouldn’t be
 routing it.

Dave: Exactly my thinking. Evidently the traffic was appearing
on the backup firewall because in the absence of IGMP, the Cisco
3750 was broadcasting that traffic to all active switchports in
the VLAN, including those of the failover router. But that traffic
should be harmless anyway since the failover router would just
drop it all on the floor. I was back to square one.

Mark: Or were you?

Dave: Or was . . . shut up. I stared at the rack a few minutes, trying
to imagine every possible path a packet might take through this
rather simple little network, and something interesting occurred
to me when I imagined what might happen to me if I were one of
those multicast packets that had been duplicated to the failover
firewall. The interesting thing was that I would wind up in the
inbound packet buffer on the firewall’s DMZ port while the
firewall checked its state table and ACLs. Our assumption that
the traffic wouldn’t be forwarded is based on the fact that the
backup firewall wouldn’t have a state table entry for the connec-
tion in question.

Mark: Right, the failover firewall would compare the source and
destination addresses of the packet to its internal list of existing
states, and then, not finding one, it would drop the packet.

Dave: Except OpenBSD’s pfsync service replicates that state table
between the master and failover CARP nodes. The failover router
has every active state that the master does, and therefore DOES
in fact have a state table entry that matches the packet. So there’s
an interoperability bug between Cisco and OpenBSD pfsync . . .

Mark: OpenBSD assumes the Cisco won’t give it a packet it
doesn’t ARP for . . .

Dave: Yes, exactly, and Cisco assumes OpenBSD isn’t going to
forward a broadcast packet because it won’t exist in its state
table.

Mark: So why isn’t there a broadcast loop that affects the master
firewall node? Wouldn’t the master also receive a copy of the
multicast packet?

Dave: No, because the master firewall is the default gateway
device for the network, so it’s the switchport that originated the
traffic, and will therefore not receive a copy of the broadcast.

Mark: Man, that’s hairy. What happens when the failover node
tries to route that packet?

Dave: I don’t know exactly. It’s undefined, but in that network,
intermittent latency and lots of RST ensued.

Anyway, here’s the best part. I have this big eureka moment,
and jump up out of my chair excitedly describing my hypothesis
to the other engineer who is working the problem with me. He
thinks I might have it solved, but wonders out loud how I’m going
to test whether I’m right or not. Not answering, I walk over to the
rack and with as much showmanship as I can muster, ceremoni-
ously rip out the pfsync cable connecting the two routers. TA-
DAAA problem solved!

Mark: Nice, but what about clean failover?

Dave: It’s not really an issue for us, because we usually use Pix’s
on the edge, but you could manually configure the switch ARP-
table so they didn’t broadcast, or you could use IGMP if possible,
or, yeah, just run the firewalls without pfsync, which might bite
you later on, but not very much. The network would “hiccup”
whenever they failed over, and the users who did get an error
could hit the reload button and everything would be fine.

Dave: Well, I think you probably won that one. I mean you had
interprocess warfare and GDB!

Mark: Really? I kind of liked yours because I might one day try to
run PF and mod_proxy_balancer with Cisco switches, and you
probably just saved me a headache.

Dave: Well, Rik, we’ll leave it to you. Who’s buying?

Rik: Dave, you’re buying. While both stories are good, Mark did a
better job of explaining exactly what had gone wrong, as well as
having more twists and turns. Your solution, breaking the con-

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 29

SYSADMIN
Loser Buys: A Troublesome Retrospective

nection between firewalls, fixes the problem without telling us
exactly what was going wrong. Not that figuring that out would
be easy, as it likely lies in the IP stack of OpenBSD somewhere.

References
[1] https://github.com/MessageSystems/gimli.

[2] http://sourceware.org/gdb/onlinedocs/gdb/Signals.html.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you
 promote your organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we
offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our
multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation
in neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholar-
ships for students, equal representation of women and minorities in the computing research community,
and the development of open source technology.

Learn more at:
www.usenix.org/supporter

30  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

When Data Is a Risk
Data Loss Prevention Tools and Their Role within IT Departments

K l a u s h a l l E r

Klaus Haller’s work focus is
on IT risk, compliance testing,
and test organizations. He has
concrete working experience
with Symantec’s Data Loss

Prevention tool and brings an infrastructure
and operations as well as a business analysis
perspective. He has been with Swisscom
IT Services since 2006 and worked as a
consultant with various customers, mainly
in the banking industry. He is a frequent
conference speaker and publishes in various
magazines. klaus.haller@swisscom.com

Snowden is a reversal point for IT security and risk. Before him, many
saw IT security as equivalent to a medieval town wall: keeping outside
hackers and malicious code away from the company. Firewalls, virus

scanners, and application security testing (e.g., to find SQL injections) fit the
town wall approach. But Snowden was different. He was from the inside of
the organization. He collected large amounts of sensitive data. Then, he got
the data out of a highly secured IT organization, which had to learn from the
press about the case. In this article, I will explain such data-related risks in IT
departments and how data loss prevention (DLP) tools help to manage them.

Understanding the Business Risks
Computer professionals think in terms of technical components: operating systems, applica-
tions, and databases. In contrast, data-related risks require a business view. First, there is
the risk of not adhering to regulations. Second, there is the risk of losing competitive advan-
tage due to data leaks. Third, as a side effect of the two previous risks, security incidents
might harm an organization’s reputation.

A data leak means that sensitive data, such as customer lists or cost calculations, leave the
company. Other examples are engineering drawings stored in CAD systems, research data in
pharmaceutical companies, or source code in the software industry. If companies lose such
data to competitors, this threatens their position in the market.

The focus of data-related regulatory risks is customer data. The risks correlate especially
with a worldwide customer base, outsourcing, or global work distribution. There are stan-
dards such as the Payment Card Industry Data Security Standard (PCI-DSS) or the Health
Insurance Portability and Accountability Act (HIPAA). There are European or Swiss data
protection laws and the EU-US safe harbor agreement. They impact whether data can be
transferred to a subsidiary or to sourcing partners in the same or in a different jurisdic-
tion. Violating any of the regulations can harm the reputation and result in interventions of
regulatory bodies and fines. When employees violate laws, even if instructed to do so by their
superiors, there is also a direct personal risk for them.

Risks in Development, Test, and Production environments
Even if systems are engineered and operated securely, and IT and business enforce the need-
to-know principle with roles and a strict user management, the data-related risks remain.
Their root cause is normal users using their normal access rights, just not as intended. Table
1 matches abstract business risks with IT security incidents, for which concrete solutions
can be defined.

The first business risk is that sensitive data leave the company. This can happen by mistake.
For example, a user sends an email to a wrong person or attaches a wrong file. There is also
the risk of transferring data outside of the company as part of industrial espionage, e.g., by
sending data to a personal account or copying it to a USB stick. Business users working in
production are the source of such risks as are engineers in development and test. The latter can

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 31

SYSADMIN
When Data Is a Risk

be even a higher risk. In production, the need-to-know principle
is often enforced strictly. This reduces the number of persons
who can misuse (large amounts of) sensitive data. Also, direct
database access is limited to the small group of admins. In
development and test environments, by contrast, engineers often
have access to applications without any authentication. To make
things worse, they can connect to the database directly and
submit SQL queries. If a test database contains production data,
engineers can extract, for example, a complete customer list with
one single query. Still, there is a reason why many test environ-
ments contain production data: engineers need appropriate test
data and database copies are a convenient solution.

The risk of violating regulations is obvious in production envi-
ronments. A server with customer data must be placed only in
datacenters in an appropriate jurisdiction. Centralized server
provisioning reduces the error risk in production. The same
risk exists in development and test environments, however, for
which outsourcing and offshoring is much more common. Here,
decisions are often made in a decentralized way. This increases
the risk that sensitive production data gets into offshored or out-
sourced development and test environments via a database copy,
file transfers, or manually entered data.

The regulatory risks increase if a company’s business spreads
across various countries. Consolidated datacenters and centers
of excellence for certain areas (e.g., payroll processing) reduce
costs; however, the more production data are transferred around
the globe, the higher the risk of violating regulations.

Aimless Activism vs. effective Risk Mitigation
When companies and risk managers understand the data-
related risks, some managers might think about writing an email
including the following three policies:

◆◆ Customer data must remain within our country!

◆◆ Sensitive data must not be copied into test environments!

◆◆ Intellectual property and customer data must not leave the
company!

Such an email may increase awareness, but most of all, it causes
confusion. These policy statements are ambiguous. On one hand,
it is unclear what exactly is prohibited. “Sensitive data” is a broad
term. On the other hand, developers and testers do not know
what they should do instead. They rely on adequate data for their
work. Thus, before sending such emails, managers should go
through three preparation steps (see Figure 1). In the first step,
the legal and the IT risk departments together assess the risk.
Which data are sensitive from a business and a regulatory point
of view? The outcome is a list of the risks with the severity of a
potential incident and the probability of an occurrence.

The second step is to elaborate a directive for production and
test data. The management must decide which risks it accepts.
The directive must provide a data classification scheme, which
explains in detail which data is defined to be sensitive. It
must identify suitable datacenter locations and state whether
outsourcing is possible and to which partners and jurisdic-
tions. The directive should also define for development and test
environments which data can be transferred to whom, in which
jurisdiction testing is allowed, and details regarding test data
anonymization (if applicable). What must be anonymized? Is
it sufficient to delete the customer names only? Are customer
addresses sensitive as well? What about booking texts or con-
tracts with suppliers?

Such a production and test data directive restricts the work of
developers and testers. Thus, the third step is about providing
alternatives. Synthetically generated test data or (very good!)
anonymized data from production environments could replace
the complete database copies from production to development and
test environments (see [1] for details). These alternatives might
require new tools, can change the organization and its teams and
processes, and, thus, can tie up resources and take time.

Figure 1: The three preparation steps for effective data-related risk
mitigation

Business Risk Production Development and Test

Competitive advantage Data loss by mistake Data loss by mistake

Data loss due to criminal act Date loss to criminal act

Regulatory
Datacenter / production servers
placed in inappropriate jurisdiction

Data transferred to / typed in an inappropriate jurisdiction or
 sourcing partner

Table 1: Risk types and environments

32  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

SYSADMIN
When Data Is a Risk

When all three steps are completed, the management communi-
cates the directive together with the alternatives for testers and
developers. From this moment on, users in production as well
as testers and developers must follow the directive; however, IT
environments are similar to teenagers’ rooms. Forcing them to
clean up once does not ensure that everything is perfect for the
next weeks. Regular checks for sensitive data are required, for
which data loss prevention (DLP) tools can help.

Helpful DLP Tools
Various vendors offer data loss prevention tools. The market is
dynamic and features vary. There are comprehensive solutions
from the big players, such as McAfee and Symantec, or from
smaller vendors, such as myDLP. Others focus on niches (e.g.,
Proofpoint or Microsoft Exchange). Three questions help to
characterize a product or a concrete installation (Figure 2):

1. What do DLP tools look at (interaction points)?

2. How do they identify sensitive data?

3. What options are provided to react to incidents?

Three options exist for the interaction points between the DLP
tool and the IT infrastructure (Figure 3):

◆◆ Data at Rest. The DLP tool searches for sensitive data in files,
SharePoint servers, databases, or other kinds of repositories.
The idea is to find sensitive data at places that nobody is aware
of. Certainly, enterprise resource planning systems store
sensitive data, e.g., customers, costs, and profits. But in many
companies, critical data exist in many files as well—e.g., Excel
spreadsheets.

◆◆ Data in Motion. Data are transferred within the company and
to outside recipients via the network, e.g., by emails, FTP, or
social media. The DLP solution can monitor the zone-internal
network traffic for sensitive data as well as the traffic to other
zones or the Web.

◆◆ Data at Endpoints. Here, laptops, PCs, and mobile devices are
the focus. They can get lost with data on them or data can be
copied from them to removable devices such as USB sticks. So
it is desirable to monitor data downloads as well as data-related
activities on endpoints.

When DLP tools detect sensitive data in an email or in a user’s
spreadsheet, they must react. Standard options are:

◆◆ Log and document the security incident in the DLP tool or in a
central information security management system (ISMS).

◆◆ Notify users when they try to perform noncompliant actions,
or escalate such incidents to their line manager or the HR
department.

◆◆ Prevent wrongdoing by blocking actions (e.g., emails for data in
motion, or downloads for data at endpoints) or quarantine files
by moving them to a secure folder (data at rest).

Blocking wrongdoing seems to be the best idea, but it is not
always true. If the DLP tool blocks half of the employees’ emails
“to be on the safe side,” the DLP tool will be switched off within
minutes. Thus, a first phase is always about improving the rules
for data classification. But even afterwards, notifying the user
or writing logs and evaluating them periodically remains the
option-of-choice for less severe incidents.

Figure 2: Characterizing DLP tools

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 33

SYSADMIN
When Data Is a Risk

The biggest challenge is data classification. The DLP tool must
decide whether data, emails, files, etc. are sensitive. Options are:

◆◆ Manual declaration. A risk manager tags a folder or files as sensi-
tive. From this moment on, the DLP tool prevents screen dumps,
for example, when a sensitive file is shown on the screen.

◆◆ Content-based classification. The DLP tool looks inside files or
emails. The main techniques are (1) keyword search, (2) docu-
ment similarity, (3) patterns, and (4) search lists. Keywords are
strings whose appearance signal sensitivity to the DLP tool,
e.g., a term “strictly confidential.” Document similarity means
that the DLP tool has a collection of sensitive files, for example,
templates for offers or contracts. Similar files are assumed to be
sensitive. So the DLP could be triggered if a user tries to send out
hundreds of contracts. Identifiers such as credit card numbers
or social security numbers often have a specific format, e.g., four
digits, a space, four digits. Patterns allow searching for such
identifiers in emails or files. Finally, search lists provide a list of

sensitive data items, such as all customer email address-
es or customer credit cards. If one item appears in a file
or email, for example, the DLP tool raises an incident.

◆◆ Metadata-based classification (e.g., names or IP ad-
dress ranges) helps when deciding about sensitiveness.
They can be combined with content-based strategies.
Then, emails with sensitive data can be sent within the
company, but the DLP tool prevents such emails from
being sent out.

The big challenge is to configure the DLP tool such
that it finds “real” incidents without raising many false
alarms. Database/SQL developers might help more than
security consultants with a background in firewalls and
virus scanning.

DLP Features and Risk Reduction
The DLP tool can reduce the risk of criminal or accidental
disclosure of sensitive data with its data-in-motion and data-
at-endpoint features (see Table 2). They identify and block such
data transfers via the network or to mobile devices and USB
sticks. The data-in-motion features monitor data transfers by
email or file to other jurisdictions, to sourcing partners, or to
development environments. Database transfers can be tricky
for DLP tools. In this case, the IT department’s database copy
process must prevent inappropriate data transfers. Still, DLP
tools can help in assessing whether a database contains sensi-
tive data. As stated in the example with the teenager’s room,
periodic checks are needed, especially in test and development
environments.

The data-at-rest features can reduce the overall exposure to
data-related risks. Periodic sanity checks of file systems or
SharePoint servers can find unofficial data collections. Cleaning
them up means less sensitive data will be floating around. This

Figure 3: Interaction points in a multinational company with various
network zones

Concrete risk How DLP helps Data at/in…

Rest Motion Endpoints

Data loss by mistake

Data loss due to criminal act

Inappropriate data transfers (e.g., email, FTP,
mobile devices, or USB sticks) identified and
blocked

X X

Datacenter/production servers placed
in inappropriate jurisdiction

n/a

Data transferred to/held in
 inappropriate jurisdiction

Entry check during file/database transfers (X) X X

Periodic sanity check of files/databases X

(Spread of sensitive data) Periodic sanity check of files X

Table 2: How DLP helps reduce risk

34  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

SYSADMIN
When Data Is a Risk

lessens the risk that such data get lost or transferred to a wrong
jurisdiction, environment, or outsourcing partner.

Limitations and Risks
DLP tools are 100% reliable when searching for a
30-chars long, alphanumeric string such as UAW-
47594W48406DE488242O34333W. Searching for all emails or
documents about a customer or patient is much more difficult.
If the name is “Peter James Miller,” how might the contacted
person react to reading the salutation “Dear Mr. Miller”? Or to
“Peter Miller” or “Dear James Miller”? And how do you ensure
that you do not confuse “Peter James Miller” with a non-sensi-
tive name “Peter Max Miller” or “Peter Miller”? Similar to any
information retrieval system, the DLP tool must balance the
risk of not finding certain incidents and the risk of raising too
many false incidents. Important terms are recall (if there are
100 incidents that should be found, how many will you find?) and
precision (out of 100 incidents raised, how many are true inci-
dents?). It means balancing the risk of leaking important data
and violating laws against having too many incidents, which
cannot be handled. No company can afford to have an IT secu-
rity officer read every second email, not to mention the impact
on the work environment. One sub-problem is format issues. So
what happens if a social security number “123-45-6789” is writ-
ten as “123456789” or “123 45 6789”? Companies can enforce
standards for the data in databases, but this is nearly impossible
for emails and Excel or Word documents.

Besides the limitations, there are several risks: laziness, non-
adequacy, circumvention, and data loss of the DLP tool. Lazi-
ness reflects that users start relying on the DLP tool instead of
thinking for themselves about what is allowed. This is dangerous
because DLP tools cannot find all critical events. Non-adequacy
means using a DLP tool to clean up files and data. DLP tools

are good at detecting a broad variety of violations, but when
DLP tools are used to clean up exactly the data items the DLP
tool finds, there is a nearly 100% probability that sensitive data
remains, which the DLP tool did not and will never find. Only
a root cause analysis of the incidents leads to an understand-
ing where and why sensitive data shows up at the wrong places.
Circumvention means that users, especially with criminal inten-
tions, search for ways to fool the DLP tool when they learn how
the DLP tool works in detail.

Finally, the biggest risk can be the DLP tool itself. If it stores
customer lists or sensitive documents to find copies or similar
documents, losing data from the DLP tool becomes the worst
case scenario. This includes, first, the direct loss of unencrypted,
sensitive data such as customer or credit card lists. Second,
there is the risk of telephone book attacks. For example, the DLP
tool might be directed to a large list of potential client names,
creating an incident for each real client name. So the set of
incidents is the full client list. Third, even if lists and documents
are encrypted or hashed, they must be highly protected and
must never end up on mobile devices. If the DLP tool is not open
source, it is never clear how strong the encryption is and whether
attackers related to governmental agencies have back doors to
break the encryption.

In conclusion, data loss prevention tools enable companies to
detect and prevent inappropriate data handling. This allows
companies to address regulatory risks and risks related to the
loss of intellectual property.

References
[1] K. Haller, “Test Data Management in Practice: Problems,
Concepts, and the Swisscom Test Data Organizer,” Software
Quality Days 2013, Vienna, Austria.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 35

Using a Database to Store Data Captured
with tcpdump
M i h a l i s t s o u K a l o s

Mihalis Tsoukalos is a UNIX
system administrator who also
knows programming, databases,
and mathematics. Follow
Mihalis on Twitter: @mactsouk

www.mtsoukalos.eu

In this article, I show you how to store network data in a MySQL database
and how to take advantage of the SQL language to query stored data. I
know that this has been done before, but I thought that it would be a good

exercise to create my own solution.

Although I selected the MySQL [1] DBMS, you can use PostgreSQL, Oracle, or even a
NoSQL database such as MongoDB [2]. For the network data capturing, I will use the trusty
tcpdump [3] utility.

Advantages
Storing your network data into a database has many advantages, including the ability to query
your data offline, being quicker than pure disk I/O because databases store their data opti-
mized, embedding intelligence in your data by using a database, distributing your network
data in many databases, using the reporting tools that support your database, easily query-
ing your network data if you already know SQL, and giving a remote user access to your data
using network access to the database.

Storing your network data in a database has some disadvantages, as well, including the fact
that if you have a busy network, the database storage you will need will be big. Also, you will
need a person to administer the database, if you do not already have one.

The Solution
Before being able to use any network data, you must first collect network data using the
tcpdump utility. You can also use WireShark [4] or tshark [5] to capture network data, but
tcpdump is more popular for network capture.

A Perl script will be used for selecting and inserting the data into the MySQL database. The
DBI and DBD::mysql Perl modules must be pre-installed on your UNIX system for the Perl
script to work. The script also uses the Data::Validate::IP Perl module for catching erroneous
IP addresses.

The Perl script implies that the network data is already captured with tcpdump. If you want to tell
tcpdump to capture 2000 network packets and exit, the following command will do the trick:

tcpdump -i eth0 -c 2000 -w login.tcpdump

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture

 size 65535 bytes

2000 packets captured

2004 packets received by filter

0 packets dropped by kernel

You can alter the captured packets by adding more command-line arguments to the tcpdump
command. Please note that you usually need root privileges to capture network traffic from a
network interface.

36  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

SYSADMIN
Using a Database to Store Data Captured with tcpdump

The Perl script uses the following tshark [9] command to convert the network data into a more readable format:

$ tshark -r login.tcpdump -T fields -e frame.number -e

 frame.time_relative -e ip.src -e ip.dst -e

 frame.protocols -e frame.len -E header=y -E quote=n

 -E occurrence=f

The format of the exported text file will look like the following:

frame.number frame.time_relative ip.src ip.dst frame.protocols frame.len

1 0.000000000 109.74.193.253 2.86.13.236 eth:ip:tcp:ssh 194

2 0.011654000 174.138.175.116 109.74.193.253 eth:ip:udp:dns 97

3 0.011733000 109.74.193.253 174.138.175.116 eth:ip:icmp:ip:udp:dns 125

4 0.048020000 208.67.217.17 109.74.193.253 eth:ip:udp:dns 106

5 0.048107000 109.74.193.253 208.67.217.17 eth:ip:icmp:ip:udp:dns 134

6 0.055475000 2.86.13.236 109.74.193.253 eth:ip:tcp 66

7 0.081615000 83.145.248.129 109.74.193.253 eth:ip:udp:dns 75

8 0.081692000 109.74.193.253 83.145.248.129 eth:ip:icmp:ip:udp:dns 103

As the frame.protocols column may contain many values, we will use the last one.

The Implementation
The table that holds the network data contains a field called “id” that auto increments and acts as the primary
key for the table. The “packetNumber” field is the packet index for a given network traffic capture, whereas
the “dt” field is the time that the packet appeared since the first packet of the given network capture. The
 “sourceIP” and “destIP” fields contain the source and destination IP values, respectively. The “protocol” fields
holds the protocol name of the network packet. Last, the “length” field holds the packet size in bytes.

You can choose to include additional fields depending on your network and the problem(s) you want to examine.

Importing the data into the MySQL data is also performed by the Perl script. If you have a fast computer and a
network without extremely high traffic, you can even store your network data in (near) real-time.

The Perl script is called netData.pl and takes a single argument that is the name of the file that holds the
tcpdump network data.

Querying the Database
The Perl script executes all the following queries and displays their results.

Find the Connections per Protocol:

mysql> select count(protocol), protocol FROM NetData GROUP BY protocol;
+---------------------+------------+
| count(protocol) | protocol |
+---------------------+------------+
1084	DNS
794	ICMP
1	ICMPv6
1	SSH
70	SSHv2
50	TCP
+---------------------+------------+
6 rows in set (0.04 sec)

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 37

SYSADMIN
Using a Database to Store Data Captured with tcpdump

count(distinct(destIP))
278

TOTAL SourceIP
1682 109.74.193.253
152 2.86.13.236
76 204.74.106.104
50 175.41.186.83
48 89.149.6.76
44 90.155.53.34
40 218.248.241.3
40 114.134.15.205
38 200.29.243.21
34 14.139.5.22

Number of rows inserted: 999

If you connect to MySQL using the command line shell or a
GUI ap pli cation, you can execute whatever SQL query you
wish. Only your imagination and SQL can limit the way you
can utilize the data.

If you are using a NoSQL database, such as MongoDB, which is
my favorite NoSQL database, you may need to learn how to use
the MapReduce [6] technique to query the database. The results
will be the same, but the implementation will be a little different.
MongoDB is more focused on storing semi-structured data.

In conclusion, determining your own requirements and creat-
ing the queries that fit your needs is the first thing to do before
inserting any data in a database. A statistical package such as
R [7, 8] can also be used for visualizing and exploring your data.
Download the netData.pl script from the USENIX site [10].

References
[1] MySQL site: http://www.mysql.com/.

[2] Kristina Chodorow, MongoDB: The Definitive Guide,
2nd Edition (O’Reilly Media, 2013).

[3] tcpdump: http://www.tcpdump.org.

[4] WireShark: http://www.wireshark.org/.

[5] tshark: http://www.wireshark.org/docs/man-pages/
tshark.html.

[6] MapReduce: http://docs.mongodb.org/manual/reference/
method/db.collection.mapReduce/.

[7] R Project: http://www.r-project.org.

[8] Mihalis Tsoukalos, “Using the R Advanced Statistical
 Package,” Linux Journal, August 2013.

[9] Using WireShark Command Line Tools & Scripting:
http://www.youtube.com/watch?v=CWOCqGmu1aI.

[10] netData.pl: https://www.usenix.org/publications/login/
february-2014-volume-39-number-1

Find the average packet length per protocol. Also print the num-
ber of packets:

mysql> select COUNT(*), protocol, avg(length) from NetData
GROUP BY protocol;
+-----------+-------------+---------------+
| COUNT(*) | PROTOCOL | avg(length) |
+-----------+-------------+---------------+
1084	DNS	95.8127
794	ICMP	123.0743
1	ICMPv6	118.0000
1	SSH	194.0000
70	SSHv2	356.3571
50	TCP	66.6400
+-----------+-------------+---------------+

6 rows in set (0.04 sec)

Find the number of different Destination Hosts used in the
destIP column:

mysql> select count(distinct(destIP)) from NetData;
+---------------------------+
| count(distinct(destIP)) |
+---------------------------+
| 279 |
+---------------------------+
1 row in set (0.01 sec)

Find the Top-10 Source IPs:

 mysql> select count(*) as TOTAL, SourceIP
 from NetData
 GROUP BY SourceIP
 ORDER BY TOTAL DESC
 LIMIT 10;
+--------+------------------+
| TOTAL | SourceIP |
+--------+------------------+
841	109.74.193.253
76	2.86.13.236
38	204.74.106.104
25	175.41.186.83
24	89.149.6.76
22	90.155.53.34
20	218.248.241.3
20	114.134.15.205
19	200.29.243.21
17	14.139.5.22
+--------+------------------+
10 rows in set (0.03 sec)

Here is the output of the Perl script for the network data I captured:

$./netData.pl login.tcpdump
Erroneous IP!!

count(protocol) protocol
3756 DNS
142 SSH
100 TCP

COUNT(*) protocol avg(length)
3756 DNS 107.3387
142 SSH 354.0704
100 TCP 66.6400

http://www.youtube.com/watch?v=CWOCqGmu1aI

38  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

ColumnsPractical Perl Tools
Redis Meet Perl

d a v i d n . b l a n K - E d E l M a n

One tool that you may have heard all of the cool kids(tm) are using
today is Redis (http://redis.io). If you haven’t heard of Redis, this
column may introduce you to a lovely tool you can add to your rep-

ertoire. First we’ll talk a little bit about what Redis is and why people like it.
Once we do that, we can get into the Perl side of things. Just a quick warning
for those of you who have seen this happen before in this column: the Perl
stuff we’re going to look at is a pretty straightforward layer on top of the basic
Redis functionality. I’ll consider an “Oh, is that all there is to it” reaction to
be a good sign. But I just wanted to warn you lest you were hoping for gnarly
Perl to impress your friends with at parties.

What Be Redis?
Redis is one of those packages that gets lumped into the NoSQL gang. These are software
packages designed to help with certain scaling problems because they provide really simple
but really fast storage and retrieval of data often with a little bit of “make it easy to distribute
the data over several servers” thrown in. What they trade off in complexity around the stor-
age and retrieval of data (ACID compliance, full query languages) is sheer performance and
ease of use by other applications.

In many cases these software packages act like a “key-value” storage mechanism (i.e., like
a Perl hash, you can store a value under an associated key for retrieval by that key later). An
example of another well-known key-value store is the memcached package, something we
may visit in a future column. Redis is a bit spiffier than a number of these packages because
it actually understands more data types natively than most of the other players in the space.

In addition to this functionality, I believe Redis is well-liked by the people at those parties I men-
tioned before because it is fast, performant, stable, well-engineered, and quite easy to get started
with right out of the box, even if you’ve never touched the thing. This may sound like what you
hope every tool would be, but in my experience finding one isn’t as easy as one would hope.

Redis Basics
Okay, so let’s get into the fundamentals of using Redis. Redis gets packaged pretty easily so that
you can usually find a way to install it quickly on the operating system of your choice. A second
ago I grabbed the latest version to my laptop with “brew redis,” but your copy could be almost
an apt-get, yum, or wget/curl away (the source looks pretty easy to compile, although I have not
done it). Given all of this, watch me hand wave about the installation (waves hands) so we can
move right on to using the software. Redis comes with a massively commented sample config
file (redis.conf), so feel free to bend it to your will. For this column, we’re just going to assume
you brought a Redis server up in its stock configuration (i.e., redis-server /path/to/redis.conf).

Redis comes with a command-line client (redis-cli), so we are going to play with it a bit before we
show the Perl equivalent. This is similar to the approach we took when talking about RRDtool
many moons ago. Let’s use that client to do what every other key-value store can do first:

David N. Blank-Edelman is the
Director of Technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter Book) available at
purveyors of fine dead trees everywhere. He
has spent the past 26+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA 2005 conference and one of the
LISA 2006 Invited Talks co-chairs. David is
honored to be the recipient of the 2009 SAGE
Outstanding Achievement award and to serve
on the USENIX Board of Directors.
dnb@ccs.neu.edu

mailto:dnb@ccs.neu.edu

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 39

Columns
Practical Perl Tools

127.0.0.1:6379> SET usenix:address “2560 Ninth Street, Suite 215”
OK
127.0.0.1:6379> SET usenix:state “CA”
OK
127.0.0.1:6379> SET usenix:zip “94710”
OK
127.0.0.1:6379> GET usenix:address
“2560 Ninth Street, Suite 215”

Nothing exciting, right? If I tossed a ton of clients or millions of
records and it did that, that would be cool but probably not all
that exciting. A half a notch more exciting would be something
like this:

127.0.0.1:6379> SET usenix:members 10
OK
127.0.0.1:6379> INCR usenix:members
(integer) 11

So why is that more exciting? Surely I could just do a GET and
then a SET of the number of members + 1 (not the real number of
members, by the way) instead of using a special increment opera-
tor. I could do that, but what if my typing or my script is kinda
slow and some other person attempts to do the same operation?
It is conceivable there will be a race condition in which I’ll wind
up incrementing a number that isn’t the current one. INCR
performs the operation in an “atomic” fashion, which means
that you can have many separate clients incrementing the value
and you don’t have to worry about them stepping all over each
other. There are a number of other fun things we can do to simple
strings (append to them, get substrings, treat them like bit vec-
tors, etc.). But let’s get beyond strings…

More Redis Data Types
Although constructing all sorts of data structures in your
application with just plain strings is possible, Redis makes it
even easier for the programmer by internally supporting some
of the more popular ones. For example, Redis handles lists for
you trivially:

127.0.0.1:6379> LPUSH usenix:conferences LISA
(integer) 1
127.0.0.1:6379> LPUSH usenix:conferences OSDI
(integer) 2

127.0.0.1:6379> LRANGE usenix:conferences 0 -1
1) “OSDI”
2) “LISA”

127.0.0.1:6379> RPUSH usenix:conferences Security
(integer) 3
127.0.0.1:6379> RPUSH usenix:conferences FAST
(integer) 4

127.0.0.1:6379> LRANGE usenix:conferences 0 -1
1) “OSDI”
2) “LISA”
3) “Security”
4) “FAST”

The LPUSH command adds items to the left of the list (the
front); RPUSH adds them to the right (the end). The LRANGE
operator can be used to return parts of the list (using 0 and -1

means start at the first element and go to the end). There is a
whole host of other list-related commands, including:

127.0.0.1:6379> RPOP usenix:conferences
“FAST”

127.0.0.1:6379> LRANGE usenix:conferences 0 -1
1) “OSDI”
2) “LISA”
3) “Security”

Here we’ve treated the list like a stack and popped the last ele-
ment off the end using RPOP.

Let’s Take a Perl Break
There are more data structures we should look at, but let’s take a
break to look at some Perl code. Here’s a translation of the initial
redis-cli example to Perl. In this column, we’re going to be using
the most popular Redis module (called Redis), although there are
number of other choices available on CPAN:

use Redis;

my $redis = Redis->new;

using usenix-from-perl as part of the key name just so it
is clear on the server that the data is coming from this
script and not the redis-cli command lines.
$redis->set(‘usenix-from-perl:address’ =>
 ‘2560 Ninth Street, Suite 215’);
$redis->set(‘usenix-from-perl:state’ => ‘CA’);
$redis->set(‘usenix-from-perl:zip’ => ‘94710’);

print $redis->get(‘usenix-from-perl:address’), “\n”;

This prints out ‘2560 Ninth Street, Suite 215’ as you’d expect. Perl
code that uses Redis is an easy leap from the command-line exam-
ple, no? Let’s go back to the Redis data structures because we’re
going to run into a few of the even cooler Redis features shortly.

Two More Data Structures
I would be remiss if I didn’t mention the two remaining sup-
ported data structures. The first, very familiar to Perl folks and
mentioned early in this column, is the hash. It isn’t immediately
apparent what a hash type might mean when it comes to talking
about a key-value store (which sounds like a hash already). Redis
hashes are probably most equivalent to the Perl hash-of-hashes
data structure. Each key in Redis is connected to a value that has
associated fields (each with its own values). For example, let’s
make a hash that lists the cities where the LISA conference will
be held in upcoming years:

127.0.0.1:6379> HSET usenix:lisa-conference 2014 “Seattle”
(integer) 1
127.0.0.1:6379> HSET usenix:lisa-conference 2015 “D.C.”
(integer) 1
127.0.0.1:6379> HMSET usenix:lisa-conference 2016 “Boston” 2017
“San Francisco”
OK

Here we’ve used two different commands to populate the
usenix:lisa-conference hash (which contains the years as
fields). The first, HSET, sets a single field at a time. The second,

40  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Columns
Practical Perl Tools

HMSET, lets us set multiple fields at a time. Retrieving the info
in each field can be done with (I bet you are seeing the pattern in
names) HGET:

127.0.0.1:6379> HGET usenix:lisa-conference 2017
“San Francisco”

If we want to retrieve multiple fields, we can use HMGET with a
list of the fields we want to retrieve:

127.0.0.1:6379> HMGET usenix:lisa-conference 2014 1016
1) “Seattle”
2) (nil)

127.0.0.1:6379> HMGET usenix:lisa-conference 2014 2016
1) “Seattle”
2) “Boston”

In the example above, I left in my typo so you can see what gets
returned if you ask for a field that hasn’t been set previously.
(I don’t actually know where LISA was in the year 1016; I only
started attending in the 1900s.)

You can probably guess this, but just to make it explicit, the Perl
equivalents of the commands above are direct translations:

$redis->hset(‘usenix-from-perl:lisa-conference’,
‘2014’ => ‘Seattle’);
$redis->hmset(‘usenix-from-perl:lisa-conference’,
‘2016’ => ‘Boston’, ‘2017’ => ‘San Francisco’);
my $location = $redis->hget(‘usenix-from-perl:lisa-conference’,
‘2017’);

One last data structure type and then I want to show you two
more magical things Redis can do with its data storage. The last
data type is one that doesn’t really have a direct analog to Perl’s
built-in data types: sets. Redis implements sets in two flavors:
standard/unordered and sorted. The standard set is basically an
unordered collection of elements that can be added to, subtracted
from, tested for membership, and so on. And just like your junior
high school days, you can perform operations between sets, such
as finding their union or intersection. Let’s use a set to keep
track of the current USENIX board members. First we’ll add
them to the set:

127.0.0.1:6379> SADD usenix:board margo
(integer) 1
127.0.0.1:6379> SADD usenix:board john
(integer) 1
127.0.0.1:6379> SADD usenix:board carolyn
(integer) 1
127.0.0.1:6379> SADD usenix:board brian
(integer) 1
127.0.0.1:6379> SADD usenix:board david
(integer) 1
127.0.0.1:6379> SADD usenix:board niels
(integer) 1
127.0.0.1:6379> SADD usenix:board sasha
(integer) 1
127.0.0.1:6379> SADD usenix:board dan
(integer) 1

Now, if we show the members of the set, you’ll see that they come
back in a different order than they were added to the set (in this
way, the lack of preserved order does resemble keys in a Perl hash):

127.0.0.1:6379> SMEMBERS usenix:board
1) “dan”
2) “john”
3) “carolyn”
4) “david”
5) “margo”
6) “niels”
7) “brian”
8) “sasha”

Once we have constructed our set, we can query to see whether
an element is in it:

127.0.0.1:6379> SISMEMBER usenix:board niels
(integer) 1
127.0.0.1:6379> SISMEMBER usenix:board santa
(integer) 0

This test is fast, even with large sets (O(1) for you CS geeks).
If we had defined multiple sets in this example, we could have
determined how they differ, their intersections, and other fun
things with a single Redis command.

Redis has a variation on sets called sorted sets. Sorted sets are
like standard sets, except each member of the set has an asso-
ciated “score.” The score should be, according to the doc, “the
string representation of a numeric value, and accepts double
precision floating point numbers.” The members of the set are
kept in a sorted order based on this score. So, for example, if you
wanted to model a leaderboard, you could create a sorted set
using each member’s score. As you rewrite each person in the set
back to Redis with a new score, the members of the set rearrange
themselves to stay sorted. This type of functionality can make
parts of your application trivial to write. Let’s do a toy example.
If we had a bunch of different registration systems reporting
back to a Redis instance the number of signups for each confer-
ence like so (yes, very fake numbers), we might have each system
submit one of these commands:

127.0.0.1:6379> ZADD usenix:attendees 100 LISA
(integer) 1
127.0.0.1:6379> ZADD usenix:attendees 50 OSDI
(integer) 1
127.0.0.1:6379> ZADD usenix:attendees 30 FAST
(integer) 1
127.0.0.1:6379> ZADD usenix:attendees 75 Security
(integer) 1
127.0.0.1:6379> ZADD usenix:attendees 60 NSDI
(integer) 1

Now we can see the top three conferences listed in order of their
attendance:

127.0.0.1:6379> ZRANGE usenix:attendees 0 2
1) “FAST”
2) “OSDI”
3) “NSDI”

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 41

Columns
Practical Perl Tools

Oh, wait, that’s not right. That is indeed the first three confer-
ences in the list in ascending order. We actually wanted to see
the list sorted in descending order:

127.0.0.1:6379> ZREVRANGE usenix:attendees 0 2
1) “LISA”
2) “Security”
3) “NSDI”

Ah, much better. Sorted sets also make it super easy and super
fast to find out where a particular member lives in the set:

127.0.0.1:6379> ZRANK usenix:attendees NSDI
(integer) 3

This says that NSDI can be found in the third place in the ranked
order. Like the other data types, there are a whole slew of sorted
set commands available. Instead of dwelling on them, let’s finish
the column by looking at two kinds of behind-the-scenes magic
we can invoke.

Caching and Sub-ing
The first functionality I want to mention shows up in other key-
value stores, but I still think it is kind of magic. Redis lets you
set a time-to-live on any key. You can either set that value as the
number of seconds a key should stick around via EXPIRE (which
you can refresh using another EXPIRE), or provide a specific
time for the expiration using EXPIREAT. Congratulations, you
have self-maintaining cache.

The second thing Redis does that might make you squeal in
delight is provide a special pub-sub mode. Pub-sub (i.e., publish-
subscribe) is described in Wikipedia as

“a messaging pattern where senders of messages, called
publishers, do not program the messages to be sent
directly to specific receivers, called subscribers. Instead,
published messages are characterized into classes,
without knowledge of what, if any, subscribers there may
be. Similarly, subscribers express interest in one or more
classes, and only receive messages that are of interest,
without knowledge of what, if any, publishers there are.”

In Redis (and in other contexts) the classes are called channels.
A client will connect to the server and SUBSCRIBE to a set of
channels either directly by name (e.g., SUBSCRIBE usenix) or
via a globbing pattern like PSUBSCRIBE *usenix*’ (for all chan-
nels with usenix in their name). If other clients use the PUB-
LISH usenix ‘some message’ command, the subscribed clients to
that channel will get this message.

Because we’re getting close to the end of the column, a Perl
column, let’s see a demonstration of this mode via a Perl sample.
The one thing that makes this sample a little more complex than
the previous translations is that pub-sub is coded up using call-
backs. Callbacks are little snippets of code that are called when

a message is received (vs. having some function you call that
returns a value). As the Perl Redis module documentation states:

“All Pub/Sub commands receive a callback as the last
parameter. This callback receives three arguments:

◆◆ The published message.

◆◆ The topic over which the message was sent.

◆◆ The subscribed topic that matched the topic for the message.
With ‘subscribe’ these last two are the same, always. But with
‘psubscribe’, this parameter tells you the pattern that matched.”

The first thing we might write is a script that subscribes to some
channels. It is as simple as this:

use Redis;
my $redis = Redis->new;

subscribe to the LISA and Security channels
$redis->subscribe(‘LISA’, ‘Security’,
 sub my ($message, $channel, $subscribedchannel) = @;
 print STDERR “Someone said something interesting:
 $message\n”; },);
loop, waiting for callbacks, or for 60 seconds to pass
$redis->wait_for_messages(60) while 1;

The code above connects to the server and subscribes to the
LISA and Security channels. When we subscribe, we specify a
subroutine that runs when a message comes in (it receives the
arguments we just quoted from the doc) and prints out what it
receives. Because this is a callback, if we just did a SUBSCRIBE,
the script would subscribe to the channel and exit; it never would
have the pleasure of smelling a freshly received message. We
must tell it to wait around for messages and process callbacks,
hence the last line that loops forever waiting for messages.

The script that actually publishes a message is trivial:

use Redis;

my $redis = Redis->new;

$redis->publish(‘LISA’, ‘Perl is great!’);

If we launch the client and then run this script, it predictably
prints out:

Someone said something interesting: Perl is great!

So with that example, I want to wrap up the column. We’ve only
looked at a small subset of the commands Redis offers (for exam-
ple, there are indeed commands for deleting info), and we haven’t
even mentioned some of the support for high-performance use,
such as its pipelining feature. I’m hoping this brief look, along
with a sense of how easy it is work with Redis from Perl once you
know the commands, inspires you to go digging for more.

Take care and I’ll see you next time.

42  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Columns

The Wheels keep on Spinning
d a v i d b E a z l E y

If you’ve ever had the pleasure of installing third-party Python packages,
you already know that it can be a bit of a mess. There are a variety of
different tools, file formats, and other packaging complications. Frankly,

it’s enough to make your head spin.

Over the past year, a new Python packaging format has emerged in the form of a “wheel”
file—so named because a wheel is a common packaging form factor for cheese, as in the big
wheel of cheese that you might find at a cheese shop. Naturally, this is a reference to a certain
cheese shop in an obscure Monty Python sketch, but that should have been obvious. I digress.

When the new wheel format emerged, I’ll admit that I mostly ignored it. Python packaging
is not my favorite topic, and the thought of having to think about yet another file format was
relatively low on my list of day-to-day priorities; however, in recent months there has been
a concerted effort to have package maintainers support the new wheel format. For example,
the Web site http://pythonwheels.com/ currently shows the wheel status for the most popu-
lar Python extensions. As the author of one such extension, I was starting to get questions
about wheels and was ashamed to admit my ignorance.

So, what in the heck is a wheel, you ask? In this installment, we’ll take a look at wheels,
Python packaging, and related topics. As we’ll see, there are some rather interesting
aspects to wheels—especially for anyone who needs to maintain, test, or deploy complex
Python applications.

A Quick Review of Python Packaging
Before jumping into the subject of wheels, a quick refresher on Python packaging is probably
in order. First, the Python Package Index (PyPI, at http://pypi.python.org) is the definitive
site for locating and downloading third-party packages. If you go here, you’ll find virtually all
available packages listed, along with links to downloads, documentation, and more.

If you want to, you can download a package directly from PyPI and install it manually on
your machine. Typically you would download the source and look for an enclosed setup.py
file. You would then run python setup.py install on that file to perform an installation. For
example, if you wanted to download the pytz extension for handling time zones, here are the
steps that you might perform. In this example, replace the curl command with anything that
simply downloads the source from PyPI. Also, depending on how Python has been installed,
the final step might need to be performed as root using sudo.

bash % curl -O https://pypi.python.org/packages/source/p/pytz/pytz-2013.8.tar.gz

bash % tar -xf pytz-2013.8.tar.gz

bash % cd pytz-2013.8

bash % python setup.py install

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly
Media, 2013). He is also known as the creator
of Swig (http://www.swig.org) and Python
Lex-Yacc (http://www.dabeaz.com/ply.html).
Beazley is based in Chicago, where he also
teaches a variety of Python courses.
http://www.dabeaz.com, dave@dabeaz.com

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 43

COLUMNS
The Wheels Keep on Spinning

Instead of manually installing a package in this manner, an
alternative approach is to use the optional setuptools package.
setuptools gives you the easy_install command, which auto-
matically contacts PyPI, downloads the most recent version,
and installs it for you. For example, instead of typing the above
commands, you could simply type the following statement
(again, you may need to use sudo depending on your Python
installation):

bash % easy_install pytz

setuptools saves you the trouble of downloading, unpacking,
and running the setup.py file yourself; however, it does quite a
bit more than that because it will also download and install any
dependencies. This can be useful if you’re installing something
much more complicated. For example, if you wanted to install
the Python data analysis library pandas (http://pandas.pydata.
org/), typing easy_install pandas will not only install pandas
but also all of its dependencies, including numpy, python-dateu-
til, six, and pytz.

Although easy_install is commonly described in tutorials and
documentation, the pip command (http://www.pip-installer.org)
is a bit more modern, performs a similar function, and seems to
be coming the preferred way to install packages. pip operates in
a manner similar to easy_install. For example, to install a pack-
age, type a command like this:

bash % pip install pandas

Under the covers, pip actually requires the use of setuptools, so
if you’re using it, you’ll actually have both easy_install and pip
installed. This obviously begs the question: What is the major
difference between the two? That’s a big question, but pip makes
a number of subtle changes to the installation process. For
example, pip downloads all of the dependencies and builds them
completely before attempting any kind of install. As a result,
the install will either succeed in its entirety or not at all. On
the other hand, easy_install might end up performing a partial
install if some part of the installation process fails midway
through. pip also provides some additional commands, such as
the ability to uninstall a package.

Perhaps the most notable feature of pip is its ability to “freeze”
and recreate your exact installation configuration. For example,
suppose you had spent a lot of time making a custom Python
setup. You can type the following command to freeze it into a
requirements file:

bash % pip freeze >requirements.txt

This creates a file requirements.txt that looks like this:

Django==1.6

SQLAlchemy==0.8.3

numpy==1.8.0

pandas==0.12.0

ply==3.4

python-dateutil==2.2

pytz==2013.8

requests==2.0.1

six==1.4.1

virtualenv==1.10.1

wsgiref==0.1.2

Now, suppose you were setting up a new Python installation or
performing a deployment to a new machine. If you wanted to
recreate your environment, you could simply type the following:

bash % pip install -r requirements.txt

This will download, build, and install everything in require-
ments.txt for you—very nice.

virtual environments and Deployments
Once you’ve mastered the basics of installing packages, you
might think that it’s the end of the story. After all, how many
times are you actually going to sit around installing packages?
As it turns out, it might be a lot more often than you think.

One of the more popular extensions to Python is the virtualenv
tool (https://pypi.python.org/pypi/virtualenv). virtualenv allows
you to make entirely new Python environments for working on
new versions of code, experimentation, and testing things out. To
make a new virtual environment, simply type the following:

bash % virtualenv spam

This creates a new directory spam/ in which you will find a new
Python installation. This installation is actually a “blank slate”
of sorts. The directory spam/bin includes Python as well as
easy_install, pip, and virtualenv. No other third-party extensions
are included. But that’s the whole idea—with a virtual environ-
ment you get to start over.

Not to worry! Remember the requirements.py file you just cre-
ated with pip? Let’s recreate our setup in the new virtual envi-
ronment with a single command:

bash % spam/bin/pip install -r requirements.txt

This will churn away for a while, but when it’s done, you’ll have
a brand new Python environment with everything installed.
Because it’s an isolated environment, you can continue to experi-
ment with the setup without breaking the default Python instal-
lation on your machine.

Naturally, a similar process can be used if you’re deploying a
Python application to new machines or to workers out on the
cloud. Simply make sure you distribute the requirements.txt file
and use it to recreate the environment when you need it.

44  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Columns
The Wheels Keep on Spinning

A Performance Headache
If you’ve made it this far, you will have made recreating your
Python environment easy; it all works fine except for one huge
headache, which is the performance of it all. When you type the
command pip install -r requirements.txt, all of the required
packages will be downloaded, compiled, and installed from
source. Although there are ways to cache the source locally and
avoid the download step, the compilation and installation pro-
cess can take a substantial amount of time. For example, install-
ing a new environment from the requirements.txt file shown
here takes a little more than nine minutes on my machine. Much
of that time is spent running the C compiler for the numpy and
pandas extensions.

Although that might not seem like much time, it can add up
quickly if you find yourself making many virtual environments
or recreating the Python environment as part of a deployment
script. Surely there should be some way to perform a binary
installation from pre-built packages instead. Wouldn’t that be
much faster? Yes, it would.

enter Wheels
The newly introduced “wheel” standard is an effort to solve this
problem. In a nutshell, a wheel is simply a pre-built Python pack-
age. Because it’s pre-built, none of the usual source compilation
steps are necessary. Instead, all of its contents can simply be
copied into place.

To see how wheel works, you first must install the separate
wheel package. Just use pip:

bash % pip install wheel

Next, let’s make a special directory for our wheels:

bash % mkdir /tmp/wheels

Once you’re done with that, type the following command using
the requirements.txt file from earlier:

bash % pip wheel --wheel-dir=/tmp/wheels -r requirements.txt

This command will churn away for a while, but when it’s done,
the /tmp/wheels directory will contain a collection of .whl files
like this:

bash % ls /tmp/wheels

Django-1.6-py2.py3-none-any.whl

SQLAlchemy-0.8.3-cp27-none-macosx_10_4_x86_64.whl

numpy-1.8.0-cp27-none-macosx_10_4_x86_64.whl

pandas-0.12.0-cp27-none-macosx_10_4_x86_64.whl

ply-3.4-py27-none-any.whl

python_dateutil-2.2-py27-none-any.whl

pytz-2013.8-py27-none-any.whl

requests-2.0.1-py27-none-any.whl

six-1.4.1-py27-none-any.whl

virtualenv-1.10.1-py27-none-any.whl

wsgiref-0.1.2-py27-none-any.whl

Okay, that’s interesting, but what’s the point, you ask? The real
benefit comes when you later want to recreate your Python envi-
ronment. Using the wheels directory as a kind of cache, type the
following commands to make a new virtual environment:

bash % virtualenv spam2

bash % spam2/bin/pip install --use-wheel --no-index --find-

links=/tmp/wheels -r requirements.txt

This will completely recreate your Python environment exactly
as before; however, instead of taking nine more minutes, it now
only takes four seconds. That’s a speedup of about 13,500%,
in case you were keeping track. Needless to say, this ability
to almost instantly recreate your Python environment on a
moment’s notice is interesting.

Under the Covers
The gory details of what’s going on inside a wheel file can be
found in PEP 427 (http://www.python.org/dev/peps/pep-0427).
To be honest, this document mostly made my head hurt, and it did
not fully illuminate the big idea at work. Thus, here are the big pic-
ture details that you might care to know. A .whl file is simply a .zip
file containing the compiled/built package. Everything needed
to make the package work is contained inside. For example:

bash % unzip -l ply-3.4-py27-none-any.whl

Archive: ply-3.4-py27-none-any.whl

 Length Date Time Name

 --------- ----- ----- -----

 82 11-25-13 12:02 ply/__init__.py

 33040 11-25-13 12:02 ply/cpp.py

 3170 11-25-13 12:02 ply/ctokens.py

 40739 11-25-13 12:02 ply/lex.py

 128492 11-25-13 12:02 ply/yacc.py

 518 11-25-13 12:08 ply-3.4.dist-info/DESCRIPTION.rst

 439 11-25-13 12:08 ply-3.4.dist-info/pydist.json

 4 11-25-13 12:08 ply-3.4.dist-info/top_level.txt

 93 11-25-13 12:08 ply-3.4.dist-info/WHEEL

 808 11-25-13 12:08 ply-3.4.dist-info/METADATA

 804 11-25-13 12:08 ply-3.4.dist-info/RECORD

 -------- -------

 208189 11 files

When a wheel is installed, the files are moved into place in the
normal site-packages directory. None of the usual “build” or
“compile” steps take place. Needless to say, this is the reason why
installing a wheel is super fast.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 45

COLUMNS
The Wheels Keep on Spinning

The other important detail is that the file name for wheels
encodes platform-specific details as appropriate. For example,
many packages include some component of C code. For these
packages, the name will encode information about the underly-
ing architecture. For example, the wheel created for pandas has
the following name on my system:

pandas-0.12.0-cp27-none-macosx_10_4_x86_64.whl

This becomes useful if you’re supporting different kinds of
machines (Linux and Mac OS X) or different architectures
(32-bit vs. 64-bit). Essentially, you can build a wheel cache with
the different versions, and the appropriate version will be used
during installation.

Big Picture: Using Wheels in Practice
Currently there is an effort to have the authors of commonly
used Python packages upload their code to the Python Package
Index as wheels in addition to their normal source distributions.
As more users start relying on the wheel format, this will make
installation faster; however, I also think that this is the least
interesting aspect of wheels. This is because you can still reap
their benefits regardless of whether or not a wheel is actually
uploaded by a package author.

Imagine that you are the maintainer of Python at your company.
Internally, you might have an officially approved version of the
interpreter as well as a standard set of third-party libraries that
you use in all of your applications. As the Python maintainer,
you’ve probably already written some scripts or instructions for
setting up the officially approved Python environment on a new
machine. All of this works, but it’s also a bit slow.

With wheels, you basically can create your own custom pack-
age repository of pre-built extensions. If you point users and
installation scripts at that repository, you can turn that labori-
ous installation process into an operation that only takes a few
seconds, which is pretty neat. Also there are interesting implica-
tions for scripts that push code out to clusters and other large
system installations.

Alternatively, imagine that you’re the maintainer of an applica-
tion in your organization and you need to give it out to users.
These users may have Python on their machines, but perhaps not
all of the compilation tools needed to build complex extensions
such as those involve C code. Not to worry—you could create a
little install script that points them at your custom wheel reposi-
tory. When they install your application, they’ll get all of the
pre-built bits that you’ve made for them. Again, that can solve a
lot of problems.

More Information
Official information about wheels can be found in PEP 427
(http://www.python.org/dev/peps/pep-0427). Tutorials and
documentation can be found at http://wheel.readthedocs.org/en/
latest/. There, you will find even more advanced material, such
as how to attach digital signatures to wheels. Although wheels
are new, they have been blessed officially as the Python stan-
dard. You’re sure to be seeing more of them in the future.

Do you know about the
USENIX Open Access Policy?

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our conferences proceedings
and videos. We stand by our mission to foster excellence and innovation while supporting research with a
 practical bias. Your financial support plays a major role in making this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX Annual Fund, renew
your membership, and ask your colleagues to join or renew today

46  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Columns

ivoyeur
Counters

d a v E j o s E p h s E n

My friend Chris counts people. Well, sometimes he counts people,
and although I can tell you where, I couldn’t tell you why. I only
found out by accident, and the act of discovery felt enough like an

unwelcome intrusion that asking why seemed out of the question.

It happened when a group of us went over to his apartment at lunch. He lived across the street
from the building in which we all worked at the time, and it wasn’t uncommon for us to grab
a sandwich or whatever, and head over to his apartment to play some “DOA3” or “God Hand.”
On this particular day, Chris had left on his kitchen table a small metallic four-digit “hand
tally,” like the ones you see in the hands of parking attendants and people who take your
ticket as you come through the door.

My friend Kelly, who, like myself, has a penchant for sometimes accidentally asking embar-
rassing questions, picked it up and, glancing at the number (37 IIRC), asked what it was.
Chris replied, in so many words, that the number represented people that he talked to at a
party the night before, and didn’t appear eager to discuss it much further.

We said nothing more about it. But I often wish that Kelly had had the lack of decorum to
pursue it, or that I had, because I don’t know about you, but thousands of questions occur
to me. Important, nagging questions that, having gone unanswered, keep this story in my
memory year after year, even though nearly a decade has passed. When I die, I will die with
these questions somewhere in what remains of my dementia-riddled mind. Was this a recur-
ring polling interval, or was it a non-periodic metric? Was he storing it as an incrementing
counter that rolled over at 9999+1, or was he manually rolling it over daily and storing it as a
gauge? Had he plotted the distribution? Was it uniform? What was the mean and sigma? Had
he done any predictive analysis?

I was tempted to begin this article with something like, “Counters are a foundational concept
in systems monitoring,” although it would have been beyond condescending of me. You don’t
need me to tell you that counting things is a foundational concept. Counters are about as
simple a concept as exists. Yet, in the context of this story about Chris, it strikes me that
counter metrics are also sort of subtle and sometimes misunderstood.

Indeed the questions I have about Chris’s quantification fetish that I cannot answer
have mostly to do with the implementation details of the counter data. I can, for example,
imagine myriad reasons why he might want to count the people he talks to—that he has a
personal goal to talk to 10k unique people, or is trying to improve his interpersonal skills
by repetition. I’ve often fallen down this or that “life hacking” rabbit hole and can easily
relate. But the details surrounding how his counter metric is stored imply real and inter-
esting systems constraints.

Dave Josephsen is
the sometime book-
authoring developer
evangelist at Librato.
com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 47

COLUMNS
iVoyeur

For example, Chris, like me, cut his teeth on MRTG and RRD-
tool, so for him to store his metric as type “counter” in a round-
robin database would be natural. RRDtool’s concept of a counter
grew out of SNMP counters. Network devices, such as switches
and routers, store metrics, such as byte-counters, on each inter-
face using a 32-bit number. RRDtool’s counter type is intended
to store the current value polled from a router byte-counter
directly and automatically compute and display the derivative,
or rate of change, of that value. When you say “store it as a coun-
ter” to Ops people, this is the notion you have conjured in their
minds—that of an ever-increasing 32- or 64-bit value, which, if
plotted directly, would always look like a diagonal line increasing
from left to right.

In the mind of a programmer, a counter is also usually a 32-bit
value, although a good programmer would probably disown that,
muttering something about it being architecture dependent, and
something else about uint32. The programmer’s counter usually
has a short name (like “c”) and the programmer usually has
handy incrementors and decrementors (like “++” and “--”) built
into his or her favored language that enable simple and terse
manipulation of the counter value.

If my friend Chris tired of having a manual clicky thing in his
pocket that he had to interact with, and then later, manually copy
the value from, we can imagine that he might replace his hand-
tally with something like an Arduino board that could uniquely
identify the voices of the people he talked to. If he did this, inter-
nally, he would probably use a 32-bit integer with a small name
(like “p”) in his code to track his “people” metric. This would be
good, but he would still want to store the metric externally, so
he could see graphs without manually copying values from the
device. The Arduino could use WiFi (or whatever) to broadcast
his metric every five or ten minutes, which would enable him to
see not only how many people he spoke to but also when he did a
lot of talking over the course of the evening.

He could store the value externally in Graphite [1], a metrics
collection system with a super-simple API. Some monitoring
systems, such as Graphite, only store data as a value that may
increase or decrease (a “gauge,” in RRDtool parlance). If you
want a useful graph of a counter stored as a gauge in Graphite,
you wrap your counter in the “derive()” function when you graph
it. So if Chris wants to store his metric in Graphite, he’ll need to
write his code such that the total value of p is sent to Graphite
every so often, like RRDtool with the SNMP byte-counters.

Incrementor operators such as “++” are ubiquitous, easy to
understand, and make a lot of sense in contexts like counting
people. If, in Chris’s code, instead of sending the value of p every
time, it would be nice if he could create some sort of object, or
type, which he could simply increment each time he had a new
conversation with a unique person. Graphite’s socket API is nice,

but because it doesn’t have a counter type at all, it doesn’t provide
a simple means for Chris to, in his code, say “p++”. Chris would
either have to track the current total value himself and then
write a wrapper for himself to increment and push it, or he’d have
to query Graphite for the current total value, increment it, and
then push it back.

Either way, Chris has scalability details to consider. If he tried to
track the total value himself, he would limit concurrency. If, for
example, he eventually attempted to replace his Arduino device
with a series of room-based devices, each of which reported
more generic stats on all conversations in their respective room,
each device would have a different total value of p for Chris, and
would therefore step on each other when they tried to report up
to Graphite. If Chris tried to query the current value for p for
every measurement, he’d have a race condition, limit the polling
interval, and introduce a dependency between metrics collection
and storage, which is an unwise design choice.

Instead of communicating values, if Chris’s code could send
an Incrementor signal to the external storage system would be
ideal. That way, he wouldn’t need to store or acquire the current
value of p to increment it, and his code could be distributed and
concurrent. Scalability concerns would be pushed up from the
metrics collection tier to the metrics storage tier, and the number
of bits on the wire would be smaller and more predictable. This,
in a nutshell, is why Statsd [2] was created. Statsd was designed
to be a middle layer between Graphite and your metrics sources.
It can listen for Graphite protocol values as well as special pur-
pose instructions, such as incrementor signals. Statsd can also
“roll up” multiple broadcasts from metrics collectors into single
updates, taking some of the strain off Graphite itself.

In case I haven’t made the subject of counters convoluted
enough, to run Statsd on every server, or centrally, or both is
common practice. We can imagine, for example, Chris’s multi-
room conversation-counter system, tracking per-room metrics,
in which case each room would have its own value of p that
would be tracked as a separate metric. If we wanted a total value,
we could sum() them at visualization time in Graphite. Alterna-
tively, we could run Statsd at a central location, and point every
room at it. We could still track per-room metrics this way, as well
as allowing every server to increment a global total value coun-
ter. Finally, we could run Statsd on every server, which could
give us a high localized polling interval, and then point each
server Statsd instance at a centralized Statsd, to roll everything
up and maintain a global counter.

In my opinion, the programmatic notion of a counter as “a
value we use to count things,” is more intuitive than RRDtool’s
“ever-increasing, sometimes rolling-over, value we assume
you’re going to want to plot the derivative of at some point.” More
importantly, the two definitions are not compatible with one

48  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Columns
iVoyeur

another in a data-storage sense. We cannot store the former in a
box designed for the latter.

For example, Chris might eventually run into some situations
in which he wants to decrement p, especially if every conversa-
tion is automatically being counted for him. “Conversations”
beginning “Where is the bathroom?” and “Do you have change
for a $20?” might not seem to him to be valid data, and although
there’s no reason he couldn’t decrement p using Graphite and
Statsd, he’d be stuck kludging around with RRDtool. Counters
like those in Coda Hale’s Metrics [3] library are often used to
track things such as cache entities and live threads, and for these
purposes decrementors are an absolute necessity. In a more
general sense, this implies that when we undertake to decide on
a metrics storage system, we can no longer assume we already
fully understand the primitives based on their names. We need
to be sure we know what is meant when someone says “counter.”

In the past few years, the field has grown laden with metrics
collection systems that each have a thing called a “counter,” the
meaning of which is often expected to be intuitive (because, duh,
what could be more obvious than a counter). But heads up. As I
hope Chris and I have illustrated, counters are not simple, and
they’re only sometimes used for counting things.

Take it easy.

References
[1] Graphite: http://graphite.wikidot.com/.

[2] Statsd: https://github.com/etsy/statsd/.

[3] Coda Hale’s Metrics: http://metrics.codahale.com/.

HotCloud ’14:
6th USENIX Workshop on

Hot Topics in Cloud Computing
Tuesday–Wednesday, June 17–18

www.usenix.org/hotcloud14

HotStorage ’14
6th USENIX Workshop on Hot Topics

in Storage and File Systems
Tuesday–Wednesday, June 17–18

www.usenix.org/hotstorage14

WiAC ’14
2014 USENIX Women in

Advanced Computing Summit
Wednesday, June 18

www.usenix.org/wiac14

ICAC ’14
11th International Conference on

Autonomic Computing
Wednesday–Friday, June 18–20

www.usenix.org/icac14

USENIX ATC ’14
2014 USENIX Annual
Technical Conference

Thursday–Friday, June 19–20
www.usenix.org/atc14

UCMS ’14
2014: USENIX Configuration
Management Summit
Thursday, June 19
www.usenix.org/ucms14

URES ’14
2014 USENIX Release Engineering
Summit
Friday, June 20
www.usenix.org/ures14

More events will be announced soon!

Save the Date!

2014 USENIX Federated Conferences Week
June 17–20, 2014 • Philadelphia, PA

www.usenix.org/fcw14

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 49

Columns

The measure of success is not whether you have a tough problem to deal with, but
whether it is the same problem you had last year.

 —John Foster Dulles

In the stock market, financial institutions that are considered to be well
run sell at a premium: their stock price is greater than their tangible
book value, the price/book ratio. What is that book value? A simple num-

ber that is easy to acquire and understand, book value is the asset’s dollar
value carried on your balance sheet. Applying book value to IT, what cost did
you incur to develop, deploy, and operate your system? That’s its book value.

Why would anyone pay more than book value for a bank’s assets? Because some banks make
higher quality loans and take less risk. Investors deem Wells Fargo and US Bank to be well
run: Wells Fargo trades at 1.5x book value and US Bank trades at 2.0x book value. Conversely,
banks that are thought to be less well run sell below book value: Citigroup has traded at near
half its book value since 2008.

The stock market’s premium for Wells Fargo and US Bank and its discount for Citigroup
may or may not prove to be well founded, but what those price ratios tell you is the value that
investors place on the quality of the assets and the risk management of those companies.

In this spirit, we propose using a Margin of Safety calculation to compare the book value of a
company’s IT assets (software, servers, development, and so on) to book value of the security
controls and services used to defend those assets. We suggest that the difference between
these two numbers assesses the level of safety for assets in your enterprise. If the assets’
book value is well covered by the book value of the security controls, then you are making
minimal assumptions as to the efficacy of your security systems. If the gap is wider, you may
be asking for heroic efforts—too much—from your security services and team.

In investing, paying less than $1 for $1 of assets is an example of a Margin of Safety. What
we seek to show here is where the line between safety and speculation occurs in information
security systems.

A disclaimer: we make no attempt here to address a number of important concepts. We con-
sider the basic book value to be a number, a number that has the personality of a brick; it does
not change much, it is not subject to interpretation. To us, that’s beautiful. It’s also limited.
In using the book value metric, we do not address the earnings power of the assets, nor do we
attempt to measure the efficacy of the security controls.

Margin of Safety or Speculation?
Measuring Security Book value

d a n g E E r a n d g u n n a r p E t E r s o n

Dan Geer is the CISO for In-Q-Tel
and a security researcher with
a quantitative bent. He has a
long history with the USENIX
Association, including officer

positions, program committees, etc. 
dan@geer.org

Gunnar Peterson is a Managing
Principal, Arctec Group, which
provides security and identity
architecture consulting,
development, and training

across the globe. Gunnar consults and
trains developers, architects, and security
pros in secure coding and architecture.
He is a contributing analyst at Securosis,
an IANS faculty member, and blogs at
http://1raindrop.typepad.com.
gunnar@arctecgroup.net

50  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Columns
Margin of Safety or Speculation

The earnings power of the assets is arguably the single most
important business metric; the efficacy of the security control
is arguably the most crucial security metric. Why, then, do we
propose to not address either? Simple—both earnings power
and efficacy are highly subjective, path dependent, fraught with
errors, time varying, and prone to willful misinterpretation. You
throw out a subjective number in a meeting and then defend that
subjectivity to anyone who disagrees. This is metrics at their
worst, people marinating in their own biases rather than letting
the numbers do the talking.

Book value, on the other hand, is appealing for all its brick-like
qualities. For one thing, it is hard to argue with. You either paid
$10M for SAP or you didn’t. It’s there in black and white, and,
better yet, the accounting department will back you up on it.

Okay, so it’s a good number, but what can you use it for? To quan-
tify assumptions, illuminate priorities, and identify opportuni-
ties for improvement.

To illustrate how book value quantifies assumptions, let’s con-
sider a company that runs a customer Web site and a customer
mobile app.

The customer Web site cost $5M to develop and deploy. The
company spent $250k on security software and services for that
Web site.

The mobile app cost $1M to develop and deploy. The company
spent $25k on security software and services for that app.

Now we use the Asset/Security ratio to compare the cost of the
project versus the cost of the security services in Table 1.

The Margin of Safety shows that the mobile project has, on a
relative basis, invested half as much in security as the Web app.
Margin of Safety is a coverage metric. Coverage metrics are
useful precisely because of the assumptions they do not make.
Applications and systems are built to do something functional.
Functionality can be measured in the present. Risk lies in the
future. The Margin of Safety cover shows what’s invested to
absorb unfavorable future events. The Web app team invested
5% of its budget in failure mitigation.

Does this mean the Web app is secure and mobile is doomed?
Hardly. What it does mean is that company management is
assuming one of the following: the mobile security team is twice
as effective as the Web team or the mobile threat environment is
half as dangerous as the Web threat environment.

Calculating the Margin of Safety for Web versus mobile shows
a simple way to compare across projects, that is, the Margin
of Safety imposes an ordinal scale across those projects and
ordinal scales are decision support tools, per se. The metric is
a means to an end, not an end in and of itself. Are the managers
who allocated half the security budget to mobile assuming the
team can execute? Are they assuming that they have tools to
close the gap? Are they assuming “no one hacks mobile”? Look-
ing at book value does not answer these questions, but it gives a
framework to ask these questions, and have rational conversa-
tions about how to move forward.

Book value can be used for security architecture, not just proj-
ects. Consider what your organization spends on network, host,
application, and data security, then compare its book value to
the book value of the non-security spent to develop, deploy, and
operate those assets.

To illustrate, we fabricate Table 2. In it, what we see is that IT
assets like applications and data are underinvested. Assuming
the developers and DBAs are highly skilled, care deeply about
their work, are trained in secure coding and configuration,
and have built their own tools, this could be a non-problem, but
absent assumptions like those, the Margin of Safety points to
a yawning gap in security coverage of the organization’s most
valuable IT assets.

In short, security spending should be treated like a bank’s
assets—a purchased good that is on the books. Using that book
value as the starting point lets you cleanly separate the objec-
tive measure (book value) from the assumptions you are making
(leverage ratio). The amount you extend beyond your security
spending is your company’s leverage. Note that, just as with
banks, leverage itself is risky and amplifies any risk that you
already have on your books.

Web Mobile

Asset $5M $1M

Security $250k $25k

Asset/Security Ratio 20 40

Margin of Safety 5% 2.5%

Table 1: Asset/Security ratio for our example Web site and mobile app

Security IT Dev & Ops Margin of

$amt/year $amt/year Safety

Network 1,000,000 2,000,000 50%

Host 750,000 3,000,000 25%

Application 350,000 5,000,000 7%

Data 50,000 2,000,000 2.5%

Table 2: Some values fabricated to illustrate differences in the Margin
of Safety

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 51

COLUMNS
Margin of Safety or Speculation

Margin of Safety benefits:

1. Almost anyone at any level in the organization can calculate
this for any of their projects in ~20 minutes.

2. The Margin of Safety can be compared across projects.

3. Gives you a way to see where you are more exposed and some
idea where to allocate resources.

4. Uncontroversial and simple to understand metric.

Margin of Safety limitations:

1. Silent on the quality of either earnings power or efficacy.

2. Silent on threats and deployment—so manually you would
need to adjust for what is appropriate “internal” leverage vs.
DMZ leverage.

3. Like most everything, datasets are likely not available to the
general public to test.

As to the benefits, try it out and report back. As to the limita-
tions, we prefer silence to rank speculation.

Do you have a USENIX Representative on your
university or college campus?
If not, USENIX is interested in having one!
The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association information to
students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX is always looking for academics to
participate. The program is designed for faculty who directly interact with students. We fund one representative from a campus at a time.
In return for service as a campus representative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX publications
at your university for student use

■ Distributing calls for papers and upcoming event brochures, and
re-distributing informational emails from USENIX

■ Encouraging students to apply for travel grants to conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas of the USENIX
Web site, free conference registration once a year (after one full year of service as a Campus Representative), and electronic conference
proceedings for downloading onto your campus server so that all students, staff, and faculty have access.

www.usenix.org/students

■ Providing students who wish to join USENIX with information
and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions
on how the organization can better serve students

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four year accredited university ■ Have been a dues-paying member of USENIX for at least one
full year in the past

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

52  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Columns

/dev/random
r o b E r t F E r r E l l

CYBERWORDS

CYBER, CYBER, burning bright:
In the headlines, left and right;
What misplaced idolatry
Has brought thee thus to primacy?

Cyber- a combining form representing computer (cybertalk; cyberart; cybercafé)
and by extension meaning “very modern” (cyberfashion).

[http://www.thefreedictionary.com/]

Based on this introduction and my little attempt at poetic mockery
up there, you probably think I’m going to launch into some tedious
diatribe against those who make up terrible new words or overuse a

basically meaningless existing one, but as usual you do me an injustice. I am
in fact newly fascinated by the versatility of the adjectival prefix cyber. It is
not only versatile, it apparently possesses much arcane power—as evidenced
by the sudden and dramatic increase of any budget in which it appears. It
evinces a great deal of bluster linguistically, as well. Take any ol’ word that’s
been around since your grandmother was in analog diapers, tack cyber onto
the front end, and bippity-boo! A new threat/trend/industry/social sensation
leaps fully formed from the forehead of iniquity. Allow me to illustrate:

Terrorism becomes CYBERTERRORISM!

Crime becomes CYBERCRIME!

Criminals become CYBERCRIMINALS!

Power becomes CYBERPOWER!

Bullying becomes CYBERBULLYING!

Punks become CYBERPUNKS!

Patriot becomes CYBERPATRIOT!

Spy becomes CYBERSPY!

Espionage becomes CYBERESPIONAGE!

Employment becomes CYBEREMPLOYMENT!

Security becomes CYBERSECURITY!

Space becomes CYBERSPACE!

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist for the
2011 Robert Benchley Society

Humor Writing Award. rgferrell@gmail.com

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 53

COLUMNS
/dev/random

And, of course: Armageddon becomes CYBERARMAGEDDON!

ad nauseum (see Free Dictionary entry, above, for an even more
horrifying expansion of meaning).

I employ the imperative voice here because CYBERWORDS are
larger than life and must be shouted when used. I had to wear
reading glasses while typing this, not so much because my eyes
are bad as to counteract the necessity for scooting further back
from the monitor to keep the CYBERWORDS from damaging
them with their forcefulness. On the surface, CYBERWORDS
are little more than etymological kitsch, but a deeper investiga-
tion reveals their subtle psychological potency. Since the prefix
cyber conveys no specific information—only a vague sugges-
tion that computers are somehow involved and the technical
aspects are therefore beyond the average person’s grasp—it can
be employed in a wide variety of situations where no other single
prefix would work. More importantly, it automatically lends the
user a certain degree of “hacker cred,” since only a hacker would
use words with cyber in them, right? It is well known that in
private communications, we . . . I mean they . . . use cyber as many
times as possible. It’s cyberiffic! Invoking cyber in conjunction
with employment is a sure-fire winner. You can spice up a ho-
hum résumé in no time flat by converting all your boring normal
experience and positions into cyber gold. I have been saddled
with résumé-reading duty on several occasions at my own
cyberjob and I never fail to be stricken by the number of people
with significant cyber-professional lifestyles. After a few dozen
exposures to this pathology, I realized that virtually any job in
existence could be cyberized. Take this seemingly innocuous
narrative, for example:

I stocked shelves in the electronics department,
including CDs, DVDs, mice, printer inks and paper,
cables, software, and assorted hardware such as
Ethernet hubs, USB hubs, external hard drives, and
thumb drives. I also swept and mopped the floors at night
after we closed.

Let us run this tiresome, unmarketable mishmash through
the miracle process of cyberization and cybervoilà! A polished,
employment-assuring chronicle of high-tech cyberwizardry:

Coordinated cyberlogistics by ensuring the continued
supply of cybermedia, cybermateriel for written
cyberoutput, and cyberdatacommunications equipment.
Also responsible for cyberdatastorage continuity and
maintaining a cyberclean cyberenvironment.

Now, that’s one young technophile on target to get the cyberjob
they’ve always dreamed of. (Yes, I know that “they” does not
belong in a sentence referring to a single individual, but as a
columnist you have to be careful about these things. Originally
I had “she’s,” but then I thought someone might believe I was
implying that women were only capable of menial jobs. When I

tried “he’s,” I could hear someone complaining to USENIX that
one of their columnists said that only men were smart enough
to have computer-related jobs. I settled, therefore, on “they’ve”
because English has no third person singular gender-neutral
pronoun except “it”—but to use that in reference to a person is
to imply that person is not truly human. Besides, according to
Wikipedia “they” is now accepted in that grammatical role, and
we all know how authoritative Wikipedia is. Capisce?)

As with any overused word, phrase, prefix, suffix, or hyperbole,
it’s going to get more and more difficult to understand precisely
what a word beginning with cyber- actually means. I propose
that we begin work now on a translation algorithm that we can
modify as the insanity progresses. Perhaps it would be best to
adopt the antivirus program model and create signature files we
can update regularly as new atrocities are spotted in the wild.
You can download the latest ones once a month and run all of
your cybergarble through them to get a rough translation.

At its most fundamental, cyber simply denotes “computer”
or “digital.” For example, cybersecurity is now being used as
a replacement for “computer security” or the more ambitious
“information security.” For the most part you can take any job
that formerly contained elements derived from its association
with the computing realm and slap cyber on it with impunity.
Computer geek? No, cybergeek. Printer repair technician? Uh
uh, cyberprint specialist. Computer-based training? How droll:
cybereducation, my good man.

This current pandemic of cybermania appears, according to my
research, primarily to have cascaded from the adoption by the
U.S. government of cyber words in Requests for Proposals and
their ilk. In order to appear more in tune with the requirements
and therefore more likely to score those lucrative contracts,
firms began to couch themselves in cyberosity. The more times
they worked cyber into the proposal, the more warm fuzzies they
and their stockholders got. Naturally, whatever products they
create under the aegis of that contract will be liberally sprinkled
with cybers, as well.

I must confess here and now that I was guilty of contributing
to this disease early in its incubation period. In 2000 I wrote a
feature article for Security Focus called “Calling the CyberCops:
Law Enforcement and Incident Handling.” Had I known where
cyber was taking us, or rather where we were taking it, I would
have lopped it off and left it next to my workstation for the nice
lady who cleans my office to carry away.

There will come a time, probably in the very near future, when
cybers are so plentiful that they will overtax the linguistic environ-
ment and begin to force native words into extinction. At that point
we will have no choice, if we want to preserve some semblance of
comprehensibility in the language, but to declare hunting season on
them. I will be right there on opening day, armed to the cyberteeth.

54  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

BooksBook Reviews
E l i z a b E t h z w i C K y , w i t h M a r K l a M o u r i n E

Perl One-Liners
Peteris Krumins
No Starch Press, 2013. 138 pages.
ISBN 978-1-59327-520-4
Reviewed by Elizabeth Zwicky

Perl One-Liners is what anything named a cookbook should be.
This book is not an attempt to cover every Perl one-liner ever, or
even every useful Perl one-liner ever; it’s not an attempt to cover
Perl from end to end. Instead, it’s a tour through the landscape
of interesting and/or useful Perl one-liners. You can learn a lot
about Perl from it, and if you spend much time throwing files
around on UNIX, you’ll also learn a few interesting tricks. Plus
this book is just plain fun.

The introductory chapter is the weakest because it reads like it
was added afterwards to provide some background. If you know
something about Perl, this chapter isn’t necessary. If you don’t
know much about Perl, this chapter probably isn’t sufficient.
Skip ahead to the good stuff, and if you get stuck, refer to a better
introduction to Perl source.

As a crufty old UNIX type, I would have liked more of the one-
liners to mention the existing commands they duplicate. Some
of them do, but others don’t. This book does not explain that “nl”
exists and is happy to number lines for you, or that “grep” knows
how to give you context lines.

And a final cranky complaint: for goodness’ sake, eight ran-
dom letters does not a password make. No, not even if you add
numbers. And not really if you go to 14 characters. Take your
one liner to generate eight random letters and call it a cat-
naming scheme or something, but do something less pitiful for
passwords. Punctuation. Uppercase characters. Start with 14
characters, not as a possible extension. Otherwise, you are living
in the past century, and even then, not at the cutting edge.

Agile Data Science
Russell Jurney
O’Reilly, October 2013. 158 pages.
ISBN 978-1-449-32626-5

Doing Data Science
Cathy O’Neil and Rachel Schutt
O’Reilly, October 2013. 360 pages.
ISBN 978-1-449-35865-5
Reviewed by Elizabeth Zwicky

These two books are both interesting, somewhat eccentric takes
on data science, and they make a nice complementary pair.

Agile Data Science walks the reader through one agile approach
to data science, end-to-end, covering everything but the actual
data science—the tools, the processes, the agile mindset. If I
were doing data science for a startup, I would devour this book,
and then almost certainly do something else. But that something
else would be easier and more intelligent because I’d read the
book. And I would have at least some idea about the tools in every
piece of the chain.

If you have an existing agile organization and want to add in data
science, this book will probably help. If you have an existing data
science organization and want to become agile, look elsewhere.
This book offers a perfectly nice description of one possible solu-
tion, but it’s not a discussion of converting to agile.

Doing Data Science is a book version of a course about data sci-
ence. It does a minimal job of covering tools, and concentrates on
algorithms and the idea of data science. The book is a fascinat-
ing read and covers a lot of territory. I enjoyed the classroom feel
and the introspection, for the most part, but I felt that other parts
didn’t work as well. The data visualization section, for instance,
raised interesting questions, but didn’t provide the sorts of insight
I found in the algorithm discussions. In the end, I felt like the
intriguing data art could have been left out without any great loss.

Doing Data Science provides a good introduction for people get-
ting interested in data science.

Designing for Behavior Change
Stephen Wendel
O’Reilly, October 2013. 346 pages.
ISBN 976-1-449-36762-6
Reviewed by Elizabeth Zwicky

I’m always interested in behavior change, because it’s one of
the big problems in security: How do you convince people to be
more secure? This is a book about building products that change
behavior, and now I’m kind of sad that I’m not in a position to try
to build a product that would convince people to be more secure.
That never actually seemed like a vaguely plausible idea to me
before, but now I have read a whole book dedicated to the idea
that you could actually build software to change behavior, with-
out even engaging in unfounded optimism.

The author talks believably about both behavior change and
product development. In fact, if you’re going to build a product
that’s not about behavior change, you could do a lot worse than
reading this and just ignoring the parts about behavior; you’d be
left with good advice on defining, developing, and evaluating a
product. He advocates an approach based in science, right down
to actually figuring out whether you’re getting anywhere. He’s

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 55

Books

open about the difficulties involved, and totally practical about
issues like statistical knowledge. How low can you go on statis-
tics and still have reason to believe your numbers? What should
you do if you’re pushing that boundary and need to know how
many test subjects are enough? If a professor would be really
handy, how would you get one involved?

Linux Utilities Cookbook
James Kent Lewis
Packt Publishing, 2013. 198 pages.
ISBN 978-1-78216-300-8
Reviewed by Elizabeth Zwicky

You can’t cover all of Linux in 198 pages. In order to do some-
thing useful in that little space, you need to define an audience
and scope tightly. Sadly, this book does not do that. Instead, it
veers back and forth between system administration topics and
introductory topics, resulting in a chapter on file systems that
talks about what “ls” and “cd” do, but starts with a discussion of
inodes and superblocks.

Worse yet, that discussion is neither technically nor grammati-
cally accurate. “Things that are not available in the inode are the
full path and name of the file itself. This is stored in the /proc
filesystem under the PID (process ID) of the process that owns
the file.” This is stunningly incorrect. (Hint: files still have names
when the system isn’t running. The names are in the file system.)

I could go on at length, but the bottom line is that this is not an
adequate resource for new Linux users or new Linux administra-
tors. People interested in being power-users would be better off
with something like The Linux Command Line (William Shotts,
No Starch), and new system administrators should tackle the
intimidating bulk of UNIX and LINUX System Administration
Handbook (Evi Nemeth et al., Prentice Hall) or Essential System
Administration (Aeleen Frisch, O’Reilly).

Programming Distributed Computing Systems:
A Foundational Approach
Carlos A. Varela
MIT Press, 2013. 271 pages.
ISBN: 978-0-262-01898-2
Reviewed by Mark Lamourine

I’m not sure I’m qualified to review this book, but I’m going to do
it anyway. Programming Distributed Computer Systems is the
first real computer science book I’ve read in a long time.

Programming Distributed Computer Systems is a teaching
textbook aimed at graduate or high-level undergraduate students
in computer science. The author’s goal is to teach four recent
formal models of distributed programming with both theoretical
and practical examples.

Varela divides the book generally into two sections. In the first
half of the book he treats the models and the formal languages
that have been created to express them. In the second half he
presents a set of classic programming problems and demon-
strates their solutions in languages that support the new models.

In the introductory chapters, Varela first introduces and details
the lambda calculus, the basis for sequential programming
theory (and implemented as functional programming). I actu-
ally have a little experience with functional programming and I
found this an excellent refresher course. The next three chapters
introduce newer formal languages which add features or con-
cepts to express different aspects of the newer models.

Each model and the corresponding formal language has a name
that doesn’t necessarily have any additional meaning. They are
known as the pi calculus, actors (an extension of the lambda cal-
culus), the join calculus, and the ambient calculus. The program-
ming chapters use Pict, SALSA, and JoCaml to demonstrate the
pi calculus, the actor model, and the join calculus, respectively.
(There’s currently no language that implements ambients.)

Varela explicitly states in the introduction that he intends to
present all of the theory before beginning any of the program-
ming examples. He claims that he’s found that to be the most
effective way to consume and digest the concepts. I’m not sure I
agree. In the early chapters, he details the syntax and semantics
of each new calculus, but the “meaning” that he offers is almost
purely in terms of the formal language itself. He teaches the
rules, but not really what they mean and why they’re useful or
make sense. It’s not until he’s done with all of the theory that he
gets to showing how the formal model applies to real problems. I
tried reading each chapter in sequence as he recommends.

Although I wouldn’t want code interleaved at the presentation
of each new concept, I found myself slogging and struggling to
retain the rules because they didn’t yet have a meaning for me.
To his credit, Varela offers an alternate map for the book. Instead
of reading the chapters sequentially, he indicates that you can
follow each theory chapter in the first half of the book imme-
diately with the matching programming chapter in the second
half. I’d recommend that path, especially for the solo reader.

This book is meant to be taught. Although Varela’s writing
is clear and not dense or turgid, the topic is abstract (at least
to a professional system administrator). A couple of hours of
lecture and discussion a week would certainly help throw light
in the shadows and fix the ideas in my memory. A set of well-
crafted programming assignments would help even more. A
solo reader will need a lot of discipline to get everything he or
she should from this book.

I’m still trying to decide whether I would recommend this book
to anyone I know. It is extremely well written, but I don’t know

56  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Books

that many people who would be interested in this topic presented
in such an academic way. Formal languages are used (mostly)
to reason about programming rather than to produce working
applications. The languages that are used aren’t mainstream
enough for large-scale applications. If I were teaching the
analysis of distributed programming, I’d definitely use this book.
I enjoyed reading it, and I’m still working my way through the
examples again to see what I missed the first time. I guess you’ll
know best if that appeals to you, too.

Alternative DNS Servers
Jan-Piet Mens
UIT Cambridge , 2009. 695 pages.
ISBN: 978-0-9544529-9-5.
Reviewed by Mark Lamourine

Alternative DNS Servers gives several good first impressions,
starting with its heft and with the quality of the paper and
printing. Then Jan-Piet Mens had my cranky grammarian heart
when he properly constructed the title of the introductory chap-
ter of his book: “Introduction to the DNS.” My happiness grew as
I read the rest of the book.

This is a book I wish I’d known about when it was published
almost five years ago. It’s a fantastic addition to the canonical
O’Reilly book by Cricket Liu and Paul Albitz [1]. Unlike Liu and
Albitz, Mens discusses a wide range of alternatives to ISC BIND,
eight in all. He also addresses something I’ve wondered about for
years: how to create a database-backed DNS service.

The DNS is the most fundamental Layer 3 protocol of the Inter-
net. Without it, little else will work. In fact, the DNS works so
well that even most system administrators don’t fully under-
stand what happens when they issue a lookup query. The first
three chapters of Mens’ book are an excellent introduction to the
workings of the DNS, from the process of resolution to the con-
tents and meaning of the resource records as returned by dig.
The third chapter itemizes the considerations when planning a
DNS service deployment.

This is where Mens gets to the “alternate” in the title. The next
11 chapters are a whirlwind of DNS servers. Some are small,
suitable for self-contained labs, whereas others are backed with
enterprise-quality replicated databases. In each case Mens high-
lights the features that would make each one the right choice for
an environment. He does include BIND backed by both relational
and LDAP databases, but it’s treated as just another possibility.
This section should be an eye opener even to people who’ve been
running DNS services for a long time.

The DNS servers range from tinydns and dnsmasq, which are
suitable for small work groups and labs, to PowerDNS, Microsoft
DNS, and BIND backed by MySQL or OpenLDAP, which are

commonly used to provide enterprise-level services. This
section also has chapters on configuration variations, such as
 dedicated caching nameservers, private DNS roots, and split
DNS for NAT networks.

Mens doesn’t leave the reader with a whirlwind tour of DNS
servers. The final section addresses operational issues and
discusses how they’ll affect the choice of server and deployment
options. There are chapters devoted to database update proce-
dures, internationalization, DNSSEC, and relative performance
(with real measurements and details of the testing environment).

The appendices provide details that would have been diversions
if they had been placed in line. Many books provide a primer for
setting up an LDAP server. Mens provides a collection of tips
and tools for problems he’s found through experience. His toolkit
includes things such as a pattern to avoid updating a zone file
without also incrementing the SOA serial number, tuning the
database with MySQL-defined functions, and small DNS servers
in Perl.

Now comes something I didn’t expect. Within a year after pub-
lication with UIT, Mens made the complete text of Alternative
DNS Servers available free in PDF form at the link [2] below.

The DNS is an overlooked element of general system adminis-
tration. It doesn’t need to be the domain of a priesthood or the
cranky steampunk machine you don’t touch out of fear that
it will fail in mystical ways. Alternative DNS Servers makes
it possible for ordinary system administrators to deploy and
manage production-quality DNS services sized properly for any
environment.

[1] DNS and BIND, 5th ed., ISBN 978-0-596-10057-5.

[2] Also available free as a PDF at http://jpmens.net/2010/10/29/
alternative-dns-servers-the-book-as-pdf/.

In Search of Certainty
Mark Burgess
XtAxis Press, 2013. 445 pages.
ISBN: 978-14923891-6-3
Reviewed by Mark Lamourine

I could write a whole article about my thoughts on this book, but
that wouldn’t be a review; that would be an analysis. I had some
pretty strong responses both to the writing style and the content.
For the first time since I’ve been reviewing books, I actually
sought out the author so that I could be sure I understood his
intent before I responded based only on my assumptions.

Mark Burgess is well known in the sysadmin and configuration
management (CM) communities. He has some fairly strong and
somewhat controversial opinions about the state and direction of
development of CM philosophy and tools. He’s also one of only a

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 57

Books

handful of people I know of who are even trying to study system
administration and CM as proper academic disciplines. Lots of
people are doing CM (such as it is), but not many are thinking
about it in what I consider a rigorous way.

So, let’s talk about the book.

In Search of Certainty is presented in three sections. The first
two challenge our assumptions about how computers and
computation work. In the third section, Burgess describes a
way to reason about computer systems and applications that
(he claims) has the ability to resolve the issues of stability and
uncertainty that are inherent in any large complex distributed
system.

In the first section Burgess highlights the flaws in our assump-
tion that our computer systems are inherently stable and that
we are in complete control. He begins by discussing the concepts
of scale and emergent phenomena. The next sections examine
the fact that measurements are necessarily discrete and only
approximate the actual state of the observed system, even
setting aside experimental error and communication uncer-
tainty (more on those later). He touches on the idea that modern
distributed computer systems are so complex (in the colloquial
sense) that their behavior has become complex (in the math-
ematical sense). That is, their behavior has become non-linear
and unpredictable in the same way that weather systems and
financial market behavior are. We can’t control them at a macro
scale because we can’t even understand them. They fail in spec-
tacular and unexpected ways because they are both unpredict-
able and contain much more energy in temporary equilibrium
than the system can withstand when that energy is released
suddenly. The section completes with a chapter on the idea of
stability as the process of finding the (local?) minimum energy
state of a system (the “zero state”) and the idea of engineering to
make sure that the desired state of a system is its zero state.

In the second section Mark turns his attention to our view of the
state of the systems we create and manage and the uncertainty
inherent in any communication over distance. Here he explains
the limits to what we can know about the state of a system.
Based in information theory as first described by Claude Shan-
non in 1948, his argument is that even when we get an answer to
a query about a system, even when you account for measurement
error, there is still the possibility that the message was garbled in
transmission or just plain misunderstood by the receiver. (These
are not the same thing!) In the same way that quantum uncer-
tainty is a fundamental principle rather than something we can
overcome with finer measurements, information uncertainty is a
fundamental feature of communication. In fact there is a sense in
which they are actually facets of the same properties of physics.

The last section is where Burgess finally starts to restore our
hope that we can ever build real, useful systems and have any

chance that they will perform as we expect. Given the triple
problems of complexity, entropy, and uncertainty, Burgess
argues, it is foolish to expect to build and control large, complex,
stable and robust information systems by imposing structure
and state rigidly from outside.

His response is also based in information theory. Rather than
trying to model large systems from above, Burgess proposes
modeling them from the bottom. Over several decades, he’s
formulated something he calls promise theory. A promise is a
purely local expression of some desired state. It is more than a
simple assertion, which can only have two states, true or false. A
promise can be fulfilled or not, but it can also indicate whether
the state required repair at the last state check. Relationships
between parts of a computer system are expressed as mutual
promises between the parts. Promises can be grouped into col-
lections that express more complex structures and behaviors and
can also express how the parts will respond if some promise is
not (or not yet) fulfilled.

Burgess claims that promise theory and its expression in the
software system provides a means to describe the large systems
we are deploying in a way that will allow us to avoid the cata-
strophic failures that are inevitable using traditional configu-
ration methods. He’s developed and evolved a software service
called CFEngine to embody the theory.

Back to my impressions of the book.

I think I came to In Search of Certainty with expectations
that Burgess didn’t ever plan to meet. I was hoping for a tight
technical exposition leading to a conclusion. What he wrote
was a twisty personal journey through elements of classical and
quantum physics, information theory, and quite a few personal
anecdotes and inspirations. For me, the really interesting mate-
rial doesn’t begin until the end of the final section.

I was left hungry to learn more of the underpinnings of promise
theory. He spends a lot of time explaining how our current top
down software and service creation methods are doomed to
ultimate failure but doesn’t give much time to explaining how
promise theory can be used for engineering.

I found some of the analogies between physics and computa-
tion a bit thin. Gas pressure and Boltzmann’s constant don’t
really have that much to do with the tendency of hardware and
software to fail. Hardware failure aside, general system configu-
rations don’t degrade over time without humans making uncon-
trolled changes. Although the statistical similarities between
one specific computer system behavior and some properties of
quantum mechanical systems may be interesting, the differ-
ences limit any comparison to a curious coincidence.

Although I agree with his assessment of the current state and
trends in creating computational systems and find the mecha-

58  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Books

nism of promise theory interesting, I find Burgess’s arguments
that promise theory is the way to solve the problems a bit weak. It’s
not that I think he’s wrong, just that his arguments don’t make the
case for him. In fact, I think there are elements that really deserve
more attention than they have been given up to now.

I really want to see more formal research into how the use of
more or less purely declarative languages (of which CFEngine is
only one) can be used to describe complex systems in a way that
is significantly different from any other method. I want to see
real demonstrations that the stability and uncertainty issues
inherent in large complex distributed information systems are

actually mitigated in practice when compared to other meth-
ods. I want to see research into how to apply promise theory (or
anything else) to the problem of engineering emergent behaviors
from localized concrete state definitions.

I came to this book hoping for some of those answers. What Bur-
gess provided was a meandering travelogue of how we’ve reached
where we are now as seen through the lens of his own personal
journey. That’s not without merit. I think the science and
mathematics could have been expressed much more briefly and
clearly, but in the end, I think I got the message. I will certainly
read whatever comes next, because I want to know, too.

USENIX Member Benefits
Members of the USENIX Association receive the following benefits:

Free subscription to ;login:, the Association’s bi-monthly print magazine, and ;login: logout, our Web-exclusive
bi-monthly magazine. Issues feature technical articles, system administration articles, tips and techniques, practical
 columns on such topics as security, Perl, networks, and operating systems, book reviews, and reports of sessions at
USENIX conferences.

Access to new and archival issues of ;login: and ;login: logout: www.usenix.org/publications/login.

Discounts on registration fees for all USENIX conferences.

Special discounts on a variety of products, books, software, and periodicals:
www.usenix.org/member-services/ discounts

The right to vote on matters affecting the Association, its bylaws, and election of its directors and officers.

For more information regarding membership or benefits,
please see www.usenix.org/membership-services
or contact office@usenix.org.
Phone: 510-528-8649

Notes

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 59

USeNIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the
Association’s magazine, published six times
a year, featuring technical articles, system
administration articles, tips and tech-
niques, practical columns on such topics
as security, Perl, networks, and operating
systems, book reviews, and reports of ses-
sions at USENIX
conferences.

Access to ;login: online from December
1997 to this month:
www.usenix.org/publications/login/

Access to videos from USENIX events in
the first six months after the event:
www.usenix.org/publications/
multimedia/

Discounts on registration fees for all
 USENIX conferences.

Special discounts on a variety of products,
books, software, and periodicals:
www.usenix.org/member-services/
discounts

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers.

For more information regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

USeNIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Margo Seltzer, Harvard University
margo@usenix.org

V I C E P R E S I D E N T

John Arrasjid, VMware
johna@usenix.org

S E C R E T A R y

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

T R E A S U R E R

Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S

David Blank-Edelman, Northeastern
 University
dnb@usenix.org

Sasha Fedorova, Simon Fraser
University
sasha@usenix.org

Niels Provos, Google
niels@usenix.org

Dan Wallach, Rice University
dwallach@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

Transition of USeNIX
 Leadership
by Anne Dickison and Casey Henderson

Two years ago, USENIX took an unusual
step in appointing Co-Executive Directors
to handle a challenging transition. It was
exactly the right move for the organization
and for us personally. However, the organi-
zation is largely now past that transition.

Thus Anne has decided that it’s time for her
to take on a new challenge. She concluded
her tenure at USENIX in January. Casey
has since assumed the role of sole Executive
Director of USENIX.

We have enjoyed working with the USENIX
communities in our Co-Executive Director
roles. It’s been a pleasure to further develop
relationships that we’d begun during our
previous positions at USENIX and to es-
tablish so many new connections. Anne has
thoroughly enjoyed her time at USENIX and
will miss working with such a tight-knit and
exciting community. Casey looks forward to
continued collaboration with you all in her
new role. It’s an exciting time for USENIX;
everyone in the office appreciates your
support as we move forward. Please contact
execdir@usenix.org with any questions.

Rikki Endsley recently interviewed Anne
and Casey for the USENIX Blog. Find
out more about Anne and Casey’s shared
 leadership and what’s next for USENIX at
usenix.org/blog.

60  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

Notes

2014 election for USeNIX Board
of Directors
Nominating Committee Report

Every two years, according to our Bylaws,
the USENIX Association holds elections
for all eight members of its Board of Direc-
tors. The board consists of four officers:
President, Vice-President, Secretary, and
Treasurer, and four at-large members. Also,
according to our Bylaws, the board appoints
a nominating committee whose job it is to
ensure that we have a strong slate of candi-
dates to run for election. In addition to the
nominating committee, any five Association
members may together nominate additional
candidates to run for any position.

The USENIX Nominating Committee is
pleased to nominate the following individu-
als for the 2014 Board of Directors election:

PReSIDeNT
Brian Noble, University of
Michigan

vICe-PReSIDeNT
John Arrasjid, VMware

SeCReTARY
Carolyn Rowland, National
Institute of Standards and
Technology (NIST)

TReASUReR
Kurt Opsahl, Electronic
Frontier Foundation

Ballots will be mailed to all paid-up members in early February 2014.
Ballots must be received in the USENIX offices by March 17, 2014. The
results of the election will be announced on the USENIX Web site by
March 26 and will be published in the June issue of ;login:.

AT LARGe

Cat Allman, Google

David N. Blank-Edelman,
Northeastern University

Fabian Monrose, University of
North Carolina, Chapel Hill

Christopher Small, Tivli

Dan Wallach, Rice University

Hakim Weatherspoon,
Cornell University

We are excited to present this slate of enthu-
siastic, talented individuals who are inter-
ested in serving the USENIX Association.

Margo Seltzer and Niels Provos
2014 USENIX Board Nominating Committee

Thanks, Rikki endsley
by Casey Henderson

;login: has seen many changes over the past
couple of years as it continues to evolve to
respond to the needs of its audience. Rikki
Endsley, wearing her ;login: Managing
Editor hat, has contributed greatly to that
progress. Rikki led the effort to redesign the
magazine to maximize its content and pres-
ent the information in more usable fashion;
she collaborated in the creation of the ;login:
logout electronic-only supplement, which
she named, and has sought out many of its
contributing writers; and she created con-
sistency in the experience of the magazine
in such ways as standardizing each issue’s
length. We’re now moving on to the next
phase of ;login:, which involves streamlining
its management and production staffing to
assist with the USENIX budget. Thus this
issue will be the final for which Rikki serves
as Managing Editor, a role that ;login: will
no longer maintain.

While we will miss Rikki’s enthusiastic par-
ticipation in the regular management of the
magazine, we’re excited that she’ll continue
to be part of the ;login: team wearing her
USENIX Community Manager hat. (Rikki
has so many hats that she totally rocks, by
the way; you should ask her about them as
well as her collections of shoes and records
sometime.) Her dedication to ;login: as a
service to the community, as an outreach
tool, and as simply an excellent publication
is an asset to USENIX that we’re thrilled to
be able to channel in a different direction to
similar ends.

Please be assured that ;login: production and
management will continue to be as seamless
to you, the reader, as always. With Rik Far-
row as Editor, Michele Nelson as Production
Manager, and Arnold Gatilao and myself on
the production team, we will work to ensure
that ;login: continues to meet—and hope-
fully exceed—your expectations.

Questions? Contact login@usenix.org.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 61

RepoRtsConference Reports

27th Large Installation System Administration
Conference
Washington, D.C.
November 3-8, 2013

Wednesday, November 6, 2013
Opening Remarks and Awards
Summarized by Rik Farrow (rik@usenix.org)

The LISA co-chairs, Narayan Desai, Argonne National Labora-
tory, and Kent Skaar, VMware, opened the conference by telling
us that there had been 76 invited talks proposals, of which 33
were accepted. To fit these in, the co-chairs changed the Invited
Talks format so that most sessions were composed of two talks. I
was skeptical, as were some others, but the talks actually turned
out well, with an excellent set of IT tracks.

There were 24 paper and reports submissions, and 13 were
accepted for presentation. The Best Paper award went to
Thomas Knauth and Christof Fetzer, Technishce Universität
Dresden, for “dsync: Efficient Block-Wise Synchronization of
Multi-Gigabyte Binary Data.” The Best Student Paper award
went to Cristiano Giuffrida, Călin Iorgulescu, Anton Kuijsten,
and Andrew S. Tanenbaum, Vrije Universiteit, Amsterdam, for
“Back to the Future: Fault-Tolerant Live Update with Time-
Traveling State Transfer.” (See the open access papers and
 videos on our Web site at www.usenix.org/publications/
proceedings/lisa13.)

John Arrasjid presented the 2013 LISA Award for Outstanding
System Administrator to Brendan Gregg (Joyent) for his ground-
breaking work in systems performance analysis methodologies,
including the Utilization, Saturation, Errors (USE) methodology.
Brendan received the award and made two presentations later in
the conference, standing in for a plenary speaker who was taken
ill at the last minute.

Next, John presented the Software Tools Users Group (STUG)
award to Puppet. Luke Kanies was not present to receive the
award, but another member of Puppet Labs stepped up in his
place. John mentioned that the award was not just to Puppet
Labs, but for Puppet in general.

Dan Rich, the current LOPSA president, presented the Chuck
Yerkes award to Lawrence Chen, a senior system administra-
tor at Kansas State University. Rich said that although Chen
maintains the university email systems, DNS, and load balanc-
ers, he is also active both on IRC and many mailing lists, such
as lopsa-discus, bind-users, and several FreeBSD lists. Chen
often provides not only answers to questions, but also frequently
includes examples based on his own experience.

keynote
Summarized by Thomas Knauth (thomas.knauth@tu-dresden.de)

Modern Infrastructure: The Convergence of Network,
Compute, and Data
Jason Hoffman, Founder, Joyent

Jason started the talk by naming the three main producers of
information: nature, humans, and machines. The information
produced by nature far outweighs that of either machines (e.g.,
servers, sensors, cars) or humans (e.g., pictures, photos, emails).
For example, to sample a single person’s genome will generate 20
TB of data.

The infrastructures built to handle the ever increasing data vol-
ume have evolved over the years. First, we saw the convergence
of network and storage, leading to networked storage architec-
tures. Second, we saw the convergence of compute and data,
exemplified by Hadoop. With Hadoop, instead of moving the data
over the network to where you want to perform the computation,
you start the computation on the node that has the data. This, of
course, requires that you actually can compute on your storage
nodes.

Next, Jason talked about the technologies used by Joyent to build
an infrastructure that can handle today’s computing needs effi-
ciently. Joyent has been working with and contributing to a lot of
open source technology. For example, SmartOS is a combination
of technologies from Open Solaris with QEMU/KVM. Notable
technologies from the Solaris world included with SmartOS are
ZFS, DTrace, and Zones. Jason also talked about the virtues of
implementing system-level software—e.g., HTTP, DHCP, DNS
servers—in a dynamic, C-like language environment such as
JavaScript/node.js.

In Jason’s view, there are two kinds of compute jobs: ephemeral
and persistent. For ephemeral compute jobs, Joyent’s solution is
a system called Manta. Users don’t have to worry about spinning
up instances to crunch their data, but submit jobs via a Web API
run directly on the object storage nodes. Persistent compute jobs
follow the established paradigm of provisioning VM instances
and manipulating data via a file-system abstraction.

One question from the audience was about the size of the “small”
200 MB SmartOS bootloader used at Joyent. Jason jokingly

In this issue:
LISA ’13: 27th Large Installation System
Administration Conference 61
Summarized by Jonathon Anderson, Ben Cotton, John Dennert,
Rik Farrow, Andrew Hoblitz, David Klann, Thomas Knauth, Georgios
Larkou, Cory Lueninghoener, Scott Murphy, Tim Nelson, Carolyn Rowland ,
Josh Simon, and Steve VanDevender

Advanced Topics Workshop at LISA ’13 90
Summarized by Josh Simon

62  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

responded, “Well, it’s definitely smaller than a typical Android
update.” Another question was from a Google guy who wanted
to know how to deprecate SSH as the universal fix-it-all tool for
server troubleshooting. Although Jason had no direct answer
to the question, he said that at Joyent updates are applied to the
core OS image, and services are rebooted periodically to roll out
updates (instead of SSHing into each box and applying patches/
updates individually).

Invited Talks 1
Summarized by David Klann (dklann@linux.com)

SysAdmins Unleashed! Building Autonomous Systems
Teams at Walt Disney Animation Studios
Jonathan Geibel and Ronald Johnson, Walt Disney Animation Studios

Jonathan Geibel and Ronald Johnson talked about how they
engineered a restructuring of the information technology group
in order to increase its effectiveness and improve its responsive-
ness to their customers.

Both of the presenters have 21 years’ experience at all levels of IT
from engineering to management. Both are currently in manage-
ment positions at Disney. They started the talk with an overview
of the physical Animation Studios facilities and a trailer of the
movie Frozen (commenting that rendering ice and snow is one of
the more difficult tasks for computer animation).

The IT organization looked similar to most organizations before
the changes: top-down, hierarchical, with technicians report-
ing to managers reporting to directors. They encountered all the
problems associated with this structure, including resource con-
tention, pigeonholing, indirect communication, silos, and more.
They endeavored to remove the silos and improve the experience
for everyone.

Geibel and Johnson established small, autonomous teams of two
to six people. Each team acts as a small startup, and is respon-
sible for research and development, engineering, and support of
their specific service. Physical space is a key part of this restruc-
turing. The team members are located in close proximity and
have their own “war rooms” in order to avoid formal standing
meetings.

Team roles include primary and secondary members, and a team
lead. The team lead has technical expertise in the discipline and
is responsible for tactical and strategic leadership. This person
has no HR duties, simply results-oriented duties. The team lead
works with and communicates directly with stakeholders.

Primary members are dedicated to a team. Each person is a pri-
mary member on one of the teams, but people can play additional
(secondary) roles on other teams. There is no time-slicing: a per-
son’s primary role takes precedence over their secondary roles.
Secondary members add technical and soft skills to a team.

After describing the new structure, they explored the roles of the
managers in this scenario. Managers form their own team, but

individual managers are not responsible for functional areas.
The management team is responsible for career and team coach-
ing, and team investment strategies. One interesting aspect of
this new structure is that people can choose their managers
regardless of the kind of work they do. They can also change
managers based on preferences unrelated to the functional
areas. Each team can (and does) have members that report to dif-
ferent managers. Managers operate more like venture capitalists
dealing with issues like maximizing investments (financial and
human), constantly evolving the teams, providing resources for
the teams, and helping the team leads define goals.

The current organizational structure is completely flat. There
is no hierarchy, and the team leads are at the top of the “food
chain.” The presenters looked closely at whether they simply cre-
ated a bunch of “little silos,” and as best as they tell they haven’t.

Geibel and Johnson wrapped up claiming that the restructuring
has been successful, and that their next experiment literally is
going to break down the walls between groups.

Someone from Qualcomm asked how revolutionary this was. He
noted that because of the Pixar merger, Ed Catmull loves auton-
omy and a culture that lets things happen based on results. This
seems to have been an influence on the change. The presenters
responded by saying that it certainly happens. They make sure
to have one-on-one talks frequently with individuals and need to
make sure things are flowing correctly. Managers walk around
and keep their eyes on things, and make small tweaks. They
noted that the only way to move up is to be the best at things, the
team lead is the best person, and team leads can’t let themselves
get stale in their area of expertise.

Mario Obejas from Raytheon remarked on a similar effort there.
Their teams are 25% collaborative, 75% isolated. His experi-
ence is that a noisy environment destroys the isolated environ-
ment. This is an experiment at Raytheon; one team initiated the
change. They have a similar style with team members, so they
think it’ll work. There is a quiet space available, but they’re about
to implement a major building restructure, and the quiet space
is going away in three months. It’s been a team-by-team change,
and it’s not for everyone.

Becoming a Gamemaster: Designing IT Emergency
Operations and Drills
Adele Shakal, Director, Project & Knowledge Management, Metacloud, Inc.;
Formerly Technical Project Manager at USC ITS, ITS Great Shakeout 2011, IT
Emergency Operations, and Drill Designer

Adele Shakal presented a lively and creative talk on emergencies.
She suggested treating emergency preparedness as a (serious)
game, and encouraged attendees to be the gamemasters at their
organizations.

Shakal started with a couple of questions for the audience: “How
many of you have coordinated a drill in your organization?” and
“How many of you have been the central point of communication
during a zombie apocalypse?” Quite a few people raised their

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 63

RepoRts

hands in response to the first question, only a couple did for the
second.

Shakal stressed Point One with respect to the context of emer-
gencies and emergency drills: even though we are IT people and
our focus is on recovering IT assets after an emergency, people’s
safety and well-being take top priority. She differentiated the
goals and activities of Emergency Response (immediate activi-
ties after an emergency) and Emergency Operations (long-term
activities after an emergency). Shakal highlighted the positive
effect that amateur radio organizations have on contributing to
disaster recovery.

Business continuity planning and resiliency planning, Shakal
said, are areas that need attention in all organizations. Game-
masters need to identify critical business functions (CBF),
including business impact analysis. They need to assess risks
and likelihoods of various situations, and identify recovery
objectives. Recovery objectives include recovery point objec-
tives (RPO) and recovery time objectives (RTO) for the identi-
fied CBF. Of course, these are all brought to light in meetings
the gamemasters hold to bring organization representatives
together. Shakal reminded attendees to bring treats to those
meetings: they keep folks happy and mouths full. Shakal asked
how many in the audience have designed disaster recovery for
some IT services or for all services. She was impressed when
many participants responded affirmatively to the latter.

Moving on to emergency planning and drills, Shakal empha-
sized the importance of keeping plans current, available, and
relevant. Her three-point planning advice was to (1) hope for
the best, (2) plan and drill for the most likely, and (3) cope with
the worst if it happens. Using examples from other industries,
Shakal listed several options for modeling emergency opera-
tions centers (EOC) or incident headquarters (IHQ). She listed
entities that offer example plans, including the National Incident
Management System (NIMS), the National Emergency Man-
agement Association (NEMA), the International Association of
Emergency Managers (IAEM), Citizen Corps, and the Com-
munity Emergency Response Teams (CERT). She talked about
the importance of showcasing your organization’s EOC/IHQ,
and again stressed the benefits of providing food and drink to
participants.

Shakal continued with the goals of drills. Life safety drill goals
focus on responding to immediate concerns and situations,
including evacuations, first aid, safe refuge locations, and infor-
mation collection and communication. She noted that focusing
on life safety will show others that you understand that people
are your organization’s most important assets. Basic IT emer-
gency operations drill goals include assessment, reporting, and
recovery, as well as communication with customers and other
outside entities. One important facet of assessment is determin-
ing whether people have the necessary places to work during
recovery. Shakal further noted that this exercise is fundamen-

tally different from creating an actual outage; the focus must be
on communication. She pointed out that simulating a service
outage will be much more chaotic if you do not have control of
the communication aspect.

Moving on to “mapping unknown terrain,” Shakal discussed the
need to have current and updated lists of key personnel contact
information, a publicized list of top CBF, and a mapping of IT
services and infrastructure that contribute to those CBF along
with people who can provide updates about the recovery of those
services. Regarding the terrain, Shakal stressed the point that
people should map only terrain that they need. You shouldn’t try
to create a comprehensive service catalog for drills if you don’t
already have one. Don’t try to solve all of your organization’s
problems, simply identify critical business functions and recov-
ery objectives as well as relevant infrastructure and services to
support those functions and objectives.

Shakal used the analogy of secret notes for designing the
theoretical IT emergency. The notes are essentially the scripts
that guide personnel during the drills. Prepare the notes ahead
of time, and hand them out with timing instructions to par-
ticipants. Use the timing and efficacy of the notes to compare
with actual performance when you evaluate the drills. Shakal
reminded the audience to allow for time to introduce the drill
structure beforehand and time to discuss the drill afterward.
She presented an example of a secret note chart showing times
and events and stressed the importance of respecting people’s
needs by ending the drill on time.

During an advanced drill (after getting basic drills under your
belt), Shakal recommended performing simulated activities
such as injuries. She advised against simulating death situa-
tions, and instead referred to this as “unavailability.” Shakal
noted that advanced drills can be intense and that organizations
should time them carefully: not too often, but often enough to be
 effective.

Shakal concluded her discussion with suggestions of guru-level
drills. These advanced drills include actual interaction with
outside entities (media, government agencies, disaster response
agencies, etc.), intentionally conflicting status updates, variable
delays in status updates, and randomized simulation of person-
nel unavailability. Speaking from experience, she remarked on
the need to ensure the technical accuracy of secret notes and
drills. They need to “make sense” to the participants in order to
be accurate simulations. She again emphasized the importance
of respecting the time constraints of participants and the ben-
efits of keeping the exercises lively and creative.

Wrapping up, Shakal handed out ten-sided dice to attendees, again
focusing on keeping drills fresh and engaging for all participants.

Mario Obejas asked if Shakal had experienced interactions with
the FBI’s InfraGard program. Shakal has not, but acknowledged

64  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

its benefits, and suggested an exercise akin to an “FBI tabletop”
interaction.

Paul from Qualcomm asked about recommendations for emer-
gency planning and drills with smaller teams and whether top
management is not supportive. Shakal replied that in her experi-
ence the top management said “Go forth and do this.” Further,
that mid-level managers or team leads can’t really do this with-
out the larger organization being involved. She suggested holding
a showcase as a brown-bag session for other managers: shop
around to other managers and directors, use the metrics to sell it
to the larger organization. Getting the names of other supportive
managers and directors is a good start and doesn’t need a “drill”
to get going.

Steven Okay suggested that in addition to cookies, bring tech:
folks geek out over the cool stuff. He described the Cisco vehicle
that is a self-contained mobile network disaster unit. Okay also
suggested bringing WiFi access points so participants can stay
connected if they need to. He also pointed out that universities
often have ham radio clubs (Shakal pointed out that they wear
black vests during drills), and critical resources on campus know
who the hams are and use them.

Invited Talks 2
Summarized by Andrew Hoblitz (ahoblitz@cs.iupui.edu)

A Working Theory-of-Monitoring
Caskey L. Dickson, Google

Caskey Dickson, a Site Reliability Engineer at Google, talked
about common solutions to some of the common problems he
has seen involving monitoring systems. He noted that although
there are good tools for some problems, monitoring still seems
to be stuck in the 1990s. Caskey discussed Google’s own home-
grown monitoring systems, but to move beyond the hit-and-miss
approach to monitoring, they have developed a formal model for
such systems. Caskey defined these metrics as “the assignment
of numerals to things so as to represent facts and conventions
about them,” quoting S. S. Stevens. Caskey noted that some of the
many reasons for monitoring include operation health, qual-
ity assurance, capacity planning, and product management,
and said that large quantities of high resolution data need to be
monitored reliably.

Caskey said they created metrics at some minimum level of
abstraction, with raw counters plus some attributes, and the
placing of time series into an accessible format with aggre-
gated and post-computation metrics. Metrics should be brought
together in one place and need to remain useful after aggrega-
tion to allow for the extraction of meaning from the raw data.
Caskey said that when anomalies are detected, something has
to communicate this in a useful and meaningful way. He then
went through a set of tools—top, sar, *trace, MRTG, Nagios,
Ganglia, Cacti, Sensu, Logstash, OpenTSDB, D3.js, Graphite, and
Shinken—and recommended a mixed-stack approach; he said

that internally, Google uses a combination of Nagios, Graphite,
Sensu, Logstash, and Ganglia.

Caskey was asked about information collection and noted that
there are many solutions to this problem and that he was only
trying to provide representative solutions to solve common prob-
lems at different levels of the stack. Caskey then received a ques-
tion about whether he has used any alternatives to Nagios. He
said he had used many alternatives to Nagios, and that he would
be open to using a variety of them. The final question was about
random input and output. Caskey said that although Google has
solutions available, the problem is ongoing for them.

Effective Configuration Management
N. J. Thomas, Amplify Education

N. J. Thomas, a UNIX system administrator for Amplify Educa-
tion who evangelizes the benefits of installing configuration
management tools, started off by noting that he had been using
configuration management for ten years and had seen it grow,
while acknowledging that it is still in its infancy. N. J. gave
nine major principles for effective configuration management,
namely, the use of: (1) configuration management (e.g., CFEn-
gine, Puppet, Chef) regardless of team size; (2) version control
(e.g., Git, Subversion, Mercurial), (3) a validation testing suite
(to test changes as they are made); (4) a code review tool (such
as GitHub, Gerrit, Trac); (5) your CM’s templating facilities; (6)
your CM for provisioning; (7) your CM for automated monitor-
ing; (8) a CMDB; and (9) your CM for DevOps. N. J. defined
DevOps as “a software development method that stresses com-
munication, collaboration, and integration between software
developers and information technology (IT) professionals.”

N. J. pointed out that the point of his talk was to describe the
current best practices when installing a configuration manage-
ment system, to be agnostic as to the choice of particular tools
and CM systems, and to provide lessons learned that would be
useful when building or maintaining an effective infrastructure
that is orchestrated by configuration management. N. J. said that
these tools are a time machine that allows system administra-
tors to see what their thoughts were at any given time, as well as
a way to go back and look at what previous system administra-
tion gurus had done in the past before they left the organization.

One questioner wondered about situations with extreme separa-
tion of duties, and whether it would be all right for different
teams to handle different parts of the solution set that N. J. had
presented as best practices. N. J. said it isn’t important how
many teams work on this approach, but only that the team is get-
ting the approach right. Someone asked about referencing ticket-
ing system numbers and version control systems. N. J. answered
that it is good to integrate ticketing systems with CM tools and
that it is also good to use proper VCS practices. Someone won-
dered which continuous integration tool he uses. He noted that
Cruise Control, Hudson, and Jenkins are all potential solutions
for continuous integration.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 65

RepoRts

Invited Talks 3
Summarized by Scott Murphy (scott.murphy@arrow-eye.com)

Our Jobs Are Evolving: Can We Keep Up?
Mandi Walls, Senior Consultant, Opscode Inc.

Mandi Walls, technical practice manager at Opscode, gave an
enlightening talk on the changes happening to our profession in
modern times. The talk covered the evolution of system admin-
istration, external influences that have affected the evolution of
the field, the state of the field, the effects of the digital economy
and globalization on our field, personal development, and where
to go from here.

Mandi rolled the clock back by covering the events that shaped
the field, our evolution. Back in the day (legacy times), our roles
were to protect the company’s investment. Machines were
expensive, resources were scarce, and sysadmins were supposed
to run things and fix stuff. This was all influenced by an invest-
ment mentality that computers cost money—boxes, networks,
power, and cooling. The monetary cost impacted attitude and
behavior and created a “No!” culture. Sysadmins got rewarded
for protecting investments, and this fostered a culture that
hoarded information and provided fertile ground for the rise of
the “Bastard Operator from Hell” (BOFH) archetype.

Mandi then examined the current state of the profession, which
is not as advanced as we would like. We need to build on previous
work, not reinvent the wheel. More succinctly, progress in a field
doesn’t happen when everyone must start from scratch. The prior
generation prevents this and we end up trolling the next genera-
tion with the mantra of “I had to figure it out, so should you.”
This wastes enormous amounts of time as we reinvent every-
thing. Looking at industry, car manufacturers do not do this—
the automotive industry has advanced. Other professions have
moved on. Medicine has specializations, yet they share informa-
tion. Why are many of us still in the dark ages organizationally?

The field is constantly changing, and things get more complex.
This creates specialist roles such as networking, storage, data-
center operations, Web operations, IT, etc. We need to evolve the
field. According to the paper “Prospects for an Engineering Dis-
cipline of Software,” written by Mary Shaw at CMU back in the
late ‘90s, there are three stages to the evolution of a field: craft,
commercial, and engineering. We want to be in the engineering
stage with our profession.

There are still challenges to moving the profession forward.
Unskilled workers hold organizations back. Investing in train-
ing and professional development must be considered a higher
priority. Junior people need experience and how do they get that?
Learning from the senior people in an apprenticeship and jour-
neyman role has not been embraced by the profession as a whole.
This doesn’t take into account new tech, updates, and kernel
patches. Constant change is endemic to the system. We need to
make sure that “stuff” coming from the product team will be well
supported and well maintained and will operate as expected.

Mandi continued with the digital economy and globalization;
it is here and is pervasive. As time passes, more of our day-to-
day life is lived or augmented online. In many countries, we are
nearly constantly connected. This requires systems that are
increasingly complex and interconnected to provide the many
services in which we are investing ourselves. The barrier to
technology adoption is getting lower all the time and expertise is
no longer required to use the services, which is not a bad thing,
but we need to remember that the users of these services are
not “dumb” or “muggles” or some other disparaging description.
They are our customers and they no longer need a technical
background in order to make use of the technology. We need to
evolve from the BOFH syndrome and change the way we relate
to others. We are the enablers of this new economy. Protection-
ism and lack of engagement with our users limits our growth and
our ability to adapt to the changes around us. Today, escaping
technology takes extreme effort because it is everywhere around
us and growing. This creates new opportunities for more people.

Mandi went on to consider how we enable ourselves to be an
integral and better part of this new world. We need to develop
new skills by borrowing practices from software engineering,
learning to touch type, using the tools we have available such as
version control, learning to code (or code better), and embrac-
ing the cloud. We need to have better organizational awareness.
Document everything. Share. Use a wiki or similar tool and
make sure people have access. Perform testing and code reviews,
check each other’s work. This will build trust in your processes.
Through this whole process, we need to be proactive—say “Yes!”
instead of “No!” and if you can’t say yes, ask questions and pro-
vide reasons why you are saying “No.”

Mandi moved toward a conclusion by asking, “Where do we
go from here?” The cost of systems has been mitigated by the
“cloud” and other services, so gatekeeping is mostly dead. Reject
the BOFH syndrome as that mentality has no place in the now
or in the future. Work on getting to “Yes,” and help enable your
organization. Share knowledge, as protectionism and informa-
tion hoarding keep us from building on previous work. Find our
value proposition when we aren’t the guardians of large expen-
sive systems; we are the facilitators of large amazing ideas.

And finally “Why?” Because someday we are going to be running
the O2 systems on starships.

Invited Talks 1
Summarized by Thomas Knauth (thomas.knauth@tu-dresden.de)

User Space
Noah Zoschke, Sr. Platform Engineer, Heroku

Noah Zoschke, senior platform engineer at Heroku, talked about
the many layers of abstraction sitting between a user’s applica-
tion and the bare metal hardware. In a typical platform there
are at least five layers: starting from the language-level virtual
machine, e.g., Ruby, over the OS-level container, e.g., LXC, then
the Linux guest OS, the hypervisor, before finally executing on
the physical CPU.

66  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

In the second part of the talk, Noah proposed future directions
where kernel and user space should be heading. Besides more
expressive APIs and less clutter in general, that lower layers
expose information to the upper layers is important.

Questions raised at the end of the talk reconfirmed the main
points of the talk: clean abstractions and APIs are important for
the application developer. They draw the boundaries of what the
developer can and cannot do on a platform service. Also, some
of the layers re-implement the same functionality, e.g., caching,
which may lead to unexpected and adverse effects. Noah said
that Heroku’s approach to dealing with failures is to fail fast. If
a component behaves weirdly, it is stopped and restarted on a
different node.

Observing and Understanding Behavior in Complex
Systems
Theo Schlossnagle, CEO, Circonus

Theo Schlossnagle’s talk focused on the need for good monitor-
ing solutions to aid the developer/administrator in understand-
ing complex system behavior. Events in distributed systems
are especially hard to correlate because there is no global clock
to perfectly order events. This makes it hard to answer even
a simple question about which component is responsible for a
certain part of the system’s behavior.

Theo provided examples of dos and don’ts in the context of moni-
toring: e.g., when to use polling instead of pushing for metrics.
Polling is best suited for infrequently changing values while the
push mode is best for fast-changing metrics. The push model is
best implemented in an event-based fashion, i.e., hook into the
mechanism that leads to a counter being updated to get notified
whenever the counter changes. This way, no change will get lost.

Questions at the end of the talk included whether Theo could
give recommendations for data visualization tools to help diag-
nose problems. Theo answered that there are open source as well
as commercial tools available to do the job. As for systems which
do not have DTrace, e.g., Linux, what other means are avail-
able to collect in-depth metrics? System tap is an alternative to
DTrace on Linux, and oprofile is also an option.

Invited Talks 2
Summarized by Cory Lueninghoener (cluening@gmail.com)

Building a Networked Appliance
John Sellens, Syonex

John Sellens started his talk with a simple statement: he wanted
to build a thing. The focus of his talk was not about the thing;
instead, it was about the technological path he took to get his thing
from the idea stage to the product stage. Throughout his talk, John
was purposely vague about the thing he created; this was for two
reasons: to prevent the talk from being a marketing talk, and to
show that the same process can apply to a wide range of projects.

John wanted to create an appliance that he could put on a remote
network and use to collect information. He began by describing

his original idea, which was large and comprehensive. After see-
ing other companies that had a similar idea but that were no lon-
ger in business, he concluded that he needed to narrow his scope
to something more doable. This led him through a multi-year
series of design iterations, each time making the design a little
cheaper and a little smaller. He finally settled on the Raspberry
Pi as his base, which gave him all of the hardware features he
needed at a price point he liked.

After finding the perfect hardware, John next needed to find a
perfect software stack. The hardware helped dictate his operat-
ing system choice, and he concluded that going with the com-
munity is best: the Debian-based Raspbian distribution. The rest
of the software stack was based on as many standard tools as
possible, plus some custom scripts and a custom read-only root
file-system implementation.

John’s final design is a simple Raspberry Pi device that runs
autonomously; it calls home every 15 minutes to ask for instruc-
tions, reporting in as work is done and with an hourly summary.
Security is simple and minimal, and provisioning of the hard-
ware is highly automated. John ended by noting that this techni-
cal narrative was only a small part of the whole product creation
story and included a link to more information about his product:
http://www.monbox.com/.

How Netflix Embraces Failure to Improve Resilience and
Maximize Availability
Ariel Tseitlin, Director, Cloud Solutions, Netflix

Ariel Tseitlin’s talk focused on how Netflix increased their
resilience against failure by taking advantage of failure itself. He
began with an overview of how Netflix streams video to its 40
million customers, culminating in a TV test pattern graphic that
he described as what keeps him up at night.

To prevent the video streams from failing, Ariel described how
Netflix built the Simian Army, a suite of tools that purposely
injects failures into their cloud infrastructure. By ensuring that
failures occur, they have forced themselves to design around
failure and make it a non-issue.

The Simian Army is a collection of tools that inject different
types of failure into the production Netflix cloud: Chaos Mon-
key (randomly shuts off cloud nodes), Chaos Gorilla (shuts
down entire availability zones), Chaos Kong (shuts down entire
regions), Latency Monkey (injects arbitrary latency), Janitor
Monkey (cleans up the cloud environment), plus several more.
Ariel noted some important details surrounding the use of these
tools: they’re used during business hours, can be disabled when
a real customer issue is going on, and are used as part of a larger
culture that focuses on learning instead of blame.

Ariel closed by describing Netflix’s strong relationship with open
source software and by noting that the Simian Army is available
to others as an open source project.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 67

RepoRts

Invited Talks 1
Summarized by Rik Farrow (rik@usenix.org)

Storage Performance Testing in the Cloud
Jeff Darcy, Red Hat

Jeff Darcy began by showing a Venn diagram with three ovals
representing the three major elements of his talk: “performance,”
“storage,” and “cloud.” Jeff described two types of performance
measurement, for the network and for storage, and how band-
width and throughput can improve with additional threads,
whereas latency often deteriorates with more threads. Jeff
quoted Jeff Dean’s idea of “tail at scale = fail,” referring to a
front-end that spawns hundreds of requests, and the one system
that is always slow means all responses will be slow.

When measuring cloud or cluster storage, Jeff pointed out several
ways not to do it, even though these methods are popular. First,
if you measure a test from beginning to end, the laggards throw
off the time. Second, some people fire up streams sequentially
and add up the results for a total. Jeff called the third technique
“stonewalling,” where the tester starts up many threads, stops
timing with the first one that completes, and scales up to calcu-
late the total for all threads. Jeff labeled this as really wrong, as
it ignores all of the slowest I/O. Instead, Jeff pointed out that you
actually want to see the complete distribution of each run, show-
ing an example graph (slide 8) that begins with a staircase, drops
off suddenly, then finishes with a long tail of stragglers.

Jeff turned his analysis on storage performance factors: the size
of requests, types of requests, cached/buffered vs. synchronous,
and read vs. write loads. For example, GlusterFS makes a lot of
use of extended attributes, so performance tools that ignore this
in favor of data will produce incorrect results. IOzone can do lots
of different tests, but stonewalls by default. FIO does better at
random distributions, and filebench attempts to simulate both
I/O and the producer/consumer relation. Jeff mentioned Dbench,
which is for Samba testing, and COSBench, which has a bizarre
configuration. Jeff said that we need better tools.

Jeff then looked at cloud issues (the third oval). First, in a cloud
environment, you can have noisy neighbors, and can’t even
expect to see similar results in subsequent tests. He showed
results from tests within Amazon, Rackspace, and Host Virtual.
Amazon had the highest performance, but also the highest
variance, and Host Virtual had the lowest performance, and the
smallest variance.

Jeff also mentioned the clunker problem, which is that you will
sometimes get a “clunker instance.” Netflix tests for this when
spinning up a new instance, and discards instances that appear
to be clunkers. The problem might be the host, but could just as
easily be an overloaded switch. Also, cloud providers will ignore
things such as synchronous write flags. He concluded by saying
that massive variability is what makes testing storage perfor-
mance in the cloud difficult. Characterize your workloads, test

many times, across many providers, and think in terms of prob-
abilities instead of averages.

There was time for only one question. Someone asked whether
he looked at error rates. Jeff replied that he had not, but some-
times you might get an instance performance of zero. He sug-
gested that people look at http://hekafs.org/index.php/2013/05/
performance-variation-in-the-cloud/ for an example of storage
performance in the cloud.

Surveillance, the NSA, and Everything
Bruce Schneier, Fellow, Berkman Center for Internet and Society

Bruce Schneier actually spoke from the cloud, successfully using
Skype with two-way audio and video for his presentation. Bruce
had been speaking about a similar topic at an IETF meeting, and
spoke without notes or slides for 35 minutes, easily managing to
engage, enlighten, and entertain the audience.

He started by saying that he thought the neatest thing about the
NSA snooping was all of the codenames. For example, Muscula-
ture for tapping connections between datacenters, Quantum for
packet injection, and Foxacid for serving exploits from a Win-
dows 2008 server. He then pointed out there will be a lot we will
never know, except that the NSA has turned the Internet into a
giant surveillance program.

Bruce pointed out that data is a by-product of the information
society. Companies and computers mediate our interactions,
and this data is increasingly stored and searched. At this point,
it is easier to save all data than throw it away. Surveillance is
the business model of the Internet, and can be seen as a natu-
ral by-product of using computers for everything, producing a
public-private partnership in which the government accesses
data already held by corporations. Understanding why the NSA
wanted to take advantage of this is easy.

Bruce described metadata as surveillance, and used the analogy
of hiring a detective who watches where you go and with whom
you meet, the metadata of your daily life. Other intelligence
agencies besides the NSA do this, and, in fact, so do other well-
funded nations; the US has a privileged position on the Internet,
be we know the Chinese are doing more or less the same kinds of
surveillance.

We do have choices. We can use encryption, which Snowden told
us, in his first interview, actually meant that the NSA got ten
times more data from Yahoo! than from Google, because Google
used SSL. Tor is safe, but the endpoint security is so weak there
are ways around Tor and other forms of encryption.

The NSA is investing in groundbreaking technologies having
to do with encryption. Bruce guesses that this may have to do
with breaking elliptic curves (used for public key cryptogra-
phy), breaking RSA, and/or breaking RC4, a stream cipher with
known weaknesses, and the Windows default until recently.

68  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

The NSA was not prepared to be exposed, and we will see some
changes. US companies have found that it is good for their busi-
ness to fight NSA monitoring, and international blowback has
hurt US businesses with cloud-styled solutions.

Bruce talked about making eavesdropping more expensive in his
IETF presentation. Right now, collecting everything is cheap.
Change the economics, and we can encourage targeted instead of
wholesale collection. Currently, using encryption is a red flag. But
if lots of people used it, encryption would provide cover for those
who need it. Also, having a handful of email providers (Google,
Microsoft, Yahoo!, Apple) is less safe than having 10,000 ISPs.

We need more usable application-layer encryption. Twenty years
after PGP was invented, we still don’t have usable email encryp-
tion. Bruce also declared that open source projects are harder
to subvert, and that we need more personal security projects.
Anonymity tools, such as Tor, work, and the more the better.

Finally, we need assurance that the software we use does what
it is supposed to and not anything else. The NSA can’t break
the laws of physics, and encryption helps limit bulk collection.
This is largely a political problem: transparency, oversight, and
accountability. And making the Internet stronger will mean
everybody wins.

What the Snowden docs tell us is what anyone with a budget can
do. The worse blowback will be countries clamoring for their
own, domestic Internets, that they can use to surveil their citi-
zens. The ITU taking over the world would be a disaster, but we
do need better Internet governance.

Someone wondered about the chances of people giving up their
conveniences, like iCloud. Bruce agreed that’s true, and that
Google’s profits show that people care little about their data. But
regulation can help here, just like it helped with child labor or
organ donor markets. Someone else wondered how we are going
to achieve a secure Internet. Bruce responded that the tools must
be baked in, whether AV or encryption. Someday, data may reside
totally in the cloud, and companies like Google want people to
feel that this is secure. Mario Obejas (Raytheon) pointed out
that solutions like NoScript are not good for family members.
Bruce agreed, and said that the more work you can do behind the
scenes, like turning on whole disk encryption, can help. You can
raise the bar to prevent wholesale collection, but not targeted
collection.

Someone asked Bruce to summarize the IETF meeting. Bruce
said that he was surprised that the IETF wants to do what they
can to harden the Internet, but there will be long, hard slogs to
any standards. We’ve learned of an attack against the Internet,
and the scale and scope of it were a surprise. Someone suggested
enlightening the populace about security, and Bruce asked him if
he had met the populace. Educating users is fraught with danger.
John Looney (Google) had talked to the European parliament
about security, and they focused on cookies, leaving Looney

saddened. Bruce agreed, saying that regulations focused on one
technology are irrelevant. What’s needed is focus on the broader
problems—privacy, not cookies.

Bruce closed by pointing out that fear has subsided in the US
over the past ten years. There wouldn’t even have been a debate if
the NSA revelations had occurred ten years ago.

Invited Talks 2
Summarized by John Dennert (jdennert@iupui.edu)

Leveraging In-Memory Key Value Stores for Large-Scale
Operations
Mike Svoboda, Staff Systems and Automation Engineer, LinkedIn; Diego
Zamboni, Senior Security Advisor, CFEngine

Mike Svoboda from LinkedIn presented how they used CFEngine
and Redis to solve problems in their previous administration
process and deal with the transition from administrating about
three hundred machines three years ago to tens of thousands
of machines today. The use of both CFEngine and Redis has
allowed them to move from making changes in the blind and tak-
ing several hours to spin up a new machine to being able to make
informed changes and spin up an entire datacenter in an hour
or even minutes. All of this while dramatically increasing the
number of computers they support without having to increase
their staff size.

CFEngine is an IT infrastructure automation framework that
has proven to be vertically scalable and has no reported secu-
rity vulnerabilities. Because it is written in C, CFEngine has
the advantage that is not reliant on an underlying VM, such as
Python, and is lightweight. Each machine will pull down the
appropriate configuration profile and make the changes neces-
sary. Cached policies are used if the device is offline.

Redis is an advanced in-memory key-value store that has built-
in support for hashes and dictionaries. Redis is used to keep
track of information about all the machines, specifically those
in production, and can be queried at a local, datacenter, or global
level. The most commonly requested information is cached to
speed up access time. The information at a local level is spread
across several servers per site, providing load balancing and
failover and, for larger queries, can be accessed in parallel as
each server involved in the query is asked for the same informa-
tion. They found compression of the data upon insertion to be
significant as it allowed them to leverage the computing power
of the end-nodes and to minimize the amount of RAM needed as
well as the amount of data transmitted across the network.

This combination has allowed them quickly to answer questions
about production machines that LinkedIn engineers were ask-
ing, but that the IT staff hadn’t been able to answer previously
in an accurate or timely manner. Rather than injecting SSH
into each machine multiple times a day looking for information
requested by the engineers, they are now able to access an up-
to-date status report of the production environment and to make
changes as necessary using CFEngine.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 69

RepoRts

Diego Zamboni from CFEngine came up for a few minutes at the
end of Mike’s talk to describe a few of the features in progress
for future releases of CFEngine, such as a dashboard for the
Enterprise version. He also announced that CFEngine is mov-
ing toward being more open about what they are working on for
upcoming releases. CFEngine is currently working on release
3.6, and the dashboard may be included in it or possibly the fol-
lowing release.

Someone asked how they deal with the freshness of the data.
Mike answered that the time-to-live was 60 minutes and the
data is refreshed every five minutes. Additionally, he was asked
whether they could track changes, and he replied that they could
maintain history and that they have ZFS snapshots. Mike was
also asked about how users get data out of the system. He said
that they currently get it out through a command-line inter-
face using a Python object as there is currently no GUI or Web
interface. When asked about whether they had tried using Pup-
pet for this, he responded that CFEngine provided them with
automation and that it allowed them to spread out the pushing
of configuration to their machines and to set the splay time. He
was later asked about how Redis compared to other memory
value stores. He answered that due to Redis’s built-in support for
dictionary and hashes, they were able to work on optimizing it
rather than working on building support for dictionary and hash
values. Diego was asked about the upcoming dashboard he had
described and whether it would be available for both Enterprise
and open source users. He said the plan was only to release it to
Enterprise users, but that could change.

What We Learned at Spotify, Navigating the Clouds
Noa Resare and Ramon van Alteren, Spotify

Ramon van Alteren and Noa Resare co-presented, switching
back and forth every couple of minutes or so. Ramon started
by briefly describing Spotify, a streaming music service made
of many smaller services designed by hundreds of engineers
working in autonomous teams across multiple continents. The
challenges they faced included letting developers be developers
so they could build awesome tools. Each team also needed to be
able to develop and test with other teams as many of the services
relied on other services.

In 2009, Spotify had approximately 30 engineers and used KVM
hypervisors. They tried using DNS as a database and found that
to be a bad idea. The system could be accessed from anywhere
and worked okay given the relatively small number of engineers
working at the time. Over time the decision was made to make
the switch to CloudStack. Although CloudStack was not as
highly available as the previous system, they now used SSH key
authentication to authenticate over HTTP and to receive the
token needed for access. This was a step in the right direction,
but they didn’t want to have to run a full CA/PKI.

CloudStack served them well, but the speed that Spotify was
growing and changing led them to continue to explore other

options. CloudStack had a lot of features that weren’t needed,
and Spotify had trouble scaling the hardware backend to match
the increasing demands as their product’s popularity and their
company continued to grow rapidly. This experience taught
them how difficult it can be to run a cloud.

The latest change was moving to their current provider, Amazon;
it took about two weeks to switch the backend over. Having
Amazon engineers on-site has proven to be extremely valuable
as they have continued to improve their service and deal with
networking problems that have been the biggest ongoing issue.
The switch to Amazon has made it easier to spend money
because creating virtual machines is now easy, which led to the
implementation of new policies to make sure that once a VM is
no longer needed it is allowed to die. Their motto is, “Spending
is fine, wasting is not.” Their challenges moving forward are to
continue to keep up with production and to continue the rapid
improvements made in integration testing. Their final words of
wisdom to others working on a cloud-based application was that
the asynchronous task model is important and the earlier you
start using it, the easier it will be to use.

Noa and Ramon teamed up to answer questions at the end.
Someone asked about the creation of dynamically generated
instances for developers. They answered that this was done by
individual teams with central configuration done using Puppet.
They were also asked about what the development cycle looked
like. Their response was that there is no standard pipeline but
rather that best practices are made available and then each team
is responsible for its own testing. The final question was about
how they dealt with deploying multiple services. Noa and Ramon
explained that they use a central testing environment and that
a team can connect to another team’s testing environment as
needed for testing their systems together.

Lightning Talks
Summarized by Steve VanDevender (stevev@hexadecimal.uoregon.edu)

Lee Damon introduced the session. Lightning talks aren’t like
rehearsed talks with slides, but are brief talks (five minutes or
less), ideally inspired by other things at the conference.

Doug Hughes described developing a network switch autocon-
figuration system by finding a simple Ruby DHCP server that he
extended to supply boot images and configuration data to new
switch devices as soon as they were plugged in.

Tom Limoncelli is tired of giving good advice, so instead he pro-
vided some items of bad advice, such as: The waterfall develop-
ment model has a great aspect—you can cash your paycheck and
leave before anyone knows whether the code works. You can hire
more DevOps people by giving existing employees new business
cards that say “DevOps.” What’s better than DevOps rapid
deployment? Editing code directly on production servers!

Alan Robertson described how he raised his two daughters who
now both have careers in IT. When one daughter was an infant,

70  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

he wrote a VIC-20 program that changed screen colors when
she pressed keys. She loved it and learned she was in control of
the computer. The other daughter loved math so much she would
ask for math problems while riding in their car, so Alan taught
her powers of 2 because they were easy for him to remember.
He knew he had been successful when he had to go look for his
grounding strap in his daughter’s room.

Greg Mason’s management wanted to develop business pro-
cesses by dumping things into Google Docs spreadsheets, but
instead he helped them build a better solution by finding a
cloud-based help-desk system and involving them in obtaining
requirements and letting them customize it to suit their needs.
He no longer has to deliver sadness as a service.

Jorj Bauer talked about how open-source VoIP solutions have
scaling problems with call transfers above about 15,000 users
because they haven’t been able to use the proprietary method in
commercial products. He helped reverse-engineer the commer-
cial method to develop an open-source implementation.

Eric Wedaa had to help plan a full datacenter power down, in
particular in what order things would have to be turned back on
to work again. There were still problems, such as undocumented
IP addresses, someone using an obsolete printout of the spread-
sheet with the power-up plan, and the datacenter doors locking
secure when the power was removed and security not having any
keys, but by luck someone was still in the datacenter to let others
back in.

Lee Ann Goldstein made a public service announcement about
issues with the .mil domain migrating to using DNSSEC and
all email addresses under .mil being migrated to a .mail.mil
subdomain, making it difficult for outside correspondents to
reach .mil users. She advised people having problems reach-
ing .mil domains to get in contact with .mil admins about these
problems.

Brian Sebby described how taking improv classes helped him
become a better sysadmin by improving his communication
skills. In improv, you learn to say “Yes, and…“ to what your part-
ner says, which acknowledges their needs but lets you add your
own comments, helps you build a relationship with your partner,
and focuses on immediate needs without dwelling on the past.

Stew Wilson talked about how writing Dungeons & Dragons
scenarios made him a better sysadmin and documenter, because
they require a focus on paring descriptions down to basics without
ambiguity. If you just tell people what to do, they will do it, but if
you tell them why they’re doing it, they come up with better ways.

Tom Yanuklis encouraged sysadmins to get involved with maker
spaces for meeting and learning from other craftsmen and pos-
sibly even getting help with building things you need, such as
Arduino-based environmental monitoring sensors. If you don’t
have a maker space in your area, consider starting one.

Ryan Anderson recounted his experiences with setting up an
LDAP server for his organization, first with Red Hat Direc-
tory Server, then migrating to OpenLDAP when he needed to
upgrade. His main points were to look at requirements before
jumping into things and to use configuration management to
implement things well and get self-documenting code.

Peter Eriksson developed a fast backup method for MySQL by
using a Python script to flush database tables, taking an LVM
snapshot of the file system with the database files, and then dd-
ing the snapshot image to another system. He could then verify
the backup using a slave database, and scaled the backups from
50 GB to 1.1 TB.

Heather Stern talked about issues with managing cloud comput-
ing versus co-location or shared hosting. She offered three ques-
tions she uses: “Is that an it? Is that a them? Is that me?”

Stephen Okay described how more and more of the devices, or
even users, he manages are robots, especially for telepresence
applications, and what this means for system administration
when the systems you manage are physically moving around
under someone else’s control.

Lee Damon gave a semi-improvised talk based on topics sug-
gested from the audience, combining the topics of robotic
 dinosaurs and Google Glass (which he was wearing). He
described how he had set up his phone to show text messages
on his Google Glass display, and that he was happy running
 computers not powered by dead dinosaurs.

Brian Sebby also gave an improvised humorous talk on the
audience-provided topics of managing cats with Chef and cat
pictures on the Internet.

Stew Wilson also returned to talk about combining the security
principle of least privilege with configuration management
to give his users the ability to manage software installation,
licenses, and firewall and VPN settings themselves without
need to have root or involve sysadmins.

Ryan Anderson gave a second talk on what he’s learned in the
last three years working at a company that drastically reduced
their sysadmin staff from six to two people. He used Linux,
virtual machines, and configuration management to expand
services and save money, which also allows his remaining staff
person to cope with him being away at LISA for a week.

Nathen Harvey said that if you really want to “level up” your pro-
fessional skills, quit your job. The best way to learn new skills is
to work somewhere else with new people. If you aren’t willing to
quit your job, try interviewing for other jobs every 12–18 months
to learn things about how other companies work.

Adam Powers told everyone they’re doing monitoring wrong.
You shouldn’t care if a disk is full if your application is working,
so your monitoring should only tell you when your application is
broken.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 71

RepoRts

The final talk by Marshal Weber was on risk management in the
high-frequency trading industry, where people have been com-
mended for things like chopping through a wall to open a door to
ventilate an overheating machine room or abruptly powering off
a development server to cannibalize its power feed for a criti-
cal production server that lost a redundant feed. Your personal
definition of risk may be different from your company’s defini-
tion of risk.

Thursday, November 7, 2013
Plenary Session
Summarized by John Dennert (jdennert@iupui.edu)

Blazing Performance with Flame Graphs
Brendan Gregg, Joyent

Brendan Gregg’s talk about Flame graphs was for everyone from
beginners to experts. He shared how and why he had developed
Flame graphs and showed different examples of how it had helped
him answer questions and sort through data in a way that he
couldn’t with other tools. He has the code and examples posted
on GitHub (https://github.com/brendangregg/FlameGraph).

The first example he showed was from when he was trying to
determine why a production MySQL database was having such
poor performance. The condensed output was over 500,000 lines
of text. After converting this information into a Flame graph he
was able to view the same information in a visual and interactive
manner on a single Web page and find the source of the problem.
Reading a Flame graph from top to bottom allows you to see the
ancestry of a particular function, whereas reading from bottom
to top allows you to follow the code path. The top edge of the
graph is on-CPU directly and going down the stack shows who
called the function that is on-CPU.

At first Brendan tried using the stack depth as the y-axis and
time as the x-axis but this proved difficult to extract useful
information out of so he switched to having the x-axis display
the function calls alphabetically, which allowed him to merge
adjacent functions better and greatly improved the readability
of the graphs. The length is proportional and allows for quick
visual comparison between different functions. This layout also
makes it easy to spot code path branches and makes it easier to
understand what is happening over a period of time.

Now that profiling is easier and faster, it can be used in more
places and to examine different performance data. The hash
function allows for use of a consistent coloring scheme to make
it easier to examine data gathered from different systems.
Flame graphs can also be used to analyze data from different
profilers so long as the profiler provides full and not truncated
data. By converting the profile data to single lines, it can easily
be grepped to focus on specific areas.

By taking the Flame graph output and displaying it using SVG
and JavaScript, a common standard can be used and the infor-
mation can be viewed interactively in any browser. For instance,

even rectangles too small to display text in can be moused over
to display their information. It also provides a tool that can be
used for different tasks, from teaching students about kernel
internals to being used to analyze production environments.
Examining different statistics such as memory allocation, logi-
cal and physical I/O, and on- and off-CPU data allows different
classes of problems to be examined using the same tool.

There was only time for one question at the end—why use 97 or
99 Hz.? Brendan’s answer was that he’d chosen that so as not to
interfere with timed events and that he had tried sampling at 100
or 1000 Hz and had seen the effects due to the increased preci-
sion of kernel timing.

Women in Advanced Computing Panel
Summarized by Steve VanDevender (stevev@hexadecimal.uoregon.edu)

Moderator: Rikki Endsley, USENIX Association
Panelists: Amy Rich, Mozilla Corporation; Deanna McNeil, Learning Tree
International; Amy Forinash, NASA/GSFC; Deirdre Straughan, Joyent

Endsley described the panel as part of an initiative started last
year to provide practical solutions and tips to recruit women
for careers in advanced computing. She was also glad to see a
mixture of people in the audience since everyone needs to be
part of the solution. She then had the other panelists introduce
themselves.

Endsley’s first question to the panel was how they recruited
women for computing jobs. Straughan said, “You have to go
where the women are,” suggesting other conferences such as
the Grace Hopper Celebration of Women in Computing and
AdaCamp. Rich said there is also an “old girls’ network,” and
that having a culture of respect in the workplace is important,
as well as avoiding job descriptions aimed at more aggressive
personalities. Forinash recommended supporting internship
programs, which is how she found her job at NASA. McNeil said
that managers should ask themselves whether they want to have
a different voice on their team.

Endsley then asked the panel about generational differences in
the workplace, particularly from a management perspective.
Rich said she is in a workplace where most of her coworkers are
younger than she is, and that it’s important to build good rela-
tionships and listen to the younger and less experienced people.
McNeil thinks of herself as a mentor, not a manager, and tries
to support others on her team. Straughan sees her job as being
about providing training rather than management, and since
the person who reports to her is older than she is, she won’t tell
him how to do his job. Endsley remarked that as a “Gen-Xer,” she
finds people of different ages have different expectations about
the workplace.

Endsley asked the panel how they get people to recognize their
accomplishments and successes without seeming pushy or
whiny. Forinash said she has done things like give her boss a
list of things she’s done or has told her boss when she’s very
busy on something. McNeil said that telling other people what

72  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

she’s doing gets them excited and inspires questions. Straughan
described giving her new managers a checklist of what she put
into a training course to show them how much went into it. Rich
talked about “impostor syndrome” and how she builds bridges
between IT and other groups by complimenting good work by
them to their managers, so other groups compliment good work
by IT to its managers.

Endsley expanded on impostor syndrome and how she sees it
as common in academics, and more common with women than
men, which makes women feeling unqualified reluctant to sub-
mit conference talk and paper proposals. She asked the panel for
their advice to people who feel they are unqualified to contribute.
McNeil uses private encouragement and reviews their work with
them. Forinash recommended writing down what you do, and
participating in Toastmasters to practice speaking and pre-
sentation skills. Rich said everyone feels uncomfortable about
public speaking at first, and has done things like co-present with
others so they can fill in each other’s lapses. Straughan helps
encourage people she works with and promotes their work to
conference organizers, who come to her for help in finding pre-
senters; she also finds that technical people tend to underesti-
mate their skills because they compare themselves to the giants
in their field. Endsley suggested smaller events, and Straughan
local meetups, as good places to start.

An audience member asked the panel how to make your voice
heard when other people don’t seem to value you. Straughan said
sometimes it’s easier to find recognition outside your com-
pany. Rich said it helps to have advocates, and being unafraid
to express her opinions, also uses that to help others be heard.
Forinash said it can take time to establish a reputation so others
realize your abilities. McNeil finds it important to recognize the
different perceptions of others, and Rich suggested reframing
what you’re saying to the level of your intended audience. Ends-
ley added that once you recognize you have impostor syndrome,
you can address it, and recommended the book Confessions of a
Public Speaker by Scott Berkun.

Endsley said that people writing their own bios may want to
avoid looking “braggy,” but that’s what a bio is for. She then asked
the panel if they thought men were told not to be too braggy.
Straughan has helped write bios for others because it’s easier to
brag about your friends than yourself. Rich and Forinash both
update their résumés annually to help remind them of their
accomplishments. McNeil said getting feedback from others
about what they see in you helps you get out of your own head.
Endsley thinks it’s good to float things past other people; once
she was asked to proofread a friend’s résumé and rewrote it
based on what she knew of the friend’s accomplishments.

An audience member described as being another “Gen-Xer” on
her seventh career, got an English degree after the dot-com col-
lapse and is now reentering the technical workforce. She asked
the panel how they deal with career change. Forinash and Rich

both said being able to say when you don’t know something, but
are eager to figure it out, helps others trust your skills. Rich
also recommended the LOPSA mentorship program as a way to
connect with experienced people for advice. McNeil said that if
you’ve had other careers, you’re probably good at a lot of things
and taking on new ones. Straughan observed that the fastest way
to learn something is to teach it, and to not be afraid to ask for
help. Endsley finds value in networking via mailing lists, user
groups, and conferences.

Jessica from UCSD said she enjoys being involved in technical
outreach at her campus but no women come to their meetups; she
asked the panel how to encourage women to be involved in these
social events. Straughan said sometimes individual women
feel intimidated by the preponderance of men at such events,
but finding a group of women to go together can overcome that.
McNeil suggested having meetups with coffee instead of beer.
Rich said women need incentives to attend social events, such as
opportunities to find new jobs.

Another audience member asked the panel for their advice to
men as coworkers and managers. Straughan said she doesn’t
see it as men versus women, but promoting techniques to help
all people be heard, even ones who feel reluctant to contribute.
Forinash said the best way to encourage women is to simply treat
them like human beings. McNeil suggested paying attention to
what others say and being respectful of different communication
styles. Endsley said men can use these techniques to help each
other, and should invite female colleagues to participate. Rich
observed that part of her job as a manager is to point out things
that people are good at.

Chris St. Pierre (Amplify) recommended the wiki at geek-
feminism.org as a resource. He noted that most people on the
panel aren’t managers, and asked them to comment on being
females working in “hard” tech. Forinash said she doesn’t want
to be a manager and would rather be a nerd. McNeil agreed that
she feels technical skills are her strength. Rich said that because
she couldn’t stand things being done badly or not at all, she
became involved in management when others weren’t handling
it, and feels she is good at relating to people and motivating them,
so management is what she needed to do. Straughan, on the other
hand, has never thought of herself as a sysadmin, and has seen
a “respect gap” when female coders were promoted to manage-
ment and stopped coding.

An audience member who described herself as both a sysadmin
and a manager noted that all the people she manages are men.
She sees women as being focused on changing themselves when
men don’t give that a second thought, and that being a sysadmin
is a tough job for women. She also sees women as having strengths
for leadership in things such as big-picture thinking and com-
munication skills. Endsley said she also sees men who are will-
ing to change their behavior, and asked, “How are people raising
their sons?” Straughan also said being a sysadmin wasn’t just

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 73

RepoRts

a “guy thing,” and both men and women may have trouble with
interaction skills, but people can help each other to become more
self-aware. Endsley and Rich both said they had been told they
were aggressive or intimidating. When Rich was asked by men
how they should behave around women, she answered, “How
about like an adult?” and that even some men don’t appreciate
“locker-room humor.” McNeil said being a sysadmin is still a
tough business, but people stay in the profession because they
enjoy the challenge.

An audience member described how her father raised her to be
good at technical skills but other girls were growing up to be
“pretty” instead of technical-minded. Some males don’t want to
recognize her technical skills, so she asked the panel how they
operate in a male-dominated field. Endsley said she took her
daughter to conferences and recommended fathers should also.
Rich said boys should be raised to have respect for women, and
she became good at technical skills because her father was bad
at them. She also said that interviews with successful young
women in technical jobs showed they learned not to care what
other people thought.

An audience member asked what they should look for in company
culture when considering job offers that seemed otherwise equal.
There was general agreement on quality of benefits (such as
maternity/paternity leave), opportunities for training and
advancement, flexible hours, and the ability to work from home.
Rich also said talking with other employees may reveal whether
the company has a “glass ceiling.” Straughan said to look for
overall diversity and not just the male-to-female ratio. Rich also
said that any kind of “brogrammer” culture is a red flag, and
doesn’t like the expectation you’ll live at the company.

An audience member commented that they got HR to remove
names and genders from applications during evaluation to
reduce gender bias, but HR still wrote ads that got more men to
apply. Rich asked whether it was pointed out to HR that they
were doing that, and to give them information on how to write
more gender-neutral job descriptions. Endsley said job ads like
those didn’t just discourage women. Both Forinash and Rich felt
that to encourage more women in technical fields it was impor-
tant to them personally to be visible examples.

Another audience member said they saw a cultural disrespect for
management in technical fields, and asked how to get past that
disrespect when women are promoted to management. Forinash
admires her manager for retaining his technical skills after
becoming a manager, but not all managers do. Rich said she tries
to maintain respect by having good interpersonal relationships
with the people she works with, showing them she’s interested in
helping make sure things are done right and that they’re recog-
nized for their work, and making sure they know she’s engaged
in their careers.

An audience member asked whether the panel thought the
“BOFH” mentality would disappear in the next few years. Fori-

nash succinctly observed, “Assholes won’t disappear.” McNeil
thinks it’s easier for women to work in IT today than it ever
has been, but society still doesn’t encourage it, and she sees the
number of women entering the field decreasing. Rich confessed
she secretly loves the BOFH stories, but they are from another
age, and the best way to get things done is not to be controversial,
saying, “I like movies where people get murdered, but I don’t go
out and murder people.”

An audience member asked, “How do you be a role model instead
of a figurehead?” Forinash said she felt this was up to manag-
ers, and that peer awards reflected respect from peers rather
than giving people awards for being in a minority. The audience
member continued her question by observing that in academia,
she was asked to do outreach because she was a woman and not
because she was doing serious technical work. Forinash said to
be good at what you do regardless of expectations. Straughan
recommended talking about technical work rather than about
being a woman. McNeil summed it up as “You’re a woman in
engineering, rock it!”

Invited Talks 2
Summarized by Cory Lueninghoener (cluening@gmail.com)

Hyperscale Computing with ARM Servers
Jon Masters, Red Hat

Jon Masters, chief ARM architect at Red Hat, spoke on how
advances in ARM processor technology are making it possible
to fit 1,000 to 10,000 nodes in a single datacenter rack. He began
with a description of what the ARM architecture is, noting that
it is a design that can be licensed by anybody, is not tied to a
specific vendor, and can create low-power systems. After show-
ing a picture of the current ARM celebrity, the Raspberry Pi, he
went on to describe server-class systems that also use the same
processor design.

Jon told the audience that the ARM architecture makes it pos-
sible to fit thousands of server nodes into a single rack that uses
only a couple of hundred watts, which increases server density
and reduces datacenter PUE. He showed a picture of an existing
rack drawer with many nodes within it and described how the
architecture encourages a fail-in-place operational model, where
failed nodes are replaced in bulk (if at all) instead of on a case-
by-case basis. He also touched on the newly released 64-bit ARM
architecture, noting that 64-bit systems are currently much
more expensive than 32-bit systems.

For the next section of his talk, Jon described the software stack
that Red Hat has been working on for the newest generation
of ARM servers. He focused on the 64-bit ARM architecture,
describing the work needed to get Fedora 19 ready in advance
of the 64-bit release. He spent some time on how the new 64-bit
architecture uses standards such as ACPI and UEFI to be more
consistent across multiple vendors, and how Red Hat has used
this standardization to speed up the Fedora port. After describ-
ing details on the porting process and the package build process,

74  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

Jon noted that there is now a Fedora 19 remix that boots natively
on 64-bit ARM hardware and contains more than 12,000 pack-
ages. Before taking questions, Jon pointed attendees to #fedora-
arm on Freenode IRC for more information.

One audience member asked whether there are low-cost 64-bit
ARM systems that hackers can play with. Jon answered that
$5,000, the current cost for a system, is indeed a lot to spend on
the hardware and that he is working with companies to push
that below $500 in the relatively near future and cheaper after
that. Another audience member asked about commercial adop-
tion of the new 64-bit systems and whether Red Hat will support
them with their RHEL product. Jon carefully chose his words
when answering, noting that if the market responds there will be
RHEL support, but that he has nothing to announce right now.
Finally, an audience member asked how 64-bit ARM will handle
peripherals. Jon told us that the new architecture is moving
toward ACPI and enumerable buses.

As a grand finale, Jon asked the audience “Who wants a Beagle-
bone ARM board?” When a large number of hands were raised,
he threw a small Beaglebone box out into the audience and an
enthusiastic attendee caught it.

LEAN Operations: Applying 100 Years of Manufacturing
Knowledge to Modern IT
Ben Rockwood, Joyent

Ben Rockwood began his talk with a video showing President
Obama addressing the country because of Web site problems
with the new Affordable Care Act. He used this as an example
of how the work that system administrators do has changed a lot
in the past ten years: we are now at a point in which a Web site
like Twitter or Facebook being down is treated like a national or
world catastrophe. With this basis, he went on to speak about how
to use already-existing manufacturing knowledge to improve
modern IT practices.

Ben next talked about several models of system management.
He described the DevOps flow, showing a diagram that demon-
strated the flow from developers to operators to customers and
back again. He encouraged a holistic view of systems design, not-
ing that value in systems comes from the sum of the behaviors of
the parts.

After spending some time describing how manufacturing has
become increasingly automated and efficient in the past 100
years, Ben described 11 practices that easily can be translated
from manufacturing to system administration. These included
building trust relationships, sharing vision, standardizing work,
eliminating waste, process improvement, and spending time
where the work happens, among others. In each case he showed
how manufacturing has used the practices to make their pro-
cesses more efficient and increase productivity, and described
how the same practices can be used by system engineers to
improve their own workflows. Ben closed with words of wisdom:

know who you are, know where you are, and know where you
want to be.

An audience member noted to Ben that eliminating waste needs
to tie into global optimizations, to which Ben replied that he
was correct and that doing anything just for the sake of doing
it is wrong. Another person wondered whether the way the talk
tied manufacturing to software systems was a good fit, because
software is a lot easier to change than a factory. Ben suggested
that the questioner should spend more time in a factory, as they
are a lot more malleable than he thinks. He then noted that the
principles behind the manufacturing practices are actually the
important parts.

Invited Talks 1
Summarized by Cory Lueninghoener (cluening@gmail.com)

Systems Performance
Brendan Gregg, Joyent

Brendan Gregg was originally scheduled to speak about Flame
graphs, but that talk was moved up to a plenary session due to a
cancellation. In the talk’s place, Brendan spoke during this ses-
sion about how systems performance monitoring has changed
since the 1990s. He started by defining systems performance:
the analysis of applications down to bare metal. He noted that
this is an activity for everyone, from casual to full-time system
analyzers.

With that definition introduced, Brendan presented a series of
comparisons between how performance analysis has changed
in the past 20 years. First he looked at systems performance as
a whole: in the 1990s, text-based tools were used with inference
and experimentation to gain insight into systems; in the 2010s,
we have a lot more insight into the systems and can use standard
methodologies to instrument them. In the 1990s, operating sys-
tem internals were studied in textbooks; in the 2010s, operating
system internals are studied via dynamic tracing. Systems in the
1990s had murky observability, with parts of the system hidden;
systems in the 2010s are incredibly transparent. The 1990s had
text-based or simple line and bar graph performance visualiza-
tions; the 2010s has heat maps and Flame graphs that display
more information more easily. Finally, in the 1990s, we used
ad hoc checklists and the tools we had at hand as performance
methodologies, while in the 2010s we have workload character-
ization, drill-down, and other methodologies at our disposal.

Hacking Your Mind and Emotions
Branson Matheson, SGT

Branson Matheson gave a highly engaging talk about social engi-
neering, covering both how to use the practice to your advantage
and how to prevent yourself from being taken advantage of. This
wide-ranging talk started out with some keys to being a good
social engineer (confidence, ability to think on your feet, know-
ing your limits, theatrics) and some indications that you may not
be so good at social engineering (cracking a smile when trying
to pull a prank, freezing up when confronted, not being comfort-

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 75

RepoRts

able with play acting). He then talked about some of the basics
of social engineering: making what you’re doing look normal,
keeping your target goal in mind, adapting quickly to change, and
establishing a false trust relationship.

Focusing on the concept of trust, Branson described ways social
engineers can build that false relationship. These involved such
tactics as making yourself look like your target would expect,
making yourself or your techniques look official, and exploiting
emotions. He then described how some day-to-day social engi-
neering takes place: advertising, businesses, car salesmen, and
the police. From there, Branson went through a quick, but thor-
ough, description of how to pull off a social engineering caper.

Branson finished the talk by showing how to avoid being the
victim of social engineering. He described defensive actions to
use on both the phone and in person, focusing on how to avoid
disclosing too much information about yourself or your com-
pany. This included a number of concrete suggestions, includ-
ing how to recognize leading questions and how to still get the
perks of giving away information without actually giving away
 information.

Invited Talks 2
Summarized by Tim Nelson (tbnelson@gmail.com)

The Efficacy of Cybersecurity Regulation: Examining the
Impact of Law on Security Practices
David Thaw, Visiting Assistant Professor of Law, University of Connecticut;
Affiliated Fellow, Information Society Project, Yale Law School

Thaw is both an attorney and a computer scientist. His research
investigates how cybersecurity legislation affects what security
admins do in practice. Surveys can be annoying and often don’t
ask the right questions, so Thaw’s group interviewed chief
information security officers at several large companies. Privacy
concerns prevented him from explicitly naming the companies
involved.

His interviews found that most were unaffected by laws such
as Sarbanes-Oxley, but that others, especially the new breach-
notification laws, had a significant impact. The impact was not
always positive: because the laws mandated reporting a breach
only if the lost data was unencrypted, they resulted in a flurry of
investment solely in encryption. In some cases, this disrupted
other aspects of security practice by diverting time and money
into encryption, regardless of whether they might have been bet-
ter spent elsewhere.

Thaw’s group went beyond interviews and quantitatively mea-
sured the effect of these new laws. To do this, they examined
online breach reports from 2000 through 2010. Although using
breach-reports as a metric is not perfect, at least it addresses
whether an entity is focusing on security. He found that the num-
ber of breaches reported increased in August 2004 (when the
laws took effect) but began to subside by September 2008. The
decrease in reports was much sharper for previously unregu-

lated entities, which suggests that the breach-reporting laws did
have a positive effect on security practice.

Thaw presented his results to Congress and helped prevent
the passage of a bad data-breach reporting law. The study was
performed more than two years ago. Because the world changes
rapidly, Thaw would like to do a follow-up study with more
 sysadmins. He opened the floor for discussion early. Someone
asked how badly these laws were written and whether they
might allow people to encrypt poorly and ineffectually. Thaw
replied that the laws varied by state, but that in many cases the
wording was quite weak. For instance, “renders unreadable”
may be satisfied by ROT13. Further, nothing prevents a law
from hard-coding specific encryption algorithms, rather than
references to current best practice.

Eric Smith noted that Thaw’s research largely looked at consum-
ers of security products, and asked whether he had investigated
producers as well. Thaw answered that he would like to in his
next study. Rik Farrow asked about the distinction between
prescriptive and standards-based legislation, noting that HIPAA
was much more flexible than the breach-reporting laws. Thaw
favors standards-based legislation because it forces companies
to think about security and come up with a plan, rather than
following specific narrow requirements. He went on to say that
security is only one-third technical, because the administrative
and physical aspects are also important.

Someone else asked whether in a small organization a flexible
law would boil down to a directive. Thaw answered that HIPAA,
and similar legislation, takes size and capability into account.
When asked about the process of reporting breaches, Thaw
mentioned that very few breach laws actually have a centralized
repository for reporting, and that the Open Security Founda-
tion’s data has become difficult to obtain, making his research
more difficult.

The Intersection of Cyber Security, Critical
Infrastructure, and Control Systems
Sandra Bittner, CISSP, Arizona Public Service, Palo Verde Nuclear Generating
Station

Bittner began her talk stressing that safety is the first concern
at a nuclear power facility. The US nuclear industry is required
to apply lessons learned in one facility (called operating expe-
rience) to all US commercial facilities to prevent similar
situ ations from occurring in other US facilities. The Nuclear
Regulatory Commission (NRC) requires, in the area of cyber-
security, that all US commercial facilities protect their facilities
against nuclear sabotage and the release of radiological material.
The facility is free to choose the cybersecurity techniques, meth-
ods, and implementations they use but are subject to rigorous
inspections and approval by the NRC. Her facilities are some of
the largest generators of electricity in the US, and are meant to
have a lifetime of 60 years.

76  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

She spoke about the facilities, but had to remove some pictures
and material from her presentation upon being told that her talk
would be recorded. She summarized some challenges inherent in
securing control systems such as power plants, wastewater treat-
ment plants, etc. These systems often contain both analog and
digital components, a plethora of sensors, and electronics that run
nonstandard protocols. Because certification is required, and
recertification may take as much as a year, sometimes critical
infrastructure operators must decide to delay software patches,
or even not to patch at all. They are therefore heavily dependent
on physical and network isolation. Stuxnet presented something
of a wakeup call to the industry, because the cyberattack used
on an Iranian nuclear enrichment facility made use of portable
media to carry the infection past the “air gap.”

In IT an outage is often the worst thing that can occur, but
in their situation, an outage is far less worrisome than losing
control of the facility. Critical infrastructure is also revisiting
the topic of responsible vulnerability disclosure rules to exercise
caution in areas that could incite public panic. Another topic
of interest was forensics challenges for critical infrastructure
because facilities are not easily shut down without public risk of
loss of life. Bittner also noted that there are many cybersecurity
“dialects” spoken, especially at a large facility. There can often
be a terminology gap between the IT staff and the Operations
staff (OT), and it is vital to send IT staff to plant training so that
they understand the entire system.

Rik Farrow asked about frequency of software updates, men-
tioning that later versions of Windows have improved signifi-
cantly. Bittner answered that they have a time-to-live on all of
their equipment, and they can often only replace and install
equipment during an outage, which may occur years apart. Thus,
the last good version of software installed may be past its formal
end of life by the time it is replaced. Farrow also asked about cer-
tifications necessary to work in a nuclear facility, and whether
there was concern about validity. Bittner replied that there are
required certifications and that in the area of cybersecurity
she expressed concerns that established public certification
programs should work hard to discourage the dilution of their
credentials, and pull credentials when necessary.

Mark Bartlet noted that some recent compromises of control
systems were done remotely, and asked what rationale could pos-
sibly lead to these systems being connected to the public Inter-
net. Bittner replied that in those cases typically there was a lack
of understanding about cybersecurity for the control system and
a drive for business efficiency that conflicted with maintain-
ing isolation barriers. Overall business will always want quick
access to production control system information, but this should
be weighed against the cybersecurity risks.

Invited Talks 1
Summarized by Tim Nelson (tbnelson@gmail.com)

A Guide to SDN: Building DevOps for Networks
Rob Sherwood, Big Switch

Sherwood began his talk by observing that network configura-
tion has changed very little since the mid-’90s. In that time,
we’ve made incredible strides in managing our server systems,
but the networks themselves lag behind. Companies build
vertically integrated networking appliances, and we lack the
equivalent of Chef or Puppet for our routers. Software-Defined
Networking (SDN) is a step in this direction, and is largely
enabled by the OpenFlow protocol—SDN is to OpenFlow as the
Web is to HTTP. Using OpenFlow, programs running on a cen-
tralized controller machine instruct the switches, making true
network-programming possible. The need for automation and
custom development lead to the DevOps trend, and Sherwood
compares SDN to DevOps for networking.

Sherwood was careful to explain that SDN controllers are only
logically centralized; they may actually reside on a cluster for
fault-tolerance and load-balancing. Thus the controller does not
actually represent a single point of failure.

As a motivating example, Sherwood brought up backup man-
agement. Large-scale network backups require reservation of
bandwidth, ports, and devices, as well as a keen understanding
of future bandwidth requirements. Configuring this consistently
can be difficult. In contrast, an SDN-enabled application can (in
a sense) talk to the network and schedule an appropriate time
for the backup operation. This is analogous to scheduling in an
operating system.

Switch hardware is already fairly flexible, and so we need only
to leverage it intelligently to implement SDNs. Current work
involves bringing OpenFlow up to the pre-SDN level of features
and performance. OpenFlow-enabled switches are inexpensive,
and, more importantly, one can Google to find prices, because
the switches need not be proprietary hardware. There are also
numerous software switch programs available, such as Open
vSwitch. Openflow has also enabled or inspired many new tools,
including the network simulator Mininet; benchmarking tools
for SDNs like cbench and oflops; and Onie, which allows Open-
Flow switches to net-boot and even dual-boot.

Someone asked why there wasn’t an “OpenFlow for general-
ists” akin to Chef or Puppet. Sherwood replied that OpenFlow
isn’t the right level of abstraction for that, but that languages are
already being built on top of OpenFlow. Another person asked
how well OpenFlow works with legacy hardware. Sherwood
answered that while switches need to be OpenFlow-enabled to
use OpenFlow, such switches usually have a hybrid mode that
enables bridging between OpenFlow and traditional networks.
When asked what happens if the switches lose their connec-
tion to the controller, Sherwood replied that since the controller
pushes down rules that persist on the switches, the network

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 77

RepoRts

won’t simply stop. Instead, how well the network works will
depend on how good the rules themselves are.

OSv: A New Open Source Operating System Designed for
the Cloud
Nadav Har’El, Cloudius Systems Ltd.

Nadav Har’El spoke on OSv, a new virtual operating system.
OSv is intended for guest processes in the cloud, and Cloudius
hopes that it will become the default operating system for virtual
machines. Har’El began by showing the virtualization stack
with hardware at the base up through the host operating system,
hypervisor, guest OS, JVM, and finally the running applica-
tion at the top. He pointed out that many of these components
duplicate effort. For instance, the OS, hypervisor, and the JVM
all provide protection and abstraction in the interest of virtual-
ization. OSv removes this duplication from the OS.

Mainstream operating systems were written with many
assumptions that no longer fit the most common uses of virtual
machines. Today, a VM often runs only one process (like mem-
cached), has no users, and requires few services. Even the file
system is not always needed. OSv was written from scratch to
take advantage of this.

In OSv, while multithreading is allowed, there is only ever one
process running at a time. It therefore has no separate kernel
address space, and system calls are just function calls. It also
provides a ZFS file system, an efficient (netchannels) TCP/IP
implementation, and provides enough Linux emulation to run
binaries. It can be run in KVM/XEN now, and VMware compat-
ibility is expected soon.

Narayan Desai asked how one would debug applications in OSv
if there is only ever one active process. Har’El replied that, for
the moment, they attach debuggers to the guest process itself on
the development machine. He also pointed out that OSv is still
young, and they are still adding features to support debugging.

It was also mentioned that OSv’s one-process architecture looks
remarkably similar to Novell NetWare from 15 years ago. Har’El
replied that OSv is about more than just the single process. For
instance OSv is a virtual OS, and NetWare was not.

Rob Sherwood asked what a smarter hypervisor might do if it
could assume that the guest processes were all running OSv,
and whether we would just end up with containers at that point.
Har’El answered that he does not think that the hypervisor will
be going away anytime soon, but if OSv becomes predominant,
he envisions hypervisors taking advantage of the guarantees
OSv provides.

Invited Talks 2
Summarized by Jonathon Anderson (anderbubble@gmail.com)

Enterprise Architecture Beyond the Perimeter
Harald Wagener, Systems Engineer, Site Reliability Engineering; Jan Monsch,
Security Engineer, Google Security Team, Google

Jan Monsch and Harald Wagener presented an Internet-based
network security model that serves as an alternative to a more
traditional perimeter-based model.

They described a baseline enterprise network security model
as a system of “moats and castles.” Security in this system is
traditionally based on a trusted, privileged intranet zone that is
logically separated and protected from other intranets and the
public Internet. In this model, access to privileged services is
granted based on access to the trusted network that is protected
by “high walls” and “strong gates.” Remote access is granted to
trusted users by granting access to the protected network, often
by way of a virtual private network connection. Attackers have
evolved to address this specific security model, requiring them
to exploit only the weakest point in the security perimeter in
order to gain access to the network and its private services.

Google has addressed the problem of internal network secu-
rity by looking “Beyond Corp.” In this network security model,
no privilege is associated with having access to the internal
network. The perimeter itself is replaced with client certificate
authentication that can be coupled with existing user authen-
tication systems. This has improved their user experience by
allowing their users to work from anywhere on the public Inter-
net, with the only limits to internal service based on configu-
rable policy. This has also allowed more user workflows to be
moved to cloud services, as physical and network location is no
longer a factor in authentication and authorization.

The Overcast architecture blueprint combines an authentica-
tion certificate database with a meta-inventory of system state.
This allows service authorization to be based on the metadata
associated with the client system. Does the system use full-
disk encryption? Is it a desktop or a laptop? What software is
installed?

The workflow patterns supported by this new security model
have presented a few challenges. Access to network-attached
storage is less viable on the now pervasive wide area network,
and users should be moved to asynchronous local storage wher-
ever possible. Certain legacy workloads have proven difficult to
port, necessitating some traditional VPN access; but these net-
works can be reduced in scope around only these legacy services.

Further implementation details and examples, as well as the dis-
cussion of code availability, was deferred to more specific talks
the following day. For more information, see “Managing Macs
at Google Scale” and “OS X Hardening: Securing a Large Global
Mac Fleet,” below.

78  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

Drifting into Fragility
Matt Provost, Weta Digital
Summarized by Jonathon Anderson (anderbubble@gmail.com)

Matt Provost used themes drawn from the books Drift into Fail-
ure by Sidney Dekker and Antifragile by Nassim Taleb to reframe
and redirect efforts to improve stability in complex systems.

As an example, he opened with a story of a seemingly simple
deployment of an NFS cache. In keeping with best practices,
the service was tested and deployed in stages to progressively
larger sets of the production environment. Yet, within two hours
of deploying the seemingly good service to the entire facility, all
production operations had ceased: the deployed cache had been
compiled as a 64-bit system, but the application using that cache
was compiled as a 32-bit binary. Despite testing, the problem
only became apparent when the cache delivered an inode with a
number larger than 32 bits.

Systems are often fragile, denoted by disruption in the face of
variability. One response to such fragility is to make the system
“robust,” often by introducing redundancy; but redundancy often
impairs the ability to detect systemic problems during testing by
hiding problems within individual components.

Public root-cause postmortem reports provide further insight
into the difficulty of troubleshooting complex systems. Examples
from Amazon, GitHub, and CloudFlare all showed ample prepa-
ration and past experience that seemed to guarantee success yet
failed to anticipate the interaction of components in the system.

Matt advocated the creation of “antifragile” systems that
improve in response to variability rather than deteriorate. One
approach to creating antifragility is to generate artificial vari-
ability in the system, making this variability routine rather than
exception. As one example, he referenced the Netflix “Simian
Army” (see “How Netflix Embraces Failure to Improve Resil-
ience and Maximize Availability,” above) and provided his own
simplified “Cron Monkey” implementation: by rebooting devel-
opment servers automatically and regularly, he prevented these
servers from drifting into production use. Also, single-points of
human failure can be detected by simply going away from the
system for some period of time.

He also advocated the simplification of systems wherever pos-
sible, even going so far as to disable file-system snapshots to
ensure that backup services are reliable. Legacy systems should
be actively decommissioned, though, in Q&A, he admitted that
variety in user culture can make it very difficult to remove a
service once it has been deployed.

Papers and Reports
Summarized by Carolyn Rowland (unpixie@gmail.com)

Live Upgrading Thousands of Servers from an Ancient Red
Hat Distribution to 10 Year Newer Debian Based One
Marc Merlin, Google, Inc.

Many of us in the community keep an eye on Google because
they’re doing what we’re doing but at scale. Often the lessons
from Google show us what is possible when you must automate
because it is too expensive not to do so. This presentation is no
exception. Marc presented Google’s solution to updating and
maintaining thousands of Linux servers with minimal effort.

He started by talking about their in-house Linux distribution:
ProdNG, self-hosting and entirely rebuilt from source. All pack-
ages are stripped of unnecessary dependencies and libraries
making the image quicker to sync, re-install, and fsck. Google
chose Debian because it had a better base of packages than Red
Hat. With previous distributions, they spent too much time
packing software that wasn’t included in the distribution. They
considered Ubuntu, used on their workstations, but it wasn’t
ideal for the servers.

The first step was to check the golden image into revision control.
When they were ready, every server started booting the same
image at the same time. They also found that they could do
a side-by-side diff of images as needed for testing. Ultimately,
there was no way to guarantee that they could seamlessly switch
distributions from Red Hat to Debian. It was hard to find beta
testers or to convince their internal users to run production
services on a very different Linux distribution.

They had to find all packages that inherited from RH 7.1 that
were never needed (X server, fonts, font server for headless
machines without X local or remote, etc.). It’s amazing how
many packages come with a distro that you don’t really need on
 servers. They converted the remaining Debian packages (debs)
to rpms, keeping both distributions libc/binary compatible.

Sometimes it’s the little things that bite you.

The coreutils upgrade was scary due to amount of breakage cre-
ated upstream. The day they removed /etc/redhat-release is the
day they broke a bunch of Java that parsed this file to do custom
things with fonts. One rule on the team was whoever touched
something last was also responsible for fixing the breakage,
revert the change, fix the bug, try again later.

Then they started the painstaking upgrade of around 150 pack-
ages carefully stripped and built from scratch in a hermetic
chroot environment. The process was to upgrade a few at a time
by building them in ProdNG and putting them in both ProdNG
(not used yet) and the current image.

After upgrading the packages, they would throw a regression
tester at the new image, run all of the daemons, make sure they
come up, test crash reboots, and test reverting to the old image
for completeness.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 79

RepoRts

There were some lessons learned along the way:

◆◆ Maintaining your own sub Linux distro in-house gives you
more control (if you have in-house expertise).

◆◆ At large scale, forcing server users to use an API and not to
write on the root FS definitely helps with maintenance.

◆◆ File-level syncing recovers from any state and is more reliable
than most other methods.

◆◆ You’ll be able to do crazy things like switch distributions.
◆◆ Don’t blindingly trust and install upstream updates, because

they could conflict with your config or even be trojaned.
◆◆ If you can remove services/libs you don’t need, that leaves you

with fewer things to update and fewer security bugs to worry
about in the future.

◆◆ Running the last Fedora core or Ubuntu from five months ago
is more trouble than it’s worth. Full updates of servers every
three years is reasonable, so Debian stable or RHEL are the
way to go for servers.

◆◆ Depending on your server setup, partial upgrades may be
better for you. Choose a distribution that allows this, such as
Debian.

David Ehle, Argonne Laboratory, asked why they built every-
thing from source. Marc responded that when you take binaries,
you only have signatures, and you’re trusting Red Hat. You’re not
sure there’s not a trojan in the binary. If you build from source, you
can have your own optimizations, and you can update with some
stack protections. You can use the compiler options you like. You
have more luxury (control). We do modify some daemons (e.g.,
better command logging).

Managing Smartphone Testbeds with SmartLab
Georgios Larkou, Constantinos Costa, Panayiotis G. Andreou, Andreas
Konstantinidis, and Demetrios Zeinalipour-Yazti, University of Cyprus

The number of mobile devices in use today is now exceeding
the number of laptops. There is the tablet, Raspberry Pi, smart
glasses, smartbook phones, and 53% of smartphones in 2016 will
be running Android. People are also not changing their phone OS
when a newer version is released because manufacturers are not
supporting the older phones. This means a lot of old phones run-
ning old operating systems are still in use. How can a smartphone
developer cope with this software/hardware fragmentation?

Georgios Larkou presented SmartLab (http://smartlab.cs.ucy.
ac.cy/), a comprehensive architecture for managing mobile and
virtual smartphones through a Web browser. You can manage
devices, issue shell commands, transfer files, see the debug
information, and do sensor mock-ups as well. You can even go to
SmartLab and rent a smartphone. Imagine you are a developer
and you want to test your app on 50 different smartphones. You
can do that with SmartLab. It also gives you a platform to man-
age all of our gadgets in the future. You might need to handle a
fleet of devices installed on 1000 buses. SmartLab will support
that next year. The SmartLab developers are talking with a local
ISP and will have smartphones running on buses in the future.
They will monitor all of them to get data for other experiments.

Additionally, people tend to change smartphones more often than
they change computers. It would be advantageous if SmartLab
could use all of these smartphones to build Beowulf-like clusters.

This architecture has been evolving since 2009. SmartLab
provides fine-grained control over ARDs (Android Real Devices)
and AVDs (Android Virtual Devices). There is remote file man-
agement, and a home directory and /share directory, and access
to all SD cards from the devices. If a user drag-and-drops a file
from one device to another, it will copy through the SmartLab
architecture. If the person drops it in the /share directory, then
it will be distributed to all Android devices. The same thing
happens with the remote shell; the user can send commands to
multiple devices.

SmartLab builds upon standard open tools for its architecture.
Benefits of the SmartLab open architecture include experi-
mental repeatability, urban-scale deployment, federation issues
(similar to PlanetLab) so others can contribute, and personal
gadget management.

David Lynn (Vanderbilt University) asked whether the cell
radios in the actual devices are active. Georgios said no, because
they don’t have SIM cards on the devices. They are talking with
an ISP to provide mobile data. Marc Merlin wondered how the
virtual devices compare to simulators that have good native
speed. Georgios answered that the real devices are not good for
I/O-intensive experiments, as it takes too much time to push
and install an app on multiple devices; on the other hand, it takes
much longer to install the app on the simulators. Marc then
pointed out that if you’re running out of memory because you
have a virtual disk, then you are fighting for a disk head. This is
still useful for some applications but for others you might be bet-
ter off running simulators. Georgios responded that they want
everyone to be able to have access to real devices.

YinzCam: Experiences with In-Venue Mobile Video and
Replays
Nathan D. Mickulicz, Priya Narasimhan, and Rajeev Gandhi, YinzCam, Inc.,
and Carnegie Mellon University

The YinzCam team started with wireless capabilities in the
football stadium in Pittsburg. It was a distraction-filled work
environment, and inefficient because they had to have someone
on-site at the venue every game. How would this have scaled if
they continued to do on-site operations for multiple teams in
multiple cities?

They took on four new installations in 2011 and had to fly across
the country to San Francisco for every one of their home games.
The costs would have continued to increase, especially the travel
costs for the on-site person.

The team thought they could centralize their operations in a
single remote location. This would eliminate the distractions
from the on-site environment and allow efficient communica-
tion between staff. Plus, they could cover for each other. It also

80  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

meant a reduction in travel costs because everyone would be
together at the remote site.

They would need to provide reliable access to remote resources.
Using a VPN would provide secure connectivity between all
sites, allowing the team to monitor content remotely. They are
only allowed to publish content inside of stadiums because of
licensing restrictions, but they can play that content over the
VPN without breaking those restrictions.

They got to the point of having 18 in-venue installations, 83
source video streams, and 98 physical and virtual machines.

They leveraged Amazon Web Services (AWS), connecting to the
nearest AWS region (east or west), then established a connec-
tion back to the other AWS region. Now they could have a remote
ops workstation through a remote management gateway into the
servers inside of the stadium. They reduced costs in 2012 and
2013 because they only had to go to the actual site for a one-time
installation’, and that was it for the rest of the year.

Another challenge was how to quickly and accurately generate
replays of game footage. How it would work: a fan goes into the
application and pulls up the highlights list. Then s/he selects
the replay after choosing the camera angle. Originally this was
a manual cutting workflow that worked like this: an interesting
event occurs during a game, a remote YinzCam operator clicks a
button at the end of the event, a tool searches back in time for the
start of the event, the system produces a video file, the opera-
tor annotates this file with metadata, and, finally, the system
publishes the video in the mobile app.

This method was time-consuming, error prone, and repetitive,
and the manual metadata generation took time. It required full
operator attention, and there was no pipelining (e.g., there was
only one replay at a time).

The team resolved this by using resources for what they do best:
machines are well-suited to repetitive tasks such as approximat-
ing replay boundaries and encoding video. Humans perform well
on visual tasks such as visual verification of the instant replay
window. They also needed to allow remote override of automated
decisions because these decisions might be incorrect. Humans
would verify replays.

The automated replay cutting architecture included two data
feeds: one was video, the second included the statistics about
the game. Luckily timing rules allowed the team to estimate the
start and end times for every replay in the game. Video streams
could also be easily duplicated in cache. The team set up a proxy
server that split the content to all existing clients. Segments
of video were served over HTTP while standard proxies were
used to cache video data. Public clouds have ample bandwidth;
you pay per GB, but the bandwidth is practically infinite. The
requirement was for five hours of uptime on game day only with
rapid scale-up and scale-down on demand.

Once the stream was in the cloud, it was migrated to a live
streaming server. The team produced a copy of content to the
cloud so it could be served from the cloud using the bandwidth
available there. A copy of the replays and livestreams were sent to
the in-venue WiFi network which operated just as it did before.

Some of the lessons the YinzCam team learned from this effort
include:

◆◆ Manage operations remotely
◆◆ extract ops from field environment
◆◆ ensure easy, reliable access to remote systems

◆◆ Invest in system automation
◆◆ automate error-prone manual processes
◆◆ allow overriding of automated processes

◆◆ Take advantage of the cloud
◆◆ short-term CPU-intensive processes
◆◆ bandwidth-intensive processes and services

David Lynn (Vanderbilt University) pointed out that the Tennes-
see Titans are about three miles from Vanderbilt, and cellular
coverage at the LP field sucks. Sprint is being used for wireless,
apparently. Nathan replied that in Sprint’s case, DAS (distrib-
uted antenna system) is often done on carrier-specific lines.
When a DAS is installed, it is often installed by a single carrier,
and not all of the major carriers will be on it at once. Sprint may
not even be on the DAS but some of the other carriers may be.
DAS handles a lot more traffic than a single cell tower would
outside of the station.

Andrew Myers (Lean Logistics) asked whether they used black-
magic or matrix cards, and how much COTS was used. Nathan
replied that they used blackmagic cards and software encoders
like ffmpeg. Andrew also asked if they used commercial stream-
ing software or their own, and Nathan responded that they wrote
a little bit of software that takes a TCP stream and copies it to a
different endpoint. Someone asked how support is handled for
the deployed equipment. Nathan said that clients purchase and
maintain the hardware.

Friday, November 8, 2013
Invited Talks 1
Rethinking Dogma: Musings on the Future of Security
Dan Kaminsky, Chief Scientist, White Ops
Summarized by Jonathon Anderson (anderbubble@gmail.com)

Dan Kaminsky, perhaps best known for his work pointing out
a fundamental design flaw in DNS, offered his thoughts on the
security landscape predicted for 2014.

He started by framing the current state of security as that of a
hacked-in afterthought: design the system, then make it secure
against exploits. In today’s globally Internet-worked world, secu-
rity has become an engineering requirement of its own, but we
don’t know how to deliver security at scale; we don’t know how
to authenticate users; we don’t know how to write secure code;

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 81

RepoRts

and we don’t know how to punish the “bad guys.” Instead, when
system security fails, blame falls on the victim.

In the absence of any existing solution, Dan says that we have no
room for religious arguments about how to do security. We need
new science with new data and new instrumentation.

Dan likened existing security models to static puzzles. Any
puzzle of arbitrary complexity can be solved given sufficient
incentive and time; and with no consequence for failed attempts,
any security system can eventually be broken as well. Instead,
security should be approached as a game: an interactive chal-
lenge where the security professional has the advantage of supe-
rior information. In essence, the defending player “doesn’t have
to play fair.” Security professionals have a wealth of data signals
to mine, including system logs, network activity, and honeypots;
and the time it takes an attacker to probe an unknown system for
vulnerabilities provides ample time to respond with a conse-
quence. The remaining challenge is in managing the signal-to-
noise ratio, reducing false positives as much as possible.

Dan touched on a series of recent trends and events in the
security community, including the increasing difficulty of
securing virtualized systems; reports of “badBIOS” exploits; the
Microsoft and Facebook Internet Bug Bounty (IBB) program;
improvements in sandbox technology (particularly asm.js);
and controversies arisen from recent revelations regarding the
United States National Security Agency (NSA).

The larger issue in securing systems, however, is usability, both
for the end-user and the administrator. Key management is always
more difficult than the cryptography it uses, and security is more
easy to circumvent when it is more difficult to implement correctly.

Dan fielded several questions from the audience. He defended
his preference for Windows 8, calling all modern operating
systems “essentially single-user machines.” He responded to
recent research into application sandboxing, calling efforts to
extend the Capsicum project into hardware “one of the most
interesting things [he’s] heard.” When asked about Bitcoin, Dan
marveled both at the currency’s existence and at the fact that it
has remained unbroken despite the intrinsic financial incentive
to defeat it. When asked about the upcoming termination of sup-
port for Windows XP he responded that he’s more concerned that
Web browsers for the OS might stop receiving security updates,
calling the browsers the “gateway to the world.” He closed with
anecdotes from Google’s experience running honeypots, pro-
viding recommendations for deploying them as part of a site’s
overall security strategy.

Invited Talks 2
Summarized by Scott Murphy (scott5@ovsage.org)

ZFS for Everyone
George Wilson, Delphix

George Wilson of Delphix started with a poll of the room check-
ing to see how many are using ZFS. It seemed that pretty much
all common platforms are in use and represented by the audi-
ence. He then gave a short bio of his involvement from the first
introduction of ZFS to Solaris 10 up to his current OpenZFS
activities and then gave a quick overview of the ZFS timeline.

He went on in a little more detail regarding OpenZFS. It was
launched in 2013 as the truly open source successor for ZFS.
When ZFS was being developed, most of the work was done by
Sun/Oracle. Now the contributions are coming from across the
spectrum. Basically, OpenZFS is an umbrella project founded
by Open Source ZFS developers representing multiple operating
systems. The stated goals are to raise awareness of the quality,
utility, and availability of OpenZFS; to encourage open com-
munication about efforts to improve OpenZFS; and to ensure
consistent reliability, functionality, and performance of Open-
ZFS. This is all coordinated through the project Web site: http://
open-zfs.org.

He then displayed a slide showing the involvement of companies
with OpenZFS, stating that OpenZFS is becoming a big driving
factor for adoption by companies for their products.

Moving on to the management of OpenZFS, he explained how
they deal with features across platforms by using “feature flags.”
He then gave an overview of the feature flags available in Open-
ZFS. These include the Pool feature, LZ4 compression, com-
pressed L2ARC, enhanced write throttle, per I/O device queues,
and imbalanced LUNs enhancements.

Someone asked why the per I/O queue was processed in the
order described. George answered that the queues are processed
in priority order and checked to see if any of the queues have not
gotten their minimum number into the active I/O pipeline. If a
minimum has been met for any higher priority queue and there is
a queue without anything in the I/O pipeline, then the next high-
est queue will be processed and the next until they are empty or
have reached their minimum. This effectively guarantees that
all queues get processed and blocking is reduced.

George went on to say that upcoming features would include
enhancements for pool fragmentation and zero block compres-
sion. There are many more features in the pipeline.

George concluded with an appeal to get involved with the project.
If you are making a product, let them know, if you are a sysad-
min, spread the word and contribute to the wiki.

Someone asked, “Is there a feature that would allow you to
remove a fragmented imbalanced LUN and redistribute the
data across any new LUNs?” George mentioned that there is a
block pointer rewrite project driven out of Oracle, but they don’t

82  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

want to implement it in ZFS; it was a grandiose idea and would
ultimately have killed development by making it difficult to
add features later. He added that there is an idea to introduce a
device removal logic that would allow you to effectively remove
the LUN and to recreate a new virtual device that looks like the
LUN but then gets data redistributed to it. There is a writeup on
device removal that is being tweaked to include both redistribu-
tion and device removal which would cover this case.

Someone else asked about the new combined development
process and how it feeds back into the various things we actually
use. George said that the idea behind the dev process is to take
all of the platform-specific layers and tease them apart to create
a common ZFS repository in order to allow any platform to take
that wholesale. They have also created a testing facility, which is
available today in the open source community, that will make it
easy to test regardless of the platform. You test on any platform
with the same test structure, ensuring it will be available on all
supported platforms.

Someone else asked, “Do you have any advice for those still
on Solaris who may want to move to this platform?” George
answered that for those who are doing migrations, it will be diffi-
cult. The easiest way might be to use a ZFS send, but Oracle may
have added a feature which will make this incompatible if you
are in a newer revision. If you are running Solaris 10 it should be
easy. Someone asked a related question, whether there is a ver-
sion number to avoid exceeding. George responded that if you are
running anything less than version 28, you can just import the
pool. He also said that they will be putting some migration notes
on the Web site and you should check there for more details.

The final questioner asked whether Oracle is interested in the
OpenZFS efforts or were they doing their own thing. George said
that he was not sure about interest, but they are definitely doing
their own thing. The OpenZFS folks have talked to developers
about adding feature flags so there would be compatibility, but
Oracle has its own agenda and business needs. The community
is interested in what Oracle is doing, such as larger block sup-
port. Good ideas can come from everywhere.

Manta Storage System Internals
Mark Cavage, Joyent

Mark Cavage, software engineer at Joyent, gave a talk on the
Manta Storage System, starting with a short history lesson.

Back in the ‘80s as part of a magazine article series, Jon Bent-
ley asked Don Knuth to demonstrate “ literate programming”
using a classic problem, word frequency analysis. He also asked
Doug McIlroy (inventor of UNIX pipes) to review the solution.
Knuth’s solution was done in ten pages using a custom algorithm
in WEB, his own literate programming language, with a from-
scratch implementation of everything. McIlroy did a one-liner
with standard UNIX commands and went on to make several
points to illustrate why his solution was acceptable, including

the following two: not everyone has a Don Knuth on staff and not
all problems are the same, but they may be similar.

This illustrates the UNIX philosophy, which is specifically cre-
ating small programs that do one thing and do it well. This also
influences the approach to building programs.

Moving the time machine forward to today, the aggregate term
“Big Data” provides the same class of problem, illustrated by
Google’s MapReduce paper. Mark wanted to apply the UNIX phi-
losophy to it. To that end, you need a few items: parallel execu-
tion capability, the compute interface to be a raw OS with the
standard OS tools, cloud vendors to provide multi-tenancy, and
the ability to store an arbitrary amount of data.

Beginning with storage, you have three choices: block, file, and
object. Object storage is similar to file, no partial updates, no
exposed volumes, and a universal protocol. The challenge is how
to make UNIX work with an object store efficiently. Next, you
virtualize the OS—in this case with zones. This provides one
kernel on bare metal and many virtual containers with their own
root file systems. This is much more efficient than hardware-
based virtualization. There is also a rich interface between the
global zone and the individual tenant zones.

Putting it all together, Manta is a scalable, durable HTTP object
store with a namespace that looks like a POSIX file system with
in situ compute as a first-class operation.

Mark then did a successful demo, the Manta version of “Hello
World,” demonstrating that the file system was available on his
laptop talking to the Manta cloud. The demo showed a prototype
UNIX environment running on an object store.

He went on to describe the Manta design parameters. They
chose to be strongly consistent vs. eventually consistent. This is
based on the CAP theorem (Brewer, 2000) which can be para-
phrased as “on any storage system in the face of network failures,
you can choose for the system to be consistent or available, but
not both.” They chose strongly consistent because in an eventu-
ally consistent system, nothing up-stack can ever be consistent
again. If you build strongly consistent, you can always put an
eventually consistent layer up top. An object store needs to be
strongly consistent for maximum functionality. In HTTP terms,
system up returns 200s, system down returns 500s. Given these
parameters, their system is built to be highly available. They
can tolerate everything up to a single datacenter failure—every
object in Manta must be a contiguous file.

He then showed a diagram that resembled the classic three-tier
architecture, in this case front-end, metadata, and raw stor-
age. The front-end consists of Stud (SSL terminator), HAProxy
(HTTP terminator/Load Balancer), a Web API (restify on Node.
js), and Redis (authentication cache).

The metadata tier consists of Moray (custom node.js key/value
interface), metadata copies on 2+ Postgres databases, replica-

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 83

RepoRts

tion topology managed via ZooKeeper, and a consistent hash on
directory names.

Raw storage is a custom bare metal system called the Manta
Shrimp, which consists of 73 TiB in a 4U 256 GB DRAM
RAIDZ2 box, SmartOS (ZFS, Zones), storage interface (nginx),
and the ability to support compute jobs.

The final part of storage is how they implement group member-
ship, which is through a custom DNS server in Node.js. Partici-
pants write an “ephemeral node” in ZooKeeper on startup. This
“mostly” works, as the name service caching daemon (NSCD)
and ZooKeeper have issues.

Mark continued with a discussion of the compute flow. Users
submit jobs which specify pipelines to run either on each input
separately (Map) or all inputs together (Reduce). Inputs are
objects accessed as regular files, outputs are saved as objects.
User programs run inside transient zones managed by the ser-
vice. Resource usage is capped but makes allowance for bursty
activity. Input is taken via objects mapped in as read-only files
(for Map) and redirected as stdin. Upon completion, ZFS roll-
back is performed and the zone is rebooted.

Mark revisited Bentley’s challenge from earlier showing the
Manta variant of McIlroy’s solution to the challenge with
parallelism and did a demo using a word find on all the works of
Shakespeare. It was fast.

Customer usage tracking (aka metering and reports) uses
Manta. Every N minutes, they upload database snapshots. Once
the snapshots are uploaded, a job is kicked off to aggregate usage
by customer. There is nothing special here, just MapReduce.

Garbage collection is an interesting problem—links in Manta
are copy-on-write UNIX hard links. On every delete, the record’s
state is recorded and then Manta crunches the delete logs and all
live records by hourly sending all records about an object ID to
the same reducer. The reducer can then determine whether the
object is truly garbage; all garbage objects are emitted to Manta
as a list per backend server. The backend server then polls Manta
for new objects to delete.

Mark concluded with a series of implementation lessons. The
modules node.js, bunyan, restify, fast native-dns—and, particu-
larly, MDB, DTrace and Flame graphs—were handy for debug-
ging; Stud is very buggy. If you are going to use nginx, make sure
you have the version with the fsync patches. nginx resource
requirements will need tweaking. They use ZooKeeper for now,
will hopefully find a replacement soon. Postgres is running with
lots of churn with a 24/7 duty cycle, so there will be a lot of tun-
ing, vacuuming, analyzing, and table fragmentation.

There were no questions.

Invited Talks 2
Summarized by Georgios Larkou (glarkou@cs.ucy.ac.cy)

Apache Hadoop for System Administrators
Allen Wittenauer, LinkedIn, Inc.

Allen started the presentation by asking about Hadoop adoption
among the attendees, continued with a brief MapReduce and
Hadoop introduction, and provided some real examples of Map
and Reduce functions in Perl and Python. Next, Allen provided
some background information about Hadoop genesis and how
Hadoop evolved over time, from the Google’s MapReduce Frame-
work and file system to the open source version we all use today.

Hadoop binds the MapReduce programming layer and the HDFS
file system together in order to provide support for file-system-
agnostic behavior since MapReduce does not care if you are run-
ning HDFS on Amazon’s S3, for example, or GlusterFS, or any
other file system (e.g., ext4 or ext3). HDFS uses the NameNode
to provide a dynamic metadata store for each file, similar to an
iNode server. Additionally, Hadoop implements a scheduling
framework and uses a JobTracker to schedule tasks on a distrib-
uted cluster. The bad news is that Hadoop is built by developers
for developers, thus it is not designed for system administrators
and/or support staff.

Allen pointed out some of the Hadoop problems (e.g., single point
of failure) and provided some suggestions for (junior) adminis-
trators, including not to always trust the logs since most of the
time, tailing the logs will not tell you the whole story. Allen asked
the audience to remember just one character, a “%” (percentage),
since that character is the key to making Hadoop work. In order
to better explain why, he provided an example from nature, an
ant colony. He said that if the colony loses an ant, that is not a
big deal, the colony will survive without any problems; but if the
colony loses the ant queen, it will probably face a variety of prob-
lems and might not be able to recover. Consequently, he asked the
audience to think of the master node in the Hadoop framework
as if it were an ant queen.

The solution that Allen suggested to the audience was to use a
monitoring system to monitor the master nodes, and he pre-
sented a custom build of Nagios that they use at LinkedIn. He
also suggested performing health checks on the NameNode and
the JobTrackerNode every “x” amount of time. Additionally, he
suggested extensively testing everything before running the
framework, and noted that even if you introduce simple tests
such as moving files to HDFS, performing simple MapReduce
tasks can save a large amount of time since you will be able to
detect most of the errors before you turn on the framework for
production. Finally, he suggested monitoring resource usage and
mentioned that developer teams or individual developers will
not understand any Java heap problems, but they should always
write their code as if they had limited resources. For this, Allen
suggested the introduction of a quota system.

84  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

In terms of Hadoop security, Allen suggested always being aware
of any open ports and noted that since it is difficult to revoke
a user-level certificate, administrators should use Kerberos.
Kerberos supports the use of Active Directory certificates and
provides mechanisms for easily revoking user certificates. As a
result, the administrators will have more time for building “cool
infrastructures” than doing boring user management.

Lastly, Allen presented the “White Elephant” open source proj-
ect contributed by the LinkedIn team. White Elephant provides
tools for monitoring an individual user’s usage by analyzing the
JobTracker logs for every job submitted to the system. The tool
allows the Hadoop administrators at LinkedIn to ensure that
every developer obeys the fair usage policy.

Someone asked whether putting a quota on everything might
introduce big hits on metadata operations. Allen responded
that they did not observe any kind of metadata problems since
Hadoop actually kind of cheats; Hadoop actually knows the block
size when you ask for file storage and thus can calculate the
quota you may potentially use, based upon the default block size
and the number of blocks the user asks for.

Someone else asked for advice regarding the naming scheme of
the file system or machines, especially if you are going to have
more than one cluster. Allen responded that they use generic
names for everything. He also provided an example of how
LinkedIn had chosen the naming scheme for their machines and
some best practices based on their experiences.

Jennifer from Yahoo!, noted that Allen is one of the active
Hadoop committers but not one of the project management com-
mittee (PMC) members. Jennifer expressed her concern that
Hadoop has a lot of operability issues and asked whether there
are any people from the PMC who are operational-side focused
and, if not, how can Allen get on the PMC and how can she vote
for him. Allen responded that he does not believe that anyone
from the PMC is operational focused. Regarding how he can get
elected to the PMC, Allen said that it is a much more difficult
question which he cannot publicly answer.

An attendee asked Allen whether he knew any framework dedi-
cated to automatic health checks for Hadoop. Allen responded
that he is not aware of an existing framework but it would be
advantageous if anyone could provide directions on how to build
one or contribute to developing an open source framework for
health checks.

The last question concerned security and how an administra-
tor can actually secure a Hadoop cluster. Allen responded by
providing some examples from their configuration at LinkedIn.
‘LinkedIn uses iptables for firewalling their clusters, and when
they finish configuring the whole cluster they usually export the
resulting iptables and provide them to the network administra-
tors to implement in the network stack. Allen also expressed
concern regarding the fact that switches might not have enough
memory to implement the whole iptables configuration.

Optimizing VM Images for OpenStack with KVM/QEMU
Fall 2013
Chet Burgess, Senior Director, Engineering, and Brian Wellman, Director,
Operations, Metacloud, Inc.

Brian presented Metacloud’s experiences running produc-
tion clouds for their clients and, as a first step, he presented all
software versions of the tools covered during the presentation.
He continued by presenting the most common disk formats,
RAW and QCOW2, and a VM container format, AMI. RAW disk
format provides a direct representation of a disk structure; it
can be sparse, is widely supported by hypervisors, and can be
treated as a block device. On the other hand, QCOW2 (QEMU
Copy on Write version 2) format is part of the QEMU project
and supports pre-allocation as well as on-demand allocation
of blocks. QCOW2 supports a wide range of features such as
read-only backing files, snapshots, compression, and encryption.
Additionally, Brian presented a short comparison between the
two formats and some suggestions based on their experiences.
Finally, Brian presented the AMI (Amazon Machine Image)
container format, which consists of three different files: the
AMI raw disk, the Amazon Kernel Image (AKI), and the Amazon
Ramdisk Image (ARI).

During the second part of the presentation, Brian illustrated how
a user requests and launches an instance by selecting the flavor
of an instance (e.g., quantity of CPUs, RAM, disk sizes). All
users’ requests are scheduled to the nova-compute node which is
responsible for making the image available locally. Additionally,
Brian provided some information regarding the procedures that
nova follows in order to allocate a disk file of either RAW or the
QCOW2 format where the default disk format is nova.

During the third part of the presentation, Brian presented best
practices for preparing an image OS for a cloud environment. He
started by presenting a bunch of essential tools such as QEMU,
cloud-init, etc. Additionally, he showed how these tools can be
easily installed and configured on Ubuntu and CentOS.

Brian presented best practices on how an administrator should
prepare a cloud image regarding authentication, networking, and
hotplug support. He suggested that, as a first step, administra-
tors should disable SSH password-based logins and disallow
remote root logins via SSH. Administrators should create a
single user and add this user to the administrators group and
allow root login without a password from the virtual console.
At this point, he noted that there is no actual security benefit if
you introduce passwords, and it will introduce a lot of overhead
in case you would like to change the administrator password on
all pre-distributed machines. Moreover, Brian suggested that
administrators should allow MAC addresses to be generated
dynamically each time an instance is spawned and eliminate
MAC address binding. Additionally, he recommended config-
uring DHCP clients for persistence. The reason behind this is
that a VM should never give up trying to obtain a DHCP lease,
because otherwise the machine might fall off the network and
require administrative intervention. Finally, he demonstrated

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 85

RepoRts

how an administrator should configure a machine for hotplug
support in order to prevent rebooting while attaching or detach-
ing a hard disk drive.

Brian concluded his presentation by summarizing the contents
of his presentation and providing his contact details for the
 audience.

An attendee from the University of Maryland noted that since
Metacloud provides everything as a service, they have access
to their customers’ data and asked if they have any policies
or auditing mechanisms. Brian answered that Metacloud is
actually building and operating the cloud using their clients’
datacenters, and thus they are not using their own infrastruc-
ture or datacenters. Everything resides inside their custom-
ers’ firewalls, so from that point of view they follow the same
guidelines that their customers follow regarding data protection
and auditing.

Invited Talks 3
Summarized by Carolyn Rowland and Rik Farrow

Managing Macs at Google Scale
Clay Caviness and Edward Eigerman, Google Inc.

If you work at Google and you want to use a personal platform
other than Mac, you have to make a business case for it. Google
has made a big push away from Windows, to using Macs for
desktops. Google has 64 offices around the world (http://www.
google.com/about/company/facts/locations/) and 42,162 per-
manent employees as of the third quarter of 2013, as well as lots
of contractors, temps, and vendors. As of the most recent month
where they have login statistics, they are managing 43,207 Macs.

Google has a MacOps team charged with keeping those machines
secure and operational. They use none of Apple’s management
tools, as Apple hasn’t had a major release of their management
tool since 2006. And since the release of the iPhone, they’ve lost
their attention as far as enterprise management tools. Instead,
they use open source tools and a few commercial products.

Google is very security and privacy conscious and has a very
strong bias toward open source. If they don’t find an open source
tool, they have a very strong bias toward building their own
tool. They are trying very hard to move away from the corporate
network. They believe that all of their tools should work on the
Internet, not only on the Google network. They support everyone
from software engineers and SREs to masseuses and chefs.

They are also moving away from the corporate network to the
Bag of Infinite Holding. They encourage their users to keep their
data in the cloud and do everything they can in the cloud.

Google uses a single monolithic image for all users. They can do
this because their package and config management are so good
that they can produce a single image and customize it through
other management tools. And Google is open sourcing the proj-
ects we use to do this.

Google uses Puppet for configuration management. They only
do enough Ruby to get confused about it, and have clients pull
configuration with the master. They use a sibling product called
format that gathers information and sends it up to the server.
You define the state of the machine as you want it to be and then
Puppet makes it happen.

crankd is a Python script that registers system config events,
Cocoa events. They use it every time the network state changes,
to see if, for example, you’re on the corporate network, a VPN,
behind a captive portal, etc. They can also track application
launches and quits, logging it for usage which is good for licens-
ing and security.

Users do terrible things. They once had a user describe Puppet as
a virus to a team mailing list including a list of ways to disable it
and work around it. Occasionally the Google team does terrible
things. So they needed Plan B.

Plan B is a management watchdog, and is just a shell script
because they’ve seen cases where the system, Python or Ruby,
breaks in interesting ways. They figure if the shell is broken then
nothing is working. Plan B runs periodically and reports whether
the management agents are running. If not, Plan B tries to down-
load and re-start them.

Google uses three open source tools to manage their software
life cycle from beginning to end. Munki is an open source project
out of Disney animation. The client end is made to look like
an Apple software update, and it manages software update for
users. Munki can push Apple software updates or their own
packages. They can prepackage things with optional software,
and users will get a package that Google has okayed for them to
install. The backend of Munki just looks for an HTTP server.
They built the backend on Simian and that gives them fine-
grained controls on how packages are pushed out. They manage
hundreds and hundreds of packages without issues.

For security and monitoring, they built a tool called Cauliflower
Vest (an anagram of “filevault escrow”). Cauliflower Vest is open
sourced, allows for key escrow for full disk encryption (FileVault
2), and uses App Engine internally to Google. All of the access to
the client’s key is logged and audited. The user can get the recov-
ery key or incident response, or someone on the MacOps team
can get access to the locked hard drive.

They owned up to not having a great story on inventory manage-
ment and have another open source for it. They get most data
from factor (the tool that works with Puppet) and a few other
sources. Most of the data they get from factor (related to Puppet)
and a few other sources. This data gets reported to App Engine
and sent up to other inventory management systems at Google.

To summarize security, encrypt all things, log everything, and
log everything centrally. Make sure everything is in source
control, make sure anything you do can be done again exactly the
same. You don’t want to do something 40k times.

86  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

Someone pointed out that some of their users have a negative
opinion of Puppet managing their Mac for them. Assuming the
existence of independent hacker types who want to manage
their own Macs, how do they balance that? They try to go with a
carrot-stick approach. The access to internal network resources
is dependent on a machine certificate. In order to get that cer-
tificate, certain internal checks have to pass, demonstrating the
machine is up to date. If it isn’t, they can revoke the certificate.
They also give users flexibility to opt-out, but not a simple way to
opt-out. There are always some edge cases, so they try to create
as much freedom as they can.

Another person wondered whether Google doesn’t have the abil-
ity to ask Apple “Can you just make that work?” The team replied
that they ask Apple lots of things. Joking aside, Apple takes a lot
of their suggestions. Google saw Lion 10.7 was great and asked
for key management, and a year later they got some sort of key
management. They’re easily one of Apple’s biggest enterprise
customers. But Apple easily sell 3x as many Macs at the Palo Alto
Apple store than they sell to Google, so Apple knows which side
their bread is buttered on. With the original FileVault 2 in 10.7,
you could give the security question and key encryption and send
it up to Apple. But there’s no way for that person to get it back,
and Google needed a way for the enterprise to get the data back.

Mario Obejas (Raytheon) asked about Pymacadmin (https://code.
google.com/p/pymacadmin/) and they replied that Pymacadmin
is mostly crankd. Mario continued by pointing out that many of
us have all kinds of edge cases. Those of us with lots of engineers
have the same problem. What does Google do for those repeat
offenders where they don’t have a business case, but who are
repeatedly defeating the controls Google has in place. Does
Google have escalations? A divergence report? Contact their
manager? The team responded that they try to fix things techni-
cally up to a point. If that doesn’t work, it’s an HR problem…sort
of. If there’s a reason they’re doing this constantly then maybe
there’s a workaround they can give them or a knob they can
tweak. It doesn’t happen very often. Hypothetically, they might
have a developer who was installing the latest OS before they
approved it, but that’s also rare. Mario wondered what they did
with the guy who actively posted on the mailing list about how to
defeat controls, and they answered that they shamed him and his
manager. He was good about getting feedback.

Another person asked how they manage user preferences
(bookmarks, local prefs) and the team answered that they trust
the users to back up. Their users use Chrome which backs up its
preferences to the cloud. They encourage people to use iDrive.
They discourage users from keeping data locally. They don’t do
backups at this level.

Someone asked since they let users keep their own backups, how
do they make sure they don’t just keep an unencrypted backup
that may contain something valuable to the corporation. Their
answer was that it is hard to keep users from doing bad things

if they really want to. They provide guidelines to using Google
tools that they trust. They try to keep an eye on tools running on
the machines, like Apple’s Time Machine which they have not
been able to encrypt. They’ll contact them and encourage them
to use something else. You can’t stop users from plugging a USB
drive in and copying stuff. Instead, they have guidance that says
“don’t be an idiot.”

Finally, someone asked why they use Mac OS when they have
Chrome OS, and the team answered that Chrome OS is young.
They have a lot of engineers, some need to run MS Office. They
have needs that go beyond what Chrome OS can do right now.

OS X Hardening: Securing a Large Global Mac Fleet
Greg Castle, Security Engineer, Google Inc.

Greg explained that Google hardens Mac OS X using Apple built-
ins and add-ons. To start with, full disk (FileVault 2) encryption
is critical for an enterprise fleet of laptops. They use Cauliflower
Vest for key escrow, and the user gets notified if anyone requests
a key to unlock the files on their disk.

The next step is to keep badness off the platform. Apple provides
Gatekeeper, a tool that taints downloads via Web browsers. Any-
thing that is not signed is blocked, and you can added your own
keys for your enterprise developed apps. If you call malware from
cmdline or POSIX APIs or shellcode, then Gatekeeper doesn’t
protect against those cases.

XProtect (File Quarantine) is similar to Gatekeeper, except that
it works more like AV. There are currently only 40 signatures
and the update frequency is pretty low—seven updates in six
months. Apple has introduced minimum version requirements
that allows you to stop people from running older versions of
software (e.g., Java). The format of the signatures is so simple,
it seems that Google could extend the signature list themselves.
Greg mentioned that you must keep the “Report to Apple” check-
box ticked, or there is no logging when XProtect blocks some-
thing. Also, it would be useful if Google could have a separate
plist (configuration file), or get Apple to include signatures that
Google creates.

Application sandboxing is used by Chrome, Adobe Reader, and
all app store apps. All major software vendors are using sand-
boxes. Apple has made this simple for developers with Xcode,
and Google has been working to sandbox their own management
daemons and tools. The most simple case is just to trace execu-
tion and log, then you can run sandbox-simplify to dedup the
information and make it more usable.

Sandboxing is not perfect, and Greg mentioned Meder’s ruxcon
2013 presentation.

Greg then said that Java is no longer installed by default. Also,
XProtect enforces a minimum version of Java. A Java bug was
exploited by the Flashback attack in April 2013. The nssecurity
plugin wrapper (also works on Linux and other plugins) Java
now has includes whitelisting of versions (this old version of

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 87

RepoRts

Java with this Web site is okay, but no others), and JRE expiration
dates (if you try to call the plugin after the expiration, you can’t).

Greg said that the other elephant in the room is Flash. Given that
most of Google users’ Macs have Chrome installed, and Chrome
includes Google’s own version of Flash, one that is sandboxed,
why not try uninstalling Flash? They started with a small group,
moved to a larger group (which he called the canaries), and
Google eventually was able to get 94% of Mac users to uninstall
Flash. The rest presented use cases for keeping Flash (separate
from that in Chrome).

The Google philosophy is no corporate network, and for this to
work, they need to be able to apply patches, tweak configura-
tions, and collect logs. The configuration and patching were
discussed in the previous talk. Google collects one billion lines
of log info per day for its Mac fleet using an internal tool. They
also use a tool called GRR (Google Rapid Response, http://code.
google.com/p/grr/) so they can handle incidents anywhere.

They also use the auditing that comes with Macs. OpenBSM
(auditd) is an implementation of Sun’s Basic Security Module
written by McAfee Research under contract to Apple. Open-
BSB is very different from the auditing in Linux in that it audits
classes of events. Greg called the auditing information invalu-
able for detection and incident response.

David Lynn (Vanderbilt) asked since they are accepting log info
from any machine on the Net, how do they keep nation states
from blowing out their log server? Greg said they use machine
certs and SSL. Someone else asked whether they are trusting
Puppet certs to be their end-all of security. Greg replied no and
went on to say that exposing your Puppet server is not some-
thing he would recommend. They have a shim that sits in front
of Puppet that uses a cert they issue themselves, and they proxy
through an SSL connection to their Puppet server. Clay and Ed
in the previous talk discussed where Google is using distributed
Puppet to send the manifests down to the client; in that case they
don’t need these sorts of proxies.

Someone asked about the OS X firewall. Greg responded that
they haven’t replaced it, but doesn’t believe the security value of
firewalls is enormous.

Rik Farrow (USENIX) asked whether they watched for anything
in particular, such as when Apple changes the underlying system
tools operation (moving events to launchd).

Greg said that they use the OpenBSM framework to monitor that
sort of thing. Rik also asked whether they had fixed the prob-
lem where Firewire could be used to access memory, even in a
screenlocked system, and Greg responded that Apple had fixed
that with their 10.7 release (a firmware update).

Invited Talks 1
Summarized by Georgios Larkou (glarkou@cs.ucy.ac.cy)

Cloud/IaaS Platforms: I/O Virtualization and Scheduling
Dave Cohen, Office of the CTO, EMC

Dave started the presentation with some background informa-
tion regarding the explosion of data growth and how we can use
I/O virtualization in order to address it. Dave noted that the
transition from static terminals to mobile computing introduced
the need of data services and anywhere/anytime connectivity.
He discussed the notion of economies-of-scale, an economy
where factors cause the average cost of producing something to
fail as the volume of its output increases. As a result, datacenter
operators have to bring the operational-cost-per-megawatt-of-
power down via sharing and automation. Additionally, the explo-
sive growth in the size and diversity of data-under-management
has forced datacenter operators to look for ways to decrease the
data redundancy rate.

In order to reduce the data redundancy rate below 2x, multi-site
erasure coding is being adopted by datacenter operators. The
adoption of multi-site erasure coding is predicated on scale and
caching. Dave provided an example of distributed storage with
dual-site mirroring, which improves reliability and availability,
with redundancy roughly equivalent to RAID5, and another
one with distributed storage with multi-site erasure codes and
improved reliability and availability of dual-site while reducing
redundancy below 2x.

During the second section of the talk, Dave presented I/O for-
warding, which bridges the gap between compute and storage in
horizontally scaled environments and introduces an intermedi-
ary tier that provides impedance matching between compute and
storage. In addition, Dave presented some existing libraries that
the audience can potentially use in order to build a complete I/O
forwarding engine. He presented a complete architecture of a I/O
forwarding engine and briefly discussed most of the modules.

Dave then discussed IP Internetworking and how network
virtualization can be used as the means for supporting I/O
forwarding. He provided an example of how a datacenter opera-
tor can evolve the datacenter network to support scalability and
mentioned that almost every cloud provider he is aware of is
currently transitioning to a more scalable datacenter network
architecture. Dave commented on the idea behind programmable
switches supporting this transition and the explosive (almost
infinite) amount of bandwidth needed to support the newly
introduced architecture and noted that this bandwidth can be
treated as a schedulable resource. In order to justify his sugges-
tions, Dave presented four illustrative deployment scenarios,
Google’s Data Center to Data Center Connectivity, Microsoft’s
BGP-Only/SDN-Controlled Data Center Network, Open Net-
work Lab’s BGP-Only/SDN-Controlled Internet Exchange Point,
and BGP-Only/SDN-Controlled Network Architecture recently
posted by Ivan Pepelnjak. Additionally, he provided a survey of

88  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

Network Virtualization Controllers and highlighted the Open
Network Operating System (ONOS) developed by the Open
Network Lab.

Dave ended by presenting Autovias, a network-partitioning
scheme for I/O forwarding. Autovias is not a product but it is
a technology that allows a user/service manager to schedule
network bandwidth for their service. The Autovias concept was
conceived in 2012 and derives from Google’s B4 Data Center to
Data Center solution as presented at the Open Networking Sum-
mit 2012. Additionally, Autovias employs a Network Virtual-
ization Controller such as VMware’s NSX controller. Autovias
was first demonstrated and discussed publicly at EMC World in
May 2013. In conclusion, Dave presented a top-down view of a
network, that we couldn’t have before, which allows the admin-
istrator to be able to monitor, model, and modify over time from
the controller.

An attendee asked how an administrator can manage the band-
width between multiple sites/groups and whether it is based on
VMs or source-destination IP addresses. Dave responded that
it is based on subnets that ideally provide IP failover and use
standard BGP techniques for moving things around.

Cluster Management at Google
John Wilkes, Google

John started the presentation with a map of Google’s datacen-
ters and commented that the location of each datacenter is as
near as possible to their customers. Additionally, he showed one
of Google’s datacenters in Finland. He also defined the terms
cluster, a set of machines connected with a high speed network,
and cell, a set of machines managed as one entity and went on to
explain why cluster management is important. A cell runs jobs,
made up of one to thousands of tasks for internal users, and a
manager, one per cell, is responsible for allocating these jobs and
assigning them to machines.

John presented the two kinds of jobs Google receives: batch jobs
which are things you submit that produce a result and, if they
succeed, exit. Batch jobs regularly run and produce a result in a
few minutes. Service jobs, the second type of job, start and stay
up until there’s a software update. Google Docs and Gmail are
examples of service jobs. Additionally, John presented job inter-
arrival time, small batch jobs that continuously arrive at the cell
and services which remain and consume resources for a larger
amount of time. Afterwards, he presented some graphs derived
from a cell’s logs and illustrated that the jobs that arrived in each
of the three cells did not actually consume all the available RAM
or CPU cycles. As a result, a significant amount of resources
were just idling. He provided a public cell workload trace (search
for “john wilkes google cluster data”) consisting of a 29-day
cell workload trace from May 2011 and asked the audience to
download the traces and try to write a better schedule manager
in order to achieve better resource utilization. Of course, John
mentioned that better resource utilization is not the only goal of
a good scheduler since there is a variety of other SLI/SLOs that

the scheduler has to satisfy: for example, availability (e.g., max
outage duration), performance (e.g., time to schedule and start a
job), and evictions (e.g., percentage of jobs with too high an evic-
tion rate).

Google’s current cluster management system was built in
2003-4 and it works pretty well. But it is difficult to extend it and
add extra features, and it is difficult to add new people because of
its complexity. As a result, John presented a brand new system,
coined Omega, which is currently being deployed and proto-
typed. The main goals of the new system are to be easy to use
and flexible. Additionally, John presented Omega’s architecture
and briefly described its components. He also briefly commented
on some of the advantages introduced by Omega, such as the
distinct parameterized schedulers for batch jobs and service
jobs, cell reconfiguration without breaking SLO promises, a cal-
endar that can answer questions about future events (e.g., “Can I
execute this batch job on this cell without breaking SLOs?”), and
sharing decisions made by a scheduler with other schedulers.
Finally, John presented the results of a performance experi-
ment (simulation study) between the old monolithic scheduler,
UC Berkley’s Mesos scheduler, and Omega. The results showed
that Omega performed better than the two other schedulers and,
more specifically, provided 3–4x speedup for MapReduce jobs.

In conclusion, John presented some open issues—for example,
smart explanations. According to smart explanations the system
should provide reasonable information to the user: why the job
did not run and some advice on what the user can do in order
to fix these problems. John predicted that cluster management
configuration may be the next big challenge.

The first questioner noted that most of the existing configura-
tion systems are declarative and asked what is the next direction
in configuration management systems and whether we can learn
from biological systems. John answered that we need a mix of
declarative and imperative, with the introduction of some con-
straints for safety reasons. He also stated that he believed that
machine learning will emerge in the area of building smarter
configuration systems.

The second questioner wondered how good people were at giving
estimates about what resources they needed. John answered
that if people know about every job that requires more resources
than what they have requested, they will be really good and they
will provide a really good estimate of what they need. Of course,
systems tend to be much better at estimating the amount of
resources a job might need since they can take into consideration
logs from previous executions or pre-calculated parameters, but
the current systems might fail to provide a good estimate for
newly submitted jobs without supervision.

Someone asked why Google is implementing its own configura-
tion system/scheduler when some open source solutions already
exist. John answered that he can hypothesize why…but he won’t.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 89

RepoRts

Invited Talks 3
Summarized by Ben Cotton (bcotton@funnelfiasco.com)

Managing Access Using SSH Keys
Tatu Ylönen, SSH Communications Security

Tatu Ylönen, the inventor of the widely used SSH protocol, began
with a brief introduction to SSH before launching into the thesis
of his talk: unmanaged SSH keys are a security problem. Most
organizations don’t manage or remove old SSH keys. Since serv-
ers trust clients, compromising a client can allow access to more
important servers.

As an example, a global top-10 bank that Ylönen worked with had
over 1.5 million authorized SSH keys. Over 2 million daily key-
based logins occurred to the 2000 core production servers. In
many organizations, over 90% of the possible access credentials
to production servers are SSH keys.

Unmanaged SSH keys are an excellent attack vector. Organi-
zations don’t know who can access what and who is accessing
what systems or information. SSH keys can bypass other access
management mechanisms. They allow unattended file transfer
and escalation from development to production environments,
non-PCI to PCI environments, etc. Most critically, SSH keys lack
effective termination of access.

Current and pending regulations address SSH key management,
often indirectly. Proactive management is important to prevent
regulatory issues before they happen. The first step is to estab-
lish a controlled provisioning process that documents the pur-
pose and owner of each authorized key. Once provisioned, SSH
credentials should be continuously monitored for automated and
interactive access. Since some legacy systems will break if the
keys are changed abruptly, careful remediation of those systems
is necessary.

In Ylönen’s experience, the process of remediating one mil-
lion keys can be a multi-year project. Some tools are available,
but they don’t necessarily cover the full process; many only do
discovery. SSH Communications Security offers two tools and
consulting services.

Ylönen concluded by saying that most organizations with large
UNIX or Linux environments have a serious compliance and
security problem, the scope of which is not widely understood.
He finished with time for a single question. An attendee asked
whether it was possible to automatically expire SSH keys. The
answer was no.

Secure Linux Containers
Dan Walsh, Red Hat

Containers are a hot topic in Linux and security, but people don’t
always agree on what a container is. Walsh based his presenta-
tion on his definition of containers as a user space, not a kernel-
space construct.

A container has four key elements: (1) process isolation, giving
processes their own private corner of the world; (2) resource

management, controlling how much of a given resource a process
gets; (3) security, where tools like SELinux enforce security
policies to keep the containers from overstepping their authori-
zation; and (4) a management component that allows adminis-
trators to control the container. In the Red Hat Enterprise Linux
container architecture, namespaces provide the process isola-
tion, cgroups provide resource management, SELinux provides
security, and libvirt is used as the management tool.

Because containers have some similarities to virtual machines,
including being managed by libvirt, Walsh examined the two
concepts side-by-side. Containers provide benefits like improved
startup and shutdown speed, ease of maintenance and creation,
and scalability. Virtual machines, specifically KVM, offer the
ability to boot different operating systems, thus providing full
separation from other clients, and supports features like live
migration.

Walsh also presented a container product called “Docker.”
Docker bundles a micro-operating system with an application.
This allows developers to bundle their application without
regard for what host the application will run on. Red Hat has
recently announced an effort to contribute to Docker develop-
ment to allow containers to work on either Docker or Red Hat’s
OpenShift PaaS offering.

Walsh closed with a live demonstration of building, using, and
tearing down containers. The audience was briefly surprised
to see he wasn’t running SELinux inside the container, but that
turned out to be a feature of the container. The talk ran past
time, but the audience was content to watch the demonstration
until it ended.

Closing Plenary
Post Ops: A Non-Surgical Personal Tale of Software,
Fragility, and Reliability
Todd Underwood, Google
Summarized by Andrew Hoblitz (ahoblitz@cs.iupui.edu)

Todd started off by saying that system administration as we cur-
rently know it is over, and that the time has come to quit feeding
human blood to machines. He noted that machines currently
eat system administrators’ times, passion, and imaginations.
Todd noted that he shares the same history as many system
administrators who started off at ISPs, but that it might be time
to revisit common views of system administrators and their
nostalgia for the past. Todd noted that common objections he
has heard are that Google’s solutions to problems may not apply
at smaller scales, that Google has massive amounts of software
engineering available to it, and that Google has already solved
all the problems you are going to encounter. Todd rebutted these
arguments by noting that they may solve common problems
for everyone and that open source solutions will allow system
administrators to focus on tasks which are more interesting to
them. Todd then described a number of “war stories at scale” to

90  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

show that Google has its own share of problems which it has had
to address at all.

Todd then began describing Google’s approach to Site Reliabil-
ity Engineering by providing a “mythical” history in which he
described Google as frugal and argued in favor of costs which
don’t scale linearly. He said that one example of this type of
solution was developers deploying their own code in produc-
tion through automated processes so that they would not be
responsible for repetitive and tedious tasks which machines can
perform better. He also talked about the importance of being
able to balance competing demands and improve availability and
efficiency while helping improve the deployment times of new
services. And he described systems developing emergent behav-
iors during their post-deployment evolution.

Todd then described DevOps at Google, which he sees as a
cultural and professional movement. In a traditional infrastruc-
ture, development and operations are walled off from each other,
he noted, whereas DevOps is the blending of development and
operations together in to a single way of being and doing things.
He said that DevOps strives to improve operations as a discipline
and integrate operational concerns into business practices. Todd
then quoted Adrian Cockcroft’s definition of “NoOps,” where
software developers work directly with production and automa-
tion removes operational tasks entirely.

Todd went on to describe operations management as applied
to software-based production while noting that operations
research has a set of constraints while software production has
its own set of constraints. Todd said that operations research
may be relevant for the physical infrastructure stack (power,
fiber, etc.) and for maximizing SLAs in the short run, but that it
may not be as applicable towards software organizations. Todd
said he would still like to maintain the ethic of caring about
production and the ethic of privacy and security.

Todd closed by noting that he is advocating for a transforma-
tion from Ops, to DevOps, to NoOps/PostOps. Operations is still
needed to identify new problems and prioritize development, but
every other aspect of operations should be deleted. Todd said it
is important for technical talent to demand that their manage-
ment knows what is going on technically, because this breeds a
better environment for everyone. He wants to work in an area
which is constantly looking to improve, and that even though
system administration is eventually going to go away, the world
is moving towards distributed application development. The
bathwater that will get thrown out is the repeatable work and the
configuration management, while the baby that will stay is the
production ethic, monitoring of systems, release engineering,
and constructive cynicism.

Advanced Topics Workshop at LISA ’13
Washington, D.C.
November 5, 2013
Summarized by Josh Simon

Tuesday’s sessions began with the 19th annual Advanced Topics
Workshop; once again, Adam Moskowitz was our host, mod-
erator, and referee. We started with our usual administrative
announcements and the overview of the moderation software
for the one new and several long-absent participants. Then we
went around the room and did introductions. In representation,
businesses (including consultants) outnumbered universities
by about 2 to 1 (down from 3 to 1 last year); over the course of the
day, the room included five LISA program chairs (past, present,
and announced future, down from 11 last year but much closer to
our five- and ten-year rolling averages of 7 and 5.5, respectively).

Preventing Mistakes
For the first topic we talked about how to prevent the “I know
what I’m doing” syndrome. One person had several outages over
the past year caused by either development (code mistakes)
or operations issues; examples in the industry include Knight
losing $172M/sec (http://bit.ly/1a9Vapb) and Twilio’s billing
system sending out over-large bills (http://bit.ly/17egzzp). How
do you make sure you (or your peers) don’t cause unexpected
outages?

This led to a lively discussion about processes and culture. One
answer to the question was to have a backup so someone can go
away (on vacation, a promotion, or departure) and the organiza-
tion still has the skills. Another answer was to change the cul-
ture from “A checking up on B” to “A and B working together.” If
the culture is such that someone works with you to share the risk
and responsibility, outages become less frequent. This requires
putting in processes so nothing is ad hoc, such as “always do it in
a test bed/sandbox first.”

Document your changes (you do have a change management pol-
icy, right?). Include things like a change template: Do you need
to update monitoring or other services? Is there a rollback plan?
If the change is customer-visible, were they notified in advance?
This leads to focusing on the customer experience; anything
that’s customer-visible should get greater scrutiny.

Also, document the policies and procedures. Consider having
the policy include “Have a second set of eyes review it” before
performing the task. Your processes also need to be written
down and followed. Creating that documentation alone reduces
the effort; even simple checklists can help prevent problems (at
least as long as they’re followed). This also acts as the bridge to
automation; you should automate what you can.

Other comments included slowing down to do it right so it only
needs to be done once, and then automate it; being willing to say
No; reminding people that even simple changes can have cata-
strophic consequences; and remembering that some people learn
from making mistakes.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 91

RepoRts

Finally, if there is an outage, you need to have some form of
after-the-fact discussion, but framing the questions there is
key. “What did so-and-so do wrong” implies a blame culture, but
“What did our system do wrong” implies a process culture. The
latter is more likely to lead to positive results.

Favorite Tools
After that discussion wrapped up we took a poll: what’s your
favorite new-to-you tool over the past year? Answers included
nine-foot tall cabinet racks, C++11, Colibri, CamScanner, dmar-
cian.com to analyze dmarc mail data, Docker, Emacs as a server
on Mac OS, Evernote (premium subscription), Git, Graphite, a
GPFS-native RAID appliance, having a good project manager,
LaunchBar, logstash, a new office chair, online collaborative
tools like Google Docs or Dropbox, packer, Quicksilver, S3 Gla-
cier, and vagrant.

Fostering Communications
Just before the morning break, we discussed fostering com-
munications and teamwork. One person had an environment
where a group of developers created a product that used root for
everything, including reformatting disks. He needs to cultivate
a culture of looking for information instead of working in a bub-
ble. The consensus around the room was that breaking down
the silo walls between teams is important. Some suggested
remediation included job shadowing; managing the developer/
administrator role/skill gap; creating a moderating team with
representatives from multiple groups, whose purpose is just to
ask questions so that alternate perspectives are considered in
the requirements phase instead of after implementation; “mak-
ing rounds” like a doctor to see your customers and make sure
their needs are being addressed; using other technologies such
as a shared wiki and online chat; offsite social gatherings like
lunch or bowling; and having the developers involve the sys -
admins early in the process.

Software-Defined Networking (SDN)
After the morning break we talked about Software-Defined
Networking (SDN). Someone introduced it to us at last year’s
workshop, and one of our cohort has thought about it for the last
year and hoped vendors would come out with more hardware.
One problem is that not everyone agrees about what SDN needs;
to some it’s running config management on the switches, to
others it’s running OpenFlow, and to still others it’s having Perl
or Python APIs to access the switch in real time. It seems to be
gravitating towards defining it as the separation between the
data layer (protocols) and the control layer. The hardware is
being consolidated into the ASIC manufacturers like Broadcom;
the chips are integrated into the switches (either on-board or
with add-on cards). OpenFlow (v1.3 or later) promises better
control for sampling on the fly, such as with an intrusion detec-
tion system. Someone sees its major use cases as bandwidth
management (between multiple datacenters with quality of ser-
vice) and multi-vendor cooperative partnerships (such as man-
aging hundreds of thousands of virtual machines on thousands

of physical machines so they need VXLAN on top of the switches
to manage things). However, another of our cohort talked to his
networking team to get SDN in-house, and got a lot of push-back
because “it’s just using Python to control the switches.” He had
to educate them; they don’t see the bus that’s coming up on them.

Manufacturing IT
That segued into our next topic, Manufacturing IT. Ben Rock-
wood gave a talk about looking at IT from an Ops Management
perspective a few years back, and applying manufacturing’s
building concepts to IT: moving systems to single-feature
deployments, reducing cycle time, and so on. The question was
whether there is any practical use for it yet. One person used the
analogy of sysadmin-as-mechanic talking to the customers-
as-drivers; it’s not just about fixing the car, but about making it
more efficient.

One person recently had a gratifying experience; they’re migrat-
ing from an old job scheduler to a new one on their cluster. The
most immediate and effective way to communicate the new
capabilities and kindle the users’ excitement was to sit down
with them, watch what they’re doing, and improve the user
experience. Sysadmins need to remember that not everyone
understands the system in the way that we do. Another noted
that asking the users direct questions was essential. We need
to make sure the problem we’re trying to solve is actually worth
solving now; you may find that other areas need the resources
focused on them instead. It was also noted that there’s both the
design and operations levels, and how you work at each is differ-
ent. At the operations level, once you know how things should be
done you should automate it as much as possible to free yourself
up to think about more at the design levels.

One person noted that we’re focusing on the one aspect of the
DevOps concepts here. A counter-example is that we have a lot
of operations automation, so what’s the value-add of change
control? What’s the model for where the efficiencies should be?
He’s disappointed that we’re not going beyond what we’re looking
at and looking at other industries. It was pointed out that Alva
Couch can’t get system administrators and operations research-
ers involved in each others’ areas.

Personnel Issues
Our next topic was about personnel issues. One person, now
effectively a CIO of his company, had a person whom he called
“the single worst sysadmin manager ever.” This person trained
his staff to believe “the fastest way to get fired is to get noticed,”
would do the work and not explain why, and would take tasks
away from the technical people. This CIO inherited this team,
fired the manager in question, and tried to retrain the SAs, but
unfortunately wasn’t that successful. Despite providing oppor-
tunities to learn and grow, only two people of a nine-person
team looked into it (and got spot-bonuses and promotions, both
publicly announced, and commensurate salary increases). What
could he have done better?

92  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

One person said it comes down to autonomy, mastery, and
purpose, and with the previous manager all three were broken.
Reinstilling one is possible, but reinstilling all three may be
impossible. Starting with purpose is best; once you have pur-
pose you can build mastery. Another noted that the sysadmins
themselves need to feel responsible for something to be engaged
in or with it. There’s certainly a fear of blame (if something goes
wrong), and a lack of responsibility leads to the “who cares?”
thought. As someone else noted, one can teach a toddler to
respect edges by letting them fall off a couch but not out the
second story window.

Someone suggested developing a post-mortem culture. Any and
every time something goes wrong, a post-mortem is required.
Another suggested that for major projects they should hold a
post-mortem even or especially if everything went well. Make it
clear that it’s not an issue of blame but of learning. Also, having
a Wheel of Disaster meeting where the team is given a list of
scenarios and then choose one, with someone running it (as the
gamemaster) and someone else as the on-call person, and do a
dry-run of the troubleshooting “on paper” in the meeting.

Another asked if the sysadmins this manager hired were the
right ones to begin with, or if they hired great people and broke
their spirit? The response was that it was about a 50/50 split.
Money and title is not always enough motivation and reward,
and for some, money can even be a demotivator. Be careful to be
supportive and not to blame someone if something goes wrong.
As an example, were the sysadmins given incorrect or incom-
plete instructions?

Someone asked if the CIO talked to the individual sysadmins
one-on-one as to why they didn’t step up. Sometimes people don’t
want to say anything publicly. Their manager did and got “I had
to do this other thing instead” as the response. Another added
that trying team consensus brainstorming on what the team’s
top priorities should be to allow them input to the decision may
make them more likely to buy into it. People need to take pride
in their work, not necessarily take responsibility for it (which
can be an onus). For recognition and awards, one environment
gives out peer-nominated awards quarterly across IT, as voted
on by the managers. They don’t have a post-mortem culture but a
preventative action culture so you can make things better before
the disaster.

Finally, classes that teach what the knobs and widgets do but not
why you might set them one way versus another aren’t that help-
ful, so several write their own Best Practices documents that
start with the why before going into the how. That way, when you
check to see if something is still working, you can see whether
the why changed.

Career Management
Next we discussed topics under the umbrella of “career-type
stuff.” One person is nearing retirement age. Another works for
a small company acquired by a bigger one and isn’t sure what’s

happening with his role. Yet another is being pushed into more of
a mentor role than a hands-on technical role. The general ques-
tion amounts to, “What should I do?” To lend perspective we took
some quick polls. Of those in the room, half were born between
1950 and 1969 and half between 1970 and 1989; two people have
over 30 years of experience, nine had 21–30 years, and seven had
11–20 years of experience.

The consensus was that you should enjoy what you do; focus on
the opportunities provided by change, instead of on any fear; let
go of control, which can be hard; look at the big picture; make
sure your boss both knows and approves of what you’re doing,
be it hands-on technical or mentoring or direction; and work
with your manager to explore areas of personal interest that are
relevant to the organization’s goals.

One person has the title of Director and actually gives direc-
tion, acting as the wise elder (but not the wise guy), setting
direction but not dictating the details of how to get there. Write
up your own job description and poke holes in it to see what’s
missing. For those in acquisitions consider the opportunity as a
new job. Another notes that you can’t grow within your comfort
zone; growth requires moving outside that zone (and eventually
expanding it).

On the subject of handing off tasks (as one approaches retire-
ment, or is promoted, or otherwise leaves one’s existing role),
several worried about what will get left behind and possibly
dropped, because in the specific case their coworkers are just
putting in their time and won’t do anything extra. Getting people
out of this mind-set is hard. The consensus here was that while
“document it all before you go” isn’t enough, you can still set
up your former area to succeed, but once you’re gone they can
choose otherwise and it’s not your fault.

Another question was whether anyone else found that they want
to do what they like on their own time and just have a job to pay
for it? The short answer was Yes: one person is around a lot of
actors who would love to do acting full time but can’t make a
living at it. Another has a job mostly writing code, and meetings
are there for getting the requirements to write the code. And
yet another moved to a job that’s more in line with his interests
and does the things he hated at his old job for fun and with less
politics on the side.

Whither LISA?
After the lunch break, a USENIX Board member asked us to
discuss the LISA conference itself: is it where it should be, or
should things change, and if so how? One person’s sense is that
LISA both needs to change and is changing; they wondered how
we think it should change, and what purpose it serves.

From a marketing standpoint, many agree that the confer-
ence has needed better marketing for a long time. One person
(involved since 1997) found out about the conference on their
own, and asked how others found out about it. Answers in gen-

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 93

RepoRts

eral were from a boss, coworker, or friend (about half the room);
exposure to other USENIX conferences (four people); higher
education, such as a computer science department’s posting;
unrelated events local to a past conference (two people) and sev-
eral of us simply couldn’t remember. Only one person first heard
about the conference from USENIX. There are also more events
these days, both regional (Cascadia, LOPSA-East) and specialty
(PyConf). Should we better integrate the joint conferences (for
example, a Puppet track instead of Puppet on the side)? More
marketing needs to happen through more venues; word of mouth
just isn’t enough.

As for the content, the consensus was that it’s fine, though
there’s always room for improvement. One person notes that
many years ago, many of the things he found out about at LISA
were things he could introduce to his workplace right away, and
he’s seeing much less of that. The refereed papers seem much
more niche-specific. It’s not clear whether this is because the
papers and talks have changed, or if it’s because we’ve gotten
older. As for what USENIX can do to make it more relevant to
those of us in the room: over the years, people who come to the
workshop are here to give back to other people and they get work-
shops out of the conference. Someone noted that (by design) this
workshop is for the more senior people, so between the hallway
track, the ATW, and giving back, we’re probably not the audience
to answer the question posed.

On the subject of content, one person asked if the refereed paper
model is obsolete, as that may be part of the problem. USENIX
tends to come from the academic side of things where papers are
all, but LISA tends to come from the practical side of things, and
these concepts are at best orthogonal. Several of the workshop
attendees have never written a paper, with the “Nothing I do
seems to be of sufficient interest to other people” rationale.

As for the tutorials, there seems to be an impression that seniors
see them and think they shouldn’t need to spend a whole (or
half) day on that subject just to get to the one chunk they want
late in the tutorial session. There is a perception, at least among
those in the room, that tutorials tend to be more for the junior
to intermediate administrators (more as topic introductions);
some should be aimed at seniors, for deep dives into a more
narrow subject. LISA seems to be marketed more to the begin-
ning through intermediate administrators, but the senior people
definitely add value. One suggestion was to partner with or at
least visit and snoop at other conferences like Velocity or SCALE
to see what they’re doing that we’re not. We took a quick poll of
the PC members in the room to see how many went to a compet-
ing conference this year and more than usual had.

Another person noted that students are missing. There used to
be a significant visible student presence and that’s no longer
true. The role LISA has played, in addition to where to learn
about the new things, was to provide a common language and
a framework for discussion. There are more specialists now

(DevOps, only-servers, only-storage, and so on), and LISA is
a place for generalists and for bridging the gaps between the
specialties. Someone else concurred; one of our competition
conference’s attendees skew much younger than LISA. How
do we bring in more (and younger) people? Are we aiming for
more juniors, or just more people? The conference has multiple
tracks, but it’s not always clear who the tutorials are for (junior
to intermediate), and who the workshops and tech sessions are
for, and where the senior folks fit in. Getting coherent content
can be hard.

That led to a brief digression about giving back. Someone
believes that many of us are still attending LISA after many
years to give back to the community. We took a straw poll and
only eight of 20 in the room at the time actually think they’re
giving back (including the five past LISA chairs). Some of that’s
from being in the Hallway Track and being available for others to
ask questions, and others are teaching. One notes that especially
for people who haven’t been attending for long, the Hallway
Track can be very intimidating. We need more informal ways of
meeting people other than “let ‘em loose in the same room.”

Other Jobs
Our next topic was what we did outside of our day job as our
“other job.” Answers included being in a leadership role at
church, bicycling, building (doing general contractor work), con-
tributing to public software development projects, cooking, mak-
ing art, officiating hockey games, parenting and grandparenting,
photographing, teaching Highland wrestling, volunteering for
both technical and nontechnical organizations. That’s interest-
ing but what’s the cross-over? What do we learn in the one that
helps out in the other?

One of the cooks notes that from cooking he got mise en place,
staging everything before the stove goes on, and he applies that
to datacenter moves. The wrestler learned humility. He used to
wrestle and had fun, and he did well . . . until he was matched
up against someone nearly half again his size in the last heat.
He translates this to the technical arena by looking at how the
younger people were coming along and he can’t keep up—and the
humility in not keeping up was almost an epiphany. The photog-
rapher now understands how to prevent people from abusing his
time. People are hitting him up for free photo shoots, not real-
izing what time is involved in doing stuff. That translates well to
IT work: time is valuable, and “just this quick thing” is often nei-
ther quick nor appropriate for the existing project. Several think
books could be written about how parenting translates into
dealing with people. One now appreciates the years of couples
counseling and the relationship with their spouse, especially in
contentious situations. Another notes that in acting, especially
in comedy, you have to give the audience what they want. Tim-
ing, listening, and understanding what they want is critical both
there and in technology.

94  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

What to Follow Next Year
Next we had one of our traditional polls: “What’s the thing you’ll
be following in the next year?” Answers included bring your
own device (BYOD), OpenStack, Software-Defined Networks
(SDN), changing federal appropriations for IT in the wake of the
healthcare.gov launch, dealing with internal politics, developing
a process to handle end-of-life (such as Windows XP), making
things enterprise-worthy in their kludged ecosystem, managing
people’s expectation of “everything works and never crashes,”
the density of flash memory, the role of system administrators in
national security, and the state of encryption. Several also talked
about cloud technologies, from deploying smaller more-local
cloud technologies, to the security (or lack thereof) in the cloud
in the wake of the Snowden revelations, to the debate on using
the public cloud versus a mixed (public/private) cloud.

Cloud
Since we mentioned the cloud, that was our next topic of discus-
sion. For some people their professional world is all in the cloud,
others are still all local and think “cloud’ll blow over,” and then
there are people whose users are dealing with both. Techni-
cal integration and expectation management are questions.
For example, one institution is moving mail to the public cloud,
thinking “It’ll all be the same, just on their servers not our serv-
ers,” but really it’s “Our 100,000 users are distributed to some
vendor’s cloud.” How does the help desk handle that? This clob-
bers the customer expectations.

While outsourcing infrastructure to the cloud isn’t different
from outsourcing anything else to the cloud, in that you always
have to take the service-level hit, and the tradeoff needs to be
calculated in the initial deal, the decision-makers often just hear,
“Oh, it’ll save money” and didn’t do any other research into the
technology or its security. Marketing needs to happen: “Doing
this to lower our costs” is the common refrain, and sometimes
lower cost will have side effects like a lower level of service (to
keep tuition down, to give raises, and so on). The help desk staff
will receive service calls for things they can’t control or affect,
and have to handle the users. There may often be no recourse
beyond “call the vendor and hope.”

Someone else comes at this from a different perspective. A
software company providing what became Software as a Service
on premises, then became a cloud provider, and one of the biggest
things they learned is that customer support is critical; custom-
ers are much less invested in your product than formerly, since
switching cloud vendors is possible (and likely, if you screw up
your service).

Enterprise Monitoring
One person had over a hundred alerts from his monitoring sys-
tem today and is seeing over 700 per week on average for the past
month. They’re obviously getting ignored by the entire team. If
you’re getting alerts that clear themselves and users don’t notice,
should that monitor be disabled? What are some best practices
in monitoring?

Answers included alerting on “the right stuff”; being selective
about how you monitor, as “95% full” on a 1 PB disk array might
not be relevant, and perhaps the rate of change is more impor-
tant; only monitoring actionable items; monitoring services,
not just components, such as caring about the end-to-end user
experience and not that a particular process or server is down;
only emailing for important issues and using dashboards for
less-urgent ones; opening tickets to yourself when you see gaps
in what should be monitored but isn’t; paging the developers for
their service alerts to incentivize them to fix their own problems
(false positives); providing context, such as letting the users
of a service receive alerts and telling the sysadmins if action
needs to be taken; putting the sysadmins on change manage-
ment emails, so they can tweak the monitors where appropriate;
turning off monitors that are unused or ignored; and using easily
filterable subject lines in the alert emails.

It was pointed out that in Nagios the retry-check-interval and
number-retries can be changed (“It’s not a real problem until
it’s been 30 minutes”). It was also mentioned that you should
be monitoring services, what’s about to break or whether the
service is down, not so much the server or component. In Nagios
4, you can attach a “wait” to an individual check: “Don’t tell me
something’s wrong until X is also wrong.”

One person wants three categories in a monitoring system:
thresholds (number of occurrences or time length of the event),
priorities (e.g., critical, major, minor, information, warning, and
wtf), and escalation policies. Some alerts are just for reporting
and don’t send email; “1000 memory errors” isn’t a problem over
a year but is over 10 minutes. Dependencies are also important;
if the switch goes down, you don’t care about alerts for the 20
servers behind it.

The original questioner was happy he’s not the only shop seeing
these sorts of problems.

To-Do List Tools
After the afternoon break, we held another poll about what tools
we use to track our to-do lists and whether that tool actually
works. Answers to the former included Cozi, email, Evernote,
GitHub, GTD, GoTasks as hooked to Google Calendar, JIRA,
Lotus Notes, OmniFocus, paper notepad, spreadsheet for track-
ing the team’s tasks, text editor of choice, and trouble ticketing
system such as RT. Answers to the latter were either “yes” or
“mostly,” with a couple of “meh”s thrown in.

Asperger’s Syndrome
Our next topic was Asperger’s Syndrome, which the DSM-V has
collapsed with autism and other concerns into the “autism spec-
trum disorder” catch-all. The question was asked whether we
have any coworkers that have (or that we suspect have) Asperg-
er’s Syndrome, what challenges we have in dealing with them,
and what would most help us address those challenges. The goal
is that if you understand how someone’s mind works you might
be able to work with them more efficiently.

www.usenix.org F eb rua ry 20 14 Vo l . 3 9, N o. 1 95

RepoRts

Asperger’s is an autism-spectrum condition characterized by
difficulties in social interaction and non-verbal communica-
tions, and restricted behaviors and areas of interest (very
depth-first). Also, there’s atypical use of language; one individual
(recently diagnosed with it) tends towards the pedantic and
literal, and his sarcasm detector runs about 10 seconds slow.
He self-describes as an idiot savant: there are some things he
does really well yet some basic things he does very poorly. It
has to do with how his brain handles associations. If someone
says, “Something green on the ground,” most default to “grass”;
his brain goes breadth-first (green CD case, spray paint, etc.),
so jumping to the obvious doesn’t happen—which can be an
advantage for evaluating possible options that the neurotypical
brain might discard. Most people’s brains track social cues and
proxemics and kinesics; Aspie brains tend not to. The upshot is
that he wants to improve awareness of this sort of thing, so he’s
wondering if we have experience with coworkers who may have
it and would resources (such as a BOF) be helpful?

Several others identified that they or their families have some
form of autism spectrum disorder or ADHD (five in the room),
and others (nine attendees) know or suspect it in their work-
places. In workplaces in general, for this and other hidden
disabilities, people won’t feel bad if you point out or help with
issues they know about. For example, reminding an ADHD
person that something’s time-sensitive helps them break out of a
loop. The speaker’s Aspie friends have said the same thing about
social cues, and being reminded would be helpful. That doesn’t
relieve people of the social requirement to do that reminding in a
socially acceptable way. Be sensitive providing that feedback.

In an engineering-specific work environment, one of our cohort
is sure there’s tons of it (e.g., “wear the same shirt for a week, but
write bulletproof code”). Now as a parent he’s more tuned into
the possibilities and can nudge them along.

Programming Beyond Scripting
Our next discussion was on programming beyond scripting.
Some believe that once a site reaches a certain size you have
to use custom software to manage it, beyond just off-the-shelf
software and a configuration management system. Given some
uncited research studies and anecdotal evidence that implies
some people simply don’t and can’t be taught to think algebra-
ically (for example, “x=2, y=3, set y=x, now what’s x?”), the ques-
tion posed was if most sites have system administrators who
code in a programming (not scripting) language, is there agree-
ment that some people just can’t make the shift from scripting to
programming languages?

One expressed dissatisfaction with someone with a sysadmin
degree from a particular institution who can’t code, but another
noted it might be luck of the draw as they have four people from
that institution who can and do.

One noted that coding ability is a continuum, from none through
some to all. One speaker thinks he’s a pretty good programmer

but doesn’t have to code often (about 10%); he’s happy with his
physical, infrastructure, and monitoring gig. There’s room for
non-coders in the profession. Several people agree that they don’t
code often enough to feel comfortable with it.

The question can be applied more broadly to all sorts of skills:
does a system administrator need a Computer Science degree?
Within a group you need a little bit of everything; scripting is
programming, just in a different language. A group should have
experience and exposure to both sorts of languages. But when
it comes to code, it’s not that unusual for generalists to look at
someone’s code in a language you don’t know, so exposure to
the concepts is necessary. You have to be able to think logi-
cally and analyze while troubleshooting or looking for a bug; it’s
all problem-solving. There is, however, a difference between
troubleshooting and debugging someone else’s code and creating
the code. While there are differences between debugging and
creating, you still need to understand algorithms.

Given the advanced automation tools (like Hadoop, Nagios,
CFEngine, and so on) that require some level of programming, is
there something today that doesn’t require programming? One
environment has a requirement that all code pass code reviews
and readability testing, and they have the same (strict) testing
coverage for operations code as for the business-specific code.
Another was trying a decade ago to remotely manage machines
beyond turn on/off, and now that there are APIs that the hard-
ware vendors support, he can. And now that those integration
functions have software packages, it may not be necessary to
write this stuff any more. As more and more automation tools
have higher-level languages, there’s less need for scripting
tasks. In several of them you can say what to do, not how to do
it. There’s still a need for programming but perhaps not a strict
requirement.

Workshop
The next subject was the workshop itself. We traditionally have
some trouble hearing each other. One of the other workshops
uses wireless microphones and speakers. Only about ten of the
attendees favored using wireless microphones. One person was
worried about germ transmission. Another suggested standing
up to speak to project better.

Consensus was that there should be another ATW next year.
One attendee wanted both fresh blood, people who haven’t been
to the workshop before, and fewer graybeards. Our recent new
members have mostly been referred by existing participants; we
as attendees need to get new people in by talking to them and
Adam. Part of John Schimmel’s (founder of the ATW) original
purpose was for senior people to speak to each other without
juniors interrupting. Most of our cohort, however, were against
having a listening-only role for juniors. Someone noted that
even senior people who see “position paper” in the sign-up are
too intimidated to write one. Several thought that’s still a low
bar, as the CFP includes an example (which amounts to “write

96  F eb rua ry 20 14 Vo l . 3 9, N o. 1 www.usenix.org

RepoRts

a proposed problem, not its solution”). Others thought that the
position paper was a hurdle, that people need to think they’ll get
a benefit from the workshop before they do the work of writing
the paper. Consensus was that the writeup in the CFP should be
different, and Adam asked us to send him suggestions, some of
which are below.

One member noted that different people can contribute differ-
ently. One possibility is that already-insiders can nominate and
sponsor one person per year. Several agreed that would be a good
idea; however, there is a 30 seat plus 2 (Adam-as-moderator and
Josh-as-scribe) hard limit for the workshop.

Another noted that some may be more wary of the image of ATW
than the reality, and wondered whether it’s the old boys’ club.
Several thought that there’s a perception problem outside this
room. The response was that the writeup is in ;login: every year
and that there’s more than just the CFP writeup to help some-
one determine whether to apply. One suggestion was to link to
the previous year’s writeup from the CFP description. Someone
noted that this writeup is appreciated, but we often don’t con-
tinue the discussion (either at or after the conference) after the
writeup gets published. Helping people understand what we dis-
cuss may have value. Many people aren’t self-confident enough
to stand up to “20+ years of experience.”

One first-time attendee said he’d been to some other LISA work-
shops and thought ATW was by far the most functional work-
shop he’s been in; many of us shared new-to-someone ideas and
agreed that the ATW is both run well and well-organized.

Security
Security was up next. The question posed was “Is the enemy
of my enemy really my friend?” One person’s environment has
an IT Security group that dictates policy but doesn’t actually
interact with or seek input from the system administrators, and
frequently in companies you have Security making a recommen-
dation to fix a problem but Sales saying they need it so you can’t
fix it. Do the sysadmins get involved in security audits? How
well, or not, do your sysadmin and security organizations work
together?

In one case, there was animosity between IT Security and Sys-
admin. By reading the actual security regulations one Opera-
tions person was able to better understand Security’s motivation
and could therefore help build the bridges between the two
groups. The two groups need to support each other, but we need
to recognize the importance of both sides. In another case,
Security would invite specific Operations staff to a multi-day
training course and then keep those people as liaisons.

One environment would use the position of Security Manager as
a patronage because doing real security well is hard but faking
it takes no effort at all. The more security theater a company
has, the less inclined the sysadmins are to be helpful. In another
environment, Security and Operations are co-located, eventu-

Summaries from SESA ’13 are available online at
www.usenix.org/login/feb14/sesa13reports.

ally reporting to a common manager, and the relationship is very
collegial and not at all adversarial. Someone pointed out that
an adversarial relationship can develop from how each group
measures or defines its success: if Auditing is measured on the
number of issues identified, for example, but Operations is not
measured on the number of issues resolved.

Some environments are very checklist-driven, some are balkan-
ized as opposed to centralized, levels of enforcement often vary
(does Security have the authority to turn off a compromised
Operations box?), and it’s not always clear what kinds of excep-
tions are allowed (e.g., “patch every 30 days” is at odds with “we
have a 2-month release cycle”).

What’s Coming Up?
Finally, we had our last lightning round: what’s the biggest
or most important thing coming in the next year? Answers
included being in a team doing automation and writing code,
building a Web cluster, building out their cloud, changing the
billing model, continuing to get better with politics, driving the
IT manufacturing concept, evangelizing for and implementing
configuration management for both infrastructure and applica-
tion spaces, extending dependency resolution into spinning up
machines, finding a new job, finishing the six-month Hadoop
rebuild, getting a monitoring solution he doesn’t hate, improving
security in general, increasing staffing, revamping and modular-
izing his 20-year-old dot files, ripping out and replacing their
build/automation/CM system and putting in something quality,
solidifying DNSSEC, surviving a reorg at work, taking all the
different opinions about CFEngine into a coherent plan, deciding
whether to retire in March or June, working on the next genera-
tion of supercomputers, and writing a refereed paper for LISA’14.

Donate Today: The USENIX Annual Fund
Many USENIX supporters have joined us in recognizing the importance of open access over the years. We are thrilled
to see many more folks speaking out about this issue every day. If you also believe that research should remain open
and available to all, you can help by making a donation to the USENIX Annual Fund at www.usenix.org/annual-fund.

With a tax-deductible donation to the USENIX Annual Fund, you can show that you value our Open Access Policy and
all our programs that champion diversity and innovation.

The USENIX Annual Fund was created to supplement our annual budget so that our commitment to open access and
our other good works programs can continue into the next generation. In addition to supporting open access, your
donation to the Annual Fund will help support:

• USENIX Grant Program for Students and Underrepresented Groups

• Special Conference Pricing and Reduced Membership Dues for Students

• Women in Advanced Computing (WiAC) Summit and Networking Events

• Updating and Improving Our Digital Library

With your help, USENIX can continue to offer these programs—and expand our offerings—in support of the many
 communities within advanced computing that we are so happy to serve. Join us!

We extend our gratitude to everyone that has donated thus far, and to our USENIX and LISA SIG members; annual
 membership dues helped to allay a portion of the costs to establish our Open Access initiative.

www.usenix.org/annual-fund

REGISTER TODAY!
APRIL 2–4, 2014 • SEATTLE, WA

11th USENIX Symposium on
Networked Systems Design
and Implementation

NSDI ’14 focuses on the design principles, implementation, and practical evaluation of large-
scale networked and distributed systems. Systems as diverse as data centers, Internet routing,
peer-to-peer and overlay networks, storage clusters, sensor networks, wireless and mobile
systems, Web-based systems, and measurement infrastructures share a set of common
challenges. NSDI ’14 will bring together researchers from across the networking and systems
community to foster a broad approach to addressing our common research challenges.

Full program information and registration details are available on the conference Web site:
www.usenix.org/nsdi14

Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	a

