
;login:
V O L . 3 9 , N O . 4A U G U S T 2 0 1 4

Security
& USB Insecurity Exposed

Peter C. Johnson

& Security at CERN
Dr. Stefan Lüders

& Build Web Applications with
Encrypted Data
Raluca Ada Popa

& Hostbased SSH
Abe Singer

Columns
Practical Perl Tools: Zero Plus One
David N. Blank-Edelman

Python: Command Line Option Parsing
David Beazley

iVoyeur: Seven Habits for Successful Monitoring
Dave Josephsen

/dev/random: Heartbleed and Other Failures
Robert G. Ferrell

Conference Reports
NSDI ’14: 11th USENIX Symposium on Networked Systems
Design and Implementation

U P C O M I N G E V E N T S

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

23rd USENIX Security Symposium
August 20–22, 2014, San Diego, CA, USA
www.usenix.org/sec14

Workshops Co-located with USENIX Security ’14

EVT/WOTE ’14: 2014 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections
August 18–19, 2014
www.usenix.org/evtwote14

USENIX Journal of Election Technology
and Systems (JETS)
Published in conjunction with EVT/WOTE
www.usenix.org/jets

CSET ’14: 7th Workshop on Cyber Security
Experimentation and Test
August 18, 2014
www.usenix.org/cset14

3GSE ’14: 2014 USENIX Summit on Gaming, Games,
and Gamification in Security Education
August 18, 2014
www.usenix.org/3gse14

FOCI ’14: 4th USENIX Workshop on Free and Open
Communications on the Internet
August 18, 2014
www.usenix.org/foci14

HotSec ’14: 2014 USENIX Summit on Hot Topics
in Security
August 19, 2014
www.usenix.org/hotsec14

HealthTech ’14: 2014 USENIX Summit on Health
Information Technologies
Safety, Security, Privacy, and Interoperability
of Health Information Technologies
August 19, 2014
www.usenix.org/healthtech14

WOOT ’14: 8th USENIX Workshop on Offensive
Technologies
August 19, 2014
www.usenix.org/woot14

OSDI ’14: 11th USENIX Symposium on Operating
Systems Design and Implementation

October 6–8, 2014, Broomfield, CO, USA
www.usenix.org/osdi14

Co-located with OSDI ’14 and taking place October 5, 2014

Diversity ’14: 2014 Workshop on Supporting Diversity
in Systems Research
www.usenix.org/diversity14

HotDep ’14: 10th Workshop on Hot Topics in
Dependable Systems
www.usenix.org/hotdep14

HotPower ’14: 6th Workshop on Power-Aware
Computing and Systems
www.usenix.org/hotpower14

INFLOW ’14: 2nd Workshop on Interactions of NVM/
Flash with Operating Systems and Workloads
www.usenix.org/inflow14

TRIOS ’14: 2014 Conference on Timely Results in
Operating Systems
www.usenix.org/trios14

LISA14
November 9–14, 2014, Seattle, WA, USA
www.usenix.org/lisa14

Co-located with LISA14:

URES ’14 West: 2014 USENIX Release Engineering
Summit West
November 10, 2014

SESA ’14: 2014 USENIX Summit for Educators
in System Administration
November 11, 2014
www.usenix.org/sesa14

FAST ’15: 13th USENIX Conference on File and Storage
Technologies

February 16–19, 2015, Santa Clara, CA, USA
www.usenix.org/fast15
Submissions due: September 23, 2014

HotOS XV: 15th Workshop on Hot Topics in Operating
Systems

May 18–20, 2015, Kartause Ittingen, Switzerland
www.usenix.org/hotos15
Submissions due: January 11, 2015

USENIX ATC ’15: USENIX Annual Technical Conference
July 8–10, 2015, Santa Clara, CA, USA

Co-located with ATC ’15 and taking place July 6–7, 2015

HotCloud ’15: 7th USENIX Workshop on Hot Topics in
Cloud Computing

HotStorage ’15: 7th USENIX Workshop on Hot Topics
in Storage and File Systems

E D I T O R
Rik Farrow
rik@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N M A N A G E R
Michele Nelson

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2014 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designations
used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designations
appear in this publication and USENIX is aware
of a trademark claim, the designations have
been printed in caps or initial caps.

A U G U S T 2 0 1 4 V O L . 3 9 , N O . 4

E D I T O R I A L
2 Musings Rik Farrow

O P I N I O N
6 Why Offensive Security Needs Engineering Textbooks:

Or, How to Avoid a Replay of “Crypto Wars” in Security Research
Sergey Bratus, Iván Arce, Michael E. Locasto, and Stefano Zanero

S E C U R I T Y
12 How USB Does (and Doesn’t) Work: A Security Perspective

Peter C. Johnson

16 Computer Security at CERN Dr. Stefan Lüders

22 Building Web Applications on Top of Encrypted Data Using Mylar
Raluca Ada Popa, Emily Stark, Jonas Helfer, Steven Valdez, Nickolai
Zeldovich, M. Frans Kaashoek, and Hari Balakrishnan

28 cTPM: A Cloud TPM for Cross-Device Trusted Applications
Chen Chen, Himanshu Raj, Stefan Saroiu, and Alec Wolman

35 Interview with Steve Bellovin Rik Farrow

D I V E R S I T Y
40 CRA-W: Taking Action to Achieve Diversity in Computing

Research Dilma Da Silva

S Y S A D M I N
42 Hostbased SSH: A Better Alternative Abe Singer

47 Challenges in Event Management Jason Paree

50 /var/log/manager: When Technology Isn’t the Cause of a
Technical Problem Andy Seely

C O L U M N S
54 Practical Perl Tools: Zero Plus One David N. Blank-Edelman

58 Command Line Option Parsing David Beazley

62 iVoyeur: 7 Habits of Highly Effective Monitoring Systems
Dave Josephsen

66 Almost Too Big to Fail Dan Geer and Joshua Corman

69 /dev/random Robert G. Ferrell

B O O K S
71 Book Reviews Rik Farrow and Mark Lamourine

C O N F E R E N C E R E P O R T S
73 NSDI ’14: 11th USENIX Symposium on Networked Systems Design

and Implementation

2  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve often dreamed of presenting security as a visualization: images that

could clearly convey the dangers represented by different levels of access.
My visualization would work so well that even non-technical people

would easily understand the relative risks of different attacks. Alas, my skills
are lacking when it comes to designing images. But I can write.

Several of the articles found in this issue inspired me in this direction. During my interview
with Steve Bellovin, he spoke of walls and gates, nice solid visual metaphors. Sergey Bratus
(and others) wrote of the lack of well-defined terms for describing offensive technology, and
I certainly agree: the terms we have are often abused and misunderstood. Pete Johnson pro-
vided the allegory of a knight being challenged by a gatekeeper before being granted access.
No wonder I am thinking in Technicolor.

Beige
Of course, then there’s beige, the color of the first IBM PC. These early workstations shared
something with their still extant bigger cousins, the mainframes, in terms of access. Rather
than a PC, picture a 1970s era mainframe. Got it? Okay, I bet you are visualizing men with
pocket protectors and a woman in high heels standing in front of tape drives. The tape drives
were much more impressive than the actual mainframes, which were mostly featureless cabi-
nets, often beige or gray. My favorites included lots of blinking lights, including ones attached
to memory address lines.

Computer security was equally easy to visualize in that era: physical walls. The mainframe
was secured within a special room, and you needed to gain access to that room if you wanted
to steal or modify the data, a lot of which was stored on those magnetic tapes. The same was
true for PCs for many years, as these were all standalone devices. Not that some mainframes
didn’t have terminal communication concentrators for remote access, but getting to the data
still meant that someone in the secured room would need to heed your request to mount a tape.

The Network
By the end of the ’80s, the real era of networking was just beginning. We have to see beyond
the walls and locked doors and be able to visualize access to computers in a completely dif-
ferent way. In this case, I always wanted to see something right out of Gibson’s Neuromancer,
where corporate computers were protected by industrial grade “ice”: defenses that could,
and had, killed intruders. Somehow, Gibson’s metaphoric ice was quite visual for me and, I
presume, most others who read Neuromancer.

But translating ice into something that actually corresponds nicely with the real world of
TCP/IP was much more difficult. In that world, what you can see from the network are open
or closed ports, and the ice may or may not be visible as firewalls, and later, intrusion detec-
tion systems.

Still, one could have a nice visual representation, in textual form, by using Fyodor’s Nmap
(nmap.org). As Nmap grew in features and capabilities, you could learn not just which ports
were open, but what version of server software was running attached to a port, as well as

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 3

EDITORIAL
Musings

what operating system supported the software. As real power
goes, Nmap still is an incredible tool for visualizing a target
textually, but it falls short of Gibson’s ice.

We could use (or abuse) Bellovin’s walls and gates: Each server
is represented by a wall, penetrated by gates that are the open
ports. The gates are labeled with the name and version of the
service that appears there. I once tried to get a firewall company
I was advising to color-code services, from “green” (fairly safe) to
“red” (never safe), but they demurred. As this is my vision, I will
take another tack at labeling the gates: Ports for insecure ser-
vices appear as screen doors, while ports for much more secure
services look like bank vaults. Too bad that OpenSSL’s bank
vault door turned out to have a backdoor in it, while appearing
quite impressive.

Virtual Walls
Within anything we think of as a computer these days, includ-
ing smartphones, tablets, desktops, mainframes, and servers
within clusters, we also have gates and walls. Steve said, in his
interview, that “strong walls are something we’re pretty good
at … [but] components have to talk to each other, which implies
gates.” I’ve railed for years about the walls we’ve inherited,
since the earliest multiprocessing system designs, and won’t
go there this time. I will point out that the walls are memory
management, used to isolate processes from one another, and
various rings of privilege accorded to the operating system by
CPU hardware. The most prosaic of these gates are system calls,
which allow an unprivileged process to ask the kernel to perform
work on the process’s behalf. And, as our hardware became more
powerful, the number of walls and gates increased as we added
virtualization to both hardware and the software that runs on it.

Even here, a bit of visualization might still prove useful. The
kernel is like a castle, with a single gate: There is just one way in
and one way out, via this gate. Or is there? I’ll have more to say
about that later, but for now, imagine a castle with an impres-
sive gate. Processes only virtually enter this gate, as the kernel
carries out activities vicariously, that is, the proper incantation
made at the gate results in the kernel completing some activity
and then sharing the results with the process waiting outside the
gate. And, while all processes must use the gate, the processes
can only interact via the kernel, via the gate of the system call
interface.

If you’ve followed me so far, you are standing outside a castle,
among a throng of other busy and eager processes, many clamor-
ing for attention from the gatekeeper. Now that our kernels are
multithreaded, it’s as if there are many gatekeepers as well, all
doing their best to respond to requests so that the processes are
not held up. And even if the processes want to communicate with
each other, they still must talk to the gatekeeper.

Inside the castle of the kernel, all access is allowed. It is as if the
kernel is imbued with a magical quality that provides this level
of access—because the kernel has total access. The side effect
of this access is that any mistake in the hugely complex kernel
can result in sharing this all-powerful access with any evil coder
with the right spell: a kernel exploit.

Also, not all processes are treated equally: Even services have
their 1%. In the realms of Linux and UNIX, root-owned pro-
cesses have increased privileges within the castle. In the Win-
dows world, root gets replaced with sets of privileges, mimicking
the world of DEC’s VMS with both finer control and much more
complexity. And although not everyone can be one of the elite,
even mere users have resources that exploits can use to abuse or
abscond with the user’s private data.

Fuzzy Picture
But the castle gate isn’t the only way in. I’ve already mentioned
the network, where each open port is like another open gate, each
with a completely different set of guards, composed of policy and
implementation. Lots can go wrong here, but the main point to
keep in mind is that while it might be nice to imagine our castle
having only a single entry gate, that’s a false image.

And then there are other openings in the wall. In a wonderful
presentation, Bill Cheswick described classic castle designs,
based on visits he had made to real castles in Europe. But Ches
went beyond these descriptions, to the story of the castle that
fell because the invaders used a small back door, the one used for
convenience by the castle’s defenders to visit the town outside.

In my visualization, convenient backdoors look very much
like USB ports. Even more than the system call interface, the
USB interface is very complicated as it involves both parsing
responses to a protocol and running the device driver of the USB
device’s choice. We all know this attack vector has been used
successfully already (Stuxnet), and these convenient backdoors,
available to any local attacker, or one that can trick a user into
inserting a USB device, make our castle wall look more like
Swiss cheese. So much for policy controlled gates.

Personally, I think we need more walls within our castles. At the
very least, the gates themselves need to be run within isolated
regions, because they too are complicated enough to be exploited.

The Lineup
We begin this issue with an opinion piece by Sergey Bratus, Iván
Arce, Michael Locasto, and Stefano Zanero. These men were
disturbed by the creation of new laws to regulate the creation,
sharing and use of offensive software. Because we have yet to
clearly define what exactly we mean by offensive software, new
laws, and ones yet to be written, are vague and overreaching. The
authors argue for the creation of clearly defined language that

4  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

EDITORIAL
Musings

will make writing and talking about offensive software, includ-
ing exploits and vulnerabilities, much clearer and more precise.

I asked Pete Johnson, who had a paper published earlier this
year on USB insecurity, to write and explain what’s wrong
with USB. Pete does a very nice job of explaining how the USB
protocol works, as well as how it fails, both through allegory and
diagrams.

I’d heard that Stefan Lüders had made presentations about how
they handle security at CERN, and I asked him to tell us about
that. CERN works with thousands of staff, visitors, and external
researchers, which certainly makes security a daunting affair
with almost everyone bringing their own device (BYOD). CERN
works with people to secure their own devices, as well as educate
their owners, but CERN also keeps a stick handy so warnings of
failed security cannot be ignored.

Raluca Popa and her co-authors rewrote their NSDI paper on
how to secure content on Web servers using encryption. Their
solution, in a nutshell, is to handle encryption within the users’
Web browsers, moving it away from a Web server that can be
subverted or subpoenaed. They have also devised a method that
allows searching of stored data on the Web server without shar-
ing keys or using homomorphic encryption.

Chen Chen and his colleagues also rewrote their NSDI paper,
and explain how TPM 2.0 can be extended to work through
clouds and shared devices. Ordinary TPM can only perform
tasks, such as signing a hash or encryption using a stored private
key, on the device where TPM is installed. By using a small
extension to TPM 2.0, Chen et al. explain how TPM can be
leveraged to make sharing encrypted data between devices and
clouds work securely.

I decided to interview Steve Bellovin for this issue. Steve has
been a figure at USENIX meetings since the UNIX User Group
changed its name to USENIX. Steve has also become well known
in security through his research, his firewalls book, RFCs, and
public speaking. I uncover some of the back story behind many of
these accomplishments.

Dilma Da Silva has written an introduction to the Computer
Research Association’s Committee on the Status of Women in
Computing Research (CRA-W) group. CRA-W has done much
to help women and minorities succeed in getting into graduate
school, publishing, and advancing in their careers. And as Dilma
points out, papers with a diverse group of authors tend to get
cited more often, implying that the level of creativity and quality
is often higher than other paper-writing groups.

Abe Singer volunteered to write about hostbased SSH, a tech-
nique he has been using for many years. Although hostbased
SSH is not new, it is also often ignored, or at least unknown. Abe

explains how hostbased SSH works, why it is better than other
techniques, and where it is best used.

Jason Paree writes about event management, a nice term for
“handling communications when things go wrong.” Instead of
the usual way of having too many open lines of communica-
tion, which often results in miscommunication and duplicated
effort, Paree describes his own group’s progress in centralizing
communication, documenting, and managing events. For those
of you interested in DevOps, event management is an important
part of DevOps and getting your process under control.

Andy Seely writes from a manager’s perspective about fixing a
perception problem: that a part of IT is someone else’s problem.
Andy actually describes solving a DevOps issue, something I
finally recognize after having read The Phoenix Project (see my
book review). Like the fictional VP of IT in that book, Andy steps
in to first understand the problem with one group, get other
groups who actually support this group to buy in, and then
 reorganize to make the changes official.

David Blank-Edelman writes the second of a two-part column
about ZeroMQ, a modern message queuing system that simpli-
fies communication between processes, whether on the same
system or across a network.

Dave Beazley tackles parsing command line options in Python.
Dave begins with a confession, then demonstrates what some
of the popular Python modules can do to make parsing options
easier.

Dave Josephsen follows a tradition of successful authors who
describe the seven habits of successful somethings. Dave, no
surprise, explains the seven habits of successful monitoring,
starting by telling us that it’s about the data, not the tools.

Dan Geer and Joshua Corman take on the myth of the many
eyes. The theory has been that open source software should be
safer than closed source, but recent discoveries in security-crit-
ical open source projects provide fodder for Geer and Corman’s
investigation.

Robert Ferrell rants about the wonders of various Web tags,
including the “Do not track” tag. Along the way, he casts a keen
eye on other (current in late May) Internet memes, including
Tara the cat, and what it really means when the US indicts five
Chinese for stealing IP using the Internet.

Mark Lamourine has tackled a book about understanding the
theory of computation. I finally read The Phoenix Project and
really gained a better understanding of DevOps (and more) from
it. I also review a beginner’s book on penetration testing that is
quite good.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 5

EDITORIAL
Musings

We close out this issue with the summaries from NSDI ’14.

I’ve often visualized computer security in a way not so different
from the way I did in these musings. In this alternate scheme,
certain programs were red and all the rest were green. If you
could trick the red programs into running the code of your choice
or accessing resources they were never intended to access, you
could imbue your exploit with the color red. The red programs
were root-owned processes, set-user-id root programs, and the
kernel. Everything else was green by comparison to the power of
root, or comparatively privileged parts of Windows.

While we continue to heap praise upon those who manage the
feat of separation of privilege (Venema and Bernstein), we keep
building monolithic applications with no such separation. Unless
we can actually learn how to become designers and program-
mers who can build carefully limited modules with clear inter-
faces, we really won’t have much use for walls and gates.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you
 promote your organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we
offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our
multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation
in neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholar-
ships for students, equal representation of women and minorities in the computing research community,
and the development of open source technology.

Learn more at:
www.usenix.org/supporter

6  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

OPINIONWhy Offensive Security Needs
Engineering Textbooks
Or, How to Avoid a Replay of “Crypto Wars” in Security Research

S E R G E Y B R A T U S , I V Á N A R C E , M I C H A E L E . L O C A S T O , A N D S T E F A N O Z A N E R O

Offensive security—or, in plain English, the practice of exploitation—
has greatly enhanced our understanding of what it means for com-
puters to be trustworthy. Having grown from hacker conventions

that fit into a single room into a distinct engineering discipline in all but
the name, offensive computing has so far been content with a jargon and an
informal “hacker curriculum.” Now that it is unmistakably an industry, and
an engineering specialization, it faces the challenge of defining itself as one,
in a language that is understood beyond its own confines—most importantly,
by makers of law and policy.

Currently, lawmakers and policy-makers have no choice but to operate with pieces of our
professional jargon that have been publicized by journalists. But writing laws based on pro-
fessional jargon is dangerous: This jargon will be misunderstood by lawmakers and judges
alike. It’s not the wisdom of the judge or the legislator that is in question, it’s their ability to
guess the course of a discipline years in advance.

Consider the concept of unauthorized access at the heart of (and criminalized by) the Com-
puter Fraud and Abuse Act (CFAA). The unanticipated, “unauthorized” uses of today will
be primary uses or business models of tomorrow. When CFAA was written, connecting to
a computer on which one had no account was pointless. Cold-calling a server could serve
no legitimate purpose, as no servers were meant for random members of the public; each
computer had its relatively small and well-defined set of authorized users. Then the World
Wide Web happened, and connecting to computers without any kind of prior authorization
became not just the norm but also the foundation of all related business. Yet the law stands as
written then, and now produces conundrums such as whether port scans, screen-scraping,
or URL crafting are illegal, or even whether telling journalists of a successful URL-crafting
trick that revealed their email addresses could be a felony (as in the recent US v. Auern-
heimer case). Even accessing your own data on a Web portal in a manner unforeseen by the
portal operator—as in the case of ApplyYourself users who could see their admission status
prematurely—may similarly be a crime under CFAA (for discussion of these cases and differ-
ent institutions’ reactions to them, see [14]).

Lawmaking with regard to offensive security artifacts has already started. Article 6 of the
Budapest Convention on Cybercrime requires signatories to issue laws that criminalize
“production, sale, procurement for use, import, distribution or otherwise making available
of…a device, including a computer program, designed or adapted primarily for the purpose
of committing any of the offences” it established as criminal; Germany and UK have since
enacted laws targeting so-called “hacking tools.” Although, to the best of our knowledge,
no prosecution of security researchers has yet taken place under these laws, they have had
nontrivial chilling effects. More recently, intrusion software has been categorized by the
December 2013 Wassenaar Arrangement as dual use technology subject to exports control;
such software is defined as capable of “extraction of data or information, from a computer
or network capable device, or the modification of system or user data or modification of the
standard execution path of a program or process in order to allow the execution of externally
provided instructions.” This is, of course, what debuggers and hypervisors do, not to mention

Sergey Bratus is a research
associate professor of computer
science at Dartmouth College.
He sees state-of-the-art
hacking as a distinct research

and engineering discipline that, although not
yet recognized as such, harbors deep insights
into the nature of computing. He has a PhD
in mathematics from Northeastern University
and worked at BBN Technologies on natural
language processing research before coming to
Dartmouth. sergey@cs.dartmouth.edu

Iván Arce is director of
security in the Information and
Communications Technology
(ICT) R&D program at
Fundación Dr. Manuel

Sadosky, a mixed (public-private) non-profit
organization in Buenos Aires, Argentina,
whose goal is to promote stronger and closer
interaction between industry, government, and
academia in all aspects related to ICT. Arce is
also the co-founder and former CTO of Core
Security Technologies. ivan.w.arce@gmail.com

Dr. Michael E. Locasto is an
assistant professor in the
Computer Science Department
at the University of Calgary.
He seeks to understand why

it seems difficult to build secure, trustworthy
systems and how we can get better at it.
He graduated magna cum laude from The
College of New Jersey (TCNJ) with a BSc
degree in computer science. Dr. Locasto
also holds an MSc and PhD from Columbia
University. locasto@ucalgary.ca

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 7

OPINION
Why Offensive Security Needs Engineering Textbooks

all varieties of JTAGs; although the document further stipulates that “‘Intrusion software’
does not include any…hypervisors, debuggers, or Software Reverse Engineering (SRE) tools,”
the above functional description fits them perfectly.

Such language demonstrates the challenge we face. As native speakers of the jargon, we
understand that an exploit, a rootkit, and a defensive module that inserts itself into a piece of
software are all likely to use the same technique of reliably composing their own code with
the target’s; however, lawmakers do not see their unity.

Will jailbreaking or composition beyond well-defined APIs such as DLL injection survive
these challenges? Many sufficiently advanced techniques in both defense and exploitation
perform some of a debugger’s or linker’s tasks without being either debuggers or linkers;
new debugging and dynamic linking techniques are informed by exploitation. For example,
BlackIce Defender, the first Windows firewall, linked itself into the kernel by “modifying the
standard execution path” to defend the system, and even patented the technique that many
rootkits have since rediscovered; Robert Graham tells the story in “The Debate over Evil
Code” [2]. “Bring Your Own Linker” has long been a composition pattern for both offense and
defense [1].

Proposals for stricter regulation of exploits are not hard to come by. A good example is pro-
vided by Stockton and Golabek-Goldman [3], which makes an aggressive and ill-informed
call for regulation (and spells øday with a symbol for “empty set”). It defines “weaponized” on
its first page to mean “disrupt, disable, or destroy computer networks and their components”
and then on the next page claims that “Criminals buy and use weaponized øday exploits to
steal passwords, intellectual property, and other data,” even though disabling or destroying a
compromised computer in order to steal passwords or secrets is counterproductive; in fact, it
would be just plain stupid, as it would alert the victim of the breach and likely eliminate the
value of stolen passwords or data. Apparent lack of familiarity with the field, however, doesn’t
stop the authors from calling for prosecution of security researchers under the CFAA—a law so
broad and vague that prominent legal scholars argue it should be void for vagueness [15] .

If anything, we can expect more laws and regulations on the basic artifacts of our profession.
The only way for us to avoid overly broad formulations that would snare every technique we
use is to develop a language that puts offensive computing in perspective with other com-
puter engineering.

In short, we need textbooks and textbook definitions that describe offensive computing so
that policy-makers need neither puzzle over jargon nor design their own language—both
approaches being potentially disastrous to the future state of practical computer security.

Why Offensive Computing Matters for
Security in General

If you shame attack research, you misjudge its contribution. Offense and defense
aren’t peers. Defense is offense’s child. —John Lambert [4]

Exploitation is programming. It is the kind of programming that every programmer should,
if not directly practice, at least understand in terms of its capabilities and limits, because it
will be practiced on his code. Our security is only as good as our understanding of this kind of
programming, because it’s the essential nature of general-purpose systems (or perhaps of all
rich enough computing systems) to allow a myriad of other execution paths than merely the
intended ones. Until all possible latent, unintended execution models are understood, they
can neither be eliminated nor triaged.

Security and trustworthiness of code means attackers’ inability to program it. In computer
science theory, we emphasize results that show what can and cannot be programmed; in

Stefano Zanero received a PhD
in computer engineering from
Politecnico di Milano, where
he is currently an assistant
professor. His research focuses

on mobile malware, malware analysis, and
systems security. He’s a senior member of the
IEEE, the ACM, and the ISSA, and sits on the
Board of Governors of the Computer Society.
stefano.zanero@polimi.it

8  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

OPINION
Why Offensive Security Needs Engineering Textbooks

fact, our very notions of computer architectures derive from
these results. Programmers and designers of a trusted system
must be equally focused on what can and cannot be programmed
on (or against) their code, no less than a theorist is concerned
with what can and cannot be computed by particular execution
models, type systems, automatic theorem provers, verifiers, and
the like.

The strongest kind of trust in systems security, just as in cryp-
tography, derives from some programs provably not existing—or
at least from their existence being highly unlikely. Ciphers are
only trusted because no efficient algorithms to solve certain
algebraic problems are believed to exist. Cryptographic proto-
cols are only deemed trustworthy when no sequence of attacker
manipulations of their messages can interfere with their trans-
actions, and so on.

To stress the role of anticipating and precluding attackers’
programs in the realm of cryptographic protocols, Anderson and
Needham call the protocol designers’ task programming Satan’s
computer:

In effect, [the protocol designer’s] task is to program
a computer which gives answers which are subtly and
maliciously wrong at the most inconvenient possible
moment… and we hope that the lessons learned from
programming Satan’s computer may be helpful in
tackling the more common problem of programming
Murphy’s. [5]

For applied systems tasks, the primitives of adversarial pro-
gramming may be different, but the essence of trustworthiness
is the same: Such attacker programming must fail, preferably
due to the provable impossibility of certain tasks.

We can trust any system only so far as we understand its
unintended programming models (so-called “weird machines”
[6], building on prior work by many others, such as Gerardo
Richarte’s About Exploits Writing [7]) and their limits. Exploits
are merely artifacts and expressions of this understanding; the
essence of the discipline is the skill to discover, validate, and gen-
eralize such models. Yet no research activity can develop without
free exchange of its artifacts, and the discipline of systems secu-
rity needs to develop a lot further before we can trust it even to
the same extent as we trust analysis of cryptographic protocols.

Exploits are the primary tools in exploring the unexpected,
latent models of programming that are inherent in the ways we
currently build computing systems. Thus, we must be able to
speak about them in all their unity and differences, and to be
understood.

Exploits: Research or Development?
Proof-of-Concept or “Weaponized”?
Compared with software engineering, arguably its most closely
related field, security focuses much less on its engineering
process. Unlike software engineering, which continually invents
new processes and methodologies, and has an industry-wide
shared vocabulary for the outcomes of different process stages
(such as “design,” “architecture,” “prototype,” “alpha-,” “beta-,”
“production quality,” etc.), the security industry does not appear
concerned with defining its process or its product through the
stages of its development and maturity.

Terms occasionally used to qualify important industry artifacts,
such as exploits, do not appear to have consensus definitions.
Perhaps the best example is the use of “weaponized” [8] to refer to
a certain grade of readiness or effectiveness (or ease-of-use?) that
must inspire awe in the prospective buyer (note also how such
use in turn affects misuse in policy proposals, as quoted above).

Even terms purely technical in origin raise questions regard-
ing their usefulness, for example, the use of “memory corrup-
tion” in advisories [9]. Even the typically used term remote code
execution is somewhat ambiguous, because it obscures whether
introduction of external code by a remote party is necessary or
whether full control is achievable by manipulating the platform’s
existing code, with remotely crafted data inputs acting as the de
facto exploit program.

It gets worse when we get to characterizing intentions of a
particular research or engineering activity. Suppose some
lawmakers would like to protect security research results while
attempting to curb what they see as software developed with
ill intent. Our industry’s language, however, lacks the ability to
clearly distinguish research results from engineering artifacts.
An in-depth technical description of a software vulnerability
may or may not be equivalent to an actual exploit program that
leverages said vulnerability. How much detail and analysis do
you need to consider the two equivalent? Is it possible to regulate
one but not the other? And, if so, to regulate what exactly?

Even though there is a lot of architecting, programming, and
testing involved in producing what could be called a “commercial
grade exploit”—all activities that can be more closely associated
with software engineering than with research as such—this
nuance seems to be lost on much of the security industry, and
certainly on the outside world, which speaks of “vulnerabilities,”
“PoCs,” “triggers,” “payloads,” and “weaponized exploits” as if
they were interchangeable. Given such usage, the difference
between an open source research tool and a commercially backed
software product that includes exploits is too nuanced to explain
(see, e.g., Iván Arce’s RSA 2005 presentation [10] on the subject).

All the more so, a “textbook” gradation of exploits with respect to
their power and reliability is necessary. As a direct consequence

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 9

OPINION
Why Offensive Security Needs Engineering Textbooks

of such a gradation, an evaluation of effort necessary to elevate
privilege from any given exploit achievement becomes desirable.
In other words, it is not enough for a customer of an engineering
effort to know that a product or design is flawed; one might want
to know how deeply the rabbit hole goes.

In plain English, what does it mean for software to withstand a
particular kind of adversarial audit or testing? Once a vulnera-
bility has been found, how general is its description as presented
in an advisory or an exploit? Does the description need to capture
an entire class of related vulnerabilities or merely a particular
instance of an exploitable bug? How far should an exploitable bug
be pursued by the researcher beyond the creation of code that
exploits a particular platform or platforms? How resilient is the
exploit against defenses such as address space randomization,
non-executable memory, various canaries, and other memory
integrity checks? How resilient can it become after a man-month
of engineering effort by the exploit developer, and how qualified
should this developer be to pull it off?

For all of these, there appear to be neither accepted answers nor
a common language to provide them. Our industry still lacks a
consensus vocabulary to describe the generality of knowledge
about a flaw as encapsulated in an exploit or an advisory. For
example, has the primary effort been spent on the discovery of
the flaw or on constructing the exploit machine? How likely is
the flaw to be present and/or exploitable in other instances of
related codebases? Is the exploitability of the flaw an (un)happy
accident, or does it reveal a general principle applicable even
beyond related codebases?

Most of these answers become clear to experts after a care-
ful study of the exploit, but no textbook or other authoritative
publication captures them, which makes it hard to explain the
insights and the impact. Not surprisingly, it is a often a hard
task to explain the impact of an “attack paper” to academics not
versed in exploitation, as they, too, lack the terms for different
degrees of impact and generality and have no referent in industry
language.

In short, a “Rainbow Series” for offensive computing suddenly
sounds like a good idea.

Common Criteria or FIPS for Offensive
Computing?
Contrast the lack of terms to describe the generality, the resil-
iency, or the reliability of an exploit with the well-known criteria
for government procurement of trusted computing systems, such
as the Common Criteria or the FIPS certifications. Their dif-
ferent levels enumerate processes and methodologies applied in
development of the software, with those at higher levels expected
to provide relatively stronger assurance. A ranking, however
imperfect, of software construction and testing methodologies is

implied with respect to their relative power to provide assurance
and verification.

A similar ranking of attack and assessment methodologies may
be possible, with respect to their power to reveal flaws. The
similarity would, of course, extend to the cautions and provisos
that apply to software construction methods, namely, that their
ranking is relative rather than absolute, and provides evidence of
effort invested rather than proof of security in any given sense.

However, no such ranking is enshrined to date in a form avail-
able to industry outsiders. Some policy-makers may understand
that certain grades and levels of offensive skills, activities, and
artifacts are indispensable to security education of every com-
puter professional. They may understand that major advances
in computer security have been made by the “Citizen Science” of
hacking and only then adopted by industry or academia, and that
curbing this citizen science by turning the respective activities
into legal minefields will shrink the talent pool of “cyberdefend-
ers.” Yet, even so, they lack the concepts and terms to clearly
distinguish activities they want regulated from the basic tools of
the discipline.

Moreover, perhaps their very ideas of what they want regulated
will be changed once a proper language that shows the relative
importance of offensive activities is available.

Have We Learned the Lesson of the
“Crypto Wars”?
The 1990s were a formative decade for the commercial Internet
in the United States. Unfortunately, during this same time the
US government policy was to treat strong encryption as a threat
and to control implementations of certain cryptographic algo-
rithms as munitions, subject to vigorous enforcement of export
regulations. In 1993, the author of the original PGP software,
Phil Zimmerman, became the target of an FBI investigation for
munitions export without a license, which lasted until 1996. At
the same time, a series of failed technological “solutions” and
mandates, such as the backdoored-by-design Clipper chip [11]
and third-party key escrow were promoted as a legally safe way
for the telecommunications industry to implement compliant
encryption—which would have essentially amounted to pretend
security.

Export restrictions on artifacts of cryptography have doubtlessly
harmed its practical progress. It’s not only that Johnny Q. Public
still can’t encrypt [12], but John the Special Agent can’t encrypt
either! [13] No matter where one stands on whether and how
much the latter should be allowed to wiretap the former, John
certainly has things to hide and in fact a duty to hide them—in
which he is conspicuously failing.

Could it be that both of these failures are due to the fact that
deployment of strong crypto was stymied just when today’s

10  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

OPINION
Why Offensive Security Needs Engineering Textbooks

dominant communication protocols and infrastructure were
rapidly developing? The fact is, these technologies ended up leav-
ing crypto behind and matured without incorporating cryptog-
raphy at their core. Superiors of John the Special Agent may have
had visions of him using separate, special technologies vastly
stronger than Johnny Q. Public’s and obtained from sources
untainted by the weaknesses of public commodity communica-
tions; it appears their vision was wishful thinking.

If having to pretend that poor cryptography was secure because
practically exploring stronger crypto was a legal minefield led us
to this point, where would pretending that computers are secure
because of a likely minefield arising in exploitation engineer-
ing lead us from here? It will likely be worse, because the field
of cryptography by the 1990s already had mature mathematical
theory not easily undercut by the drag created on its engineering
practice. Systems security, on the other hand, is only building up
its theoretical foundations and is in need of much more feedback
and generalization of its practice and its failures.

If the practice of exploring the programming of programs’ faults
becomes subject to regulation as vigorous as the 1990s “Crypto
Wars,” will this practice develop enough to warn us before unse-
curable designs come to dominate critical infrastructure, power
management, medicine, or even household appliances beyond
any hope of replacement? Will we be surrounded by an Internet
of Untrustworthy Things just as we are surrounded today by an
Internet of Things that Can’t Keep a Secret (or at least are no
help to an ordinary person for doing so)?

Conclusions
Offensive computing—by now a research and engineering
discipline that cuts across many technologies and abstraction
layers—is central to the security and trustworthiness of com-
puter systems. However, the further one stands from security
research, the less prominent the role of offensive computing
appears. Even in the eyes of traditionally trained computer sci-
entists and engineers this role looks somewhat peripheral; in the
view of policy-makers, offensive computing is often completely
marginalized and confused with the criminality and ill intent of
surveillance and repression.

These diverging views of offensive computing are a clear and
present danger to the development of the discipline, and thus to
our hope for improving the trustworthiness of everyday comput-
ing. Without a concerted effort to claim its place, offensive com-
puting will end up being further marginalized, nearly impossible
to practice outside of costly legal protection, and completely
impossible to practice as a citizens’ science.

To protect our discipline, we need to make sure that good
approachable textbooks, or at least comprehensive dictionar-
ies, exist for it, that put it into proper perspective not only to
experts but also to a much broader audience. Distracting as the
task of writing these books may be, failure to communicate the
importance of offensive research will be a lot more damaging in
the long run, both to all of us and to the society that our research
ultimately serves to protect.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 11

OPINION
Why Offensive Security Needs Engineering Textbooks

References
[1] Bratus et al., “Composition Patterns of Hacking,” in Proceedings of the 1st International Workshop on Cyber Patterns, Abingdon,
Oxfordshire, UK, July 2012, pp. 80–85.

[2] http://blog.erratasec.com/2013/03/the-debate-over-evil-code.html.

[3] Paul N. Stockton and Michele Golabek-Goldman, “Curbing the Market for Cyber Weapons,” Yale Law & Policy Review (December
2013): http://www.sonecon.com/docs/studies/SSRN-id2364658.pdf.

[4] https://twitter.com/JohnLaTwC/status/442760491111178240.

[5] www.cl.cam.ac.uk/~rja14/Papers/satan.pdf.

[6] Bratus et al., “Exploit Programming,” ;login:, vol. 36, no. 6 (December 2011): http://langsec.org/papers/Bratus.pdf.

[7] Gerardo Richarte, “About Exploits Writing,” Core Security Technologies presentation, 2002: http://corelabs.coresecurity.com/
index.php?module=Wiki&action=view&type=publication&name=About_Exploits_Writing.

[8] Core Security Technologies, “Speaking the Language of IT Security”: http://blog.coresecurity.com/2009/11/05/speaking
-the-language-of-it-security/.

[9] Risk-Based Security, “Memory Corruption… And Why We Dislike that Term”: http://www.riskbasedsecurity.com/2013
/08/memory-corruption-and-why-we-dislike-that-term/.

[10] “On the Quality of Exploit Code: An Evaluation of Publicly Available Exploit Code”: http://corelabs.coresecurity.com/index
.php?module=Wiki&action=view&type=publication&name=rsa2005_quality_of_exploit_code.

[11] M. Blaze, “Protocol Failure in the Escrowed Encryption Standard,” Proceedings of Second ACM Conference on Computer and
Communications Security, Fairfax, VA, November 1994.

[12] A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt,” Proceedings of the 8th USENIX Security Symposium, Washington, DC,
1999: https://www.usenix.org/legacy/events/sec99/full_papers/whitten/whitten.pdf.

[13] S. Clark et al., “Why (Special Agent) Johnny (Still) Can’t Encrypt,” USENIX Security Symposium, 2011: https://www.usenix.
org/legacy/event/sec11/tech/full_papers/Clark.pdf.

[14] S. W. Smith, “Pretending that Systems Are Secure,” IEEE Security and Privacy, vol. 3, no. 6 (November/December 2005), pp.
73–76.

[15] Orin S. Kerr, “Vagueness Challenges to the Computer Fraud and Abuse Act,” Minnesota Law Review (2010): http://www.
minnesotalawreview.org/wp-content/uploads/2012/03/Kerr_MLR.pdf.

12  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITYHow USB Does (and Doesn’t) Work
A Security Perspective

P E T E R C . J O H N S O N

Peter C. Johnson received his
bachelor’s degree from the
University of California, San
Diego and worked for a couple
of computer systems companies

in the Bay Area before escaping back to aca-
demia. He is currently polishing up his PhD
dissertation at Dartmouth (not coincidentally
related to security of USB stacks) and will
begin work as a visiting assistant professor of
computer science at Middlebury College in fall
2014. pete@cs.dartmouth.edu

USB devices are easy to take for granted: They’re innocuous by their
nature (who’s afraid of a keyboard?) and by their ubiquity. However,
the architecture of the Universal Serial Bus ecosystem is surpris-

ingly complex and deeply embedded in modern operating systems. Further-
more, having risen to awareness on the backs of traditionally “dumb” devices
like keyboards and mice, the features of the USB protocol that very much
resemble wide-area networking protocols can be underappreciated. This
combination of complexity, embeddedness, and underappreciation is the
unholy trinity of security “features.” In the following paragraphs, I hope to
sprinkle some holy water on this situation, so come along while I first share
some fire and brimstone, then give reason for hope. To the Batmobile!

“It can’t be that bad,” you’re saying to yourself, “a USB attack requires physical access.”
While absolutely true, this misses a crucial technicality: An attack over USB must indeed
be delivered physically, but the attacker herself need not be physically present. How many
people, upon finding a USB thumb drive lying on the ground, are able to resist the temptation
to plug it into the first computer they find? Sufficient anecdotal evidence exists to suggest
the number is “few enough for us to worry” (though I wish you the best of luck in getting IRB
approval to verify this experimentally). I don’t mean to imply that the physical nature of USB
is impotent as a defense, but that it is not dependable.

Speaking of Stuxnet, once the USB drive prepared by [REDACTED] was plugged into a
machine beyond the defensive air gap, the “vulnerability” it initially exploited was that Win-
dows was configured to execute autorun.inf on any inserted devices. The realization that
such critical systems were thus (mis)configured no doubt makes the sysadmin- and secu-
rity-minded out there a bit light-headed, and the same people might be tempted to breathe a
sigh of relief that the initial infection vector could be so easily shut off. Completely setting
aside the raft of zero-day exploits also employed by Stuxnet, indulging in the aforementioned
sigh of relief is a bit premature.

How Bad Is It Really?
In March 2013, Microsoft patched three similar vulnerabilities (CVE-2013-1285, CVE-
2013-1286, CVE-2013-1287) in all extant versions of Windows that allowed “escalation of
privilege” [4]. NIST’s National Vulnerability Database puts it a bit more starkly [7–9]:

◆◆ Access Complexity: Low

◆◆ Authentication Required: None

◆◆ Confidentiality Impact: Complete

◆◆ Integrity Impact: Complete

◆◆ Availability Impact: Complete

These were not system configuration issues, like failing to disable execution of autorun.inf;
these were bugs in the kernel’s USB stack, ring-0 code that is run automatically every
time a USB device is plugged in to the system. Running such code with such privileges is a

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 13

SECURITY
How USB Does (and Doesn’t) Work: A Security Perspective

 somewhat natural consequence of the “U” in USB: To support a
broad array of devices, the kernel must get the device to identify
itself so that the kernel can load the appropriate driver. This
process is called “bus enumeration” (because the host is taking
roll of devices on the bus) and looks something like this:

Kernel: Stop! What is your name?

Device: It is Arthur, King of the Britons.

Kernel: What is your quest?

Device: To seek the Holy Grail.

Kernel: What is the airspeed of an unladen swallow?

The device’s response at this point is key. If the answer is “I don’t
know,” the device finds itself tossed from the Bridge of Death,
never to return; if the answer is “What do you mean? An African
or European swallow?” the kernel loses its mind and the Bridge
of Death is no longer guarded. This example is surprisingly illus-
trative and not just the injection of a predictable computer nerd
trope: A device can respond according to the USB protocol with
an identification the kernel accepts, it can respond according
to the protocol with an identification the kernel rejects (“I don’t
know”), or it can deviate from the protocol entirely (“African or
European?”).

If you squint only a bit, the bus enumeration process caricatured
in Figure 1 bears more than a passing resemblance to the three-
step TCP handshake or the request-response nature of an SMTP
transaction. Figure 1 shows the enumeration process in the form
of the ladder diagram we all know and love from the networking
world. Indeed, the USB protocol sports a great number of fea-

tures reminiscent of traditional network protocols: addressing,
packetized data, sequence numbers, acknowledgments, and so
on. (I’ll return to this comparison later on, I promise.)

The bugs Microsoft patched in 2013 were failures to correctly
handle protocol deviations that allowed complete system com-
promise. Unfortunately, precise details on the patched vulner-
abilities are difficult to come by, though we have good reason to
believe the problems arose when parsing descriptors during enu-
meration. Parsing is one of those oft-underappreciated aspects
of protocol implementation that should be relatively straight-
forward to get right, yet can lead to rather catastrophic failures.
In the case of bus enumeration, the complexity of the messages
involved can’t have helped. Figures 2 and 3 show a couple of
packets sent during enumeration, specifically the host-to-device
message that requests a configuration and the device-to-host
response. (The specific semantics aren’t important, so don’t
worry if “configurations,” “interfaces,” and “endpoints” mean
nothing to you.)

The configuration request shown in Figure 2 is fairly simple,
but the response (Figure 3) is anything but. After the standard

Figure 1: USB bus enumeration process as a ladder diagram

Figure 2: Bit-level description of message sent during bus enumeration
from host to device requesting configuration descriptor

Figure 3: Bit-level description of message sent during bus enumeration
from device to host containing configuration descriptors

14  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
How USB Does (and Doesn’t) Work: A Security Perspective

header stuff (the details of which—barring the length fields—are
secondary for this discussion), the device sends the descriptors
of all interfaces contained within that particular configura-
tion. Again, what a USB interface is doesn’t really matter right
now; the important point is that it’s another message format that
needs to be parsed. Not just that, but interfaces contain end-
points, the descriptors for which are also embedded in this single
response. The result is a (relative) ton of data with all manner of
length fields littered throughout, whose correct interpretation is
vital to the correct interpretation of the message as a whole, and
which are mutually dependent—that is, if the length field of one
descriptor is messed up, the rest of the parse necessarily goes off
the deep end.

This complexity makes implementing both host- and device-side
logic dealing with descriptors a delicate task, but it gets better!

The Device Is the Application
Let’s now move up the stack a bit and look at the application
layer. In the world of networking, applications are, practically
speaking, presented with their choice of either streams (TCP) or
datagrams (UDP). Beyond that, they’re more or less on their own,
although standards like SMTP and DNS have been created to
enforce some consistency (and, hopefully, quality). Proprietary
protocols, on the other hand, are a completely different story:
Vendors can and do design and implement protocols however
they darn well please, which frequently results in the less-good
kind of media attention. (Diebold, anyone?)

Fortunately for us innocent bystanders, some of the local effects
of poorly designed or implemented application protocols can be
mitigated by running server processes as an unprivileged user
or in a chroot jail. Ideally, then, if a vulnerability in a protocol
design or implementation is discovered, only resources owned by
the unprivileged user or those within the chroot jail are suscep-
tible to compromise. Other methods, including virtual machines
and Linux containers, provide isolation sufficient to protect
against whole-system compromise, although it isn’t immediately
clear how any of these map to the USB realm.

The USB protocol allows similar encapsulation (indeed, the USB
Mass Storage Specification calls for stuffing raw SCSI com-
mands inside USB packets much like iSCSI stuffs them inside
IP packets). This freedom brings with it the same double-edged
sword as in the networking world: Although developers can
define their own protocols to create exciting new applications,
they also run the risk of introducing vulnerabilities as they
increase systems’ attack surfaces. But wait! USB doesn’t deal
with applications, it deals with devices!

The implications of this are numerous and not altogether
encouraging. First, it means that, once shipped, devices are often
stuck with a specific version of a protocol implementation—one

that might be buggy (i.e., vulnerable) and difficult to upgrade.
Second, the “server” implementation of the protocol frequently
exists in the device driver—which usually runs as kernel code—so
if the protocol is vulnerable, an exploit necessarily results in
total system compromise. Third, although standards such as
USB Mass Storage and USB Human Interface Device exist to
bring some sanity to the land, many devices ship binary driv-
ers. That’s right: Devices can ship black-box code, implement-
ing black-box protocols, that implicitly runs inside the kernel’s
address space.

That’s okay, at least USB doesn’t let the device pick which driver
to talk to—nothing like inetd for networking services. Hmm?
What’s that you say? I already described how a device identifies
itself to the kernel? And there’s nothing to stop a device from
identifying itself as a device with a known-vulnerable driver?
And the kernel will happily load said driver and let the device
talk to it, no questions asked? Well, that’s potentially worrisome.

Unfortunately, it’s true: In addition to the potentially unreliable
nature of USB device driver protocols and implementations, a
newly plugged device is in charge of choosing precisely which
device driver to communicate with. To make matters worse,
modern operating systems ship with support for a huge number
of devices, many drivers for which haven’t seen maintenance in
years. To think there aren’t exploitable vulnerabilities lurking
among that crufty code would be naïve.

Okay, I’m Scared. Help?
In the preceding paragraphs, I’ve painted a pretty bleak picture.
The (sort of) good news is that we don’t know of any vulner-
abilities in extant USB stacks. Of course, that doesn’t mean there
aren’t any, nor does it mean that other people don’t know about
them or, if they do, that they aren’t actively exploiting them. I
said at the beginning that I’d give reason for hope, and here’s
where that comes in. I also said I’d return to the similarities
between the USB architecture and the networking systems we
all know and love. Two birds, one stone.

It’s true that USB is an underappreciated attack vector; in con-
trast, networks are not. Because the two are so similar, we can
take advantage of decades of tools, techniques, research, and lore
in defending networks and apply it to the task of defending USB.

First and foremost, we know there’s a problem and, as G.I. Joe
would say, “Knowing is half the battle.” My colleagues and I at
Dartmouth have published work [3] that explores the attack sur-
face presented by FreeBSD’s USB stack, and the tools to mount
such an attack. Andy Davis wrote an extensive whitepaper on
USB driver vulnerabilities in 2013 [5]. As I mentioned earlier,
Microsoft found a vulnerability, fixed it, and shipped the fix in its
monthly Patch Tuesday event as opposed to waiting for a larger
Service Pack update, evidence that Microsoft is convinced this
area is worth defending as well.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 15

SECURITY
How USB Does (and Doesn’t) Work: A Security Perspective

Additionally, beyond the venerable microkernel model, a number
of research projects have explored techniques to isolate device
drivers in the name of system stability [2, 6, 10]. Microsoft has
also started moving USB drivers to userspace. Though these
measures won’t eliminate vulnerabilities, they will help contain
side effects of potentially buggy drivers.

We’ve also developed tools to help find vulnerabilities in USB
implementations. Travis Goodspeed created the open source
Facedancer (Figure 4) board [1] to facilitate exploration of both
host- and device-side USB stacks, and I wrote the Python-based
software stack to drive it.

The Facedancer board hosts an MSP430 microcontroller con-
nected via SPI to a MAX3420 or MAX3421 USB controller.
When connected to both a host machine and a target machine,
the host can run Python code that causes the Facedancer to
appear to the target as any USB device it wants. The Python
framework handles as much or as little of the device enumera-
tion process as you want it to: It allows you to write in software
any USB device you can imagine, well-behaved or not. The latter
is key: We want to emulate USB devices that deliberately misbe-
have so that we can probe the robustness of existing USB stacks
that are not suitable for static analysis (either because they are
too complex or because they are closed source).

We currently have code that emulates a USB keyboard, a USB
thumb drive, and a USB FTDI serial connection. All of these
have been successfully tested against real operating systems’
USB stacks. The next step is to modify them to misbehave and
see how the operating systems respond. If you’re interested in
playing around with a Facedancer but you’d prefer not to dig
out your soldering iron, you can buy pre-assembled (and pre-
flashed!) boards from http://int3.cc.

Mr. Samwise Gamgee holds that “it’s the job that’s never started
as takes longest to finish.” We’ve started. It is my hope that this
article raises awareness among the operating system commu-
nity that there may be exploitable vulnerabilities in this area of
the code, and thus spur efforts to address them soon.

Figure 4: The Facedancer board

References
[1] GoodFET: http://goodfet.sourceforge.net.

[2] Silas Boyd-Wickizer and Nickolai Zeldovich, “Tolerat-
ing Malicious Device Drivers in Linux,” Proceedings of the
 USENIX Annual Technical Conference, 2010.

[3] Sergey Bratus, Travis Goodspeed, Peter C. Johnson, Sean
W. Smith, and Ryan Speers, “Perimeter-Crossing Buses: A
New Attack Surface for Embedded Systems,” Proceedings
of the 7th Workshop on Embedded Systems Security (WESS
2012), 2012.

[4] Microsoft Corporation, “Vulnerabilities in Kernel-Mode
Drivers Could Allow Elevation of Privilege,” Microsoft
 Security Bulletin MS13-027: https://technet.microsoft.com
/library/security/ms13-027, 2013.

[5] Andy Davis, “Lessons Learned from 50 Bugs: Common
USB Driver Vulnerabilities,” technical report, NCC Group,
2013.

[6] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg,
and Andrew S. Tanenbaum, “Fault Isolation for Device Driv-
ers,” Proceedings of the IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN ’09), 2009.

[7] NIST, Vulnerability Summary for CVE-2013-1285:
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE
-2013-1285, 2013.

[8] NIST, Vulnerability Summary for CVE-2013-1286:
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE
-2013-1286, 2013.

[9] NIST, Vulnerability Summary for CVE-2013-1287:
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE
-2013-1287, 2013.

[10] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy, “Improving the Reliability of Commodity Operating
 Systems,” Proceedings of the 19th ACM Symposium on Oper-
ating System Principles (SOSP ’03), 2003.

16  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY

Computer Security at CERN
D R . S T E F A N L Ü D E R S

Stefan Lüders, PhD, graduated
from the Swiss Federal Institute
of Technology in Zurich and
joined CERN in 2002. Since
2009, he has headed the CERN

Computer Security Incident Response Team as
CERN’s computer security officer, coordinating
CERN’s office computing security, computer
center security, GRID computing security,
and control system security while taking into
account CERN’s academic environment and
its operational needs. Dr. Lüders has spoken
on computer security and control system
cybersecurity topics to international bodies,
governments, and companies on many
different occasions, and has published several
articles. Stefan.Lueders@cern.ch

Computer security is often seen as a technological problem: encryp-
tion, network anomaly detection, central (mobile) device manage-
ment, firewalls, cloud-based SIEMs—each deemed to be the panacea.

However, technical solutions fall short when dealing with a free and open
academic environment like that of CERN, the European Organization for
Nuclear Research. The CERN Computer Security Team faces the daily chal-
lenge of appropriately balancing CERN’s operational and research needs
with a reasonable level of computer security. At CERN, computer security is
largely seen as a sociological problem. The first line of defense sits in front
of the screen. Raising computer security awareness among CERN’s 15,000
users is imperative to avert computer security incidents. Technological
means, while still important, come second.

Introduction
CERN, the European Organization for Nuclear Research (or, according to its original French
acronym, le Conseil Européen pour la Recherche Nucléaire; http://cern.ch), is one of the
world’s largest and most respected centers for scientific research. Its business is fundamen-
tal physics, finding out what the universe is made of and how it works.

CERN hosts a large complex of so-called particle accelerators and colliders, all providing
insight into the subatomic structure of those particles. Accelerators boost beams of particles
to high energies before they are made to collide with each other or with stationary targets.
Detectors observe and record the results of these collisions. These records allow physicists
to study the properties of the particles and learn about the laws of nature. Very often, a single
experiment involves a collaboration of several hundred if not thousands of people from all
over the world. Currently, several dozen different experiments are in operation at CERN,
detecting collisions from half a dozen different particle accelerators, including the world’s
most powerful one, the Large Hadron Collider (LHC).

Besides seeking and finding answers to questions about the universe, CERN is advancing the
frontiers of technology, bringing nations together through science, and training the scientists
of tomorrow. CERN’s 2250 staff members welcome about 15,000 guest physicists and visit-
ing collaborators (so-called “users”) annually. Because the particle experiments are inter-
national, CERN’s users come from hundreds of universities, organizations, and laboratories
from all over the world. In fact, only a few countries have never sent citizens to CERN. And
the turnover is high: Students join CERN during their summer vacation to follow additional
lectures, contribute to dedicated projects, and initiate their careers; BSc, MSc, and PhD
students come to CERN for a few months (or years!) to attend seminars, receive training, and
conduct, prepare, and finally write their theses; post-doc physicists join ongoing collabora-
tions to advance their careers and satisfy their interests; professors regularly visit CERN to
stay in touch with their CERN-based teams and their colleagues, for workshops, or to attend
or give lectures; engineers and technicians arrive to install their technical equipment in
CERN-based detectors or accelerators; young people do internships at CERN, in adminis-
tration or one of the technical sectors. In parallel, many of those users connect remotely to

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 17

SECURITY
Computer Security at CERN

CERN’s computing facilities to conduct analyses, simulations,
or solve engineering problems. Alternatively, they can use the
Worldwide LHC Computing Grid (WLCG), a network of major
computer centers around the globe with CERN being its head-
node (the so-called “Tier-0”), to conduct large-scale analysis of
physics data—we are talking about several petabytes of accumu-
lated data sets produced by individual experiments.

Thus, CERN not only presents a working environment to users,
it also provides private accommodations and hostels on CERN
premises, restaurants, and recreational facilities. CERN hosts
several dozen different clubs for after-work hours (e.g., micro-
electronics club, car club, running club, yoga club, music club).
In fact, professional and private life at CERN is pretty much
entangled, giving users the necessary environment and freedom
to pursue their research.

Academic Freedom versus Security
With such a vast academic user community and so many dif-
ferent cultures, nationalities, interests, and aims represented,
standardization is unrealistic. From an IT perspective, users can
bring their own laptops with their favorite operating systems in
any flavor or language (the “BYOD” trend has existed at CERN
for a while); developers can program in their favorite program-
ming language; users can run any software tool or program and
deploy whatever technological means they deem necessary to
reach their goals. In that respect, CERN can be seen as an ISP
and computing service provider for its users. Furthermore,
users are accustomed to exchanging ideas, sharing information,
and publishing results freely. Web sites can be created at the
convenience of the users. In short, CERN hosts a vast academic
environment that relies on freedom of choice and freedom of
communication. It is not without reason that the World Wide
Web was proposed 25 years ago by a CERN employee, Tim
Berners-Lee.

CERN’s Computer Security Team (https://security.web.cern
.ch/security/home/en/index.shtml) has to find the right balance
between CERN’s academic environment, the safe operation of its
accelerators and experiments, and its computer security. While
this academic freedom makes for a very dynamic and innovative
environment, with new systems and services being deployed
all the time, it also increases security risks to our computing.
CERN’s Computer Security Team is mandated to minimize both
the likelihood and impact of security events; to prevent and pro-
tect against digital attacks; and to maintain premium detection
and response capabilities.

Although the environment is “free” at large, CERN users cannot
act as if they are in a void. Use of CERN’s computing facilities is
governed by a set of lightweight policies (https://security.web
.cern.ch/security/rules/en/index.shtml) that set rigid limits
on what is allowed and what is not. Although “users can bring

their own laptops,” for example, they are required to guarantee
the laptops’ security and apply prompt patching; whereas “Web
sites can be created at the convenience of the users,” the contents
must not be offensive or illegal; although “users can run any soft-
ware tool or program,” they are still bound to obey copyrights
and license conditions. In addition, any usage must neither be
detrimental to the workings of the organization nor significantly
affect computing resources (e.g., computing power, disk space,
network bandwidth). For example, generating crypto-currencies
on CERN-owned computing clusters or running Nmap scans
without explicit authorization by the CERN Computer Security
Team is prohibited. The CERN computing rules even provide the
framework for the private use of CERN’s computing facilities:
While private and personal usage is generally tolerated, illegal,
inappropriate, or offensive activities are banned, and violations
lead to administrative measures.

However, the most important feature of CERN’s security para-
digm is delegation. While the CERN computer security officer is
mandated by CERN’s director general to coordinate all aspects
of computer security at CERN through prevention, protection,
detection, and response, he is not the person ultimately respon-
sible for all computer security at CERN given the heterogeneous
environment, and the academic freedom that comes with it, and
given the consequently limited leverage of control. Instead, at
CERN, staff and users individually assume primary responsible
for the security and protection of their computers, the operating
systems they run, the applications they install, the software they
program, the data they own, and the Web sites they maintain.
Service and system managers are responsible for ensuring that
their services and systems run securely, are maintained, and fol-
low good security practices. Project managers are responsible for
the security of their projects, and the line management for that
of their constituency.

Basically, at CERN, “computer security” is dealt with in the
same way as safety. Safety cannot easily be ignored: If there is
a puddle of water on the floor, it is my personal responsibility to
prevent people from slipping on it, and I cannot just relegate this
to the building’s safety officer. It’s the same for security. Still,
this does not mean that users are singly responsible for their
own security. The CERN Computer Security Team (nominally
four staff and a few students) provides assistance, consult-
ing, and help in order to enable CERN’s staff and users to fully,
effectively, and efficiently assume that responsibility. CERN’s
IT department provides the necessary common tools and general
services for the Computer Security Team and, more impor-
tantly, for CERN’s user community: Instead of managing and
patching their own PCs, users can obtain a centrally managed
PC and antivirus software which is kept up-to-date by the IT
department. The IT department provides Web servers, content
management systems, databases, file storage systems, and

18  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
Computer Security at CERN

engineering applications that are properly managed, adequately
secured, and maintained over the long run. In short, users
can delegate their responsibility for security to the IT depart-
ment and avoid the burden of managing “security” themselves.
Instead, they can focus on their core work. Still, it is up to the
users and each experiment to opt in. They are encouraged to do
so, and usually do.

Security Training
With such a heterogeneous community, user awareness, educa-
tion, and training are paramount. Users are often the weakest
point in the security chain, are not necessarily aware of com-
puter security issues, and do not always feel concerned. It is
hard for them to really assume the responsibility imposed on
them by the CERN Computing Rules. Thus, a trigger is needed
to raise their computer security awareness or—even better—to
educate them such that they understand security risks. Ideally,
this is supposed to introduce a cultural change in the same way
that young children can be taught to swim or to look left and
right before crossing a street. Once certain practices become
engrained, safety on the road or in the pool is automatically and
subconsciously guaranteed. For “security,” we need the same
automatism, (e.g., when receiving a “phishing” email or when
prompted to install a new program).

Therefore, all new CERN users receive an introductory course
on computer security matters when they arrive at CERN. This
course is paralleled by an online course followed by a 10-ques-
tion multiple-choice quiz to be successfully passed in order to
obtain a computer account giving access to CERN’s computing
facilities. This course and quiz must be renewed every three
years and is aligned with similar courses on safety. In addition,
various awareness campaigns are given periodically to all CERN
units to reiterate the main security messages: “Protect your
computers,” “Be careful with email and the Web,” “Protect your
passwords,” “Protect your files and data,” “Respect copyrights,”
and “Follow the CERN Computing Rules.” These six primary
messages basically apply to everyone, everywhere, not only those
at CERN, and the course encourages people to apply security
principles at CERN as well as at home. A series of videos, post-
ers, and handouts complement these campaigns and provide
additional information. Overall, the Computer Security Team
collaborates with the CERN Human Resources department to
better integrate security knowledge, awareness, and behaviors
into existing processes and situations.

The power of these awareness campaigns can be measured
via the number of passwords lost to “phishing”: In 2008, 40 of
about 1500 CERN recipients of a crude phishing mail divulged
their password to the attackers. A subsequent analysis has
shown that neither age, gender, attitude toward technology,
salary, nor “intelligence” determines the likelihood of succumb-

ing to phishing. Instead, what counts (for the attacker at least)
is the moment. Many affected recipients that we interviewed
stated that they were busy with something, saw the mail from
“Webmail IT service,” and answered it just to get rid of it. Only
later did it occur to them that the “Webmail IT service” might
not have been necessarily CERN’s. Today, after three years
of awareness campaigns, CERN loses only about two to three
accounts to such emails per month. Given the more than 20,000
active users and high turnover, this is deemed acceptably low.

Still, these awareness campaigns are just seeds. Once people
understand that “security” is part of the overall IT phase-space
containing “functionality,” “usability,” “availability,” and “main-
tainability,” they naturally ask for more. This is the moment
when users ask the CERN Computer Security Team to consult
with them before starting new IT projects, for penetration test-
ing, and for assessing the security footprint of new systems and
the auditing of existing deployments. It is also the moment for
dedicated training: For software developers and system experts,
the Computer Security Team, in collaboration with the CERN’s
Technical Training team, provides optional in-depth training
sessions on developing secure software, secure Web application
development, as well as dedicated sessions on secure coding in
C/C++, Java, Perl, Python, and for Web applications. In the past,
these courses have been quite successful, with attendees from
all different areas within CERN.

In addition, a series of static code analyzers were made available
to all developers in order to further improve their code: Coverity
and flawfinder for C/C++, FindBugs and CodePro’s Analytics
for Java, RATS for Perl/Python/PHP, pychecker for Python, and
Pixy for Perl. The configuration of those tools is simple, and,
admittedly, these code analyzers will never find all flaws. How-
ever, even in their basic configuration they help developers to
easily detect at least some potential security weaknesses (both
functional bugs and security vulnerabilities). Once developers
see these benefits, they are open to additional steps towards a
“security” mind-set: enabling and checking on compiler warn-
ings and error messages; employing more sophisticated code
analyzers; doing full code reviews; embracing a full-blown
secure software development life cycle; and, finally, employing
sophisticated tools for software management and integration
with nightly builds, regression testing, and permanent scanning
for weaknesses, sub-optimal configurations, and flaws. Once
developers are at this level, security worries are diminished.

Vulnerability Scanning
Preventive training is good, but verification is also necessary.
Currently, CERN has registered on its public-IP networks about
180,000 devices (PCs, laptops, smartphones, tablets, etc.) by
their MAC address, and it controls access through RADIUS/
MAC-address-based authentication. About 80,000 have been

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 19

SECURITY
Computer Security at CERN

seen active use during the past months. While MAC-address
spoofing rarely happens, this is usually quickly detected and fol-
lowed up as a violation of the CERN Computing Rules. CERN’s
main computer centers alone host about 10,000 servers, 100,000
cores, and 75,000 hard disks, which currently store more than
100 PB of data (http://information-technology.Web.cern.ch
/about/computer-centre). The CERN identity management sys-
tem currently lists more than 36,000 CERN personal accounts
plus about 8500 accounts for special purposes (e.g., database
accounts, generic accounts for running automatic services).
Its central Web service holds more than 12,000 Web sites (e.g.,
https://security.web.cern.ch/security/home/en/index.shtml) on
more than 3 million Web pages using Sharepoint, Drupal, J2EE,
CGI/ Python/Perl scripts, or plain HTML. A few hundred more
Web servers are managed by individuals (users) for dedicated
purposes that cannot be easily served by the central Web ser-
vices (e.g., Web sites requiring proprietary software or database
integration).

The Computer Security Team, therefore, actively and perma-
nently scans major computing resources for vulnerabilities. All
Web sites hosted at CERN are regularly scanned for vulner-
abilities using Skipfish (a tool published by Google) as well as
with Wapiti and w3af. Additional tools produce an inventory
of all Web sites, Web applications, and Web technologies used
on individual hosts, and compare this with a list of vulnerable
or outdated versions. Similarly, the level of protections of all
devices connected to CERN networks is regularly assessed
using Nmap, which subsequently gives another valuable inven-
tory of currently running services and their versions. A dedi-
cated custom-scanning suite dubbed Prodder probes deeper into
particular security issues (e.g., writable folders on Windows
PCs, outdated myPHPadmin frameworks). CERN’s centrally
managed file systems and software repositories are regularly
scanned for exposed (i.e., public) credentials like private SSH
keys as well as for inconsistencies in their access configuration:
A “private” folder should never permit access to everyone holding
a CERN computing account. Finally, devices that require access
from the Internet, like Web servers, have to undergo dedicated
scans using Nessus and Skipfish. Usually, the results indicate
the quality of the server setup and its security. Only servers
that successfully passed the scans will be granted that access
through CERN’s outer perimeter firewall (the firewall hardware
is maintained by the CERN Networking Group, but its configu-
ration is maintained by the Computer Security Team).

Essential for such permanent scanning is a comprehensive and
all-encompassing asset inventory: Devices (and their respective
firewall openings), accounts, and Web sites must have a regis-
tered owner taking over the responsibility entrusted to him or
her. Lots of effort has been made to ensure that this inventory is
permanently up-to-date and accurate. Other computing services

are automatically assigned to an organic unit within the CERN
hierarchy, which, thus, provides the necessary contact points
in case of security issues. A recent project has been launched
to further improve on this and have a life cycle for any comput-
ing resource used at CERN. Although declaring new resources
(accounts, Web sites, devices, etc.) is always based on the incen-
tive of the requestor, the resource life cycle will ensure that there
is also an incentive once the registered owner leaves CERN. The
resources are passed on to a new owner, assigned to the leaving
person’s supervisor, or destroyed.

Thanks to this proper asset inventory, all potential vulnerabili-
ties can be communicated directly to the corresponding owner
of the affected account, file space, Web site, or device, and must
be mitigated. The Computer Security Team’s Web-based event
management system provides all necessary tips and tricks to
allow users to mitigate these findings themselves. Alternatively,
the IT department and the Computer Security Team once more
provide assistance and help. Only in rare cases does the Com-
puter Security Team need to take a harsher stance and block
the Internet access of a certain Web site or disconnect a certain
device from the network (not having permanent access to Face-
book has been proven to be a good incentive to act quickly). On
average, only three to six such blockings are executed per month.
In all cases, the tight interaction with the users also opens up an
opportunity to advertise the aforementioned training sessions.

For high-profile Web sites and vital computing services, the
Computer Security Team offers in-depth reviews and security
assessments. Dedicated so-called “Security Baselines” provide
users with a short list of good practices for securing their com-
puting servers, Web servers, or file servers.

Incident Response
Despite all of these preventive measures, incidents inevitably do
happen. The Computer Security Team has deployed a series of
sophisticated, intrusion detection means-monitoring activities
on centralized computing facilities and on CERN networks in
general.

These means include the centralized monitoring of the antivirus
software installed on all centrally managed Windows PCs by
colleagues from the Windows Support Group, the detection of
malicious domains and IPs in DNS requests and in all network
traffic, deep-packet inspection using “Snort,” the statistical
analysis of network flows (“netflows”) indicating abnormal
behavior, and the analysis of computer logs. All sensors run
on standard Computer Center hardware managed by the IT
department and configured through IT’s “Agile Infrastructure”
(i.e., Puppet, OpenStack, Git, etc.). The data analyses are fully
automated, and any owner of an affected device is automatically
notified of a malicious security event. Once more, the team’s

20  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
Computer Security at CERN

Web-based event management system provides all neces-
sary tips and tricks to allow users to mitigate these findings
themselves. The mail system automatically suspends any mail
activity if more than 3000 mails have been sent during one day.
Alternatively, the user is assisted by the Computer Security
Team’s first line of support in solving the identified issues. More
severe incidents are handled by the Computer Security Team’s
CSIRT (Computer Security Incident Response Team).

Summary
CERN’s user community is vast and is used to the spirit of aca-
demic freedom and free communication. It is difficult (impos-
sible?) to centralize or standardize the necessary computing
environment without spoiling this freedom, and so a heteroge-
neous environment is prevailing at CERN. Given this special

challenge, the Computer Security Team had to tightly involve
CERN’s users: At CERN, users are primarily responsible for the
security and protection of their assets. The Computer Security
Team provides assistance and help, with a primary focus on
education and culture change. Once “security” is part of the
average user’s mind-set, the overall level of security should fur-
ther increase. Until then, sophisticated detection and protection
means have spared CERN from too many too-visible security
incidents. The Computer Security Team is working hard to
maintain this status quo.

Do you know about the USENIX Open Access Policy?

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our
conferences proceedings and videos. We stand by our mission to foster excellence and
innovation while supporting research with a practical bias. Your financial support plays a
major role in making this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX
Annual Fund, renew your membership, and ask your colleagues to join or renew today.

Buy the Box Set!
Whether you had to miss a conference or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the technical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 URES ’14: 2014 USENIX Release Engineering Summit

 USENIX ATC ’14: 2014 USENIX Annual Technical Conference

 UCMS ’14: 2014 USENIX Configuration Mangement Summit

 HotStorage ’14: 6th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’14: 6th USENIX Workshop on Hot Topics in Cloud Computing

 NSDI ’14: 11th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’14: 12th USENIX Conference on File and Storage Technologies

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at: www.usenix.org/boxsets

22  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY

Building Web Applications on Top of
Encrypted Data Using Mylar
R A L U C A A D A P O P A , E M I L Y S T A R K , J O N A S H E L F E R , S T E V E N V A L D E Z ,
N I C K O L A I Z E L D O V I C H , M . F R A N S K A A S H O E K , A N D H A R I B A L A K R I S H N A N

Using a Web application for confidential data requires the user to
trust the server to protect the data from unauthorized disclosures.
This trust is often misplaced, however, because there are many ways

in which confidential data could leak from a server. For example, attackers
could exploit a vulnerability in the server software to break in [9], a curi-
ous administrator could peek at the data on the server [1, 2], or the server
operator may be compelled to disclose data by law [3]. How can one build
Web applications that protect data confidentiality against attackers with full
access to servers?

We developed Mylar for this purpose. Mylar is a new platform for building Web applications
that stores sensitive data encrypted on the server. The keys that can decrypt the data are
stored in some users’ Web browsers, and the data only gets decrypted in these browsers. Even
if an attacker fully compromises the server, the attacker gets access to only encrypted data
and does not have the necessary decryption keys. Mylar achieves this organization through
a new data sharing mechanism, practical ways of computing on encrypted data at the server,
and a mechanism for verifying that the application code was not tampered with by a compro-
mised server.

Crucially, Mylar enables many classes of applications to protect confidential data from com-
promised servers in a practical way. It leverages the recent shift in Web application frame-
works towards implementing logic in client-side JavaScript code, and sending data, rather
than HTML, over the network [5]; such a framework provides a clean foundation for security.

Mylar is open source and can be found at http://css.csail.mit.edu/mylar/. This article cov-
ers how Mylar works at a high level and how to use Mylar on an example application, a chat
application. For more details on the research behind Mylar (e.g., detailed decryption of each
component, detailed evaluation, etc.), we refer the reader to our NSDI ’14 paper [7].

Mylar’s Techniques
To understand Mylar’s techniques, it is helpful to consider a simple attempt to solve the prob-
lem and to observe why this attempt does not suffice. A simple idea is to give each user her own
encryption key, encrypt a user’s data with that user’s key in the Web browser, and store only
encrypted data on the server. This model ensures that an adversary would not be able to read
any confidential information on the server, because he would lack the necessary decryption
keys. In fact, this model has been already adopted by some privacy-conscious Web applications
[4, 8].

Unfortunately, this approach suffers from three significant security, functionality, and effi-
ciency shortcomings. First, a compromised server could provide malicious client-side code
to the browser and extract the user’s key and data. Ensuring that the server did not tamper
with the application code is difficult because a Web application consists of many files, such

Raluca Ada Popa is a fourth-
year PhD student at MIT
working in security, systems,
and applied cryptography. She
is the recipient of a Google PhD

fellowship for secure cloud computing and
a CRA Outstanding Undergraduate Award.
ralucap@mit.edu

Emily Stark is a core developer
at Meteor Development Group.
She holds an MS degree from
MIT and a BS from Stanford
University, both in computer

science. emily@meteor.com

Jonas Helfer is a PhD student
at MIT’s Computer Science
and Artificial Intelligence Lab.
He holds a master’s degree in
computer science from EPFL

(Switzerland). His many research interests
include systems security, Web security and
software project management. helfer@mit.edu

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 23

SECURITY
Building Web Applications on Top of Encrypted Data Using Mylar

as HTML pages, JavaScript code, and CSS style sheets, and the HTML pages are often
dynamically generated.

Second, this approach does not provide data sharing between users, a crucial function of
Web applications. To address this problem, one might consider encrypting shared documents
with separate keys and distributing each key to all users sharing a document via the server.
However, distributing keys via the server is challenging because a compromised server can
supply arbitrary keys to users and thus trick a user into using incorrect keys.

Third, this approach requires all of the application logic to run in a user’s Web browser,
because it can decrypt the user’s encrypted data. But this is often impractical: For instance,
doing a keyword search would require downloading all the documents to the browser.

Mylar overcomes the challenges mentioned above with a combination of systems techniques
and novel cryptographic primitives, as follows:

1. Data sharing. To enable sharing, each sensitive data item is encrypted with a key available to
users who share the item. To prevent the server from cheating during key distribution, My-
lar provides a mechanism for establishing the correctness of keys obtained from the server:
Mylar forms certificate paths to attest to public keys and allows the application to specify
which certificate paths can be trusted in each use context. In combination with a user inter-
face that displays the appropriate certificate components to the user, this technique ensures
that even a compromised server cannot trick the application into using the wrong key.

2. Computing over encrypted data. Keyword search is a common operation in Web applica-
tions, but it is often impractical to run on the client because it would require downloading
large amounts of data to the user’s machine. Although practical crypto graphic schemes
exist for keyword search, they require that data be encrypted with a single key. This restric-
tion makes it difficult to apply these schemes to Web applications that have many users and
hence have data encrypted with many different keys.

Mylar provides the first cryptographic scheme that can perform keyword search effi-
ciently over data encrypted with different keys. The client provides an encrypted word to
the server, and the server can return all documents that contain this word without learn-
ing the word or the contents of the documents.

3. Verifying application code. With Mylar, code running in a Web browser has access to the us-
er’s decrypted data and keys, but the code itself comes from the untrusted server. To ensure
that this code has not been tampered with, Mylar checks that the code is properly signed by
the Web site owner. This checking is possible because application code and data are sepa-
rate in Mylar, so the code is static. Mylar uses two origins to simplify code verification for
a Web application. The primary origin hosts only the top-level HTML page of the applica-
tion, whose signature is verified using a public key found in the server’s X.509 certificate. All
other files come from a secondary origin, so that if they are loaded as a top-level page, they
do not have access to the primary origin. Mylar verifies the hash of these files against an
expected hash contained in the top-level page.

Mylar’s Architecture
There are three different parties in Mylar: the users, the Web site owner, and the server
operator. Mylar’s goal is to help the site owner protect the confidential data of users in the
face of a malicious or compromised server operator.

System Overview
Mylar embraces the trend towards client-side Web applications; Mylar’s design is suitable for
platforms that:

Steven Valdez is a graduate
student pursuing a dual
bachelor’s/master’s degree
in computer science at MIT,
focusing on systems and

security research. dvorak42@mit.edu

Nickolai Zeldovich is an
associate professor at MIT.
His research interests are
in building practical secure
systems. nickolai@csail.mit.edu

M. Frans Kaashoek is a
professor at MIT, where he
co-leads the Parallel and
Distributed Operating Systems
Group (http://www.pdos.csail.

mit.edu/). Frans is a member of the National
Academy of Engineering and the American
Academy of Arts and Sciences and is the
recipient of the ACM SIGOPS Mark Weiser
award and the 2010 ACM-Infosys Foundation
award. He co-founded Sightpath, Inc. and
Mazu Networks, Inc. kaashoek@mit.edu

Hari Balakrishnan’s research
interests are in networked
computer systems. He is a
professor of computer science
at MIT. hari@csail.mit.edu

24  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
Building Web Applications on Top of Encrypted Data Using Mylar

1. Enable client-side computation on data received from the
server.

2. Allow the client to intercept data going to the server and data
coming from the server.

3. Separate application code from data, so that the HTML pages
supplied by the server are static.

AJAX Web applications with a unified interface for sending
data over the network, such as Meteor [5], fit this model. Such
frameworks provide a clean foundation for security, because
they send data separately from the HTML page that presents the
data. In contrast, traditional server-side frameworks incorpo-
rate dynamic data into the application’s HTML page in arbitrary
ways, making it difficult to encrypt and decrypt the dynamic
data on each page while checking that the fixed parts of the page
have not been tampered with.

Mylar’s Components
The architecture of Mylar is shown in Figure 1. Mylar consists of
the four following components:

Browser extension. It is responsible for verifying that the client-
side code of a Web application that is loaded from the server has
not been tampered with.

Client-side library. It intercepts data sent to and from the server
and encrypts or decrypts that data. Each user has a private-
public key pair. The client-side library stores the private key
of the user at the server, encrypted with the user’s password.
(The private key of a user can also be stored at a trusted third-
party server, to better protect it from offline password guess-
ing attacks and to recover from forgotten passwords without
regenerating keys.) When the user logs in, the client-side library
fetches and decrypts the user’s private key. For shared data,
Mylar’s client creates separate keys that are also stored at the
server in encrypted form.

Server-side library. It performs computation over encrypted data
at the server. Specifically, Mylar supports keyword search over
encrypted data, because we have found that many applications
use keyword search.

Identity provider (IDP). For some applications, Mylar needs a
trusted identity provider service (IDP) to verify that a given
public key belongs to a particular username. An application
needs the IDP if the application has no trusted way of verifying
the users who create accounts, and the application allows users
to choose whom to share data with. For example, if Alice wants
to share a sensitive document with Bob, Mylar’s client needs
the public key of Bob to encrypt the document. A compromised
server could provide the public key of an attacker, so Mylar needs
a way to verify the public key. The IDP helps Mylar perform this
verification by signing the user’s public key and username. An
application does not need the IDP if the site owner wants to pro-
tect only against attackers that do not actively change a server’s
behavior (namely, attackers that only read the data at the server,
and do not install software at the server), or if the application
has a limited sharing pattern for which it can use a static root of
trust (as described in our full paper [7]).

An IDP can be shared by many applications, similar to an
 OpenID provider [6]. The IDP does not store per-application
state, and Mylar contacts the IDP only when a user first creates
an account in an application; afterwards, the application server
stores the certificate from the IDP.

Threat Model
Threats
Both the application and the database servers can be fully
controlled by an adversary: The adversary may obtain all data
from the server, cause the server to send arbitrary responses to
Web browsers, etc. This model subsumes a wide range of real-
world security problems, from bugs in server software to insider
attacks.

Mylar also allows some user machines to be controlled by the
adversary and to collude with the server. This may be either
because the adversary is a user of the application or because the
adversary broke into a user’s machine.

Guarantees
Mylar protects a data item’s confidentiality in the face of
arbitrary server compromises, as long as none of the users with
access to that data item use a compromised machine. Mylar
does not hide data access patterns or communication and timing
patterns in an application. Mylar provides data authentication
guarantees but does not guarantee the freshness or correctness
of results from the computation at the server.

Assumptions
To provide the above guarantees, Mylar assumes that the Web
application as written by the developer will not send user data
or keys to untrustworthy recipients and cannot be tricked
into doing so by exploiting bugs (e.g., cross-site scripting). Our

Figure 1: System overview. Shaded components have access only to
 encrypted data. Thick borders indicate components introduced by Mylar.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 25

SECURITY
Building Web Applications on Top of Encrypted Data Using Mylar

 prototype of Mylar is built on top of Meteor, a framework that
helps programmers avoid many common classes of bugs in
practice.

Mylar also assumes that the IDP correctly verifies each user’s
identity (e.g., email address) when signing certificates. To sim-
plify the job of building a trustworthy IDP, Mylar does not store
any application state at the IDP, contacts the IDP only when
a user first registers, and allows the IDP to be shared across
applications.

Finally, Mylar assumes that the user checks the Web browser’s
security indicator (e.g., the https shield icon) and the URL of
the Web application they are using before entering any sensitive
data. This assumption is identical to what users must already
do to safely interact with a trusted server. If the user falls for a
phishing attack, neither Mylar nor a trusted server can prevent
the user from entering confidential data into the adversary’s
Web application.

Security Overview
At a high level, Mylar achieves its goal as follows. First, it verifies
the application code running in the browser, so that it is safe to
give client-side code access to keys and plaintext data. Then, the
client code encrypts the data marked sensitive before sending it
to the server. Because users need to share data, Mylar provides
a mechanism to securely share and look up keys among users.
Finally, to perform server-side processing, Mylar introduces a
new cryptographic scheme that can perform keyword search
over documents encrypted with many different keys, without
revealing the content of the encrypted documents or the word
being searched for.

Implementation and Evaluation
To evaluate Mylar’s design, we built a prototype on top of the
Meteor Web application framework [5]. We ported six appli-
cations to protect confidential data using Mylar: a medical
application for endometriosis patients, a Web site for managing

Figure 2: Mylar API for application developers split in three sections: authentication, encryption/integrity annotations, and access control. All of the func-
tions except princ_create_static and searchable run in the client browser. This API assumes a MongoDB storage model where data is organized as
collections of documents, and each document consists of fieldname-and-value pairs. Mylar also preserves the generic functionality for unencrypted data of
the underlying Web framework.

Function Semantics

idp_config(url, pubkey) Declares the url and pubkey of the IDP and returns the principal corresponding to the IDP.

create_user(uname, password, auth_princ) Creates an account for user uname, which is certified by principal auth_princ.

login(uname, password) Logs in user uname.

logout() Logs out the currently logged-in user.

collection.encrypted({field: princ_field}, ...) Specify that field in collection should be encrypted for the principal in princ_field.

collection.auth_set([princ_field, fields], ...) Authenticate the set of fields with principal in princ_field.

collection.searchable(field) Mark field in collection as searchable.

collection.search(word, field, princ, filter, proj) Search for word in field of collection, filter results by filter, and project only the fields
 in proj from the results. Use princ’s key to generate the search token.

princ_create(name, creator_princ) Create principal named name, sign the principal with creator_princ, and give
 creator_princ access to it.

princ_create_static(name, password) Create a static principal called name, hardcode it in the application, and wrap its secret
 keys with password.

princ_static(name, password) Return the static principal name; if a correct password is specified, also load the secret
 keys for this principal.

princ_current() Return the principal of currently logged in user.

princ_lookup(name1, ..., namek, root) Look up principal named name1 as certified by a chain of principals named name1
 rooted in root (e.g., the IDP).

granter.add_access(grantee) Give the grantee principal access to the granter principal.

grantee.allow_search(granter) Allow matching keywords from grantee on granter’s data.

26  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
Building Web Applications on Top of Encrypted Data Using Mylar

homework and grades, a chat application called kChat, a forum,
a calendar, and a photo-sharing application. The endometrio-
sis application is used to collect data from patients with that
medical condition and was designed under the aegis of the MIT
Center for Gynepathology Research by surgeons at the Newton-
Wellesley hospital (affiliated with Harvard Medical School)
in collaboration with biological engineers at MIT; the Mylar-
secured version is currently being tested by patients and is
undergoing IRB approval before deployment.

Our results show that Mylar requires little developer effort: We
had to modify an average of just 36 lines of code per application.
We also evaluated the performance of Mylar on three of the
applications above. For example, for kChat, our results show that
Mylar incurs modest overheads: a 17% throughput reduction and
a 50-ms latency increase for the most common operation (send-
ing a message). These results suggest that Mylar is a good fit for
multi-user Web applications with data sharing.

Using Mylar
Mylar for Developers
The developer starts with a regular (non-encrypted) Web appli-
cation implemented in Mylar’s underlying Web platform (Meteor
in our prototype). To secure this application with Mylar, a
developer uses Mylar’s API (Figure 2), which we show how to use
on a chat example. First, the developer uses Mylar’s authentica-
tion library for user login and account creation. If the application
allows a user to choose which other users to share data with, the
developer should also specify the URL and public key of a trusted
IDP.

Second, the developer specifies which data in the application
should be encrypted and who should have access to it. Mylar
uses principals for access control; a principal corresponds to
a public/private key pair and represents an application-level
access control entity, such as a user, a group, or a shared docu-
ment. In our prototype, all data is stored in MongoDB collections,
and the developer annotates each collection with the set of fields
that contain confidential data and the name of the principal that
should have access to that data (i.e., whose key should be used).

Third, the developer specifies which principals in the applica-
tion have access to which other principals. For example, if Alice
wants to invite Bob to a confidential chat, the application must
invoke the Mylar client to grant Bob’s principal access to the chat
room principal.

Fourth, the developer changes their server-side code to invoke
the Mylar server-side library when performing keyword search.
Our prototype’s client-side library provides functions for com-
mon operations such as keyword search over a specific field in a
MongoDB collection.

Finally, as part of installing the Web application, the site owner
generates a public/private key pair and signs the application’s
files with the private key using Mylar’s bundling tool. The Web
application must be hosted using https, and the site owner’s pub-
lic key must be stored in the Web server’s X.509 certificate. This
ensures that even if the server is compromised, Mylar’s browser
extension will know the site owner’s public key and will refuse to
load client-side code if it has been tampered with.

Chat Application Example
To demonstrate how a developer can build a Mylar application,
we show the changes that we made to the kChat application to
encrypt messages. In kChat, users can create chat rooms, and
existing members of a chat room can invite new users to join.
Only invited users have access to the messages from the room.
A user can search over data from the rooms she has access to.
Figure 3 shows the changes we made to kChat, using Mylar’s
API (Figure 2).

// On both the client and the server:
idp = idp_config(url, pubkey);
Messages.encrypted({“message”: “roomprinc”});
Messages.auth_set([“roomprinc”, [“id”, “message”,
 “room”, “date”]]);
Messages.searchable(“message”);

// On the client:

function create_user(uname, password):
   create_user(uname, password, idp);

function create_room(roomtitle):
   princ_create(roomtitle, princ_current());

function invite_user(username):
 global room_princ;
 room_princ.add_access(princ_lookup(username, idp));

function join_room(room):
 global cur_room, room_princ;
 cur_room = room;
 room_princ = princ_lookup(room.name,
  room.creator, idp);

function send_message(msg):
 global cur_room, room_princ;
 Messages.insert({message: msg, room: cur_room.id,
  date: new Date().toString(),
  roomprinc: room_princ});

function search(word):
 return Messages.search(word, “message”,
  princ_current(), all, all);

Figure 3: Pseudo-code for changes to the kChat application to encrypt
messages. Not shown is unchanged code for managing rooms, receiving
and displaying messages, and login/logout (Mylar provides wrappers for
Meteor’s user accounts API).

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 27

SECURITY
Building Web Applications on Top of Encrypted Data Using Mylar

The call to Messages.encrypted specifies that data in the “mes-
sage” field of that collection should be encrypted. This data will
be encrypted with the public key of the principal specified in the
“roomprinc” field. All future accesses to the Messages collection
will be transparently encrypted and decrypted by Mylar from
this point. The call to Messages.searchable specifies that cli-
ents will need to search over the “message” field; consequently,
Mylar will store a searchable encryption of each message in
addition to a standard ciphertext.

When a user creates a new room (create_room), the application
in turn creates a new principal, named after the room title and
signed by the creator’s principal. To invite a user to a room, the
application needs to give the new user access to the room princi-
pal, which it does by invoking add_access in invite_user.

When joining a room (join_room), the application must look up
the room’s public key, so that it can encrypt messages sent to
that room. The application specifies both the expected room title
as well as the room creator as arguments to princ_lookup, to
distinguish between rooms with the same title.

To send a message to a chat room, kChat needs to specify a
principal in the roomprinc field of the newly inserted docu-
ment. In this case, the application keeps the current room’s
principal in the room_princ global variable. Similarly, when
searching for messages containing a word, the application sup-
plies the principal whose key should be used to generate the
search token. In this case, kChat uses the current user principal,
princ_current().

Mylar for Users
To obtain the full security guarantees of Mylar, a user must
install the Mylar browser extension, which detects tampered
code. However, if a site owner wants to protect against attack-
ers who only read server data (as opposed to actively modifying
data or installing software at the server), users don’t have to
install the extension and their browsing experience is entirely
unchanged.

Conclusion
Mylar is a novel Web application framework that enables devel-
opers to protect confidential data in the face of arbitrary server
compromises. Experimental results show that using Mylar
requires few changes to an application, and that the performance
overheads of Mylar are modest.

Acknowledgments
This research was supported by NSF award IIS-1065219, by
DARPA CRASH under contracts #N66001-10-2-4088 and
#N66001-10-2-4089, by Quanta, and by Google.

References
[1] D. Borelli, “The Name Edward Snowden Should Be Send-
ing Shivers Up CEO Spines,” Forbes, Sept. 2013: http://www
.forbes.com/sites/realspin/2013/09/03/the-name-edward
-snowden-should-be-sending-shivers-up-ceo-spines/.

[2] A. Chen, “GCreep: Google Engineer Stalked Teens, Spied
on Chats,” Gawker, Sept. 2010. http://gawker.com/5637234/.

[3] Google, Inc. User Data Requests—Google Transparency
Report: http://www.google.com/transparencyreport
/userdatarequests/, accessed Sept. 2013.

[4] MEGA: The Privacy Company: https://mega.co.nz
/#privacycompany, accessed Sept. 2013.

[5] Meteor, Inc., Meteor: A Better Way to Build Apps:
http://www.meteor.com, accessed Sept. 2013.

[6] OpenID Foundation, OpenID: http://openid.net, accessed
Sept. 2013.

[7] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich, M.
F. Kaashoek, and H. Balakrishnan, “Building Web Applica-
tions on Top of Encrypted Data Using Mylar,” Proceedings
of the 11th Symposium on Networked Systems Design and
Implementation (NSDI ’14), Seattle, WA, Apr. 2014.

[8] Cryptocat: https://crypto.cat/, accessed Sept. 2013.

[9] J. Tudor, “Web Application Vulnerability Statistics,”
June 2013: http://www.contextis.com/services/research
/white-papers/web-application-vulnerability-statistics-2013/.

28  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY

cTPM
A Cloud TPM for Cross-Device Trusted Applications

C H E N C H E N , H I M A N S H U R A J , S T E F A N S A R O I U , A N D A L E C W O L M A N

Current Trusted Platform Modules (TPMs) are ill-suited for use in
mobile services because they hinder sharing data across multiple
devices seamlessly, they lack access to a trusted real-time clock, and

their non-volatile storage performs poorly. We present cloud TPM (cTPM),
an extension of the TPM’s design, to address these problems. cTPM includes
two features: a cloud seed shared between the TPM and the cloud, and
remote storage in addition to the on-chip storage. cTPM allows the cloud to
create and share TPM-protected keys across multiple devices, to manage a
portion of a mobile device’s TPM storage, and to provide each TPM with a
trusted real-time clock and with high-performance non-volatile storage.

Introduction
People are increasingly relying on more than one mobile device. Recent news reports esti-
mate that the average US consumer owns 1.57 mobile devices; Singapore has 7.8 million
mobile devices, which translates to 150% mobile penetration; and the average Australian will
own five mobile devices by 2040. Given this trend, mobile platforms are recognizing the need
for “cross-device” functionality that automatically synchronizes photos, videos, apps, data,
and even games across all devices owned by a single user.

Mobile platforms, such as laptops, smartphones, and tablets, are increasingly incorporating
trusted computing hardware. For example, Google’s Chromebooks use TPM to prevent firm-
ware rollbacks and to store and attest a user’s data encryption keys. Windows 8 (on tablets
and phones) offers BitLocker full-disk encryption and virtual smart cards using TPMs.
Recent research leverages TPMs to build new trusted mobile services [3, 7], trusted cloud
services [8], and operating systems [9].

Unfortunately, these two trends may be at odds: Trusted hardware, such as the TPM, does
not provide good support for cross-device functionality. Specifically, we have identified three
limitations in the TPM design that hamper building cross-device trusted applications.

Limitation 1: Cross-Device Data Sharing. Current TPM abstractions offer guarantees
about one single computer, and TPM’s hardware protection mechanisms do not extend
across devices. For example, TPM’s owner domain provides an isolation mechanism for only
a single TPM. A new owner of the TPM cannot access the previous owner’s TPM-protected
secrets. When the same user owns two different TPMs (on two different devices), the owner
domains of each TPM remain isolated and cannot jointly offer hardware-based protection of
the user’s keys and data. Thus, mobile services cannot rely on TPMs alone to enable secure
data sharing across devices. While, in theory, migrating a TPM-protected key from one TPM
to another is possible, in practice, it requires using secure execution mode (SEM), such as
Intel’s TXT and AMD’s SEM, and trusting a third-party PKI. Such requirements are very
challenging. Our NSDI paper [2] describes in more depth the nature of these challenges.

Limitation 2: Trusted Clock. Today’s TPMs do not offer a trusted real-time clock.
Instead, the TPM combines a trusted timer with a secure, volatile counter, which is periodi-
cally persisted to the TPM’s NV storage. However, this mechanism can keep track of time

Chen Chen is a PhD student in
the Department of Electrical
and Computer Engineering at
Carnegie Mellon University. He
is advised by Professor Adrian

Perrig. He holds BS degrees in applied math
and automation from Tsinghua University. His
research interests include network security,
secure network architecture, and trusted
computing chenche1@andrew.cmu.edu

Himanshu Raj is a principal
software engineer in the Azure
Cloud Networking group at
Microsoft, Silicon Valley.
He is interested in systems,

networking, and security. Before joining
Azure, Himanshu worked in the XCG Lab at
Microsoft Research, where he focused on
systems solutions for trusted computing.
Himanshu holds a PhD from Georgia Institute
of Technology, Atlanta, and a Bachelor
of Technology from Indian Institute of
Technology, Guwahati. rhim@microsoft.com

Stefan Saroiu is a senior
researcher in the Mobility and
Networking Research Group at
Microsoft Research in Redmond,
WA. Stefan’s research interests

span mobile systems, distributed systems,
and computer security. Before joining MSR in
2008, Stefan spent three years as an assistant
professor at the University of Toronto and four
months at Amazon.com, where he worked on
the early designs of their new shopping cart
system (aka Dynamo). Stefan finished his PhD
at the University of Washington where he was
co-advised by Steve Gribble and Hank Levy.
ssaroiu@microsoft.com

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 29

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

only when the TPM is running (and not when the platform is powered off). Moreover, after
an unclean reboot, the timer is rolled back to the last persisted counter value violating mono-
tonicity. The TPM’s timer mechanism solely guarantees that as long as the platform does not
reboot, the timer will move forward. As such, it can provide an approximate time-since-boot.

This mechanism is inadequate for offering real-time guarantees that would be useful for
offline content access. For example, movie studios already charge a premium to make a
movie available on home theaters on the day of release. Although TPMs can provide offline
access securely, they cannot offer making the new movie available for watching next Friday
at midnight.

Limitation 3: Non-Volatile (NV) Storage. The TPM’s NV storage is inadequate for
applications that require frequent writes or require large amounts of trusted storage. For
example, previous work [3] has shown that a trusted module offering a monotonic counter
and a key solves several problems in distributed systems that stem from participants’ ability
to equivocate. Unfortunately, even though TPMs offer this functionality, their implementa-
tion of NV storage cannot meet the write frequency requirements of distributed systems
protocols. The TPM specification dictates the inclusion of monotonic counters, but the spec
requires only the ability to increment these counters at a very slow place (e.g., once every
five seconds), which is insufficient for high-event applications such as networked games [3].
Similarly, although the TPM specification mandates access-controlled, non-volatile storage,
most implementations provide only 1,280 bytes of NVRAM [7]. These limitations have led
researchers to seek alternative designs for trusted devices [3].

Overcoming these limitations requires altering the TPM design, which raises the following
question: Can a small-scale TPM design change overcome these limitations? Although a clean-
slate TPM redesign could provide a variety of additional security properties, there are two
pragmatic reasons why a smaller change is preferable. First, TPMs have undergone a decade
of API and implementation revisions to reduce the likelihood of vulnerabilities. A clean-slate
redesign would demand considerable time and effort to provide a mature code base. Second,
TPM manufacturers would more willingly adopt smaller and simpler changes.

To address these limitations, we propose a single, simple modification to the TPM design,
called cTPM: equipping the TPM with one primary seed that is shared with the cloud. Shar-
ing the seed with the cloud allows both cTPM and the cloud to generate the same cloud root
key. Combining the cloud root key with remote storage lets cTPM: (1) share data via the
cloud, (2) have access to a trusted real-time clock, and (3) have access to remote NV storage
that supports a large quantity of storage and high frequency writes.

cTPM’s design facilitates data sharing. The pre-shared primary seed lets the cloud effec-
tively act as a PKI. The cloud and the device’s TPM can use this shared secret to encrypt and
authenticate their messages to each other. The identity problem has now been “pushed” to
ensuring that the cloud primary seed is shared securely between cTPM and the cloud. This
initial sharing step should be done at cTPM manufacturing time when the cTPM’s three
other primary seeds are provisioned.

The pre-shared primary seed also equips cTPM with a trusted clock using a protocol similar
to the Time Protocol described in RFC 868. Once the clock value is obtained from the cloud,
cTPM uses its local timer to advance the clock. It has a global variable that dictates how
often it should resynchronize the clock; the TPM owner sets this variable whose default
value is one day.

Finally, cTPM uses the cloud for additional NV storage to overcome TPM NV storage limita-
tions. There are no limits on how much additional NV storage the cloud can provide to a
single cTPM. A portion of the physical cTPM chip’s RAM is thus allocated as a local cache

Alec Wolman is a principal
researcher in the Mobility and
Networking Research Group
at Microsoft Research in
Redmond, WA. His interests

include mobile and wireless systems,
distributed systems, and computer security.
He received a PhD in computer science from
the University of Washington in 2002. Before
graduate school, he worked for DEC at the
Cambridge Research Lab. 
alecw@microsoft.com

30  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

for the cloud-backed NV storage. The performance of cTPM
cloud-backed NV storage exceeds that of the TPM because TPM
NV accesses are no longer needed.

Background
TPM Primer. At manufacturing time, TPM chips are provi-
sioned with a couple of public/private key-pairs for cryptography
(i.e., digital signatures and asymmetric encryption). The TPM
design guarantees that the private keys of these root key-pairs
never leave the TPM, thereby reducing the possibility of compro-
mise. TPMs can also generate public/private key-pairs with pri-
vate keys stored in the TPM’s NV storage. However, TPMs have
limited NV storage and thus cannot store many such key-pairs.

The TPM specification also mentions that a certificate dem-
onstrating the authenticity of the TPM’s embedded key pairs
may be provided by the TPM’s hardware manufacturer. In our
experience, many TPMs (although not all) lack this certificate.
The absence of this certificate makes it impossible for a third-
party to determine whether a signed statement (e.g., a software
attestation) is produced by a valid TPM or by an impersonating
entity.

TPMs are equipped with a set of “extend-only” platform configu-
ration registers (PCRs) that are guaranteed to be reset upon a
computer reboot. PCRs are primarily used to store fingerprints
of a portion of the booting software (e.g., the BIOS, firmware, and
OS bootloader); Chromebooks and BitLocker use PCRs in this way.

TPMs can perform cryptographic algorithms for encrypting,
authenticating, and attesting data. Implementing functionality
beyond that offered by TPMs in a trustworthy manner can be
done using secure execution mode, a form of hardware protec-
tion offered by x86 CPUs. Intel’s secure execution architecture,
called Trusted Execution Technology (TXT), offers a runtime
environment strongly isolated from other software running on
the computer. When invoked, the CPU disables interrupts (to
ensure no other software is running), and a small bootloader
starts executing. The bootloader then jumps to an address speci-
fied by the caller to execute any additional code. Flicker is an earlier
project that demonstrated the use of secure execution mode [5].

The TPM spec does not provide minimum performance require-
ments, and, as a result, today’s commodity TPMs are slow and
inefficient. TPM vendors have little incentive to use faster but
more expensive internal parts when building their TPM chips.
This performance handicap has limited the use of TPMs to sce-
narios that do not require fast or frequent operations. However,
no technological constraints prevent a hardware vendor from
building a high-performance TPM.

TPM 2.0. The Trusted Computing Group (TCG) is currently
defining the specification for TPM version 2.0, the next version
of the TPM. TPM 2.0 offers several improvements, including

cryptographic algorithm agility. For example, SHA-2 and elliptic
curve cryptography (ECC), in addition to SHA-1 and RSA, are
offered by TPM 2.0. TPM 2.0 also provides more PCRs and sup-
ports more flexible authorization policies that control access
to TPM-protected data. Finally, TPM 2.0 provides a reference
implementation, while TPM 1.2 provides only an open-source
implementation developed by a third party.

In TPM 2.0, three entities can control the TPM’s resources: the
platform manufacturer, the owner, and the privacy adminis-
trator. The TPM 2.0 spec control domain refers to the specific
resources that each entity controls. The platform firmware con-
trol domain overseen by the platform manufacturer updates the
TPM firmware as needed. The owner control domain protects
keys and data on behalf of users and applications. The privacy
administrator control domain safeguards privacy-sensitive
TPM data. Each TPM 2.0 control domain has a primary seed,
which is a large, random value permanently stored in the TPM.
Primary seeds are used to generate symmetric/asymmetric keys
and proofs for each control domain.

Trust Assumptions and Threat Model
Trusting the Cloud
All the new cTPM functionality associated with the cloud
domain assumes the cloud is trustworthy and not compromised
by malware. Although everyone may not agree with this assump-
tion, cloud providers have more incentives and resources to
monitor and eliminate malware than average users. Security-
conscious cloud providers could use secure hypervisors with
a small TCB [4], narrow interfaces [6], or increased protection
against cloud administrators [10].

Whether using a TPM or not, a cloud compromise would already
affect the security of a mobile service relying on the cloud for its
functionality. However, even if the cloud were compromised, all
secrets protected by the TPM-specific control domains, other
than the cloud domain, would remain secure. For example, all
device-specific secrets protected in the owner’s control domain
(i.e., using TPM’s SRK) would remain uncompromised.

Threat Model
Our threat model resembles that of traditional TPMs: All
software attacks are in scope (including side-channel attacks)
because cTPM is isolated from the host platform and can
therefore provide its security guarantees even if the host were
compromised (e.g., infected with malware). However, physi-
cal attacks and DoS attacks in which the (untrusted) operating
system or applications deny access to the cTPM or to the cloud
are out of scope.

Another class of attacks specific to the cTPM stems from our
use of remote cloud storage. The (untrusted) OS could drop,

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 31

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

corrupt, or reorder messages from the cloud. Even worse, it could
delay messages from the cloud in an effort to serve stale data to
the TPM. All such attacks are in scope and addressed by cTPM;
for example, to ensure freshness, cTPM uses a local timer to
time out any pending requests not yet serviced.

cTPM High-Level Design
The cTPM design extends the TPM 2.0 by its ability to share a
primary seed with the cloud and to access cloud-hosted non-vol-
atile storage. This section describes the high-level design and the
challenges we encountered when implementing these features.
While our description is TPM 2.0-specific, our changes could be
equally applied to TPM 1.2.

Cross-Device Usage Model
Each device has a unique cTPM with a unique primary seed
shared with the cloud and used to derive additional keys. All
devices registered with the same owner have their keys tied
to the owner’s credentials. The cloud could then offer cTPM
services that create a shared key across all devices owned by
the same user. For example, when “bob@hotmail.com” calls this
service, a shared key is automatically provisioned to the cTPM
on each of Bob’s devices. This shared key can bootstrap the data-
sharing scenarios described by this paper.

Architecture
cTPM consists of two different components: one running on
the device and the other in the cloud. Both components imple-
ment the full TPM 2.0 software stack with the additional cTPM
features. This ensures that all cloud operations made to the
cTPM strictly follow TPM semantics, and thus we do not need
to re-verify their security properties. On the device-side, the
cTPM software stack runs in the TPM chip, whereas the cloud
runs the cTPM software inside a VM. On the cloud-side, the NV
storage is regular cloud storage, and the timer offers a real-time
clock function. The cloud-side cTPM software reads the local
time upon every initialization and uses NTP to synchronize with
a reference clock. When running in the cloud, cTPM resources
(e.g., storage, clock) need not be encapsulated in hardware,
because the OS running in the VM is assumed to be trusted. In

contrast, the device’s OS is untrusted, and thus the cTPM chip
itself must be able to offer these resources in isolation from the
OS. Figure 1 illustrates the high-level architecture of the cTPM.

Shared Cloud Primary Seed
Upon starting, the local cTPM checks whether a shared cloud
primary seed is present. If not, it disables its new cTPM func-
tionality and all commands associated with it. A cTPM is
provisioned with a cloud primary seed via a proprietary interface
available only to the device manufacturer.

The cTPM uses the cloud primary seed to generate an asym-
metric storage root key, called the cloud root key (CRK), and a
symmetric communication key, called the cloud communica-
tion key (CCK). Both keys are derived from the cloud primary
seed based on use of an approved key derivation function. These
key derivations occur twice: once on the device-side and once
on the cloud-side of the cTPM. Because the key derivations are
deterministic, both the device and the cloud end up with identi-
cal key copies. The CRK’s semantics are identical to those of the
storage root key (SRK) controlled by the TPM’s owner domain.
The CRK encrypts all objects protected within the cloud control
domain (similar to how SRK encrypts all objects within the
owner domain). The CCK is specific to the cloud domain, and it
protects all data exchanged with the cloud.

Secure Asynchronous Communication
cTPM cannot directly communicate with the cloud. Instead, it
must rely on the OS for all its communication needs. Because the
OS is untrusted, cTPM must protect the integrity and confiden-
tiality of all data exchanged between the cTPM and the cloud-
backed storage, as well as protect against rollback attacks. The
OS is regarded merely as an insecure channel that forwards
information to and from the cloud.

In addition to ensuring security, cTPM must support asynchro-
nous communication between the local cTPM and the cloud.
Today, the TPM is single-threaded, and all TPM commands are
synchronous. When a command arrives, the caller blocks and
the TPM cannot process any other commands until the com-
mand terminates. Making cTPM cloud communication syn-
chronous would lead to unacceptable performance. For example,
consider issuing a cTPM command that increments a counter in
cloud-backed NV storage. This command would make the TPM
unresponsive and block until the increment update propagates
all the way to the cloud and the response returns to the local
device.

Instead, we chose to make cloud communication asynchro-
nous. Whenever a command that needs access to remote NV
is received, cTPM returns to the caller an encrypted blob that
needs to be sent remotely. The caller must send this blob to the
cloud; if the cloud accepts the blob, it returns another encrypted

Figure 1: cTPM high-level architecture

32  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

blob reply to the caller. The caller then passes this reply to the
cTPM, at which point the command completes. cTPM remains
responsive to all other commands during this asynchronous
communication with the cloud. Figure 2 illustrates these steps
and contrasts them with a traditional simple TPM command. All
cTPM commands that do not require access to remote NV stor-
age remain synchronous, similar to TPMs today.

Dealing with Connectivity Loss. Loss of connectivity is
transparent to the cTPM because all network signaling and
communication is done by the operating system. However, the
two-step nature of asynchronous commands requires the cTPM
to maintain in-memory state between the steps. This introduces
another potential resource allocation denial-of-service attack:
A malicious OS could issue many asynchronous commands
that cause the cTPM to fill up its RAM. Also, as mentioned in
our threat model, an attacker could launch a staleness attack
whereby artificial delays are introduced in the communication
with the cloud.

To protect against these attacks, cTPM maintains a global read
timeout (GRT) value. Whenever an asynchronous request is
issued, cTPM starts a timer set to the GRT. Additionally, to free
up RAM, cTPM scans all outstanding asynchronous commands
and discards those whose timers have expired. The GRT can be
set by the cTPM’s owner and has a default value of five minutes.

Cloud-Backed NV Storage
At a high level, the cloud-backed NV storage is just a key-value
store whose keys are NV indices. Accessing the remote NV
index entries requires the OS to assist with the communication
between the cTPM and the cloud. These operations are thus
asynchronous and follow the same two-step model described in
Figure 2. However, the remote nature of these NV indices raises
additional design challenges.

Local NV Storage Cache. Remote NV entries can be cached
locally in the cTPM’s RAM. To do so, we add a time-to-live
(TTL) to locally cached NV entries. The TTL specifies how long
(in seconds) the cTPM can cache an NV entry in its local RAM.
Once the TTL expires, the NV index is deleted from RAM and
must be reloaded from the remote cloud NV storage with a fresh,
up-to-date copy. The TTL controls the tradeoff between perfor-
mance and staleness for each NV index entry. Furthermore, the
local storage cache is not persistent—it is fully erased each time
the computer reboots.

For writes, the local cache’s policy is write back, and it relies
on the caller to propagate the write to the cloud NV storage. A
cTPM NV write command updates the cache first and returns
an error code that indicates the write back to the NV storage is
pending. The caller must initiate a write protocol to the cloud
NV. If the caller fails to complete the write back, the write
remains volatile, and the cTPM makes no guarantees about its
persistence.

Trusted Clock. In cTPM, the trusted clock is an NV entry
(with a pre-assigned NV index) that only the cloud can update.
The local device can read the trusted clock simply by issuing an
NV read command for this remote entry. Reading the entry is
subject to a timeout much stricter than the regular GRT, called
the global clock timeout (GCT). The trusted clock NV entry is
cached in the on-chip RAM. In this way, the cTPM always has
access to the current time by adding the current timer tick count
to the synchronization timestamp (ST) of the clock NV entry.

Detailed Design and Implementation
This section provides more detail on the cTPM’s design and
implementation. We describe how the cTPM shares TPM-pro-
tected keys between the cloud and the device, and we present the
changes made to support NV reads and writes. We also describe
the cloud/device synchronization protocol and the new TPM
commands we added to implement synchronization.

Sharing TPM-Protected Keys
The TPM 2.0 API facilitates the sharing of TPM-protected keys
by decoupling key creation from key usage. TPM2_Create(),
a TPM 2.0 command, creates a symmetric key or asymmetric
key-pair. The TPM creates the key internally and encrypts any
private (or symmetric) keys with its storage key before returning
them to the caller. To use the key, the caller must issue a TPM2_
Load() command, which passes in the public storage key and the
encrypted private (or symmetric) key. The TPM decrypts the
private key, loads it in RAM, and can begin to encrypt or decrypt
using the key.

This separation lets cTPM use cloud-created keys on the local
device to gain two benefits. First, key sharing between devices
becomes trivial. The cloud can perform the key sharing protocol

Figure 2: The sequence of steps for issuing a synchronous command (left)
versus an asynchronous command (right). The cTPM remains responsive
to other commands while the caller relays the blob to the cloud.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 33

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

between two cTPM VMs. Unlike TPM 2.0, this protocol does not
need to use a PKI, nor does it need to run in SEM. Once a shared
key is created, both mobile devices can load the key in their
chips separately by issuing TPM2_Load() commands. Second,
key creation can be performed even when the mobile device is
offline, greatly simplifying creating a shared key.

Accessing Cloud NV Storage
The cTPM maintains a local cache of all reads and writes made
to the cloud NV storage. A read returns a cache entry, and a write
updates a cache entry only. The cTPM does not itself update
remote cloud NV storage; instead, the caller must synchronize
the on-chip RAM cache with the cloud NV storage. This is done
using a synchronization protocol.

Read Cloud NV. Upon an NV read command, the correspond-
ing NV entry is returned from the local cache. If not found,
cTPM returns an error code. The caller must now check the
remote NV; to do so, it needs to initiate a pull synchronization
operation (described in the next section) to update the local
cache. After synchronization completes, the caller must reissue
the read TPM command, which will now be answered success-
fully from the cache.

Write Cloud NV. An NV write command first updates the
cache and returns an error code that indicates the write back
to the remote NV storage is pending. The caller must initiate a
push synchronization operation to the cloud NV (see the next
section). If the caller fails to complete the write back, the write
remains volatile, and cTPM makes no guarantees about its
persistence.

Synchronization Protocol
The synchronization protocol serves to: (1) update the local
cache with entries from the cloud-backed NV storage (for NV
reads) and (2) write updated cache entries back to the cloud-
backed NV storage (for NV writes). On the device side, the

caller performs the protocol using two new commands, TPM2_
Sync_Begin() and TPM2_Sync_End(). These commands take
a parameter called direction, which can be set to either a pull or
push to distinguish between reads and writes. All messages are
encrypted with the cloud communication key (CCK), a symmet-
ric key.

Pull from Cloud-Backed NV Storage. The cTPM first
records the value of its internal timer and sends a message that
includes the requested NV index and a nonce. The nonce checks
for freshness of the response and protects against replay attacks.
Upon receipt, the cloud decrypts the message and checks its
integrity. In response, the cloud sends back the nonce together
with the value corresponding to the NV index requested. The
cTPM decrypts the message, checks its integrity, and verifies the
nonce. If these checks are successful, cTPM performs one last
check to verify that the response’s delay did not exceed its global
read timeout (GRT) value. If all checks pass, cTPM processes the
read successfully. Figure 3 shows the precise messages exchanged
between the cTPM and the cloud to read the remote NV.

Push to Cloud-Backed NV Storage. The protocol for writing
back an NV entry is more complex because it must also handle
the possibility that an attacker may try to reorder write opera-
tions. For example, a malicious OS or application can save an
older write and attempt to reapply it later, effectively overwrit-
ing the up-to-date value. To overcome this, the protocol relies
on a secure monotonic counter maintained by the cloud. Each
write operation must present the current value of the counter
to be applied; thus, stale writes cannot be replayed. cTPM can
read the current value of the secure counter using the previously
described pull protocol. Figure 4 shows the precise messages
exchanged between the cTPM and the cloud to write a remote
NV entry. Note that reading the secure counter need not be done
on each write because the local cTPM caches the up-to-date
value in RAM.

Protocol Verification. We verified our protocols’ correctness
using an automated theorem prover, ProVerif [1], which supports
the specification of security protocols for distributed systems
in concurrent process calculus (pi-calculus). We specified our
synchronization protocol—both pull and push—in 98 lines of pi-
calculus code. ProVerif verified the security of our protocols in
the presence of an attacker with unrestricted access to the OS,
applications, or network. The attacker could intercept, modify,
replay, and inject new messages into the network (similar to the
Dolev-Yao model).

Conclusion
The traditional TPM design fails to meet the requirement of
today’s cross-device trusted applications. This paper introduces
cTPM, a cloud-enhanced design change to the traditional TPM
design that enables: (1) cryptographic keys and data to be shared

Figure 3: Synchronization protocol: pull NV entry from cloud-backed NV
storage

Figure 4: Synchronization protocol: push NV entry to cloud-backed NV
storage

34  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
cTPM: A Cloud TPM for Cross-Device Trusted Applications

across a user’s many devices, (2) a trusted clock synced with
the cloud, and (3) high-performance NV storage of unlimited
size. cTPM accomplishes these goals by only adding a cloud
seed shared between the device and the cloud. Together with the
asynchronous communication channel, the seed allows cTPM to
interact with the cloud to provide better support for cross-device
trusted applications.

References
[1] B. Blanchet, “An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules,” in Proceedings of the Computer Secu-
rity Foundations Workshop, 2001.

[2] C. Chen, H. Raj, S. Saroiu, and A. Wolman, “cTPM: A
Cloud TPM for Cross-Device Trusted Applications,” in
Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (USENIX Association,
2014), pp. 187–201.

[3] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda,
“TrInc: Small Trusted Hardware for Large Distributed
Systems,” in Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (USENIX
Association, 2009), pp. 1–14.

[4] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig, “TrustVisor: Efficient TCB Reduction and
Attestation,” in Proceedings of the IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, May 2010.

[5] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H.
Isozaki, “Flicker: An Execution Infrastructure for TCB Min-
imization,” in Proceedings of EuroSys, Glasgow, UK, 2008.

[6] A. Nguyen, H. Raj, S. Rayanchu, S. Saroiu, and A. Wolman,
“Delusional Boot: Securing Cloud Hypervisors without
 Massive Re-engineering,” in Proceedings of EuroSys, Bern,
Switzerland, April 2012.

[7] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune, “Memoir: Practical State Continuity for Protected
Modules,” in Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, 2011.

[8] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu,
“Policy-Sealed Data: A New Abstraction for Building Trusted
Cloud Services,” in Proceedings of the 21st USENIX Security
Symposium, Bellevue, WA, 2012.

[9] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider, “Logical Attestation: An
Authorization Architecture for Trustworthy Computing,”
in Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), Cascais, Portugal, 2011.

[10] F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor:
Retro fitting Protection of Virtual Machines in Multi-Tenant
Cloud with Nested Virtualization,” in Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP),
Cascais, Portugal, 2011.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 35

SECURITY

Interview with Steve Bellovin
R I K F A R R O W

I first met Steve at an early USENIX Security symposium, and over the
years, that’s where we would often meet. I mostly knew Steve through
the research he had published, as well as the book he co-authored with

Bill Cheswick [1]. But I really didn’t know much more than that Steve and Bill
had met while they were both working at Bell Labs in Murray Hill, New Jer-
sey. When we met at conferences, we’d mostly talk about what was happening
at the time, not the past.

I decided that it was time to ask Steve a few questions about his past, as well as get a better
understanding of the path that has lead him from being a student to being a professor, with
many interesting adventures along the way.

Rik: What I am curious about is how you became involved with Internet security. I know
you worked on EKE and helped write Netnews while a graduate student, but that doesn’t
really tell me how you got to writing a popular and important book on firewalls plus multiple
security-related RFCs over the next 10 years.

Steve: My background, ultimately, is as a sysadmin. I learned programming in my sophomore
year of high school, when that was very rare. The students who knew how to program—
about half a dozen of us—ran the machine, an IBM 1130, at Stuyvesant High School in NYC,
without interference from the teachers. We knew more about it than they did, and they didn’t
resent us for it. I was curious how a “kernel” (to use today’s terminology) worked, so I wrote a
disassembler to study the OS.

Rik: How is it that your high school had a computer, back when computers were truly rare?

Steve: Stuyvesant is an examination-entrance NYC public high school that’s for students
interested in math and science. Someone there talked someone into believing Stuyvesant
needed a computer…after all, the “competition,” Bronx High School of Science, already had one.

When I got to college, my part-time jobs were all systems programming. My last two years, I
worked at the City College of New York Computer Center at the time when it was the central
site for all of the City University of New York; we had a smallish IBM mainframe that was
used for academic and administrative computing. My college years are also when I learned
networking—IBM Bisync in those days. At CCNY, I caught my first two hackers; they were
poking around at the administrative side of things. After studying their card decks(!), I hired
one and referred the other to the dean.

Rik: I remember card decks all too well. What did you focus on at grad school?

Steve: I was mostly interested in programming languages. For breadth, I did a theory dis-
sertation on proving the output of compilers correct; although I wasn’t doing security then,
the dissertation actually turned out to be security-relevant. I learned UNIX and kept up
my systems programming and kernel-hacking skills (writing device drivers, studying how
things worked, etc.).

Netnews was a separate story, but the original impetus was the need for a convenient mecha-
nism for administrative announcements. It’s also when I first got involved with USENIX—I

Steven M. Bellovin is a pro-
fessor of computer science
at Columbia University,
where he does research
on networks, security, and,

especially, why the two don’t get along, as
well as related public policy issues. In his
spare professional time, he does some work
on the history of cryptography. He joined the
faculty in 2005 after many years at Bell Labs
and AT&T Labs Research, where he was an
AT&T Fellow. He received a BA degree from
Columbia University, and an MS and PhD
in computer science from the University of
North Carolina at Chapel Hill. As a graduate
student, he helped create Netnews; for this,
he and the other perpetrators were given the
1995 USENIX Lifetime Achievement Award
(The Flame). Bellovin has served as chief
technologist of the Federal Trade Commission.
He is a member of the National Academy of
Engineering and is serving on the Computer
Science and Telecommunications Board of
the National Academies, the Department of
Homeland Security’s Science and Technology
Advisory Committee, and the Technical
Guidelines Development Committee of the
Election Assistance Commission. He has
also received the 2007 NIST/NSA National
Computer Systems Security Award.
bellovin@acm.org

Rik is the editor of ;login:.
rik@usenix.org

36  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
Interview with Steve Bellovin

was at the meeting where, for trademark reasons, they had to
change the name from the “Unix User’s Group.” I also started
studying TCP/IP around 1980 or 1981, when I got a copy of the
“Internet Protocol Transition Handbook.”

Rik: And when you started working at Bell Labs, you also worked
on networking?

Steve: When I got to Bell Labs, I became responsible for 1.5 of the
first 3 lengths of thick Ethernet cable in the entire company: my
lab, another lab, and the “backbone” cable connecting us. That
got me more heavily involved with TCP/IP, which I helped bring
to the rest of Bell Labs.

There were occasional network outages due to misconfigura-
tions. In those days, there were no dedicated routers; you simply
stuck another Ethernet board into your VAX and used it as a
router. Multihomed 4.2bsd hosts would forward packets by
default—a misfeature, but few people realized that at the time.
Many of the outages were routing-related, and I realized that
what could happen by accident could happen intentionally. One
cannot be a good sysadmin without worrying about security.
I started worrying about routing security and address-based
authentication. Adding to that, Robert T. Morris interned at the
Labs and invented sequence number attacks, so I had more to
worry about.

In addition, there were ongoing attacks from the outside against
Bell Labs [1]. I was one of several people who detected the
attacks—I’d added a cron job that scanned the UUCP log files
for attempts to snarf /etc/passwd. I had nothing to do with the
subsequent investigation.

Rik: Perhaps you could expand on the problems with multihomed
4.2bsd, since these also occurred with SunOS. I believe this is
one of the reasons the Morris Worm was so successful: People
used Suns and VAXen as routers, and they shared directory
structure and commands like Sendmail.

Steve: No, I don’t think it was a factor in the worm’s spread; that
was more a case of monocultures and no filtering. The issue
was more subtle: It was a confusion of the difference between a
multihomed host and a router, which meant that topologies were
richer than intended. The folks at Berkeley who wrote 4.2bsd
were very good UNIX and kernel hackers, but arguably didn’t
have a good grasp of some of the more subtle points of TCP/IP. It
took RFCs 1122 and 1123 to sort that out.

Rik: I recall just how unpleasantly mysterious TCP/IP was. I had
been a UUCP expert, but when it came to assigning IP addresses
on a private network, no guidance existed in the late ’80s. I, like
many others, wound up using an address that appeared in Sun
documentation, so we could use the thin Ethernet cables and
connectors that came with Sun 3 workstations.

Steve: Right, that and a related issue were some of the things that
caused trouble. Sun implemented something that was what today
we’d call “zeroconf”—if you didn’t set an IP address, the software
would pick one via an algorithm and protocol known only to
other Suns. When this happened on the backbone, it meant that
someone would suddenly grab .1 on that net, and .1 was really the
router to other locations in the Labs. Then I asked myself, “What
would happen if someone did that maliciously?” and my career
took a sharp turn.

Worrying about the TCP/IP issues led to my first major paper,
on TCP/IP protocol-level security [2]. The authentication and
routing issues led me to think more about crypto; in addition,
sometime in the 1980s my wife gave me a copy of the hardcover
of Kahn’s The Codebreakers. Looking at Kerberos and thinking
about password guessing led me to worry about guessing attacks
on the initial sequence used to get a ticket-granting ticket. Mike
Merritt and I talked about it, and I worried about it for several
months. Finally, my mind wandered while I was sitting in a
really boring talk and I had an inspiration; the result was EKE.
Today, I use this story today to motivate students to come to
class, no matter how boring it is; they might invent something
while I’m droning on.

By this point, I was doing network security full time. Ches and
I dealt with Berferd in 1991. A chance meeting with him on a
train ride to Baltimore for the USENIX Security conference led
to us agreeing to write a book. John Wait, the eventual editor of
the book, happened to pay his routine annual visit to me shortly
afterwards. He always wanted to know whether I was interested
in writing a book; I always declined, because I didn’t have any-
thing to say. This time, I did have something to say.

Firewalls were a pretty obvious path for network security then,
given both the Presotto/Cheswick design of the AT&T gateway
to the Internet and my statement about topological defenses in
the TCP/IP protocol insecurity paper. It was easy around then to
be one of the top network security people because there were so
few, but that meant I was noticed. I was invited to be on the
IPng directorate; that got me involved with the IETF, so I wrote
RFCs, etc.

Rik: With your early interest in IPv4 routing, and your participa-
tion in the IETF, did that lead to any advances in improving the
security of routing protocols? Or have any influence on IPng?

Steve: I was one of the people responsible for IPv6 requiring
IPSec in all implementations; this is precisely because of all the
risks from address-based authentication. Routing security is
still an open issue, although I was one of the people who did the
work leading to the IETF’s BGPSEC working group.

Rik: You once mentioned to me that one reason for the lack of
routing security is the convenience of the current state of affairs

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 37

SECURITY
Interview with Steve Bellovin

for nation states who might wish to route traffic past points
where they can intercept it. I am of course paraphrasing, as you
said this quickly in passing. But BGP is still just tables of infor-
mation exchanged between routers with no signatures to verify
routing assertions.

Steve: I don’t think I said that that’s one reason, but it’s certainly
something that many countries like and exploit now. There have
been incidents, such as when Pakistan decided to block YouTube
internally and affected global routing [3].

Rik: I would appreciate it if you would say more about the lack
of robust security for the routing infrastructure. I’ve often
assumed this is what the L0pht members were referring to when
they claimed they could “bring down the Internet in 30 minutes,”
given just how much trouble we’ve experienced from accidents
(routing of a lot of the Internet to a single small ISP in Florida as
an example [4]).

Steve: Routing and the DNS [5]. A 1999 National Academies
study committee that I was a member of called routing and DNS
the two main trouble spots on the Internet.

There have been two main reasons why BGPSEC hasn’t hap-
pened yet. First, it’s expensive: Lots of routers will have to be
replaced by ones with a lot more RAM and a lot more CPU power
to do signing and signature verification. Second—and this is the
interesting one—it creates new failure modes, and some of these
failure modes have political components.

For BGPSEC to work, you MUST have a PKI for IP addresses. A
failure at any node in the path from you to the root means that
you won’t have a good certificate, which in turn means that you’ll
be off the air. Worse yet, this PKI is inherently a tree structure,
i.e., every node is a monopoly, and monopolies don’t have particu-
larly much market pressure to make them behave efficiently or
to provide good customer service. Also, any node is susceptible to
pressure or compulsion by its government: “Revoke this address
space certificate under penalty of law.” Today, ISPs work by
trusting each other on such issues; BGPSEC will require correct
technical functioning at all levels of the PKI.

Rik: In your 2003 statement before the DHS subcommittee [6],
you wrote that today’s operating systems are far more reli-
able than those used a generation ago. They are also far more
complex. What do you think about research toward building
partitioned kernels, such as the seL4 microkernel, or the work
being done by Robert Watson and others to build a system with
efficient hardware segment registers for enforced separation
both within applications and at the OS layer?

Steve: Well, strong walls are something we’re pretty good at. The
problem is that the components have to talk to each other, which
implies gates, and these gates have policies attached. That’s what
we’re lousy at: specifying and implementing the gates and their

policies. More walls can lead to higher assurance, which is good,
but it’s not really the solution. My overarching research goal is to
understand how to divide a system into walls-separated compo-
nents in the proper way [7].

Rik: While reading an article you co-authored [8], I learned that
call detail records (CDRs), which are described as call-metadata,
also cover information that’s included in email headers and can
be collected without requiring a search warrant. It seems that
CDRs for email provide a lot more information than just the
caller and the callee’s number, date, and length of call.

Steve: CDRs for mobile devices give approximate location to a
pretty fine granularity. CDRs for wireline devices give the phone
number, which for ordinary PSTN is pretty closely tied to an
address. All CDRs have call length; most have caller and callee.
Email headers have more or less that; in particular, the first
“Received:” line generally gives the sender’s IP address, which is
a decent clue to location for non-mobile devices. There are two
exceptions: if you use cryptographic tunnels (including, but not
limited to, VPNs) or if you use Gmail. Gmail strips all that off—
Google knows, but the recipient doesn’t.

Rik: As members of research or IT communities, what should we
be doing to encourage greater privacy?

Steve: First and foremost, don’t collect data you don’t need. If you
do need it for immediate operational purposes (e.g., mail logs), dis-
card it when you don’t need it, or perhaps hash some of the fields.

Second, consider what privacy-preserving options might exist
in the systems we design. Take the “Message-ID:” header as
defined in RFC 5322:

The message identifier (msg-id) itself MUST be a
globally unique identifier for a message. The generator
of the message identifier MUST guarantee that the
msg-id is unique. There are several algorithms that
can be used to accomplish this. Since the msg-id has
a similar syntax to addr-spec (identical except that
quoted strings, comments, and folding white space are
not allowed), a good method is to put the domain name
(or a domain literal IP address) of the host on which the
message identifier was created on the right-hand side
of the “@” (since domain names and IP addresses are
normally unique), and put a combination of the current
absolute date and time along with some other currently
unique (perhaps sequential) identifier available on
the system (for example, a process id number) on the
 left-hand side. Though other algorithms will work, it
is RECOMMENDED that the right-hand side contain
some domain identifier (either of the host itself or
otherwise) such that the generator of the message
identifier can guarantee the uniqueness of the left-
hand side within the scope of that domain.

38  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SECURITY
Interview with Steve Bellovin

How about making the part to the right of the @ the SHA-256
hash of the domain name? It’s just as unique and doesn’t leak
information. Yes, you can brute force it—if you know the name
of all original sending hosts. Is that example too contrived?
The Canadian Privacy Commissioner’s report on the TJX hack
slapped them down for storing driver’s license numbers instead
of a hash thereof.

As a researcher, the problem is easier to state: Where is privacy
lost, and what technically can be done?

Rik: In your 2010 undergraduate “Computers and Society”
course, you point out that voluntary surrender of data can
lead to secondary use of that data. Many people are happy to
share information about their everyday lives, as well as their
likes (and dislikes), with social media, but even using a public
email account like Gmail results in the sharing of personal
information.

Our choices there do not appear to be good: Participate or don’t
participate. Encrypting email doesn’t work without a simple way
of securely sharing keys. What do you suggest?

Steve: There are three things. One, of course, is education.
Second is research on things like key distribution and easier-to-
use encryption. I think this can be done decently well; in fact, I
have some projects going on now on that topic. Third is law or
regulation, concepts that I, at least, am not allergic to. I do think
that we’re better off with use restrictions rather than collection
restrictions, but in the privacy community I think I’m in the
minority on that.

Why do I prefer use restrictions? Some data has to be collected
for operational reasons—I’ve been Postmaster; I know how
important mail logs are—and some data, such as health records,
can be used for exceedingly important purposes that don’t
violate anyone’s privacy. The risk is that today’s rules will be
ignored or will be changed for a compelling-enough—or cur-
rently compelling-enough—reason (e.g., the misuse of the 1940
census records to aid in interning the Japanese).

Rik: In your presentation about your year as the chief technolo-
gist at the FTC [9], you explain that the FTC is reactive in how
they can act. For example, if a company promises to keep data
secure, but has inadequate technical controls, the FTC has seen
this as “deceptive and/or unfair” practices, and can take the
perpetrator to court. Most companies sign consent orders, and
companies that fail to improve can then be fined. But one com-
pany, Wyndham, which had lost data three times in two years,
has decided to fight back. What’s happening with Wyndham?
You said that Wyndham wants a ruling that would limit the
FTC’s ability to regulate in this area.

Steve: So that’s a very interesting question. Wyndham’s basic
position is that since the FTC has never issued any rules, they

don’t know what standard they should meet, so the enforcement
is unfair. About a month or so ago, the judge finally handed down
her ruling, completely rejecting Wyndham’s arguments. Natu-
rally, they’re going to appeal to the Second Circuit.

Another company, LabMD, filed similar objections. They didn’t
survive the process; they went bankrupt. A week or two ago, an
administrative law judge—part of the FTC, but organizationally
independent—was very, very critical of the FTC, but just this
week ruled against LabMD despite that. I haven’t had a chance
to look at the opinion, so I don’t know the grounds; it might have
been hyper-technical rather than substantive.

Rik: How did you get involved in the legal realm?

Steve: The short answer is that I’ve always been interested in law
and policy. I did (minor) campaign work as a teenager; in college,
I took a constitutional law class because it was interesting. I was
one of very few people in that class who wasn’t intending to go to
law school.

About 20 years ago, I started working with legal issues profes-
sionally. These were the days of the Clipper Chip, the Crypto
Wars, and the bills that would become the DMCA and CALEA.
Matt Blaze and I were able to work with the AT&T policy people
and persuade them that the things we wanted for privacy
reasons were in the company’s interest—and, of course, any
company wants to avoid government regulation, so that wasn’t
that hard.

In the Berferd incident, the lawyers made us kick him off the
machine, so I started wondering about liability. When we did the
Firewalls book, I threw in a chapter on the legal aspects. Unlike
most of the book, which was joint work, that chapter was all
mine. I got an attorney (who later went on to become second in
charge of DoJ’s computer crime section) to teach me the basics;
I was also assisted by one of the AT&T patent attorneys. Things
grew from there.

Around 1995 or so, a Fordham law professor spent his sabbati-
cal in my department at Murray Hill. I still work with him on
tech and law. Basically, the need was there and I was interested.
There was never any danger, way back when, of me going to law
school; I liked computers too much. But I was always interested,
and over the years, I’ve done more and more of it professionally.

Rik: After working for many years at the Labs, you moved
to Columbia. Can you tell us why you decided to become a
professor?

Steve: I left AT&T Labs Research for a number of reasons.
One was simply that it was time to do something different. I’d
been there for more than 20 years, I had a great time, and I had
management that supported me. But I’d always wanted to teach,
and I decided that it was time. I really enjoy teaching, and a lot of

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 39

SECURITY
Interview with Steve Bellovin

Resources
[1] Firewalls and Internet Security: Repelling the Wily Hacker
(Addison-Wesley Professional, 2003): https://encrypted.google.
com/books/about/Firewalls_and_Internet_Security
.html?id=_ZqIh0IbcrgC.

[2] S. Bellovin, “A Look Back at ‘Security Problems in the
TCP/IP Protocol Suite’”: https://www.cs.columbia.edu/~smb
/papers/ipext.pdf.

[3] Ryan Singel, “Pakistan’s Accidental YouTube Re-Routing
Exposes Trust Flaw in Net,” Wired, Feb. 25, 2008: http://
www.wired.com/2008/02/pakistans-accid/.

[4] AS 7007 Incident: http://en.wikipedia.org/wiki/AS_7007
_incident.

[5] S. Bellovin, “Using the Domain Name System for System
Break-ins”: https://www.cs.columbia.edu/~smb/papers/
dnshack.pdf.

[6] Statement before the House Select Committee on Home-
land Security Subcommittee on Cybersecurity, Science and
Research & Development: https://www.cs.columbia.edu/~smb
/papers/Statement.pdf.

[7] K. Dent, S. Bellovin, “Newspeak: A Secure Approach for
Designing Web Applications”: https://mice.cs.columbia.edu
/getTechreport.php?techreportID=506.

[8] S. Bellovin, M. Blaze, W. Diffie, S. Landau, P. Neumann, and
J. Rexford, “Risking Communications Security: Potential Haz-
ards of the Protect America Act”: https://www.cs.columbia.edu
/~smb/papers/j1lanFIN.pdf.

[9] S. Bellovin, “Life Amidst the Lawyers: A Technologist’s Year
at the FTC”: https://www.cs.columbia.edu/~smb/talks
/Life_FTC.pdf.

what I’ve done—talks, writing papers, the Firewalls book—is just
another form of teaching. The other factor, of course, was that I
was not sanguine about the future of research there, and when a
good opportunity arose I decided to take it. I’d received other offers
from other universities in the past, but it wasn’t time to leave.

Sadly, I was right about AT&T Labs. It’s not the place it was; from
what I hear there’s not nearly as much freedom to do research
and to publish, and many of the very best people have left or been
laid off.

If I wanted to teach, why didn’t I do that straight out of grad
school? I did—and do—dislike everything to do with getting
grants. In fact, it’s been worse than I had expected. On the other
hand, some of the benefits—the ability to work and speak freely
on public policy issues, the freedom to do things like write law
review and history of cryptography articles, and, above all,
access to a wonderful research library—have been greater than I
had anticipated. AT&T was a wonderful place, but I don’t regret
moving on—it was time.

Rik: Finally, why did you start writing about technical history?

Steve: During a 1993 conference, Matt Blaze and I heard an ex-
NSA cryptologist say that the needs of Permissive Action Links
(PALs)—the cryptographic combination locks on nuclear weap-
ons—led the NSA to invent public key cryptography in the 1960s.
Now, PALs are supposedly impossible to bypass, and a security
mechanism that can’t be broken is of course of great interest to
security people. Matt and I wondered about both parts of this:
How do PALs work, and is that historical statement accurate?
I did a lot of digging, including a Freedom of Information Act
request, and eventually generated a lengthy Web page and a talk,

which I gave at USENIX Security in 2004. I also honed my histo-
rian skills doing a non-computer research project.

Coincidence then took a hand. I have an odd hobby: I collect old
telegraph codebooks. (I gave a talk on them at USENIX Security
in 2009.) A few years ago, I had a free day in Washington—what
should I do? In the morning, I went to the Supreme Court to hear
oral arguments in a case—for all of my interest in legal mat-
ters, I’d never done that before. In the afternoon, I decided to go
to the Library of Congress to look at some of their codebooks.
They have hundreds, though; which should I examine? I spotted
one from 1882 whose title spoke of “privacy” and “secrecy”—it
sounded better than most for a security guy, even though I had
low hopes. However, when I read its preface, I realized that it
described the one-time pad 35 years before the textbooks say
it was invented. I dropped a note to David Kahn asking if he
knew anything about it. He didn’t and suggested that I write a
paper—which I needed no prompting to do; I’m an academic and
academics write papers. Before I went to sleep that night, I’d
tentatively identified the author. By the time I was done, I had
a 20-page paper with 78 references, ranging from the society
pages of the San Francisco Chronicle from 1907 to a biography of
the founder of theosophism to an 1829 history of Freemasonry.

Well, that paper led to another (which has led to two accidental
spin-offs), and I have several more planned. None of these will
change the way we do things, but it’s always good to learn where
we’ve come from. Fun fact: that 1882 codebook shows the use of
someone’s mother’s maiden name to authenticate certain finan-
cial transactions. That’s one mistake we haven’t corrected yet!

40  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

DIVERSITYCRA-W
Taking Action to Achieve Diversity in Computing Research

D I L M A D A S I L V A

Dilma Da Silva is a principal
engineer and manager at
Qualcomm Research in Santa
Clara, California, where she
leads in the area of mobile

cloud computing. She previously worked at
IBM Research in New York and at University of
Sao Paulo in Brazil. She received her PhD from
Georgia Tech in 1997. She has published more
than 80 technical papers and filed 14 patents.
Dilma is an ACM Distinguished Scientist, an
ACM Distinguished Speaker, a member of
the board of CRA-W and CDC, co-founder of
Latinas in Computing, and treasurer for ACM
SIGOPS. More information is available at
www.dilmamds.com.

I’ve been a member of the Computing Research Association’s Committee
on the Status of Women in Computing Research (CRA-W) for six years.
Over that time, I’ve seen the impact that the CRA-W programs have had

on the women and minorities who have participated. In this short article,
I’ll introduce CRA-W’s goals, share some evidence of CRA-W’s impact, and
describe upcoming opportunities for participation.
One aspect that has kept me very active at CRA-W is the action-oriented approach that the
organization takes to pursue the mission of increasing the success and number of women
participating in computer science and engineering research and education at all levels. The
board operates with very few meetings or open-ended discussions; instead, we pursue our
goals by having each board member implement a program. Our programs aim to develop
research, communication, and career strategy skills, as well as create a sense of community
for women in computing research. It is the experience of many of us that such skills help
women to earn advanced degrees in computing and achieve success in research careers
in academia or industry. The committee is made up of prominent and dedicated women
who have progressed well in their careers and are now willing to devote time and energy to
design, implement, and secure the necessary funding for initiatives that advance diversity in
computing research.

CRA-W programs expose women to knowledge that illustrates the rewards of a research
career and the various paths people take to get where they want to be. The programs show-
case the value of a PhD and provide guidance on getting to graduate school and making the
best out of the experience. Our programs help participants develop self-efficacy through
increased skills, knowledge, and confidence. The programs have been designed to connect par-
ticipants to the research community and to each other to build a network for success. From 1992
to 2013, CRA-W programs have directly impacted more than 7,700 women and minorities.

Many members of the USENIX community have been involved in CRA-W programs, and
I believe there are many opportunities to join forces to continue to advance our fields. All
USENIX communities can gain a lot by including participation from all groups in society so
that a diverse group of people continues to pursue innovation and contribute to advancing
our society. But much needs to be done before we get there: Women and minority groups (e.g.,
Native Americans, African Americans, and Hispanics) are severely underrepresented in all
areas of computing. There is increasing demand for talent in all areas of computer science:
the Occupational Outlook Handbook (2012-2013) forecasts 22% growth in computer occupa-
tions between 2012 and 2022, including 15% growth in computer and information research
scientists [1]. In the areas covered by USENIX members, the situation is even more promis-
ing, but we still lack the diversity in our professional communities that one would expect
based on the general population makeup.

There is strong evidence that diversity can impact business in significant ways:
◆◆ A 2007 NCWIT study shows that IT patents issued to mixed gender teams are cited 26%

to 42% more than similar IT patents by all men or all women teams [6].
◆◆ Herring found that companies with reported highest levels of racial diversity had 15 times

more sales revenues than those with lower diversity [7].

U S E N I X W O M E N I N
A D VA N C E D CO M P U T I N G

Presented by

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 41

DIVERSITY
CRA-W: Taking Action to Achieve Diversity in Computing Research

◆◆ In the mid-1990s, IBM expanded its minority markets by
promoting diversity in its own workforce [8].

◆◆ A study from 2008 finds that having multi-cultural experi-
ence enhances creativity [9].

In short, there is evidence showing that a diverse group of contribu-
tors can lead to better results. My work in the CRA-W is motivated
by much more than any “let’s do the right thing” attitude; like
many people I know, I want to help build a future for computing
in which the IT industry continues to improve society through
significant technological contributions and economic impact.

In research careers requiring graduate degrees, women and
minorities continue to be a small fraction of computing PhD
recipients (see Figure 1). We are failing to capitalize on the cre-
ativity of a large part of our society, and CRA-W works to change
this picture so that we achieve a diverse technical community.
Studies indicate that a diverse leadership drives students and
workforce diversity [2–5], so we have many CRA-W programs
that focus on exposing students to a diverse group of role models
and mentors from academia and industry. We also have programs
to guide junior women researchers towards successful careers.

In CRA-W, we value systematic evaluation of our programs.
We founded CERP (CRA Center for Evaluating the Research
Pipeline) and perform quantitative comparisons of a nationwide
sample of undergraduates, graduate students, and faculty to
our program participants. Our evaluation results show that our
undergraduate participants are almost four times more likely than
nonparticipants to enroll in a PhD program, and our graduate par-
ticipants are more likely to publish, be first author, and collabo-
rate—all indicators of success in the research community [10].

In upcoming issues of ;login:, I will be presenting detailed infor-
mation on several CRA-W programs and discussing opportuni-
ties for CRA-W and USENIX members to collaborate towards a
stronger research community. USENIX itself began its Women
in Advanced Computing (WiAC) initiative in 2012 and is part-
nering with CRA-W to bring this content to the USENIX com-
munity via ;login:, as well as exploring other paths of partnership.

For the list of CRA-W programs and events, please visit www
.cra-w.org. An upcoming event of particular interest to ;login:
readers is USENIX’s Diversity ’14, a discipline-specific mentor-
ing workshop for the system software community co-located
with OSDI ’14.

Figure 1: Computer science doctoral degrees granted

References
[1] Bureau of Labor Statistics, Occupational Outlook Hand-
book, 2012-13 Edition, Computer and Information Research
Scientists, 2012: http://www.bls.gov/ooh/computer-and
-information-technology/computer-and-information
-research-scientists.htm, accessed May 1st, 2014.

[2] H. Astin and L. Sax, “Developing Scientific Talent
in Undergraduate Women,” in C. S. Davis, A. Ginorio, C.
Hollens head, B. Lazarus, and P. Rayman, eds, The Equity
Equation: Fostering the Advancement of Women in the Sci-
ences, Mathematics, and Engineering (Jossey-Bass, 1996).

[3] G. Hackett, D. Esposito, and M. S. O’ Halloran, “The Rela-
tionship of Role Model Influences to the Career Salience and
Educational and Career Plans of College Women,” Journal of
Vocational Behavior, vol. 35, no.2 (October 1989), pp. 164–180.

[4] M. A. Mason, M. Goulden, and K. Frasch, “Why Gradu-
ate Students Reject the Fast Track,” Academe, vol. 95, no. 1
(January-February 2009): https://www.law.berkeley.edu
/files/Grad_Students_Fast_Track_Article.mamason.pdf,
accessed May 9, 2012.

[5] B. W. Packard and E. D. Wong, “Future Images and
Women’s Career Decisions in Science,” in Proceedings of the
Annual Meeting of the American Educational Research Asso-
ciation, Montreal, Canada, April 1999.

[6] C. Ashcraft and A. Breitzman, “Who Invents IT? An
Analysis of Women’s Participation in Information Technol-
ogy Patenting,” technical report, National Center for Women
and Information Technology, March 2007.

[7] C. Herring, “Does Diversity Pay? Race, Gender and the
Business Case for Diversity,” American Sociological Review,
vol. 74, no. 2 (2009), pp. 208–224.

[8] D. A. Thomas, “Diversity as Strategy,” Harvard Business
Review (September 2004).

[9] A. K. Leung, W. Maddux, A. D. Galinsky, and C-Y. Chiu,
“Multicultural Experience Enhances Creativity: The When and
How,” American Psychologist, vol. 63, no. 3 (2008), pp. 169–181.

[10] E. Bizot, K. Hines, I. Pufahl, T. McKlin, and S. Engel-
man, “The Data Buddies Project: CRA-W/CDC Project on
Measuring Outcomes for Students in Computing: Report on
Spring 2011 Surveys,” technical report, Computing Research
Association, Washington, DC, 2012: http://cra.org/cerp
/wp-content/uploads/2011/11/Data-Buddies-Report-CRA
-Report-Final.pdf, accessed May 1, 2014.

42  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SYSADMINHostbased SSH
A Better Alternative

A B E S I N G E R

Abe Singer is the chief
security officer for the Laser
Interferometer Gravitational
Wave Observatory at
the California Institute of

Technology. He has been a programmer,
system administrator, security geek, occasional
consultant, and expert witness. His areas of
interest are in security that actually works.
abe@ligo.caltech.edu

A lmost all SSH users are familiar with two modes of authentication
over SSH: passwords and SSH keys. SSH supports another method
that seems to be less well known: hostbased, which allows for users

to ssh securely between cooperating hosts without providing a credential.
It’s called hostbased because the client (source) host authenticates itself to the
remote host, and the remote host then trusts the client to identify the user. The
term “hostbased” is often employed to describe use of hostname or IP-address
access control lists. That’s not what I’m talking about, so please keep reading.

Sounds scary? Hostbased SSH can be at least as secure as SSH, or more so, and can be sim-
pler to manage.

Hostbased SSH isn’t the answer to everything, but I think it’s the right answer in particular
common scenarios. In the first scenario, you manage a network of computers where each
user has the same account, with the same credential, across multiple machines. Once users
have authenticated to one of the hosts, there’s no added value in requiring them to authen-
ticate again to other hosts on the network. The users may also want to run unattended jobs
that execute commands between hosts. Clusters are a particular variant, where users log in
to a head node to, in turn, access compute nodes.

In the second common scenario, you want to automate root access to multiple machines in
order to control who has remote access to the root account, and from where, and to minimize
having to type the root password on the remote host. The latter is especially a good idea if
you are investigating a host that might be compromised. As a bonus, you might want to give a
user root access to particular hosts without having to divulge the root password.

Hostbased authentication solves these problems because it doesn’t require the user to have,
know, or enter any credentials.

How does that work? First, a little bit of history.

The R-Commands
Some of you may remember the Good Old Days™ when we had the “r-commands”: rsh, rlogin,
and rcp. Rlogin worked like ssh: You would “rlogin” to an account at a remote host and, by
default, be prompted for the password for that account. If you didn’t want to have to type a
password every time, you could create a file in your home directory on the remote host called
“.rhosts” and, in the file, put a line with the local host and local username.

For example, if alice@foo.example.com wanted to log in to aliceb@bar.example.com, she’d
create the file ~aliceb/.rhosts on bar, that looked like this:

foo.example.com alice

Then, when she was on foo and typed “rlogin aliceb@bar.example.com,” the rlogin server on
bar would read the entry in the rhosts file and log Alice into the account aliceb on bar, with-
out prompting for a password.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 43

SYSADMIN
Hostbased SSH: A Better Alternative

rlogin used a pretty weak security model. Unlike ssh, rlogin
provided no encryption, which was a serious problem. The whole
protocol was done over cleartext, with no integrity checking,
relied on privileged port numbers for validation, and was vulner-
able to network address spoofing.

Hostbased SSH
Hostbased SSH implements rlogin style access control with-
out the insecurity of rlogin. The SSH server uses “.shosts” files
(or a global “shosts.equiv” file) that use the same format as the
old .rhosts file. The SSH client host authenticates itself to the
remote SSH server. It then asserts to the server its own host-
name and the username originating the session, which the
server then checks against the shosts.equiv file or the .shosts file
for that user.

So, what prevents a rogue user from asserting any hostname
and/or username? This is the awesome part: The client signs the
assertion with its host key. In detail, it works like this:

◆◆ Alice, on host “client,” runs “ssh alice@server.”

◆◆ The client makes an ssh connection to the server, negotiates
hostbased login and a session ID for alice@server.

◆◆ If hostbased negotiation was successful, the client creates an
assertion consisting of the session ID, Alice’s username, and
the client’s hostname, signs the assertion with its host key, and
sends it to the server.

◆◆ The server checks that the signature on the assertion matches
the client’s public key in /etc/ssh/ssh_known_hosts (or ~alice
/.ssh/known_hosts if enabled), and that alice@client matches
an entry in ~alice/.shosts or /etc/ssh/shosts.equiv.

◆◆ If all the checks pass, the server proceeds with the login [1].

The hostbased dance works because the client’s host SSH private
key is (supposed to be) only readable by root, which is why the
remote host trusts the key for authentication—the fact that the
assertion was signed with the host key is proof that the assertion
was signed by root, not the user.

ssh doesn’t normally (and shouldn’t) run as root. Rather, it uses
the helper application /usr/lib/openssh/ssh-keysign, which runs
setuid root. ssh-keysign gets invoked automagically by ssh, reads
the host SSH key, and does the required signing.

This is an elegant little design. The user cannot subvert the con-
tents of the assertion, and only the code that handles the signing
has to run as root, minimizing the potentially exploitable setuid
codebase.

Of course, you still have to have user accounts on the remote
machine. But, because the user doesn’t need to have a password,
you have the option of creating accounts with no usable pass-
word, so that the only way the user can log in is by using host-

based authentication from hosts that you authorize. Definitely
useful in a cluster scenario.

Hostbased SSH uses the same technology as SSH keys, so cryp-
tographically speaking, hostbased SSH authentication is just as
strong as SSH key authentication.

Obviously, you can only do hostbased SSH with a client that has a
host key. Normally, that would be a host running an SSH server.
Hostbased wasn’t really designed to be run from a client-only
setup such as a laptop, although you could in theory just generate
a host key manually without running the ssh daemon. I’ll leave
how to do that as an exercise for the reader.

Howto
Here’s how to make hostbased SSH work on the client and on the
server.

On the Client
You need to have the following entries in /etc/ssh/ssh_config:

EnableSSHKeysign yes

HostbasedAuthentication yes

/usr/lib/ssh-keysign has to be setuid root (which it is by default)
so that it can read the host key.

On the Server
You need the following in /etc/ssh/sshd_config:

HostbasedAuthentication yes

IgnoreRhosts no

Put the client host’s SSH keys in /etc/ssh/ssh_known_hosts.
The ssh_known_hosts file functions for hostbased SSH similar
to how the user’s authorized_keys file functions for SSH key
authentication: The server will only accept hostbased authenti-
cation from clients whose host public keys are in the file. You can
get public keys from clients using ssh-keyscan:

ssh-keyscan –t dsa client.example.com

Verify that the results are indeed the public key of the client by
using key fingerprints:

ssh-keygen –l –f <public key file>

Remember to tell the ssh daemon to reload the configuration:

service ssh reload

Of course, you can create a script or use a configuration manage-
ment tool to push the configuration and ssh_known_hosts file to
several machines at once.

Note that adding keys to ssh_known_hosts does not require
restarting sshd.

44  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SYSADMIN
Hostbased SSH: A Better Alternative

Now you just have to configure which users get access.

Controlling User Access
Hostbased SSH provides two flavors of controlling which users
can log into accounts: ~/.shosts or /etc/ssh/shosts.equiv.

shosts.equiv allows users on clients to log in to accounts on the
server with identical usernames. In other words, alice@client
can log in to alice@server, but not to aliceb@server. You can
enable access on a per-user basis or allow all users on the client
to log in to the corresponding account on the server. The file
should be editable only by root, so regular users cannot make any
changes to it.

The syntax for entries in the shosts.equiv file is:

<remote host> [-][<remote username>]

sshd reads the file from the beginning and stops at the first
matching line. A hostname without a username allows all users
(except root) from the client to log in to the matching username
account on the server. A hostname and a username allows a
specific user to log in. A “-” in front of a username excludes that
user—useful only if followed by a line with just a hostname—to
allow all other users.

Note that you cannot enable root access with shosts.equiv. The
hostname-only format excludes root, and the server will ignore
explicit entries for root.

If you want to allow root login, or let users log in to accounts
that have different usernames, you have to use the ~/.shosts file.
The syntax of the file is identical to shosts.equiv, and multiple
entries are allowed. Specifying a hostname works identically to
shosts.equiv, but specifying a username allows a non-matching
username login to the account.

Thus, if on the server, ~alice/.shosts contains:

ws1.example.com alice

ws1.example.com bob

ws2.example.com alice

then alice@ws1, alice@ws2, and bob@ws1 can ssh to
alice@server.

~/.shosts gives you more flexibility, but shosts.equiv file gives you
more control over who gets authorized, at the expense of your
having to maintain it.

Yeah, You Could Use SSH Keys
Everything I’ve talked about could be implemented using SSH
keys, but with worse failure modes. For starters, the default
access mode for SSH keys is to allow access from anywhere; any
restrictions applied are vulnerable to spoofing, and there is no
way to say “only bob@foo can log in to carol@bar.”

An unfortunately common solution to passwordless login is the
use of SSH keys with no passphrase on the secret key (“pass-
wordless keys”), which is effectively storing an unencrypted
password in a text file (which users also often do), a basic secu-
rity no-no.

And many scenarios require putting the user’s SSH key on every
host, which defeats the design of SSH keys, where the key only
lives on the client.

ssh-agent makes things a little better, but it has to be manually
restarted when a host reboots—a pain when you had it running
on a thousand nodes that just rebooted due to a kernel patch.

Auditing access and de-authorization are more difficult with
SSH keys.

Key management is always difficult. SSH key solutions require
more key management than hostbased. In fact, SSH key man-
agement is difficult enough that ssh.com even sells a product
focusing on just that.

Hostbased SSH is just simpler.

What, Me Worry?
Usually at some point when I’m explaining hostbased SSH, some-
one says “But what if the client machine is rooted? Anyone with
root could log in to any user’s remote account!” Yes, that is true.
But then any scheme—be it hostbased, password, or SSH key—
fails if the client is rooted. You have to trust root on the remote
host in all cases. Hostbased SSH is just a bit easier to manage.

Let’s go over the risks of using hostbased, and compare to SSH keys.

Hostbased SSH uses the same technology as SSH keys; so, cryp-
tographically speaking, hostbased SSH authentication is just as
strong as SSH key authentication.

With SSH keys and hostbased, you have to trust root (users) on
the remote host and trust that the root hasn’t been compromised.
With hostbased, you don’t have to trust that user keys are being
managed properly and whether they have strong passphrases.

Hostbased does true authentication of the client, whereas SSH
keys can only validate the client’s hostname or IP address, which
can be spoofed.

In short, hostbased SSH has fewer trust requirements than SSH
keys and is harder for the users to circumvent.

The user’s .shosts file can, of course, be modified by the user to
allow access to other users. That can be good or bad, depending
on your policies. However, with hostbased the user can only do
so for remote hosts that you have explicitly authorized to do host-
based login by adding their host keys to /etc/ssh/ssh_known
_hosts. With SSH keys, the user could allow someone access
from any remote host.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 45

SYSADMIN
Hostbased SSH: A Better Alternative

If a user is going to allow other users access to their account,
I’d like to have a log showing which other user logged in. And I
really prefer an access mode that doesn’t require users to share
passwords.

Additional Tricks
Here are some other options that you can use with hostbased
auth.

You can get the hosts to log which user logged in using host-
based access by setting the log level to “VERBOSE” in /etc/ssh/
sshd_config:

LogLevel VERBOSE

You get a log message that looks like this:

sshd[8180]: Accepted DSA public key 7c:3d:bc:84:c5:87:71:06:93:

56:ff:d6:8c:c4:ae:66 from alice@client.example.com

You can let users configure hostbased SSH access to just their
account from some external host by putting that remote host’s
public key in their ~/.ssh/known_hosts file, if you include the fol-
lowing directive in sshd_config:

IgnoreUserKnownHosts no

You can let clients assert their hostname with just their host key.
This can be used to allow hostbased SSH from a roaming laptop
whose IP address changes:

HostbasedUsesNameFromPacketOnly yes

You can force sshd to use shosts.equiv only:

IgnoreRhosts yes

You can force the server to only accept hostbased:

AuthenticationMethods Hostbased

or just do hostbased first:

PreferredAuthentications HostBased,PublicKey,Password

Restricting what commands a user can run is a little compli-
cated. You can do it by creating a script in /etc/ssh/sshrc. The
details are left as an exercise for the reader.

Hostbased SSH can be a bit painful to debug when it doesn’t
work right. In the interests of space, I’ll refer you to [2] and [3] for
some debugging help.

Secure Remote Root Access
I want to be able to remotely log in to my hosts as root for a vari-
ety of reasons, but I want to be able to do it in a secure manner.

The Problem with Remote Root Login
It used to be a “best practice” that one did not remotely log in to
a host as root; rather, one would log in as a regular user and then
su to root. In short, the problems are: no accounting of who has
had root at a given time; an attacker with the root password gets
immediate access; and trojaned SSH clients get login passwords
much more easily than a password entered in a shell.

Back in the Telnet days, most distros had root login via Telnet
disabled by default; you had to explicitly enable it. Telnet was
also unencrypted, an additional problem.

Unfortunately, OpenSSH comes with root login turned on by
default. As a result, we have a new generation of sysadmins who
blithely ssh as root from anywhere, with password or SSH key or
whatever. It still makes me cringe when I see someone do it.

Particularly when doing incident response, the last thing you
want to do is type a password on a host that might be compro-
mised. Attackers usually root systems without having the root
password (they wouldn’t need an exploit if they had it). If the root
password on the compromised host is the same as on other hosts,
and they allow root login, the attacker might just get root access
to all your hosts, without even needing another exploit.

My Remote Root Solution
Clearly, there are a number of situations where you need remote
root access. I want to run the same commands across hundreds
of hosts automatically. I want to be able to run remote com-
mands non-interactively, and I don’t want to type a password
on a potentially compromised host. I want to give other users
selective root access to hosts without giving them the root
password, and easily disable their access. And I want a log of
who had access.

Hostbased SSH makes this easy.

Here’s my solution:

I have a dedicated bastion host whose sole purpose is to provide
root access to other hosts. The root account on the bastion host
is authorized for hostbased access to my other hosts (the “target
hosts”) and is used to manage hostbased access on the target hosts.

Each user of the bastion host has her own account and has to use
a type of two-factor authentication to get to that account.

Hostbased configuration on the bastion host is done exactly as
described above. But on the target hosts, I add some more restric-
tions. I want to allow root ssh only from the management host. I
do this using the “Match” statement in /etc/ssh/sshd_config:

46  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SYSADMIN
Hostbased SSH: A Better Alternative

IgnoreRhosts no

PermitRootLogin no

Match Host bastion.example.com

 HostbasedAuthentication yes

 PasswordAuthentication no

 PermitRootLogin without-password

 RhostsRSAAuthentication no

 PubkeyAuthentication no

 GSSAPIAuthentication no

The “IgnoreRhosts” line is required so that I can use ~root/.
shosts for controlling who gets access. sshd doesn’t allow that
directive to be inside a match statement, so it has to be global.
However, because the .shosts file only works for hosts authorized
for hostbased access, the net result is the same.

Inside the match statement, I’ve disabled all modes of authen-
tication except for hostbased. There’s no reason to allow them.
Similarly, I’ve enabled root login using the “without-password”
option, which means that root login over SSH cannot be done
with a password in any circumstances (a bit belt-and-suspend-
ers since password authentication is separately disabled, but
better to be cautious).

Then in ~root/.shosts, I put in an entry for root on the bastion
host, and then for each user who gets access:

bastion.example.com root

bastion.example.com alice

bastion.example.com bob

bastion.example.com carol

Remember, Alice, Bob, and Carol don’t get the root password to
the bastion host nor to the target hosts; they just have creden-
tials for their account. I can give them each access to only the
hosts that they need access to, and I can quickly disable their
root access to all hosts by disabling their account on the bastion
server.

And Bob’s your uncle.

Resources
[1] T. Ylonen, RFC 4252, The Secure Shell Protocol, Section 9
“Host-Based Authentication,” January 2006.

[2] Wikibooks OpenSSH/Cookbook/Host-based Authentica-
tion: http://en.wikibooks.org/wiki/OpenSSH/Cookbook
/Host-based_Authentication.

[3] Daniel J. Barrett and Richard E. Silverman, SSH: The
Secure Shell: The Definitive Guide (O’Reilly and Associates,
February 2001).

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 47

SYSADMIN

Challenges in Event Management
J A S O N P A R E E

Inherent to providing and managing IT services is having to deal with
occasional outages, issues, and security concerns. These types of events,
while inevitable even on the most reliable networks, can wreak havoc on

a service provider’s reputation if not handled and communicated properly.
Customers of IT typically do not understand the guts of providing service.
They know they turn on their computer, open Word, surf the Internet, or
communicate using email and chat. In general, they do not understand nor
do they usually care what makes it work. This changes, however, when those
services suddenly stop working. At this point, a process by which to manage
these occasional events and communicate about them effectively with the
customer comes in handy.

I work for an IT contracting company that provides services internally to a specific com-
mand within the Department of Defense. Our environment is a complex hybrid of several
autonomous, secure networks supported by a litany of technologies, from Cisco Nexus 7K
routers to virtualized desktops spread out over several domestic and international locations
servicing more than 5000 active users. In addition, the customer’s requirements usually
come fast and with little time for planning. It is a difficult environment in which to manage
changes or outages while remaining flexible to the customer’s needs.

During the past two years, we worked very hard to develop, enforce, and maintain a stream-
lined change deployment process, which has paid huge dividends in providing a reliable and
stable IT environment [1]. With that process firmly in place, it was time for us to turn our
attention to the management of major outages, issues, or events. This need to manage events
as they occurred was born out of frustration felt by both our company’s and our customer’s
leadership. Too often, our leadership didn’t get the information they needed when they
needed it. In addition, our troubleshooting was often poorly communicated and coordinated,
resulting in significant inefficiencies. Technicians would work on things other groups of
technicians were working on, wasting time and effort and lengthening the downtime to
the customer and users. To make things worse, communications were not being centrally
managed, which led to confused messaging and inaccurate data. Regular updates to the
customer were not reliable or required from any one person, and so the customer would
receive conflicting information. Needless to say, all of these problems created the perception
(sometimes rightly) that our technicians were not working cohesively, reliably, or efficiently.
In short, it made us look unprofessional and uncoordinated.

A few months ago, my operations manager approached me about setting up a new process
to rein in our efforts when responding to “events.” We decided on the name “Event Manage-
ment” for the process by which we would make this happen. Once we began planning, we
quickly realized how much more difficult this would be to implement than we had previously
thought. It would require:

Jason works for CACI Inc. as the
release and deployment process
owner for US CENTCOM J6.
His position requires managing
change as well as responding

to and controlling outages and issues on live,
operational networks. He received his BS in
criminal justice administration in 2011 but
switched career goals and is currently an MBA
student. jasonparee@gmail.com.

48  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SYSADMIN
Challenges in Event Management

◆◆ Participation by the customer and all the technology leads

◆◆ A new tool to track the details of the events

◆◆ New personnel to provide support 24x7

◆◆ A documented process detailing the procedures to follow

In addition to these challenges, we needed to make cultural changes
to prevent the customers from going directly to the technology
leads for answers (as was previously the case) and convince
them of the value and need for the Event Management team.

The Beginning
My first task was to market the idea to the customer and ensure
their buy-in; otherwise the whole idea was pointless. I spoke with
their watch officer, the position closest to the concept of event
management and the person who would usually go out and col-
lect information about outages and issues. The watch officer is a
customer-owned position, which creates unique challenges for
dividing roles and responsibilities between us (the contractors)
and the customer. However, after explaining how this approach
would provide a one-stop-shop for them, allowing them to simply
rely on our team for information rather than run around asking
people, they immediately bought into the idea. And why not? We
just made their job much easier by providing a single, central
point of contact for all ongoing events.

After we got cooperation from the customer, we set out to build
a small team of people to provide coverage. Because this process
wasn’t built in to the original contract, the customer had no obli-
gation to support us in funding the extra personnel. As a result, I
had to work with the operations manager to find extra positions
within the division that could be repurposed for this new role.
This was a difficult task because, as you would expect, these
contracted positions do not hang from trees, and money is tightly
budgeted. In any case, we were able to find open positions that
we could shuffle around to make a team. Unfortunately, we could
only muster three positions, which limited our ability to provide
complete coverage. Instead of the originally intended 24x7
coverage, we settled for 24x5. Once we had a team, we turned our
attention to scratching out some rough procedures on how the
process would work and how responsibilities would be divided.

Writing out the procedures involved a lot of consideration since
there would have to be requirements built from several areas,
including the service desk, the technology leads, the operations
manager, and the event manager. At the request of our operations
manager, we held an off-site meeting with several key technol-
ogy leads to rough out some basic procedures. This was enough
to get us off the launch pad. The procedures included require-
ments for how and when to notify Event Management of an
issue, when updates were expected, and how Event Management
would communicate and escalate issues. The next day, I emailed
all the key leads and gave them a simple flow of how the process
would work, and I continued to draft the official procedures.

Once we had a small team with decent coverage and some sem-
blance of procedures, I worked to develop tools by which to track
and communicate outages and issues as they occurred. I ended
up going simple and using a glorified Excel spreadsheet posted
on the main page of our SharePoint site. This made tracking
easy, simple, and available to everyone. In addition, we developed
specifically formatted emails to communicate the details of
outages. These emails have specific information requirements,
formatting requirements, and a defined distribution list. The
intent is to provide a consistent and reliable product that all key
stakeholders can use and understand, including our government
customer, the company leadership, and relevant technology
leads. At this point, we had addressed many of the practical and
tangible problems. The hard part was and continues to be the
cultural shift in implementing the process.

Cultural Norms
The most glaring problem of all, and one that will most likely
continue for the long term, is the change in cultural norms. The
technology leads are accustomed to a certain way of doing things
and to not having to explain themselves to external groups. The
watch officer is used to reaching out to technology areas directly
rather than going through an intermediary. The operations
manager is used to hearing directly from individual leads and
reaching into their teams for answers and to give directions. All
of this has to change and be retuned to utilize the Event Manage-
ment team to coordinate efforts, understand the problem, and
provide accurate outage reporting and a general sense of organi-
zation and leadership during an outage. The Event Management
team must assert itself as the “belly button” of information.
In addition, we must prove ourselves capable of managing the
efforts of several teams, communicating status and maintaining
awareness of the problem at hand. The operations manager has
to support this team and avoid reaching into the teams directly.
This kind of management support is critical to the team’s ability
to succeed and reach its objective. The technology leads will
have to get used to providing more detail about outages and
allowing the Event Management team to have more visibility in
their areas. This is another cultural change that will require the
support of and enforcement by the operations manager.

Currently, we have a formal process document outlining all of
the requirements and buy-in from all the key stakeholders. Thus
far, we have successfully built positive relationships with many
of the technology areas and with the customer watch officer.
This has allowed us to foster a viable environment by which the
process can take root. As previously noted, 24x7 coverage has
been a little trickier than originally assumed. We have settled
on 24-hour operations Monday through Friday with a stand-by
schedule for weekend coverage. Generally, we have made a lot of
progress toward developing the process and creating an environ-
ment in which the process can take hold.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 49

SYSADMIN
Challenges in Event Management

Conclusion
If we can make this process work, it has the potential to pay
huge dividends over time. The company will have centralized,
dedicated management and communications during an outage,
issue, or security event. In addition, the customer will have only
one place to look for answers instead of getting several different
answers from several different sources. This approach has the
potential to provide political benefits as well. The customer will
have a positive perception of the company’s ability to provide
singular communications and reliable reporting during an out-
age. In addition, the presence of the team provides a certain level
of customer confidence in the company’s contract team, which
has an intangible value.

This type of management function and process is in fact very
valuable for any IT service-providing entity. Providing a single
point of contact to collect information, facilitate and coordi-
nate efforts, and provide a conduit for management oversight of
troubleshooting efforts allows for more efficient operations and
better customer service. Organizations can gain much by utiliz-
ing a central presence for which all key stakeholders can find
reliable, consistent, and authoritative information.

Resources
[1] Jason Paree and Andy Seely, “The Evolution of Managed
Change in a Complex IT Enterprise,” ;login:, vol. 39, no. 1,
 February 2014: https://www.usenix.org/publications/login
/feb14/evolution-of-managed-change.

Do you have a USENIX Representative on your
university or college campus?
If not, USENIX is interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association information to
students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX is always looking for academics to
participate. The program is designed for faculty who directly interact with students. We fund one representative from a campus at a time.
In return for service as a campus representative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX publications
at your university for student use

■ Distributing calls for papers and upcoming event brochures, and
re-distributing informational emails from USENIX

■ Encouraging students to apply for travel grants to conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas of the USENIX
Web site, free conference registration once a year (after one full year of service as a Campus Representative), and electronic conference
proceedings for downloading onto your campus server so that all students, staff, and faculty have access.

www.usenix.org/students

■ Providing students who wish to join USENIX with information
and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions
on how the organization can better serve students

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four year accredited university ■ Have been a dues-paying member of USENIX for at least one
full year in the past

For more information about our Student Programs, contact Julie Miller, Marketing Communications Manager, julie@usenix.org

50  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SYSADMIN

/var/log/manager
When Technology Isn’t the Cause of a Technical Problem

A N D Y S E E L Y

If the only tool you have is a hammer, every problem looks like a nail. In
the technology space, we tend to approach all problems as technology
problems. That’s how we’re wired. We’re systems people. If something’s

not performing correctly, maybe we can adjust the system settings or the
resource provisioning. Maybe we can buy a new software tool to compensate.
It’s a different kind of management challenge to see a technical problem’s
organizational roots and to make an adjustment, far removed from the actual
technology, that can relieve tension in the organization and result in better
system performance.

It’s Just a Slow “Picard vs. Saruman” Sort of Day
Everything’s fine. The enterprise is running within parameters. The technical team seems
happy, at least in that they’re not dealing with things any more important than Pickard vs.
Kirk (see Sidebar). The management team’s biggest problem is worrying about which Web
sites the employees are surfing to when they’re on the clock. Customer calls to the service
desk are normal noise: password resets and unreasonable demands for magical computers
that don’t exist. It’s a good day.

We use an internal service to process requests for a business intelligence (BI) product. It’s
a pretty sizable data warehouse with a number-cruncher front end. There’s a small team
of operators and a couple of sysadmins, all of whom keep mostly to themselves. It runs; no
one worries. Once the Picard vs. Kirk got some Saruman and Gandalf thrown into the fight
(without Picard and Kirk exiting, which is in itself interesting), I wandered down the hall to
ask how those keep-to-themselves BI folks were doing.

Everything’s fine. Customer queries were being answered. They had no problems. Except
that performance wasn’t really what they liked. OK, performance tuning is something we do,
so I asked them to describe the performance problem. Well, they say, the front end has been
broken for months, and the sysadmin can’t keep up with the operator requests that he’s been
answering directly from the database using the command line SQL interface.

What?

Finding Common Ground in a “Picard vs. Saruman” Sort of Situation
I’m not a fan of meetings for the sake of meetings, but if ever there was a need to get everyone
around the same table, this was it. We called a meeting of the BI team, the engineering team,
the storage team, the operations team, the database team, the monitoring team, the service
desk, and the management team.

From the start, we didn’t have consensus. Each area of our overall team felt that they either
already knew the whole story or didn’t have any responsibility for this system at all. I like to
joke that I’m “classically trained” in the art of holding meetings, but this was a tough one to
navigate. I’m the head of engineering and have a finger on the pulse of almost all we do, but
this Business Intelligence system pre-dates me, and almost no engineering project or sup-

Andy Seely is the manager
of an IT engineering division,
customer-site chief engineer,
and a computer science
instructor for the University of

Maryland University College. His wife Heather
is his init process and his sons Marek and Ivo
are always on the run queue.
andy@yankeetown.com

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 51

SYSADMIN
/var/log/manager: When Technology Isn’t the Cause of a Technical Problem

port work had come up during my tenure. The meeting was as
much about discovery for me as anything.

And what did I discover? Operations had no sense of ownership
because the BI team had their own internal sysadmins. The
BI sysadmins felt like they had been abandoned, because they
had submitted dozens of service requests to operations over the
years, and they couldn’t understand why no one realized they
had a systemic problem. The engineers acknowledged the pres-
ence of the BI system but only so much as they occasionally got
asked for very specific help doing very specific tasks. The storage
team responded to storage requests like they do to everyone, with
an initial “we don’t have any more storage capacity” followed by
a grant of storage after they discovered a way to free more space.
If we’d all had pistols, we’d have looked like a Spaghetti Western,
with all of us pointing our guns at each other.

Leadership with a Lowercase “l”
I’m not the manager of the BI system or of the operations team,
but I am a senior manager in the technical staff. If I see some-
thing broken, it’s my responsibility to ensure it gets fixed. There
are many schools of thought on leadership. I chose to employ my
own “big-L/little-l method.” This meeting cried out for some
“little-l,” or lowercase leadership: It didn’t need some big boss to
make big decisions, just someone to get his hands dirty and help
clear the path so that everyone could have a say and get all the
facts on the table.

I guided the discussion and turned it over and around until
everyone at the table had the same basic understanding of
the BI system architecture and dependencies. Then we drew
it on a whiteboard and walked through it again, refining the
diagram until it reflected both the system and our common
understanding.

After we all agreed on architecture, we walked through data
flow. Request comes in, gets received here, gets processed here,
traverses this subsystem and that subsystem; we followed the
flow from query to answer. We talked about system failures and
how they’re reported and recovered. We talked about resource
provisioning and network link speeds. We asked the functional
expert to talk about the BI system’s internal limitations for com-
plex queries and how the vendor’s tuning recommendations were
being applied.

Leadership with an Uppercase “L”
We discovered some non-obvious but fundamental flaws in the
system, but not the system one would think. Our technical flaws
were coming from the organization itself.

1. The BI team gave the appearance of running their own show.
The operations team didn’t track metrics or report BI outages
on their balance sheet, which meant that operations man-
agement never put pressure on the BI system to be tuned or
improved from a systems perspective.

2. By having its own sysadmins, the BI team built an unintention-
al wall between themselves and the rest of the sysadmin team.
The operations sysadmins never added up all the little requests
for support to make a bigger-picture approach because they fig-
ured the BI sysadmins knew what they were doing. By report-
ing issues through business rather than technical management
chains, the BI sysadmins’ complaints up their management
chain fell on deaf ears.

3. By not having storage engineers involved with a holistic
perspective, requests were fulfilled as requested rather than
as needed, and they weren’t requested in such a way as to put
database indexes on the fast storage.

Fixing this required “big-L,” or uppercase Leadership: The boss
needs to make changes in how we do business.

True Story: The DNS Subdomain Generation and Genre Problem
We were troubleshooting a DNS problem with a delegated subdomain. When we started looking into the architecture of the subor-
dinate organization, we found that they had four redundant DNS hosts with host names “picard,” “kirk,” “gandalf,” and “saruman.”
I was leading the technical team researching the problem. We found the root cause was bad glue records, but in my final analysis I
pointed out that there were at least two major system incompatibilities in the subdomain. First, there’s a generational gap; Picard
and Kirk are not going to cheerfully serve up the same answer as peers. Kirk will overpower Picard whenever he can, serving DNS
answers that are the best for Kirk’s own position. Second, there’s a genre gap; you can’t have Kirk and Gandalf working in the same
DNS namespace. You’ll get DNS query responses in Elvish one time and in Klingon the next, obviously resulting in protocol errors.
Our recommendation was to rebuild the whole DNS environment and rename with more of a modern meme. The DNS servers should
be: “neo,” “morpheus,” “trinity,” and “tank.” This way, they’re all on the same team, serving the same mission. Performance will be
improved through the virtualization of three DNS hosts, but it’s a good idea to keep one DNS server physical to remove the common
dependency on the virtual environment.

52  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

SYSADMIN
/var/log/manager: When Technology Isn’t the Cause of a Technical Problem

Starship Captains to the Bridge, Wizards to the
Tower: Small Personnel Adjustments Can Make a
Big Difference
We drastically improved the BI system with some small orga-
nizational changes. The BI sysadmins were reassigned to the
application support group in operations. The enterprise moni-
toring team was given the green light to dig deeper and monitor
more aspects of the system and to treat problems with more
vigor than just sending an email to the BI team. The storage
engineers were given greater purview over the “why” as well as
the “what” when it came to decisions on storage provisioning for
the BI system.

These organizational changes allowed real system improvements
to flow:

1. Network links were upgraded and made standard between all
BI systems, removing inter-system bottlenecks.

2. Database indexes were moved off SATA and onto solid-state
drives, removing the BI query bottleneck.

3. Benchmarks were established for BI queries, creating a
 measuring stick of how to interpret BI system performance.

4. New monitoring hooks were established and alert playbooks
created, improving overall awareness and problem response
times.

These system improvements allowed the real benefit to hap-
pen: The BI query backlog was eliminated, and the BI functional
operators were able to do their own jobs effectively. Getting
there wasn’t obvious, and it took a combination of the little-l
leadership of guiding people to talk to other people and the big-L
leadership of making immediate organizational changes in mul-
tiple areas to get work flowing and the system back to its core
function of making money for the company. A reorganization of
the team wasn’t the most obvious approach, but ultimately it was
the correct one. I’m the manager. That’s my job.

USENIX Member Benefits
Members of the USENIX Association receive the following
benefits:

Free subscription to ;login:, the Association’s magazine, pub-
lished six times a year, featuring technical articles, system
 administration articles, tips and techniques, practical columns
on such topics as security, Perl, networks, and operating systems,
book reviews, and reports of sessions at USENIX conferences.

Access to ;login: online from December 1997 to this month:
www.usenix.org/publications/login/

Access to videos from USENIX events in the first six months
after the event:www.usenix.org/publications/multimedia/

Discounts on registration fees for all USENIX conferences.

Special discounts on a variety of products, books, software,
and periodicals: www.usenix.org/membership/specialdisc.html.

The right to vote on matters affecting the Association, its
bylaws, and election of its directors and officers.

For more information regarding membership or benefits, please
see www.usenix.org/membership/or contact office@usenix.org.
Phone: 510-528-8649

USENIX Board of Directors
Communicate directly with the USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E N T

Brian Noble, University of
Michigan
noble@usenix.org

V I C E P R E S I D E N T

John Arrasjid, VMware
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland, National
 Institute of Standards and
 Technology (NIST)
carolyn@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier
Foundation
kurt@usenix.org

D I R E C T O R S

David Blank-Edelman,
Northeastern University
dnb@usenix.org

Cat Allman, Google
cat@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

Hakim Weatherspoon,
Cornell University
hakim@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

14
11th USENIX Symposium
on Operating Systems Design
and Implementation

October 6–8, 2014
Broomfield, CO

Join us in Broom� eld, CO, October 6–8, 2014, for the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ‘14). The Symposium brings together professionals
from academic and industrial backgrounds in what has become a premier forum for discussing
the design, implementation, and implications of systems software.

Don’t miss the co-located workshops on Sunday, October 5

Diversity ’14: 2014 Workshop on Supporting
Diversity in Systems Research

HotDep ’14: 10th Workshop on Hot Topics
in Dependable Systems

HotPower ’14: 6th Workshop on Power-
Aware Computing and Systems

INFLOW ’14: 2nd Workshop on Interactions
of NVM/Flash with Operating Systems and
Workloads

TRIOS ’14: 2014 Conference on Timely
 Results in Operating Systems

SAVE THE DATE!

www.usenix.org/osdi14

All events will take place at the Omni Interlocken Resort

54  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNSPractical Perl Tools
Zero Plus One

D A V I D N . B L A N K - E D E L M A N

In our last time together, we spent the column exploring ZeroMQ (some-
times written 0MQ). We looked at the basics of what it is, why it is
cooler than I will ever be, and began to look at some sample Perl code

that uses it. With this column, I hope to take the subject just a little further
by exploring a few slightly more complex 0MQ topics. I’m going to (mostly)
avoid rehashing the basics from last time, so I recommend you check out that
column first.

Begin Again, Again
Early in the last column, I mentioned that there were two (well, two and a half) main
strains of Perl modules that would let you work with ZeroMQ from Perl. The first was
the ZMQ::LibZMQx series (ZMQ::LibZMQ2 and ZMQ::LibZMQ3 for versions 2 and 3
of the ZeroMQ libraries). There was also a thin wrapper around these (hence the “half”
comment) called ZMQ that would call one of the two. The second main strain I mentioned
was ZMQ::FFI, which used the libffi library as a bridge to the ZeroMQ libraries. In the last
column, I made the decision to show code using the first kind of module (ZMQ::LibZMQ3).
I still think this is a fine and dandy sort of thing to do; but, since that column was written, it
has become more apparent to me that the ZMQ::FFI may be the future of ZeroMQ for Perl.
For example, although there is not yet a ZMQ::LibZMQ4 to use version 4 of ZeroMQ (and
I’m not sure there will be), ZMQ::FFI works with it out of the box. This may be important to
you if, for example, you were interested in using some of the brand-new encrypted transport
hotness that just arrived in version 4 of ZeroMQ. The version 3 libraries work perfectly fine,
so if you are already happily using ZMQ::LibZMQ3 there’s no real need to rush out right this
minute and rewrite all of your code.

If indeed ZMQ::FFI will ascend as the preferred module, I think it would be a service to you,
dear reader, that I demonstrate how to code using it. So, in this column, we’ll be switching
horses midstream and will start using it. To help ease the transition a little bit, I’ll take a look
at the example client-server (or REQ-REP) code that I ended the previous column with—this
time coded using ZMQ::FFI. Here’s the server version:

use ZMQFFI;

use ZMQFFIConstants qw(ZMQ_REP);

my $ctxt = ZMQ::FFI->new();

my $socket = $ctxt->socket(ZMQ_REP);

my $rv = $socket->bind(‘tcp://127.0.0.1:8888’);

while (1) {

 my $msg = $socket->recv();

 print “Server received: $msg\n”;

 $socket->send($msg);

}

David N. Blank-Edelman is the
director of technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ’05 conference and one of the LISA
’06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010. dnb@ccs.neu.edu

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 55

COLUMNS
Practical Perl Tools: Zero Plus One

The differences between this version and the ZMQ::LibZMQ3
are pretty small but worth pointing out. First, this version is
more object-oriented. Everything except the messages being
received and sent are objects; whereas before we would just
“zmq_recvmsg($socket);” here you can see that our recv() is a
method of the socket object. The second significant difference is
that we no longer have to do any special processing to prepare or
receive messages. This simplifies the code a wee bit.

The client code has almost identical changes from the previous
version:

use ZMQ::FFI;

use ZMQ::FFI::Constants qw(ZMQ_REQ);

my $ctxt = ZMQ::FFI->new();

my $socket = $ctxt->socket(ZMQ_REQ);

$socket->connect(‘tcp://127.0.0.1:8888’);

my $counter = 1;

print “I am $$\n”;

while (1) {

 $socket->send(“$counter:$$”);

 print “Client sent message “ . $counter++ . “\n”;

 my $msg = $socket->recv();

 print “Client received ack:$msg\n”;

 sleep 1;

}

I know I mentioned this last time, but as I look over this code now
I feel compelled once again to offer my appreciation to the 0MQ
folks and the author of this module for providing a framework
that lets us write code that looks this simple but does so much
great stuff behind the scenes. Let’s take this code a little further.

Ah, to Be Young and Asynchronous
I’m not sure whether you recall the output of the previous
examples, but a key quality of the code it demonstrated was the
synchronous nature of the REQ-REP (request-reply) socket
types. They are constructed in such a way as to mandate a strict
“you request - I reply, you request - I reply” pattern. It doesn’t
work to fire off a bunch of requests without recv()-ing the replies
back for each one. If we want to do that sort of thing, we need to
explore some more complicated socket types. There are two sets
of socket types that can help with this. The first is an extension
of the REQ-REP types we’ve been using. The second introduces
a different paradigm, so we’ll hold off on that until the end of this
column when you’ll see a second way to program with ZeroMQ.

The two new socket types I’d like to introduce you to now are
DEALER and ROUTER (ZMQ _DEALER and ZMQ _ROUTER).
I find it easiest to remember them by matching them up to the

previous types we’ve been using. A DEALER is like a REQ socket
in that it gets used to connect in a “client-like” way to other
socket types (and, indeed, those types could be the REP type
we’ve seen before). If you can imagine a card dealer sitting in
the middle of a table, dealing out messages to eager card players
who receive them, that’s the basic idea. I call this “client-like”
because the basic direction of packets is out from the DEALER
to a receiving (server-esque) socket. The flip side to a DEALER
socket is a ROUTER socket. ROUTER sockets are expected
to receive messages from a number of sources (which could be
REQ sockets or DEALERs). If you think of a network router that
sits on a network waiting to receive packets that it passes along,
you’ve got the right idea again.

I’ll start off checking out what happens if I combine a REQ and
a ROUTER socket. I’ll use almost exactly the same REQ code as
before with a few small twists:

use ZMQ::FFI;

use ZMQ::FFI::Constants qw(ZMQ_REQ);

my $ctxt = ZMQ::FFI->new();

my $socket = $ctxt->socket(ZMQ_REQ);

$socket->connect(‘tcp://127.0.0.1:8888’);

my $counter = 1;

print “I am $$\n”;

while (1) {

 $socket->send(“$counter:$$”);

 print “Client sent message “ . $counter++ . “\n”;

 my @msgs = $socket->recv();

 print “Client received ack:$msgs[0]\n”;

 sleep 1;

}

The only change I want to bring to your attention is the retrieval
of an array of values from recv(). I can best explain the recv()
change in the context of the second piece of code—the one with a
ROUTER socket:

use ZMQ::FFI;

use ZMQ::FFI::Constants qw(ZMQ_ROUTER);

my $ctxt = ZMQ::FFI->new();

my $socket = $ctxt->socket(ZMQ_ROUTER);

my $rv = $socket->bind(‘tcp://127.0.0.1:8888’);

while (1) {

 my ($id, $spacer, $msg) = $socket->recv_multipart();

 print “Server received: $msg\n”;

 $socket->send_multipart([$id, ‘’, $msg]);

}

56  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNS
Practical Perl Tools: Zero Plus One

Now we see an interesting change from the REP code we looked
at before. In this code, I’ve replaced recv() with recv_multipart
and send() with send_multipart(). The distinction is the
_multipart forms know how to handle the sending and receipt of
multiple message frames at the same time.

Let me step back a moment to explain why this is necessary.
Behind the scenes, messages actually consist of multiple frames.
With the REQ->REP code, we didn’t have to care because there
was a one-to-one relationship between a message and its reply
that ZeroMQ handled automatically. Even with multiple REQ
clients talking to the same REP “server,” this relationship
was always true (i.e., the expectation is a REP would reply to
the client before moving on). With a REQ-REP combination,
ZeroMQ handled details like “Where do I send this reply back
to?” for us.

With a ROUTER socket, we don’t have the promise of a
synchronous traffic pattern. We could get a message and choose
to reply to it or perhaps forward that message along to another
socket. To make this flexibility possible, ZeroMQ has to have
a way for the application using a ROUTER socket to know
where the message is coming from so that it can either reply to
the source or pass the info on so that someone else can. This
is implemented in a super simple fashion: Messages consist of
multiple frames that have a source identifier frame, message
contents frames, and a blank frame in between these two things.
In the code above, recv_multipart returns these three parts.

Now, the fact that the REQ socket is talking to a ROUTER
doesn’t change the REQ socket’s synchronous nature. A REQ
socket always needs to get a response back to a message it
sends. We accommodate this need by having our ROUTER code
echo back the message it received. By sending a message using
the same three frames (via send_multipart()), the message is
destined for the client that made the request and everybody is
happy.

I’ll run this code and see what happens. First, I’ll start the
ROUTER-based server and then spin up three REQ-based
clients simultaneously. Here’s some of the output from the
server:

Server received: 1:72551

Server received: 1:72550

Server received: 1:72549

Server received: 2:72551

Server received: 2:72549

Server received: 2:72550

Server received: 3:72549

Server received: 4:72549

Server received: 3:72551

Server received: 4:72551

Server received: 3:72550

Server received: 4:72550

Server received: 5:72549

Server received: 5:72551

Server received: 6:72551

Server received: 5:72550

Server received: 6:72550

Server received: 6:72549

Server received: 7:72549

This output shows each message the server receives. The first
number is the request number the client sends, the second is
what each client is calling itself (it’s that client’s PID). It is
not exactly easy to tell that the ROUTER socket is behaving
asynchronously, but it is.

If we wanted to go in the other direction and have a DEALER
talk to a REP socket, that approach works swimmingly as well.
As the ZeroMQ handbook says (referring to a previous REQ-REP
example): “This gives us an asynchronous client that can talk
to multiple REP servers. If we rewrote the ‘Hello World’ client
using DEALER, we’d be able to send off any number of ‘Hello’
requests without waiting for replies.” As in the previous example,
we need to think a bit harder about actual message frames. The
message our DEALER sends out should mimic the same format a
REQ socket might send. This is spelled out more explicitly in the
doc than I want to get into here; but, in short, that’s sending out
a spacer frame followed by the message contents in a separate
frame. The tools are exactly the same as in the previous example
(send_multipart()), so I won’t repeat all of that code.

I’d like to show another architecture before this column is done,
but I suspect you might be curious about the combination we
haven’t discussed, namely DEALER-ROUTER combinations.
Not to be too glib but, yup, that works great, too. If you pair two
asynchronous socket types, you can make spiffy things like
a component that can sit in between front-end and back-end
pieces, asynchronously receiving messages and fanning them
out as desired.

PUB and SUB
The final socket types we’ll look at provide a slightly different
paradigm than the ones we’ve seen so far. This paradigm came
up when I talked about Redis a few columns ago and is becoming
more common these days. With the publisher-subscriber (pub-
sub) paradigm, there is a component that sends out messages
(the publisher) that get “tagged” as being associated with specific
topics. Some number of clients can then connect to the publisher,
indicate interest in one or more of those topics, and then receive
just the messages tagged with those topics.

I’ll let some code do the introduction. Here’s the publisher (the
server that clients will connect to in order to receive their
content):

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 57

COLUMNS
Practical Perl Tools: Zero Plus One

use ZMQ::FFI;

use ZMQ::FFI::Constants qw(ZMQ_PUB);

my $ctxt = ZMQ::FFI->new();

my $socket = $ctxt->socket(ZMQ_PUB);

my $rv = $socket->bind(‘tcp://127.0.0.1:8888’);

bogus way to sync

sleep 5;

while (1) {

 $socket->send(‘bunnies furry’);

 $socket->send(‘doggies barky’);

 $socket->send(‘fishies swimmy’);

 sleep 1;

}

This should look remarkably like the other examples, because,
well, it is. The only difference is that we’ve changed the socket
type. I consider the lack of difference to be a plus because it
demonstrates how it is easy to build on prior knowledge when
working with ZeroMQ. Before turning to the slightly more
interesting “client,” I do want to briefly discuss the comment
above about the sleep() call being a bogus way to sync.

When dealing with a publisher-subscriber model, one of
the common problems a first-time coder encounters is a
synchronization problem. If the publisher publishes information
before all of the subscribers have connected, the latecomers will
miss messages. This isn’t always a problem (e.g., the above code
which repeats until interrupted), but in most real-world cases,
it’s highly suboptimal. There are a number of ways to fix this; the
one above, where we just wait a bit, is probably the worst.

Far preferable would be for the publisher to have some way to
know when all of the subscribers are present and listening. If
you know how many subscribers constitutes “all,” the easiest
way is to dedicate a second socket pair in your code to just this
sort of out-of-band signaling. You could imagine using a REQ-
REP socket pair where the subscriber checks in to the publisher
by sending something over the REQ, and the publisher acks the
notice on the REP (basically using the code we’ve seen before).
Once the publisher is satisfied everyone is tuned in, it can then
begin sending actual content.

Now let’s look at a simple subscriber:

use ZMQ::FFI;

use ZMQ::FFI::Constants qw(ZMQ_SUB);

my $ctxt = ZMQ::FFI->new();

my $socket = $ctxt->socket(ZMQ_SUB);

$socket->connect(‘tcp://127.0.0.1:8888’);

my @topics = qw(bunnies doggies fishies);

subscribe to a random topic

my $interest = $topics[int(rand(3))];

$socket->subscribe($interest);

while (1) {

 my ($topic, $message) = split / /, $socket->recv();

 print “Today I learned that $topic are $message!\n”;

}

Again, super simple. The code picks a random topic and registers
interest in this topic via a subscribe() call. From that point on, it
will only “hear” messages on that topic when it calls recv(), like
so:

Today I learned that bunnies are furry!

Today I learned that bunnies are furry!

Today I learned that bunnies are furry!

Today I learned that bunnies are furry!

If I were to move the topic subscription code into the loop so it
picks a random topic on the fly:

while (1){

 # subscribe to a random topic

 my $interest = $topics[int(rand(3))];

 $socket->subscribe($interest);

 my ($topic, $message) = split / /,$socket->recv();

 ...

we get the expected results:

Today I learned that fishies are swimmy!

Today I learned that doggies are barky!

Today I learned that fishies are swimmy!

Today I learned that bunnies are furry!

Today I learned that doggies are barky!

I won’t show you the server output (because you are probably
fully up on your bunnies vs. doggies distinction), but we can
easily run a metric ton of subscribers at the same time against
our publisher. And, as before, no code changes are necessary to
support going from one-to-one connections to multi-to-one.

Pretty cool, so with that, let’s wrap. Take care, and I’ll see you
next time.

58  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNS

Command Line Option Parsing
D A V I D B E A Z L E Y

If I look back, an overwhelming number of the Python programs I have
written have been simple scripts and tools meant to be executed from
the command line. Sure, I’ve created the occasional Web application,

but the command line has always been where the real action is. However, I
also have a confession—despite my reliance on the command line, I just can’t
bring myself to use any of Python’s built-in libraries for processing command
line options. Should I use the getopt module? Nope. Not for me. What about
optparse or argparse? Bah! Get out! No, most of my programs look some-
thing like this:

#!/usr/bin/env python

program.py

...

... Something or another

...

if __name__ == ‘__main__’:

 import sys

 if len(sys.argv) != 3:

 raise SystemExit(‘Usage: %s infile outfile’ % sys.argv[0])

 infile = sys.argv[1]

 outfile = sys.argv[2]

 main(infile, outfile)

Sure, the exact details of the options themselves might change from program to program,
but, generally speaking, the programs all look about like that. Should things start to get more
complicated, I’ll ponder the situation a bit before usually concluding that I should probably
just keep it simple. Again, I’m not proud of this, but it’s a fairly accurate description of my
day-to-day coding. In this article, I’m going to visit the topic of command line option parsing.
First, I’ll quickly review Python’s built-in modules and then look at some newer third-party
libraries that aim to simplify the problem in a more sane manner.

Command Line Parsing in the Standard Library
As background, let’s consider the options for command line option parsing in the standard
library. First, suppose your program had a main function like this:

def main(infiles, outfile=None, debug=False):

 # Imagine real code here. We’ll just print the args for an example

 print(infiles)

 print(outfile)

 print(debug)

In its most basic use, suppose you wanted the program to simply take a list of input files to be
provided as the infiles argument. For example:

% python prog.py infile1 ... infileN

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,

2009). He is also known as the creator of Swig
(http://www.swig.org) and Python Lex-Yacc
(http://www.dabeaz.com/ply.html). Beazley
is based in Chicago, where he also teaches a
variety of Python courses. dave@dabeaz.com

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 59

COLUMNS
Command Line Option Parsing

In addition, suppose you wanted the command line interface to
have an optional outfile argument provided by an -o or --out-

file= option like this:

% python prog.py -o outfile infile1 ... infileN

% python prog.py --outfile=outfile infile1 ... infileN

%

Finally, suppose the debug argument is provided by an optional
-d or --debug option. For example:

% python prog.py --debug -o outfile infile1 ... infileN

%

At the lowest level, the getopt module provides C-style com-
mand line parsing. Here is an example of how it is used:

prog.py

...

if __name__ == ‘__main__’:

 import getopt

 usage = ‘’’\

Usage: prog.py [options]

Options:

 -h, --help show this help message and exit

 -o OUTFILE

 --output=OUTFILE

 -d

 --debug

‘’’

 try:

 optlist, args = getopt.getopt(sys.argv[1:], ‘dho:’,

[‘output=’, ‘debug’, ‘help’])

 except getopt.GetoptError as err:

 print(err, file=sys.stderr)

 print(usage)

 raise SystemExit(1)

 debug = False

 outfile = None

 for opt, value in optlist:

 if opt in [‘-d’, ‘--debug’]:

 debug = True

 elif opt in [‘-o’, ‘--output’]:

 outfile = value

 elif opt in [‘-h’, ‘--help’]:

 print(usage)

 raise SystemExit(0)

 main(args, outfile, debug)

If that’s a bit too low-level for your tastes, you can move up to the
optparse module instead. For example:

prog.py

...

if __name__ == ‘__main__’:

 import optparse

 parser = optparse.OptionParser()

 parser.add_option(‘-o’, action=’store’, dest=’outfile’)

 parser.add_option(‘--output’, action=’store’, dest=’outfile’)

 parser.add_option(‘-d’, action=’store_true’, dest=’debug’)

 parser.add_option(‘--debug’, action=’store_true’,

dest=’debug’)

 parser.set_defaults(debug=False)

 opts, args = parser.parse_args()

 main(args, opts.outfile, opts.debug)

 Or, if you prefer, you can use the more recent argparse module.
For example:

prog.py

...

if __name__ == ‘__main__’:

 import argparse

 parser = argparse.ArgumentParser()

 parser.add_argument(‘infiles’, metavar=’INFILE’, nargs=’*’)

 parser.add_argument(‘-o’, action=’store’, dest=’outfile’)

 parser.add_argument(‘--output’, action=’store’,

dest=’outfile’)

 parser.add_argument(‘-d’, action=’store_true’, dest=’debug’,

default=False)

 parser.add_argument(‘--debug’, action=’store_true’,

dest=’debug’, default=False)

 args = parser.parse_args()

 main(args.infiles, args.outfile, args.debug)

Both the optparse and argparse modules hide the details of
command line parsing through extra layers of abstraction. They
also provide error checking and the ability to create nice help
messages. For example:

$ python prog.py --help

usage: prog.py [-h] [-o OUTFILE] [--output OUTFILE] [-d]

[--debug]

 [INFILE [INFILE ...]]

positional arguments:

 INFILE

60  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNS
Command Line Option Parsing

optional arguments:

 -h, --help show this help message and exit

 -o OUTFILE

 --output OUTFILE

 -d

 --debug

Interlude
Looking at the above examples, it might seem that either
optparse or argparse should work well enough for parsing a
command line. This is true. However, they are also modules
that are difficult to remember—in fact, I always have to look
at the manual (or at my own book). Moreover, if you look at the
documentation, you’ll find that both modules are actually mas-
sive frameworks that aim to solve every possible problem with
command line options that might ever arise. It’s often overkill
for more simple projects—in fact, it usually just makes my
overworked pea-brain throb. Thus, it’s worth looking at some
alternatives that might serve as a kind of middle ground.

docopt
One alternative to the standard libraries is to use docopt (http://
docopt.org). The idea with docopt is that you simply write the
help string that describes the usage. An option parser is then
automatically generated from it. Here is an example:

prog.py

‘’’

My program.

Usage:

 prog.py [-o OUTFILE] [-d] [INFILES ...]

 prog.py [--outfile=OUTFILE] [--debug] [INFILES ...]

 prog.py (-h | --help)

Options:

 -h, --help Show this screen.

 -o OUTFILE, --outfile=OUTFILE Set output file

 -d, --debug Enable debugging

‘’’

...

if __name__ == ‘__main__’:

 import docopt

 args = docopt.docopt(__doc__)

 main(args[‘INFILES’], args[‘--outfile’], args[‘--debug’])

In this example, the documentation string for the module
describes the usage and command line options. The docopt.

docopt(__doc__) statement then automatically parses the
options directly from that. The result is simply a dictionary

where values for the various options are found. It’s a neat idea
that flips option parsing on its head—instead of specifying the
options through a complicated API, you simply write the usage
string that you want and it figures it out.

Click
A newer entry to the command line argument game is Click
(http://click.pocoo.org/). Click uses decorators to annotate
program entry points with a command line interface. Here is an
example:

import click

@click.command()

@click.argument(‘infiles’, required=False, nargs=-1)

@click.option(‘-o’, ‘--outfile’)

@click.option(‘-d’, ‘--debug’, is_flag=True)

def main(infiles, outfile=None, debug=False):

 print(infiles)

 print(outfile)

 print(debug)

if __name__ == ‘__main__’:

 main()

In this example, the @click.command() decorator declares a new
command. The @click.argument(‘infiles’, required=False,

nargs=-1) decorator is declaring the infiles argument to be an
optional argument that can take any number of values. The @
click.option() decorators are declaring additional options that
are tied to arguments on the decorated function.

Once decorated, the original function operates in a slightly dif-
ferent manner. If you call main() without arguments, sys.argv
is parsed and used to supply the arguments. You can also call
main() and provide the argument list yourself, which might be
useful for testing. For example:

main([‘--outfile=out.txt’, ‘foo’, ‘bar’])

One of the more interesting features of Click is that it allows
different functions and parts of an application to be composed
separately. Here is a more advanced example that defines two
separate commands with different options:

prog.py

import click

@click.group()

@click.option(‘-d’, ‘--debug’, is_flag=True)

def cli(debug=False):

 if debug:

 print(‘Debugging enabled’)

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 61

COLUMNS
Command Line Option Parsing

@cli.command()

@click.argument(‘infiles’, required=False, nargs=-1)

@click.option(‘-o’, ‘--outfile’)

def spam(infiles, outfile=None):

 print(‘spam’, infiles, outfile)

@cli.command()

@click.argument(‘url’)

@click.option(‘-t’, ‘--timeout’)

def grok(url, timeout=None):

 print(‘grok’, url, timeout)

if __name__ == ‘__main__’:

 cli()

In this example, two commands (spam and grok) are defined.
Here is an interactive example showing their use and output:

% python prog.py spam -o out.txt foo bar

spam (u’foo’, u’bar’) out.txt

% python prog.py grok http://localhost:8080

grok http://localhost:8080 None

%

The debugging option (-d), being defined on the enclosing group,
applies to both commands:

% python prog.py -d spam -o out.txt foo bar

Debugging enabled

spam (u’foo’, u’bar’) out.txt

%

Corresponding help screens are tailored to each command.

% python prog.py --help

Usage: prog.py [OPTIONS] COMMAND [ARGS]...

Options:

 -d, --debug

 --help Show this message and exit.

Commands:

 grok

 spam

% python prog.py spam --help

Usage: prog.py spam [OPTIONS] [INFILES]...

Options:

 -o, --outfile TEXT

 --help Show this message and exit.

%

The ability to easily compose commands and options is a power-
ful feature of Click. In many projects, you can easily have a large
number of independent scripts, and it can be difficult to keep
track of all of those scripts and their invocation options. As an
alternative, Click might allow all of those scripts to be unified
under a common command line interface that provides nice help
functionality and simplified use for end users.

Final Words
If you write a lot of simple command line tools, looking at third-
party alternatives such as docopt and Click might be worth your
time. This article has only provided the most basic introduction,
but both tools have a variety of more advanced functionality. One
might ask if there is a clear winner. That, I don’t know. However,
for my own projects, the ability to compose command line inter-
faces with Click could be a big win. So I intend to give it a whirl.

Resources
http://docs.python.org/dev/library/getopt.html
(getopt module documentation).

http://docs.python.org/dev/library/optparse.html
(optparse module documentation).

http://docs.python.org/dev/library/argparse.html
(argparse module documentation).

http://docopt.org (docopt homepage).

http://click.pocoo.org (Click homepage).

62  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNS

iVoyeur
7 Habits of Highly Effective Monitoring Systems

D A V E J O S E P H S E N

Dave Josephsen is
the sometime book-
authoring developer
evangelist at Librato.
com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

Having recently returned from Monitorama [1], I can attest that it is
exactly what it sounds like: a collection of people so enamored of the
technical discipline that has been my obsession for the better part of

the last decade that they literally fly from the far corners of the world in order
to shut themselves up in a single room and geek out about it for days. There
are drunken diatribes about RabbitMQ in the context of metric transmis-
sion, hallway arguments about whether CPU percentage or load average is
the superior metric of computational stress, and diabolical plots to compress
time series data by converting it to frequency space. My point is, this confer-
ence could not be more custom-tailored to please me were we gathering in a
fellowship quest to craft the ultimate bacon, lettuce, and tomato sandwich.

If there was a theme that permeated the event, I think it was to be found in the contrast
between two very specific kinds of talk. The first type is the kind given by someone attempt-
ing to apply mathematical (usually statistical, but sometimes signal processing) techniques
to detect aberrant behavior in time series data. These are always technical and, with a few
notable exceptions [2], do not attempt to practically apply their findings via a tool the rest
of us can experiment with. They customarily provide an overview of relevant mathematical
techniques, usually beginning with simple thresholds, moving through standard deviation
and various types of exponential moving averages like Holt-Winters, and winding up some-
where in the vicinity of forward decaying priority sampling. At this point, they usually throw
up their hands, mutter something about domain-specific knowledge and monitoring data
being a non-Gaussian distribution, and ask for questions.

The second type of talk is the kind given by an engineer who has implemented a monitor-
ing system that seems to be working for them at the moment. It is often a tenuously wired
together Frankenstein’s monster that will almost certainly look different the next time we
see it (which is fine if it’s solving their problems). To be clear, I greatly enjoy both of these
kinds of talks. If there were a cable channel that brought me only this content, I would never
leave the house.

Automated fault detection is absolutely worth pursuing, I’m excited about it, and I have no
doubt there will be breakthroughs as we get more eyes on it. Further, it’s always fascinat-
ing to hear about the real-life trials and tribulations of my fellow plumbers who are holding
things together in their respective corner of the Internet. Their every success is a ray of glori-
ous hope that brightens my day.

Being repeatedly subjected to these two types of talks back to back, however, was, I have to
admit, a little disheartening. The contrast between the cold mathematical certainty prom-
ised by the former type compared to the banal reality of the latter really got me thinking
about the current state of monitoring as I’ve personally witnessed it. Aren’t there real-life
monitoring systems out there that are purposefully designed, elegantly engineered, and that
meet 100% of the needs of every engineering team in their respective organization? Yes, as
a matter of fact, I happen to know that there are well-engineered monitoring systems that
world-class IT shops are happy with: Systems that sure would benefit from automatic fault

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 63

COLUMNS
iVoyeur: 7 Habits of Highly Effective Monitoring Systems

detection, but wouldn’t be defined by it. Systems that are worlds
away from the cobbled together collections of tools from the
second kind of talk—the kind, I might add, that the preponderant
quantity of attendees I spoke to are running. And yet, the moni-
toring systems I’m talking about are often composed of those
same pieces, but somehow manage to become more than the sum
of their parts.

I like to think I’ve done a good job of resisting the urge to pon-
tificate about the state of monitoring in general in this column,
focusing instead on interesting tools and techniques. It just
seems presumptuous of me to tell you what to install and how,
but Monitorama has left me with both a burning desire to spout
off at the mouth about monitoring theory and the feeling that I
may have been remiss in avoiding it in the past. So, I give you my
take on the current state of how to monitor well, organized into
seven habits that summarize what the good systems are doing
right today.

Habit 1: It’s About the Data
Were I in a darker mood, I might have titled this “Stop Looking
for an Ubertool.” Awesome monitoring systems value data over
tools—they understand that a monitoring tool is merely a means
to obtain data. They treat metrics and telemetry data as first-
class citizens and rarely leave it to rot within the tool that col-
lected it. Rather, they send the data “up” to be processed, stored,
and analyzed together with all of the other data collected by all
the other tools, on all the other systems, organization-wide.

When you make the data a first-class citizen, you wind up with
data-centric tools that enable you to correlate measurements
taken from any layer of the stack. You can, for example, quantify
the effect of JVM garbage collection on service latency, or if the
number of calls to the foo() function in your application across
three different nodes correlates to the odd behavior in the byte
counter that resides on the switch they are all connected to. You
know you are doing it right when you can “tee” off a subset of
your monitoring data at will and send it as input to any new tool
you might decide to use in whatever format that tool expects.

Now that I’ve made a big deal about it not being about tools, let’s
talk about the kinds of tools that let data thrive, beginning with
an example of what not to do. I’ll go ahead and pick on Nagios for
this, since that’s so in-vogue these days. Nagios was designed
for a very specific job, namely, to collect availability data on
services and hosts on the order of minutes (usually about every
five minutes).

This is useful data to collect, and Nagios is, in my opinion,
the best tool for accomplishing this task. It also makes some
annoying assumptions about how you want to process the data
it collects, and those assumptions make it more difficult than
it should be to get data out of Nagios and into other tools. This

is evidenced by the plethora of single-purpose tools that have
sprung into being for no other purpose than to take data from
Nagios and place it in X, where X is some other monitoring tool
from which it is usually even more difficult to extract the moni-
toring data.

And so it is that we devolve into this anti-pattern of implementing
the tool we think we need, and then more tools to connect our
tool to yet other tools in an attempt to make up for some deficiency
in the one we thought we wanted. The complexity of our moni-
toring efforts grows quadratically as our chosen tool bogs down
with every new tool we bolt onto it. God help us if we ever want
to connect a tool to the tool that’s connected to the original tool,
because our data just gets more and more specific, ever-increas-
ingly locked-in to the toolchain we’ve painted ourselves into.

If, however, we recognize that Nagios is merely one of many data
collectors and place a transmission layer above Nagios that is
designed to accept metrics data from any sort of data collector so
that it can be processed and persisted in a common data format,
our tools no longer depend on each other, and we have a single
source of telemetry data that we can wire to any tools that make
sense. Obviously, I think this is a fantastic idea, and I even began
to implement it myself [3] before Riemann [4] and Heka [5] did a
much better job of it.

Habit 2: Use Monitoring for Feedback
Who is choosing your metrics? Are you using a turnkey agent
that collects umpteen hundred metrics from every node that
you install it on? How many of those metrics do you track? How
many do you alert on? Great monitoring systems are driven by
purpose. They are designed to provide operational feedback
about production systems to people who understand how those
systems work—people who have chosen what to monitor about
those systems based on that knowledge.

Monitoring isn’t a “thing”; it does not stand on its own. It is not
a backup system or a disaster recovery plan, or any other sort
of expensive and annoying burden heaped on Ops to satisfy the
checklist requirements of a regulatory body or an arbitrary quar-
terly goal. It is not a ritual that grown-ups tell us to follow—like
keeping our hands and arms inside the vehicle at all times—a
habit we all must perform to stave off some nameless danger that
no one can quite articulate.

Monitoring is an engineering tool. It exists to provide closed-
loop feedback from engineering systems. It is the pressure meter
on your propane tank. Through monitoring, we gain visibil-
ity into places we cannot go, and we prevent explosions from
happening in those places. The engineers in your organization
should understand the metrics you monitor, because each should
have been configured by an engineer to answer a specific ques-
tion or provide a concrete insight about the operational charac-
teristics of your service.

64  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNS
iVoyeur: 7 Habits of Highly Effective Monitoring Systems

Habit 3: Alert on What You Draw
When an engineer in your organization receives an alert from a
monitoring system, and moves to examine a graph of monitoring
data to analyze and isolate the problem, it’s critically important
that the same data was used to generate both the alert and the
graph. If, for example, you’re using Nagios to check and alert,
and Ganglia to draw the graphs, you’re raising the likelihood of
uncertainty, stress, and human error during the critically impor-
tant time of incident response.

One monitoring system or the other could be generating false
positives or negatives; they could each be monitoring subtly dif-
ferent things under the guise of the same name, or they could be
measuring the same thing in subtly different ways. It actually
doesn’t matter, because there is likely no way to objectively tell
which system is correct without a substantial effort, and even if
you do figure out which is lying, it’s unlikely you will be able to
take a meaningful corrective action to synchronize the behavior
of the systems.

Ultimately, what you’ve done is shifted the problem from
“improve an unreliable monitoring system” to “make two unreli-
able monitoring systems agree with each other in every case.”
The inevitable result is simply that your engineers will begin to
ignore both monitoring systems because neither can be trusted.

Great monitoring systems require a single source of truth. In
the current example, the most expedient way to achieve this
is to configure Nagios to monitor thresholds in Ganglia’s data
[6] (because Ganglia has the best resolution). The concept of
a single source of truth is a fundamental requirement to good
systems monitoring. It’s also another great argument in favor of
focusing on data rather than tools.

Habit 4: Standardize Processing, but Emancipate
Collection
I’ve run into business consultants who were convinced that the
proper way to implement monitoring solutions was to first create
a plan that lists every possible service that you could ever want
to monitor and then choose a tool that meets your data collection
list. In my experience, great monitoring systems do the opposite.
They plan and build a substrate—a common, organization-wide
service for processing telemetry data from monitoring systems—
like the ones I described above in Habit #1. Then they enable and
encourage every engineer, regardless of team affiliation or title,
to send monitoring data to it by whatever means necessary.

Awesome monitoring systems standardize the metrics process-
ing, storage, analysis, and visualization tools, but they declare
open season on data collectors. One shop whose engineers I’ve

spoken with (apologies, I’ve forgotten which) has the motto “new
metrics in minutes.” Every engineer should be free to implement
whatever means she deems appropriate to monitor the services
she’s responsible for. Monitoring new stuff should be hassle-free.

Habit 5: Let the Consumers Curate
Another popular notion about monitoring systems in the corpo-
rate world is that they should provide a “single pane of glass,” by
which I assume they mean the monitoring system should have
a single, primary dashboard that shows a high-level overview of
the entire system state.

That’s great and I’m not necessarily arguing against it, but the
best monitoring tools I’ve seen focus instead on enabling engi-
neers to create and manage their own dashboards, thresholds,
and notifications. If you’re doing it right, you should have a dash-
board for every service that your team supports or contributes
to, curated by your team members. Effective monitoring systems
don’t just allow non-ops engineers to interact with the system,
they demand it.

Great monitoring systems are timely, open, and precise. They
represent a single source of truth that is so compelling and easy
to interact with that the engineers naturally rely on them to
understand what’s going on in production. When they want to
track how long a function takes to execute in production, they
should naturally choose to instrument their code and observe
feedback using the monitoring system. When they have an out-
age, their first thought should be to turn to the dashboard for
that service before they attempt to ssh to one of the hosts they
suspect is involved.

A monitoring system that requires coercion for adoption isn’t
solving the right problems. So, if your engineers are avoiding the
monitoring system, or ignoring it, or rolling their own tools to
work around it, then you have an impedance problem, and you
should ask yourself why they prefer the tools they do over yours,
and focus in on making it easier for the consumers of the system
to use it to solve their problems.

Habit 6: Evolve by Tiny Iterations
Healthy monitoring systems don’t need a semi-monthly main-
tenance procedure. They stay relevant because they’re con-
stantly being iterated by the engineers who rely on them to solve
everyday problems. New metrics are added by engineers who
are instrumenting a new service or trying to understand the
behavior of some misanthropic piece of infrastructure or code.
Measurements are removed when they’re no longer needed by
the team that put them there—because they’re superfluous and
cluttering up the dashboards.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 65

COLUMNS
iVoyeur: 7 Habits of Highly Effective Monitoring Systems

By focusing on the data, relying on the accuracy of the results,
and enabling everyone to iteratively fix the pieces they rely
on, your monitoring system will evolve into exactly what your
organization needs it to be, rather than a complicated ball of
cherished tools tenuously strung together that everyone ignores
except the dude holding the string.

Habit 7: Instrumentation != Debugging
Monitoring is unit testing for operations. For all distributed
applications—and, I’d argue, for a great deal of traditional ser-
vices—it is the best if not the only way to verify that your design
and engineering assumptions bear out in production.

Further, instrumentation is the only way to gather in-process
metrics that directly correspond to the well-being and perfor-
mance of your production applications.

Therefore, instrumentation is code. It is a legitimate part of
your application—not extraneous debugging rubbish that can be
slovenly implemented with the implicit assumption that it will
be removed later. Your engineers should have libraries at their
disposal that enable them to thoughtfully and easily instrument
their application in a way that is commonly understood and
repeatable. Libraries like Coda Hale Metrics [7] are a fantastic
choice if you don’t want to roll your own. In the same way your
feature isn’t complete until you provide a test for it, your applica-
tion is not complete until it is instrumented so that its inner
workings can be verified by the monitoring data stream.

As always, I hope you found something helpful in this diatribe.
As the DevOps revolution continues to utterly confound and
mystify the IT managementosphere, I think we have a golden

opportunity to reinvent monitoring. My hope is that we can
expand it from a thing that operations does because: comput-
ers, and replace it with a commons—supported by Ops—that
welcomes measurements from every type of engineer and
encourages them to define their own interactions, no matter how
convoluted their title. To the extent we achieve this, I believe we
will improve the transparency of both our services and infra-
structure, increase our understanding of the systems we sup-
port, and carry with us quieter pagers.

Good luck!

References
[1] The Monitorama conference: http://monitorama.com.

[2] Abe Stanway, Jon Cowie: “Bring the Noise,” Velocity
Santa Clara 2013: https://www.youtube.com/watch?v
=3nF426i0cBc.

[3] Hearsay: https://github.com/djosephsen/Hearsay.

[4] Riemann: http://riemann.io/.

[5] Mozilla, Introducing Heka: http://blog.mozilla.org
/services/2013/04/30/introducing-heka/.

[6] Monitoring Ganglia data from Nagios: https://github.com
/ganglia/monitor-core/wiki/Integrating-Ganglia-with
-Nagios.

[7] Coda Hale Metrics: http://metrics.codahale.com/.

66  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNS

Both dependence on open source and adversary activity around open
source are widespread and growing, but the dynamic pattern of use
requires new means to estimate if not bound the security implica-

tions. In April and May 2014, every security writer has talked about whether
it is indeed true that with enough eyeballs, all bugs are shallow. We won’t
revisit that topic because there may be no minds left to change. Unarguably:

◆◆ Dependence on open source is growing in volume and variety.

◆◆ Adversary interest tracks installed base.

◆◆ Multiple levels of abstraction add noise to remediation needs.

We begin with two open source examples.

Apache Struts CVE-2013-2251, July 6, 2013 - CVSS v2 9.3
Apache Struts is one of the most popular and widely depended upon open source projects
in the world. As such, when this highly exploitable vulnerability was discovered, it was
promptly used to compromise large swaths of the financial services sector. While Heartbleed
(see below) got full media frenzy, many affected by 2013-2251 learned of the problem from
FBI victim notifications under 42 U.S.C. § 10607. The FS-ISAC issued guidance [1] telling
institutions (read, victims) to scrutinize the security of third-party and open source compo-
nents throughout their life cycle of use. It is not noteworthy that an open source project could
have a severe vulnerability; what is of note is that this flaw went undetected for at least seven
years (if not a lot longer from WebWork 2/pre-Struts 2 code base)—an existence proof that
well-vetted code still needs a backup plan.

OpenSSL (Heartbleed) CVE-2014-0160, April 7, 2014 - CVSS v2 5.0
The Heartbleed vulnerability in OpenSSL garnered tremendous media and attacker activity
this past April. While only scored with a CVSS of 5.0, it is a “5 with the power of a 10” since
sniffing usernames, passwords, and SSL Certificates provides stepping stones to far greater
impact. In contrast to the Struts bug above, this flaw was introduced only two years prior, but
it, too, went unnoticed by many eyeballs—it was found by bench analysis [2].

Dependence on Open Source Is Growing
Sonatype, home to author Corman, serves as custodian to Central Repository, the largest
parts warehouse in the world for open source components. At the macro level, open source
consumption is exploding in Web applications, mobility, cloud, etc., driven in part by increas-
ingly favorable economics. Even (risk averse, highly regulated) government and financial
sectors, which previously resisted “code of unknown origin/quality/security,” have begun
relaxing their resistance. According to both Gartner surveys and Sonatype application
analysis, 90+% of modern applications are not so much written as assembled from third-
party building blocks. It is the open source building blocks that are taking the field, and not
just for commodity applications (see Figure 1).

Almost Too Big to Fail
D A N G E E R A N D J O S H U A C O R M A N

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc. 
dan@geer.org

Joshua Corman is the chief
technology officer for Sonatype.
Previously, Corman served
as a security researcher
and strategist at Akamai

Technologies, The 451 Group, and IBM Internet
Security Systems. A respected innovator, he
co-founded Rugged Software and I Am the
Cavalry to encourage new security approaches
in response to the world’s increasing
dependence on digital infrastructure. He is
also an adjunct faculty for Carnegie Mellon’s
Heinze College, IANS Research, and a Fellow
at the Ponemon Institute. Josh received his
bachelor’s degree in philosophy, graduating
summa cum laude, from the University of New
Hampshire. joshcorman@gmail.com

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 67

COLUMNS
Almost Too Big to Fail

Adversary Interest in Open Source Is Growing
Adversary interest tracks component prevalence. The preva-
lence of open source has grown, ergo so has adversary interest [3].
There are several equivalent ways to characterize that:

◆◆ Payoff: “That’s where the money is.”

◆◆ Cost-effective leverage: Unless you are engaged in one-off
targeting, you go after the components that are most depended
upon (Struts, OpenSSL, etc.).

◆◆ Accessibility: Obscurity may occasionally contribute to security,
but there is nothing obscure about an open source code pool.

Figure 2 shows the pattern of vulnerability disclosure in the
Apache Struts project; the vertical axis shows CVSS severity
against the horizontal showing calendar time.

While author Geer has written elsewhere [4] about how CVSS
scores are not the way to steer remediation efforts, Figure 2 does
confirm that there is a mounting interest in cataloging open
source flaws. (See also author Corman’s “HDMoore’s Law” [5].)

Can We Characterize Flaw Response?
Yes, Virginia, all software has flaws, but one might ask whether
we avoid “known bad components” when assembling deliverable
code? Not always; consider:

“Bouncy Castle” CVE-2007-6721, November 10, 2007
CVSS v2 10
The “Legion of the Bouncy Castle Java Cryptography APIs” had
a CVSS worst-case scenario fixed in April of 2008—more than
six years ago. While 2007-6721 is a severe security flaw in a
security-sensitive project, nevertheless the unrepaired, vulner-
able version was requested from Central Repository 4,000 times
in 2013. One can assume it was used in security-related appli-
cations/products, perhaps multiple applications per download
instance.

Similar (disappointing) consumption patterns exist for Struts.
Outside of CVE-2013-2251 compromised organizations, still-
vulnerable versions of Struts 2 continue to remain popular.
Worse, Struts version 1-related artifacts still had over a million
downloads in 2013, despite its April 5, 2013 official End of Life.
In other words, finding and fixing serious flaws in open source
does not mean that the repaired versions are the ones that are
used. Is this an awareness problem, or is it something else?

Readers will recall that Availability (A) is calculated as

 MTBF
A =
 MTBF + MTTR

where MTTR is Mean Time To Repair and MTBF is Mean Time
Between Failures. Availability is thus perfect (100%) if either
the item never fails (MTBF goes to infinity) or the item enjoys
instant recovery (MTTR goes to 0). This is where a distinction
between open and closed source may be operationally relevant:
If the MTBF is a constant, then MTTR is what matters. The
2013 Coverity Scan Report [6] showed comparable defect rates
between open and closed source projects (with a slight qual-
ity advantage for open source projects). If project sizes are also
comparable, then MTBF between open and closed source would
likewise be comparable.

We have less data on MTTR, whether for closed or open source,
but it is our educated guess that (once fixed) open source project
repairs are available earlier than closed source projects because
the latter will have additional packaging and deployment steps.
Open source projects are not responsible for deployment of fixes,
only the availability of fixes, and, even then, there is no forcing
function for making fixes available. In a sense, Heartbleed was
a blessing; it showed us just how widespread one error can be
deployed and just how much widespread use led users to assume
that it must have been thoroughly scrubbed by somebody else
by now.

Figure 1: Open source downloads per year measured in billions Figure 2: Graphing the CVSS severity (1–10) for disclosed Struts vulner-
abilities against the year shows generally increasing severity levels.

68  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNS
Almost Too Big to Fail

But to base our discussion on knowledge rather than educated
guesses, Sonatype has begun an analysis of the “project integ-
rity” of the open source codebases it hosts. One focus will, in
fact, be MTTR. It is central to the open source domain because
there are unobvious transitive dependencies between and among
open source components. An early analysis of open source proj-
ects with already identified vulnerable dependencies revealed
some troubling behavior. Direct (aka “1-hop”) vulnerable com-
ponent dependencies were only remediated 41% of the time. Put
differently, more than half (59%) of the vulnerable base compo-
nents remain unrepaired. Folding multiple components into your
projects means inheriting not just the components’ functionality
but also their (largely unrepaired) flaws. For the 41% that were
fixed at all, the MTTR was 390 days (median 265 days). Filter-
ing for just CVSS 10s brought the mean of this subset down to
224 days. And this is just for 1-hop dependencies—there is as yet
no mechanism to cause remediated flaws to flow automatically
through the dependency graph, and there may never be.

Making Remediation Possible
In closed source development domains, the command structure
will know who uses what and can thus ascertain what code
trees have to be rippled when a common component is revised.
This is not the case with open source, nor will it be. As Heart-
bleed made clear, open source is in home electronics, medical
devices, industrial controls, etc. The more widespread the use of
a particular open source library, the more common mode failure
among otherwise unrelated product spaces becomes. An auto
manufacturer can recall a particular model, and know that only
that model has the faulty component. There is no feasible equiva-
lent for an open source library. We thus suggest that, just as a jar
of pickles on the grocery shelf must list its ingredients, products
and services that are assembled from open source components
need to provide a bill of materials so that when an open source
component has a vulnerability, downstream users can tell
whether they are affected and whether a particular remediation
is one they need to consume (directly or indirectly). Ingredients
lists would serve as a framework both for remediation and for
further work in security metrics.

To emphasize the concreteness of these issues, embedded sys-
tems are largely assembled from open source components, have
no field upgrade path once deployed, and had build environments
that were not coordinated with source code control. We have
work to do.

References
[1] Financial Services Information Sharing and Analysis
Center, “Appropriate Software Security Control Types for
Third Party Service and Product Providers”: docs.ismgcorp
.com/files/external/WP_FSISAC_Third_Party_Software
_Security_Working_Group.pdf.

[2] F. Berkman, “Researcher Who Discovered Heartbleed Bug
Donates $15K Reward,” The Daily Dot: www.dailydot.com
/news/heartbleed-neel-mehta-freedom-press-foundation
-encryption.

[3] S. Rosenblatt, “Heartburn from Heartbleed Forces Wide-
Ranging Rethink in Open Source World,” CNET: www
.cnet.com/news/heartburn-from-heartbleed-forces-wide
-ranging-rethink-in-open-source-world.

[4] D. Geer and M. Roytman, “Measuring vs. Modeling,”
USENIX ;login:, vol. 38, no. 6 (December 2013): geer.tinho
.net/fgm/fgm.geer.1312.pdf.

[5] J. Corman, “Intro to HDMoore’s Law”: blog
.cognitivedissidents.com/2011/11/01/intro-to-hdmoores-law/.

[6] Coverity Scan, 2013 Open Source Report:
software integrity.coverity.com/rs/coverity/images/2013
-Coverity-Scan-Report.pdf.

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 69

COLUMNS

/dev/random
R O B E R T G . F E R R E L L

I was reading about the “Do Not Track” initiative on Engadget the other
day. That’s where, along with the page request, your browser includes
an environmental variable or flag indicating that you don’t want your

browsing habits tracked. Now, perhaps I’m leaping to conclusions here (I do
that so often I had to have a hot tub installed for the cramps), but I’m guess-
ing most advertisers are already aware of that. It’s a bit like telling a rabid
dog that you prefer not to be mangled at this time. Unless you have a cat like
“Tara” in California, then bring it on.

Tara is the Internet’s darling as I write this, but by the time you read it I’m sure the meme
will have faded into obscurity; if you care enough, you’ll have to search for it and wade
through stuff about 1930s movies and Buddhism before you find anything related to cats.
Writers have been dealing with publication delays for decades if not centuries; they just
make life that much more interesting, and they’re not at all awkward. So, how is the late May
weather where you are?

Back on task, “Do Not Track” brought to mind a whole host of other opt-outs we should con-
sider implementing. My car, for example, would benefit from a “Do Not Stall” flag. I’d also like
to get a “Do Not Food Poison” flag for use at certain restaurants, along with “Do Not Over-
charge” and “Do Not Expect a Large Tip Because You Left Me Sitting Here without Taking
My Order or Even Anything to Drink for Forty-Five Minutes.”

Perhaps this initiative will spur a whole new series of browser flags. I’m thinking “Do Not
Redirect to Some Stupid Two-Minute Advertising Video When All I Want Is the Current
Temperature” and “Do Not Create Pop-Ups that Obscure the Story I’m Trying to Read”
would be nice. I’d also like a “Do Not Insinuate That Because I Don’t Have the Latest Video
Plugin My Browser Is Hopelessly Non-Compliant” flag. That one really pops my garters.

I was a Web designer back in the mid-to-late ’90s, and I made sure that my clients’ content
was visible in every conceivable browser/platform combination, even though it meant hav-
ing a lot of different systems on hand and a ton of work. Nowadays the lazy so-and-sos just
design their content for one specific system and cast aspersions on you if yours doesn’t hap-
pen to be that one, as though the fact that their content doesn’t display properly is somehow
your fault. I don’t know what sort of advertising model they think that represents, but I call it
“A Product I Will Cross the Street to Avoid Buying.”

The other headline-grabbing news event, currently neck and neck with Tara the cat tongu-
ing out the first baseball, is the promise of dire consequences from the Chinese as a result of
our rather puzzling indictment of five of their nationals for cyber-espionage. If you stop and
think about the way the Internet was designed and the rather cavalier approach we as a com-
munity have taken to security thereon, charging one nation with spying on another takes on
the mantle of a vaudeville act (pause for my younger readers to look that up).

The mise-en-scène is a classroom with five desks occupied by students in school uniforms,
each representing a sovereign nation. They are taking an online exam, and each is obviously
looking at the monitor screen of the student on the right. The student on the right end peri-

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist for the
2011 Robert Benchley Society

Humor Writing Award. rgferrell@gmail.com

70  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNS
/dev/random

odically arises and casually strolls by the student on the left end
on his way to the water fountain. He is apparently quite thirsty.
After one of these trips the student on the left end jumps up and
loudly accuses him of cheating. All of the characters are male,
incidentally, because most women are too smart to fall into this
trap.

The accused now indignantly levels the same charge at the
student to his left. This process repeats sequentially until all
stand accused, at which point they leap upon one on another and
begin a melee with mice, keyboards, and external drives, pum-
meling and attempting to strangle one another with the USB
cords. There is much pulling of hair, ripping of clothing, and use
of shoes as projectiles. During the struggle, the teacher pushes
a key on her own workstation and calmly walks to each desk,
rotating the screen so the audience can see the big fat red “F” in
the center of them. The curtain closes with the crazed student
body trying to cram each other head first into their DVD drives,
yelling “Cheater! Cheater! Cyber Bleeder!”

I suppose I would be amiss (which is as good as a mile) if I failed
to at least mention in passing the infamous Heartbleed bug,
which has caused so much heartache, not to mention heartburn,
in my own era. This figurative deceased equine has already been
subjected to a thorough and prolonged pummeling, so I think I’ll
just bypass the bug itself and dwell on the lessons learned: There

weren’t any. Do you honestly think the next time (and every time
after that) software developers are going to import libraries from
another source they will subject them to a comprehensive secu-
rity review before incorporating them into their own products? I
chuckle derisively at your naïveté. The World Wide Web is built
around the premise that the only way to deal with a mistake is to
make another, worse, one that will draw attention away from the
original.

When will the next big insufficient bounds checking scandal hit?
By the time you read this, I expect. As with Tara, Heartbleed will
probably be relegated to the ancient history archives, as Inter-
netland now seems to regard anything that happened more than
14 days ago as the distant past. Yet another oblique corollary
to Moore’s Law is that the span of time during which any new
technology is considered “bleeding edge” seems to be contract-
ing. It is no longer an exaggeration to say that a newly released
product ordered from an online vendor may well be obsolete, or
at least obsolescent, before it is even delivered to your house. In
some areas of technology, products are obsolete before they even
roll off the assembly line.

In fact, by the time you read this column it will be thought of,
when thought of at all, as a relic from an earlier age. Much like
the author.

XKCD

xkcd.com

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 71

BOOKSBook Reviews
R I K F A R R O W A N D M A R K L A M O U R I N E

The Phoenix Project: A Novel About IT, DevOps, and
Helping Your Business Win
Gene Kim, Kevin Behr, and George Spafford
IT Revolution Press 2013; 345 pages
ISBN 978-0988262591
Reviewed by Rik Farrow

I learned of this book while working on the LISA ’14 tutorial
committee. After reading it, I wondered how I had missed
hearing about it previously. And although this is a novel, it also
provides a deeper understanding of DevOps, something I hadn’t
encountered before.

The plot roughly follows that of Eliyahu Goldratt’s The Goal,
which has become a model for systems management ever since
it was published in 1984. Bill, the protagonist, is the senior IT
guy who has risen to management of the mid-level systems
group. Bill is happy where he is and manages his own group
well, but that safe harbor disappears in the opening chapter,
when his CEO deftly maneuvers Bill into taking the VP of IT
position. The former VP has disappeared under a cloud, and
Bill quickly finds himself having to deal with one impossible
situation after another.

For anyone who has worked in IT, the details of the story will
sound familiar: failed releases, the over-ambitious project, a
release deadline set by marketing, and an IT department that is
not just fragmented, but fractious. Bill gets guidance from a new
board member, who takes him on visits to a smoothly function-
ing factory. Rather than tell Bill what to do, the board member
provides hints and leaves Bill to work things out on his own. In
real life, you could read other Gene Kim books and get a head
start. But Bill progresses through one disastrous release after
another, getting a handle on development, quality assurance,
security, testing, and release management.

I found the book easy to read and breezed through it. If you usu-
ally read novels driven by character development, you will find
just traces of that here. The greatest benefit to reading this is
getting a visceral, on the ground understanding of how work-
place transformation can happen, given the right set of circum-
stances and personalities. The Phoenix Project is not a textbook,
but it still gets across key ideas about controlling the acceptance
of new projects, uncovering chokepoints, and how continuous
integration actually makes software projects more successful
and less expensive.

Penetration Testing: A Hands-On Introduction to
Hacking
Georgia Weidman
No Starch Press, 2014; 531 pages
ISBN 978-1-59327-564-8
Reviewed by Rik Farrow

This is the book I wish I had when I was teaching my two-day,
hands-on Linux security class. At more than 500 pages long,
the book covers a lot more material and many more topics than
I could in two days.

After a brief introduction, Weidman spends a long chapter on
setting up four VMs: one for the pen testing, and three as targets.
Although the pen tester’s VM runs Kali, a Linux distro that
already includes many tools for security, the author takes the
time to explain how to install additional tools that will be used
in exercises throughout the book. The target systems also get
extra attention, with vulnerable apps getting installed. I like this
approach, because it prepares the reader for what’s to come, as
well as encouraging the reader to do more than just read.

The next couple of chapters are the weakest, but they will need
to be there for some readers. I do wonder how many people who
can’t use basic Linux commands will be successful with pen
testing, even when using GUI-based tools like Wireshark, or how
showing someone a short shell script or C program will help.

Once past this point, Weidman progresses rapidly, providing a
quick overview of Metasploit from the command line. In part
two, she guides the reader through vulnerability scanning, port
scanning, and network packet capture. Weidman’s explana-
tions are clear and accurate, if a bit terse. And although she
tells the reader to start up Wireshark as root and “click through
the warnings about using Wireshark as root being dangerous,”
I wished she had explained why: that Wireshark itself can be
exploited while parsing packets, and that being root makes any
exploit much more useful to the attacker. In a book that teaches
about vulnerabilities and exploits, I thought explaining this issue
would both help with the pen tester’s mind-set as well as act as
a warning. I found myself imagining an organization’s security
team exploiting the pen tester’s laptop, something which I know
has been done, including by one of the people Weidman lists in
her acknowledgments. At least Weidman describes running Kali
from within a VM, partially excusing her exclusive use of the
root account for all exercises throughout the book.

72  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

BOOKS

Weidman does a very nice job of explaining how stack-overflow
exploits work, as well as going through examples of how to build
these exploits. She does also point out that stack-overflows only
work on older OS versions, before data execution prevention
(DEP) became the norm for most software. Still, with the use of
examples, she walks the reader through how these exploits work,
essential knowledge for the person who wants to understand
exploitation in the post-DEP and address space layout randomiza-
tion (ASLR) defensive environment. And understanding how to
write exploits forms the basis for modifying existing Metasploit
exploits or writing new ones, which she covers in a chapter.

Weidman has developed the Smartphone Pentest Framework
herself and covers this in the final chapter. SPF works with
Android emulators, whose setup is described in the first chapter,
but Weidman uses the framework to explain how attacks outside
of the simulated environment should work. I did find myself
cringing when she suggested changing the SSH password for the
iPhone (alpine is the root password), but for the most part, her
writing and exposition are solid.

There are also chapters on exploiting Windows and bypassing
antivirus, among other topics.

If you are interested in understanding security from the perspec-
tive of the practitioner—that is, a pen tester or hacker—Penetra-
tion Testing will certainly do more than get you started. For many
people I taught over the years, this book will explain more about
the tools we used then, and about new tools and techniques.

Understanding Computation
Tom Stuart
O’Reilly Media, 2013. 315 pages.
ISBN 978-1-449-32927-3
Reviewed by Mark Lamourine

In Understanding Computation, Stuart sets out to provide some-
thing you don’t often find in the computing aisle of the retail
bookstore chains. Most books in this area are tutorials and refer-
ences designed to achieve a level of popularity by focusing on
the most recent languages and frameworks. Stuart, by contrast,
takes on an Honest-To-God Theory of Computation. Although
this would typically be an academic book, Stuart has put this one
together with the professional computing audience in mind.

Stuart breaks the book into two sections (if you exclude the brief
introduction to Ruby—more on that later).

In the first half, Stuart builds up simple computational machines,
starting with parsers and finite automata and finishing with
the development of a universal Turing machine. He explores the
capabilities and limits of each machine and then investigates
how to extend the machine to the next level.

Stuart has chosen to express the logic of the machines using
Ruby rather than a formal language. He acknowledges that this
approach poses some tradeoffs in clarity, but he thinks this
is offset by the fact that the reader can actually execute and
observe the behavior of the machines he describes. I applaud
the attempt to invite the reader to experiment and explore, but I
think that he might have made the concepts clearer by present-
ing them in proper notation as well as in code. This would have
given a concise representation that could be compared to the
working code. As it is, it can be difficult to separate the topical
content from the Ruby code artifacts.

Stuart spends the remainder of the book exploring the capabili-
ties and limitations of the universal Turing machine. Again, he
starts with the language of computation, this time the lambda
calculus. After producing a working implementation in Ruby,
he shows that the lambda calculus is equivalent to a universal
Turing machine, as are, in the end, several possible alterna-
tive computational models. Again, it would have been clearer to
include the operations and explanation of the lambda calculus in
traditional notation followed by the translation into Ruby.

Finally, in a chapter entitled “Impossible Programs,” Stuart
confronts the truly difficult problems of modern computa-
tion. In a mere 30 pages he treats the identity of code and data,
decidability, and the Halting Problem. Godel’s Incompleteness
Theorem gets mentioned, but there is no real discussion of its
deep implications.

Stuart quotes from and provides a reference to Turing’s original
paper on computability. In at least half a dozen other places, he
makes a passing comment about some other research or infor-
mation that could have added depth to the discussion. In some of
those places, he includes a link to Wikipedia (which I think is a
fine place to learn more), but in others he just moves on.

Stuart has done a fine job presenting the content of this theory,
but the presentation lacks a sense of the significance and wonder
that I find in the idea that my laptop is, conceptually, no more
powerful than a Turing machine. Nevertheless, Understanding
Computation is still the only offering that I’ve seen aimed at
computer professionals, and it will serve that audience well.

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 73

REPORTSConference Reports

NSDI ’14: 11th USENIX Symposium
on Networked Systems Design and
Implementation
April 2–4, 2014, Seattle, WA
Summarized by: Chen Chen, Michael Coughlin, Rik Farrow, Seyed K. Fayaz-
bakhsh, Pan Hu, Chien-Chun Hung, Sangeetha Abdu Jyothi, Rishi Kapoor,
He Liu, Feng Lu, Oliver Michel, Muhammad Shahbaz, Doug Woos, Qiao Zhang

Opening Remarks
Summarized by Rik Farrow

Ratul Mahajan, Microsoft Research, opened with a comment
about how it was nice that we got to see Seattle when it wasn’t
raining. The rain held off until after the workshop concluded.
Ratul went on to say that there was a new record in the number
of submissions, 223, with 38 papers accepted for presentation
over the next three days. The workshop included a new session
track, operational systems track, on Thursday morning. The
workshop this year drew over 250 attendees. Program Commit-
tee members had to review more than 27 papers each; fortu-
nately, said Ratul, no one remembered (or at least commented
on) the promise that each member would have fewer than 27
papers to review.

Ion Stoica, UC Berkeley, thanked Ratul for making his experi-
ence as co-chairperson a pleasant one. Ion announced that the
award for Best Paper went to Mihai Dobrescu and Katerina
Argyraki for “Software Dataplan Verification.” The Community
Award was given to EunYoung Jeong et al. for “mTCP: A Highly
Scalable User-Level TCP Stack for Multicore Systems.”

Finally, the Test of Time awards, for papers published at NSDI
at least 10 years earlier that have had a lasting impact on their
field, went to two papers (chosen by Tom Anderson, Stefan Sav-
age, and Robert Morris of the Test of Time committee): “Oper-
ating Systems Support for Planetary-Scale Network Services”
(better known as PlanetLab today), by Andy Bavier et al., and
“Trickle: A Self-Regulating Algorithm for Code Propagation and
Maintenance in Wireless Sensor Networks,” by Philip Levis et al.

Datacenter Networks
Summarized by Sangeetha Abdu Jyothi (abdujyo2@illinois.edu)

Circuit Switching under the Radar with REACToR
He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari,
Geoffrey M. Voelker, George Papen, Alex C. Snoeren, and George Porter,
University of California, San Diego

He Liu presented REACToR, a hybrid Top-of-Rack (ToR)
proto type that combines optical circuit switching and elec-
trical packet switching to enable high-throughput networks.
Although a 100 Gbps fat-tree would be an ideal choice for
improving the throughput of an existing 10 Gbps datacenter
 network, this is an expensive option. The author mentioned
 previous work that attempted to improve throughput using

optical circuit switching for large flows and drew attention
to the fact that these techniques ignored the performance of
short flows. In order to allow easy expansion of current 10 Gbps
networks to 100 Gbps networks, the authors proposed the use of
REACToR. REACToR combines the best of both worlds—it uses
electrical switching, which allows buffering of packets for low
bandwidth flows, and optical switching, which supports higher
bandwidth for large flows.

In this model, the end hosts maintain a single queue for all
packets belonging to low bandwidth flows destined for a packet-
switched network and a per-destination queue for large flows to
be sent on the circuit-switched network. REACToR sends Prior-
ity Flow Control (802.1Qbb) frames to pause and unpause flows
at the end hosts. Since the link connecting user and REACToR is
100 Gbps, the optical bandwidth is limited to 90 Gbps in order to
accommodate the sum of circuit-switched and packet-switched
transmissions. Performance of the system was evaluated under
various conditions. The TDMA scheduling is invisible to large
TCP flows and guarantees fairness across flows irrespective of
the schedule. The system also responds to demand changes in a
fast and robust manner within 1.5 ms. The difference in perfor-
mance between simulation and real world implementation was
less than 1%. The system also performs well with a skewed work-
load (one flow constituting 50% of the traffic) and a very skewed
workload (a single flow contributing 99% of traffic).

Changhoon Kim, the session chair, pointed out that benefits of
the system depend on the speed and accuracy of traffic demand
estimation. Liu responded that work on traffic estimation is
ongoing. Currently, application-level information is used. Rik
Farrow asked whether the experiment results were based on
simulations only or involved real optical switches and the use of
mirrors for the circuits. Liu replied that the results were based
on a real implementation, and the Mordia switch does indeed
use mirrors. Peter Hill asked about the diameter of the network.
Liu responded that the testing was done on a small network with
eight hosts. Liu also observed that scaling this system to accom-
modate thousands of hosts in a datacenter could be a challenge
and requires further work.

Catch the Whole Lot in an Action: Rapid Precise Packet
Loss Notification in Data Center
Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin, Tsinghua University

Peng Cheng presented cutting payload (CP), a mechanism that
allows precise packet loss feedback. TCP faces several chal-
lenges—TCP incast, out-of-order packet arrival, etc.—and
several mechanisms have been proposed to tackle each of these
problems. But there exists no single solution that can mitigate
all the problems associated with TCP. In order to improve
the performance of TCP, three main challenges need to be
addressed: (1) avoid TCP timeout caused by insufficient ACKs,

74  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

(2) distinguish packet loss and packet delays accurately, and (3)
reduce packet loss detection time.

The authors address these challenges by cutting payload (CP).
Switches use CP to cut off the payload of packets during conges-
tion; only the headers are transmitted to the receivers. Upon
receiving a payload-cut packet, the receiver parses the header
and generates a PACK for the missing payload. The PACK is
transmitted to the sender, which parses the message and triggers
fast retransmission for the dropped payload. The authors showed
that CP only increases resource usage by 2% and delays by 56 ns.
The query completion time improved by 40% using this mecha-
nism. Finally, Peng Cheng mentioned that CP is a TCP-comple-
mentary mechanism that is compatible with other versions of
TCP used in datacenter networks.

Costin Raicui (University Politehnica Bucharest) focused on
the importance of PACK and asked about the need for a response
to the sender. Peng replied that PACK gave the sender more
information regarding lost payloads. Costin then wanted to
know more about the implementation of buffers in the switch.
Peng responded that the switches had byte-oriented buffers of
size 128 kB. The next questioner asked about a scenario where a
bottleneck link is shared by a large flow that uses CP and several
small flows which do not—how would the fairness criteria be
met in this situation? Peng acknowledged that such scenarios
were not tested. Changhoon Kim wanted to know more about the
difference between ECN and CP and was referred to the paper.
Another attendee asked about the choice to make changes at end-
hosts and not use feedback from the switches. Peng answered
that replies from switches would require network-wide changes
whereas CP requires modifications at end-hosts only. Costin
Raiciu returned to make another point: He referred to a scenario
where the switch buffers contain only packet headers with no
goodput in the network. Peng pointed out that CP has high good-
put as demonstrated by the results in the paper.

High Throughput Data Center Topology Design
Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla, University of Illinois
at Urbana—Champaign

Ankit Singla put forward a systematic approach for high
throughput datacenter design. The presentation focused on the
design of throughput-optimal network topologies and dealt with
two main questions: (1) How close can we get to optimal network
capacity? and (2) How can we handle heterogeneity? In order to
compare the performance of networks, throughput is computed
as the solution to a linear program whose objective is to maxi-
mize the minimum flow in the network. Ankit pointed out that
this is a more accurate measure of throughput than bisection
bandwidth. Next, he presented an upper bound for throughput
in a homogeneous network that is inversely proportional to the
average path length. He showed that the throughput of random
graphs is very close to this upper bound.

Next, Ankit dealt with the design of heterogeneous networks
with multiple types of links and switches. The switches in the

network are grouped into two clusters of high-degree switches
and low-degree switches. The key challenges associated with
the heterogeneous topology design for high throughput are
(1) identification of the appropriate interconnection between
the two category of switches and (2) determination of the best
distribution of servers across these switches. Ankit showed that
throughput improved initially when the number of cross-cluster
links increases and then reached a plateau due to the upper
bound imposed by the average path length. This allowed greater
freedom in the cabling of heterogeneous networks. In addition,
throughput was found to be optimal when servers were added in
proportion to the port-count of the switches. Ankit pointed out
that by using this technique of topology design, throughput per-
formance of virtual layer 2 (VL2) topology could improve by 40%.

Tom Anderson (University of Washington) asked whether the
workloads were realistic. Ankit responded that specific work-
loads cannot be representative for all datacenters. The traffic
matrices used in the experiments were within two times the
worst-case traffic matrix. As a follow up, Tom mentioned that
optimizing the network for a particular traffic matrix is a
dangerous trend and requested a clarification on the choice of
the traffic matrix. Ankit replied that the workload is ideal for
a generic high-capacity interconnect that can support a wide
variety of applications. Hence, the results are applicable to any
workload that is nearly uniform. Costin Raiciu inquired about
the fraction of servers that contribute to the workload—the
network is designed for 100% load, but the realistic loads could
be 30%. Ankit replied that the network could be designed for the
expected average load using the proposed mechanism, and the
peaks could be tackled using hybrid approaches such as optical
networks. Vyas Sekar (CMU) pointed out that the shortest path
might not be optimal for traffic engineering. Ankit referred to
results in the paper that show that the performance of packet
level experiments using multipath-TCP is very close to the flow-
level results obtained in simulations.

Debugging Complex Systems
Summarized by Rishi Kapoor (rkapoor@ucsd.edu)

Adtributor: Revenue Debugging in Advertising Systems
Ranjita Bhagwan, Rahul Kumar, Ramachandran Ramjee, George Varghese,
Surjyakanta Mohapatra, Hemanth Manoharan, and Piyush Shah, Microsoft

Ramjee started by describing advertising (ad) systems as large
distributed systems that are complex for two reasons: scale (mil-
lions of queries, users, publishers, ads) and the number of entities
these systems interact with. The paper discusses revenue debug-
ging: Why is revenue down at a given time anomalously, and how
much does it cost?

Ramjee presented three interesting case studies/scenarios
explaining the root cause for revenue anomaly. In the first sce-
nario, a datacenter in Ireland had latency issues, which resulted
in fewer ads being shown and consequent revenue decline. In the
second scenario, revenue loss was caused by buckets using a new
relevance algorithm. Finally, during the papal election, a lot of

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 75

REPORTS

people were searching for “pope results,” but there were very few
advertisers who could show ads for these terms.

Ramjee said they focused on three aspects of these problems: a
novel algorithm for root-cause analysis, attributes for derived
measures (e.g., revenue per search), and they built a real-time
time system for such root-cause diagnosis. For identifying the
root cause of an anomaly, they picked a metric which deviated
most from the expected value (JS-divergence). Throughout the
talk, Ramjee gave examples of scenarios where derived measures
such as cost per click (unlike individual metrics such as clicks or
revenue) were able to detect anomalies by capturing correlations
between the different metrics.

Ramjee also presented a demo of their tool: Adtributor. In their
evaluation they show that their tool has an accuracy of more
than 95% and saves troubleshooting time by 1+ hour per anomaly.

Evgeny Vinnick (Simon Fraser) asked whether they could expand
this application to new markets and whether the code was avail-
able for experimentation. Ramjee replied that currently evalua-
tion is done on four markets, but the system is running on more
than 20 markets. Ramjee also said that the code is not currently
open sourced, but they can consider that in the future. Someone
asked whether the data collected by Adtributor could be used to
create trending analysis: for example, could this tool be used to
move an advertisement from x side to y side to earn more adver-
tising revenue? Ramjee replied that there are lots of comple-
mentary problems, which are related but also distinct. They
could use Adtributor but the question asked falls into a separate
problem. The same person asked about network latency, and
Ramjee replied that the network latency bubbles up to the top
layer via the datacenter metric. Were there different datacenter
metrics with a layer-wise approach? Ramjee replied to the small-
est set question: If all your results are 100 elements long, but
only one or two elements are the root cause, the smallest set is in
regard to that. Ravi Bhoraskar asked whether they could apply
this tool to any kind of troubleshooting: for example, could Azure
use it? Ramjee replied that they could use it to detect failures and
slowdowns in Azure or more generally. Ramjee mentioned the
Bodik paper [Eurosys 2010] and added that these principles are
fundamental, but he couldn’t claim how easy it would be to port
to other systems.

DECAF: Detecting and Characterizing Ad Fraud in
Mobile Apps
Bin Liu, University of Southern California; Suman Nath, Microsoft Research;
Ramesh Govindan, University of Southern California; Jie Liu, Microsoft
Research

Bin Liu started by explaining how the ad ecosystem works. First,
the app developer registers with an ad network, which then pro-
vides an ad plugin that the app developer incorporates into the
app. The ad network selects an ad to be displayed to a user based
on the user’s location, interests, etc. When a user clicks on an ad,
the ad network pays the app developer. Thus the app developer
has an incentive to commit ad fraud by changing the way the ad

is displayed (e.g., placement layout, invisible impressions) so that
the user accidentally clicks on it. Bin Liu showed visual screen-
shots of such ad frauds. The focus of their work is to build an
automated system that can detect such frauds.

The main challenge with building such a system is that it would
need to scale to thousands of visually complex apps (an almost
infinite number of pages and tens of clickable elements) and
accurately and quickly identify the fraud. Other technical chal-
lenges include the sliding screen problem and the fact that the
z-index is not available to identify hidden ads. Their automated
system, DECAF, analyzed 50k phone apps and 1150 tablet apps.
The system takes as an input an app, uses an automated UI
navigation (Monkey), and outputs whether the app may contain
placement frauds.

Someone asked whether they assume that DECAF can cor-
rectly extract all UI actions. Bin replied that they don’t make
that assumption, and there are indeed some apps that they can’t
recognize, mostly because the Windows Automation Framework
can’t identify them. Evgeny Vinnick asked whether they would
be able to detect fraud if publishers use ads from different pro-
viders, like Google and Microsoft. Bin replied that they wouldn’t
be able to detect fraud for other providers. The system they
designed needs a sub-checker for each provider. If another pro-
vider has a similar policy, they can use the same sub-checker but
otherwise they will need to extend it. Someone asked whether
the application developer could bypass their system, using tech-
niques that Monkey can’t detect such as a captcha (e.g., typing in
three numbers to go to the next screen). Bin argued that they can
design a new sub-checker to avoid application bypass. Microsoft
is also working on adding a smarter ad-control checker. Bin added
that their work is focused on speed, and they get better benefits
than other tools. Ravi Bhoraskar asked why they couldn’t use the
page class to determine structure—for example, two different
post pages on Reddit would be in the same class. Bin argued that
the page class can’t be used to determine things dynamically. It
is necessary to compare pages at runtime.

I Know What Your Packet Did Last Hop: Using Packet
Histories to Troubleshoot Networks
Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières,
and Nick McKeown, Stanford University

Nikhil Handigol started his talk by giving an example of a simple
network bug—one that required hours of manual network debug-
ging to identify the root cause and fix the issue. He argued that
the current state-of-the-art tools in network debugging, tools like
ping and traceroute, are tedious to use and require deep under-
standing of the tools and the system. Moreover, these methods
are Band-Aid solutions—that is, they don’t guarantee that they
will be helpful in solving the outage. Nikhil emphasized that
these tools provide close to zero visibility on what is happening
in the system. He further argued that complete visibility of every
event in the network is needed, which is challenging because this
amounts to a huge amount of data to collect, process, and store.

76  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

Nikhil claimed that they can achieve complete visibility using
packet histories (i.e., the path taken by a packet, modifications
it encountered, and the current switch state) and a platform the
authors built called NetSight. These histories can be used to
diagnose faults in the system—for example, dropped/lost pack-
ets. Nikhil mentioned that naive implementation would result in
huge overhead (of total bandwidth), and storing packet informa-
tion would result in a huge storage costs. Nikhil described how
they implemented such a solution using diff-based history and
MapReduce-style parallel computation.

The authors developed four applications: NDB, netwatch (a
live network debugger), nprof (a hierarchical network profiler),
and netshark (a network-wide path-aware packet logger). Their
evaluation demonstrated low overhead and the feasibility of
complete network visibility. Nikhil mentioned that code is avail-
able at the following link: http://yuba.stanford.edu/netsight.

Aaron Gember (University of Wisconsin) asked how they ensure
that they don’t lose the tags on packets. Nikhil said that it is
necessary to ensure that these tags are immutable. This should
be enforced at the controller or proxy layer. Rodrigo Fonseca
(Brown University) asked about the modifications needed at the
switches to generate the post cards, and whether the method
is very similar to sFlow, which would make it very slow. Nikhil
replied that their work is different from sFlow in the way they
correlate the exact state present on the switch. Unlike sFlow,
the proxy adds a few extra actions to generate a copy of the
packet header in the data plane and not in the control plane.
Rodrigo followed up to ask whether the operations mentioned
by Nikhil are standard OpenFlow actions. Nikhil mentioned
that their prototype works with unmodified prototype Open-
Flow switches; currently, OpenFlow doesn’t have the ability to
truncate the headers in hardware, making it highly inefficient as
they copy entire packet headers. Rodrigo then asked whether the
numbers mentioned in the talk, 31% and 7% compression, were
with the prototype. Nikhil mentioned that these numbers are not
for the prototype.

Timothy Wood (George Washington University) asked how
they use these packet histories. Nikhil showed a few packet
filter examples to detect reachability, isolation, and forwarding
loops in networks. Timothy followed up by asking whether it is
clear what these queries should look like. Nikhil mentioned that
packet history appears like a string and that you apply a filter to
this string using regular expression.

Libra: Divide and Conquer to Verify Forwarding Tables in
Huge Networks
Hongyi Zeng, Stanford University; Shidong Zhang and Fei Ye, Google;
Vimalkumar Jeyakumar, Stanford University; Mickey Ju and Junda Liu,
Google; Nick McKeown, Stanford University; Amin Vahdat, Google and
University of California, San Diego

Hongyi Zeng started his talk with a graph showing three com-
mon problems in Google datacenters. These problems are miss-
ing forwarding entry, forwarding loops, and black holes. Each

of these trouble tickets is very expensive because it takes a very
long time to debug them. Hongyi also mentioned that diagnos-
ing these problems is difficult because it involves complex
interactions between multiple protocols on the same switch and
complex interactions between states on different switches. This
arises from uncoordinated writes in the system. Hongyi men-
tioned that the static data plane verification does not work for
datacenters for two reasons. First, in a large datacenter network
the forwarding state is constantly changing, which makes it
hard to take an accurate snapshot of the state for static analysis.
Second, static analysis tools do not scale for large datacenters.

Hongyi said that they created a tool (Libra) that is fast and scal-
able and that can quickly detect loops, black holes, and other
failures in large networks. First, Libra captures stable and
consistent snapshots across large network deployments. Second,
in contrast to prior tools that deal with arbitrarily structured
forwarding tables, they substantially improve scalability by
assuming packet forwarding based on longest prefix match-
ing. The authors focused on the problem of obtaining a stable
snapshot across thousands of switches. The gist of their solution
is that they only consider the stable and consistent snapshots
(discarding shady areas) and thus avoid false positives. Libra
uses a divide and conquer algorithm that can be implemented
using MapReduce to overcome the large scale of datacenters.

The data set is open sourced at http://eastzone.github.io/libra/.

Juan Francisco asked Hongyi to compare the previous paper’s
complete dynamic approach with their static analysis. Hongyi
mentioned that these approaches solve two different sides of the
problem. The static analysis is useful for checking functional
problems that can be solved using a forwarding table. Perfor-
mance problems are another class of problem that can be tackled
only by using dynamic checking. Other sets of problems where
incoming packets modify network state can only be solved in a
dynamic state. Hongyi concluded that these approaches apply
to different problems. Someone else asked about accounting for
NTP inaccuracies, and whether there are any hardware switches
that implement Lamport clocks (i.e., precisely the problem that
solves the snapshot problem). Hongyi said that this problem
can be solved if these systems have global clocks. NTP is more
popular and deployed on the switches, and by adjusting the epsi-
lon value they can achieve the same effect. Someone else asked
whether they could gather events from the black box switches or
required SDN switches. Hongyi answered that Google uses SDN-
based switches. With traditional switches, it is hard to dump the
state of the network, and you can’t subscribe to the network. The
final question was whether they could use the tool to do testing
on controller software. Hongyi replied that it could be used as an
independent checker to check the rules.

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 77

REPORTS

Verification and Testing
Summarized by Seyed K. Fayazbakhsh (seyed@cmu.edu)

Software Dataplane Verification
Mihai Dobrescu and Katerina Argyraki, École Polytechnique Fédérale de
Lausanne

Awarded Best Paper!

Katerina Argyraki explained that software data planes are com-
posed of packet processing elements. This is expected to make it
easier to reprogram network functionalities. But in reality, bugs
are present. The authors wanted to be able to take the binary
along with the properties of interest, have a tool to verify the
properties, and do so by adopting symbolic execution. Essen-
tially, a section of code is represented using a tree that branches
where the actual code branches. Exploring a path means exam-
ining the properties along the path. The problem with a naive
application of symbolic execution is path explosion. The use of
composition enables exploration of a subtree only once using
domain-specific knowledge. The opportunity here is to utilize
the pipeline structure of the data plane, which means usually
there is no shared mutable state across data-plane elements for
a packet.

The problem is that loops make reasoning about data-plane
elements in isolation difficult (e.g., going over the IP options of a
packet). The solution to this challenge is to share a small amount
of state information between loop iterations. Another challenge
is that there are many possible values that data structures may
take. The solution here is to make explicit APIs by the program-
mer to enable data-access decomposition. A hash table and
longest-prefix-match table are the proof-of-concept data struc-
tures that the authors implemented. The downside is that they
cannot use dynamic memory allocation if they want to be able to
verify the data structure. They have proved bounded instruction
and crash freedom for Click data planes.

Costin Raiciu asked about the need to change the Click code and
binary to make it work. Katerina answered that they did not need
to change Click itself, but they had to change the loop struc-
ture part of metadata, which took a few lines of code. They also
needed to extract data structures (e.g., for a NAT) using APIs.
Costin then asked about whether the authors had any plans to
build on this work, since what was done seemed practically lim-
ited. Katerina answered that they did support elements such as
IP routing elements and NAT boxes. These are simple, but exist-
ing tools cannot capture them. Someone from Princeton asked
what kind of interface would be needed to add to data structures.
Katerina answered that key-value store interfaces were required
to read or write or expire a value. Any well-defined interface
would do. Someone asked about how easy it would be to deter-
mine verification requirements. Katerina said that the vision is
that admins should not be doing this. Rather, the programmers
should follow the authors’ guidelines.

NetCheck: Network Diagnoses from Blackbox Traces
Yanyan Zhuang, Polytechnic Institute of New York University and
University of British Columbia; Eleni Gessiou, Polytechnic Institute of New
York University; Steven Portzer, University of Washington; Fraida Fund and
Monzur Muhammad, Polytechnic Institute of New York University; Ivan
Beschastnikh, University of British Columbia; Justin Cappos, Polytechnic
Institute of New York University

Justin Cappos began by saying that applications like Skype are
complicated to troubleshoot. Candidate solutions include using
tools like ping or Wireshark, or trying to model apps and network
elements to try to find bugs. These solutions are not completely
practical. The insight in NetCheck is that humans make mis-
takes but not perfectly random mistakes. So we use tools like
ktrace or strace for capturing system traces and then process
and order these logs. This lets us diagnose problems. A trace is a
locally ordered series of system calls. Each call has arguments
and return values. Getting the exact global timestamps across
traces captured in different locations is very difficult; we just
need an approximation, though, as long as the extracted ordering
is equivalent to the ground truth. NetCheck reconstructs what
actually happened in the network using return values to infer the
correct orders.

The network model is a simulated invocation of a system call.
The runtime of the ordering algorithm is a linear function of the
trace size. The fault classifier component of NetCheck decides
what to output as the relevant information. We can configure
what level of detail we want to receive. For evaluation of Net-
Check, the authors reproduced reported bugs from bug trackers
and found more than 95% of the bugs. NetCheck is extremely fast
for logs larger than 1 GB.

Minlan Yu (University of Southern California) asked whether
NetCheck needed the complete trace. Cappos answered no,
NetCheck can deal with missing information. Wyatt Lloyd
(Facebook) asked whether NetCheck works only for client-
server applications and wondered about multi-party settings.
Cappos answered that NetCheck could handle such scenarios.
Someone from LinkedIn asked about performance issues, not
just connectivity. Cappos answered that performance bugs were
not targeted in this work. Someone asked how middleboxes come
into the picture. Cappos responded that they can detect the prob-
lems in the middle as long as the applications are written to work
with middleboxes.

Exalt: Empowering Researchers to Evaluate Large-Scale
Storage Systems
Yang Wang, Manos Kapritsos, Lara Schmidt, Lorenzo Alvisi, and Mike Dahlin,
The University of Texas at Austin

Yang Wang presented Exalt, a library that gives back to re-
searchers the ability to test the scalability of today’s large stor-
age systems. Researchers usually do not have access to enough
resources to test storage systems. The problem gets worse
because sometimes the scale of the required test resources
grows superlinearly with the system size. Quite often the I/O
is the bottleneck, so we cannot simply add more resources. We

78  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

need to abstract away data to scale the test method. The authors
use data compression to solve this problem. The requirements
for compression here include CPU efficiency, high compression
ratio, and losslessness. Furthermore, the compression algorithm
should be able to work with mixed data and metadata.

Our algorithm uses Tardis compression. Tardis allows data to be
identified and efficiently compressed even at low-level storage
layers that are not aware of the semantics and formatting used
by higher levels of the system. This compression enables a high
degree of node co-location, which makes it possible to run large-
scale experiments on as few as a hundred machines. The authors
used Exalt to identify several performance problems in HDFS
and HBase.

Minlan Yu noted that the authors considered single nodes; what
about the case of multiple nodes communicating with each other,
and how efficient would the system be? Yang Wang answered
that the work could not capture many nodes cooperating with
each other. Wyatt Lloyd asked whether there were scalability
restrictions with very large systems. Yang Wang answered that
the authors could not guarantee full coverage, which would be
the case with other tools, too. Someone from LinkedIn asked
whether the authors considered a bottleneck caused by the
hardware itself, such as network cards, when a lot of servers
were emulated. Yang Wang answered that the implementation
currently would not support that but that the authors were plan-
ning to consider a device-modeling approach to incorporate, for
example, models of disks.

Security and Privacy
Summarized by He Liu (h8liu@cs.ucsd.edu)

ipShield: A Framework for Enforcing Context-Aware
Privacy
Supriyo Chakraborty, Chenguang Shen, Kasturi Rangan Raghavan, Yasser
Shoukry, Matt Millar, and Mani Srivastava, University of California, Los
Angeles

Supriyo Chakraborty pointed out that some cell phone appli-
cations that provide utility to users read sensor data (e.g., to
monitor user fitness); these applications can also infer sensi-
tive information from the sensor readings (like user password)
and hence violate user privacy. ipShield is an inference firewall
that protects users from such attacks. Different from previous
protection systems that statically restrict sensor data accessing,
ipShield recommends privacy sensor accessing rules based on an
inference whitelist/blacklist of higher-level privacy abstractions.

To use ipShield, a user first specifies an inference whitelist and
a blacklist with priorities assigned to each inference. ipShield
then will build the sensor-accessing rules based on an accu-
racy table. The table lists the inference accuracies that an
application can achieve with different combinations of sensor
readings. The recommended rules that ipShield outputs tend
to maximize the accuracy of the whitelisted inferences and
minimize the accuracy of the blacklisted inferences. Based on

the recommendation, users can manually override the rules and
create their own fine-grained policies.

Supriyo then talked about the complexity of implementing
ipShield on Android systems, and showed the latency intro-
duced and memory overhead of running ipShield. Source code of
ipShield can be downloaded at http://tinyurl.com/ipshieldgit.

Jaeyeon Jung (Microsoft Research) asked how ipShield cap-
tures the correlations of different inferences, since information
on one inference (such as location) might disclose information
on another (such as activity). Supriyo said that in this paper,
ipShield does not model it, but the team was in the process
of integrating these correlations. Another person asked how
ipShield tracks indirect data flow. For example, an application
that has access to the GPS sensor can transfer the sensor data
to another application via the storage card. Supriyo answered
that as an extension to ipShield, they were trying to perform
static analysis on the applications to track such data f lows.
Seungyeop Han (University of Washington) asked how ipShield
could cover all possible inference types. Supriyo answered that
crowd-sourcing could play a role here, but that is hard in general
because important inference types in the future could be cur-
rently undefined.

Building Web Applications on Top of Encrypted Data
Using Mylar
Raluca Ada Popa, MIT/CSAIL; Emily Stark, Meteor, Inc.; Steven Valdez, Jonas
Helfer, Nickolai Zeldovich, and Hari Balakrishnan, MIT/CSAIL

Raluca Ada Popa explained that Web applications store sensi-
tive data on servers, but it is challenging to protect the data
from attackers who could have full server access. To handle this
threat, Raluca presented Mylar, a framework that stores data
encrypted on untrusted servers, where the data is only decrypted
in a user’s browser and presented via verified Web applications.
On the untrusted server, Mylar stores user data with different
encryption keys, yet the framework allows data sharing among
multiple authorized users and data searching across multiple keys.

Raluca showed how Mylar works using a chat room example.
First, Mylar generates the Web pages on the client side with
certified Web application code (rather than on the server
side). Since the server only acts as remote storage for signed
code and encrypted data, it cannot tamper with the Web page.
Second, Mylar manages shared data with a principal graph that
is enforced by encryption key chains of certified keys. Users
encrypt their data with different keys based on the principal
graph. Third, Mylar introduces a new encryption scheme that
enables multi-key search. If a user knows two keys, it can com-
pute a “key delta” of the two keys and send it to the server, where
the server can morph the encrypted data from one key to another
so that searching is possible in encrypted form. With this setup,
Mylar protects a user’s data from other users and also fully com-
promised servers.

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 79

REPORTS

Implemented in 9000 lines of JavaScript and C++, the devel-
oper’s effort to use Mylar is around 36 lines of code change on
average, and the performance overhead introduced is also mod-
est for Web applications. During the presentation, the Power-
Point slide failed to show the performance overhead figure, but
Raluca managed to describe the results to the audience in her
own words without the figure. The implementation can be down-
loaded from http://css.csail.mit.edu/mylar/.

Regarding the chat room example, one attendee asked whether
two chat rooms created by the same user would share the same
key. Raluca responded that two different chat rooms have dif-
ferent keys, and this depends on how the user/Web application
chooses to handle it. Another attendee asked why some service
providers that make profits from looking at user data would
want to use Mylar. Raluca said that although there are clouds
that make profits from user data, there are also clouds that rent
resources to users. Mylar fits the second type; enabling the first
type over encrypted user data is interesting future work. Finally,
Sophia Xiao Wang (University of Washington) asked about
Mylar’s trust base. Raluca responded that those who use Mylar
trust their own machines and Web browsers, not to mention the
client-side code of the Web application developer.

PHY Covert Channels: Can You See the Idles?
Ki Suh Lee, Han Wang, and Hakim Weatherspoon, Cornell University

In this talk, Ki Suh Lee presented a covert timing channel called
Chupja (“spies” in Korean) that works at the physical layer, with
high bandwidth (100s Kbps), low bit error rate (less than 10%),
and very hard to detect by upper-layer software. The threat
comes from a passive adversary in the middle, equipped with
commodity servers and NICs, trying to detect and monitor the
communication between a sender and a receiver who want to
exchange secrets. Both the sender and the receiver have full
control of their own physical layers.

The design of Chupja is simple: It encodes information into a
packet stream of the same packet length and inter-packet gaps
(IPG) by varying the length of the gaps, where a slightly longer
gap encodes a 1 bit and a slightly shorter one encodes a 0. Chupja
is implemented as 50 lines of C code on top of SoNIC [NSDI ’13],
a software-defined network interface card that has full control
of the physical layer.

Through evaluations, Lee showed that, throughput-wise, Chupja
can achieve 81 Kbps of covert throughput over 1 Gbps overt
throughput. Robustness-wise, the bit error rate increases with
the number of hops on the route, but with a larger distance on
the two coding points (the time difference between a 0 gap and
1 gap), Chupja can achieve a bit error rate of less than 10% even
sharing the link with external traffic and, at the same time, still
remain undetectable to software that runs on commodity servers
that only have kernel timestamps for packet timing. The imple-
mentation can be downloaded from http://sonic.cs.cornell.edu.

Dongsu Han (KAIST) asked two questions: For the covert chan-
nel to remain undetected, the overt channel has to look innocent,
but how is that done? Lee responded that the overt channel can
simply transmit upper-layer application data as a cover. The
second question was does it work with radar? Lee responded that
Chupja’s timing encoding scheme is general and can be applied
to many communication channels.

cTPM: A Cloud TPM for Cross-Device Trusted
Applications
Chen Chen, Carnegie Mellon University; Himanshu Raj, Stefan Saroiu, and
Alec Wolman, Microsoft Research

Chen Chen stated that mobile devices have started to use
trusted hardware, such as the Trusted Platform Module (TPM).
However, protecting data with TPM across multiple devices
is hard, because TPM-created keys are bound to a single TPM
chip. cTPM (short for cloud-TPM) provides a solution for this.
It embeds an additional root key pre-shared with the cloud. This
enables seamless sharing of TPM-protected data with the cloud’s
assistance. It also provides additional benefits, such as a fast and
large remote NVRAM storage and a trusted real-time clock.

One alternative to cTPM is to leverage secure execution mode
(SEM), which is TPM’s extensibility mechanism. However, SEM
suffers from performance and engineering overhead, and lack of
support on mobile devices. Instead, cTPM trusts the cloud, and
provisions a unique random seed value pre-shared with the cloud.
Based on this shared seed value, cTPM deterministically gener-
ates a “cloud root key” (CRK) and a “cloud communication key”
(CCK). With these keys, the cloud can securely distribute shared
keys to multiple cTPMs. The shared key is encrypted by the
CRKs, and the communication channel is protected by the CCKs.

The cloud can also offer remote NVRAM storage. To handle
disconnections and network latency, the cTPM also maintains
a cache of the remote NVRAM storage. Each cache entry in
the cTPM has a time-to-live field that dictates when the entry
becomes stale. The untrusted OS and applications are respon-
sible for re-syncing the cache; the synchronization protocol is
protected with the CCK shared between cTPM and the cloud.
Finally, a trusted clock can be implemented simply as a special
NVRAM entry updated by the cloud. To offer this functional-
ity, the cTPM proposes three new commands over the TPM 2.0
specification, and the protocol is verified with ProVerif.

Chen’s implementation of cTPM is 12x faster than a typical
hardware TPM for creating 2048-bit RSA keys; this is because
software-based entropy source and crypto computation (on the
cloud) are much faster than that of a TPM chip. Chen’s team
reimplemented Pasture [OSDI ’12] and TrInc [NSDI ’09] on top
of cTPM as application demos.

One attendee mentioned that by storing the key on the cloud,
the cTPM now provides a security property inherently different
from TPM. A cloud compromise would inherently be a cTPM
compromise. Chen responded that cTPM works as an addition

80  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

on top of the current TPM design. While a cloud compromise
would affect the root key pre-shared with the cloud (including
the CRK and CCK), the unshared TPM-only root keys (e.g., the
storage and endorsement keys) would remain safe. Also, making
the cloud trusted is an active research area; emerging technology
like Intel SGX could help with this issue.

Posters
First group summarized by Doug Woos (dwoos@cs.washington.edu)

Garbage Collection and Heap Growth Heuristics for
Mobile Systems
Gabriel Arellano, Eduardo Dragone, Md. Jahid, Rogelio Ochoa, David Pruitt,
Adrian Veliz, and Eric Freudenthal, University of Texas at El Paso

Garbage collection time represents a large problem for the per-
formance and responsiveness of Android applications. Garbage
collection is triggered in response to heap growth. The authors
propose an alternative GC heuristic which allows the heap to
grow and limits collection to at most once in a given time period
(which they set to two seconds for evaluation). Their results were
preliminary, but they found that with their policy, applications
experienced no prolonged pauses and only modest additional
heap usage.

GENI: Global Environment for Network Innovation
Vicraj Thomas, Niky Riga, and Sarah Edwards, BBN Technologies

GENI is a global-scale research testbed for networking and dis-
tributed systems projects. Similar to PlanetLab or VICCI, GENI
allows researchers to provision virtual machines, OpenFlow-
enabled switches, and WiMax base stations at many sites at US
universities. Researchers can configure, via a simple drag-and-
drop UI, multiple independent VLANs. GENI is now available
for research use and is currently being used for multiple cloud-
computing projects.

Online Censorship Resistance with freedom.js
Will Scott, Raymond Cheng, Arvind Krishnamurthy, and Thomas Anderson,
University of Washington

The authors present freedom.js, a system for peer-to-peer
communication in the browser. freedom.js is implemented in
JavaScript and enables cross-platform communication. The
authors have built several applications, including a file-sharing
application, a VPN in which a user’s traffic is routed through his
or her friends, and activist.js, a system for avoiding censorship
by enabling peer-to-peer access to blocked Web sites.

User Scripting on Android Using BladeDroid
Ravi Bhoraskar, University of Washington; Dominic Langenegger, ETH
Zurich; Pingyang He and Michael D. Ernst, University of Washington

User scripting, as enabled by Greasemonkey and other site-
modifying browser extensions, has become an important part
of the way users interact with the Web. BladeDroid uses byte-
code rewriting and dynamic class loading to bring the same
functionality to Android applications, allowing users to modify
application behavior without the assistance or permission of the
application developer. The authors have written several exten-
sions, including an ad blocker and an input automation system.

A Platform for At-Scale Wideband UHF MU-MIMO
Systems
Ryan Guerra, Narendra Anand, and Edward W. Knightly, Rice University

The authors present a platform for research into wideband net-
working. Their card array consists of four Wideband UHF Radio
daughter-Cards (WURCs), as well as four standard WiFi anten-
nas; each radio is programmable using the WARP Software-
Defined Radio system. To demonstrate the system, the authors
implemented an application that measures and displays both
UHF and WiFi channel capacity.

Enabling Multi-Layer Provisioning and Optimization for
Core Transport Networks with Unified Packet-Optical
Control Plane
Abhinava Sadasivarao, Infinera Corporation; Henrique Rodrigues, University
of California, San Diego; Sharfuddin Syed, Chris Liou, and Sivaram
Balakrishnan, Infinera Corporation; Andrew Lake, Eric Poyoul, Chin Guok,
and Inder Monga, Energy Sciences Network; Tajana Rosing, University of
California, San Diego

The authors present a system for provisioning and optimizing
network paths in Tier-1 networks that include both packet-
switching and optical components. The system is implemented
on top of the Floodlight OpenFlow controller and allows the use
of unmodified OpenFlow for data path programming. Rather
than having to consider optical transport separately, the system
maps practical transport concepts to OpenFlow flow abstrac-
tions. They have implemented the system on actual packet-based
and optical routers, and demonstrate it with a bandwidth-policy-
based optimization system.

Ib-KV: Using Infiniband Effectively for Key-Value Services
Anuj Kalia and David G. Andersen, Carnegie Mellon University; Michael
Kaminsky, Intel Labs

The authors implement a key-value store on top of Infini-
band’s RDMA primitives, and demonstrate that by making two
unconventional design choices they can achieve significantly
better latency and throughput than similar systems (FaRM and
Pilaf) on read-intensive workloads. First, Ib-KV client requests
begin with a write operation rather than a read; clients write
the request directly into server memory. Second, the server uses
RDMA’s built-in messaging system for its response, replying
with a SEND message over an unreliable datagram transport.
The primary benefit of these decisions is to avoid multiple round
trips when making a request.

Second group of posters summarized by Chen Chen (chen.chen@inf.ethz.ch)

WiSense: A Client-Based Framework for Wireless
Diagnosis
Ashish Patro, Prakhar Panwaria, and Suman Banerjee, University of
Wisconsin—Madison

WiFi technology has been extensively deployed in homes and
enterprises. Today, however, WiFi networks suffer from several
performance issues, such as RF coverage, WiFi link/non-WiFi
interference, traffic hotspots, channel contentions, etc. For
users to better identify location-specific WiFi problems, the
authors built an Android-based platform called WiSense, which

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 81

REPORTS

can monitor WiFi network status without access points. Current
WiSense implementation includes a NEXUS 7 device and an
external USB card to collect fine-grained RF statistics. WiSense
supports spectrum energy level monitoring, non-WiFi activity,
per- channel airtime utilization, neighboring WiFi networks,
aggregate per-link statistics, and active network measurements.
The authors have demonstrated these features during demo ses-
sions.

Pruning Masstree
Huanchen Zhang and David G. Andersen, Carnegie Mellon University;
Michael Kaminsky, Intel Labs

Key-value stores are critical building blocks behind many cloud
and network services like Facebook. The authors focus on build-
ing a space-efficient, high-performance key-value store that also
enables range queries. The underlying data structure is called
Masstree, which is a concatenation of layers of B+ trees that
 conceptually form a trie. The authors further designed pareto-
optimal improvements to increase performance and reduce
memory consumption, including designing more efficient mem-
ory allocation and garbage collection to save memory consump-
tion, and serializing the B+ tree into a sorted array with binary
indexing for higher performance. Preliminary results show that
key-value stores could achieve 1.2 million items/sec with only
around 200 MB memory consumed, and the designed improve-
ments help increase the performance for range queries up to 3x.

Making the Live Network the Honeypot
Michael Coughlin, Oliver Michel, and Eric Keller, University of Colorado,
Boulder; Adam J. Aviv, United States Naval Academy

Today’s dedicated honeypots usually have different network
topology, different applications, and different data than pro-
duction networks. The differences not only leave the honeypot
distinguishable from the production networks, but also make
it difficult for network administrators to monitor the effects
of attacks on production networks. In this work, the authors
propose to combine live migration technique and the SDN to use
the production networks as honeypots while isolating it from
the attackers. According to their method, each time an attack
is identified, the victim machine will be cloned to isolate the
attacker from the production networks. The attack traffic will
also be isolated from the production network by SDN. Finally,
fake data are provisioned to replace actual data on the original
machine to protect sensitive data. The authors have partially
implemented the design based on KVM offline migration and
SDN traffic dissection on top of Floodlight.

Towards an Open Middlebox Platform for Modular
Function Composition
Shinae Woo, Korea Advanced Institute of Science and Technology (KAIST);
Keon Jang, Microsoft Research; Dongsu Han and KyoungSoo Park, Korea
Advanced Institute of Science and Technology (KAIST)

As the features of middleboxes continue to diversify, software-
based middleboxes, which help consolidate multiple function-
alities into a single box, have become increasingly popular
over hardware-based middleboxes. However, the authors have

 identified three challenges for implementing software-based
middleboxes. First, existing network stacks lack support for
exacting flow-level information. Second, existing software
stacks lack support for diverse transport-layer or application-
layer events. Third, existing platforms do not provide program-
mable pipelines to process packets. In this project, the authors
aim to provide a software-based middlebox development plat-
form with three key building blocks—flow management, user-
defined events, and module composition—to effectively address
key issues in middlebox development.

Erwin: A Low-Latency Network Monitoring Platform
Jeff Rasley, Brown University; Brent Stephens, Rice University; Colin Dixon,
Eric Rozner, Wes Felter, Kanak Agarwal, and John Carter, IBM Research—
Austin; Rodrigo Fonseca, Brown University

In software-defined networks (SDN), the state-of-the-art
network measurement system (sFlow) takes hundreds of milli-
seconds to collect a view of network conditions, which is much
longer than installing a new route. The authors repurpose the
port mirroring features provided by switches to efficiently
produce traffic samples by oversubscribing the mirror ports.
The mirror ports of different switches are connected to a col-
lector, which is responsible for determining input/output ports
for the packets, estimate the flow rates based on TCP sequence
numbers, and answer queries about network status. The result-
ing measurement latency is demonstrated to be 250 ms–6.5 ms
compared to current 100 ms–5 sec latency.

WiFi Mobility without Fast Handover
Andrei Croitoru, Costin Raiciu, and Dragos Niculescu,
 University Politehnica of Bucharest

WiFi networks are mostly static networks today, and mobile
devices moving across different WiFi networks suffer from
WiFi handover. The authors focus on reducing the handover
duration for WiFi networks on mobile devices. The key idea is to
leverage multi-path TCP to simultaneously connect to all avail-
able WiFi access points to avoid WiFi handover. The authors
also demonstrate by experiments that the TCP congestion-
control algorithm could well handle the interference caused
by using a single channel and still provide high throughput.
The authors also discuss ways to support multiple channels on
mobile devices: using multiple NICs and using a channel switch
to emulate multiple NICs.

Efficient Deployment of Network Management Policy
Using Distributed Database Abstraction
Kamran Ali Akhtar, National University of Sciences and Technology, Pakistan;
Muhammad Shahbaz, Georgia Institute of Technology; Saad Qaisar, National
University of Sciences and Technology, Pakistan

The basic observation made by the authors is that the flow tables
for controllers in software-defined networking (SDN) can be
abstracted as relational databases. First, the controller would
support Create, Read, Update, and Delete (CRUD) operations
on the flow tables. Second, the flow tables on controllers must
maintain Atomicity, Consistency, Isolation, and Durability

82  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

(ACID) properties. As a result, the authors propose to leverage
existing Distributed Database Management System (DDBMS)
schemes to manage flow tables for SDN and SQL as the inter-
face to manipulate the flow rules. DDBMS could further provide
features, including transaction validation, check-pointing, and
deadlock mitigations, which are not present on current SDNs.
The authors have used Mininet to build an implementation to
validate the design based on POX and OpenFlow.

Toward a Precision Network Scripting with a
User-Programmable Dataplane
Yohei Kuga and Takeshi Matsuya, Keio University; Hiroaki Hazeyama,
NARA Institute of Science and Technology (NAIST); Kenjiro Cho, IIJ
Research Laboratory; Rodney Van Meter and Osamu Nakamura, Keio
University

Today, network processing is much more difficult than file
processing on an OS for applications for network testing and
diagnosis. Therefore, the authors built a network scripting
framework called EtherPIPE, which provisions a character
device interface to bridge the gap between user-mode UNIX
command tools and the underlying network devices. Moreover,
to provide highly precise timestamps for the packets sent and
received, the authors further implement a NIC using NetFPGA
to assign highly precise timestamps for packets for network
diagnosis and to transmit packets at highly precise time points.
The authors have demonstrated that the frameworks could sup-
port network programming with shell script tools and achieve
time precision in microseconds.

Operational Systems Track
Summarized by Michael Coughlin (michael.coughlin@colorado.edu)

Network Virtualization in Multi-Tenant Datacenters
Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam
Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha Gude, Paul
Ingram, Ethan Jackson, Andrew Lambeth, Romain Lenglet, Shih-Hao Li,
Amar Padmanabhan, Justin Pettit, Ben Pfaff, and Rajiv Ramanathan,
VMware; Scott Shenker, International Computer Science Institute and the
University of California, Berkeley; Alan Shieh, Jeremy Stribling, Pankaj
Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang, VMware

Teemu Koponen began his presentation by explaining that
the presented paper represents five years of work by various
researchers, especially those named as authors. He continued
by discussing whether the issue of network virtualization is, in
fact, already a solved problem by various technologies such as
VLANs, MPLS, NATs, VRF, OpenFlow, etc. He argues that each
of these technologies is only a point solution for a specific aspect
of the network but does not address the network as a whole.
Koponen then addressed datacenters directly, arguing that a net-
work virtualization layer is hard to achieve, as tenant workloads
are highly coupled to the infrastructure, and that a virtualiza-
tion layer similar to what is provided to VMs by a hypervisor is
needed for the network layer.

Koponen then introduced NVP (Network Virtualization Plat-
form): The function of this network hypervisor system is to
present a packet abstraction to VMs such that the network view
seen by the VMs appears to be a physical network, which allows

for applications to be run unmodified, and a control abstrac-
tion, which should allow for an ability to control the flow table
pipeline on network hardware. NVP provides these abstractions,
which allow for a tenant to create a logical data path, which, in
turn, allows for the creation of any kind of logical topology. This
system is implemented by using the virtual switches inside of
standard hypervisors and connecting them using IP tunnels,
with the switches being controlled from a central cluster.

Because this paper presents the product of five years of work,
Koponen offered several lessons learned while operating NVP.
First, some assumptions about logical networks cannot be
made, because more complex workloads implicitly require more
complex topologies that must be supported so that workloads
are not modified; fortunately, this was addressed by the initial
design decision to support arbitrary topologies. Second, Open-
Flow proved to be insufficient for pushing state: Connections to
OpenFlow controllers proved to be unreliable, which would lead
to switches being left in an undefined state when a connection
ended before completion. Third, OpenFlow is difficult to scale:
Small operations still entail a large number of flow entries and
may be redundant, and OpenFlow is highly coupled to switches.
To address these last two issues, the authors are investigating
a replacement for OpenFlow for the virtualization layer, but not
necessarily the elimination of OpenFlow completely. Koponen
concluded his presentation by restating the guiding principle of
the project, which was to not modify workloads.

The first questioner asked whether the system obviates the
virtual appliances that are built by networking companies and
deployed in datacenters. Koponen explained that some appli-
ances cannot be implemented in a distributed manner but can
still be supported. He continued by stating that there will be
pressure to implement these devices in a distributed manner,
and he highlighted several applications built by VMware that
illustrate this. Nodir Kodirov (University of British Columbia)
asked if there was any experience with using the out-of-band
network information debugging. Koponen replied that a large
number of bits could be used in the encapsulation header that
can and are used to debug workloads without affecting them.
Marcin Kowalski (Amazon EC2) asked whether the research-
ers had looked at the performance implications of the software
switches, in respect to 10G or 40G networks. Koponen replied
that these implications had been investigated in the paper,
including encapsulation optimization on x86 and Open vSwitch
flow caching. Rick Schlichting (AT&T) asked whether there are
any implications or lessons for virtualization in wide area net-
works. Koponen replied that wide area networks have not been
investigated, but many deployments can span multiple datacen-
ters, although the virtualization of wide area networks was not
the goal of these deployments.

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 83

REPORTS

Operational Experiences with Disk Imaging in a
Multi-Tenant Datacenters
Kevin Atkinson, Gary Wong, and Robert Ricci, University of Utah

Robert Ricci began by discussing disk images as one of the key
tools for restoring a clean state to datacenter machines, and
introduced his talk as a study of the disk imaging system of the
Emulab datacenter, with an eye toward future research. He con-
tinued by explaining that the disk imaging system is an impor-
tant consideration when provisioning a datacenter because of
the need for large amounts of storage and bandwidth. He then
asked three questions that he later answered in his presentation:
What does the working set look like; what do the images them-
selves look like; and what are the key factors in preloading? The
data set that was analyzed was collected over four years, con-
sisting of 714 unique images from 1300 users and roughly 600
physical machines. Ricci noted that Emulab is not representative
of all datacenters, but it provides an available data set.

Ricci then presented statistics gathered from the data set, start-
ing with the number of requests for facility-provided images vs.
user-defined images; this was a roughly even split, with 55% of
requests being for facility images. Further analysis revealed that
most users do not mix-and-match user and facility images and
that heavy users tend to use user-defined images. Ricci con-
tinued by discussing the popularity of facility and user images.
Analysis found that there was a small number of popular facility
images, with the other facility images seldom used, whereas the
user images were used more evenly by users, requiring a larger
number of images to satisfy the same number of load requests.
He then presented a scalability analysis based on the image
usage trends: as the facility scales, all of the facility images will
be used, because there is a limited number of facility images, but
the number of user images will continue to grow.

Ricci described image content, noting that Emulab uses block-
level similarity for users to create custom images, where users
take a facility image and customize it, and then a diff can be
taken from the base to store the image. Analysis of user images
found that most were more than 60% similar to base images,
which makes differential loading more useful. Ricci proceeded
to discuss pre-loading of disk images onto disks. The first impor-
tant consideration was the working set ratio (free pool of idle
disks to number of images that can be pre-loaded), which allows
for higher pre-loading effectiveness when this ratio is high. The
second consideration was the rate of pre-loading an image; Ricci
stated that pre-loading is more effective when investment is
made in fast and scalable disk imaging. Ricci concluded by stat-
ing that a large number of images can be stored in slower storage,
with a cache of popular images, and that facility images and user
images are used differently and should be treated differently. All
of the data and scripts used to write the paper are available at
http://aptlab.net/p/tbres/nsdi14.

Vyas Sekar (CMU) asked whether Emulab has considered
 advertising images, in relation to how videos are advertised by

sites like YouTube, in order to tweak popularity toward pre-
loaded images. Ricci replied that Emulab provides a default
image, but it is of poor quality and is not used by many users.
However, this image is not aggressively advertised. Peter Hill
(Microsoft Cloud) asked whether many images could be loaded
onto servers to make use of extra space and reduce the number
of active machines. Ricci replied that Emulab machines are pre-
loaded with two images for these reasons, as many tenants will
reside on the same disk. Katerina Argyraki (EPFL, and session
chair) asked whether the designers would change the inter-
face for user images if the system were to be re-designed. Ricci
replied that a new design would keep the current interface, as
other packaging options were made available, but these methods
were not used by users.

VPN Gate: A Volunteer-Organized Public VPN Relay
System with Blocking Resistance for Bypassing
Government Censorship Firewalls
Daiyuu Nobori and Yasushi Shinjo, University of Tsukuba

Daiyuu Nobori began his presentation by introducing censorship
firewalls, which are intended to censor access to the Internet,
of which the Great Firewall of China (GFW) is a well-known
example. A common method of circumventing these technolo-
gies is to use relay servers, but censorship authorities can easily
block access to these relay servers, and resistance to blocking is
difficult. VPN Gate’s approach is to use thousands of volunteers
and distribute the list to potential users using a central server.
In order to prevent the authorities from blocking all volunteer
addresses, innocent IP addresses (such as root DNS servers) are
mixed into the list to force authorities to probe all addresses,
and collaborative spying by volunteer hosts is used to identify
authority IP addresses so that volunteer hosts can pretend to be
innocent to requests from authorities.

To increase the number of volunteers in the system, Nobori
explained, the relay program must be easy to use and install,
and the program must function behind a NAT. These issues are
addressed in the current implementation. The server program
supports multiple VPN technologies, is based on the SoftEther
VPN Server (http://www.softether.org), and supports NAT tra-
versal. The system was launched on March 8, 2013, which led to
a response from the authorities four days later using manual and
then automated blacklisting, which was solved by the insertions
of innocent IP addresses. The authorities then began to probe
IP addresses, which led to the implementation of collaborative
spying, where multiple abnormal connections to multiple servers
are classified by a central server as an authority IP address.

Nobori presented an evaluation of the effectiveness of VPN
Gate at evading censorship. At the start of the system’s deploy-
ment, users were forced to attempt to connect to five different
servers, on average, before a connection could be made, but
after the deployment of collaborative spy detection on April 24,
2013, this decreased to 1.2 connections. Once the NSDI paper
was completed, the GFW ceased attempts to censor the system.

84  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

Currently, the system is approaching 7,000 active servers and
400,000 active daily users, with 32,000 unique Chinese IP
addresses, which is 13 times the estimated users of Tor. The
system has also been deployed in Iran and North Korea, and the
total bandwidth is approaching 3 Gbps. In conclusion, Nobori
compared Tor and VPN Gate: They have a similar number of
servers, but Tor has a much smaller number of unique Chinese
users than VPN Gate, only supports certain technologies, and
has weaker firewall resistance. Nobori concluded by saying that
the system allows for people to help others overseas and may
promote friendship, that no laws were violated in Japan, where
the research took place, and that the system is based on open
source software available at http://github.com/SoftEtherVPN/.

Aaron Gember (University of Wisconsin) asked how many
different spy IP addresses from the authorities were observed.
Nobori replied that approximately 2700 IP addresses were
observed, but they were used for long periods of time and were
reused. Matvey Arye (Princeton) asked how blocking of access
to the central server list is prevented. Nobori replied that there
are two mechanisms to access the list, via either an HTML table
or an indirect protocol, which is accessible using VPN Gate
proxy servers and HTTP mirror sites. Jon Howell (Microsoft
Research) asked what would be the next move for the GFW.
Could the GFW probe from many locations inside of the fire-
wall? Nobori replied that it is difficult to predict what the GFW
authority will do, but its ability to disturb the activity of Chi-
nese users is limited. Someone asked whether it was possible
to poison the server list to create a black hole, just as VPN Gate
was able to poison the firewall address list. Nobori replied that
this is possible, but the user can keep trying until a server is
found. Someone asked whether the GFW performs deep packet
inspection. Nobori said that the firewall uses three techniques:
fake TCP RST packets, DNS IP reply poisoning, and IP address
blacklisting. However, due to the high level of traffic, DPI is not
scalable to all Chinese traffic.

Data Storage and Analytics
Summarized by Chien-Chun Hung (chienchun.hung@usc.edu)

Bolt: Data Management for Connected Homes
Trinabh Gupta, The University of Texas at Austin; Rayman Preet Singh,
University of Waterloo; Amar Phanishayee, Jaeyeon Jung, and Ratul Mahajan,
Microsoft Research

Trinabh Gupta started the presentation by talking about the
need for data management of connected devices in the home
environment. Some motivation scenarios include: (1) applica-
tions would generate data on a time basis and retrieve based on
the time window, which means the data management system
would need to support time-series, tagged data; (2) applications
would access the data from multiple locations, and so the data
management system would need to leverage the cloud servers
for availability; (3) applications might share sensitive home data,
and so the data management system would need to ensure confi-
dentiality and integrity.

Gupta then presented Bolt, the data management system
addressing the above-mentioned design concepts. There are
four main features. First, end-users perform data encryption,
while Bolt supports the append-only data abstraction “<time-
stamp, tag, value>” and batching data for efficiency. Second,
Bolt supports data query based on the time-window “<start,
end>,” while the lookup and computation are performed locally
at home. Third, Bolt leverages the cloud to support data avail-
ability. Finally, Bolt enables data security by decentralized
access control.

The current Bolt implementation supports Windows Azure
and Amazon S3. Its main performance gain over OpenTSDB is
mainly due to data prefetching for subsequent data; the current
data query is most likely to initiate the need for subsequent data
records, batching for data query, and Bolt is 3–5x more space
efficient than OpenTSDB.

Rik Farrow asked whether the system is mainly designed for
Microsoft Home OS, and Gupta answered that Bolt can run
outside of Home OS. George Porter (UCSD, session chair) asked
how the authors collected the home sharing data from cameras.
Gupta replied that currently all the results shown are based on
synthetic data.

Blizzard: Fast, Cloud-Scale Block Storage for Cloud-
Oblivious Applications
James Mickens, Edmund B. Nightingale, Jeremy Elson, and Darren Gehring,
Microsoft Research; Bin Fan, Carnegie Mellon University; Asim Kadav and
Vijay Chidambaram, University of Wisconsin–Madison; Osama Khan, Johns
Hopkins University

James Mickens described the goal of this work as providing vir-
tual block storage over commodity storage hardware in the cloud
for cloud-oblivious applications using POSIX or WIN32 APIs, as
if it is mounted locally, while achieving throughput greater than
1000 MB/s. Mickens outlined three key design challenges: (1)
I/O dilation, that is, subsequent I/O operations generated by the
end-host users may not be exactly subsequent when they arrive
at the backend storage due to the delay dilation; (2) cross-rack
I/O congestion limits execution parallelism; and (3) fsync() only
returns when all writes complete.

This paper proposes Blizzard, which uses nested striping that
assigns virtual disks (provided for the end-host users) randomly
among physical disks. This random matching surprisingly
achieves good performance. Blizzard also uses a Flat Datacenter
Storage (FDS) style full bisection bandwidth network, and an
RTS/CTS mechanism to avoid edge congestion. Finally, Blizzard
delays later writes until earlier writes are flushed.

Keith Smith (NetApp) wondered if the paper’s response to I/O
dilation could be solved using prefetching data. Mickens pointed
out that one of the key design goals for this work is to support
unmodified applications, while prefetching does requires appli-
cation modification to some extent despite the fact that prefetch-
ing does help alleviate I/O dilation. Someone from UBC said that
fsync is evil, and that using dsync and osync should be preferred

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 85

REPORTS

for ordering and durability. Mickens reminded the questioner
that a design goal was not to modify existing applications. Some-
one who works on DynamoDB (Amazon) wondered about reads
when writes were still buffered. Mickens responded that they
deal with that issue. Ashton Goel (University of Toronto) wor-
ried about applications, such as mailtools, that expect durability.
Mickens answered that some applications are fine with delayed
durability and are willing to engage in that tradeoff.

Aggregation and Degradation in JetStream: Streaming
Analytics in the Wide Area
Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S. Pai, and Michael J.
Freedman, Princeton University

Ariel Rabkin began by showing that backhaul bandwidth
is intrinsically inefficient, because it is sometimes under-
provisioned and sometimes over-provisioned for streaming data
analytics. The authors addressed this problem and optimize the
use of WAN bandwidth by proposing a data streaming frame-
work, JetStream, with aggregation and degradation mecha-
nisms. Aggregation is done by merging records with the same
property, whereas degradation is achieved through sampling and
filtering data according to the current bandwidth capacity.

To realize its goals, JetStream requires a few characteristics for
data abstraction: that data be updateable (locally and incremen-
tally), reducible in size (with predictable accuracy cost), and
mergeable (without accuracy penalty). A key design component
is the data cube, which is the multi-dimensional array indexed by
a set of dimensions. Cubes can be rolled up and unify the storage
and data aggregation. Another key design for supporting auto
degradation is to coordinate between network operators so that
the degradation can be achieved to match the bandwidth capac-
ity appropriately, although there is a tradeoff between bandwidth
saving and accuracy.

Someone from Microsoft Research asked how to quantify the
accuracy penalty during degradation. Rabkin confirmed that the
accuracy penalty is generally well-behaved based on the granu-
larity of sampled data records, e.g., from second level to minute
level. The same person followed up with some scenarios—e.g.,
calculating the maximum values within a data set, the accuracy
penalty is therefore not clear during degradation. Rabkin replied
that in that kind of case, degradation could be achieved by
dropping the low-ranked values, instead of coarsening the data
granularity. Kurt Colovson (VMware) suggested that they might
want to impose some hysteresis. Rabkin replied that they could
add something for stability in the controllers.

GRASS: Trimming Stragglers in Approximation Analytics
Ganesh Ananthanarayanan, University of California, Berkeley; Michael
Chien-Chun Hung, University of Southern California; Xiaoqi Ren, California
Institute of Technology; Ion Stoica, University of California, Berkeley; Adam
Wierman, California Institute of Technology; Minlan Yu, University of
Southern California

Ganesh first pointed out that approximation analytics, which
trades complete results for quicker responses, is becoming more
trendy and general in big data analytics. What makes scheduling

for approximation jobs challenging are the certain requirements
(e.g., deadline, accuracy) and the existence of stragglers. Specifi-
cally, should the stragglers be mitigated by speculation, dynami-
cally prioritizing between original and speculative tasks, while
meeting the deadline/accuracy requirement?

Two heuristics for straggler mitigation are Greedy Speculation
(GS, which is more aggressive) and Resource Aware Specula-
tion (RAS, which is more conservative). Ganesh talked about
the guidance from analysis model, which shows that optimal
scheduling strategy is to start speculation conservatively in the
early stage of a job, then turns aggressive as the job gets close to
completion. Based on the guidance, the authors propose GRASS,
which starts with RAS first and switches to GS as the job is
about to complete, while the switching point is learned from job
samples. Experimental results obtained from Hadoop and Spark
implementations suggest GRASS improves deadline and accu-
racy by 47% and 38%, respectively.

One person asked about the task duration’s dependency on data
content. Ganesh replied that GRASS assumes each data unit
contributes equally to the computation volume within a job.
Moreover, GRASS results show that when the estimation accu-
racy is low, sticking to RAS is better than switching to GS.

Interpreting Signals
Summarized by Pan Hu (panhu@cs.umass.edu)

Bringing Gesture Recognition to All Devices
Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota, University of
Washington

Bryce Kellogg started his presentation by asking for new inter-
action technology that goes beyond mouse and keyboard. He
focused on gesture recognition in this presentation. After point-
ing out the drawbacks of Kinect-based gesture, such as failing
to work in non-line-of-sight scenarios and consuming too much
power, he demonstrated in a mobile application the authors’ ultra
low-power gesture recognition system using hand gestures near
his pocket, where he kept his mobile device, to change songs and
increase and decrease volume.

Bryce further explained the technology detailed behind the
demo. He introduced AllSee, the first gesture recognition
system that runs without batteries, their prototype leveraging
the ambient signal from RFID and TV signals with the intent of
expanding into WiFi and cellular. The hardware architecture
consists of a wireless signal receiver, some digital logic, and
an energy harvester circuit. Bryce pointed out that traditional
receivers that actively generate carrier waves consume too much
power. Since the power AllSee gets is from ambient, the energy
harvester is very small (~40uW) and it is not possible to employ
traditional radio on these kinds of devices. The power budget
also limited the capability of the AllSee receiver. By using a
technology that is similar to Ambient Backscatter introduced in
SIGCOMM ’13, Bryce managed to get the amplitude information
from the receiver. This poses another challenge to the digital

86  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

signal process since it contains neither frequency nor phase
information, and thus traditional gesture recognition technology
based on Doppler or angle of arrival could not be implemented on
AllSee. What’s more, Bryce pointed out that it is unlikely that a
machine-learning algorithm would be implemented on battery-
free devices.

Their solution was to build an amplitude library of gestures and
focus on the trends. Then they proved their algorithm was simple
but accurate—94% gestures were correctly classified. By duty
cycling the microcontroller, Bryce pushed the energy consump-
tion of AllSee to merely 30uW, which fit into the power budget
perfectly.

Multiple people showed deep interest in their technology.
Deepak Ganesan (University of Massachusetts) first asked
about the working range and orientation sensitivity of AllSee.
Bryce replied that the working range is about 2.5 feet. Direction
could have an effect on the performance of AllSee since it uses a
dipole antenna, but the effect could be cancelled through calibra-
tion. Deepak then asked whether it was always possible to har-
vest 40uW from the environment—for example, in rural areas.
Bryce replied that although TV signals are quite pervasive, they
are looking to extend the technology to cellular and WiFi so that
energy harvesting is guaranteed. Pengyu Zhang (University of
Massachusetts) asked whether the sampling rate (200Hz) would
limit the accuracy of gesture recognition or not. Bryce answered
that 200Hz works well for most scenarios. It also provides a
good balance between power consumption and accuracy. Joshua
Smith (University of Washington) asked about future work.
Bryce told us they hope to integrate AllSee into commercial off-
the-shelf devices.

3D Tracking via Body Radio Reflections
Fadel Adib, Zach Kabelac, Dina Katabi, and Robert C. Miller, Massachusetts
Institute of Technology

Fadel Adib introduced a motion tracking system that uses
reflected signals only. To answer the question “Can we see
through walls with wireless signals?” he introduced the
WiTrack, a system that tracks 3D motion of a user behind a
wall by using radio signal reflected back from the user. After
that, he demonstrated his system with a video of a man walking
on a white line. A laptop in another room showed the real time
 position of the man, which was very accurate. He also showed
that WiTrack could track body part movements by gesturing
with an arm to turn off a light or a TV. At the end of the video
he shows that the man could turn off the light in another room,
which is impressive and attendees started to laugh. Fadel con-
cluded that WiTrack could achieve centimeter-level accuracy,
which is suitable for gaming, gesture control, rescue, or monitor-
ing the elderly.

Fadel introduced the architecture of WiTrack after the interest-
ing demo. The first step is to measure the distance in order to
get the position of the user. This can be done by computing the
time of flight of the reflected signal, but it requires a very high

sampling rate. In addition, this method is susceptible to noise,
which is not suitable for sensing behind a wall. Instead, Fadel
introduced frequency modulation continuous wave radar, which
sends out a chirp signal rather than a signal of a single frequency.
By analyzing the frequency difference between the sent and
reflected signal, WiTrack can get very accurate distance mea-
surements. Fadel also shared one of the challenges in imple-
menting the system: multipath. Not only does the human reflect
the signal, other objects including the wall also reflect. However,
background signals can be eliminated by doing subtraction by
assuming that the user is moving while the environment is not.
However, it is still possible to see multiple peaks due to dynamic
multipath such as people interacting with a table. This can be
solved by always looking at the shortest path because the direct
path is always shorter than reflected paths.

After obtaining the distance, Fadel explained how to achieve
localization by putting three antennas for trilateration. The
WiTrack system works from a bandwidth of 5.5 to 7.2GHz with a
transmit power of 0.75mW. A motion tracking system is used to
serve as ground truth. Experiment results showed that WiTrack
could achieve 10 cm, 13 cm and 21 cm in three directions. Fadel
also showed that WiTrack could have achieved accurate motion
detection with an orientation error of 11 degrees. The accuracy
of fall detection is also very high.

Joshua Smith (University of Washington) asked about the
regulation of this kind of device since it may involve privacy
issues. Fadel answered that people could try to block these
signals or the government could regulate their usage. Joshua
also asked whether it is easy to filter out background signals.
The answer is not easy because there are other moving objects
such as fans in the room. Fadel also pointed out that steering the
RF signal beam might help to filter out the background signal.
Deepak Ganesan asked whether segmentation is needed in the
gesture recognition and Fadel answered yes. Jie Liu (Microsoft
Research) asked about the difference between WiTrack and tra-
ditional radar and sonar. Fadel pointed out that traditional radar
fails to deal with multipath in indoor scenarios; what’s more,
it cannot provide centimeter-level accuracy. Jie Liu also asked
about the possibility of trying to distinguish between people.
Fadel replied that it could be done by looking at the reflected
pattern. Finally, Jie asked how the properties of the wall might
affect the wireless signal and its accuracy. Fadel answered that
the wall may have a small impact on the accuracy although they
haven’t tested on different kinds of walls yet.

Epsilon: A Visible Light Based Positioning System
Liqun Li, Microsoft Research, Beijing; Pan Hu, University of Massachusetts
Amherst; Chunyi Peng, The Ohio State University; Guobin Shen and Feng
Zhao, Microsoft Research, Beijing

Localization is a hot (and old) topic throughout the last decade
but Guobin Shen presented something new. Recent localiza-
tion technology based on WiFi, cellular, FM, or magnetic fields
either failed to provide high accuracy or required a complicated
infrastructure. Guobin presented Epsilon, an indoor localization

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 87

REPORTS

system based on visible light. Guobin suggested that LED light-
ing is the future light for industry due to its high efficiency and
longer life. And LED as a semiconductor component intrinsi-
cally supports rapid switching on-and-off. By taking advantage
of this character, current dimmer switches can change the light
intensity smoothly by switching on-and-off using different duty
cycles. Inspired by this fact, Guobin said we could use LEDs as
beacons. The advantage of using visible light includes higher
beacon density due to the pervasive existence of LED lights and
getting humans into the loop. The system leverages the current
infrastructure and thus has minimal cost.

Guobin then explained how to implement this system. Epsilon
adopted a model-based rather than a fingerprint method to
reduce the cost needed to deploy the system. Since both the
LED and light sensor are directional to some extent, Epsilon
models the irradiation angle from the LED and the incidence
angle to the light sensor. Evaluation shows that the accuracy of
the model is pretty good when both angles are small but that rel-
ative error increases as the angles increase. Guobin also shared
some practical design considerations for Epsilon. Firstly, com-
mercial LEDs could not be modulated with a frequency higher
than 100 kHz, and they need to modulate faster than 200 Hz
to avoid perceptible flicker. What’s more, power line frequency
could also affect the positioning system. By carefully choos-
ing the frequency and modulation method, Epsilon managed to
meet all these needs. Guobin also talked about how to deal with
a scenario with only one LED light. Epsilon could involve human
motions to improve the position results. For example, by letting
users tilt their cell phones while using the IMU, it would still be
possible to get the position. Experimental results showed that
the 90th percentile accuracy is 40 cm, 70 cm, and 80 cm in three
dimensions.

Joshua Smith asked about privacy issues of this system when
compared with other ones. Guobin replied that Epsilon might
have better privacy preservation because light can be more easily
blocked than wireless signals. Joshua also asked whether it is
possible to achieve higher accuracy by increasing the modula-
tion frequency. The answer was no, because Epsilon only uses
signal strength to measure distance in the model, which is irrel-
evant to frequency. Deepak Ganesan asked whether it is possible
to achieve higher accuracy by deploying more LED lights. Guo-
bin answered yes, although Epsilon will always choose the four
LED lights with the highest signal strength. Deepak also asked
whether the orientation of the user would affect the accuracy or
not. The answer was yes, but they have taken this into consider-
ation when evaluating their system.

Improving Throughput and Latency
(at Different Layers)
Summarized by Muhammad Shahbaz (shahbaz@cc.gatech.edu)

Enabling Bit-by-Bit Backscatter Communication in Severe
Energy Harvesting Environments
Pengyu Zhang and Deepak Ganesan, University of Massachusetts Amherst

Zhang started the talk by giving a short description of their new
design for backscatter systems, which operates in severe energy
harvesting conditions. He then talked about the current trends
in lower-power sensors, specifically, the micro-powered sen-
sors. These micro-powered sensors are equipped with energy
harvesters and don’t need batteries to power the whole system,
which forces them to operate at very low energy. That’s why
these sensors are finding applications, specifically in the bio-
sensing domain, such as delivering glucose in the blood stream
and measuring vital signs using wearable sensors such as Google
contact lenses. The physical limitations of these sensors makes
it hard to attach batteries and thus designers are trying to find
ways of using ambient and external energy sources to power the
system—for example, harvesting energy from solar cells and
from wireless signals.

Zhang et al. were interested in answering the question of how
these devices interact with the outside world and what are the
limiting factors. They looked into the example of RF harvesting
and backscatter communication and found that the maximum
operating range of these systems is 3.6 feet, or five times less
than their communicating range of around 18.6 feet. This is
because the atomic unit of existing network stacks didn’t fit into
the single discharge cycle and, thus, was limiting the overall
operating range of the system. Using 1-bit as an atomic unit,
they were able to achieve an operating range of 18 feet, but in
that case throughput suffered at close distances. Later in the
talk, Zhang gave different insights into maximizing communica-
tion throughput while maintaining the capability to operate at
maximum range. By carefully selecting sleep time, the number
of TX bits, and interleaving sensors on the packet level using a
novel packet fragmentation and transmission scheme, they were
able to achieve a 3.5 times increase in the operating range and
a 5.8 times improvement in the overall throughput compared to
the Dewdrop system.

Joshua Smith (a WISP designer) asked if the data doesn’t come
through, how will retransmission interact with the fragmenta-
tion scheme? Zhang argued that their scheme fragments the
packets including the CRC into small microframes and performs
all the error correction and detection once the packet is reas-
sembled at the receiving end using the existing methods. In reply
to Josh’s follow-up question about the cost of the fragmentation
scheme, Zhang answered that the packet is encoded into a fixed
structure with a particular form, so they used trailing and lead-
ing bits to identify where packets began and ended. This adds
some cost to the fragmentation scheme.

88  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

Full Duplex MIMO Radios
Dinesh Bharadia and Sachin Katti, Stanford University

Bharadia started the talk with a refresher on why full duplex
radios have been considered an impossibility. He gave an exam-
ple of two radios where the sending radio cannot receive the
weaker signal because its own transmitting signal is acting as
strong self-interference, which drowns the incoming signal. He
said that it’s analogous to hearing a whisper when one is shout-
ing at the top of one’s lungs. He later stated that the recent work
in their lab, presented in last year’s SigComm, has invalidated
this assumption, and they have been able to demonstrate a fully
working single antenna full duplex radio.

Before jumping into the details of their full duplex MIMO
(multiple-input and multiple-output) design, Bharadia raised
a question of why full duplex matters. Is it just the doubling of
speed? He answered himself saying that the current perfor-
mance curve is flattening, and we are running out of link layer
techniques as well as reaching the channel limit. That’s why
full duplex is considered the next logical step and there is active
interest from industry. Bharadia argued that for full duplex to be
viable it needs to support MIMO. For full duplex MIMO radio,
the design of an adaptive filter that matches the environmental
reflections and cancels them should impose low complexity and
minimal residue after cancellation.

Bharadia discussed the technical contributions of their work,
where they designed a MIMO cancellation filter that has linear
complexity in the number of antennas and doesn’t scale qua-
dratically compared to SISO replication-based design. In addi-
tion, the cancellation residue is ideal and doesn’t degrade with
the increasing number of antennas. In the end, he showed that
their design does provide the proposed throughput scaling. The
speedup is 1.95x, compared to the 35% improvement in SISO
 replication design, when matched against the standard half
duplex design.

Shyam Gollakota (University of Washington and session chair)
asked Zhang to compare the cost of WARP with the typical WiFi
chipset, which by comparison is way more expensive than the
WARP board’s low cost. Gollakota also asked how the WARP
components have greater linearity and the board has less noise
compared to the typical chipset provided in mobile phones and
access points. For the second question, Bharadia answered that
linearity is typically based on standards. For example, WiFi
needs 25 dB of maximum SNR (signal-to-noise ratio) so they
design it at 30 dB and WARP also has around 30 dB of linearity.
In his reply to the first question, he said that WARP may be
$10,000 but the transceivers (Maxim chips) the board uses are
fairly cheap, around $2 each. One can buy these off the shelf but
this would require a lot of integration effort. He said that his
point was when you buy these cheap transceivers they don’t opti-
mize linearity beyond a certain range. Thus, you have to cancel a
lot of nonlinearities and noise. This requires building an analog

design rather than a digital design because you cannot model
noise in the digital domain.

Recursively Cautious Congestion Control (RC3)
Radhika Mittal, Justine Sherry, and Sylvia Ratnasamy, University of
California, Berkeley; Scott Shenker, University of California, Berkeley,
and International Computer Science Institute

Radhika Mittal started her talk by presenting a different view
of the congestion control problem and how it’s still unsolved. She
mentioned the importance of classic work on congestion control
by Van Jacobson and others and how it has helped in avoiding
congestion collapse in the networks. But, she argued, this is not
the only goal of congestion control, and users actually respond to
fast completion time, which indirectly results in better revenue
and profit.

Radhika presented a really interesting scenario: David Clark is a
service provider providing services to the sender, Van Jacobson,
and receiver, Vint Cerf. She showed how both resources (provi-
sioned by the service provider) and link capacity are underuti-
lized because of the current congestion control schemes. These
schemes try to find a sweet spot between two conflicting goals
of maximizing the throughput without adversely affecting other
flows. RC3 tries to decouple these goals using priorities. RC3
utilizes spare capacity by sending additional packets using low
priorities. This reduces the flow completion time and increases
utilization of the bandwidth resources. She showed that assign-
ing priorities required minimal changes in the TCP stack. Two
parallel control loops, one for the regular TCP and the other for
sending packets with multiple levels of priorities, were used to
achieve max-min fairness.

Simulation results showed that RC3 performed 43.54% and
74.35% better on average over flows and bytes, respectively,
compared to regular TCP. RC3 also showed better gains in
completion time for short flows than existing schemes like
RCP. Although better than regular TCP, the unoptimized RC3
implementation on Linux behaved relatively poorly compared
to the simulated RC3 results, because the low priority packets
were being processed by the slow path, thus causing high CPU
overhead. The authors showed that leveraging NIC offloading
capabilities like TSO and LRO reduced the overhead by half.

They also listed some cases where RC3 provides smaller bene-
fits: for example, low delay bandwidth product and heavily
utilized link, and some deployment concerns like partial support
for priorities in switches. Looking toward the future, perfor-
mance will eventually improve with the increasing bandwidth
and round-trip time (RTT) product. The authors forecast a 45%
and 66% reduction in average flow completion time over flows
and bytes, respectively, in the futuristic datacenter with 100
Gbps bandwidth.

Dongsu Han (KAIST) asked about fairness among low prior-
ity packets. Radhika answered that this is ensured using the
recursive multi-level priority scheme. Han asked whether there

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 89

REPORTS

is an upper limit to the number of priority levels needed. Radhika
replied that because they are using an exponential increase in
the amount of packets sent per priority level, eight levels, for
example, should be able to handle large flows with terabytes of
data. Shyamnath Gollakota asked whether increasing the size
of the buffer would have any effect on overall performance and
delay. Radhika argued that it won’t have much effect but will
require more memory, but because memory is getting cheaper,
this might not be an issue.

How Speedy Is SPDY?
Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and
David Wetherall, University of Washington

Xiao Wang gave a brief history of HTTP 1.1 and its global usage
and mentioned, at the same time, that HTTP is not working as
fast as desirable due to the increasing complexity of Web pages.
Around 2009, Google introduced a new protocol called SPDY to
solve many of the concerns in HTTP: e.g., opening a single TCP
connection vs. opening individual connections for each object;
the client’s ability to prioritize objects; the server’s ability to ini-
tiate requests, thus, avoiding extra RTTs; and compressing page
headers along with the data. SPDY is now deployed in Chrome,
Firefox, and on many Web sites. It’s also the basis of HTTP 2.0,
which is currently under standardization.

After briefly discussing the advantages of SPDY over HTTP,
Wang listed various challenges, like variance in page load times
and dependencies between network and browser computation.
She then stated the goals of their paper: to perform a systematic
study of SPDY and identify the dominant factors that are caus-
ing variability in its performance. The authors’ approach was
to extensively sweep the parameter space (e.g., network param-
eters like RTT and BW, TCP settings, and Web page effects) and
isolate the dominant factors. Their finding was that SPDY helps
on small objects because SPDY can batch up small objects into a
TCP segment; SPDY helps on large objects under low packet loss
due to reduced retransmissions from a single flow; and SPDY
hurts on large objects under high packet loss because it backs
off the TCP congestion window more aggressively than HTTP.
Wang also found that object number, object size, and packet-loss
rate are stronger indicators of SPDY’s performance than RTT,
BW, and TCP’s initial cwnd. Their tests on real objects, although
ignoring browser effects, showed that SPDY helped a lot, mainly
due to its single TCP connection.

To capture the effects of the browser without worrying about
variability in page load times, the authors introduced a new tool
called Epload. They found that SPDY helps marginally when
browser effects are preserved and suggested that the perfor-
mance impact decreased due to browser computation and depen-
dencies in real pages. For further improvement, the page load
process needs to be restructured, for example with server push.
Wang mentioned that people can download WProf and Epload at
http://wprof.cs.washington.edu/spdy.

Someone asked about considering the effect of caching at the
client or network or both. Wang answered that caches pres-
ent similar behavior as having a small number of objects. If
the number of objects is very large, SPDY actually helps less,
but they don’t consider the caching case in the network. James
Mickens (MSR) started his question by saying that all browsers
are terrible, which made the audience laugh. He said that they
not only differ in their computation but also along other axes
like storage and the network stack they use. He asked how the
emulator, Epload, generalizes across all these different browsers.
Wang explained that Epload is based on WProf, the work they
presented in last year’s NSDI. Using WProf, Epload captures
these dependencies in a browser-independent manner. She said
that they ran test cases under different browsers in order to
capture dependencies across browsers. Wang did mention that
the emulator cannot capture the computation time variability,
but based on the platform, they can hypothetically increase or
decrease the compute time.

In-Memory Computing and Caching
Summarized by Qiao Zhang (qiao@cs.washington.edu)

FaRM: Fast Remote Memory
Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel
Castro; Microsoft Research

Aleksandar Dragojević started by discussing two hardware
trends that make FaRM timely and important. He noted that it
is becoming cost-effective to store almost all application data
in memory. While new datacenter networks promise larger
throughput and lower latency, network communication remains
a bottleneck for systems that use TCP/IP. Fortunately, RDMA
technology that allows direct read/write of remote memory
is now available at competitive prices. To take advantage of
the performance gains from kernel bypassing, FaRM builds
a message passing primitive using fast RDMA writes. Micro-
benchmark for remote random reads between RDMA, RDMA-
based messaging, and TCP shows that FaRM’s RDMA-based
messaging can achieve an order of magnitude improvement on
both throughput and latency compared to TCP.

FaRM explores how to use RDMA to build distributed systems.
Aleksandar explained that in order to program a modern cluster
with terabytes of memory, hundreds of CPUs, and RDMA net-
work, we want to keep data in memory, access data using RDMA
as much as possible, and co-locate data and computation because
accessing data locally is a factor of 20 faster than accessing
remotely even using RDMA. Moreover, RDMA lends itself to a
symmetric model where machines not only store data but also
execute applications in order to exploit data locality and to avoid
idle server CPUs.

FaRM simplifies programming by providing a shared address
space and general distributed transactions with strong consis-
tency guarantees. FaRM allows applications to read/write and
create/free objects in a shared address space using ACID trans-
actions. FaRM supports locality-aware optimizations that allow

90  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

new objects to be created closer to existing objects to exploit
locality. For performance-critical operations, FaRM allows
applications to perform an efficient lock-free read in a single
RDMA operation by taking advantage of cache-coherent DMA.

Aleksandar presented the implementation of a distributed
key-value store and a Tao-like in-memory graph store on top
of the FaRM APIs. The FaRM key-value store achieves 16x
the throughput and two orders of magnitude improvement in
latency compared to the state-of-the-art TCP-based key-value
store. The FaRM graph store achieves 10x the throughput and
a 40x–50x improvement in latency compared to the TCP-based
in-memory graph store.

Someone asked whether it would be more accurate to compare a
FaRM messaging primitive to UDP since RMDA requires loss-
less networks. Aleksandar replied that UDP can achieve lower
latency but it is nowhere close to RDMA. Hein Meling (Univer-
sity of Stavanger) asked whether the next step for FaRM is to
support across-datacenter applications. Aleksandar said that
the latency between datacenters would be too high. The next
step is to explore the right primitives to put in the NIC to further
improve performance and enable new functionality, and also
to implement other applications using FaRM. Someone asked
what the difference was between FaRM and RAMCloud. Alek-
sandar answered that the main difference stems from motiva-
tion: RAMCloud is a key-value store, whereas FaRM exposes a
much richer and more general programming model with shared
address space and distributed transactions. Jeff Rasley (Brown)
asked why the evaluations are done using only 20 machines
and whether that signals scalability limitations with RDMA.
Aleksandar replied that they only had 20 machines and com-
mented that FaRM can scale to 100 machines. Wang (Cisco)
asked whether FaRM migrates data to exploit locality. Aleksan-
dar replied that FaRM does not migrate data but keeps data and
computations together, and further commented that they expect
FaRM to run a single large application, so there would be no
contention.

Easy Freshness with Pequod Cache Joins
Bryan Kate, Eddie Kohler, and Michael S. Kester, Harvard University; Neha
Narula, Yandong Mao, and Robert Morris, MIT/CSAIL

Bryan Kate started his talk by arguing that application caches
should support materialized views natively because in-cache
materialized views are easy to use and have good performance.
Existing application caches, like Memcached and Redis, provide
fast key-value cache to offload reads from database, but the
burden of maintenance rests on applications to keep the cache
fresh. As a motivating example, Bryan explained how the Twit-
ter timeline is constructed from a join between subscription lists
and user data, and pointed out that the result of the join should
be cached because the timeline is checked very frequently. While
it is easy to cache the join, it is difficult or cumbersome to update
the cache when there are new posts. A simple solution is to use
a materialized view supported by modern database systems

that compute, store, and automatically update the query results.
However, the database is often designed for durable storage and
therefore becomes a performance bottleneck when tasked to
handle frequent reads and writes.

In order to help applications to avoid the complexity of keep-
ing the cache fresh and to provide good performance, Bryan
presented Pequod, a distributed application cache that provides
materialized views in a key-value cache with operations such as
get, put, scan, and join. Bryan introduced the key idea of Pequod
cache joins that allow applications to relate computed data (e.g.,
timeline) to base data (e.g., posts and subscriptions). Pequod
also offers a number of advanced features such as partial and
dynamic materialized views, incremental updates, and eager
or lazy updates. Bryan highlighted that distributed Pequod can
scale to handle large data sets. Computation is kept local while
base data is partitioned and transparently replicated when nec-
essary to allow cache joins to be computed anywhere. Finally,
Pequod supports cache eviction under memory pressure and
allows for eventual consistency.

Pequod was evaluated on a Twitter-like benchmark, including
timeline checks, new subscriptions, and new posts. The first
experiment compared Pequod with fast key-value caches, such
as Memcached and Redis, and a DB-as-cache database, such
as Postgres. Results showed that Pequod performed no worse
than existing caches. The second experiment tested how Pequod
performance scaled with additional servers. Results showed a 3x
increase in performance when the number of servers increased
from 12 to 48. The imperfect scaling resulted from data move-
ment between servers. The overhead was noticeable but not
crippling. Bryan mentioned related work, e.g., DMV, DBProxy,
and PNUTS.

Someone asked about latency in Pequod and how latency is
affected when data are evicted under memory pressure since
Twitter-like applications expect low latency. Bryan replied that
there is a latency spike the first time a cache join is computed,
and that applications can scale out to hold a larger cache to
minimize eviction and avoid high latency. Moreover, Pequod
allows tunable eviction of computed data vs. base data. A fur-
ther question concerned eventual consistency in Pequod when
Twitter users expect up-to-date results. Bryan answered that
application developers have grown used to eventual consistency,
and in Twitter, writes may take up to a second to trickle to user
timelines.

MICA: A Holistic Approach to Fast In-Memory Key-Value
Storage
Hyeontaek Lim, Carnegie Mellon University; Dongsu Han, Korea Advanced
Institute of Science and Technology (KAIST); David G. Andersen, Carnegie
Mellon University; Michael Kaminsky, Intel Labs

Hyeontaek Lim presented MICA, a fast in-memory key-value
store. MICA aims to improve per-node performance and mainly
targets small k-v items that can fit in single packets. Hyeontaek
compared the end-to-end performance over the network on the

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 91

REPORTS

YCSB workload between MICA and current systems (e.g., Mem-
cached, RAMCloud, MemC3, Masstree) using a single server
node. While the performance of the current systems collapses
under a write-intensive workload, MICA achieves orders of mag-
nitude improvement for both uniform and skewed workload and
attains close to maximum packets/sec possible using UDP.

Hyeontaek explained that the significant improvement comes
from MICA’s approach, which applies new software architec-
ture and data structures to general-purpose hardware in a
 holistic way. He outlined three key design choices: First, to avoid
frequent cache line transfers between cores and to allow CPU
performance to scale with the number of cores, MICA parti-
tions data and gives each core exclusive access to a partition.
Experiments show that exclusive access outperforms concurrent
access in MICA. Second, MICA uses client-assisted NIC-based
request direction to ensure correct and high-throughput delivery
of requests to the respective cores for exclusive access. Third,
MICA proposes a new “cache” data structure that uses a circular
log and lossy concurrent hash index for each partition to provide
high throughput for both reads and writes. Hyeontaek empha-
sized that these unconventional design choices allow MICA to
achieve good performance for both throughput and latency, and
for both uniform and skewed workload, compared to current
systems. Source code can be found at github.com/efficient/mica.

Someone asked how much each of the three tricks contributes
to the performance gain. Hyeontaek replied that the paper
contains experimental results that show performance com-
parisons between each design choice and its alternative, e.g.,
concurrent and exclusive access. Someone from the Voldemort
project commented that the performance gain might be much
smaller, taking into account the management overhead once
MICA becomes fully featured, because it is not fair to compare
a research prototype with a fully featured product like Redis or
Memcached. Someone from UCSD asked how MICA compares
to partitioned k-v stores such as single-threaded Memcached in
each core. Hyeontaek answered that such deployment can repro-
duce most of the gains from MICA design. However, Hyeontaek
pointed out that MICA has a hybrid mode that allows both
concurrent and exclusive access that is only possible in MICA
architecture. Ryan Stutsman (Microsoft Research) asked how
MICA keeps track of where cache misses are coming from since
circular logs can evict data and result in dangling references.
Hyeontaek answered that MICA does not do dynamic recon-
figuration of the system. As a solution, one can use lossless data
structure or try to predict how much of the losses are coming
from data structures.

Scalable Networking
Summarized by Feng Lu (f1lu@cs.ucsd.edu)

NetVM: High Performance and Flexible Networking Using
Virtualization on Commodity Platforms
Jinho Hwang, The George Washington University; K. K. Ramakrishnan,
Rutgers University; Timothy Wood, The George Washington University

Jinho Hwang began by reviewing recent developments in high
performance networking such as PacketShader, Intel DPDK, etc.
When the datacenter is virtualized, the performance of these
systems could suffer due to the virtualization overhead. He then
turned his focus to a specific domain—network function virtual-
ization—and identified two potential challenges: high speed/low
latency processing and efficient inter-function (VM) communi-
cation. Both challenges motivated his work, NetVM, which aims
to provide complex network functionality at line rate (10 Gbps)
using commodity hardware (e.g., Intel DPDK and commercial
off-the-shelf servers). Jinho discussed two possible placements
of DPDK in a virtualized environment: in the hypervisor and
in the VM with on-NIC L2 switch. He pointed out that neither
could achieve a full line-rate network speed in VMs.

Having explained the limitation, Jinho described the overall
design of NetVM, which allows memory sharing between
hypervisor and VM, and among VMs themselves. Subsequently,
he sketched out the design challenges faced by NetVM: how
to ensure zero copy, huge-page sharing between the VM and
the hypervisor, lockless and NUMA-aware design, and secu-
rity domains. He then talked about how NetVM addressed
each challenge in turn. For zero-copy, NetVM directly DMAed
packets into shared memory and only packet control structures
are passed around. For sequential packet processing, packet
references are passed between VMs. At any time, only one VM
can process the packet to limit concurrency. For lockless and
NUMA-aware design, NetVM has dedicated core-queue match-
ing, data-structure separation, and processing path alignment in
both the hypervisor and the VMs. For huge-page virtual address
mapping, pre-calculation was used to speed up offset lookup.
Finally, trusted VMs were using shared memory in NetVM while
untrusted VMs see packets via the hypervisor.

Afterward, Jinho moved to the evaluation section and compared
NetVM to SR-IOV-VM, Click_NetVM, and Click_Native_Linux.
NetVM was able to attain packet delivery and forwarding rate at
full line speed, while second best Click_NetVM, was only able to
achieve 6 and 6.8 Gbps, respectively. For inter-VM forwarding
evaluation, due to the limited number of cores, NetVM could only
sustain a line rate of up to three VMs. However, Jinho also men-
tioned that for a more realistic workload (60% partial forward-
ing), NetVM would maintain a 10 Gbps line rate up to five VMs.

Wang (Cisco) said that it is common to pass packets in and out
of applications, but in reality, people are used to socket interface;
his question was about the programming model. Wang said that
Jinho mentioned netmap; the beauty of netmap is that it also
supports a socket-like interface. Jinho restated the question as

92  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

a protocol stack issue, mentioning that NetVM was targeted for
middlebox applications, which handle packets. However, there
was some software running within applications, such as mTCP,
that provided a user-level network protocol within it. In most
cases, people use a customized user-level network stack. Wang
then asked how much code needed to be changed. Jinho men-
tioned that KVM was modified to achieve queue/core alignment
and to add a PCIe device. They didn’t touch any kernel module
and only one kernel module was introduced to support user space
I/O. Finally, Wang asked whether they dedicated one interface
for one VM or could traffic from one interface be shared with
multiple VMs? Jinho replied that NetVM allowed one interface
for multiple VMs. But to maximize performance, they dedicated
one interface to one VM.

ClickOS and the Art of Network Function Virtualization
Joao Martins and Mohamed Ahmed, NEC Europe Ltd.; Costin Raiciu and
Vladimir Olteanu, University Politehnica of Bucharest; Michio Honda,
Roberto Bifulco, and Felipe Huici, NEC Europe Ltd.

Joao began by pointing out the various drawbacks associated
with hardware middleboxes: price, power, management, scal-
ability, and so on. Given these limitations, Joao suggested
pushing middlebox functionality to software for the following
benefits: shared hardware across multiple tenants, reduced
equipment/power costs through consolidation, and flexibility
to try out new features. He then articulated the problem solved
by ClickOS: Middleboxes can be built on commodity hardware
while still achieving high performance. He briefly went over the
achievements made by ClickOS: fast boot (30 ms), small memory
footprint (5 MB), isolation by Xen, 10 Gbps line rate processing,
and flexibility based on the Click library.

Joao continued the talk with more details on ClickOS archi-
tecture: Instead of a traditional guest OS on Xen, ClickOS built
on top of MiniOS with a single application on a single core. In
addition, the Click control plane was emulated over MiniOS/
Xen and the boot time was reduced to 30 ms (uncompressing the
VM takes longer than booting). He also mentioned that various
optimization tricks were used to enable line rates of 10 Gbps.
Joao next moved to performance analysis with a native imple-
mentation of ClickOS and identified three pieces on the packet
processing pipeline: open vSwitch, netback, and netfront. Unfor-
tunately, the performance of these modules was far behind line
rate. He quoted that 14.88 million packets would be processed
to sustain line rate given a 64-byte packet size. However, these
modules can only process 250k–350k packets per second. He
attributed the poor performance to packet copy between Click/
Xen (772 ns), packet metadata allocation (600 ns), and a slow
back-end switch. To address these problems, several optimiza-
tion techniques were used: reuse Xen page permission, replace
OVS with Vale switch, increase I/O batch size, and use the net-
map API all the way to the NIC buffer (kernel bypass).

He then presented an overview of the ClickOS prototype and
emphasized that the Click changes were small. He explained the

evaluation setup: Intel Xeon with Sandy bridge, 16 GB RAM, one
Intel NIC and one CPU core for VMs, and the remaining cores
dedicated to dom0. He navigated through the evaluation section,
started with base transmission performance while varying the
TX ring size. With ring size >= 1024, ClickOS could achieve line
rate at all packet sizes. Next, the virtualized middlebox perfor-
mance was evaluated in a three node setup (host1—>ClickOS—
>host2) for a wide range of middlebox functionalities. Finally,
the effectiveness of their Linux optimization was presented. He
also mentioned that the entire source code is now available at:
http://cnp.neclab.eu. Joao concluded his talk with future work,
which aimed to consolidate thousands of VMs, improve inter-VM
communication, and exploit boot times to achieve reactive VMs.

Marv Ayre (Princeton) wondered about CPU load and utiliza-
tion among the cores. Joao replied that there was just one core
to handle the NIC if it receives packets on the virtual port—in
short, just one core in dom0. For guest OS usage, if it is not
receiving the packet, the CPU usage is zero. The guest OS did
not use anything like DPDK, and there was no polling. Ayre then
asked whether they changed any code to handle high load. Joao
said their design handled high load well and referred people to
the paper for the results. They booted 100 VM instances, and
these instances could fill up the pipe. Someone asked about the
100 VMs example: Was anything done about the CPU scheduling
or about latency? Joao replied that for 100 VMs and beyond there
is likely a bit of a scheduling issue, but he emphasized that the
VMs were scheduled fairly. Although the individual contribution
per VM rate decreased slightly, overall they did not see any issue.
Someone else asked whether they used Xen’s virtual IRQ to trig-
ger interrupt. Joao answered yes and confirmed that they used
the event channel to deliver interrupt. The same person asked
whether they used polling, and Joao replied that since the inter-
rupt happens on a per-batch basis, constant interrupts aren’t
occurring. In addition, the guest OS does not poll the back end.

SENIC: Scalable NIC for End-Host Rate Limiting
Sivasankar Radhakrishnan, University of California, San Diego; Yilong Geng
and Vimalkumar Jeyakumar, Stanford University; Abdul Kabbani, Google Inc.;
George Porter, University of California, San Diego; Amin Vahdat, Google Inc.
and University of California, San Diego

Siva began his talk by discussing server consolidation, multi-
tenancy, and network resource management and sharing in
datacenters. He further identified a key piece of functionality,
namely a programmable rate limiter on the end host to ensure
performance isolation and effective congestion control. He then
discussed two options for rate limiters in existing systems.
Software rate limiters are scalable but not accurate and precise.
Hardware rate limiters (available on NICs) could easily achieve
the latter two but are not scalable. The authors propose SENIC
as a way to combine the advantages of both approaches by reor-
ganizing the responsibility of the operation system and the NIC
functionalities.

Siva reviewed the current NIC design and identified that exist-
ing NICs unnecessarily pre-DMAed packets from host memory

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 93

REPORTS

to NIC buffers, which are limited in size and not able to scale
up. Instead, Siva proposed per-class queues in host memory
and having the NIC compute the schedule on demand for each
packet. The late binding of packet transfer to NIC enables
accurate and precise rate limiting in SENIC. He continued with
SENIC implementation details and discussed how they imple-
mented SENIC on both software (as a Linux kernel module) and
hardware (NetFPGA). For the software prototype, a dedicated
CPU core is used for network scheduling, and for the hardware
prototype, token bucket scheduling is implemented.

Siva reviewed microbenchmark results on 10G with NetFPGA.
Their current NetFPGA prototype supports 1000 rate limit
classes. The inter-packet delay for a traffic class was studied,
and the authors found that the average and standard deviation
was within 0.038% and 1.7% of ground truth, respectively. Siva
next discussed scheduling latency. It takes SENIC 50 ns to com-
pute the schedule for the next packet, which is well within the
allowed budget (300 ns for 1500 bytes for 40G). In the last part
of the evaluation, Siva talked about tenant isolation by configur-
ing 10 memcached tenants (6 Gbps) sharing the network with
one UDP tenant (3 Gbps). He presented the 99.9th percentile
tail latency of memcached tenants while varying the number of
requests. The tail latency was below 5 ms even when the aggre-
gated load approached 6 Gbps. Additionally, the UDP client was
able to attain 3 Gbps irrespective of memcached workload. Both
results significantly outperformed the two existing approaches,
namely HTB and PTB, provided by the current Linux kernel.
Siva explained how SENIC supported other NIC features and
chose TSO as an example. Source code for SENIC is available at
http://sivasankar.me/senic.

Someone wondered how easy it is to implement their solution
on commodity NICs. Siva replied that most of the parts used in
SENIC, such as packet scheduler and DMA engine, are already
available on the NIC. Packets are in the host memory and
DMAed into the internal ring buffer. What is needed is a scalable
scheduler to compute scheduling on demand and pull the packet
for transmission.

mTCP: A Highly Scalable User-Level TCP Stack for
Multicore Systems
EunYoung Jeong, Shinae Woo, Muhammad Jamshed, and Haewon Jeong,
Korea Advanced Institute of Science and Technology (KAIST); Sunghwan
Ihm, Princeton University; Dongsu Han and KyoungSoo Park, Korea
Advanced Institute of Science and Technology (KAIST)

Awarded NSDI ’14 Community Award!

Shinae Woo motivated mTCP by arguing the need to handle
a large number of short flows and the high cost of connection
management in datacenter networks. She explained why the
current TCP implementation in Linux is unsatisfactory: in par-
ticular, the kernel is not well designed to sustain line rate with
small flows and does not scale well with respect to the number
of cores. She then presented a Web server example, where the
CPU spent more than 80% of time in kernel with 34% spent in

the TCP/IP stack. She attributed the performance bottleneck to
shared resource contention, broken locality, and per-packet pro-
cessing overhead in the Linux kernel. She then discussed several
related works in addressing the kernel inefficiency and pointed
out that none of them solved all of the aforementioned problems.

mTCP is a clean-slate design for a user-level TCP implemen-
tation. Woo emphasized that mTCP is explicitly designed for
multicore systems and listed mTCP design features, such as
independent cores with no resource sharing, resource affinity,
batch packet processing, and a portable API compatible with
the current Linux kernel. In particular, she mentioned that
each mTCP thread corresponds to one application thread and
that mTCP threads extend the PSIO library to support efficient
packet I/O interface with lock-free and per-core data structures,
and she addressed the context switch overhead. Additionally, she
talked about porting existing apps on mTCP; most apps required
less than 100 lines of changes. She continued with some imple-
mentation details, such as 11,473 LOC for mTCP, 552 lines to
patch the PSIO library, and that mTCP follows RFC 793.

Woo cited some microbenchmark results and showed that
mTCP could scale linearly with CPU cores when handling
64-byte packet connections. She then discussed the perfor-
mance improvements of ported application on mTCP versus
Linux and MegaPipe, using two application examples: lighttpd
and SSLShader. With lighttpd, mTCP improved over Linux and
MegaPipe by 3.2x and 1.5x, respectively. With SSLShader, where
one-byte objects were downloaded, mTCP boosted performance
by 18% to 33% over Linux. The source code for mTCP is available
at: http://github.com/eunyoung14/mtcp.

Someone asked whether they used timers to batch I/O. Woo
responded that they did not use any timers to batch threads. This
naturally happens with the context switching. The next ques-
tioner pointed out that from netmap they’ve learned that allocat-
ing packet structures such as sk_buff is expensive and that, in
this work, scheduling is killing performance, maybe system call
overhead as well. What was the comparative overhead given that
they measured the whole kernel, that is, where were the perfor-
mance gains coming from? Shinae answered that they were not
aware of exactly where the performance gains come from, such
as which part contributed most benefit. Context switching is
generally more expensive than system calls. Shinae stressed that
they batched 2000 events per context switch, and it seemed that
batching provided more benefit. A third questioner wondered
whether they could move the scheduling portion of mTCP into
the kernel. Shinae replied that it is hard for the kernel to provide
an event-driven API to applications since the two communicate
via system calls. Applications would have to be changed to sup-
port an event-driven model. In mTCP, applications do not need
to be changed and they still use the typical connect() and send()
calls. However, the batching is provided by the mTCP stack.
Shinae believed it would be hard to support batching in kernel.
The final questioner noted that they had divided the application

94  AUGUST 2014 VOL. 39, NO. 4 www.usenix.org

REPORTS

into two parts so that applications were aligned to cores; the
questioner wondered whether they had to rewrite the applica-
tion so that they had a process running per core. Shinae replied
that the ported applications normally support a single-process
multiple-thread model, in which they can easily change the API
to use enough cores. For a single-process single-thread model,
they would have to make changes to turn it into a single-process
multiple thread.

New Programming Abstractions
Summarized by Oliver Michel (oliver.michel@colorado.edu)

Warranties for Faster Strong Consistency
Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew C. Myers,
Cornell University

Jed Liu started with a discussion about the tradeoff between
consistency and scalability in distributed systems. He illus-
trated this tradeoff by comparing relational database systems
and Web-scale NoSQL systems only providing weak, eventual
consistency. Essentially, these systems are harder to program
against because consistency failures are likely.

To bridge this gap, the authors introduce warranties, which
are time-limited assertions about the state of a system. State
warranties ensure that a certain key has a specific value until
some point in time, whereas computation warranties guarantee
that a certain computation result holds true until some point in
time. For example, such a warranty could assert that there are
at least x seats available on a flight in an airline booking system
until a specified time. Warranties are strictly serializable and
provide a generalized form of optimistic concurrency control.
They provide improved scalability and throughput in read-heavy
environments, whereas write access may become a bottleneck
because writes that would violate assertions are delayed until
the warranty expires.

The authors’ evaluation showed that a key parameter, heavily
influencing the system performance, is the duration of a war-
ranty. Thus, these durations must be chosen carefully. War-
ranties must be valid long enough to be useful but short enough
to keep the system from blocking access completely. Finally,
Liu provided performance figures showing a speedup of 2x is
achieved by warranties for a system with only 2% of data access
being writes. Performance worsens in comparison to not using
warranties at about 9%–10% writes.

Aaron Gember (University of Wisconsin) asked how long war-
ranties typically are. Jed answered that warranties are in the
range of a few seconds depending on performance character-
istics of the system. Someone from Microsoft Research asked
whether a detailed knowledge of the performance characteris-
tics of the system is needed to set durations for computational
characteristics appropriately. The author answered that a good
knowledge of the workload is necessary. Eddie Kohler (Harvard
University) asked whether some warranties are more useful
than others. Jed answered that this is certainly true and some

 messages are not even worth having against the warranty over-
head. Alec Wolman (Microsoft Research) asked how developers
would tune the system if the workload changed over time. Jed
replied that they haven’t thought deeply about this, but would
have to think about which methods get memoized. Aditya Akella
(University of Wisconsin-Madison and session chair) asked
whether the higher throughput resulted in higher latency. Jed
said that the latency was just for write transactions, and for a
read-mostly workload, this is acceptable.

Tierless Programming and Reasoning for
Software-Defined Networks
Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram
Krishnamurthi, Brown University

Tim Nelson opened by discussing the three main application
tiers in programming software-defined networks: the flow-rules
in the switches, the controller program, and the store for the con-
troller state. In most languages, these three layers are abstracted
differently. In fact, there is a gap between the code that the con-
troller application executes to produce a new flow modification
message and the interface that receives this information on the
switch side, which leads to errors and inconsistencies between
the tiers.

Tim introduced Flowlog, the authors’ approach to a completely
tierless programming environment for software-defined net-
works. Flowlog provides a cross-tier interface such that applica-
tions written in this language are easier to statically verify since
the gaps between the tiers are covered in the language runtime
directly. This runtime handles compilation to flow tables while
including state and state updates. With this approach (where
also all flows are proactively pushed to the switches), bugs can
be found before the rules are executed on the switch. For verifi-
cation, standard utilities like Alloy can be used because Flowlog
programs are equivalent to first-order logic programs.

Aaron Gember (University of Wisconsin) asked whether the
authors thought about supporting middlebox programming in
their system, which they did not. Concerns were raised that this
abstraction (with a SQL-like language) is too high-level; how
would languages like Erlang fit into this project? In fact, the
authors really thought about using a functional language instead
of a custom DSL. Someone asked whether they could still run
into inconsistencies between layers. Tim replied that they don’t
allow state to expire due to lack of use. They are adding the
ability to have timeout events for removing rules. Aditya Akella
(University of Wisconsin–Madison) asked about how the com-
piler works and whether it can handle all types of consistency
semantics. Tim replied that Flowlog supports some things that
OpenFlow does not. When their compiler detects forwarding
rules, it produces netcore code and uses the netcore compiler.
Andrew Ferguson (another author) pointed out that some parts
of the policy might be directed toward a single switch, and that
that is an abstraction introduced by netcore.

www.usenix.org AUGUST 2014 VOL. 39, NO. 4 95

REPORTS

Enforcing Network-Wide Policies in the Presence of
Dynamic Middlebox Actions using FlowTags
Seyed Kaveh Fayazbakhsh, Carnegie Mellon University; Luis Chiang,
Deutsche Telekom Labs; Vyas Sekar, Carnegie Mellon University; Minlan Yu,
University of Southern California; Jeffrey C. Mogul, Google

Seyed Kaveh Fayazbakhsh gave a short introduction to SDN and
middleboxes and pointed out that integration of middleboxes in
software-defined networks is a non-trivial task since middle-
boxes modify packets based on traffic dynamics. This behavior
violates two key tenets of software-defined networking, namely
origin binding and the paths follow policy. Origin binding means
that there should be a strong binding between a packet and its
origin, which is violated by NAT boxes. The paths follow policy
states that explicit policies should determine the paths that
packets follow, which Web proxy boxes violate. As a result, man-
agement, debugging, and forensics are more complicated, and,
furthermore, it is difficult to ensure service-chaining policies.

Seyed explained that to solve this issue, it is necessary to add
the missing contextual information that middleboxes otherwise
may rewrite. The authors achieve this goal by adding tags to
flows, where a central flow tag controller configures the tagging
logic. Subsequently, critical information that middleboxes need
is encoded in tags, and forwarding is performed based on tags
not overwriting information like the source IP address. Through
this central configuration, enhanced policies are possible and
are expressed in dynamic policy graphs. These graphs hold
transition conditions between middlebox nodes from sources to
destinations, which makes chaining devices more easily feasible.

To implement this system, middleboxes need to be modified.
This is possible because middleboxes already rewrite packets at
a high level. That means that actually no changes to their inter-
nal logic are needed. The code to add in a middlebox is negligible
(25–75 LOC). The processing overhead is less than 1%. Based on
their evaluation, only 15 bits are needed to encode tags, which
can be done in, for example, the IP-ID or the IPv6 flow label.
Additionally, flow labels add enhanced semantics to a packet,
which allows for extended analysis and debugging.

Questions were raised about how granular flow tags need to be.
In the worst case, every flow tag corresponds to a transport layer
flow. The flow tags also caused confusion around how exactly
flow tags are possible in OpenFlow. Seyed said that because
OpenFlow and most middleboxes support rewriting IP-ID and
other possible headers, flow tags can easily be implemented, and
that 15 bits for flow tags supports 70k-80k flows per second.

Closing Remarks
Summarized by Rik Farrow

USENIX Executive Director Casey Henderson closed the sym-
posium by thanking the chairs and handing a bottle of sparkling
wine to Ratul. Paul Barham (Microsoft Research) and Arvind
Krishnamurty (University of Washington) will be the co-chairs
for NSDI ’15.

Full Program and Registration
Coming August 2014

www.usenix.org/lisa14

More Craft. Less Cruft.
Wednesday Keynote Speaker:

Ken Patchett, Director of Data Center
 Operations, Western region, Facebook

Thursday Keynote Speaker:
Gene Kim, former CTO and founder, Tripwire,

co-author of The Phoenix Project:
A Novel About IT, DevOps, and

Helping Your Business Win
Closing Plenary:

Janet Vertesi, Princeton University

Featuring talks and training from:
Michael “Mikey” Dickerson
Caskey Dickson, Google

Garrett Honeycutt, LearnPuppet.com
Dinah McNutt, Google

Laura Thomson, Mozilla
James Turnbull, Docker

Avleen Vig, Etsy
Mandi Walls, Chef

Nov. 9–14, 2014 | Seattle

Shop the Shop shop.linuxnewmedia.com

RaspbeRRy pi on newsstands now oR oRdeR online at:

shop.l inuxnewmedia.com/rpi

Your companion for a strange
and wonderful adventure...

You ordered your Raspberry Pi...
You got it to boot...what now?

The Raspberry Pi Handbook takes
you through an inspiring collection of
projects. Put your Pi to work as a:

▪ media center

▪ photo server

▪ game server

▪ hardware controller

▪ and much more!

Discover Raspberry Pi’s special tools
for teaching kids about programming
and electronics, and explore advanced
techniques for controlling Arduino
systems and coding GPIO interrupts.

watch youR newsstands foR
the only RaspbeRRy pi RefeRence

you’ll eveR need!

2nd Edition!

ad_login_raspberryPi_07_2014.indd 1 4/21/14 1:44:06 PM

www.usenix.org/osdi14

14
11th USENIX Symposium
on Operating Systems Design
and Implementation

October 6–8, 2014 • Broomfield, CO

Join us in Broom� eld, CO, October 6–8, 2014, for the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ‘14). The Symposium brings together professionals from academic and industrial
backgrounds in what has become a premier forum for discussing the design, implementation, and implications
of systems software.

Don’t miss the co-located workshops on Sunday, October 5

• Diversity ’14: 2014 Workshop on Supporting Diversity in
 Systems Research

• HotDep ’14: 10th Workshop on Hot Topics in Dependable
Systems

• HotPower ’14: 6th Workshop on Power-Aware Computing
and Systems

• INFLOW ’14: 2nd Workshop on Interactions of NVM/Flash with
Operating Systems and Workloads

• TRIOS ’14: 2014 Conference on Timely Results in Operating
Systems

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	Contents and Masthead
	Musings
	Why Offensive Security Needs Engineering Textbooks: Or, How to Avoid a Replay of “Crypto Wars” in Security Research
	How USB Does (and Doesn’t) Work: A Security Perspective
	Computer Security at CERN
	Building Web Applications on Top of Encrypted Data Using Mylar
	cTPM: A Cloud TPM for Cross-Device Trusted Applications
	Interview with Steve Bellovin
	CRA-W: Taking Action to Achieve Diversity in Computing Research
	Hostbased SSH: A Better Alternative
	Challenges in Event Management
	/var/log/manager: When Technology Isn’t the Cause of a Technical Problem
	Practical Perl Tools: Zero Plus One
	Command Line Option Parsing
	iVoyeur7: Habits of Highly Effective Monitoring Systems
	Almost Too Big to Fail
	/dev/random
	Book Reviews
	Conference Reports

