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EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org After writing this column for more than 15 years, I’m a bit stuck with 

what I should talk about. But I do have a couple of things on my mind: 
Krste Asanović’s FAST ’14 keynote [1] and something Brendan Gregg 

wrote in his Systems Performance book [2].

Several years ago, I compared computer systems architecture to an assembly line in a fac-
tory [3], where not having a part ready (some data) held up the entire assembly line. Brendan 
expressed this differently, in Table 2.2 of his book, where he compares the speed of a 3.3 GHz 
processor to other system components by using human timescales. If a single CPU cycle is 
represented by one second, instead of .3 nanoseconds, then fetching data from Level 1 cache 
takes three seconds, from Level 3 cache takes 43 seconds, and having to go to DRAM takes 
six minutes. Having to wait for a disk read takes months, and a fetch from a remote datacen-
ter can take years. It’s amazing that anything gets done—but then you remember the scaling 
of 3.3 billion to one. Events occurring in less than a few tens of milliseconds apart appear 
simultaneous to us humans.

Krste Asanović spoke about the ASPIRE Lab, where they are examining the shift from the 
performance increases we’ve seen in silicon to a post-scaling world, so we need to consider 
the entire hardware and software stack. You can read the summary of his talk in this issue of 
;login: or go online and watch the video of his presentation.

A lot of what Asanović talked about seemed familiar to me, because I had heard some of these 
ideas from the UCB Par Lab, in a paper in 2009 [4]. Some things were new, such as using 
photonic switching and message passing (read David Blank-Edelman’s column) instead of 
the typical CPU bus interconnects. Asanović also suggested that data be encrypted until 
it reached the core where it would be processed, an idea I had after hearing that Par Lab 
paper, and one that I’m glad someone else will actually do something about. Still other things 
remained the same, such as having many homogeneous cores for the bulk of data processing, 
with a handful of specialized cores for things like vector processing. Asanović, in the ques-
tion and answer that followed his speech, said that only .01% of computing requires special-
ized software and hardware.

Having properly anticipated the need for encryption of data while at rest and even while being 
transferred by the photonic message passing system, I thought I’d take a shot at imagining 
the rest of Warehouse Scale Computing (WSC), but without borrowing from the ASPIRE 
FireBox design too much. 

The Need for Speed
First off, you need to keep those swift cores happy, which means that data must always be 
ready nearby. That’s a tall order, and one that hardware designers have been aware of for 
many years. Photonic switching at one terabit per second certainly sounds nice, and it’s hard 
to imagine something that beats a design that already seems like science fiction based on the 
name. For my design, I will simply specify a message-passing network that connects all cores 
and their local caches to the wider world beyond. Like the FireBox design, there will be no 
Level 1 cache coherency or shared L1 caches. If a module running on one core wants to share 
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data with another, it will have to be done via message passing, 
not by tweaking shared bits and expecting the other core to 
notice.

Whatever interconnect you choose, having sufficient bisection 
bandwidth will be key to the performance of the entire system. 
Can’t have those cores waiting many CPU cycles for the data 
they need to read or write. The photonic switches have lots of 
bandwidth, and if they can actually switch without resorting to 
converting light back to electrons then to light again, they can 
work with a minimal of latency.

In my design, I imagine having special encryption hardware 
that’s part of every core. That way, checking the HMAC and the 
decryption of messages (as well as the working in the opposite 
direction) can take advantage of hardware built for this very 
specific task. It should be possible to design very secure sys-
tems using this approach, because all communications between 
processes and the outside world come with verification of their 
source—a process that knows the correct encryption key. Like 
the FireBox, this system will be a service-oriented architecture, 
with each core providing a minimal service, again minimizing 
but not eliminating the probability that there will be security-
affecting bugs in the code.

Some cores will be connected to the outside world, managing 
communications and storage. This is not that different from cur-
rent approaches, where network cards for VM hosts already do a 
lot of coprocessing and maintain multiple queues. But something 
similar will need to be done for storage, as it will remain glacially 
slow, from the CPU’s perspective, even with advances such as 
non-volatile memory (NVM) being available in copious amounts 
with speeds as fast or faster than current DRAM.

Cores will be RISC, because they are more efficient than CISC 
designs. (Note to self: sell Intel, buy ARM Holdings.) With Intel 
server CPUs like eight-core Xeon ES having 2.7 billion transis-
tors, that’s a lot of heat, much of which is used to translate CISC 
instructions into internal, RISC-like, microcode instructions. 
The AMD A1100 that was announced in January 2014 will have 
eight 64-bit ARM (Cortex-A57) cores and built-in SIMD, which 
supports AES encryption and is rated at 25 watts TDP (thermal 
design power), compared to 80 for the 3.2 GHz Xeon. (Hmm, buy 
AMD?)

Unlike the FireBox’s fit-in-a-standard-rack design, my imagi-
nary system will look like something designed by Seymour Cray, 
but without a couch. Cray’s best-known designs were circular, 
because Cray was concerned about having components sepa-
rated by too much distance. After all, light can only travel 29.979 
cm in a nanosecond, and with CPU clock cycles measured in 
nanoseconds in Cray’s day, distance mattered. Actually, distance 
matters even more today.

My design has the outward appearance of a cube. Inside, the 
cores will be arranged in a sphere, with I/O and support filling in 
the corners. Also, unlike one of Cray’s designs, where you could 
see the refrigerant flowing around the parts, my cube will float 
on a fountain of water. The water will both cool and suspend the 
cube, while the I/O and power connections will prevent it from 
floating off the column of water.

At the end of Asanović’s talk, I asked him why they would be 
using Linux. Asanović replied that Linux provides programmers 
with a familiar interface. That’s certainly true, and I agree. But 
I also think that a minimal Linux shell, like that provided by a 
picoprocess [5], will satisfy most programs compiled to work 
with Linux, while being easy to support with a very simple mes-
sage passing system under the hood (so to speak).

Except for some dramatic flairs, I must confess that my design is 
not that different from the FireBox.

Reality
One problem with my floating cube design is how to deal with 
broken hardware. Sometimes cores or supporting subsystems 
fail, and having to toss an entire cube because you can’t replace 
failed parts isn’t going to work. There’s a very good reason why 
supercomputers today appear as long rows of rackmount servers 
[6]. One can hope that the reason the FireBox will fit in racks is 
that it contains modules that can be easily serviced and replaced.

Using water for cooling has been done before [7], but it does 
make maintenance more difficult than just using air. Still, even 
low-power RISC cores dissipate “waste” heat, and having 1000 
of them translates into 3.3 kilowatts of heat—a space heater that 
you really don’t want in your machine room. Still, that beats the 
12.5 kilowatts produced by the Xeons.

Even the photonic switching network could prove problematic. 
In the noughts, a company named SiCortex [8] built supercom-
puters that used RISC cores and featured a high-speed, message-
passing interconnect using a diameter-6 Kautz graph, and they 
failed after seven years and only selling 75 supercomputers. 
Perhaps the market just didn’t think that having an intercon-
nect designed to speed intercore and I/O communications was 
important enough.

The Lineup
We start this issue with an article from the people who built 
~okeanos, a public cloud for Greek researchers. They have writ-
ten for ;login: before [9], and when I discovered that they had used 
Ceph as the back-end store, I asked if they would write about 
their experiences with Ceph. The authors describe what they 
needed from a back-end storage system, what they tried, and how 
Ceph has worked so far.
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I met Tyler Harter during a poster session at FAST ’14. Tyler 
had presented what I thought was a great paper based on traces 
collected from Facebook Messages. What he and his co-authors 
had discovered showed just how strongly layering affects write 
performance, resulting in a huge amount of write amplification. 
In this article, Harter et al. explain how they uncovered the write 
amplification and what can be done about it, as well as exploring 
whether the use of SSDs would improve the performance of this 
HBase over HDFS application.

I knew that Mark Lamourine had been working on Red Hat’s 
implementation of OpenStack and thought that I might be able 
to convince him to explain OpenStack. OpenStack started as a 
NASA and Rackspace project for creating clouds and has become 
a relatively mature open source project. OpenStack has lots of 
moving parts, which makes it appear complicated, but I do know 
that people are using it already in production. The ~okeanos proj-
ect is OpenStack compatible, and if you read both articles, you 
can learn more about the types of storage required for a cloud.

Tim Hockin shares an epic about debugging. What initially 
appeared to be a simple problem took Hockin down many false 
paths before he finally, after going all the way down the stack to 
the kernel, found the culprit—a tiny but critical change in source 
code.

David Lang continues to share his expertise in enterprise log-
ging. In this issue, Lang explains how to detect and fix perfor-
mance problems when using rsyslog, a system he has used and 
helps to maintain.

Andy Seely introduces us to some rock stars. You know, those 
people you worked with at the startup that didn’t make it? The 
ones willing to work long hours for a reward that remained 
elusive? Seely’s story is actually about how a small management 
change improved the lives of the people he worked with.

David Blank-Edelman delves into the world of message queues 
via 0MQ. I became interested in message queues when I learned, 
from Mark Lamourine, that they were being used in OpenStack. 
David shows us how simple it is to use 0MQ, as well as demon-
strating just how powerful 0MQ is, using some Perl examples, in 
the first of a two-part series.

Dave Beazley explores a feature found in the newest version of 
Python, asynchronous I/O. You might think that async-io has 
been around for a while in Python, and you’d be right. But this is 
a new implementation, which considerably simplifies how event 
loops are used. Oh, and there’s a backport of the new module to 
Python 2.7.

Dave Josephsen has us considering monitoring design patterns. 
I found his column very timely, as I know that sysadmins are 
questioning the design patterns they have been using for many 
years to collect status and information.

Dan Geer and Jay Jacobs discuss where we are today in collect-
ing security metrics. At first, we just needed to start collecting 
usable data. Today, what’s needed is the ability to better perform 
meta-analysis of publicly available data.

Robert Ferrell also explores clouds and muses about the future 
of advertising. Like Robert, I just can’t wait until my heads-up 
display is showing me advertising when what I really want are 
the directions to where I needed to be five minutes ago.

James Mickens had written a number of columns that were 
only published online, and we decided to print his first one [10]. 
James has been experiencing deep, existential angst about issues 
surrounding the unreliability of untrusted computer systems. In 
particular, papers about Byzantine Fault Tolerance. Don’t worry, 
as James’ column will not put you to sleep.

Elizabeth Zwicky has written three book reviews. She begins 
with a thorough and readable tutorial on R, covers an excellent 
book on threat modeling, and finishes with a book on storage for 
photographers.

This will be Elizabeth’s final column. Elizabeth has been the 
book reviews columnist for ;login: since October 2005, and I, like 
many, have thoroughly enjoyed her erudite and droll reviews. Her 
work will be missed, although I hope she still finds the time to 
pen the occasional review.

If you want to contribute reviews to ;login: of relevant books that 
you have read, please email me.

We also have summaries of FAST ’14 and the Linux FAST Sum-
mit. I took notes there and converted them into a dialog that cov-
ers a lot of what happened during the summit. The summary also 
provides insights into how the Linux kernel changes over time.

Although the key ideas of the FireBox design appear sound to me, 
people have learned how to work with off-the-shelf rackmounted 
servers for massive data processing tasks, and the biggest 
change so far has been to move toward using SDN for network-
ing. Perhaps there will be a move toward customized cores as 
well. When designing WSC, the ability to keep data close to 
where it is processed has been the key so far, whether we are 
discussing MapReduce or memcached.
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keanos is a large-scale public cloud service powered by Syn-
nefo and run by GRNET. Ceph is a distributed storage solu-
tion that targets scalability over commodity hardware. This 

article focuses on how we use Ceph to back the storage of ~okeanos. More 
specifically, we will describe what we aimed for in our storage system, the 
challenges we had to overcome, certain tips for setting up Ceph, and experi-
ences from our current production cluster.

The ~okeanos Service
At GRNET, we provide ~okeanos [2, 4], a complete public cloud service, similar to AWS, for 
the Greek research and academic community. ~okeanos has Identity, Compute, Network, 
Image, Volume, and Object Storage services and is powered by Synnefo [3, 5]. ~okeanos cur-
rently holds more than 8000 VMs.

Our goals related to storage are to provide users with the following functionality:

◆◆ The ability to upload files and user-provided images by transferring only the missing data 
blocks (diffs).

◆◆ Persistent VMs for long-running computationally intensive tasks, or hosting services.

◆◆ Thin VM provisioning (i.e., no copy of disk data when creating a new VM) to enable fast 
spawning of hundreds of VMs, with zero-copy snapshot functionality for checkpointing and 
cheap VM backup.

We aim to run a large-scale infrastructure (i.e., serve thousands of users and tens of thou-
sands of VMs) over commodity hardware.

A typical workflow on ~okeanos is that a user downloads an image, modifies it locally (e.g., 
by adding any libraries or code needed), and reuploads it by synchronizing it with the server 
and uploading only the modified part of the image. The user then spawns a large number of 
persistent VMs thinly, with zero data movement. The VM performs some computations, and 
the user can then take a snapshot of the disk as a checkpoint; the snapshot also appears as a 
regular file on the Object Storage service, which the user can sync to his/her local file system 
to get the output of the calculations for further offline processing or for backup.

To achieve the described workflow, however, we had to overcome several challenges regard-
ing storage.

Storage Challenges
We stumbled upon two major facts while designing the service: (1) providing persistent VMs 
conflicts with the ability to scale and (2) using the same storage entities from different ser-
vices requires a way to access them uniformly without copying data.

Providing persistent VMs while being able to scale is a demanding and difficult problem to 
solve. Persistence implies the need to live migrate VMs (change their running node while 
keeping the VM running) or fail them over (shut them down and restart them on another 
node) when a physical host experiences a problem. This implies shared storage among the 
nodes because the VM, and consequently the VM’s host, needs to access the virtual disk’s 
data. The most common solution to provide shared storage among the nodes is a central 
NAS/SAN exposed to all nodes.

~o
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However, having a central storage to rely on cannot scale and can 
be a single point of failure for the storage infrastructure. DRBD 
is another well-known enterprise-level solution to provide per-
sistent VMs and scale at the same time. DRBD mirrors a virtual 
disk between two nodes and propagates VM writes that occur 
on one node to the replica. DRBD is essentially a RAID-1 setup 
over network. However, this choice imposes specific node pairs 
where the data is replicated and where the VM can be migrated, 
narrowing the administrator’s options when performing mainte-
nance. Moreover, it does not allow for either thin VM provision-
ing or for sharing blocks of data among VM volumes and user 
uploaded files, which takes us to the second problem.

The second problem we had to overcome involved presenting 
the different storage entities to the cloud layer uniformly. For 
example, a snapshot should be treated as a regular file to be 
synced and also as a disk image to be cloned. The actual data, 
though, remain the same in both cases, and only the cloud layer 
on top of the storage should distinguish between the two aspects. 
Therefore, we needed a way to access the same data from differ-
ent cloud services uniformly, through a common storage layer.

To solve these problems, we needed a storage layer that would 
abstract the cloud aspect of a resource from its actual data and 
allow the ability to present this data in various ways. Addition-
ally, we needed this mechanism to be independent from the 
actual data store. Because no suitable solution existed, we cre-
ated Archipelago.

Archipelago
Archipelago [1] is a distributed storage layer that unifies how 
storage is perceived by the services, presenting the same 
resources in different ways depending on how the service wants 
to access them. It sits between the service that wants to store 
or retrieve data and the actual data store. Archipelago uses 
storage back-end drivers to interact with any shared data store. 
It also provides all the necessary logic to enable thin volume 
provisioning, snapshot functionality, and deduplication over 
any shared storage. Therefore, Archipelago allows us to view the 
cloud resources uniformly, whether these are images, volumes, 
snapshots, or just user files. They are just data stored in a storage 
back end, accessed by Archipelago.

Synnefo uses Archipelago to operate on the various representa-
tions of the same data:

◆◆ From the perspective of Synnefo’s Object Storage service, im-
ages are treated as common files, with full support for remote 
syncing and sharing among users.

◆◆ From the perspective of the Compute service, images can be 
cloned and snapshotted repeatedly, with zero data movement 
from service to service.

◆◆ And, finally, snapshots can appear as new image files, again 
with zero data movement.

Backing Data Store
Archipelago acts as a middle layer that presents the storage 
resources and solves the resource unification problem but does 
not actually handle permanent storage. We needed a data store 
to host the data. Because we were not bound by specific con-
straints, we had various shared storage options. We decided to 
start with an existing large central NAS, exposed to all nodes as 
an NFS mount. This approach had several disadvantages:

◆◆ It could not scale well enough to hold the amount of users and 
data we aimed for.

◆◆ Having a large enterprise-level NAS imposed geographical 
constraints. The data reside in only one datacenter.

◆◆ It imposes a centralized architecture, which is difficult and 
costly to extend.

Because ~okeanos had exponential growth, we needed a different 
storage solution.

Ceph
Ceph is a distributed storage solution. It offers a distributed 
object store, called RADOS [6], block devices over RADOS called 
RBD, a distributed file system called CephFS, and an HTTP 
gateway called RadosGW. We have been following its progress 
and experimenting with it since early 2010.

RADOS is the core of Ceph Storage. It is a distributed object 
store comprising a number of OSDs, which are the software 
components (processes) that take care of the underlying storage 
of data. RADOS distributes the objects among all OSDs in the 
cluster. It manages object replication for redundancy, automatic 
data recovery, and cluster rebalancing in the presence of node 
failures.

RBD provides block devices from objects stored on RADOS. It 
splits a logical block device in a number of fixed-size objects and 
stores these objects on RADOS.

CephFS provides a shared file system with near-POSIX seman-
tics, which can be mounted from several nodes. CephFS splits 
files into objects, which are then stored on RADOS. It also con-
sists of one or more metadata servers to keep track of file-system 
metadata.



8   J U N E 20 14  VO L .  3 9,  N O.  3  www.usenix.org

FILE SYSTEMS AND STORAGE
~okeanos: Large-Scale Cloud Service Using Ceph

Finally, RadosGW is an HTTP REST gateway to the RADOS 
object store.

Ceph seemed a promising storage solution that provided scal-
able distributed storage based on commodity hardware, so we 
decided to evaluate it. Ceph exposes the data stored in RADOS in 
various forms, but it does not act on them uniformly like Archi-
pelago does. Because we already had an HTTP gateway and VM 
volume representation of the data by Archipelago, we needed 
RADOS, which also happens to be the most stable and mature 
part of Ceph, to store and retrieve objects. We used Ceph’s libra-
dos to implement a user-space driver for Archipelago to store our 
cloud data on RADOS and integrate it with Synnefo.

Things to Consider with Ceph
While evaluating RADOS, we experimented with various 
RADOS setup parameters and drew several conclusions regard-
ing setup methodology and RADOS performance.

OSD/Disks Setup
Ceph’s OSDs are user-space daemons that form a RADOS clus-
ter. Each OSD needs permanent storage space where it will hold 
the data. This space is called “ObjectStore” in RADOS terminol-
ogy. Ceph currently implements its ObjectStore using files, so we 
will use the term “filestore.” We had several storage nodes that 
could host RADOS OSDs. Each node had multiple disks. So the 
question arose how to set up our RADOS cluster and where to 
place the filestores. We had numerous parameters to consider, 
including the number of OSDs per physical node, the number of 
disks per OSD, and the exact disk setup. After extensive test-
ing, we concluded that it is beneficial to have multiple OSDs per 
node, and we dedicated one disk to each one. This setup ensures 
that one OSD does not compete with any other for the same disk 
and allows for multiple OSDs per node, resulting in improved 
aggregate performance.

Journal Mode and Filestore File System
Along with the filestore, each OSD keeps a journal to guarantee 
data consistency while keeping write latency low. This means 
that every write gets written twice in each OSD, once in the 
journal and once in the backing filestore. There are two modes in 
which the journal can operate, write-ahead and write-parallel. 
In write-ahead mode, each write operation is first committed to 
the journal and then applied to the filestore. The write operation 
can be acknowledged as soon as it is safely written to the journal. 
In write-parallel mode, each write is written to both the journal 
and the filestore in parallel, and the write can be acknowledged 
when either of the two operations is completed successfully. 
The write-parallel mode requires btrfs as the file system of the 
backing filestore, because it makes use of btrfs-specific features, 
such as snapshots and rollbacks, to guarantee data consistency. 
On the other hand, the write-ahead mode can work with all the 

recommended file systems, such as ext4 and XFS. Because btrfs 
is still not production ready and showed significant instability 
under heavy load, we decided to proceed with ext4 and write-
ahead journal mode.

Journal Placement and Size
The RADOS journal can be placed in a file in the backing 
filestore, in a separate disk partition on the same disk, or in 
a completely separate block device. The first two options are 
suboptimal because they share the bandwidth and IOPS of the 
OSD’s disk with the filestore, essentially halving the overall 
disk performance. Therefore, we placed the RADOS journal in a 
separate block device.

You might think that, because writes are confirmed when they 
hit the journal, an OSD can sustain improved write performance 
for a longer period by using a bigger journal on a fast device, 
falling back to filestore performance when the journal gets 
full. However, our experiments showed that RADOS OSDs do 
not work like that. If the journal media is much faster than the 
filestore, the OSD pauses writes when it tries to sync the journal 
with the filestore. This behavior can result in abnormal and 
erratic patterns during write bursts. Thus, a small portion of a 
block device with performance close to the one of the filestore 
should be used to hold the journal. Because we do not need large 
journals, multiple journals can be combined in the same block 
device, as long as it provides enough bandwidth for all of them.

RADOS Latency
When evaluating a storage system, especially for VM virtual 
disks’ data, latency plays a critical role. VMs tend to perform 
small (4 K to 16 K) I/Os where latency becomes apparent. Our 
measurements showed that RADOS has a non-negligible latency 
of about 2 ms, so you cannot expect latency comparable with 
local disks. This behavior can be masked by issuing multiple 
requests or performing larger I/O to achieve high throughput. 
Also, because the requests are equally distributed among all 
OSDs in a cluster, the overall performance remains highly 
acceptable.

Data Integrity Checking
Silent data corruption caused by hardware can be a big issue on a 
large data store. RADOS offers a scrubbing feature, which works 
in two modes: regular scrubbing and deep scrubbing. Regular 
scrubbing is lighter and checks that the object is correctly repli-
cated among the nodes. It also checks the object’s metadata and 
attributes. Deep scrubbing is heavier and expands the check to 
the actual data. It ensures data integrity by reading the data and 
computing checksums.
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Storage vs. Compute Nodes
Another setup choice we had was to keep our storage nodes 
distinct from our compute nodes, where the VMs reside. This 
has two main advantages. First, OSDs do not compete with the 
VMs for compute power. OSDs do not require a lot of CPU power 
normally, but it can be noticeable while scrubbing or rebalanc-
ing. Normal operations will also require more CPU power with 
the upcoming erasure coding feature, where CPU power is used 
to reconstruct objects in order to save storage space. Second, we 
can use the storage container RAM as cache for hot data using 
the Linux page-cache mechanism, which uses free RAM to 
cache recently accessed files on a file system. Hosting VMs on 
the same node would leave less memory for this purpose.

Experiences from Production
Ceph has been running in production since April 2013 acting 
as an Archipelago storage back end. As of this writing, Ceph’s 
RADOS backs more than 2000 VMs and more than 16 TB of 
user-uploaded data on the Object Storage service.

Our current production setup comprises 20 physical nodes. Each 
node has

◆◆ 2 × 12-Core Xeon(R) E5645 CPU

◆◆ 96 GBs of RAM

◆◆ 12 × 2 TB SATA disks

Our storage nodes can provide more CPU power than Ceph cur-
rently needs. We are planning to use this extra power to seam-
lessly enable future Ceph functionality, like erasure coding, 
and to divert computationally intensive storage-related tasks 
(e.g., hashing) to the storage nodes, using the RADOS “classes” 
mechanism.

Each physical node hosts six OSDs. Each OSD’s data resides 
on a RAID-1 setup between two 2 TB disks. RADOS replicates 
objects itself, but because it was under heavy development, we 
wanted to be extra sure about the safety of our data. By using 
this setup along with a replication level 2, we only use one fourth 
of our overall capacity, which covers our current storage needs. 
As our storage needs grow and RADOS matures, we aim to break 
the RAID setups and double the cluster capacity.

Using Ceph in production has several advantages:

◆◆ It allows us to use large bulk commodity hardware.

◆◆ It provides a central shared storage that can self-replicate, self-
heal, and self-rebalance when a hardware node or a network 
link fails.

◆◆ It can scale on demand by adding more storage nodes to the 
cluster as demand increases.

◆◆ It enables live migration of VMs to any other node.

Using Ceph in a large-scale system also revealed some of its 
current weaknesses. Scrubbing and especially deep scrubbing 
can take a lot of time to complete. During these actions, there 
is significant performance drop. The cluster fills with slow 
requests and VMs are affected. This is a major drawback, and we 
had to completely disable this functionality. We plan to re-enable 
it as soon as it can be used without significant performance 
regression. Performance also drops when rebuilding the cluster 
after an OSD failure or when the cluster rebalances itself after 
the addition of a new OSD. This issue is closely related to the 
performance drop during deep scrubbing, and it occurs because 
RADOS does not throttle traffic related to recovery and deep 
scrubbing according to the underlying disk utilization and the 
rate of the incoming client I/O.

On the other hand, Ceph has survived numerous hardware 
failures with zero data loss and minimal service disruption. 
Its overall usage experience outweighs the hiccups we endured 
since we began using it for production purposes.

In conclusion, our experience from running a large-scale Ceph 
cluster shows that it has obvious potential. It can run well over 
commodity hardware, scale without any visible overhead, and 
helped us to deploy our service. However, in its current state, 
running it for production purposes has disadvantages because it 
suffers from performance problems when performing adminis-
trative actions.

Ceph is open source. Source code, more info, and extra material 
can be found at http://www.ceph.com.
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Large-scale distributed storage systems are exceedingly complex 
and time-consuming to design, implement, and operate. As a result, 
rather than cutting new systems from whole cloth, engineers often 

opt for layered architectures, building new systems upon already-existing 
ones to ease the burden of development and deployment. In this article, we 
examine how layering causes write amplication when HBase is run on top 
of HDFS and how tighter integration could result in improved write perfor-
mance. Finally, we take a look at whether it makes sense to include an SSD to 
improve performance while keeping costs in check.

Layering, as is well known, has many advantages [6]. For example, construction of the 
Frangipani distributed file system was greatly simplified by implementing it atop Petal, a 
distributed and replicated block-level storage system [7]. Because Petal provides scalable, 
fault-tolerant virtual disks, Frangipani could focus solely on file-system-level issues (e.g., 
locking); the result of this two-layer structure, according to the authors, was that Frangipani 
was “relatively easy to build.”

Unfortunately, layering can also lead to problems, usually in the form of decreased perfor-
mance, lowered reliability, or other related issues. For example, Denehy et al. show how naïve 
layering of journaling file systems atop software RAIDs can lead to data loss or corruption 
[2]. Similarly, others have argued about the general inefficiency of the file system atop block 
devices [4].

In this article, we focus on one specific, and increasingly common, layered storage architec-
ture: a distributed database (HBase, derived from Google’s BigTable) atop a distributed file 
system (HDFS, derived from the Google File System). Our goal is to study the interaction 
of these important systems with a particular focus on the lower layer, which leads to our 
highest-level question: Is HDFS an effective storage back end for HBase?

To derive insight into this hierarchical system, and therefore answer this question, we trace 
and analyze it under a popular workload: Facebook Messages (FM). FM is a messaging 
system that enables Facebook users to send chat and email-like messages to one another; it 
is quite popular, handling millions of messages each day. FM stores its information within 
HBase (and thus, HDFS) and hence serves as an excellent case study.

To perform our analysis, we collected detailed HDFS traces over an eight-day period on a 
subset of FM machines. These traces reveal a workload very unlike traditional GFS/HDFS 
patterns. Whereas workloads have traditionally consisted of large, sequential I/O to very 
large files, we find that the FM workload represents the opposite. Files are small (750 KB 
median), and I/O is highly random (50% of read runs are shorter than 130 KB).

We also use our traces to drive a multilayer simulator,  allowing us to analyze I/O patterns 
across multiple layers beneath HDFS. From this analysis, we derive numerous insights. For 
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example, we find that many features at different layers amplify writes, and that these features 
often combine multiplicatively. For example, HBase logs introduced a 10x overhead on writes, 
whereas HDFS replication introduced a 3x overhead; together, these features produced a 30x 
write overhead. When other features such as compaction and caching are also considered, 
we find writes are further amplified across layers. At the highest level, writes account for a 
mere 1% of the baseline HDFS I/O, but by the time the I/O reaches disk, writes account for 
64% of the workload.

This finding indicates that even though FM is an especially read-heavy workload within 
Facebook, it is important to optimize for both reads and writes. We evaluate potential 
optimizations by modeling various hardware and software changes with our simulator. 
For reads, we observe that requests are highly random; therefore, we evaluate using flash 
to cache popular data. We find that adding a small SSD (e.g., 60 GB) can reduce latency by 
3.5x. For writes, we observe compaction and logging are the major causes (61% and 36%, 
respectively); therefore, we evaluate HDFS changes that give HBase special support for these 
operations. We find such HDFS specialization yields a 2.7x reduction in replication-related 
network I/O and a 6x speedup for log writes. More results and analysis are discussed in our 
FAST ’14 paper [8].

Background and Methodology
The FM storage stack is based on three layers: distributed database over distributed file 
system over local storage. These three layers are illustrated in Figure 1 under “Actual Stack.” 
As shown, FM uses HBase for the distributed database and HDFS for the distributed file 
system. HBase provides a simple API allowing FM to put and get key-value pairs. HBase 
stores these records in data files in HDFS. HDFS replicates the data across three machines 
and thus can handle disk and machine failures. By handling these low-level fault toler-
ance details, HDFS frees HBase to focus on higher-level database logic. HDFS in turn stores 
replicas of HDFS blocks as files in local file systems. This design enables HDFS to focus on 
replication while leaving details such as disk layout to local file systems. The primary advan-
tage of this layered design is that each layer has only a few responsibilities, so each layer is 
simpler (and less bug prone) than a hypothetical single system that would be responsible for 
everything.

One important question about this layered design, however, is: What is the cost of simplicity 
(if any) in terms of performance? We explore this question in the context of the FM work-
load. To understand how FM uses the HBase/HDFS stack, we trace requests from HBase to 
HDFS, as shown in the Figure 1. We collect traces by deploying a new HDFS tracing frame-
work that we built to nine FM machines for 8.3 days, recording 71 TB of HDFS I/O.

The traces record the I/O of four HBase activities that use HDFS: log-
ging, flushing, reading, and compacting. When HBase receives a put 
request, it immediately logs the record to an HDFS file for persistence. 
The record is also added to an HBase write buffer, which, once filled, 
HBase flushes to a sorted data file. Data files are never modified, so 
when a get request arrives, HBase reads multiple data files in order to 
find the latest version of the data. To limit the number of files that must 
be read, HBase occasionally compacts old files, which involves merge 
sorting multiple small data files into one large file and then deleting 
the small files.

We do two things with our traces of these activities. First, as Figure 1 
shows, we feed them to a pipeline of MapReduce analysis jobs. These 
jobs compute statistics that characterize the workload. We discuss Figure 1: Tracing, analysis, and simulation
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these characteristics in the next section and suggest ways to improve both the hardware 
and software layers of the stack. Second, we evaluate our suggestions via a simulation 
of layered storage. We feed our traces to a model of HBase and HDFS that translates the 
HDFS traces into inferred traces of requests to local file systems. For example, our simu-
lator translates an HDFS write to three local file-system writes based on a model of triple 
replication. We then feed our inferred traces of local file-system I/O to a model of local 
storage. This model computes request latencies and other statistics based on submodels 
of RAM, SSDs, and rotational disks (each with its own block scheduler). We use these 
models to evaluate different ways to build the software and hardware layers of the stack.

Workload Behavior
In this section, we characterize the FM workload with four questions: What activities 
cause I/O at each layer of the stack? How large is the dataset? How large are HDFS files? 
And, is I/O sequential?

I/O Activities
We begin by considering the number of reads and writes at each layer of the stack in 
Figure 2. The first bar shows HDFS reads and writes, excluding logging and compac-
tion overheads. At this level, writes represent only 1% of the 47 TB of I/O. The second 
bar includes these overheads. As shown, overheads are significant and write dominated, 
bringing the writes to 21%.

HBase tolerates failures by replicating data with HDFS. Thus, one HDFS write causes 
three writes to local files and two network transfers. The third bar of Figure 2 shows that 
this tripling increases the writes to 45%. Not all this file-system I/O will hit disk, as OS 
caching absorbs some of the reads. The fourth bar shows that only 35 TB of disk reads 
are caused by the 56 TB of file-system reads. The bar also shows a write increase, as very 
small file-system writes cause 4 KB-block disk writes. Because of these factors, writes 
represent 64% of disk I/O.

Dataset Size
Figure 3 gives a layered overview similar to that of Figure 2, but for data rather than I/O. 
The first bar shows 3.9 TB of HDFS data received some non-overhead I/O during trac-
ing (data deleted during tracing is not counted). Nearly all this data was read and a small 
portion written. The second bar shows data touched by any I/O (including compaction 
and logging overheads). The third bar shows how much data is touched at the local level 
during tracing. This bar also shows untouched data. Most of the 120 TB of data is very 
cold; only a third is accessed over the eight-day period.
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Figure 2: I/O across layers. Black sections represent reads and gray sec-
tions represent writes. The top two bars indicate HDFS I/O as measured 
directly in the traces. The bottom two bars indicate local I/O at the file-
system and disk layers as inferred via simulation.

Figure 3: Data across layers. This is the same as Figure 2 but for data 
instead of I/O. COMP is compaction.
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File Size
GFS (the inspiration for HDFS) assumed “multi-GB files are the 
common case, and should be handled efficiently” [5]. Previous 
HDFS workload studies also show this; for example, MapRe-
duce inputs were found to be about 23 GB at the 90th percentile 
(Facebook in 2010) [1].

Figure 4 reports a CDF of the sizes of HDFS files created dur-
ing tracing. We observe that created files tend to be small; the 
median file is 750 KB, and 90% are smaller than 6.3 MB. This 
means that the data-to-metadata ratio will be higher for FM 
than for traditional workloads, suggesting that it may make 
sense to distribute metadata instead of handling it all with a 
single NameNode.

Sequentiality
GFS is primarily built for sequential I/O and, therefore, assumes 
“high sustained bandwidth is more important than low latency” 
[5]. All HDFS writes are sequential, because appends are the 
only type of writes supported, so we now measure read sequenti-
ality. Data is read with sequential runs of one or more contiguous 
read requests. Highly sequential patterns consist of large runs, 
whereas random patterns consist mostly of small runs.

Figure 5 shows a distribution of read I/O, distributed by run size. 
We observe that most runs are fairly small. The median run size 
is 130 KB, and 80% of runs are smaller than 250 KB, indicating 
FM reads are very random. These random reads are primarily 
caused by get requests; the small (but significant) portion of 
reads that are sequential are mostly due to compaction reads.

Layering: Pitfalls and Solutions
In this section, we discuss different ways to layer storage sys-
tems and evaluate two techniques for better integrating layers.

Layering Background
Three important layers are the local layer (e.g., disks, local file 
systems, and a DataNode), the replication layer (e.g., HDFS), 

and the database layer (e.g., HBase). FM composes these in a 
mid-replicated pattern (Figure 6a), with the database above 
replication and the local stores below. The merit of this design 
is simplicity. The database can be built with the assumption 
that underlying storage will be available and never lose data. 
Unfortunately, this approach separates computation from data. 
Computation (e.g., compaction) can co-reside with, at most, one 
replica, so all writes involve network I/O.

Top-replication (Figure 6b) is an alternative used by Salus [9]. 
Salus supports the HBase API but provides additional robust-
ness and performance advantages. Salus protects against 
memory corruption by replicating database computation as well 
as the data itself. Doing replication above the database level also 
reduces network I/O. If the database wants to reorganize data 
on disk (e.g., via compaction), each database replica can do so on 
its local copy. Unfortunately, top-replicated storage is complex, 
because the database layer must handle underlying failures as 
well as cooperate with other databases.

Mid-bypass (Figure 6c) is a third option proposed by Zaharia et 
al. [10]. This approach (like mid-replication) places the repli-
cation layer between the database and the local store; but, to  
improve performance, an RDD (Resilient Distributed Dataset) 
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Figure 4: File-size CDF. The distribution is over the sizes of created files 
with 50th and 90th percentiles marked.

Figure 5: Run-size CDF. The distribution is over sequential read runs, with 
50th and 80th percentiles marked.

Figure 6: Layered architectures. The HBase architecture (mid-replicated) 
is shown, as well as two alternatives. Top-replication reduces network I/O 
by co-locating database computation with database data. The mid-bypass 
architecture is similar to mid-replication but provides a mechanism for 
bypassing the replication layer for efficiency.
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API lets the database bypass the replication layer. Network I/O 
is avoided by shipping computation directly to the data. HBase 
compaction, if built upon two RDD transformations, join and 
sort, could avoid much network I/O.

Local Compaction
We simulate the mid-bypass approach, shipping compaction 
operations directly to all the replicas of compaction inputs. 
Figure 7 shows how local compaction differs from traditional 
compaction; network I/O is traded for local I/O, to be served by 
local caches or disks.

Figure 8 shows the result: a 62% reduction in network reads, 
from 3.5 TB to 1.3 TB. The figure also shows disk reads, with and 
without local compaction, and with either write allocate (wa) or 
no-write allocate (nwa) caching policies. We observe that disk 
I/O increases slightly more than network I/O decreases. For 
example, with a 100-GB cache, network I/O is decreased by 2.2 
GB, but disk reads are increased by 2.6 GB for no-write allocate. 
This is unsurprising: HBase uses secondary replicas for fault 
tolerance rather than for reads, so secondary replicas are writ-
ten once (by a flush or compaction) and read at most once (by 
 compaction). Thus, local-compaction reads tend to (1) be misses 
and (2) pollute the cache with data that will not be read again. 
Even still, trading network I/O for disk I/O in this way is desir-
able, as network infrastructure is generally much more expen-
sive than disks.

Combined Logging
We now consider the interaction between replication and HBase 
logging. Currently, a typical HDFS DataNode receives logs from 
three RegionServers. Because HDFS just views these logs as 
regular HDFS files, HDFS will generally write them to different 
disks. We evaluate an alternative to this design: combined log-
ging. With this approach, HBase passes a hint to HDFS, identify-
ing the logs as files that are unlikely to be read back. Given this 
hint, HDFS can choose a write-optimized layout for the logs. 
In particular, HDFS can interleave the multiple logs in a single 
write-stream on a single dedicated disk.

We simulate combined logging and measure performance for 
requests that go to disk; we consider latencies for logging, com-
paction, and foreground reads. Figure 9 reports the results for 
varying numbers of disks. The latency of log writes decreases 
dramatically with combined logging (e.g., by 6x with 15 disks). 
Foreground-read and compaction requests are also slightly 
faster in most cases due to less competition with logs for seeks. 
Currently, put requests do not block on log writes, so logging 
is a background activity. If, however, HBase were to give a 
stronger guarantee for puts (namely that data is durable before 
returning), combined logging would make that guarantee much 
cheaper.
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Figure 7: Local-compaction architecture. The HBase architecture (left) 
shows how compaction currently creates a data flow with significant net-
work I/O, represented by the two lines crossing machine boundaries. An 
alternative (right) shows how local reads could replace network I/O.

Figure 8: Local-compaction results. The thick gray lines represent HBase 
with local compaction, and the thin black lines represent HBase currently. 
The solid lines represent network reads, and the dashed lines represent 
disk reads; long-dash represents the no-write allocate cache policy and 
short-dash represents write allocate.

Figure 9: Combined logging results. Disk latencies for various activities 
are shown, with (gray) and without (black) combined logging.
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Hardware: Adding a Flash Layer
Earlier, we saw FM has a very large, mostly cold dataset; keep-
ing all this data in flash would be wasteful, costing upwards of 
$10k/machine (assuming flash costs $0.80/GB). Thus, because 
we should not just use flash, we now ask, should we use no flash 
or some flash? To answer this, we need to compare the perfor-
mance improvements provided by flash to the corresponding 
monetary costs.

We first estimate the cost of various hardware combinations 
(assuming disks are $100 each, RAM costs $5/GB, and flash 
costs $0.8/GB). To compute performance, we run our simulator 
on our traces using each hardware combination. We try nine 
RAM/disk combinations, each with no flash or a 60 GB SSD; 
these represent three amounts of disk and three amounts of 
RAM. When the 60 GB SSD is used, the RAM and flash function 
as a tiered LRU cache.

Figure 10 shows how adding flash changes both cost and perfor-
mance. For example, the leftmost two bars of the leftmost plot 
show that adding a 60 GB SSD to a machine with 10 disks and 10 
GB of RAM decreases latency by a factor of 3.5x (from 19.8 ms to 
5.7 ms latency) while only increasing costs by 5%. Across all nine 
groups of bars, we observe that adding the SSD always increases 
costs by 2–5% while decreasing latencies by 17–71%. In two 
thirds of the cases, flash cuts latency by more than 40%.

We have shown that adding a small flash cache greatly improves 
performance for a marginal initial cost. Now, we consider 
long-term replacement caused by flash wear, as commercial 
SSDs often support only 10k program/erase cycles. We consider 
three factors that affect flash wear. First, if there is more RAM, 
there will be fewer evictions to the flash level of the cache and 
therefore fewer writes and less wear. Second, if the flash device 
is large, writes will be spread over more cells, so each cell will 
live longer. Third, using a strict LRU policy can cause excessive 
writes for some workloads by frequently promoting and evicting 
the same items back and forth between RAM and flash.

Figure 11 show how these three factors affect flash lifetime. The 
black “Strict LRU” lines correspond to the same configuration 
used in Figure 10 for the 10 GB and 30 GB RAM results. The 
amount of RAM makes a significant difference. For example, 
for strict LRU, the SSD will live 58% longer with 30 GB of RAM 
instead of 10 GB of RAM. The figure also shows results for a 
wear-friendly policy with the gray lines. In this case, RAM 
and flash are each an LRU independently, and RAM evictions 
are inserted into flash, but (unlike strict LRU) flash hits are 
not repromoted to RAM. This alternative to strict LRU greatly 
reduces wear by reducing movement between RAM and flash. 
For example, with 30 GB of RAM, we observe that 240 GB SSD 
will last 2.7x longer if the wear-friendly policy is used. Finally, 
the figure shows that the amount of flash is a major factor in 

flash lifetime. Whereas the 20 GB SSD lasts between 0.8 and 
1.6 years (depending on policy and amount of RAM), the 120 GB 
SSD always lasts at least five years.

We conclude that adding a small SSD cache is a cost-effective 
way to improve performance. Adding a 60 GB SSD can often 
double performance for only a 5% cost increase. We find that for 
large SSDs, flash has a significant lifetime, and so avoiding wear 
is probably unnecessary (e.g., 120 GB SSDs last more than five 
years with a wear-heavy policy), but for smaller SSDs, it is useful 
to choose caching policies that avoid frequent data shuffling.

Conclusions
We have presented a detailed multilayer study of storage I/O for 
Facebook Messages. Our research relates to common storage 
ideas in several ways. First, the GFS-style architecture is based 
on workload assumptions, such as “high sustained bandwidth 
is more important than low latency” and “multi-GB files are the 

Figure 10: Flash cost and performance. Black bars indicate latency without 
flash, and gray bars indicate latency with a 60 GB SSD. Latencies are only 
counted for foreground I/O (e.g., servicing a get), not background activi-
ties (e.g., compaction). Bar labels indicate cost. For the black bars, the 
labels indicate absolute cost, and for the gray bars, the labels indicate the 
cost increase relative to the black bar.

Figure 11: Flash lifetime. The relationship between flash size and flash 
lifetime is shown for both the keep policy (gray lines) and promote policy 
(black lines). There are two lines for each policy (10 or 30 GB RAM).
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common case, and should be handled efficiently” [5]. We find FM 
represents the opposite workload, being dominated by small files 
and random I/O.

Second, layering storage systems is very popular; Dijkstra found 
layering “proved to be vital for the verification and logical sound-
ness” of an OS [3]. We find, however, that simple layering has a 
cost. In particular, we show that relative to the simple layering 
currently used, tightly integrating layers reduces replication-
related network I/O by 62% and makes log writes 6x faster. We 
further find that layers often amplify writes multiplicatively. For 
example, a 10x logging overhead (HBase level) combines with 
a 3x replication overhead (HDFS level), producing a 30x write 
overhead.

Third, flash is often extolled as a disk replacement. For example, 
Jim Gray has famously said that “tape is dead, disk is tape, flash 
is disk.” For Messages, however, flash is a poor replacement for 
disk, as the dataset is very large and mostly cold, and storing it 
all in flash would cost over $10k/machine. Although we conclude 
that most data should continue to be stored on disk, we find 
small SSDs can be quite useful for storing a small, hot subset 
of the data. Adding a 60 GB SSD can often double performance 
while only increasing costs by 5%.

FILE SYSTEMS AND STORAGE
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In this work, we take a unique view of Facebook Messages, not as 
a single system but as a complex composition of layered subsys-
tems. We believe this perspective is key to deeply understanding 
modern storage systems. Such understanding, we hope, will help 
us better integrate layers, thereby maintaining simplicity while 
achieving new levels of performance.
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The goal of OpenStack is nothing less than to virtualize and automate 
every aspect of a corporate computational infrastructure. The pur-
pose is to provide self-service access to all of the resources that tra-

ditionally have required the intervention of a collection of teams to manage. 
In this article, I describe where OpenStack came from and what the various 
parts do.

OpenStack is an implementation of Infrastructure as a Service (annoyingly abbreviated as 
IaaS and amusingly pronounced “eye-ass”). Several commercial IaaS services are available, 
with the best known being Amazon Web Services, Google Compute Engine, and Rackspace. 
IaaS is also known as a “cloud” service, and there are also commercial products to create a 
“private cloud,” most notably VMware.

OpenStack was developed as an alternative to the commercial cloud providers. With it, you 
can create private or public cloud services and move resources between them. OpenStack 
uses concepts and terminology that are compatible with Amazon Web Services and that are 
becoming de facto standards.

Both Red Hat, through the Red Hat Distribution of OpenStack (RDO) community project, 
and Canonical offer installers designed to make the installation of a demo or proof-of-con-
cept service relatively easy for those who want to experiment with running their own cloud.

Origin, History, and Release Naming
In 2010 Rackspace and NASA created the OpenStack Foundation with the goal of producing 
an open source IaaS project. Since then, more than 150 other companies and organizations 
have joined the project. NASA dropped out in 2012 citing lack of internal progress imple-
menting OpenStack services and redirected funding to using commercial cloud providers. 
In the past two years, the pace of development and improvement has increased dramatically, 
to the point that all three major commercial Linux distribution providers (Canonical, SuSE, 
and Red Hat) have customized OpenStack offerings.

OpenStack development versioning employs a code-word scheme using English alphabetic 
ordering. The first development cycle was code named Austin (2010.1) and was released in 
October 2010. New versions have been released approximately every six months since the 
initial release. These are the most recent development code names:

◆◆ Essex (2012.1)

◆◆ Folsom (2012.2)

◆◆ Grizzly (2013.1)

◆◆ Havana (2013.2)

◆◆ Icehouse (2014.1) (release pending as of this writing)

Once released, the stable version is numbered with the four-digit year and a single-digit 
serial number, (YYYY.N). No one expects more than nine releases in a calendar year. Most 
people continue to refer to them by their code names.
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The development pace is so rapid that the OpenStack foundation 
only lists the current release and the previous one as supported 
at any given time. I see the adoption by commercial distributions 
as an indicator that they think the current code base is stable 
enough to allow economical long-term support.

Any references to capabilities here will be to the Havana (2013.2) 
release unless otherwise noted.

Function and Stability
OpenStack is designed as a set of agent services, each of which 
manages some aspect of what would otherwise be a physical 
infrastructure. Of course, the initial focus was on virtualized 
computation, but there are now subservices that manage storage 
(three ways), network topology, authentication, as well as a uni-
fied Web user interface. As with the development cycles, Open-
Stack uses code names for the active components that make up 
the service. The service components are detailed below.

It’s been four years since the initial release, and it’s really only 
with the Folsom (2012.2) release that enough components are 
available and stable to attempt to create a reliable user service. 
As development progresses, usage patterns are discovered that 
indicate the need for creating new first-class components to 
manage different aspects of the whole. The Folsom release was 
the first to include a networking component (Neutron), which 
had previously been part of the computation service (Nova/
Quantum).

Bare metal provisioning, which has been handled by a plugin to 
Nova, is getting a service agent of its own (code named “Ironic,” 
in Icehouse 2014.1), which will be more capable and flexible. 
Communication between the components is currently carried 
over an AMQP bus implemented using RabbitMQ or QPID. A 
new OpenStack messaging and RPC service is in the works (code 
named Oslo, also in Icehouse). Each of these new agent services 
will replace and enhance some aspect of the current systems, 
but one can hope that the existing components have become 
stable enough that most changes will be additive rather than 
transformative.

Components
OpenStack is enamored of code names, and for anyone inter-
ested in deploying an OpenStack service, the first task is to learn 
the taxonomy. There are actually some good reasons to use code 
names. OpenStack is meant to be a modular system; and, at least 
once so far, an implementation of a subsystem (Quantum) has 
been replaced with a completely new implementation (Neutron).

Most components are active agents. They subscribe to a messag-
ing service (AMQP) to accept commands and return responses. 
Each service also has a CLI tool that can communicate directly 
with the agent. The active components also have a backing data-
base for persistence across restarts.

Compute (Nova)
The core of an IaaS system is its virtualized computers. The 
Nova service provides the compute resources for OpenStack. It 
controls the placement and management of the virtual machines 
within the running service. Originally, Nova also contained the 
networking, which has since moved to Neutron.

Storage
OpenStack offers several flavors of persistent storage, each of 
which is designed for a specific set of tasks.

IMAGE STORAGE (GLANCE)
Glance is the image store used for creating new running 
instances or for storing the state of an instance that has been 
paused. Glance takes complete file systems and bootable disk 
images as input and makes them available to boot or mount on 
running instances.

BLOCK STORAGE (CINDER)
Cinder is the OpenStack block storage service. This is where you 
allocate additional disk space to your running instances. Cinder 
storage is persistent across reboots. Cinder can be backed by 
a number of traditional block storage services such as NFS or 
Gluster.

OBJECT STORAGE (SWIFT)
Swift offers a way to store and retrieve whole blobs of data. The 
data are accessed via a REST protocol, which can be coded into 
applications using an appropriate API library. Object storage 
provides a means for an application to store and share data 
across different instances. The object store is arranged as a hier-
archical set of “container” objects, each of which can hold other 
containers or discrete data objects. In this way, it corresponds 
roughly to the structure of a file system.

Network (Neutron)
The Neutron service provides network connectivity for the Nova 
instances. It creates a software-defined network (SDN) that 
allows tight control over communication between instances, as 
well as access from outside of the OpenStack network.

Authentication/Authorization (Keystone)
All of the OpenStack services require user access control, 
and the Keystone service provides the user management and 
resource control policy.

User Interface (Horizon)
The Horizon user interface is one of the more recent additions. It 
provides a single-pane Web UI to OpenStack as a whole. It layers 
a task-related view of OpenStack over the functional services, 
which allows end users and administrators to focus on their jobs 
without being concerned with…well, this list of agents.
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Monitoring (Ceiliometer)
Another recent addition is the monitoring function provided by 
the Ceiliometer service. Ceiliometer is focused on monitoring 
and providing metrics for the OpenStack services themselves, 
but the documentation claims that it is designed to be extensible. 
This functionality would allow implementers to add probes and 
metrics to reach inside instances and applications as well.

Orchestration (Heat)
The Heat service gives the OpenStack user a standardized 
means to define complex configurations of compute, storage, and 
networking resources and to apply them repeatably. Although 
Heat deals mainly with managing the OpenStack resources, it has 
interfaces with several popular OS and application-level con-
figuration management (CM) tools, including Puppet and Chef.

Heat uses templates to define reusable configurations. The user 
defines a configuration including compute, storage, and net-
working as well as providing input to any OS configuration that 
will be applied by a CM system.

Installation Tools
As mentioned, OpenStack is a complex service. However, it does 
follow several standard patterns. Additionally, several efforts 
are in progress to ease the installation process and to make 
installs consistent.

Both RPM and Debian-based Linux systems have installer efforts.

Puppet Modules
Each of the OpenStack services has a corresponding Puppet 
module to aid in installation and configuration. If you’re familiar 
with both Puppet and OpenStack, you could probably use these 
to create a working service, but this method isn’t recommended.

RDO—Packstack (RPM)
Packstack is intended for single host or small development or 
demonstration setups. It’s produced by the RDO foundation, 
which is the community version of Red Hat’s implementation of 
OpenStack.

Packstack can run either as an interactive session, or it can 
accept an answer file that defines all of the responses. It can 
install the component services on a single host or a small set of 
hosts.

RDO—The Foreman
The Foreman is primarily a hardware-provisioning tool, but it 
also has features to make use of Puppet to define the OS and 
application configuration of managed systems. The RDO project 
has defined and packaged an installer, which makes use of the 
Foreman host group definitions and the OpenStack Puppet 

modules to create a working installation. With the Foreman, it is 
possible to create more complex configurations by directly using 
the Puppet module inputs.

Ubuntu OpenStack Installer (Debian Package)
Canonical and Ubuntu also have an OpenStack installer effort. 
Canonical has taken a different approach from Red Hat. They 
provide a bootable disk image that can be written to a USB stor-
age device or to a DVD. On first boot, the installer walks the user 
through the process.

Conclusion
The idea of IaaS is too powerful to ignore in the long term. 
Although it is still experiencing growing pains, so many players, 
large and small, are now backing and contributing resources to 
OpenStack that it’s a safe bet it will be around for a while and 
will improve with time.

If you’re eyeing a service like Amazon Web Services and think-
ing, “I wish I could do that here,” then you should look at Open-
Stack. Plan to do several iterations of installation so that you can 
get to know the component services and their interactions as 
well as your real use cases. With commercial cloud service devel-
opers and project managers starting to get used to the idea of 
on-demand resources, they’re going to be clamoring for it soon, 
and OpenStack offers you the means to provide it.
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I got my first real bug assignment in 1999, at the beginning of my first job 
out of undergrad. Over a period of weeks, I went through iterations of 
code-reading, instrumentation, compiling, and testing, with the bug dis-

appearing and reappearing. In the end, the problem turned out to be a subtle 
misalignment, something I would never have guessed when I started out.

Here’s how I got started: A user reported that their database was being corrupted, but only 
on our platform. That’s entirely possible—our platform was, for reasons that pre-dated my 
employment, somewhat odd. It was Linux—easy enough—but on MIPS. The MIPS port of 
Linux was fairly new at the time and did not have a huge number of users. To make life more 
fun, we used MIPS in little-endian mode, which almost nobody else did. It was supported by 
the toolchain and the kernel, so we all assumed it was workable. To find a bug on this rather 
unique platform was not surprising to me.

I took to the bug with gusto. Step one, confirm. I reproduced the user’s test setup—a database 
and a simple HTML GUI. Sure enough, when I wrote a number, something like 3.1415, to 
the database through the GUI and then read it back through the GUI, the software pro-
duced a seemingly random number. Reloading the page gave me the same number. Problem 
reproduced.

With the arrogance of youth, I declared it a bug in the customer’s GUI. I was so convinced of 
this that I wanted to point out exactly where the bug was and rub their noses in it. So, I spent 
a few hours instrumenting their HTML and Perl CGI code to print the values to a log file at 
each step of the process as it was committed to the database. To my great surprise, the value 
was correct all the way up until it was written to the database!

Clearly, then, it was a bug in the database. I downloaded source code for the database (hooray 
for open source!). I spent the better part of a day learning the code and finding the commit 
path. I rebuilt the database with my own instrumentation, and fired it up. Lo and behold, the 
bug was gone! The value I wrote came back perfectly. I verified that the code I was testing 
was the same version as in our product—it was. I verified that we did not apply any patches to 
it—we didn’t.

Clearly, then, it was a bug in the toolchain. I spent the next week recompiling the database 
(to the tune of tens of minutes per compile-test cycle) with different compiler versions and 
flags, with no luck—everything I built worked fine. Someone suggested that maybe the Linux 
packaging tool (RPM) was invoking different compiler behavior than I was using manually. 
Great idea, I thought. I hacked up a version of the package that used my instrumented code 
and ran that. Bingo—the bug was back.

I began dissecting all of the differences I could figure out from the RPM build and my 
manual build. After a number of iterations over a number of days, I tracked it down to a single 
-D flag (a #define in the C code) to enable threading in the database. I was not setting this 
when I compiled manually, but the RPM build was.
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Clearly, then, the bug was in the database’s threading code. 
Suddenly it got a lot more daunting but also more fun. I spent 
even more time auditing and instrumenting the database code 
for threading bugs. I found no smoking gun, but iterative testing 
kept pushing the problem further and further down the stack. 
Eventually, it seemed that the database was innocent. It was 
writing through to the C library correctly and getting the data 
back corrupted.

Clearly, then, the bug was in the C library. Given the circum-
stances of our platform, this scenario was believable. I down-
loaded the source code for GNU libc and started instrumenting 
it. Compiling glibc was a matter of hours, not minutes, so I tried 
to be as surgical as I could about changes. But, every now and 
then, something went awry in the build and I had to “make clean” 
and start over—it was tedious. Several iterations later, libc was 
absolved of any wrongdoing—the data got all the way to the 
write() syscall correctly, but it was still incorrect when I read 
and printed it later.

Clearly, then, the bug was in the kernel. If I thought iterating 
the C library was painful, iterating the kernel was agony. Hack, 
compile, reboot, test, repeat. I instrumented all along the write() 
path all the way down to the disk buffers. Now several weeks into 
this bug, the kernel was free from blame. Maybe the data wasn’t 
actually getting corrupted? Why this idea did not hit me before I 
blame on my initial overconfidence, which was much diminished 
by this point.

I took a new tack—could I reproduce it outside of the database 
test? I wrote a small program that wrote a double precision 
floating point value (the same as the test case) to a file, read it 
back, and printed it out. I linked the threading library, just like 
the database code, but the bug did not reproduce. That is, until I 
actually ran the test case in a different thread. Once I did that, 
the result I printed was similarly, but not identically, corrupted. 
I tried with non-float values, and the bug did not reproduce. 
I dredged my memory for details of the IEEE754 format and 
confirmed that the file on disk was correct—the corruption was 
happening in the read path, not the write path!

Given this fresh information, I instrumented the test program to 
print the raw bytes it had read from the file. The bytes matched 
the file. But when I printed the number, it was wrong. I was get-
ting close!

Clearly, then, the bug was in printf(). I turned my attention back 
to the C library. I quickly found that the bytes of my float value 
were correct before I called printf() and were incorrect inside 
printf(). The printf() family of functions uses C variable-length 
argument lists (aka varargs)—this is implemented with compiler 
support to push and pop variables on the call stack. Because this 
process is effectively manual, printf() must trust you, the pro-

grammer, to tell it what type you pushed. It dawned on me that 
if I told printf() that I pushed a float when I really pushed an int, 
it would interpret the data that it popped incorrectly—leading 
to exactly this type of corruption. I verified that manually doing 
varargs of a double precision value corrupted the value.

To recap: the problem only occurs with (1) floating point values, 
(2) running in a thread, (3) with varargs.

Clearly, then, the bug was in the varargs implementation. I 
puzzled through the varargs code—a tangle of macros to align 
the memory access properly (16 bytes required for double), and I 
could find no flaw with the code. It followed the platform’s spec, 
but the resulting value was still wrong. I looked at the disassem-
bled code for pushing and popping the values, and it looked cor-
rect—the alignment was fine. In desperation, I instrumented the 
calling code to print the stack address as it pushed the argument 
and compared that with the address that varargs popped—they 
did not match. They were off by eight bytes!

After many hours of staring at disassembled code and cross-ref-
erencing the spec, it became clear—the logic used when pushing 
the value onto the stack was subtly different than the logic used 
to pop it off. Specifically, the push logic was using offsets relative 
to the frame pointer, but the pop logic used the absolute address. 
In the course of reading the ABI specification, I noticed that 
almost every value on the stack is required to be double-word  
(8 byte) aligned, the stack frame itself is required to be quad-
word (16 byte) aligned. When I printed the frame pointer regis-
ter, I found that it failed to meet this specification.

It seemed obvious: All I had to do was find the code that allo-
cated the stack space and align it better.

I proceeded to take apart all of the LinuxThreads code related to 
stack setup. It allocated a block of memory for the thread stack, 
but the allocation was already aligned. Ah, but stacks grow 
down! The code placed an instance of a thread descriptor struc-
ture at the top of the stack region (base+size—sizeof(struct)) and 
initialized the stack to start below that. On a lark, I printed the 
size of that structure—it was a multiple of eight in size, but not a 
multiple of 16.

Gotcha!

I added a compiler directive to align the structure to 16 bytes, 
which has the side effect of making the size a multiple of 16, and 
compiled the C library one more time. The problem was gone, and 
the database’s GUI now showed correct results. All of this work, 
and the fix was to add eight bytes of empty space to a structure. 
With a sigh, I dashed off a patch to the MIPS maintainers for 
GNU libc, which was met with a response to the effect of, “Oh! 
We’ve been hunting that one years.” It felt like I had been, too.
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R syslog is a very fast modern logging daemon, but with its capabilities 
comes complexity: When things go wrong, it’s sometimes hard to tell 
what the problem is and how to fix it. To continue my series of log-

ging articles [1], this time I will be talking about how to troubleshoot perfor-
mance issues with rsyslog. 

Common Bottlenecks and Solutions
By far, the most common solution to poor performance is to upgrade to the current version of 
rsyslog. Performance is considered a key feature of rsyslog, and the improvements from one 
major version to another can be drastic. In many common rulesets, going from 5.x to 7.x has 
resulted in >10x performance improvements.

The next most common performance bottleneck is name resolution. Rsyslog will try to do 
a reverse lookup for the IP of any system sending it log messages. With v7, it will cache the 
results, but if your name lookups time out, this doesn’t help much. If you cannot get a fast 
name server or put the names into /etc/hosts, consider disabling DNS lookups with the -x 
command line flag.

For people using dynamically generated file names, a very common problem is failing to 
increase the number of filehandles that rsyslog keeps open. Historically, rsyslog keeps only 
ten dynamically generated output files open per action. If you commonly have logs arriving 
for more than this small number, rsyslog needs to close a file (flushing pending writes), open 
a new file, and write to that file for each new log line that it’s processing. To fix this, set the 
$DynaFileCacheSize parameter to some number larger than the number of files that you 
expect to write to (and make sure your filehandle limits allow this).

The last of the common bottlenecks is contention on the queues. If every thread access-
ing the queue locks it for every message, it’s very possible for contention for the queue logs 
to become a significant bottleneck. In v5, rsyslog gained the ability to process batches of 
messages, and over time more modules have been getting updated to support this mode. The 
default batch size ($ActionQueueDequeueBatchSize) was initially 16 messages at a time; 
however, on dedicated, central servers, it may be appropriate to set this limit much higher. 
In v8, the default is being changed to 1024, and even more may be appropriate on a dedicated 
server. The benefit of increasing this number tapers off with size, but setting it to 1024 or so 
to see if there is a noticeable difference is a very reasonable early step. The discussion below 
will help you determine if you want to go further.

Rsyslog and Threads
Beyond these most common causes, things get more difficult. It is necessary to track down 
what is actually the bottleneck and address it. This task is complex because rsyslog makes 
heavy use of threads to decouple pieces from each other and to take advantage of modern 
systems, but this structure also provides some handles to use to track down the issues.

Each input to rsyslog is through one or more threads, which gather the log messages and add 
them to the main queue. Worker threads then pull messages off the main queue and deliver 
them to their destinations and/or add the message to an action queue. If there are action 
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queues, each one has its own set of worker threads pulling from 
the action queue and delivering to the destinations for that action.

If a worker is unable to deliver messages to a destination, all 
progress of that queue will block until that delivery is able to suc-
ceed (or it hits the retry limit and permanently fails). If you don’t 
want this to block all log processing, you should make an action 
queue for that destination (or group of destinations).

As an example, I’ll show a basic configuration that accepts 
logs from the kernel and from /dev/log, writes all the messages 
locally, and delivers them via TCP to a remote machine.

Legacy config:

$ModLoad imklog

$modLoad imuxsock

$SystemLogRateLimitInterval 0

$SystemLogSocketAnnotate on

*.* /var/log/messages

*.* @@192.168.1.1:514

Version 7 and later config:

module(load=”imklog”)

module(load=”imuxsock” SysSock.RateLimit.Interval=”0” 

 SysSock.Annotate=”on”)

action(type=”omfile” File=”/var/log/messages”)

action(type=”omfwd” Target=”192.168.2.11” Port=”10514” 

 Protocol=”tcp”)

This will create three threads in addition to the parent “house-
keeping” thread. Figure 1 shows the data flow through rsyslog. 
The threads do not communicate directly with each other, and 
no one thread “owns” the queue. The housekeeping thread isn’t 
shown here, because it doesn’t have any role in the processing of 
log messages.

With top, you can see these threads by pressing H, and with ps, 
you can see these as well:

# ps  -eLl |grep c̀at /var/run/rsyslogd.pid` 

5 S 0 758  1 758  0  80   0 - 18365 poll_s ?   00:00:00 rsyslogd 

1 S 0 758  1 763  0  80   0 - 18365 poll_s ?   00:00:05  

 in:imuxsock 

1 S 0 758  1 764  0  80   0 - 18365 syslog ?   00:00:00 in:imklog 

1 S 0 758  1 765  0  80   0 - 18365 futex_ ?   00:00:02 rs:main  

 Q:Reg 

argv[0] is changed to tag each thread with what it’s doing. This 
lets you see if any of the threads are pegging the CPU, or if the 
main Q worker thread is just doing nothing.

This is, of course, a “Hello World” configuration, but it shows 
some of the types of issues that are common for people to run 
into in larger setups. For example, this configuration is depen-
dent on a remote system; if that system is down, no local logs will 
be processed and we will see logs queue up and eventually fill the 
queue, causing programs trying to write logs to block. If we want 
to continue logging locally, even if the remote system is down, 
we can create a default-sized action queue for the TCP output 
action. To handle longer outages, or restarts of rsyslog, the queue 
can be disk backed. A full discussion of queue configuration and 
management is a topic that will require its own article.

Legacy config:

$ModLoad imklog

$modLoad imuxsock

$SystemLogRateLimitInterval 0

$SystemLogSocketAnnotate on

*.* /var/log/messages

$ActionQueueType FixedArray

*.* @@192.168.1.1:514

Version 7 config:

module(load=”imklog”)

module(load=”imuxsock” SysSock.RateLimit.Interval=”0”

 SysSock.Annotate=”on”)

action(type=”omfile” File=”/var/log/messages”)

action(type=”omfwd” Target=”192.168.2.11” Port=”514” 

 Protocol=”tcp” queue.type=”FixedArray”)

Now, you can see an additional queue worker for the action 
queue:

# ps  -eLl |grep c̀at /var/run/rsyslogd.pid` 

5 S 0 458  1 458  0  80   0 - 20414 poll_s ?  00:00:00 rsyslogd 

1 S 0 458  1 462  0  80   0 - 20414 poll_s ?  00:00:00 in:imuxsock 

1 S 0 458  1 463  0  80   0 - 20414 syslog ?  00:00:00 in:imklog 

5 S 0 458  1 464  0  80   0 - 20414 futex_ ?  00:00:00  

 rs:main Q:Reg 

1 S 0 458  1 465  0  80   0 - 20414 futex_ ?  00:00:00  

 rs:action  2 que 

Figure 1: The flow of logs in a basic rsyslog configuration
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With v7+, you can add a parameter to name the queue:

action(name=”send_remote” type=”omfwd” Target=”192.168.2.11” 

 Port=”514”

 Protocol=”tcp” queue.type=”FixedArray” )

This changes the data flow to what you see in Figure 2, and the 
ps/top display shows the additional threads as well:

# ps  -eLl |grep c̀at /var/run/rsyslogd.pid` 

5 S 0 971  2807 971  0  80   0 - 20414 poll_s ?  00:00:00  

 rsyslogd 

1 S 0 971  2807 972  0  80   0 - 20414 poll_s ?  00:00:00  

 in:imuxsock 

1 S 0 971  2807 973  0  80   0 - 20414 syslog ?  00:00:00  

 in:imklog 

5 S 0 971  2807 974  0  80   0 - 20414 futex_ ?  00:00:00  

 rs:main Q:Reg 

1 S 0 971  2807 975  0  80   0 - 20414 futex_ ?  00:00:00  

 rs:send_remote: 

Keeping track of all the pieces can be a bit difficult when you 
have multiple queues in use. 

Through the rest of the article, I will just give the v7 format 
because of the increasing complexity of specifying options with 
the legacy config style. Not all of the features described are going 
to be available on older versions.

Although ps/top lets you see how much CPU is being used by the 
threads, it doesn’t tell you what is being done. Rsyslog includes 
the impstats module, which produces a lot of information about 
what’s going on inside rsyslog.

To load impstats, add the following line to the top of your config 
file (it needs to be ahead of many other configuration param-
eters, so it’s easiest to make it the very first line).

module(load=”impstats” interval=”60” resetCounters=”on” 

  format=”legacy”)

This statement will create a set of outputs every minute, reset-
ting counters every time, which makes it very easy to see if a 
queue is backing up. A sample output looks like the following 
(timestamp and hostname trimmed for space):

rsyslogd-pstats: imuxsock: submitted=3 ratelimit.discarded=0 

 ratelimit.numratelimiters=2

rsyslogd-pstats: action 1: processed=4 failed=0  

 suspended=0 suspended.duration=0 resumed=0 

rsyslogd-pstats: send_remote: processed=4 failed=0 

 suspended=0 suspended.duration=0 resumed=0 

rsyslogd-pstats: resource-usage: utime=1536 stime=60107  

 maxrss=1280 minflt=386 majflt=0  

 inblock=0 oublock=0 nvcsw=22 nivcsw=32 

rsyslogd-pstats: send_remote: size=0 enqueued=4 full=0 

 discarded.full=0 discarded.nf=0 

maxqsize=1 

rsyslogd-pstats: main Q: size=5 enqueued=9 full=0 

 discarded.full=0 

  discarded.nf=0 maxqsize=5 

You can use an automated analyzer to find the most common 
types of problems. Upload your pstats logs to http://www.rsyslog 
.com/impstats-analyzer/, and the script will highlight several 
common types of problems.

If you are using JSON-formatted messages, you can change for-
mat from “legacy” to “cee” and then use the mmjsonparse module 
to break this down into individual variables for analysis. In this 
format, the logs look like:

rsyslogd-pstats: @cee: {“name”:”imuxsock”,”submitted”:7,

 “ratelimit.discarded”:0,”ratelimit.numratelimiters”:3}

rsyslogd-pstats: @cee: {“name”:”action 1”,”processed”:8, 

 “failed”:0,”suspended”:0, “suspended.duration”:0, 

 ”resumed”:0}

rsyslogd-pstats: @cee: {“name”:”action 2”,”processed”:8, 

 “failed”:0,”suspended”:0, “suspended.duration”:0, 

 ”resumed”:0} 

rsyslogd-pstats: @cee: {“name”:”send_remote”,”processed”:8,” 

 failed”:0, “suspended”:0, “suspended.duration”:0, 

 ”resumed”:0} 

Figure 2: The flow of logs when an action queue is added to preventing 
blocking
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rsyslogd-pstats: @cee: {“name”:”resource-usage”,”utime”:2917,

 “stime”:3237,”maxrss”:1520, “minflt”:406,”majflt”:0,”inblock”:0, 

 “oublock”:0,”nvcsw”:30,”nivcsw”:6} 

rsyslogd-pstats: @cee: {“name”:”send_remote”,”size”:0, 

  ”enqueued”:8, 

  “full”:0,”discarded.full”:0, “discarded.nf”:0,”maxqsize”:1} 

rsyslogd-pstats: @cee: {“name”:”main Q”,”size”:6,”enqueued”:14, 

 ”full”:0, “discarded.full”:0,”discarded.nf”:0,”maxqsize”:6} 

So far, you’ve just put the pstats logs into the main queue along 
with all the other logs in the system. If something causes that 
queue to back up, it will delay the pstats logs as well.

There are two ways to address this: First, you can configure 
rsyslog to write the pstat logs to a local file in addition by adding 
the log.file=“/path/to/local/file” parameter to the module load 
line. The second approach is a bit more complicated, but it serves 
to show an example of another feature of rsyslog—rulesets and 
the ability to bind a ruleset to a specific input.

Take the example config and extend it to be the following:

module(load=”impstats” interval=”10” resetCounters=”on”

 format=”legacy” ruleset=”high_p”) 

module(load=”imklog”) 

module(load=”imuxsock” SysSock.RateLimit.Interval=”0”

 SysSock.Annotate=”on”) 

action(type=”omfile” File=”/var/log/messages”) 

action(name=”send_remote” type=”omfwd” Target=”192.168.2.11”

 Port=”514” Protocol=”tcp”queue.type=”FixedArray” )

ruleset(name=”high_p” queue.type=”FixedArray”){ 

 action(type=”omfile” File=”/var/log/pstats”) 

 action(name=”send_HP” type=”omfwd” Target=”192.168.2.11” 

  Port=”514”

   Protocol=”tcp” queue.type=”FixedArray” )

}

All pstat log entries will now go into a separate “main queue” 
named “high_p” with its own worker thread and its own separate 
queue to send the messages remotely. This is effectively the same 
as starting another stand-alone instance of rsyslog just to process 
these messages. There is no interaction (other than the house-
keeping thread) between the threads processing the pstat mes-
sages and the threads processing other messages (see Figure 3).

# ps  -eLlww |grep c̀at /var/run/rsyslogd.pid` 

5 S 0 827  2807 827  0  80 0 - 31181 poll_s ?  00:00:00 rsyslogd 

5 S 0 827  2807 828  0  80 0 - 31181 poll_s ?  00:00:00  

 in:impstats 

1 S 0 827  2807 829  0  80 0 - 31181 syslog ?  00:00:00 in:imklog 

1 S 0 827  2807 830  0  80 0 - 31181 poll_s ?  00:00:00  

 in:imuxsock 

5 S 0 827  2807 831  0  80 0 - 31181 futex_ ?  00:00:00 

 rs:main  Q:Reg 

1 S 0 827  2807 832  0  80 0 - 31181 futex_ ?  00:00:00  

 rs:send_remote: 

5 S 0 827  2807 843  0  80 0 - 31181 futex_ ?  00:00:00  

 rs:high_p:Reg 

1 S 0 827  2807 844  0  80 0 - 31181 futex_ ?  00:00:00 

 rs:send_ HP:Reg 

Pstats output also shows the additional queues:

rsyslogd-pstats: imuxsock: submitted=0 ratelimit.discarded=0

 ratelimit.numratelimiters=0 

rsyslogd-pstats: action 1: processed=0 failed=0 suspended=0

 suspended.duration=0 resumed=0 

rsyslogd-pstats: send_remote: processed=0 failed=0  

 suspended=0 suspended.duration=600 resumed=0 

rsyslogd-pstats: action 3: processed=10 failed=0 suspended=0 

 suspended.duration=0 resumed=0 

rsyslogd-pstats: send_HP: processed=10 failed=0 suspended=0

 suspended.duration=600 resumed=0 

rsyslogd-pstats: resource-usage: utime=26978 stime=26416  

 maxrss=2056 minflt=857 majflt=0 inblock=0 oublock=400 

 nvcsw=412 nivcsw=11 

rsyslogd-pstats: send_remote: size=0 enqueued=0 full=0

 discarded.full=0 discarded.nf=0 maxqsize=2 

rsyslogd-pstats: send_HP: size=0 enqueued=10 full=0 discarded. 

 full=0 discarded.nf=0 maxqsize=10 

rsyslogd-pstats: high_p: size=8 enqueued=10 full=0 discarded. 

 full=0 discarded.nf=0 maxqsize=10 

rsyslogd-pstats: main Q: size=0 enqueued=0 full=0 discarded. 

 full=0 discarded.nf=0 maxqsize=2

Once you find the actual bottleneck in your configuration, what 
can you do about it? It boils down to a two-pronged attack.

Figure 3: The flow of logs through the threads and queues with impstats 
bound to a ruleset
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Use More Cores to Perform the Work
This approach is tricky. In many cases enabling more worker 
threads will help, but you will need to check the documentation 
for the module that is your bottleneck to find what options you 
have. In many cases, the modules end up needing to serialize 
(e.g., you only want one thread writing to a file at a time), and if 
your bottleneck is in one of these areas, just adding more work-
ers won’t help. Writing to a file can be split up by moving most of 
the work away from the worker thread that is doing the testing of 
conditions, using a second thread to format the lines for the file, 
and, if needed, using a third thread to write the data to the file, 
potentially compressing it in the process.

Restructure the Configuration to Reduce the 
Amount of Work 
This approach involves standard simplification and refactoring 
work for the most part. Rsyslog has lots of flexibility in terms of 
what modules can be written to do; so, in an extreme case, a cus-
tom module may end up being written to address a problem. In 
most cases, however, it’s simplifying regex expressions, refactor-
ing to reduce the number of tests needed or to make it easier for 
the config optimizer to detect the patterns. Like most program-
ming, algorithmic changes usually produce gains that dwarf 
other optimization work, so it’s worth spending time looking at 
ways to restructure your configuration.

Some Examples of Restructuring
If you have several actions that are related to one destination, 
instead of creating a separate queue for each action, you can cre-
ate a ruleset containing all the actions, and then call the ruleset 
with a queue.

ruleset(name=”rulesetname” queue/type=”FixedArray”){

 action(type=”omfwd” Target=”192.168.2.11” Port=”514”  

  Protocol=”tcp”)

}

Then, in the main ruleset, you can replace the existing actions 
with:

call rulesetname

A ruleset can contain any tests and actions that you can have in a 
normal rsyslog ruleset, including calls to other rulesets.

With the v7 config optimizer, zero overhead is incurred in using 
a ruleset that doesn’t have a queue, so you can also use rulesets to 
clarify and simplify your rulesets. If you find that you have a lot 
of format rules:

if $hostname == “host1” and $programname = “apache” then {

 /var/log/apache/host1.log

 stop

}

if $hostname == “host1” and $programname = “apache” then {

 /var/log/postfix/host2.log

 stop

}

if $hostname == “host2” and $programname = “postfix” then {

 /var/log/apache/host1.log

 stop

}

if $hostname == “host2” and $programname = “postfix” then {

 /var/log/postfix/host2.log

 stop

}

/var/log/other-logs

you can simplify it into:

$template multi_test=‘/var/log/%programname%/%hostname%.log’

ruleset(name=”inner_test”){

 if $programname == “apache” then {

  ?multi_test

  stop

 }

 if $programname == “postfix” then {

  ?multi_test

  stop

 }

}

if $hostname = “host1” then call inner_test

if $hostname = “host2” then call inner_test

/var/log/other-logs

This change defines a template to be used for the file name to 
be written to (the Dynafile capability mentioned earlier), then 
defines a ruleset to use—similar to a subroutine that checks that 
the program name is one of the known ones. If so, it writes the 
log out to a file whose name is defined by the template and stops 
processing the log message. Then, finally, you go through a list 
of hosts. If the host is known, you call the ruleset subroutine 
to check the program name. If either the hostname or program 
name is not in your list of known entities, then the tests will not 
match and the stop action will never be reached, resulting in the 
log entry being put into the /var/log/other-logs file.

This specific case can be simplified further by using the rsyslog 
array match capability. This approach requires that the entries 
to be matched in the array be sorted, but it can further reduce the 
configuration size and speed up the processing.
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$template multi_test=‘/var/log/%programname%/%hostname%.log’

ruleset(name=”inner_test”){

 if $programname == [“apache”, “postfix”] then {

  ?multi_test

  stop

 }

}

if $hostname = [“host1”,”host2”] then call inner_test

/var/log/other-logs

When troubleshooting performance problems with rsyslog, 
usually the biggest problem is finding where the bottleneck is; 
once the bottleneck is found, it’s usually not that complicated to 
remove it. Something can always be done. In extreme conditions, 
it’s even possible to use a custom module to do extensive string 
processing that is expensive to do in the config language. You  
can always ask for help on the rsyslog-users mailing list at 
 rsyslog@lists.adiscon.com; the volunteers there are always 
interested in new problems to solve.

Reference
[1] Links to previous articles by David Lang about logging: 
https://www.usenix.org/login/david-lang-series.
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Rock Stars and Shift Schedules

A N D Y  S E E L Y

The stress level in a dynamic work place can be very high, even higher 
in a startup where every day may be the beginning or the end for the 
company. These types of businesses tend to hire the best and the 

brightest in the industry and encourage employees to give their all and more. 
Those same employees can be made more effective, and less susceptible to 
burnout, through some simple organizational tools that are obvious in hind-
sight but not always the first choice in the heat of the moment. A basic shift 
schedule can help guide effort, shepherd resources, and ultimately lead to a 
happier and more sustainable workforce.

I joined a company as the manager of a group of junior and mid-level system administrators. 
The tier-one operations team was responsible for around-the-clock monitoring and first-line 
response for the company’s infrastructure and public-facing technology. This company was 
a dot-com startup that prided itself on the high quality of its workforce and the dot-com-style 
perks offered to them. Although we didn’t actually say in our job advertisements that we only 
hired “rock stars,” that was how we viewed ourselves. A month into the job, I started getting 
a creeping feeling that the surface was a rock-star party but that, underneath, there were 
currents preventing us from achieving our true peak of productivity. I discovered that our 
organization was being held captive by our own brilliance.

Brilliant People, Great Work, Bright Future
I was new to “dot-com,” so lots of things were exciting and wonderful to me. We had a “nap 
room” where a tired sysadmin could…take a nap. We had a fully stocked kitchen, which soon 
started having Dr. Pepper in the rotation after I mentioned I liked Dr. Pepper. This company 
didn’t have an actual game room like many others in the area, but we made up for the lack 
with plenty of desk- and cube-level games and toys.

The people around me were some of the sharpest I’ve ever known. I’ve always joked that if I 
find myself being the smartest person in a room, then I need a new room. This team was that 
new room. They were innovators, inventors, and idea people, everyone simply brimming with 
self-confidence and assurance. The team also took a lot of pride in how much and how hard 
they worked to make the company successful.

The company had solid funding and was perpetually on an upward swing in the market. The 
CEO had an impeccable dot-com pedigree and was always optimistic about the great places 
he was taking the business. Staff meetings featured talk of big names, big media, big goals, 
and lots of work to be done. It was intoxicating.

Everything was perfect.

Burning Bright or Just Burning Out?
My first hint of an underlying issue was the length of a “normal” workday. Most of the opera-
tions team—both tier-one and the more senior tier-two team—would be on the job at the 
office until seven or eight in the evening and then be online, working from home, sometimes 
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until midnight and later. There was a pervasive sense that the 
work never ended, and we were being very, very productive, but…
the work never ended. Then, I realized that despite putting in an 
average 12-hour workday, people were only really doing effec-
tive work from about noon until about seven. The rest of the time 
was spent in what could be called “workplace activities,” which 
included frequent and long conversations about the long hours 
we were working.

The long workday issue was exacerbated by a recurring phe-
nomenon where the response to a system problem would include 
several unnecessary people jumping in to help, and then those 
same people would be fatigued and less effective the next day. 
We didn’t respond to system problems conservatively, but rather 
with enthusiasm and brilliance. After observing several such 
events, I learned that qualities like enthusiasm and brilliance 
can be consumables when overtaxed, and that junior people can 
feel untrusted and disenfranchised when senior people always 
take over.

After I’d been on the team a few months, people started warming 
up to me, and I started gaining more insight on the undercur-
rents of the workplace. The night-shift guy worked from home 
and got very little in-person engagement with the team, and he 
wondered if anyone was ever going to swap shifts with him so 
he could be more involved. A particular day-shift guy always 
jumped first to take all the hard problems, and over time started 
wondering why he always had to be the one to work all the hard 
problems. People wanted to take off for family events or vaca-
tions, but they wouldn’t plan farther ahead than a couple days 
because long-term plans were always trumped by something 
operationally important. More than one team member took vaca-
tion time to visit family and ended up spending long hours online 
in a spare bedroom. When my own first child was being born, I 
was able to “take the rest of the afternoon off,” which my wife 
and I still laugh about.

The team made mistakes, which were always opportunities to 
excel at fixing hard problems. We argued and fought when it got 
late and we got tired and it felt like no one was really in control 
of a big problem. We used ourselves up and compensated with 
willpower and pride, because we were awesome. We had to be 
awesome, just to survive.

Trying Some Old-Fashioned Discipline and 
Structure
Our “schedule” was pretty simple. Tier-one sysadmins roughly 
covered Monday through Friday, about 18 hours of each day. The 
gaps were filled in by tier-two staff being on call, with a tight 
rotation of a week spent on call every three or four weeks. This 
meant that a tier-two admin would work a normal week in the 
tier-two project space, plus be guaranteed to be paged by the 
system at least once a day after hours and sometimes dozens 

of times around the clock on the weekend. Serious technical or 
public-facing problems would result in the whole team becoming 
involved, which might be weekly. Every week, some event would 
overtax a tier-two sysadmin and leave that person less effective 
at anything but reactive break-fix for a day or two.

We talked and talked about our inefficiencies and how we 
couldn’t sustain the pace. Finally, we were able to add capac-
ity to the tier-one team. The act of growing the team gave us a 
moment to take a step back and rethink. I took the opportunity to 
do something previously unthinkable: I published an actual shift 
calendar.

Rock stars don’t need shift schedules because they’re always 
awesome, and awesome people don’t clock in for an eight-hour 
shift. A few people weren’t interested but got talked into playing 
along; others were surprisingly easy to convince, and some just 
had to be told to get in line. We worked together, and everyone 
had ownership. We worked out standard 40-hour shifts, day-
swing mid-rotations, and came up with an incentive idea to have 
the tier-one team cover primary on call during the weekends. 
This didn’t prevent tier two from being on call, but it did prevent 
tier two from being woken up constantly for tier-one-level 
system issues. People started talking about—and taking— vaca-
tion time when they didn’t feel obligated to constantly check in. I 
knew we had made a cultural change when people started horse-
trading shifts so they could plan their lives months in advance.

More Reliability, Less Romance
The biggest impact of the tier-one shift schedule turned out to 
be the increased stability of the tier-two staff. We reduced the 
number of after-hours and weekend calls dramatically, which 
resulted in stable and focused senior sysadmins who made fewer 
operational mistakes and were able to contribute more effec-
tively to projects. The tier-one crew—the more junior people on 
the team—gained a sense of empowerment as they handled more 
events by themselves without the entire operations team swoop-
ing in.

Yes, it’s true, those of us on “the schedule” felt less like “rock 
stars” and more like “employees,” but we felt more confident and 
we were able to do better work as a result. The real impact was 
that everyone worked fewer clock hours and yet managed to be 
more effective.

It wasn’t easy to change corporate culture, and it wasn’t always 
obvious that it was going to work out. In the end, the risk paid 
off. Understanding how work happens and aligning people in a 
way that gives them the opportunity to do what they do best and 
create real efficiencies in the workplace can be a true challenge, 
especially when that realignment is counter to established 
norms and identities. I’m the manager, and that’s my job.
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D A V I D  N .  B L A N K - E D E L M A N

In the last column, I spent some time exploring MongoDB, a database 
that challenges in some respects what it means to be a database. For this 
column, I’d like to take a look at a message queuing system that does the 

same for message queuing systems: ZeroMQ (written most often as 0MQ. 
Even though I’m not that hip, I’ll use that representation most of the time 
below).

If the term “message queuing system” makes you feel all stifle-a-yawn enterprise-y, boring 
business service bus-ish, get-off-my-lawn-you-kids, we were doing that in the ’80s-like, then 
I would recommend taking another look at how serious systems are getting built these days. 
If you are like me, you will notice again and again places in which tools are adopting mes-
sage-bus architectures where you might not expect them. These architectures turn out to be 
an excellent way to handle the new reality of distributed systems, such as those you might 
find when you’ve launched into your favorite cloud provider. This is why message queuing 
systems are at the heart of packages like MCollective and Sensu. They often allow you to 
build loosely coupled and dynamic systems more easily than some traditional models.

Our friend Wikipedia talks about message queues as “software-engineering components 
used for interprocess communication, or for inter-thread communication within the same 
process…. Message queues provide an asynchronous communications protocol, meaning that 
the sender and receiver of the message do not need to interact with the message queue at the 
same time.” Message queuing systems like ActiveMQ and RabbitMQ let you set up message 
broker servers so that clients can receive or exchange messages.

Now, back to the MongoDB comparison: Despite having MQ at the end of the name like 
ActiveMQ and RabbitMQ, ZeroMQ is a very different animal from the other MQs. I don’t 
think I can do a better job setting up how it is different than by quoting the beginning of the 
official 0MQ Guide:

ØMQ (also known as ZeroMQ, 0MQ, or zmq) looks like an embeddable networking 
library but acts like a concurrency framework. It gives you sockets that carry 
atomic messages across various transports like in-process, inter-process, TCP, and 
multicast. You can connect sockets N-to-N with patterns like fan-out, pub-sub, 
task distribution, and request-reply. It’s fast enough to be the fabric for clustered 
products. Its asynchronous I/O model gives you scalable multicore applications, 
built as asynchronous message-processing tasks. It has a score of language APIs 
and runs on most operating systems. ØMQ is from iMatix and is LGPLv3 open 
source.

Let me emphasize a key part of the paragraph above. With 0MQ, you don’t set up a distinct 
0MQ message broker server like you might with a traditional MQ system. There’s no zeromq 
binary, there’s no /etc/init.d/zeromq, no /etc/zeromq for config files, no ZeroMQ Windows 
service to launch (or whatever else you think about when bringing up a server). Instead, you 
use the 0MQ libraries to add magic to your programs. This magic makes building your own 
message-passing architecture (whether it’s hub and spoke, mesh, pipeline, etc.) a lot easier 
than you might expect. It takes a lot of the pain out of writing clients, servers, peers, and so 
on. I’ll show exactly what this means in a moment.
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I want to note one more thing before actually diving into the 
code. ZeroMQ looks really basic at first, probably because the 
network socket model is pretty basic. But, like anyone who has 
built something with a larger-than-usual construction set, such 
as a ton of Tinkertoys, Legos, or maybe a huge erector set (if you 
are as old as dirt), at a certain point you step back from a creation 
that has somehow grown taller than you are and say “whoa.” I 
know I had this experience reading the ZeroMQ book (disclo-
sure: published by O’Reilly, who also published my book). In this 
book, which I highly recommend if ZeroMQ interests you at all, it 
describes a ton of different patterns that are essentially building 
blocks. At some point, you’ll have that “whoa” moment when you 
realize that these building blocks offer everything you need to 
construct the most elaborate or elegant architecture your heart 
desires. Given the length of this column, I’ll only be able to look 
at the simplest of topologies, but I hope you’ll get a hint of what’s 
possible.

Socket to Me
Okay, that’s probably the single most painful heading I’ve writ-
ten for this column. Let’s pretend it didn’t happen.

Everything 0MQ-based starts with the basic network socket 
model, so I’ll attempt a three-sentence review (at least the parts 
that are relevant to 0MQ). Sockets are like phone calls (and 
indeed the combination of an IP address and a port attempts to 
provide a unique phone number). To receive a connection, you 
create a socket and then bind to it to listen for connections (I’m 
leaving out accept() and a whole Stevens book, but bear with me); 
to make a connection, you connect() to a socket already set to 
receive connections. Receiving data from an incoming connec-
tion is done via a recv()-like call; sending data to the other end is 
performed with a send()-like call.

Those three sentences provide the key info you need to know to 
get started with 0MQ socket programming. Like one of those 
late-night commercials for medications, I feel I should tag on a 
whole bunch of disclaimers, modifiers, and other small print left 
out of the commercial, but I’m going to refrain except for these 
two things:

◆◆ There are lots of nitty-gritty details to (good) socket program-
ming I’m not even going to touch. 0MQ handles a bunch of that 
for you, but if you aren’t going to use 0MQ for some reason, be 
sure to check out both the non-Perl references (e.g., the Stevens 
books) and the Perl-related references (Lincoln Stein wrote a 
great book called Network Programming with Perl many eons 
ago).

◆◆ If you do want to do plain ol’ socket programming in Perl, you’ll 
want to use one of the socket-related Perl modules to make 
the job easier. Even though Socket.pm ships with Perl, I think 
you’ll find IO::Socket more pleasant to use. With these modules, 

you can open up a socket that connects to another host easily 
and print() to it as if it were any other file handle. Again, this is 
just a “by the way” sort of thing since we’re about to strap on a 
rocket motor and use 0MQ sockets from Perl.

To get started with 0MQ in Perl, you’ll need to pick a Perl module 
that provides an interface to the 0MQ libraries. At the moment, 
there are two choices for modules worth considering, plus or 
minus one: ZMQ::LibZMQ3 and ZMQ::FFI. The former is the 
successor to what used to be called just ZeroMQ. The author 
of that module decided to create modules specifically targeted 
to specific major versions of the 0MQ libraries (v2 and v3). It 
offers an API that is very close to the native library (as a quick 
aside, the author also provides a ZMQ module which will call 
ZMQ::LibZMQ3 or ZMQ::LibZMQ2, but the author suggests in 
most cases to use the version-specific library directly, hence my 
statement of “plus or minus one,” above). The ZMQ::FFI uses 
libffi to provide a slightly more abstract interface to 0MQ that 
isn’t as 0MQ-version specific. (In case you are curious about 
FFI, its docs say, “FFI stands for Foreign Function Interface. A 
foreign function interface is the popular name for the interface 
that allows code written in one language to call code written in 
another language.")

In this column, I’ll use ZMQ::LibZMQ3 because it allows me 
to write code that looks like the C sample code provided in the 
0MQ user guide (and in the 0MQ book). For the sample code in 
this part of a two-part column, I’ll keep things dull and create a 
simple echo client-server pair. The server will listen for incom-
ing connections and echo back any messages the connected 
clients sent to it. First, I’ll look at the server code, because it’s 
going to give me a whole bunch of things to talk about:

use ZMQ::LibZMQ3;

use ZMQ::Constants qw(ZMQ_REP);

my $ctxt = zmq_init; 

my $socket = zmq_socket( $ctxt, ZMQ_REP );

my $rv = zmq_bind( $socket, "tcp://127.0.0.1:8888" );

while (1) {

   my $msg = zmq_recvmsg($socket);

   print "Server received:" . zmq_msg_data($msg) . "\n";

   my $msg = zmq_msg_init_data( zmq_msg_data($msg) );

   zmq_sendmsg( $socket, $msg ); 

} 

The first thing to note about this code is that loads both the 0MQ 
library module and a separate constants module. Depending 
on how you installed the library module, the constants mod-
ule likely was installed at the same time for you. This module 
holds the definition for all of the constants and flags you’ll be 
using with 0MQ. There are a bunch—you’ll see the first one in 
just a couple of lines. The next line of code initializes the 0MQ 



34   J U N E 20 14  VO L .  3 9,  N O.  3  www.usenix.org

COLUMNS
Practical Perl Tools

environment, something you have to do before you use any other 
0MQ calls. 0MQ contexts usually don’t have to come into play 
except as a background thing unless you are doing some fairly 
complex programming, so I’m not going to say more about them 
here.

With all of that out of the way, it is time to create your first 
socket. Sockets get created in a context and are of a specific type 
(in this case ZMQ _REP, or just REP). Socket types are a very 
important concept in 0MQ, so I’ll take a quick moment away 
from the code to discuss them.

I don’t know the last time you played with Tinkertoys but you 
might recall that they consisted of a few basic connector shapes 
(square, circle, etc.), which accepted rods at specific angles. If 
you wanted to build a cube, you had to use the connectors that 
had holes at 90-degree angles and so on. With 0MQ, specific 
socket types get used for creating certain sorts of architectures. 
You can mix and match to a certain extent, but some combina-
tions are more frequently used or more functional than others.

For example, in the code I am describing, I will use REQ and 
REP sockets (REQ for synchronously sending a REQuest, REP 
for synchronously providing a REPly). You will see a similar 
pair in an example in the next issue. You might be curious what 
the difference is between a REQ and REP socket because as Dr. 
Seuss might say, “a socket’s a socket, no matter how small.” The 
short answer is the different socket types do slightly different 
things around message handling (e.g., how message frames are 
constructed, etc.). See the 0MQ book for more details.

Now that you have a socket constructed, you can tell it to listen 
for connections, which is done by performing a zmq_bind(). 
Here you can see that I have asked to listen to unicast TCP/IP 
connections on port 8888 of the local host. 0MQ also knows how 
to handle multicast, inter-process, and inter-thread connec-
tions. At this point, you are ready to go into a loop that will listen 
for messages. The zmq_recvmsg() blocks until it receives an 
incoming message. It returns a message object, the contents of 
which are displayed using zmq_msg_data($msg). To reply to the 
message you just received, you construct a message object with 
the contents of the message you received and send it back over 
the socket via zmq_sendmsg( $socket, $msg ). That’s all you need 
to construct a simple server; now, I’ll look at the client code:

use ZMQ::LibZMQ3;

use ZMQ::Constants qw(ZMQ_REQ);

my $ctxt = zmq_init;

my $socket = zmq_socket( $ctxt, ZMQ_REQ );

zmq_connect( $socket, "tcp://127.0.0.1:8888" );

my $counter = 1;

print "I am $$\n";

while (1) {

   my $msg = zmq_msg_init_data("$counter:$$");

   zmq_sendmsg( $socket, $msg );

   print "Client sent message " . $counter++ . "\n";

   my $msg = zmq_recvmsg($socket);

   print "Client received ack:" . zmq_msg_data($msg) . "\n";

   sleep 1;

}

The client code starts out almost identically (note: I said almost, 
the socket type is different. I once spent a very frustrating hour 
trying to debug a 0MQ program because I had written ZMQ _
REP instead of ZMQ _REQ in one place in the code). It starts to 
diverge from the server code because, instead of listening for a 
connection, it is set to initiate one by using zmq_connect(). In 
the loop, you construct a simple message (the message number 
plus the PID of the script that is running) and send it on the 
socket. Once you’ve sent the message, you wait for a response 
back from the server using the same exact code the server used 
to receive a message. REQ-REP sockets are engineered with 
the expectation that a request is made and a reply is returned, so 
you really do want to send a reply back. Finally, I should men-
tion there is a sleep statement at the end of this loop just to keep 
things from scrolling by too quickly (0MQ is FAST), but you can 
feel free to take it out.

Let’s take the code for a spin. If you start up the server, it sits and 
waits for connections:

$ ./zmqserv1.pl 

In a separate window, start the client:

Immediately, the client prints something like:

I am 86989 

Client sent message 1 

Client received ack:1:86989 

Client sent message 2 

Client received ack:2:86989 

Client sent message 3 

Client received ack:3:86989 

… 

and the server also shows this:

Server received:1:86989 

Server received:2:86989 

Server received:3:86989 

… 

Now, you can begin to see what all of the fuss is about with 0MQ. 
First, if you stop the server and then start it again (while leaving 
the client running):
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$ ./zmqserv1.pl  

Server received:1:87110 

Server received:2:87110 

Server received:3:87110 

^C 

$ ./zmqserv1.pl  

Server received:4:87110 

Server received:5:87110 

Server received:6:87110 

Server received:7:87110 

^C 

$ ./zmqserv1.pl  

Server received:8:87110 

Server received:9:87110 

Server received:10:87110 

^C 

During all of this, the client just said:

$ ./zmqcli1.pl  

I am 87110 Client sent message 1 

Client received ack:1:87110 

Client sent message 2 

Client received ack:2:87110 

Client sent message 3 

Client received ack:3:87110 

Client sent message 4 

Client received ack:4:87110 

Client sent message 5 

Client received ack:5:87110 

Client sent message 6 

Client received ack:6:87110 

Client sent message 7 

Client received ack:7:87110 

Client sent message 8 

Client received ack:8:87110 

Client sent message 9 

Client received ack:9:87110 

Client sent message 10 

Client received ack:10:87110 

Here you are seeing 0MQ’s sockets auto-reconnect (and do a 
little bit of buffering). This isn’t the only magic going on behind 
the scenes, but it is the easiest to demonstrate.

Now, I’ll make the topology a little more interesting. Suppose you 
want to have a single server with multiple clients connected to 
it at the same time. Here’s the change you’d have to make to the 
server code:

(nada)

And the change to the client code:

(also nada)

All you have to do is start the server and spin up as many copies 
of the client as you desire. Let’s start up five clients at once:

$ for ((i=0;i<5;i++)); do ./zmqcli1.pl & done 

On the client side, you see a mishmash of the outputs from the 
client (that eventually return to lockstep):

I am 87242 

I am 87241 

Client sent message 1 I am 87239 

Client sent message 1 I am 87243 

Client sent message 1 

Client received ack:1:87241 

I am 87240 

Client received ack:1:87243 

Client sent message 1 Client sent message 1 

Client received ack:1:87239 

Client received ack:1:87242 

Client received ack:1:87240 

Client sent message 2 

Client sent message 2 

Client sent message 2 

Client sent message 2 

Client sent message 2 

Client received ack:2:87239 

Client received ack:2:87241 

Client received ack:2:87243 

Client received ack:2:87240 

Client received ack:2:87242 

Client sent message 3 

Client sent message 3 

Client sent message 3 

Client sent message 3 

Client sent message 3 

Client received ack:3:87241 

Client received ack:3:87239 

Client received ack:3:87240 

Client received ack:3:87243 

Client received ack:3:87242 

On the server side, the output is a little more orderly:

$ ./zmqserv1.pl 

Server received:1:87241 

Server received:1:87239 

Server received:1:87243 

Server received:1:87242 

Server received:1:87240 

Server received:2:87239 

Server received:2:87241 

Server received:2:87243 

Server received:2:87242 

Server received:2:87240 
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Server received:3:87241 

Server received:3:87239 

Server received:3:87240 

Server received:3:87243 

Server received:3:87242 

It is pretty cool that the server was able to handle multiple simul-
taneous connections without any code changes, but one thing 
that may not be clear is that 0MQ is not only handling these con-
nections, it’s also automatically load-balancing between them as 
well. That’s the sort of behind-the-scenes magic I think is really 
awesome.

I believe it is always good to end a show after a good magic trick, 
so I’ll wind up part 1 of this column right here. Join me next time 
when I will look at other ZeroMQ socket types and build some 
even cooler network topologies.

Take care, and I’ll see you next time.
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university or college campus?
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students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX is always looking for academics to 
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■  Encouraging students to apply for travel grants to conferences
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Web site, free conference registration once a year (after one full year of service as a Campus Representative), and electronic conference 
proceedings for downloading onto your campus server so that all students, staff, and faculty have access.
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■  Providing students who wish to join USENIX with information 
and applications

■  Helping students to submit research papers to  relevant 
USENIX conferences

■  Providing USENIX with feedback and suggestions 
on how the organization can better serve students

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four year accredited university ■  Have been a dues-paying member of USENIX for at least one 
full year in the past
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14
11th USENIX Symposium 
on Operating Systems Design
and Implementation

October 6–8, 2014
Broomfield, CO

Join us in Broomfi eld, CO, October 6–8, 2014, for the 11th USENIX Symposium on Operating 

Systems Design and Implementation (OSDI ‘14). The Symposium brings together professionals 

from academic and industrial backgrounds in what has become a premier forum for discussing 

the design, implementation, and implications of systems software.

Don’t miss the co-located workshops on Sunday, October 5

Diversity ’14: 2014 Workshop on Supporting 
Diversity in Systems Research

HotDep ’14: 10th Workshop on Hot Topics 
in Dependable Systems

HotPower ’14: 6th Workshop on Power-
Aware Computing and Systems

INFLOW ’14: 2nd Workshop on Interactions 
of NVM/Flash with Operating Systems and 
Workloads

TRIOS ’14: 2014 Conference on Timely 
 Results in Operating Systems

SAVE THE DATE!

www.usenix.org/osdi14

All events will take place at the Omni Interlocken Resort



38   J U N E 20 14  VO L .  3 9,  N O.  3  www.usenix.org

COLUMNS

Python Gets an Event Loop (Again)
D A V I D  B E A Z L E Y

M arch 2014 saw the release of Python 3.4. One of its most notable 
additions is the inclusion of the new asyncio module to the stan-
dard library [1]. The asyncio module is the result of about 18 

months of effort, largely spearheaded by the creator of Python, Guido van 
Rossum, who introduced it during his keynote talk at the PyCon 2013 con-
ference. However, ideas concerning asynchronous I/O have been floating 
around the Python world for much longer than that. In this article, I’ll give 
a bit of historical perspective as well as some examples of using the new 
library. Be aware that this topic is pretty bleeding edge—you’ll probably need 
to do a bit more reading and research to fill in some of the details.

Some Basics: Networking and Threads
If you have ever needed to write a simple network server, Python has long provided modules 
for socket programming, processes, and threads. For example, if you wanted to write a simple 
TCP/IP echo server capable of handling multiple client connections, an easy way to do it is to 
write some code like this:

  # echoserver.py

  from socket import socket, AF_INET, SOCK_STREAM

  import threading

  def echo_client(sock):

     while True:

         data = sock.recv(8192)

         if not data:

             break

         sock.sendall(data)

     print(‘Client closed’)

     sock.close()

  def echo_server(address):

     sock = socket(AF_INET, SOCK_STREAM)

     sock.bind(address)

     sock.listen(5)

     while True:

         client_sock, addr = sock.accept()

         print(‘Connection from’, addr)

         t = threading.Thread(target=echo_client,

                              args=(client_sock,))

         t.start()
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  if __name__ == ‘__main__’:

     echo_server((‘‘, 25000)) 

Although simple, this style of programming is the foundation for 
Python’s socketserver module (called SocketServer in Python 
2). socketserver, in turn, is the basis of Python’s other built-in 
server libraries for HTTP, XML-RPC, and similar.

Asynchronous I/O
Even though programming with threads is a well-known and rel-
atively simple approach, it is not always appropriate in all cases. 
For example, if a server needs to manage a very large number of 
open connections, running a program with 10,000 threads may 
not be practical or efficient. For such cases, an alternative solu-
tion involves creating an asynchronous or event-driven server 
built around low-level system calls such as select() or poll(). 
The underlying approach is based on an underlying event-loop 
that constantly polls all of the open sockets and triggers event-
handlers (i.e., callbacks) on objects to respond as appropriate.

Python has long had a module, asyncore, for supporting asyn-
chronous I/O. Here is an example of the same echo server imple-
mented using it:

  # echoasyncore.py

  from socket import AF_INET, SOCK_STREAM

  import asyncore

  class EchoClient(asyncore.dispatcher):

     def __init__(self, sock):

         asyncore.dispatcher.__init__(self, sock)

         self._outbuffer = b’’

         self._readable = True

      def readable(self):

         return self._readable

      def handle_read(self):

         data = self.recv(8192)

         self._outbuffer += data

      def handle_close(self):

         self._readable = False

         if not self._outbuffer:

             print(‘Client closed connection’)

             self.close()

      def writable(self):

         return bool(self._outbuffer)

      def handle_write(self):

         nsent = self.send(self._outbuffer)

         self._outbuffer = self._outbuffer[nsent:]

         if not (self._outbuffer or self._readable):

             self.handle_close()

  class EchoServer(asyncore.dispatcher):

     def __init__(self, address):

         asyncore.dispatcher.__init__(self)

         self.create_socket(AF_INET, SOCK_STREAM)

         self.bind(address)

         self.listen(5)

      def readable(self):

         return True

      def handle_accept(self):

         client, addr = self.accept()

         print(‘Connection from’, addr)

         EchoClient(client)

  EchoServer((‘‘, 25000))

 asyncore.loop() 

In this code, the various objects EchoServer and EchoClient are 
really just wrappers around a traditional network socket. All of 
the important logic is found in callback methods such as handle 

_accept(), handle_read(), handle_write(), and so forth. Finally, 
instead of running a thread or process, the server runs a central-
ized event-loop initiated by the final call to asyncore.loop().

Wilted Async?
Although asyncore has been part of the standard library since 
Python 1.5.2, it’s always been a bit of an abandoned child. 
Programming with it directly is difficult—involving layers 
upon layers of callbacks. Moreover, the standard library doesn’t 
provide any other support to make asyncore support higher-
level protocols (e.g., HTTP) or to interoperate with other parts 
of Python (e.g., threads, queues, subprocesses, pipes, signals, 
etc.). Thus, if you’ve never actually encountered any code that 
uses asyncore in the wild, you’re not alone. Almost nobody uses 
it—it’s just too painful and low-level to be a practical solution for 
most programmers.

Instead, you’ll more commonly find asynchronous I/O supported 
through third-party frameworks such as Twisted, Tornado, or 
Gevent. Each of these frameworks tends to be a large world unto 
itself. That is, they each provide their own event loop, and they 
provide asynchronous compatible versions of common library 
functions. Although it is possible to perform a certain amount of 
adaptation to make these different libraries work together, it’s all 
a bit messy.

Enter asyncio
The asyncio library introduced in Python 3.4 represents a modern 
attempt to bring asynchronous I/O back into the standard library 
and to provide a common core upon which additional async-
oriented libraries can be built. asyncio also aims to standardize 
the implementation of the event-loop so that it can be adapted to 
support existing frameworks such as Twisted or Tornado.
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The definitive description of asyncio can be found in PEP-3156 
[2]. Rather than rehash the contents of the admittedly dense 
PEP, I’ll provide a simple example to show what it looks like to 
program with asyncio. Here is a new implementation of the echo 
server:

  # echoasync.py

  from socket import socket, AF_INET, SOCK_STREAM

  import asyncio

  loop = asyncio.get_event_loop()

  @asyncio.coroutine

  def echo_client(sock):

     while True:

         data = yield from loop.sock_recv(sock, 8192)

         if not data:

             break

         yield from loop.sock_sendall(sock, data)

     print(‘Client closed’)

     sock.close()

  @asyncio.coroutine 

  def echo_server(address):

     sock = socket(AF_INET, SOCK_STREAM)

     sock.bind(address)

     sock.listen(5)

     sock.setblocking(False)

     while True:

         client_sock, addr = yield from loop.sock_accept(sock)

         print(‘Connection from’, addr)

         asyncio.async(echo_client(client_sock))

  if __name__ == ‘__main__’:

     loop.run_until_complete(echo_server((‘‘, 25000))) 

Carefully compare this code to the first example involving 
threads. You will find that the code is virtually identical except 
for the mysterious @asyncio.coroutine decorator and use of 
the yield from statements. As for those, what you’re seeing is a 
programming style based on coroutines—in essence, a form of 
cooperative user-level concurrency.

A full discussion of coroutines is beyond the scope of this article; 
however, the general idea is that each coroutine represents a kind 
of user-level “task” that can be executed concurrently. The yield 

from statement indicates an operation that might potentially 
block or involve waiting. At these points, the coroutine can be 
suspended and then resumed at a later point by the underlying 
event loop. To be honest, it’s all a bit magical under the covers. I 
previously presented a PyCon tutorial on coroutines [3]. How-
ever, the yield from statement is an even more modern develop-
ment that is only available in Python 3.3 and newer, described in 
PEP-380 [4]. For now, just accept the fact that the yield from is 

required and that you’ve probably never seen it used in any previ-
ous Python code.

Getting Away from Low-Level Sockets
As shown, the sample echo server is directly manipulating a 
low-level socket. However, it’s possible to write a server that 
abstracts the underlying protocol away. Here is a slightly modi-
fied example that uses a higher-level transport interface:

  import asyncio

  loop = asyncio.get_event_loop()

  @asyncio.coroutine def 

  echo_client(reader, writer):

     while True:

         data = yield from reader.readline()

         if not data:

             break

         writer.write(data)

     print(‘Client closed’)

  if __name__ == ‘__main__’:

     fut = asyncio.start_server(echo_client, ‘‘, 25000)

     loop.run_until_complete(fut)

     loop.run_forever() 

As shown, this runs as a TCP/IP echo server. However, you can 
change it to a UNIX domain server if you simply change the last 
part as follows:

  if __name__ == ‘__main__’:

     fut = asyncio.start_unix_server(echo_client, ‘/tmp/spam’)

     loop.run_until_complete(fut)

     loop.run_forever() 

In both cases, the underlying protocol is abstracted away. The 
echo_client() function simply receives reader and writer objects 
on which to read and write data—it doesn’t need to worry about 
the exact protocol being used to transport the bytes.

More Than Sockets
A notable feature of asyncio is that it’s much more than a simple 
wrapper around sockets. For example, here’s a modified client 
that feeds its data to a subprocess running the UNIX wc com-
mand and collects the output afterwards:

  from asyncio import subprocess

  @asyncio.coroutine

  def echo_client(reader, writer):

     proc = yield from asyncio.create_subprocess_exec(‘wc’,

                                         stdin=subprocess.PIPE,

                                       stdout=subprocess.PIPE)

     while True:

         data = yield from reader.readline()
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         if not data:

             break

         proc.stdin.write(data)

         writer.write(data)

     proc.stdin.close()

     stats = yield from proc.stdout.read()

     yield from proc.wait()

     print(“Client closed:”, stats.decode(‘ascii’)) 

Here is an example of a task that simply sleeps and wakes up 
periodically on a timer:

  @asyncio.coroutine

  def counter():

     n = 0

     while True:

         print(“Counting:”, n)

         yield from asyncio.sleep(5)

         n += 1

  if __name__ == ‘__main__’:

     asyncio.async(counter())

     loop.run_forever() 

There is even support for specialized tasks such as attaching a 
signal handler to the event loop. For example:

  import signal

  def handle_sigint():

     print(‘Quitting’)

     loop.stop()

  loop.add_signal_handler(signal.SIGINT, handle_sigint) 

Last, but not least, you can delegate non-asynchronous work to 
threads or processes. For example, if you had a burning need for 
a task to print out Fibonacci numbers using a horribly inefficient 
implementation and you didn’t want the computation to block 
the event loop, you could write code like this:

  import asyncio

  from concurrent.futures import ThreadPoolExecutor

  loop = asyncio.get_event_loop()

  def fib(n):

     if n <= 2:

         return 1

     else:

         return fib(n-1) + fib(n-2)

  @asyncio.coroutine

  def fibonacci():

     n = 1

     while True:

         r = yield from loop.run_in_executor(pool, fib, n)

         print(“Fib(%d): %d” % (n, r))

         yield from asyncio.sleep(1)

         n += 1

  if __name__ == ‘__main__’:

     pool = ThreadPoolExecutor(8)

     asyncio.async(fibonacci())

     loop.run_forever() 

In this example, the loop.run_in_executor() arranges to run a 
user-supplied function (fib) in a separate thread. The first argu-
ment supplies a thread-pool or process-pool as created by the 
concurrent.futures module.

Where to Go from Here?
There is much more to asyncio than presented here. However, I 
hope the few examples here have given you a small taste of what 
it looks like. For more information, you might consult the official 
documentation [1]; if you’re like me, however, you’ll find the 
documentation a bit dense and lacking in examples. Thus, you’re 
probably going to have to fiddle around with it as an experiment. 
Searching the Web for “asyncio examples” can yield some addi-
tional information and insight for the brave. In the references 
section, I’ve listed a couple of presentations and sites that have 
more examples [5, 6].

As for the future, it will be interesting to see whether asyncio is 
adopted as a library for writing future asynchronous libraries and 
applications. As with most things Python 3, only time will tell.

If you’re still using Python 2.7, the Trollius project [7] is a 
backport of the asyncio library to earlier versions of Python. 
The programming interface isn’t entirely the same because of 
the lack of support for the “yield from” statement, but the overall 
architecture and usage are almost identical.
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D A V E  J O S E P H S E N

Plutarch tells a great story about Hannibal, in the time of the reign of 
Dictator Fabius. Hannibal, a barbarian from the south, was roaming 
about the countryside making trouble as barbarians do, when through 

either some subtlety on the part of Fabius or just seriously abominable 
direction-giving on the part of a few sheep farmers (reports differ), Hannibal 
managed to get himself trapped and surrounded in a valley.

Knowing that he wasn’t going to be able to escape by assault in any direction, Hannibal came 
up with an ingenious ploy. The story goes that he waited until nightfall, and in the darkness 
he sent his men up the hillsides, while keeping his livestock in the valley floor. Then, setting 
the horns of his cattle ablaze, he stampeded them towards Fabius’ lines. The Romans, seeing 
what they thought was a charge of torch-wielding barbarians (but which was really a mul-
titude of terrified flaming cattle), reformed and dug in, and in so doing, allowed Hannibal’s 
men to escape past them on the slopes above.

Unless you’re a cow, you have to agree that this was a pretty great bit of ingenuity. It’s also a 
pretty great example of the UNIX principle of unexpected composition: that we should craft 
and use tools that may be combined or used in ways that we never intended. Before Hanni-
bal, few generals probably considered the utility of flaming cattle in the context of anti-siege 
technology.

The monitoring systems built in the past fail pretty miserably when it comes to the principle 
of unexpected composition. Every one of them is born from a core set of assumptions—
assumptions that ultimately impose functional limits on what you can accomplish with the 
tool. This is perhaps the most important thing to understand about monitoring systems 
before you get started designing a monitoring infrastructure of your own: Monitoring sys-
tems become more functional as they become less featureful.

Some systems make assumptions about how you want to collect data. Some of the very first 
monitoring systems, for example, assumed that everyone would always monitor everything 
using SNMP. Other systems make assumptions about what you want to do with the data once 
it’s collected—that you would never want to share it with other systems, or that you want to 
store it in thousands of teensy databases on the local file system. Most monitoring systems 
present this dilemma: They each solve part of the monitoring problem very well but wind up 
doing so in a way that saddles you with unwanted assumptions, like SNMP and thousands of 
teensy databases.

Many administrators interact with their monitoring infrastructures like they might a bag of 
jellybeans—keeping the pieces they like and discarding the rest. In the past few years, many 
little tools have come along that make this functionally possible, enabling you to replace or 
augment your single, centralized monitoring system with a bunch of tiny, purpose-driven 
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data collectors wired up to a source-agnostic storage tier (dis-
claimer: I work for a source-agnostic storage tier as a service 
company called Librato).

This strategy lets you use whatever combination of  collectors 
makes sense for you. You can weave monitoring into your 
source code directly, or send forth herds of flaming cattle to 
 collect it, and then store the monitoring data together, where 
it can be visualized, analyzed, correlated, alerted on, and even 
multiplexed to multiple destinations regardless of its source 
and method of collection.

Tons of open source data collectors and storage tiers are avail-
able, but instead of talking about any of them specifically, I’d like 
to write a little bit about the monitoring “patterns” that currently 
exist in the wild, because although there are now eleventybillion 
different implementation possibilities, they all combine the same 
basic five or six design patterns. In the same way I can describe 
Hannibal’s livestock as a “diversion movement to break contact,” 
I hope that categorizing these design patterns will make it easier 
to write about the specifics of data collectors and flaming cows 
later on.

Collection Patterns for External Metrics
I begin by dividing the target metrics themselves into two gen-
eral categories: those that are derived from within the monitored 
process at runtime, and those that are gathered from outside the 
monitored process. Considering the latter type first, four pat-
terns generally are used to collect availability and performance 
data from outside the monitored process.

The Centralized Polling Pattern
Anyone who has worked with monitoring systems for a while 
has used centralized pollers. They are the archetype design—the 
one that comes to mind first when someone utters the phrase 
“monitoring system” (although that is beginning to change). See 
Figure 1.

Like a grade-school teacher performing the morning roll call, the 
centralized poller is a monolithic program that is configured to 
periodically poll a number of remote systems, usually to ensure 
that they are available but also to collect performance metrics. 
The poller is usually implemented as a single process on a single 
server, and it usually attempts to make guarantees about the 
interval at which it polls each service.

Because this design predates the notion of configuration man-
agement engines, centralized pollers are designed to minimize 
the amount of configuration required on the monitored hosts. 
They may rely on external connectivity tests, or they may 
remotely execute agent software on the hosts they poll; in either 
case, however, their normal mode of operation is to periodically 
pull data directly from a population of monitored hosts.

Centralized pollers are easy to implement but often difficult 
to scale. They typically operate on the order of minutes, using, 
for example, five-minute polling intervals, and this limits the 
resolution at which they can collect performance metrics. Older 
centralized pollers are likely to use agents with root-privileged 
shell access for scripting, communicate using insecure proto-
cols, and have unwieldy (if any) failover options.

Although classic centralized pollers like Nagios, Munin, and 
Cacti are numerous, they generally don’t do a great job of playing 
with others because they tend to make the core assumption that 
they are the ultimate solution to the monitoring problem at your 
organization. Most shops that use them in combination with 
other tools interject a metrics aggregator like statsd or other 
middleware between the polling system and other monitoring 
and storage systems.

The Stand-Alone Agent Pattern
Stand-alone agents have grown in popularity as configuration-
management engines have become more commonplace. They are 
often coupled with centralized pollers or roll-up model systems 
to meet the needs of the environment. See Figure 2.

Agent software is installed and configured on every host that 
you want to monitor. Agents usually daemonize and run in the 
background, waking up at timed intervals to collect various 
performance and availability metrics. Because agents remain 
resident in memory and eschew the overhead of external connec-
tion setup and teardown for scheduling, they can collect metrics 
on the order of seconds or even microseconds. Some agents push 
status updates directly to external monitoring systems, and 
some maintain summary statistics that they present to pollers 
as needed via a network socket.

Agent configuration is difficult to manage without a CME, 
because every configuration change must be pushed to all appli-
cable monitored hosts. Although they are generally designed 

Figure 1: The centralized poller monitoring pattern



44   J U N E 20 14  VO L .  3 9,  N O.  3  www.usenix.org

COLUMNS
iVoyeur

to be lightweight, they can introduce a non-trivial system load 
if incorrectly configured. Be careful with closed-source agent 
software, which can introduce backdoors and stability prob-
lems. Open source agents are generally preferred because their 
footprint, overhead, and security can be verified and tweaked if 
necessary.

Collectd is probably the most popular stand-alone agent out 
there. Sensu uses a combination of the agent and polling pattern, 
interjecting a message queue between them.

The Roll-Up Pattern
The roll-up pattern is often used to achieve scale in monitoring 
distributed systems and large machine clusters or to aggregate 
common metrics across many different sources. It can be used in 
combination with agent software or instrumentation. See Figure 3.

The roll-up pattern is a strategy to scale the monitoring infra-
structure linearly with respect to the number of monitored 
systems. This is usually accomplished by co-opting the moni-
tored machines themselves to spread the monitoring workload 
throughout the network. Usually, small groups of machines use 
an election protocol to choose a proximate, regional collection 
host, and send all of their monitoring data to it, although some-
times the configuration is hard-coded.

The elected host summarizes and deduplicates the data, then 
sends it up to another host elected from a larger region of sum-
marizers. This host in turn summarizes and deduplicates it, and 
so forth.

Roll-up systems scale well but can be difficult to understand and 
implement. Important stability and network-traffic consider-
ations accompany the design of roll-up systems.

Ganglia is a popular monitoring project that combines stand-
alone agents with the roll-up pattern to monitor massive clusters 

of hosts with fine-grained resolution. The statsd daemon process 
can be used to implement roll-up systems to hand-off in-process 
metrics.

Logs as Event-Streams
System and event logs provide a handy event stream from which 
to derive metric data. Many large shops have intricate central-
ized log processing infrastructure from which they feed many 
different types of monitoring, analytics, event correlation, and 
security software. If you’re a Platform-as-a-Service (PaaS) 
customer, the log stream may be your only means to emit, collect, 
and inspect metric data from your application.

Applications and operating systems generate logs of impor-
tant events by default. The first step in the log-stream pattern 
requires the installation or configuration of software on each 
monitored host that forwards all the logs off that host. Event-
Reporter for Windows or rsyslogd on UNIX are popular log for-
warders. Many programming languages also have log generation 
and forwarding libraries, such as the popular Log4J Java library. 
PaaS systems like Heroku have likely preconfigured the logging 
infrastructure for you.

Logs are generally forwarded to a central system for processing, 
indexing, and storage, but in larger environments they might be 
MapReduced or processed by other fan-out style parallel pro-
cessing engines. System logs are easily multiplexed to different 
destinations, so there is a diverse collection of software available 
for processing logs for different purposes.

Although many modern syslog daemons support TCP, the syslog 
protocol was originally designed to use UDP in the transport 
layer, which can be unreliable at scale. Log data is usually 
emitted by the source in a timely fashion, but the intermediate 
processing systems can introduce some delivery latency. Log 

Figure 2: The stand-alone agent pattern Figure 3: The roll-up pattern
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data must be parsed, which can be a computationally expensive 
endeavor. Additional infrastructure may be required to process 
logging event streams as volume grows.

As I’ve already mentioned, with PaaS providers like Heroku 
and AppHarbor, logs are the only means by which to export and 
monitor performance data. Thus, many tools like Heroku’s own 
log-shuttle and l2MET have grown out of that use-case. There 
are several popular tools for DIY enterprise log snarfing, like 
logstash, fluentd, and Graylog, as well as a few commercial offer-
ings, like Splunk.

Collection Patterns for In-Process Metrics
Instrumentation libraries, which are a radical departure from 
the patterns discussed thus far, enable developers to embed 
monitoring into their applications, making them emit a constant 
stream of performance and availability data at runtime. This 
is not debugging code but a legitimate part of the program that 
is expected to remain resident in the application in production. 
Because the instrumentation resides within the process it’s 
monitoring, it can gather statistics on things like thread count, 
memory buffer and cache sizes, and latency, which are difficult 
(in the absence of standard language support like JMX) for 
external processes to inspect.

Instrumentation libraries make it easy to record interesting 
measurements inside an application by including a wealth of 
instrumentation primitives like counters, gauges, and tim-
ers. Many also include complex primitives like histograms and 
percentiles, which facilitate a superb degree of performance 
visibility at runtime.

The applications in question are usually transaction-oriented; 
they process and queue requests from end users or external 
peer processes to form larger distributed systems. It is critically 

important for such applications to communicate their perfor-
mance metrics without interrupting or otherwise introducing 
latency into their request cycle. Two patterns are normally 
employed to meet this need.

The Process Emitter Pattern
Process emitters attempt to immediately purge every metric via 
a non-blocking channel. See Figure 4.

The developer imports a language-specific metrics library and 
calls an instrumentation function like time() or increment(), as 
appropriate for each metric he wants to emit. The instrumen-
tation library is effectively a process-level, stand-alone agent 
that takes the metric and flushes it to a non-blocking channel 
(usually a UDP socket or a log stream). From there, the metric is 
picked up by a system that employs one or more of the external-
process patterns.

Statsd is a popular and widely used target for process emitters. 
The project maintains myriad language bindings to enable the 
developer to emit metrics from the application to a statsd dae-
mon process listening on a UDP socket.

The Process Reporter Pattern
Process reporters use a non-blocking dedicated thread to store 
their metrics in an in-memory buffer. They either provide a 
concurrent interface for external processes to poll this buffer or 
periodically flush the buffer to upstream channels. See Figure 5.

The developer imports a language-specific metrics library and 
calls an instrumentation function like time() or increment(), as 
appropriate for each metric he wants to emit. Rather than purg-
ing the metric immediately, process reporters hand the metric 
off to a dedicated, non-blocking thread that stores and some-
times processes summary statistics for each metric within the 

Figure 4: The process emitter pattern Figure 5: The process reporter pattern
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memory space of the monitored process. Process reporters can 
push their metrics on a timed interval to an external monitor-
ing system or can export them on a known interface that can be 
polled on demand.

Process reporters are specific to the language in which they are 
implemented. Most popular languages have excellent metrics 
libraries that implement this pattern. Coda Hale Metrics for 
Java, Metriks for Ruby, and go-metrics are all excellent choices.

Thanks for bearing with me once again. I hope this article will 
help you identify the assumptions and patterns employed by 
the data collectors you choose to implement in your environ-
ment, or at least get you thinking about the sorts of things you 
can set aflame should you find yourself cornered by Roman 
soldiers. Be sure to check back with me in the next issue when 
I bend yet another tenuously related historical or mythical 
subject matter to my needs in my ongoing effort to document the 
monitoringosphere.
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Think of [knowledge] as a house that magically expands with each door you open. 
You begin in a room with four doors, each leading to a new room that you haven’t 
visited yet.… But once you open one of those doors and stroll into that room, three 
new doors appear, each leading to a brand-new room that you couldn’t have reached 
from your original starting point. Keep opening doors and eventually you’ll have 
built a palace.

Steven Johnson, “The Genius of the Tinkerer” [1]

Learning pays compound interest; as a person studies a subject, the more capable they 
become at learning even more about the subject. Just as a student cannot tackle the chal-
lenges of calculus without studying the prerequisites, we must have diligence in how we 
discover and build the prerequisite knowledge within cybersecurity. 

Before we discuss where we are heading, let’s establish where we are. Until now, we (security 
metricians, including the present authors) could exhort people to “Just measure something 
for heaven’s sakes!” It’s safe to say that such measurement has largely begun. Therefore, we 
have the better, if harder, problem of the meta-analysis (“research about research”) of many 
observations, always remembering that the purpose of security metrics is decision support.

Learning from All of Us
To understand how we are at processing our observations, we turn to published industry 
reports. It’s clear that there are a lot more of them than even two years ago. Not all reports are 
equal; parties have various motivations to publish, which creates divergent interpretations of 
what represents research worth communicating.

We suspect that most data included in industry reports are derived from convenience 
samples—data gathered because it is available to the researcher, not necessarily data that 
is representative enough to be generalizable. Not to make this a statistics tutorial, but for 
generalizability you need to understand (and account for) your sampling fraction, or you need 
to randomize your collection process. It is not that this or that industry report has a bias—all 
data has bias; the question is whether you can correct for that bias. A single vendor’s data 
supply will be drawn from that vendor’s customer base, and that’s something to correct for. 
On the other hand, if you can find three or more vendors producing data of the same general 
sort, combining them in order to compare them can wash out the vendor-to-customer bias at 
least insofar as decision support is concerned.

Do not mistake our comments for a reason to dismiss convenience samples; research with 
a convenience sample is certainly better than “learning” from some mix of social media 
and headlines. This challenge in data collection is not unique to cybersecurity; performing 
research on automobile fatalities does not lend itself to selecting random volunteers. Study-
ing the effects of a disease requires a convenience study of patients with the disease. It’s too 

Exploring with a Purpose
D A N  G E E R  A N D  J A Y  J A C O B S

Dan Geer is the CISO for In-Q-
Tel and a security researcher 
with a quantitative bent. He has 
a long history with the USENIX 
Association, including officer 

positions, program committees, etc.  
dan@geer.org 

Jay Jacobs is the co-author of 
Data-Driven Security and a data 
analyst at Verizon where he 
contributes to their Data Breach 
Investigations Report. Jacobs is 

a cofounder of the Society of Information Risk 
Analysts. jay@beechplane.com



48   J U N E 20 14  VO L .  3 9,  N O.  3  www.usenix.org

COLUMNS
Exploring with a Purpose

early to call it, but we think it infeasible to conduct randomized 
clinical trials, cohort studies, and case-control research, but the 
time is right for such ideas to enter the cybersecurity field (and 
for some of you to prove us wrong). 

If we are going to struggle in the design of our research and data 
collection, we may be doomed never to produce a single study 
without f laws. Although that does not preclude  learning, it 
means that we will have to accept and even embrace the variety  
of conclusions each study will bring while reserving the big 
lessons to be drawn after the appropriate corrections for the 
biases in each study are made and those results aggregated. 
This method of learning requires the active participation of 
researchers who must not only understand the sampling  
fraction that underlies their data but also must transparently 
communicate it and the methodology of their research.

Learning from Each Other
Industry reports are generally data aggregated by automated 
means across the whole of the vendor’s installed base. The 
variety found in these aggregation projects is intriguing, because 
much of the data now being harvested is in a style that we call 
“voluntary surveillance,” such as when all the clients of Com-
pany X beacon home any potential malware that they see so 
that the probability of detection is heightened and the latency 
of countermeasures is reduced for everyone. Of course, once the 
client (that’s you) says “Keep an eye on me,” you don’t have much 
to say about just how closely that eyeball is looking unless you 
actually read the whole outbound data stream yourself. 

What can you learn from industry reports? Principally two 
things: “What is the trendline?” and “Am I different?” A mea-
surement method can be noisy and can even contain a consistent 
bias without causing the trendline it traces out to yield mis-
leading decision support. As long as the measurement error is 
reasonably constant, the trendline is fine. Verizon’s Data Breach 
Investigations Report (DBIR) [2] is not based on a random 
sample of the world’s computing plant, but that only affects the 
generalizability of its measured variables, not the trendline 
those variables trace. By contrast, public estimates of the world-
wide cost of cybercrime are almost surely affected by what it 

takes to get newspaper headline writers to look at you. Producers 
of cybercrime estimates certainly claim to be based on data, but 
their bias and value in meta-analysis efforts must be questioned.

That trendlines are useful decision support reminds us that an 
ordinal scale is generally good enough for decision support. Sure, 
real number scales (“What do you weigh?”) are good to have, 
but ordinal scales (“Have you lost weight?”) are good enough for 
decision making (“Did our awareness training hold down the 
number of detectable cybersecurity mistakes this year?”).

Whether you are different from everybody else matters only 
insofar as whether that difference (1) can be demonstrated with 
measured data and (2) has impact on the decisions that you must 
make. Suppose we had the full perimeter firewall logs from the 
ten biggest members of the Defense Industrial Base. Each one 
is drawn under a different sampling regime, but if they all show 
the same sorts of probes from the same sorts of places, then 
the opponent is an opportunistic opponent, which has plan-
ning implications. If, however, they all show the same trendline 
except for yours, then as a matter of decision support your next 
step is to acquire data that helps you explain what makes you 
special—and whether there is anything to be done about that.

Standing on the Shoulders of Giants
Medicine has a lot to teach us about combining studies done by 
unrelated researchers, which is a good thing, because we don’t 
have a decade to burn reinventing those skills. The challenges 
facing such meta-analysis are finding multiple research efforts 

1. with comparable measurements;

2. researching the same time period (environment may change 
rapidly);

3. publishing relevant characteristics like the sample size under 
observation, the data collection, and the categorization scheme.

Without the combination of all three, comparison and meta-
analysis (and consequently our ability to learn) becomes sig-
nificantly more difficult. To illustrate, we collected 48 industry 
reports; 19 of them contained a reference to “android,” and five of 
those 19 estimated the amount of android malware to be:

◆◆ 405,140 android malware through 2012 (257,443 with a strict 
definition of “malware”) [3]

◆◆ 276,259 total mobile malware through Q1 2013 [4]

◆◆ 50,926 total mobile malware through Q1 2013 [5]

◆◆ 350,000 total number of android malware though 2012 [6]

◆◆ over 200,000 malware for android through 2012 [7]

That’s a broad range of contrast. But do not mistake the range 
and contrast for an indication of errors or mistakes—their 
studies are exploring data that they have access to and are an 
example of the variety of conclusions we should expect. That 

Exploratory before Explanatory 
Exploratory research is all about hypothesis generation, not 
hypothesis testing. It is all about recognizing what are the 
unknowns within an environment. When that environment is 
complex or relatively unstudied, exploratory analysis tells you 
where to put the real effort. Exploratory research identifies 
the hypotheses for explanatory research to resolve. Explor-
atory research does not end with “Eureka!” It ends with “If 
this is where I am, then which way do I go?”
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exploration is exactly what should be happening in this field at 
this point in time. What we (the security metrics people) must 
now do is learn how to do meta-analysis in our domain, and if 
we are producers, learn how to produce research consumable by 
other security metrics people. We have to learn how to deal with 
our industry’s version of publication bias, learn how adroitly to 
discount agenda-driven “results,” and learn which indicators 
enable us to infer study quality.

This task will not be easy, but it is timely. It is time for a cyberse-
curity data science. We call on those of you who can do explor-
atory analysis of data to do so and to publish in styles such that 
the tools of meta-analysis can be used to further our under-
standing across the entire cybersecurity field.

Thanks in advance.
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Addendum: Data science tools as of this date
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/dev/random
R O B E R T  G .  F E R R E L L

I’ve looked at the cloud from both sides now: 
From in and out, and still somehow, 
It’s the cloud’s delusions I recall; 
I still trust the cloud not at all.

 (apologies to Joni Mitchell)

A s humanity’s adoption of the cloud paradigm slides ever closer to 
unity, detractors like yours truly grow increasingly scarce and 
anathematized. Rather than retreat into a bitter lepers’ colony for 

Cloud-Luddites (“Cluddites”), I choose instead to cast my remaining stones 
from the unfettered, if somewhat dizzying, forefront of prophecy. 

There will come a time, sayeth the prophet, when all personal computing devices will be 
wearable thin-clients, communicating with their data and applications via whatever is set 
to replace Bluetooth and/or WiFi. People will no longer buy software or storage devices but 
rather subscriptions to CCaaS: Cloud Computing as a (dis)Service. There will be specific 
application bundles available (word processing, graphics manipulation, spreadsheets, etc.), 
as well as omnibus cloudware plans that allow access to a broad range of data crunching 
techniques.

All advertising will be razor-targeted to the person, place, circumstance, and even current 
physiological status of its victims ^H^H^H^H^H^H^H audience. Even ad contents themselves 
will be written on the fly by personalized marketing microbots that have spent their entire 
existence studying and learning a single person’s lifestyle. Because there will be no one left 
in the labor pool who subscribes to any consistent rules of grammar, spelling, or rhetoric, 
these ads will be mercifully incomprehensible to most.

Moving further afield in our technology examination, reality television will merge with 
 products such as GoPro, Looxcie, and MeCam along with ultra-high bandwidth Internet 
access to create millions of around-the-clock multimedia streams starring absolutely every-
one you know. For a fee, you can have writers supply you with dialogue while actors will fill 
in your voice to create the ultimate Shakespeare metaphor come to life: all the world really 
will be a stage.

Instead of news desks, anchors, and reporters, there will just be alerts sent out  automatically 
by event-recognition algorithms embedded in the firmware of personal cams. They will 
recruit all nearby cameras into a newsworthy event cluster, or NEC. The combined streams 
from the cams with the best viewpoints will be labeled as a live news event and available 
with stream priority from the provider. Premium service subscribers will have voiceovers 
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of commentators taking a marginally educated guess at what’s 
going on, very similar to today’s “talking head” model only not so 
well-dressed.

The stars of this mediaverse will be those people who manage to 
be near the most interesting occurrences. Naturally, a thriving 
“underground” business of causing news events will spring up, so 
that news personalities can maintain their fame without all that 
tedious roaming to and fro, looking for notoriety-inducing hap-
penstance. The likelihood of witnessing everything from thrill-
ing bank robberies to tragic aircraft accidents can be artificially 
boosted by these professional probability manipulators—for the 
right price.

With individual television stations obsolete and replaced by on-
demand media clumps, product-hawking will be forced to evolve 
as well. People will be paid to carry around everything from soda 
cans to auto parts in the hope that someone’s stream will pick 
them up and the omnipresent optical marketing monitor algo-
rithms will recognize and plug same with a plethora of canned 
ads. With the average personal cam spitting out ten megapix-
els at 40 FPS, discerning one’s product from the background 
noise of other people’s inferior merchandise will not be all that 
difficult.

Because your wearable cam will be capable of monitoring vari-
ous physiological parameters—ostensibly for your health’s sake 
but really in order to gauge your response to various commercial 
ploys—any positive reaction to a product or event will cause an 
influx of ads for things judged by often puzzling equivalence 
formulae to be similar in some way. Think a dog you saw pooping 
on the curb was cute? Prepare to be bombarded for a full fort-
night by vaguely canine and/or poop-related product and service 
advertisements. Carelessly employ a search engine to look up 
the best brand of adult diaper for an aged relative? Many hours of 
bodily fluid-absorbent entertainment will now be yours to enjoy 
in virtual 3D and ultrasurround-sound, with no means of escape 
sans an unthinkable disconnection from the grid.

While we’re on the topic of disconnection, it won’t be long before 
being unplugged from the grid not only is inadvisable from a 
mental health perspective, it will not even be possible without 
surgery. A routine implantation when an infant is about six 
months old will tie them into the worldwide grid, although a 
compatible interface will be necessary to do any computing. 
This will encourage toddlers to learn their alphabets (or at least 
the more popular letters and numbers) and, more importantly, 
emoticons as early as possible so that they can begin texting. 
Eventually I predict these Internet access modules will be 
absorbed into the body and tacked on to our DNA, creating the 
prospect of future pre-natal communications, where Twitter 
accounts are created automatically as soon as the child reaches a 
certain level of development. 

@TheNeatestFetus: OMG I thnk im bein born!!!

@Embryoglio: hw du u no?

@TheNeatestFetus: gettin squeezed out 1 end brb

@Embryoglio: u still ther?

@TheNeatestFetus: b**** slappd me! #BreathingRox

@ Embryoglio: playa

It just keeps getting sillier from there, I’m afraid.

To bring this oblique essay back around to UNIX, let me just 
reassure my readers that every device I’ve prophesied here is 
running some stripped-down version of an embedded Linux ker-
nel that I’ve just now decided to call Nanix (you know, because 
it’s so small and everything). 

What role will the by-now ubiquitous cloud play in all this? 
Every role imaginable. It won’t be a cloud any longer, but rather 
an all-encompassing noxious ground fog that instead of creeping 
in on little cat feet will stomp around on enormous T-Rex talons. 
There will be nothing subtle or elegant about it. Data security, 
I must add—albeit reluctantly—will be a quaint concept of the 
past, like chivalry, coupon books, and pundits with something 
germane to say.
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The Saddest Moment
J A M E S  M I C K E N S

Whenever I go to a conference and I discover that there will be a 
 presentation about Byzantine fault tolerance, I always feel an 
immediate, unshakable sense of sadness, kind of like when you 

realize that bad things can happen to good people, or that Keanu Reeves 
will almost certainly make more money than you over arbitrary time scales. 
Watching a presentation on Byzantine fault tolerance is similar to watch-
ing a foreign film from a depressing nation that used to be controlled by the 
 Soviets—the only difference is that computers and networks are constantly 
failing instead of young Kapruskin being unable to reunite with the girl he 
fell in love with while he was working in a coal mine beneath an orphanage 
that was atop a prison that was inside the abstract concept of World War II. 
“How can you make a reliable computer service?” the presenter will ask in an 
innocent voice before continuing, “It may be difficult if you can’t trust any-
thing and the entire concept of happiness is a lie designed by unseen over-
lords of endless deceptive power.” The presenter never explicitly says that 
last part, but everybody understands what’s happening. Making distributed 
systems reliable is inherently impossible; we cling to Byzantine fault toler-
ance like Charlton Heston clings to his guns, hoping that a series of complex 
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Figure 1: Typical Figure 2 from Byzantine fault paper: Our network protocol

Reprinted from ;login: logout, May 2013
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software protocols will somehow protect us from the 
oncoming storm of furious apes who have somehow 
learned how to wear pants and maliciously tamper 
with our network packets.

Every paper on Byzantine fault tolerance contains a diagram 
that looks like Figure 1. The caption will say something like 
“Figure 2: Our network protocol.” The caption should really 
say, “One day, a computer wanted to issue a command to an 
online service. This simple dream resulted in the generation of 
16 gajillion messages. An attacker may try to interfere with the 
reception of 1/f of these messages. Luckily, 1/f is much less than 
a gajillion for any reasonable value of f. Thus, at least 15 gajil-
lion messages will survive the attacker’s interference. These 
messages will do things that only Cthulu understands; we are at 
peace with his dreadful mysteries, and we hope that you feel the 
same way. Note that, with careful optimization, only 14 gajil-
lion messages are necessary. This is still too many messages; 
however, if the system sends fewer than 14 gajillion messages, it 
will be vulnerable to accusations that it only handles reasonable 
failure cases, and not the demented ones that previous research-
ers spitefully introduced in earlier papers in a desperate attempt 
to distinguish themselves from even more prior (yet similarly 
demented) work. As always, we are nailed to a cross of our own 
construction.”

In a paper about Byzantine fault tolerance, the related work 
section will frequently say, “Compare the protocol diagram of 
our system to that of the best prior work. Our protocol is clearly 
better.” The paper will present two graphs that look like Figure 
2. Trying to determine which one of these hateful diagrams is 
better is like gazing at two unfathomable seaweed bundles that 
washed up on the beach and trying to determine which one is 
marginally less alienating. Listen, regardless of which Byzantine 

fault tolerance protocol you pick, Twitter will still have fewer 
than two nines of availability. As it turns out, Ted the Poorly 
Paid Datacenter Operator will not send 15 cryptographically 
signed messages before he accidentally spills coffee on the air 
conditioning unit and then overwrites your tape backups with 
bootleg recordings of Nickelback. Ted will just do these things 
and then go home, because that’s what Ted does. His extensive 
home collection of “Thundercats” cartoons will not watch itself. 
Ted is needed, and Ted will heed the call of duty.

Every paper on Byzantine fault tolerance introduces a new 
kind of data consistency. This new type of consistency will 
have an ostensibly straightforward yet practically inscrutable 
name like “leap year triple-writer dirty-mirror asynchronous 
semi- consistency.” In Section 3.2 (“An Intuitive Overview”), 
the authors will provide some plainspoken, spiritually appeal-
ing arguments about why their system prevents triple-con-
flicted write hazards in the presence of malicious servers and 
unexpected outbreaks of the bubonic plague. “Intuitively, a 
 malicious server cannot lie to a client because each message is 
an encrypted, nested, signed, mutually-attested log entry with 
pointers to other encrypted and nested (but not signed) log 
entries.” 

Interestingly, these kinds of intuitive arguments are not intui-
tive. A successful intuitive explanation must invoke experiences 
that I have in real life. I have never had a real-life experience 
that resembled a Byzantine fault tolerant protocol. For example, 
suppose that I am at work, and I want to go to lunch with some of 
my co-workers. Here is what that experience would look like if it 
resembled a Byzantine fault tolerant protocol:

JAMES: I announce my desire to go to lunch.

BRYAN: I verify that I heard that you want to go to lunch.

Figure 2: Our new protocol is clearly better.
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The Saddest Moment

RICH: I also verify that I heard that you want to go to lunch.

CHRIS: YOU DO NOT WANT TO GO TO LUNCH.

JAMES: OH NO. LET ME TELL YOU AGAIN THAT I WANT 
TO GO TO LUNCH.

CHRIS: YOU DO NOT WANT TO GO TO LUNCH.

BRYAN: CHRIS IS FAULTY.

CHRIS: CHRIS IS NOT FAULTY.

RICH: I VERIFY THAT BRYAN SAYS THAT CHRIS IS 
FAULTY.

BRYAN: I VERIFY MY VERIFICATION OF MY CLAIM THAT 
RICH CLAIMS THAT I KNOW CHRIS.

JAMES: I AM SO HUNGRY.

CHRIS: YOU ARE NOT HUNGRY.

RICH: I DECLARE CHRIS TO BE FAULTY.

CHRIS: I DECLARE RICH TO BE FAULTY.

JAMES: I DECLARE JAMES TO BE SLIPPING INTO A 
 DIABETIC COMA.

RICH: I have already left for the cafeteria.

In conclusion, I think that humanity should stop publishing 
papers about Byzantine fault tolerance. I do not blame my fellow 
researchers for trying to publish in this area, in the same limited 
sense that I do not blame crackheads for wanting to acquire and 
then consume cocaine. The desire to make systems more reliable 
is a powerful one; unfortunately, this addiction, if left unchecked, 
will inescapably lead to madness and/or tech reports that con-
tain 167 pages of diagrams and proofs. Even if we break the will 
of the machines with formalism and cryptography, we will never 
be able to put Ted inside of an encrypted, nested log, and while 
the datacenter burns and we frantically call Ted’s pager, we will 
realize that Ted has already left for the cafeteria.
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R for Everyone
Jared Lander
Pearson Education, 2014. 354 pages
ISBN 978-0-321-88803-7
R for Everyone is an introduction to using R that does not assume 
that you know, or want to know, a lot about programming, and 
concentrates on covering the range of common uses of R, from 
simple calculations to high-end statistics and data analysis.

In three straightforward lines of R, you can load 200,000 lines 
of data, calculate the minimum, maximum, mean, median, 
standard deviation, and quartiles for every numeric field and the 
most popular values with counts for the strings, and then graph 
them all in pairs to see how they correlate. Then you can spend 
30 minutes trying to remember the arcane syntax to do the next 
thing you want to do, which will be easy as pie once you figure 
out where all the parts go. As a result, using R when manipulat-
ing numbers will not only simplify your life, it will also give you a 
reputation as an intellectual badass.

Of course, to get there, a guide will help. Many guides, however, 
are written by people who want to teach you statistics or a 
particular programming style, or who seem to find R intuitive, 
which is lucky for them but does not help the rest of us. The good 
and bad news is that R for Everyone does not want to teach you 
statistics. This is good news because it frees the book up to teach 
you R, and there are plenty of other places to learn statistics. It 
is bad news if you are going to feel sad when it casually mentions 
how to get R to produce a Poisson distribution, and you have no 
idea what that is. You shouldn’t feel sad. Just move on, and it will 
be there when you need it.

Because I am more of a programmer than a statistician, I can’t 
vouch for whether R for Everyone is actually sufficient for non-
programmers. It is plausible that it would give a statistician 
enough programming background to cope, although I certainly 
wouldn’t recommend it as a programming introduction for any-
one who didn’t find the prospect of easy ways to regress to the 
mean enticing. It is certainly gentler as a programming introduc-
tion than other R books with that aim.

It is also unusually comprehensible for an R book. I would rec-
ommend it as a first R book. You still also probably want a copy 
of O’Reilly’s R Cookbook; the two books are mostly complemen-
tary, although their graphics recommendations are moderately 
incompatible. R for Everyone is more up-to-date, and the more 
traditional format is easier to learn from, while the R Cookbook 
is more aimed at specific problems, which makes it easier to skip 
through in panic looking for that missing clue.

My one complaint about R for Everyone is that some of the early 
chapters are insufficiently edited. There’s some odd word usage 
and at least one example that is puzzlingly wrong (fortunately, 
it’s the example of doing assignment right to left instead of left 
to right, which you should pretend not to know about anyway. 
Nobody does that; it’s just confusing).

Threat Modeling: Designing for Security
Adam Shostack
John Wiley and Sons, 2014. 532 pages 
ISBN 978-1-118-82269-2
This is a great book for learning to think about security in a devel-
opment environment, as well as for learning to do threat model-
ing itself. It’s a practical book, written from the point of view of 
an experienced practitioner, and it presents multiple approaches. 
(If you believe there is exactly one right way to do things, you 
will be annoyed. In my experience, however, people who believe 
in exactly one right way are people who enjoy righteous indigna-
tion, so perhaps you should read it anyway.) Also, it’s written in a 
gently humorous style that makes it pleasant to read.

The basic problem with writing a book on threat modeling is that 
you have two choices. You can talk about threats, but not what 
you might want to do with them, which is kind of like writing 
an entire cookbook without ingredients lists—you get lots of 
techniques, sure, but you have no idea how to actually make any-
thing. On the other hand, you can talk about threats and what to 
do about them, which leaves you trying to cover all of computer 
security in one book and still discuss threat modeling some-
where. Shostack goes for the latter approach, which is probably 
the better option, but it does make for a large and thinly spread 
book. And, because the focus is threat modeling, some great 
advice is buried in obscure corners.

I’d recommend this book to people new to the practice of secu-
rity, or new to threat modeling, or unsatisfied with their current 
threat modeling practice, including people who are in other posi-
tions but are not being well served by their security people.

There are, of course, some points I disagree with or feel con-
flicted about. I agree that “Think like an attacker” in practice 
leads people down very bad roads, because they think like an 
attacker who also is a highly competent engineer who under-
stands the product internals, rather than like any real attacker 
ever. On the other hand, there’s an important kernel of truth 
there that needs to get through to otherwise intelligent program-
mers who say things like, “Oh, we don’t call that interface any 
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more, so it doesn’t matter.” (What matters is not what the soft-
ware does when you operate it as designed, but what is possible 
for it to do.)

Data Protection for Photographers
Patrick H. Corrigan
Rocky Nook, 2014. 359 pages
ISBN 978-1-937538-22-4
If you are not a photographer you may be wondering why pho-
tographers would need to think specially about data protection. 
If you are a digital photographer, you’re used to watching your 
disks fill and wondering how you’re going to keep your pictures 
safe when most people’s backup solutions are sized for a hun-
dredth the amount of data you normally think about. You spend 
a lot of time realizing that data storage intended for homes is not 
going to meet the needs of your particular home. In fact, even 
small business systems may not suffice.

This is not a problem if your first love is system administration 
and photography is just your day job, but for the rest of us, it is 
at best annoying and at worst incomprehensible. This book will 
fix the incomprehensible part, explaining enough about disk and 
backup systems to allow photographers to make good decisions. 
Sadly, there’s still no easy answer. You will have to choose for 
yourself which annoying tradeoffs to make, but at least you will 
make them knowingly. 

I would have liked more emphasis on testing restores, and some 
coverage of travel options. However, this is the book you need 
if your data at home is outstripping the bounds of your current 
backup solution in either size or importance.
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FAST ’14: 12th USENIX Conference on File 
and Storage Technologies
February 17–20, 2014 , San Jose, CA

Opening Remarks
Summarized by Rik Farrow

Bianca Schroeder (University of Toronto) opened this year’s 
USENIX Conference on File and Storage Technologies  
(FAST ’14) by telling us that we represented a record number  
of attendees for FAST. Additionally, 133 papers were submit-
ted, with 24 accepted. That’s also near the record number of 
submissions, 137, which was set in 2012. The acceptance rate 
was 18%, with 12 academic, three industry, and nine collabora-
tions in the author lists. The 28 PC members together completed 
500 reviews, and most visited Toronto in December for the PC 
 meeting.

Eno Thereska (Microsoft Research), the conference co-chair, 
then announced that “Log-Structured Memory for DRAM-Based 
Storage,” by Stephen M. Rumble, Ankita Kejriwal, and John 
Ousterhout (Stanford University) had won the Best Paper award, 
and that Jiri Schindler (Simplivity) and Erez Zadok (Stony Brook 
University) would be the co-chairs of FAST ’15.

Big Memory
Summarized by Michelle Mazurek (mmazurek@cmu.edu)

Log-Structured Memory for DRAM-Based Storage
Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout, Stanford 
University
Awarded Best Paper!

The primary author, Stephen Rumble, was not available, so 
John Ousterhout presented the paper, which argued that DRAM 
storage systems should be log-structured, as in their previous 
work on RAMCloud. When building a log-structured DRAM 
system, an important question is how memory is allocated. 
Because DRAM is (relatively) expensive, high memory uti-
lization is an important goal. Traditional operating-system 
allocators are non-copying; data cannot be moved after it is 
allocated. This results in high fragmentation and, therefore, 
low utilization. Instead, the authors consider a model based on 
garbage  collection, which can consolidate memory and improve 

 utilization. Existing garbage collectors, however, are expensive 
and scale poorly. They wait until a lot of free space is available 
(to amortize cleaning costs), which can require up to 5x over-
utilization of memory. When the garbage collector does run, 
it can consume up to three seconds, which is slower than just 
resetting the system and rebuilding the RAM store from the 
backup log on disk.

The authors develop a new cleaning approach that avoids these 
problems. Because pointers in a file system are well-controlled, 
centrally stored, and have no circularities, it is possible to 
clean and copy incrementally (which would not work for a more 
general-purpose garbage-collection system). In the authors’ 
approach, the cleaner continuously finds and cleans some seg-
ments with significant free space, reducing cleaning cost and 
improving utilization. Further, the authors distinguish between 
the main log, kept in expensive DRAM with high bandwidth 
(targeted at 90% utilization), and the backup log, stored on disk 
where capacity is cheap but bandwidth is lower (targeted at 
50% utilization). They use a two-level approach in which one 
cleaner (“compaction”) incrementally cleans one segment at a 
time in memory, while a second one (“combined cleaning”) less 
frequently cleans across segments in both memory and disk. 
Both cleaners run in parallel to normal operations, with limited 
synchronization points to avoid interference with new writes. 
The authors’ evaluation demonstrates that their new approach 
can achieve 80–90% utilization with performance degradation 
of only 15–20% and negligible latency overhead. 

Bill Bolosky (Microsoft Research) asked how single segments 
cleaned via compaction can be reused before combined cleaning 
has occurred. Ousterhout explained that compaction creates 
“seglets” that can be combined into new fixed-sized chunks and 
allocated. A second attendee asked when cleaning occurs. Oust-
erhout replied that waiting as long as possible allows more space 
to be reclaimed at each cleaning to better amortize costs.

Strata: High-Performance Scalable Storage on Virtualized 
Non-Volatile Memory
Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim 
Deegan, Daniel Stodden, Geoffrey Lefebvre, Daniel Ferstay, and Andrew 
Warfield, Coho Data

Brendan Cully discussed the authors’ work developing an 
enterprise storage system that can take full advantage of fast 
non-volatile memory while supporting existing storage array 
customers who want to maintain legacy protocols (in this case, 
NFSv3). A key constraint is that, because flash gets consistently 
cheaper, enterprise customers want to wait until the last pos-
sible moment to purchase more of it, requiring the ability to add 
flash dynamically. The authors’ solution has three key pieces. 

In this issue:
59  FAST ’14: 12th USENIX Conference on File  

and Storage Technologies 
  Summarized by Matias Bjørlin, Jeremy C. W. Chan, Yue Cheng, Qian 

Ding, Qianzhou Du, Rik Farrow, Xing Lin, Sonam Mandal, Michelle 
Mazurek, Dutch Meyer, Tiratat Patana-anake, Kai Ren, and Kuei Sun 

76  Linux FAST Summit ’14 
  Summarized by Rik Farrow
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◆◆ Device virtualization: clients receive a virtual object name 
for addressing while, underneath, an rsync interface manages 
replication. 

◆◆ Data path abstractions: for load balancing and replication, 
keep object descriptions in a shared database that governs 
paths and allows additional capacity and rebalancing, even 
when objects are in use.

◆◆ Protocol virtualization targeting NFSv3: the authors use 
a software-defined switch to control connections between 
clients and servers. Packets are dispatched based on their 
contents, allowing rebalancing without changes to the client. 
All nodes have the same IP and MAC address, so they appear 
to the client to be one node. 

To evaluate the system, the authors set up a test lab that can 
scale from 2 to 24 nodes (the capacity of the switch) and rebal-
ance dynamically. As nodes are added, momentary drops in 
IOPS are observed because nodes must both serve clients and 
support rebalancing operations. Overall, however, performance 
increases, but not linearly; the deviation from linear comes 
because, as more nodes are added, the probability of nodes doing 
remote I/O on behalf of clients (slower than local I/O) increases. 
This effect can be mitigated by controlling how clients and 
objects are assigned to promote locality; with this approach, the 
scaling is much closer to linear. CPU usage for this system is 
very high, so introduction of 10-core machines improves IOPS 
significantly.

An attendee asked whether requests can always be mapped to a 
node that holds an object, avoiding remote I/O. Cully responded 
that clients can’t be moved on a per-request basis, and they will 
ask for objects that may live on different nodes. Niraj Tolia of 
Maginatics asked how the system deals with multiple writers. 
Cully responded that currently only one client can open the file 
for writing at a time, which prevents write conflicts but requires 
consecutive writers to wait; multiple readers are allowed.

Evaluating Phase Change Memory for Enterprise Storage 
Systems: A Study of Caching and Tiering Approaches
Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu, IBM 
Almaden Research Center

Hyojun Kim presented a measurement study of a prototype SSD 
with 45 nm 1 GB phase-change memory. PCM melts and cools 
material to store bits: amorphous = reset, crystalline = set. Writ-
ing set bits takes longer. Write latency is typically reported at 
150 ns, which is more than 1000x faster than flash and only 3x 
slower than DRAM, but which does not count 50 ns of additional 
circuit time. Write throughput is limited (4 bits per pulse) by the 
chip’s power budget for heating the material. Kim directly com-
pared PCM with flash, normalized for throughput, using Red 
Hat, a workload generator, and a statistics collector. They found 
that for read latency, PCM is 16x faster on average and also has 
much faster maximums. For write latency, however, PCM is 3.4x 
slower on average, with a maximum latency of 378 ms compared 
to 17.2 ms for flash. 

The second half of the talk described how simulation was applied 
to assess how and whether PCM is useful for enterprise storage 
systems. First, the authors simulated a multi-tiered system that 
writes hot data to flash or PCM and cold data to a cheap hard 
drive, incorporating the following relative price assumptions: 
PCM = 24, flash = 6, disk = 1 per unit of storage. They evaluated a 
variety of system combinations using x% PCM, y% flash, and z% 
disk, based on a one-week trace from a retail store in June 2012, 
and measured the resulting performance in IOPS/unit cost. 
Using an ideal static placement based on knowing the workload 
traces a priori, the optimal combination was 30% PCM, 67% 
flash, and 3% disk. With reactive data movement based on I/O 
traffic (a more realistic option), the ideal combination was 22% 
PCM, 78% flash. A second simulation used flash or PCM as 
application-server-side, write-through, and LRU caching, using 
a 24-hour trace from customer production systems (manufac-
turing, media, and medical companies). The results measured 
average read latency. To include cost in this simulation, different 
combinations of flash and PCM with the same IOPS/cost were 
simulated. For manufacturing, the best results at three cost 
points were 64 GB of flash alone, 128 GB of flash alone, and 32 
GB PCM + 128 GB flash. In summary, PCM has promise for stor-
age when used correctly, but it’s important to choose accurate 
real-world performance numbers.

One attendee asked whether the measurements had considered 
endurance (e.g., flash wearout) concerns as well as IOPS. Kim 
agreed that it’s an important consideration but not one that was 
measured in this work. Someone from UCSD asked whether 
write performance for PCM is unfairly disadvantaged unless 
capacity-per-physical-size issues are also considered. Kim 
agreed that this could be an important and difficult tradeoff. A 
third attendee asked about including DRAM write buffers in 
PCM, as is done with flash. Kim agreed that the distinction is an 
important one and can be considered unfair to PCM, but that the 
current work attempted to measure what is currently available 
with PCM—write buffers may be available in the future. A final 
attendee asked for clarification about the IOPS/unit cost metric; 
Kim explained that it’s a normalized relative metric alternative 
to capturing cost explicitly in dollars.

Flash and SSDs
Summarized by Jeremy C. W. Chan (cwchan@cse.cuhk.edu.hk)

Wear Unleveling: Improving NAND Flash Lifetime by 
Balancing Page Endurance
Xavier Jimenez, David Novo, and Paolo Ienne, Ecole Polytechnique Fédérale 
de Lausanne (EPFL)

Xavier Jimenez presented a technique to extend the lifetime of 
NAND flash. The idea is based on the observation that inside a 
block of a NAND flash, some pages wear out faster than others. 
As a result, the endurance of a block is determined by the weak-
est page.

To improve the lifetime, Xavier and his team introduced a fourth 
page state, “relieved,” to indicate pages not to be programmed 
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during a Program/Erase (P/E) cycle. By measuring the bit error 
rate (BER), they showed that relieved pages possess higher 
endurance than unrelieved ones. Xavier continued about how 
relief can be performed in the case of a multi-level cell (MLC). 
In MLC, each one of the two bits is mapped to a different page, 
forming an LSB and MSB page pair. A full relief means both 
pages are skipped in a P/E cycle, while a half relief means only 
the MSB is relieved. Although a half relief produces higher rela-
tive wear, it is more effective in terms of written bits per cycle.

Xavier then described two strategies on how to identify weak 
pages. The simple strategy is reactive, which starts relieving a 
page when the BER reaches a certain threshold. However, the 
reactive approach requires the FTL to read a whole block before 
erasing it, which adds an overhead to the erasing time. There-
fore, the authors further proposed the proactive strategy, which 
predicts the number of times weak pages should be relieved to 
match the weakest page’s extended endurance by first charac-
terizing the endurance of the LSB/MSB pages at every posi-
tion of the block. The proactive strategy is used together with 
adaptive planning, which predefines a number of lookup tables 
called plans. The plan provides the probability for each page to 
be relieved.

In the evaluation, Xavier and his team implemented the proac-
tive strategy on two previously proposed FTLs, ROSE and Com-
boFTL, and on two kinds of 30 nm class chips, C1 and C2. C1 is 
an ABL chip with less interference, whereas C2 is an interleaved 
chip, which is faster and more flexible. The evaluation on real-
world traces shows that the proactive strategy improves lifetime 
by 3–6% on C1 and 44–48% on C2. Only a small difference is 
observed in execution time because of the efficient half relief 
operation.

Alireza Haghdoost (University of Minnesota) asked whether 
Xavier’s approach is applicable to a block-level FTL. Xavier 
explained that block-level relieving is impractical and that the 
evaluation is entirely based on page-level mapping. Steve Swan-
son (UCSD) asked if page skipping would affect the performance 
of reading the neighboring pages. Xavier said the endurance 
of the neighboring pages will be decreased by at most 2%, and 
because they are the stronger pages, the impact is minimal on 
the block’s lifetime.

Lifetime Improvement of NAND Flash-Based Storage 
Systems Using Dynamic Program and Erase Scaling
Jaeyong Jeong and Sangwook Shane Hahn, Seoul National University; Sungjin 
Lee, MIT/CSAIL; Jihong Kim, Seoul National University

Jaeyong Jeong presented a system-level approach called 
dynamic program and erase scaling (DPES) to improve the 
lifetime of NAND flash-based storage systems. The approach 
exploits the fact that the erasure voltage and the erase time 
affect the endurance of NAND flash memory.

Jaeyong began the presentation with an analogy illustrated by 
interesting cartoons. In the analogy, NAND flash is a sheet of 

paper, the program action is writing on the paper with a pencil, 
and the erase action is using an eraser to clear out the word for 
the whole page. Finally, the flash translation layer (FTL) is a 
person called Flashman. With this analogy, Jaeyong explained 
why NAND endurance had decreased by 35% during the past 
two years despite the 100% increase in capacity. He said that 
advanced semiconductor technology is just like a thinner piece 
of paper, which wears down more easily than a thick piece of 
paper after a certain number of erasure cycles. However, low 
erase voltage and long erase time are the two main keys to 
improving the endurance of NAND flash. 

The fundamental tradeoff between erase voltage and program 
time is that the lower the erase voltage, the longer the program 
time required. With this observation, Jaeyong and his team 
proposed the DPES approach, which dynamically changes the 
program and erase voltage/time to improve the NAND endur-
ance while minimizing negative impact on throughput.

They implemented their idea on an FTL and called it AutoFTL. 
It consists of a DPES manager, which selects the program time, 
erase speed, and erase voltage according to the utilization of 
an internal circular buffer. For instance, a fast write mode is 
selected to free up buffer space when its utilization is high. In 
the evaluation, Jaeyong and his team chose six volumes with dif-
ferent inter-arrival times from the MSR Cambridge traces. On 
average, AutoFTL achieves a 69% gain on the endurance of the 
NAND flash with only negligible impact (2.2%) on the overall 
write throughput.

Geoff Kuenning (Harvey Mudd College) asked why high voltage 
causes electrons to get trapped in the oxide layer. Jaeyong reem-
phasized that the depletion of the tunnel side has an exponential 
relationship to the erase voltage and time. Yitzhak Birk (Tech-
nion) said that the approach of programming in small steps 
works but may bring adverse effects to the neighboring cells. 
Peter Desnoyers (Northeastern University) asked how they man-
age to select the appropriate reading method according to the 
voltage level applied. Jaeyong replied that the lookup table would 
be able to track the voltage level. Peter followed up that a scan 
for pages is not possible because you cannot read a page before 
knowing the voltage level.

ReconFS: A Reconstructable File System on Flash Storage
Youyou Lu, Jiwu Shu, and Wei Wang, Tsinghua University

Youyou Lu began with the novelty of ReconFS in metadata 
management of hierarchical file systems. This work addresses 
a major challenge in namespace management of file systems on 
solid-state drives (SSDs), which are the scattered small updates 
and intensive writeback required to maintain a hierarchical 
namespace with consistency and persistence. These writes 
cause write amplification that seriously hurts the lifetime of 
SSDs. Based on the observation that modern SSDs have high 
read bandwidth and IOPS and that the page out-of-band (OOB) 
area provides some extra space for page management, Youyou 
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and his team built the ReconFS, which decouples maintenance 
of volatile and persistent directory trees to mitigate the overhead 
caused by scattered metadata writes. 

Youyou presented the core design of ReconFS on metadata man-
agement. In ReconFS, a volatile directory tree exists in memory, 
which provides hierarchical namespace access, and a persistent 
directory tree exists on disk, which allows reconstruction after 
system crashes. The four triggering conditions for namespace 
metadata writeback are: (1) cache eviction, (2) checkpoint, (3) 
consistency preservation, and (4) persistence maintenance. 
Although a simple home-location update is used for cache evic-
tion and checkpoint, ReconFS proposes an embedded inverted 
index for consistency preservation and metadata persistence 
logging for persistence maintenance. Inverted indexing in 
ReconFS is placed in the log record and the page OOB depending 
on the type of link. The key objective of inverted indexing is to 
make the data pages self-described. Meanwhile, ReconFS writes 
back changes to directory tree content to a log to allow recovery 
of a directory tree after system crashes. Together with unin-
dexed zone tracking, ReconFS is able to reconstruct the volatile 
directory tree in both normal and unexpected failures.

To evaluate the ReconFS prototype, Youyou and his team imple-
mented a prototype based on ext2 on Linux. Using filebench 
to simulate a metadata-intensive workload, they showed that 
ReconFS achieves nearly the best throughput among all evalu-
ated file systems. In particular, ReconFS improves performance 
by up to 46.3% in the varmail workload. Also, the embedded 
inverted index and metadata persistence logging enabled 
ReconFS to give a write reduction of 27.1% compared to ext2.

Questions were taken offline because of session time constraints.

Conference Luncheon and Awards
Summarized by Rik Farrow

During the conference luncheon, two awards were announced. 
The first was the FAST Test of Time award, for work that 
appeared at a FAST conference and continues to have a lasting 
impact. Nimrod Megiddo and Dharmendra S. Modha of IBM 
Almaden Research Center won this year’s award for “ARC: A 
Self-Tuning, Low Overhead Replacement Cache” (https://www 
.usenix.org/conference/fast-03/arc-self-tuning-low-overhead 
-replacement-cache). 

The IEEE Reynolds and Johnson award went to John Ouster-
hout and Mendel Rosenblum, both of Stanford University, for 
their paper “The Design and Implementation of a Log-Struc-
tured File System” (http://www.stanford.edu/~ouster/cgi-bin 
/papers/lfs.pdf). Rosenblum commented that he was Ouster-
hout’s student at UC Berkeley when the paper was written. Later, 
Rosenblum wound up working with Ousterhout at Stanford.

Personal and Mobile 
Summarized by Kuei Sun (kuei.sun@utoronto.ca)

Toward Strong, Usable Access Control for Shared 
Distributed Data  
Michelle L. Mazurek, Yuan Liang, William Melicher, Manya Sleeper, Lujo 
Bauer, Gregory R. Ganger, and Nitin Gupta, Carnegie Mellon University; 
Michael K. Reiter, University of North Carolina

Michelle Mazurek began her presentation by showing us recent 
events where improper access control led to mayhem and privacy 
invasions. The main issue is that access control is difficult, espe-
cially for non-expert users. In their previous work, the authors 
identified users’ need for flexible policy primitives, principled 
security, and semantic policies (e.g., tags). To this end, they 
based the design of their system on two important concepts: 
tags, which allow users to group contents, and logical proof, 
which allows for fine-grained control and flexible policy. For 
every content access, a series of challenges and proofs needs to 
be made before access is granted. On each device participating 
in the system, a reference monitor exists to protect the content 
that the device owns, a device agent that performs remote proofs 
for enabling content transfer across the network, as well as user 
agents that construct proofs on behalf of the users. Michelle 
walked us through an example of how Bob could remotely access 
a photo of Alice on a remote device in this system. Michelle then 
described the authors’ design of strong tags. Tags are first-class 
objects, such that access to them is independent of content 
access. To prevent forging, tags are cryptographically signed.

In their implementation, the authors mapped system calls to 
challenges. They cached recently granted permissions so that 
the same proof would not need to be made twice. In their evalu-
ation, they wrote detailed policies drawn from user studies 
using their policy languages, all of which could be encoded in 
their implementation and showed that their logic had sufficient 
expressiveness to meet user needs. They simulated access 
patterns because they do not have a user study based on the 
perspective of the user accessing content. They ran two sets 
of experimental setups on their prototype system: one with a 
default-share user and the other with a default-protect user. 
The main objective of the experiments was to measure latency 
for system calls and see whether they were low enough for 
interactive users. The results showed that with the exception of 
readdir(), system calls fell well below the 100 ms limit that they 
set. The authors also showed that access control only accounted 
for about 5% of the total overhead. Finally, it took approximately 
9 ms to show that no proof could be made (access denied!), 
although variance in this case can be quite high. 

Tiratat Patana-anake (University of Chicago) wanted clarifica-
tion on the tags. Michelle explained that you only need access to 
the tags required for access to the file. Someone from University 
of California, Santa Cruz, wanted to know which cryptographic 
algorithm was used, what its overhead was, and which dis-
tributed file system was used. Michelle said the proofer uses 
the crypto library from Java and that it doesn’t add too much 
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overhead. The distributed file system was homemade. Another 
person from UCSC asked whether the authors intended to 
replace POSIX permission standards, and the response was yes. 
He went on to ask whether they have reasonable defaults because 
most users are lazy. Michelle first explained that their user study 
indicates a broad disagreement among users on what they want 
from such a system. However, she agreed that users are gener-
ally lazy so more research into automated tagging and a better 
user interface would be helpful. Finally, someone asked about 
transitivity, where one person would take restricted content and 
give it to an unauthorized user. Michelle believed that there was 
no solution to the problem where the person to whom you grant 
access is not trustworthy. 

On the Energy Overhead of Mobile Storage Systems
Jing Li, University of California, San Diego; Anirudh Badam and Ranveer 
Chandra, Microsoft Research; Steven Swanson, University of California, San 
Diego; Bruce Worthington and Qi Zhang, Microsoft

Jing Li began the talk by arguing that in spite of the low energy 
overhead of storage devices, the overhead of the full storage 
stack on mobile devices is actually enormous. He presented the 
authors’ analysis of the energy consumption used by components 
of the storage stack on two mobile devices: an Android phone and 
a Windows tablet. After giving the details of the experimental 
setup, he showed the microbenchmark results, which revealed 
that the energy overhead of storage stack is 100 to 1000x higher 
than the energy consumed by the storage device alone. He then 
focused on the CPU’s busy time, which showed that 42.1% of the 
busy time is spent in encryption APIs while another 25.8% is 
spent in VM-related APIs. 

Li and his team first investigated the true cost of data encryp-
tion by comparing energy consumption between devices with 
and without encryption. Surprisingly, having encryption costs 
on average 2.5x more energy. Next, Li gave a short review of the 
benefits of isolation between applications and of using managed 
languages. He then showed the energy overhead for using man-
aged languages, which is anywhere between 12.6% and 102.1% 
(for Dalvik on Android!). Li ended his talk with some sugges-
tions. First, storage virtualization can be moved into the storage 
hardware. Second, some files, such as the OS library, do not need 
to be encrypted. Therefore, a partially encrypted file system 
would help reduce the energy overhead. Finally, hardware-based 
solutions (e.g., DVFS or ASIC) can be used to support encryption 
or hardware virtualization while keeping energy cost low. 

Yonge (University of California, Santa Cruz) asked how the 
energy impact of DRAM was measured. Li said that they ran the 
benchmark to collect the I/O trace. They then replayed the I/O 
trace to obtain the energy overhead of the storage stack. As such, 
the idle power was absent from the obtained results. 

ViewBox: Integrating Local File Systems with Cloud 
Storage Services
Yupu Zhang, University of Wisconsin–Madison; Chris Dragga, University of 
Wisconsin–Madison and NetApp; Andrea C. Arpaci-Dusseau, and Remzi H. 
Arpaci-Dusseau, University of Wisconsin–Madison

Yupu Zhang started by reminding us that cloud storage services 
are gaining popularity because of promising benefits such as 
reliability, automated synchronization, and ease of access. How-
ever, these systems can fail to keep data safe when local corrup-
tion or a crash arises, which causes bad data to be propagated to 
the cloud. Furthermore, because files are uploaded out of order, 
the cloud may sometimes have an inconsistent set of data. To 
provide a strong guarantee that the local file system’s state is 
equal to the cloud’s state, and that both states are correct, the 
authors developed ViewBox, which integrates the file system 
with the cloud storage service. ViewBox employs checksums 
to detect problems with local data, and utilizes cloud data to 
recover from local failures. ViewBox also keeps in-memory snap-
shots of valid file system state to ensure consistency between 
the local file system and the cloud.

Yupu presented the results of detailed experimentation, which 
revealed the shortcomings of the current setup. In their first 
experiment, the authors corrupted data beneath the file system 
to see whether it was propagated to the cloud. ZFS detected 
all corruptions because it performed data checksumming, but 
services running on top of ext4 propagated all corruptions to the 
cloud. In the second experiment, they emulated a crash during 
synchronization. Their results showed that without enabling 
data journaling on the local file system, the synchronization ser-
vices would behave mostly erratically. All three services that the 
authors tested violated causal ordering that is locally enforced 
by fsync(). 

Next, Yupu gave an overview of the architecture. They modified 
ext4 to add checksums. Upon detecting corrupt data, ext4-cksum 
can communicate with a user daemon named Cloud Helper 
via ioctl() to fetch correct data from the cloud. After a crash, 
the user is given the choice of either recovering inconsistent 
files individually or rolling back the entire file system to the 
last synchronized view. The View Manager, on the other hand, 
creates consistent file system views and uploads them to the 
cloud. To provide consistency efficiently, they implemented 
two features: cloud journaling and incremental snapshotting. 
The basic concept of cloud journaling is to treat the cloud as an 
ex ternal journal by synchronizing local changes to the cloud at 
file system epochs. View Manager would continuously upload 
the last file system snapshot in memory to the cloud. Upon fail-
ure, it would roll the file system back to the latest synchronized 
view. Incremental snapshotting allows for efficient freezing 
of the current view by logging namespace and data changes in 
memory. When the file system reaches the next epoch, it will 
update the previous frozen view without having to interrupt the 
next active view. 
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In their evaluation, the authors showed that ViewBox could cor-
rectly handle all the types of error mentioned earlier. ViewBox 
has a runtime overhead of less than 5% and a memory overhead 
of less than 20 MB, whereas the workload contains more than 1 
GB of data. 

Someone asked how much they roll back after detecting corrup-
tion. Yupu responded that if you care about the whole file system, 
ideally, you roll back the whole file system, but generally you just 
roll back individual files. The same person asked what happens 
if an application is operating on a local copy that gets rolled back. 
Yupu said that the application would have to be aware of the 
rollback. Mark Lillibridge (HP) suggested that a correctly writ-
ten application should make a copy, change that copy, and then 
rename the copy to avoid problems like this. Yupu agreed.

RAID and Erasure Codes
Summarized by Yue Cheng (yuec@vt.edu)

CRAID: Online RAID Upgrades Using Dynamic Hot Data 
Reorganization 
Alberto Miranda, Barcelona Supercomputing Center (BSC-CNS); Toni Cortes, 
Barcelona Supercomputing Center (BSC-CNS) and Technical University of 
Catalonia (UPC)

Alberto Miranda presented an economical yet effective approach 
for performing RAID upgrading. The authors’ work is moti-
vated by the fact that storage rebalancing caused by degraded 
uniformity is way too expensive. Miranda proposed CRAID, a 
data distribution strategy that redistributes only hot data when 
performing RAID upgrading by using a dedicated small partition 
in each device as a persistent disk-based cache. 

Taking advantage of the I/O access pattern monitoring that is 
used to keep track of data access statistics, an I/O redirector can 
strategically redistribute/rebalance only frequently used data to 
the appropriate partitions. The realtime monitoring provided by 
CRAID guarantees that a newly added disk will be used as long 
as it is added. Statistics of data access patterns are also used to 
effectively reduce the cost of data migration. The minor disad-
vantage of this mechanism is that the invalidation on the cache 
partition results in the loss of all the previous computation. 
Trace-based simulations conducted on their prototype showed 
that CRAID could achieve competitive performance with only 
1.28% of all available storage capacity, compared to two alterna-
tive approaches. 

Someone asked Alberto to comment on one of the workload char-
acteristics that can impact the rebalancing algorithm. Miranda 
said that the available traces they could find were limited.

STAIR Codes: A General Family of Erasure Codes for 
Tolerating Device and Sector Failures in Practical Storage 
Systems 
Mingqiang Li and Patrick P. C. Lee, The Chinese University of Hong Kong

Patrick Lee presented STAIR codes, a set of novel erasure 
codes that can efficiently tolerate failures in both device and 
sector levels. What motivates STAIR is that traditional RAID 

and  erasure codes use multiple parity disks/parity sectors (the 
cost of which is prohibitive) to provide either device-level or 
sector-level tolerance. They proposed a general (without any 
restriction) and space-efficient family of erasure codes that can 
tolerate simultaneous device and sector failures.

The key idea of STAIR codes is to base protection against sec-
tor failure on a pattern of how sector failures occur, instead 
of setting a limit on tolerable sector failures. The actual code 
structure builds based on two encoding phases, each of which 
builds on any MDS code that works as long as the parameters 
support the code. The interesting part of their approach is the 
upstairs and downstairs encoding that can reuse computed par-
ity results, thus providing space efficiency and complementary 
performance advantages. Evaluation results showed that STAIR 
codes improve encoding by up to 100% while achieving storage 
space efficiency. Their open-sourced coding library can be found 
at: http://ansrlab.cse.cuhk.edu.hk/software/stair.

Someone asked whether the authors managed to measure the 
overhead (reading the full stripe) of some special (extra) sectors’ 
encoding every time they had to be recreated in a RAID device. 
Patrick said their solution needed to read the full stripe from the 
RAID so as to perform the upstairs and downstairs encoding. 
Umesh Maheshwari (Nimble Storage) asked whether the sce-
nario where errors come in a burst was an assumption or a case 
that STAIR took care of; his concern was that in SSD the errors 
might end up in a random distribution. Patrick said the error 
burst case was an issue they were trying to address.

Parity Logging with Reserved Space: Towards Efficient 
Updates and Recovery in Erasure-Coded Clustered 
Storage 
Jeremy C. W. Chan, Qian Ding, Patrick P. C. Lee, and Helen H. W. Chan, The 
Chinese University of Hong Kong

Patrick Lee also presented CodFS, an erasure-coded clustered 
storage system prototype that can achieve both high update and 
recovery performance. To reduce storage costs and footprint, 
enterprise-scale storage clusters now use erasure-coded storage 
rather than replication mechanisms that incur huge overheads. 
However, the issues faced by erasure coded storage systems are 
that updates are too costly and recovery is expensive as well. To 
deal with this, Patrick and his students propose a parity-logging 
scheme with reserved space that adopts a hybrid in-place and 
log-based update mechanism with adaptive space readjustment.

They studied two real-world storage traces and, based on the 
observed update characteristics, propose a novel delta-based 
parity logging with reserved space (PLR) mechanism that 
reduces disk seeks by keeping each parity chunk and its par-
ity delta next to each other with additional space, the capacity 
of which can be dynamically adjusted. The challenges lie in 
how much reserved space is most economical and the timing of 
reclaiming unused reserved space.



www.usenix.org  JUNE 2014  VOL.  39,  NO.  3 65

REPORTS

In-place updates are basically overwriting existing data and 
parity chunks while log-based updates are appending changes 
by converting random writes to sequential writes. Their hybrid 
approach smartly maintains the advantages of the above two 
update schemes while mitigating the problems that might occur. 

Konstantin Shvachko (WANdisco) asked how restrictions on 
I/O patterns (i.e., cluster storage systems that only support 
sequential reads/writes) affect the performance of workloads. 
Patrick said performance purely depends on workload types, 
and their work looked in particular at server workload that they 
attempted to port into cluster storage systems. Brent Welch 
(Google) mentioned two observations: (1) real-world workloads 
might consist of lots of big writes due to the fact that there are 
many big files distributed in storage; (2) an Object Storage 
Device layer is unaware of data types and is decoupled from the 
lower layer file system. Patrick agreed with these observations 
and said (1) people can choose a different coding scheme based 
on the segments, and (2) the decoupling problem remains an 
issue left to be explored in future work.

Poster Session I
Summarized by Sonam Mandal (somandal@cs.stonybrook.edu)

In-Stream Big Data Processing Platform for Enterprise 
Storage Management
Yang Song, Ramani R. Routray, and Sandeep Gopisetty, IBM Research

This poster presents an approach for in-stream processing of 
Big Data, which is becoming increasingly important because of 
the information explosion and subsequent escalating demand 
for storage capacity. The authors use Cassandra as their stor-
age, Hadoop/HDFS for computation, RHadoop as the Machine 
Learning algorithm, and IBM InfoSphere Streams for their use 
case example. They implemented many ensemble algorithms like 
Weighted Linear Regression with LASSO, Weighted General-
ized Linear Regression (Poisson), Support Vector Regression, 
Neural Networks, and Random Forest. They use their tech-
nique to identify outliers in 2.2 million backup jobs each day for 
jobs having 20+ metrics. They try to identify anomalies using 
the Contextual Local Outlier Factor algorithm before storing 
on HDFS/Cassandra. To do so, they leverage backup-specific 
domain knowledge and have shown the results of their outlier 
detection experiment in the poster.

Page Replacement Algorithm with Lazy Migration for 
Hybrid PCM and DRAM Memory Architecture
Minho Lee, Dong Hyun Kang, Junghoon Kim, and Young Ik Eom, 
Sungkyunkwan University

The authors came up with a page replacement algorithm to 
benefit hybrid memory systems using PCM by reducing the 
number of write operations to them. PCM is non-volatile and 
has in-place update and byte-addressable memory with low 
read latency. PCM suffers from a low endurance problem, where 
only a million writes are possible before it wears out, and the 
write latency of PCM is much slower than its read latency. PCM 
reduces the overhead of migration by using lazy migration.

When a page fault occurs, it is always allocated in DRAM 
regardless of whether it was a read or write operation; and, when 
the DRAM fills up, pages in the DRAM are migrated to the 
PCM. When a write operation occurs on a page in the PCM, it 
attempts to migrate this page to DRAM. If there is no free space 
in the PCM, a page is evicted according to rules from the CLOCK 
algorithm.

The authors’ results show that they obtained a high hit ratio 
regardless of PCM size in hybrid memory architectures. They 
reduced the number of PCM writes by up to 75% compared to 
state of the art algorithms and by 40% compared to the CLOCK 
algorithm.

On the Fly Automated Storage Tiering
Satoshi Iwata, Kazuichi Oe, Takeo Honda, and Motoyuki Kawaba, Fujitsu 
Laboratories

The authors present issues with existing storage-tiering 
techniques and propose their own technique to overcome the 
shortcomings of existing approaches. Storage tiering combines 
fast SSDs with slow HDDs such that hot data is kept on SSDs and 
cold data is stored on HDDs. Less frequently accessed data in 
SSDs is swapped out at predefined intervals to follow changes in 
workloads. Existing methods have difficulty following workload 
changes quickly as the migration interval cannot be reduced too 
far. Shorter intervals lead to lower I/O performance due to more 
disk bandwidth consumed by migration.

The authors propose an on-the-fly agreed service time (AST) 
to follow any workload changes within minutes, instead of 
the granularity of hours or a day with previous methods. Less 
frequently accessed data is filtered out from migration candi-
dates, thus decreasing bandwidth consumption, even though it 
results in unoccupied SSD storage space. They use a two-stage 
migration-filter approach. The first stage filters out hotter but 
not very hot segments by checking access concentrations. The 
second filters out segments for which the hot duration is not long 
enough.

When 60% of the total I/O is sent to fewer than 20 segments 
(approximately 10% of data size), then these segments are 
marked as candidates. When a segment has been marked as a 
candidate three times in a row, it is migrated to the SSD. The 
authors’ evaluation results back their claims and show that 
workload changes can be followed in a matter of minutes using 
their approach.

SSD-Tailor: Customization System for Enterprise SSDs
Hyunchan Park, Youngpil Kim, Cheol-Ho Hong, and Chuck Yoo, Korea 
University; Hanchan Jo, Samsung Electronics

This poster presents SSD-Tailor, a customization system for 
SSDs. With the increasing need to satisfy customers for require-
ments of high performance and reliability for various workloads, 
it becomes difficult to design an optimal system with such a 
large number of potential configuration choices. SSD-Tailor 
determines a near-optimal design for a particular workload of 
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an enterprise server. It requires three inputs: customer require-
ments, workload traces, and design options. It has three com-
ponents: Design Space Explorer, Trace-driven SSD Simulator, 
and Fitness Analyzer, which work together iteratively in a loop 
to produce a near-optimal design for the given requirements and 
workload traces.

Design options consist of a type of flash chip, FTL policies, etc. 
Customer requirements may include low cost, high performance, 
high reliability, low energy consumption, and so on. Workload 
traces are full traces rather than extracted profiles.

The Design Space Explorer used genetic algorithms to find near-
optimal SSD design. Genetic algorithms mimic the process of 
natural selection. The Trace-driven SSD Simulator (the authors 
used DiskSim) can help change and display the design options 
easily, because in spite of a reduced set of design options, too 
many still need to be analyzed. The Fitness Analyzer evaluates 
the simulation results based on scores.

The authors show that tailoring overhead is high but needs to be 
done only once. The benefits obtained are quite high according 
to their results. They compared SSD-Tailor with a brute force 
algorithm as their baseline.

Multi-Modal Content Defined Chunking for Data 
Deduplication
Jiansheng Wei, Junhua Zhu, and Yong Li, Huawei

The authors of this paper have come up with a deduplication 
mechanism based on file sizes and compressibility informa-
tion. They identified that many file types such as mp3 and jpeg 
are large, hardly modified, and often replicated as is; such files 
should have large chunk sizes to reduce metadata volume with-
out sacrificing too much in deduplication ratio. Other file types 
consist of highly compressible files, some of which are modified 
frequently, and these benefit from having small chunk sizes to 
maximize deduplication ratio.

The authors propose two methods, both of which require a pre-
processing step of creating a table for size range, compressibility 
range, and the expected chunk size. The first method divides 
data objects into fixed-sized blocks and estimates their compres-
sion ratio using sampling techniques. Adjacent blocks with simi-
lar compression ratios are merged into segments. Segments are 
divided into chunks using content-defined chunking techniques, 
and these chunk boundaries may override segment boundaries. 
Then the chunk fingerprints are calculated.

In the second approach, many candidate chunking schemes 
using Content Defined Chunking (CDC) with different expected 
chunk sizes are generated in a single scan. One chunking scheme 
is used to calculate the compression ratio of its chunks, and 
chunks with similar compression ratios are merged together. 
These chunking results are directly used and their fingerprints 
are calculated. Their experimental results show that their Multi-
Modal CDC can reduce the number of chunks by 29.1% to 92.4%.

Content-Defined Chunking for CPU-GPU Heterogeneous 
Environments
Ryo Matsumiya, The University of Electro-Communications; Kazushi 
Takahashi, Yoshihiro Oyama, and Osamu Tatebe, University of Tsukuba and 
JST, CREST

Chunking is an essential operation in deduplication systems, 
and Content-Defined Chunking (CDC) is used to divide a file 
into variable-sized chunks. CDC is slow as it calculates many 
fingerprints. The authors of this poster came up with parallel-
izing approaches that use both GPU and CPU to chunk a given 
file. Because of the difference in speed of CPU and GPU, the 
challenge becomes that of task scheduling. They propose two 
methods, Static Task Scheduling and Dynamic Task Scheduling, 
to efficiently use both the GPU and CPU.

Static Task Scheduling uses a user-defined parameter to deter-
mine the ratio of dividing the file such that one part is assigned 
to the GPU and the other part to the CPU. Each section is further 
divided into subsections, which are each assigned to a GPU 
thread or CPU thread.

Dynamic Task Scheduling consists of an initial master thread, 
which divides a file into distinct, fixed-sized parts called large 
sections. Each is assigned to a GPU thread. For detection of 
chunk boundaries lying across more than one segment, small 
subsections are created, including data parts across boundaries 
of large sections. Each small subsection is assigned to the CPU. 
Worker threads are created for GPU and CPU to handle these 
sections. While the task queue is not empty, each worker will 
perform CDC; if a queue becomes empty, then a worker will steal 
tasks from another worker’s queue.

The authors ran experiments to find the throughput of their 
static and dynamic methods and compared them to CPU-only 
and GPU-only methods. They showed that static performs the 
best and dynamic follows closely behind it. The benefit of having 
a dynamic method is to avoid tuning parameters as is required 
for the static method. 

Hash-Cast: A Dark Corner of Stochastic Fairness
Ming Chen, Stony Brook University; Dean Hildebrand, IBM Research; Geoff 
Kuenning, Harvey Mudd College; Soujanya Shankaranarayana, Stony Brook 
University; Vasily Tarasov, IBM Research; Arun O. Vasudevan, Stony Brook 
University; Erez Zadok, Stony Brook University; Ksenia Zakirova, Harvey 
Mudd College

This poster uncovers Hash-Cast, a networking problem that 
causes identical NFS clients to get unfair shares of the network 
bandwidth when reading data from an NFS server. Hash-Cast 
is a dark corner of stochastic fairness where data-intensive 
TCP flows are randomly hashed to a small number of physical 
transmit queues of NICs and hash values collide frequently. 
Hash-Cast influences not only NFS but also any storage servers 
hosting concurrent data-intensive TCP streams, such as file 
servers, video servers, and parallel file system servers. Hash-Cast 
is related to the bufferbloat problem, a phenomenon in which 
excessive network buffering causes unnecessary latency and 
poor system performance. The poster also presents a method to 
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work around Hash-Cast by changing the default TCP congestion 
control algorithm from TCP CUBIC to TCP VEGAS, another 
algorithm that alleviates the bufferbloat problem.

MapReduce on a Virtual Cluster: From an I/O 
Virtualization Perspective
Sewoog Kim, Seungjae Baek, and Jongmoo Choi, Dankook University;  
Donghee Lee, University of Seoul; Sam H. Noh, Hongik University

The authors of this poster analyze two main questions with 
respect to the MapReduce framework making use of virtual-
ized environments. They try to analyze whether Hadoop runs 
efficiently on virtual clusters and whether any I/O performance 
degradation is seen, then whether they can be mitigated by 
exploiting the characteristics of I/O access patterns observed 
in MapReduce algorithms. They ran a Terasort  benchmark and 
found that the I/O is triggered in a bursty manner, requested 
intensively for a short period, and sharply increased and 
decreased. Some phases utilize a memory buffer. Virtual 
machines share I/O devices in a virtual cluster; thus, this 
bursty I/O may cause I/O interference among VMs. When  
VMs request bursty I/Os concurrently, the I/O bandwidth 
 suffers a performance drop of about 31%, going from 1 to 4  
VMs. Additionally, long seek distance and high context  
switch overheads exist among VMs.

To help mitigate this issue, the authors propose a new I/O sched-
uler for Hadoop on a virtual cluster, which minimizes the I/O 
interference among VMs and also exploits the I/O burstiness 
in MapReduce applications. Their new I/O scheduler controls 
bandwidth of VMs using Cgroups-blkio systems and operate at a 
higher layer than the existing scheduler. The Burstiness Monitor 
detects bursty I/O requests from each VM. The Coarse-grained 
Scheduler allows a bursty VM to use the I/O bandwidth exclu-
sively for a time quantum in round-robin manner. This allows 
the overhead caused by context switching among multiple VMs 
to be reduced, along with reducing overall seek distance and 
execution time. Their experimental results verify the perfor-
mance gains using their approach.

Keynote Presentation
FireBox: A Hardware Building Block for 2020 Warehouse-
Scale Computers
Krste Asanović, University of California, Berkeley
Summarized by Tiratat Patana-anake (tiratatp@uchicago.edu)

Krste Asanović told a story about the past, present, and future of 
Warehouse Scale Computing (WSC), which has many applica-
tions but will gain popularity because of the migration to the 
extreme, with the cloud backing all devices. We moved from 
commercial off-the-shelf (COTS) servers to COTS parts, and 
we’ll move to custom everything, said Asanović.

Asanović stated that the programming model for WSC needs 
to change. Currently, the silo model is used, but he believes that 
Service Oriented Architecture (SOA) is better. In SOA, each 
component is a service that connects via network, and each 

application is composed of many services. The benefits of SOA 
are reusability and ease of management. Moreover, by decom-
posing big software into small services, the services are easier to 
tailor to each user subset. A statistic shows that small (less than 
$1 million) projects have higher success rates than big projects.

Asanović then compared old wisdom to new wisdom in many 
related aspects. In the old wisdom, we cared only about building 
fault-tolerant systems. Today, we need to care about tail-latency 
tolerance, too, which means building predictable parts from 
less predictable ones. Many techniques can be used to build a 
tail-tolerant service. We can use software to reduce component 
variation by using different queues or breaking up tasks into 
small parts, or try to cope with variability by hedging requests 
when the first request result was slow, for example, or by trying 
requests in different queues. We can also try to improve the 
hardware by reducing overhead, reducing queuing, increasing 
network bisection bandwidth, or using partitionable resources.

The second thing that Asanović compared was the memory 
hierarchy. In the old days, we had DRAM, disk, and tape. Now, we 
have DRAM, NVRAM, and then disk. In the future, we will have a 
new kind of NVM that has DRAM read latency and endurance. In 
terms of memory hierarchy, there will be more levels in the mem-
ory hierarchy, and we might see a merging between high-capacity 
DRAM and flash memory into something new such as PCM.

Third, Moore’s Law is dead (for logic, SRAM, DRAM, and 
likely 2D flash), said Asanović. The takeaway is that we have 
to live with this technology for a long time, and improvements 
in system capability will come from above the transistor level. 
More importantly, without Moore’s Law and scaling, the cost of 
custom chips will come down because of the amortized cost of 
technology.

Fourth, Asanović discussed which ISA (Instruction Set Archi-
tecture) was better, ARM or x86. He said the real important 
difference was that we could build a custom chip with ARM, not 
Intel. He added that ISA should be an open industry standard. 
The goal is to have an open source chip design, such as Berkeley’s 
RISC-V, which is an open ISA.

Moreover, Asanović said that security is very important. The key 
is to have all data encrypted at all times. He also said that rather 
than using shared memory to do inter-socket communication, 
message passing has won the war, which is also a better match 
for SOA.

Next, Asanović presented the FireBox, which is a prototype of 
2020 WSC design. It is a custom “Supercomputer” for interactive 
and batch application that can support fault and tail tolerance, 
will have 1000 SoC, 1 terabit/s high radix photonic switch, and 
1000 NVM modules for 100 PB total. FireBox SoC will have 100 
homogeneous cores per SoC with cache coherence only on-chip 
and acceleration module (e.g., vector processors). NVM stack 
will have photonic I/O built in. Photonic switch is monolithic 



68   JUNE 2014  VOL.  39,  NO.  3  www.usenix.org

REPORTS

integrated silicon photonics with wave-division multiplexing 
(WDM). Photonics will have bandwidth of 1 Tb in each direc-
tion. Moreover, data will always be encrypted. Asanović said the 
bigger size will reduce operation expenses, can support a huge 
in-memory database, and has low latency network to support 
SOA. There are still many open questions for FireBox, such as 
how do we use virtualization, how do we process bulk encrypted 
memory, and which in-box network protocol should we use?

Finally, Asanović talked about another related project, DIABLO, 
which is an FPGA that simulates WSC. By using DIABLO, they 
found that the software stack is the overhead.

Rik Farrow wondered about the mention of Linux as the sup-
ported operating system. Asanović said that people expected 
a familiar API, but that FireBox would certainly include new 
operating system design. Kimberly Keeton (HP Labs) asked who 
is the “everybody” that considers using custom design chips. 
Asanović answered big providers are building custom chips, and 
if we move to an open source model, we will start seeing more. 
Keeton also asked a question about code portability. Asanović 
explained that 99.99% of code in applications doesn’t need an 
accelerator. So, only the .01% that does need accelerators will 
need any changes.

Someone from VMware asked about the role of disk in FireBox. 
Asanović replied that disk and DC-level network are outside 
the scope of this project right now. Tom Spinney (Microsoft) 
asked about protecting keys and cryptography engines. Asanović 
responded that they planned on using physical mechanisms, and 
that this was an area of active research.

Experience from Real Systems
Summarized by Xing Lin (xinglin@cs.utah.edu)

(Big) Data in a Virtualized World: Volume, Velocity, and 
Variety in Cloud Datacenters
Robert Birke, Mathias Bjoerkqvist, and Lydia Y. Chen, IBM Research Zurich 
Lab; Evgenia Smirni, College of William and Mary; Ton Engbersen, IBM 
Research Zurich Lab

Mathias Bjoerkqvist started his presentation by noting that 
virtualization is widely used in datacenters to increase resource 
utilization, but the understanding of how I/O behaves in virtual-
ized environments is limited, especially at large scales. To get a 
better understanding, they collected I/O traces in their private 
production datacenters over a three-year period. The total I/O 
trace was 22 PB, including 8,000 physical host machines and 
90,000 virtual machines. Most of virtual machines were Win-
dows and ran within VMware. Then they looked at how capacity 
and data changed and characterized read/write operations at 
the virtual machine layer and the host layer. They also studied 
the correlation between CPU, I/O, and network utilization for 
applications. 

What’s most interesting in their findings is that most contri-
butions to the peak load came from only one third of virtual 
machines, which implies that we could improve the system 

by optimizing these few VMs. In their study, they also found a 
diverse set of file systems were used: For each virtual machine, 
as many as five file systems were used. Thus, about 20 virtual 
file systems were used in each host machine on average. The 
more CPUs and memory the host machine has, the more file 
systems. The data churn rate at the virtual machine layer is 
lower than at the host layer: 18% and 21%, respectively. They also 
looked at I/O amplification and deduplication rate. Comparing 
the number of I/Os at the virtual machine layer and the physical 
block layer at the host operating system, they found that amplifi-
cation appears more often than deduplication. Finally, they used 
a k-means clustering algorithm to classify application workloads 
and found a strong correlation between CPU usage and I/O or 
network usage.

One person asked for the breakdown of true deduplication 
and caching effect. He suggested that the deduplication rates 
presented could be the combination of both. The author acknowl-
edged that he was correct: They measured the total I/Os at the 
virtual machine layer and the physical host layer and were not 
able to distinguish between the caching effect and true dedupli-
cation. Fred Douglis (EMC) pointed out that the comparison of 
the data churn rate presented in this work and his own previous 
work was not appropriate because the workloads for this paper 
were primary workloads, whereas Fred’s work studied backup 
workloads. Yaodong Yang (University of Nebraska-Lincoln) 
asked about the frequency of virtual machine migration in their 
datacenters. The authors replied that the peak load varied over 
time; the peak load in the middle of night could be correlated 
with virtual machine migration activities. Christos Karamano-
lis (VMware) asked a few fundamental clarification questions 
about their measurements, such as what the definition of a 
virtual I/O was, what the side-effect was from write buffering 
and read caching at the guest OS, and which storage infrastruc-
ture was used at the back end. The authors said they collected 
I/O traces at the guest OS and host OS level and suggested that 
people come to their poster for more details. 

From Research to Practice: Experiences Engineering 
a Production Metadata Database for a Scale Out File 
System
Charles Johnson, Kimberly Keeton, and Charles B. Morrey III, HP Labs; Craig 
A. N. Soules, Natero; Alistair Veitch, Google; Stephen Bacon, Oskar Batuner, 
Marcelo Condotta, Hamilton Coutinho, Patrick J. Doyle, Rafael Eichelberger, 
Hugo Kiehl, Guilherme Magalhaes, James McEvoy, Padmanabhan Nagarajan, 
Patrick Osborne, Joaquim Souza, Andy Sparkes, Mike Spitzer, Sebastien 
Tandel, Lincoln Thomas, and Sebastian Zangaro, HP Storage 

Kimberly Keeton characterized her team’s work as special, 
covering their experience in transforming a research prototype 
(LazyBase) into a fully functional production (Express Query). 
Unstructured data grows quickly, at 60% every year. To make 
use of unstructured data, the metadata is usually used to infer 
the underlying structure. Standard file system search function 
is not feasible for providing rich metadata services, especially in 
scale-out file systems. The goal of their work is to design a meta-
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data database, to allow rich metadata queries for their scale-out 
file systems. 

LazyBase was designed to handle high update rates, at the 
expense of some amount of staleness. This matches well with the 
design of Express Query. Thus, they started with LazyBase and 
made three main changes to transform it into Express Query. 
The first change was to eliminate automatic incremental ID for 
long strings and ID remap because the mapping cannot be done 
lazily and the assignment of ID for a string cannot be done in 
parallel. Through experimentation, they found that ID-based 
lookup or joins was inefficient: minutes for ID-based versus 
seconds for non-ID based.

The second change was related to the transaction model in 
LazyBase, which allows updates to be applied asynchronously at 
a later time. When users delete a file, there is no way to reliably 
read and delete the up-to-date set of custom attributes. To deal 
with this problem, the authors introduced timestamps to track 
file operation events and attribute creations. These timestamps 
were then used to check for attribute validation during queries. 
To get the metadata about files, they put a hook in the journaling 
mechanism in the file system. Then the metadata was aggre-
gated and stored into LazyBase. To support SQL-like queries, 
they used PostgreSQL on top of LazyBase. A REST API was 
designed to make Express Query easier and more flexible to use.

Scott Auchmoody (EMC) asked about using hashing to get IDs. 
Kimberly said that would break the locality; tables are organized 
according to IDs and with hashing, records for related files could 
be stored far away from each other. Brent Welch (Google) sug-
gested that distributed file systems usually have an ID for each 
file, which could be taken and used. Kimberly acknowledged that 
they had taken advantage of that ID to be a unique identity for 
each file, and the index and sorting are based on pathname. One 
person noted that if metadata for files within a directory was 
organized as a tree structure, the tree structure could become 
very huge and wondered how much complexity was involved in 
managing large tree structures. Kimberly answered that they 
stored metadata as a table, and the directory structure was 
encoded in the path name. Shuqin Ren (Data Storage Institute, 
A*STAR) asked what the overhead was when adding the hook in 
the journaling mechanism to collect metadata. Kimberly replied 
that the journaling happened anyway, and they did not add any 
other instrumentation to the file system so the overhead was small. 

Analysis of HDFS under HBase: A Facebook Messages  
Case Study
Tyler Harter, University of Wisconsin—Madison; Dhruba Borthakur, Siying 
Dong, Amitanand Aiyer, and Liyin Tang, Facebook Inc.; Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Tyler Harter presented his work on analyzing I/O characteriza-
tions for the layered architecture of HBase for storing and pro-
cessing messages in Facebook. Reusing HBase and HDFS lowers 
the development cost and also reduces the complexity of each 
layer. However, Tyler also pointed out that layered architecture 

could have some performance overheads and that performance 
could potentially be improved if the system were layer-aware. 
Their work studied how each layer altered I/O requests and 
exploited two use cases to demonstrate that performance could 
be improved by making the system layer-aware. 

Tyler showed that at the HDFS layer, only 1% of all read/write 
requests it received were writes. However, writes became 
21% because of compaction and logging used in HDFS. At the 
local file system layer, 45% of requests were writes because of 
three-way replication. At the disk layer, the percentage of writes 
was 64%. The same trend held when they considered I/O size. 
Two thirds of data is cold. Then Tyler presented the distribu-
tion of file sizes. Half of files used in HBase had sizes smaller 
than 750 KB. For access locality, they found a high temporary 
locality: the hit rate was 25% if they kept accessed data for 30 
minutes and 50% for two hours. Spatial locality was low, and as 
much as 75% reads were random. Then they looked into what 
hardware upgrade was most effective in terms of I/O latency 
and cost. They suggested that adding a few more SSDs gave the 
most benefit with little increase in cost; buying more disks did 
not help much. To demonstrate that performance is increased 
by making the system layer-aware, Tyler presented two opti-
mizations: local compaction and combined logging. Instead of 
sending compacted data, they proposed sending the compact 
command to every server to initiate compaction. This change 
reduced the network I/O by 62%. With combined logging, a 
single disk in each server machine was used for logging while 
other disks could serve other requests. This change reduced disk 
head contention, and the evaluation showed a six-fold speedup 
for log writes and performance improvement for compaction and 
foreground reads. 

Bill Bolosky (Microsoft Research) pointed out that file size 
distribution usually had a heavy tail and thus the mean file 
size would be three times larger than the median size. He 
asked whether the authors had looked into the mean size. Tyler 
acknowledged that in their paper they did have numbers for 
mean file size but he did not remember them. He also suggested 
that, because most files were small, what mattered for perfor-
mance was the number of files, specifically metadata operations. 
Brad Morrey (HP Labs) noted that for their local compaction 
to work, related segments had to be stored in a single server. 
This would affect recovery performance if a server died. Tyler 
replied that they did not do simulation for recovery. However, 
the replication scheme was pluggable and they should be able to 
exploit different replication schemes. Margo Seltzer (Harvard) 
suggested that it was probably wrong to use HDFS to store small 
files; HDFS was not designed for that, and other systems should 
probably be considered. Tyler acknowledged that was a fair argu-
ment, but Facebook uses HDFS for a lot of other projects and that 
argues for using a uniform architecture. 
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Automatic Identification of Application I/O Signatures 
from Noisy Server-Side Traces
Yang Liu, North Carolina State University; Raghul Gunasekaran, Oak Ridge 
National Laboratory; Xiaosong Ma, Qatar Computing Research Institute 
and North Carolina State University; Sudharshan S. Vazhkudai, Oak Ridge 
National Laboratory

Yang Liu started his talk by introducing the second fastest 
supercomputer in the world: TITAN, which has 18,000 compute 
nodes. More than 400 users use this supercomputer for various 
scientific computations, such as climate simulation. The Spider 
file system is used to provide file system service: In total, TITAN 
can store 32 PB of data and can provide 1 TB/s bandwidth. 
Because the supercomputer is shared by multiple users, work-
loads from different users could compete for the shared storage 
infrastructure and thus interfere with each other. Thus, it is 
important to understand the I/O behavior of each application. 
With that understanding, we can do a better job in scheduling 
these jobs and thus reduce I/O contention. Their work proposed 
an approach to extract I/O signatures for scientific workloads 
running from server-side tracing. 

Client-side tracing is the other alternative but has a few draw-
backs. Client-side tracing requires a considerable development 
effort, and it usually introduces some performance overhead, 
ranging from 2% to 8%. Different applications probably use dif-
ferent trace formats and may not be compatible. What’s worse, 
client-side tracing introduces extra I/O requests. So they decided 
to use the coarse-grain logging at the RAID controller level at 
the server-side. It has no overhead and does not require any user 
effort. However, I/O requests are mixed at the server-side. The 
challenge is to extract I/O signatures for a particular application 
from this mixed I/O traffic. Fortunately, there are a few inherent 
features in scientific applications that can help to achieve that 
goal. 

These applications usually have two distinct phases: compute 
phase and I/O phase. During the I/O phase, applications typi-
cally request large writes of either intermediate results or check-
pointing, so there are periodic bursts for these applications. 
Besides, users tend to run the same application multiple times 
with the same configuration. Thus, I/O requests are repetitive 
for these applications. Given the job scheduler logs with start and 
end time for each job and the server-side throughput logs from 
Spider, they can extract the samples for a particular job. The 
insight from the authors is that the commonality across multiple 
samples tends to belong to the target application. 

The challenges of extracting I/O signatures from these samples 
include background noise and I/O drift. To deal with these 
challenges, the authors proposed three stages to extract the I/O 
signature: (1) data preprocessing that eliminates outliers, refines 
the granularity of the samples, aligns durations, and reduces 
noise by removing light I/O traffic; (2) use of wavelet transform 
for each sample to make each sample smoother and to more 
easily distinguish bursts from background noise; and (3) use of 
the CLIQUE (Agrawal: SIGMOD ’08) clustering algorithm to 

identify common bursts across samples. For evaluation, they 
used I/OR, a benchmark tool for parallel I/O to generate a few 
synthetic workloads and a real-world simulation: S3D. The sig-
nature extracted by their tool matched well with the actual I/O 
signature. They also compared the accuracy of their algorithm 
with Dynamic Time Warping (DTW) and found I/OSI outper-
formed DTW. 

Kun Tang (Virginia Commonwealth University) asked whether 
it was true that users actually ran an application multiple times. 
Yang answered yes, based on what they observed from the job 
scheduler log and several previous works. One person suggested 
that if they already had the I/O signature, their tool would be 
able to reproduce that signature. Yang replied that based on their 
observation, each application would likely exhibit the same I/O 
pattern in future runs, and they could use this insight for better 
scheduling.

Works-in-Progress
Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

The FAST ’14 Works-in-Progress session started with Taejin 
Kim (Seoul National University), who presented his work on 
“Lifetime Improvement Techniques for Multiple SSDs.” He 
observed that write amplification in a cluster of SSDs may 
degrade the device’s lifetime because of intermediate layers 
which perform replication, striping, and maintenance tasks 
such as scrubbing. As an example, he showed how writes could 
be amplified by 2.4x under Linux’s RAID-5 implementation. He 
proposed integrating many different write prevention tech-
niques, such as compression, deduplication, and dynamic throt-
tling, to lower the write workload, as well as smaller stripe units, 
delta compression, and modifying erasure coding algorithms to 
use trim in place of writes.

Dong Hyun Kang (Samsung Electronics) presented “Flash-
Friendly Buffer Replacement Algorithm for Improving Perfor-
mance and Lifetime of NAND Flash Storages.” He explained 
how traditional buffer replacement algorithms are based on 
magnetic drives and proposed an algorithm called TS-Clock to 
perform cache eviction. TS-Clock is designed to limit write-
backs and improve cache hit rate. His preliminary results 
show that on DBench the TS-Clock algorithm has up to a 22.7% 
improvement in hit rate and extends flash lifetime by up to 
40.8%.

Douglas G. Otstott (Florida International University) described 
his work towards developing a “holistic” approach to scheduling. 
In his presentation, “A Host-Side Integrate Flash Scheduler for 
Solid State Drives,” he listed the inefficiencies of the OS to flash 
interface. Flash devices themselves have limited resources to 
consider complex scheduling. However, in the relatively more 
powerful OS-layer, most of the potentially useful details about 
individual request performance, such as read vs. write latencies, 
write locations, and logical to physical block mappings, are hid-
den. In his alternate approach, device management occurs in the 
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OS stack but pushes commands down to the device to balance 
load, ensure that writes aren’t committed ahead of reads, and 
limit GC performance costs. His proposed interface includes 
isolated per-die queues for read, write, and garbage collection. 
He is working to validate his Linux prototype in DiskSim and is 
working on an FPGA implementation.

Next, Eunhyeok Park (University of Pittsburgh) described his 
work: “Accelerating Graph Computation with Emerging Non-
Volatile Memory Technologies.” Algorithms that access large 
graph data structures incur frequent and random storage access. 
After describing the CPU bottlenecks in these workloads, he 
described Racetrack, an approach based on an idealized memory 
model. Park’s simulations based on Pin show that it is faster and 
has lower energy consumption than alternatives. His prelimi-
nary results suggest that some simple computations, for example 
PageRank, could be done by a CPU or FPGA on the storage 
device itself.

In “Automatic Generation of I/O Kernels for HPC Applications,” 
Babak Behzad (University of Illinois at Urbana-Champaign) 
described his efforts to autonomously generate an I/O kernel, 
which is a replayable trace that includes dependency constraints. 
His approach is to wrap I/O activity with an application-level 
library to trace parallel I/O requests in high-performance 
computing environments. His work promises to provide better 
analytics for future optimization, I/O auto-tuning, and system 
evaluation.

Florin Isaila (Argonne National Laboratory) described “Clar-
isse: Cross-Layer Abstractions and Runtime for I/O Software 
Stack of Extreme Scale Systems.” His goal is to enable global 
optimization in the software I/O stack to avoid the inefficiencies 
of I/O requests that pass through multiple layers of uncoordi-
nated memories and nodes, each of which provides redundant 
function. He proposed providing cross-layer control abstrac-
tions and mechanisms for supporting data flow optimizations 
with a unified I/O controller. Instead of the traditional layered 
model, Clarisse intercepts calls at different layers. Local control 
modules at each stack layer talk over a backplane to a controller 
that coordinates buffering, aggregation, caching prefetching, 
optimization selection, and event processing.

Howie Huang (George Washington University) presented 
“HyperNVM: Hypervisor Managed Non-Volatile Memory.” He 
observed that warehouse-scale datacenters are increasingly 
virtualized and that many VMs performing large amounts of 
I/O require high performance memory subsystems and need 
better systems support for emerging non-volatile memories. To 
solve these problems, he proposed that the hypervisor needs to 
be more memory aware and that the OS and applications should 
pass more control of memory management to the hypervisor. 
He proposed a system called Mortar, which is a general-purpose 
framework for exposing hypervisor-controlled memory to 
 applications.

Dan Dobre (NEC Labs Europe) described his work on “Hybris: 
Robust and Consistent Hybrid Cloud Storage.”  He noted that 
potential users of cloud storage services are concerned about 
security and weak consistency guarantees. To address these two 
concerns, he proposed a hybrid solution that employs a private 
cloud backed by multiple public clouds. His approach maintains 
a trusted private cloud to store metadata locally, with strong 
metadata consistency to mask the weak data consistency offered 
by public clouds.

In “Problems with Clouds: Improving the Performance of Multi-
Tenant Storage with I/O Sheltering,” Tiratat Patana-anake 
(University of Chicago) described an approach to limit the 
performance impact of random writes in otherwise sequential 
workloads. In his approach, called “I/O Sheltering,” random 
writes are initially written sequentially inline with sequential 
writes. Later, these sheltered writes are moved to their in-place 
locations. He argued that this approach would be successful 
because random write applications are rare, memory is abun-
dant, and NVM provides a better location to shelter indexes. He 
concluded by showing significant performance improvements 
in multi-tenant Linux, when one random writer ran in conjunc-
tion with many sequential writers. He proposed to integrate this 
technique into the file system and journal in the future.

Michael Sevilla (University of California, Santa Cruz) argued 
that load balancing should be based on a deeper understand-
ing of individual node resources and contention in his work on 
“Exploring Resource Migration Using the CephFS Metadata 
Cluster.” Sevilla has been using Ceph as a prototyping platform 
to investigate migration and load balancing. He has observed 
that decisions about whether to migrate are often non-intuitive. 
Sometimes migration helps mitigate loads, but it may also hurt, 
because it denies access to a full metadata cache. He is attempt-
ing to develop a distributed, low-cost, multiple objective solver to 
make more informed migration decisions. In closing, he demon-
strated the practicality of the problem by detailing an experi-
ment where re-ordering name servers in a cluster under high 
load resulted in a considerable performance improvement.

With his work on “Inline  Deduplication for Storage Caching,” 
Gregory Jean-Baptiste (Florida International University) pro-
posed enhancing existing client-side flash caches with inline 
deduplication to increase their effective capacity and lifespan. 
He has a prototype system in place that shows better perfor-
mance with the IOZone benchmark over iSCSI. He noted that 
this approach may lead to other architectural changes, such as 
replacing LRU with an eviction algorithm that is aware that 
evicting a widely shared block could be more painful that an 
unshared one.

Alireza Haghdoost (University of Minnesota) presented 
“hfplayer: High Fidelity Block I/O Trace Replay Tool.” hfplayer 
can reproduce previously captured SAN workload with high 
fidelity for the purposes of benchmarking, performance evalu-
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ation, and validation with realistic workloads. His design is 
based on a pool of worker threads that issue I/O requests and a 
harvester thread to process completion events and keep track 
of in-flight I/O requests. To control replay speed, a load-aware 
algorithm dynamically matches the number of in-flight I/O 
requests with the load profile in the original trace. When inter-
arrival times are very short, threads bundle requests together to 
avoid system call overhead.

Nagapramod Mandagere (IBM Research) has been analyzing 
the performance of backup servers and has found some interest-
ing opportunities for optimization. In his presentation titled 
“Towards a Framework for Adaptive Backup Management,” 
he described some of his observations. He noted that backup 
workloads show temporal skew, where most traffic arrives 
at hourly boundaries but large bursts of heavy utilization are 
possible. Another problem is spatial skew, in which one backup 
server is overloaded while others are not. Both these problems 
stem from backups that are managed by static policies while the 
workload they create is very dynamic. As client backup windows 
get shorter and shorter (due to lack of idle times), server initi-
ated backups are harder to schedule, but when the clients are 
instead allowed to push updates themselves, the backup servers 
can become overloaded. Furthermore, backup servers them-
selves need idle periods for their own maintenance. He proposes 
an adaptive model-based backup management framework that 
dynamically determines client/server pairings to minimize cli-
ent backup windows.

Performance and Efficiency
Balancing Fairness and Efficiency in Tiered Storage 
Systems with Bottleneck-Aware Allocation
Hui Wang, Peter Varman, Rice University

Hui Wang started her presentation by talking about the trend of 
multi-tiered storage in modern datacenters with both solid state 
drives and traditional hard disks. This kind of combination has 
several advantages, including better performance in data access 
and lower cost. At the same time, it also brings some challenges, 
such as providing fair resource allocation among clients and 
maintaining high system efficiency. To be more specific, there 
is a big speed gap between SSD and HD, so scheduling proper 
workloads to achieve high resource utilization becomes very 
important. Hui Wang talked about fair resource allocation and 
high performance efficiency to make up for some disadvantages 
of heterogeneous clusters. She talked about her team’s motiva-
tion using several examples: single device type, multiple devices, 
and dominant resource from both fairness and efficiency angles.

Based on these considerations, she presented a new allocation 
model, Bottleneck-Aware Allocation (BAA), based on the notion 
of per-device bottleneck sets. Clients bottlenecked on the same 
device receive throughputs in proportion to their fair shares, 
whereas allocation ratios between clients in different bottleneck 
sets are chosen to maximize system utilization. In this part, she 
discussed the fairness policy first, showed the bottleneck sets 

and fairness requirements of BAA, and then introduced their 
optimization algorithm of allocation.

They performed two simulations: one to evaluate the BAA’s 
efficiency, and the other monitoring BAA’s dynamic behavior 
under changing workloads. They also implemented a prototype, 
interposing BAA scheduler in the I/O path and evaluated BAA’s 
efficiency and fairness.

Umesh Maheshwari (Nimble Storage) asked if that kind of dra-
matic ratio somehow changed the nature of this work. Hui Wang 
said, suppose it was for a single disk compared with SSD. It is 
most likely that HD would be the bottleneck, but if you have a 
large HD array, the speed gap between the two is not so dramati-
cally large, so you would very easily have the balanced set cluster 
on both. Umesh asked again, assuming there was such a large 
difference between the two tiers, would the BBA model still hold 
the same performance using this approach? Hui Wang answered 
yes. Shuqin (Data Storage Institute Singapore) asked whether 
their model would work on multiple nodes. Hui Wang said she 
thought that their model could be easily extended to multiple 
nodes with coordination between schedulers. Kai Shen (Uni-
versity of Rochester) asked what was particularly challenging 
in this project. Hui Wang said the most challenging part was to 
accurately estimate the capacity of the system.

SpringFS: Bridging Agility and Performance in Elastic 
Distributed Storage
Lianghong Xu, James Cipar, Elie Krevat, Alexey Tumanov, and Nitin Gupta, 
Carnegie Mellon University; Michael A. Kozuch, Intel Labs; Gregory R. 
Ganger, Carnegie Mellon University

In this presentation, Xu introduced the concept of elasticity in 
distributed storage. Elastic distributed storage means storage 
that is able to resize dynamically as workload varies, and its 
advantages are the ability to reuse storage for other purposes or 
reduce energy usage; they can decide how many active servers to 
provide to work with a changing workload. By closely monitoring 
and reacting quickly to changes in workload, machine hours are 
saved. But most current storage, such as GFS and HDFS, is still 
not elastic. If they deactivate the nodes, it will cause some data 
to not be available. Before Xu talked about SpringFS, he gave two 
examples of prior elastic distributed storage, Rabbit and Sierra, 
discussing the differences between them and the disadvantages 
of each. Fortunately, SpringFS provides balance and fills the gap 
between them.  

First, Xu showed a non-elastic example: in this case, almost all 
servers must be “active” to be certain of 100% availability, so 
it has no potential for elastic resizing. He then discussed the 
general rule of data layout in elastic storage and tradeoff space. 
Based on this, the authors proposed an elastic storage system, 
called SpringFS, which can change its number of active servers 
quickly, while retaining elasticity and performance goals. This 
model borrows the ideas of write availability and performance 
offloading from Rabbit and Sierra, but it expands on previous 
work by developing new offloading and migration schemes that 
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effectively eliminate the painful tradeoff between agility and 
write performance in state-of-the-art elastic storage designs. 
This model, combined with the read offloading and passive 
migration policies used in SpringFS, minimizes the work needed 
before deactivation or activation of servers. 

Muhammed (HGST) asked what is used to predict the perfor-
mance ahead of time and whether the offload set value could 
be adjusted. Xu said they actually did not design this part of the 
workload in their paper. They just assumed they had the perfect 
predictor, and that it was possible to integrate some workload 
predictor into their work. One person asked whether this model 
tolerates rack fails. Xu said yes, because their model was modi-
fied from HDFS, it could tolerate rack fails as well as HDFS. 
Another questioner asked what offloading in SpringFS essen-
tially means. Xu explained that offloading means redirecting 
requests from a heavy loaded server to a lightly loaded server.     

Migratory Compression: Coarse-grained Data Reordering 
to Improve Compressibility
Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane and Grant Wallace, EMC 
Corporation-Data Protection and Availability Division, University of Utah

Lin presented Migratory Compression (MC), a coarse-grained 
data transformation, to improve the effectiveness of traditional 
compressors in modern storage systems. In MC, similar data 
chunks are relocated together to improve compression factors. 
After decompression, migrated chunks return to their previous 
locations. This work is motivated by two points. The first is to 
exploit redundancy across a large range of data (i.e., many GB) 
during compression by grouping similar data together before 
compressing. The second point is to improve the compression for 
long-term retention. However, the big challenge in doing MC is to 
identify similar chunks efficiently and scalably; common prac-
tice is to generate similarity features for each chunk because two 
chunks are likely to be similar if they share many features. 

There are two principal use cases of MC. The first case is mzip, 
that is, compressing a single file by extracting resemblance 
information, clustering similar data, reordering data in the 
file, and compressing the reordered file using an off-the-shelf 
compressor. The second case is archival, involving data migra-
tion from backup storage systems to archive tiers or data stored 
directly in an archive system, such as Amazon Glacier. The 
evaluation result showed that adding MC to a compressor sig-
nificantly improves the compression factor (23–105% for gzip, 
18–84% for bzip2, 15–74% for 7z, and 11–47% for rzip), and we 
can also see the improvement of compression throughput with 
MC. In all, MC improves both compression factor and through-
put by deduplication and reorganization. 

Cornel Constantinescu (IBM Almaden Research Lab) asked 
whether this model compressed the file. Lin said that in the mzip 
case, they un-compacted the whole file. Constantinescu asked 
whether they did a comparison with other similar work, such as 
work used in Google’s BigTable. Lin admitted he did not know 
that. Jacob Lorch (Microsoft Research) asked whether they 

were starting to look at modifying the compression algorithms. 
Lin said that he did not think they modified compression itself 
and that MC could be used as a generic preprocessing stage that 
could benefit all of the compression. And, if they are improving 
compressions, they can get the same benefits by doing this as a 
separate stage.

Poster Session II
Summarized by Kai Ren (kair@cs.cmu.edu)

VMOFS: Diskless and Efficient Object File System for 
Virtual Machines 
Shesha Sreenivasamurthy and Ethan Miller, UC Santa Cruz 

This project is to design an object file system for virtual machine 
environment by deduplicating common files shared in many VM 
images. In their architecture, guest machines will run a VFS 
layer software called VMOFS to track the mapping between 
inode and object, and a hypervisor manages the storage and 
deduplicates file objects and stores them into underlying object 
storage. Deduplication is achieved at a per-object level to reduce 
the dedup table size. This work is still under development, and no 
experimental results were presented.

Characterizing Large Scale Workload and Its Implications 
Dongwoo Kang, Seungjae Baek, Jongmoo Choi, Donghee Lee, and Sam H. Noh, 
Dankook University, University of Seoul and Hongik University 

This project analyzes storage workloads from a collection of 
traces from various cloud clusters. The observations are (1) 
workloads with large data are not sensitive to cache size; (2) 
cache allocation should be dynamically tuned due to irregular 
cache status changes; and (3) to achieve high cache hit ratio, one 
might use a policy that quickly evicts blocks with large request 
size and hit counts in a special period. The next part of this proj-
ect will be to apply these observations to design and implement a 
cache service for virtual machine clusters.

Automatic Generation of I/O Kernels for HPC 
Applications
Babak Behzad, Farah Hariri, and Vu Dang, University of Illinois at Urbana-
Champaign; Weizhe Zhang, Harbin Institute of Technology 

The goal of this project is to automatically extract I/O traces 
from applications and regenerate these workloads to different 
scales of storage systems for performance measurement or test-
ing. To fulfill such a goal, the workload generation systems have 
long workflows. First, it extracts traces from multiple levels of 
the I/O flow—application, MPI-I/O, and POSIX I/O levels—and 
from multiple processes. The second step is to merge these 
traces and understand the dependency between I/O operations 
presented in the traces. To construct such a dependency, it needs 
to understand semantics of I/O operations, which is mostly 
inferred from MPI-I/O library calls. For operations without clear 
dependency, timestamps are used to decide the order. The last 
step is to divide the traces, and generate binaries to replay the 
traces or simulate the workloads.
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Poster Session II
Summarized by Qian Ding (qding8@gmail.com)

VMOFS: Breaking Monolithic VM Disks into Objects
Shesha Sreenivasamurthy and Ethan Miller, UC Santa Cruz

Shesha and Ethan propose a solution of efficient file sharing 
among virtual machines (VMs) through an object-based root file 
system. They are building a file system called VMOFS, which 
adopts object-level deduplication to store monolithic VM images. 
The hypervisor layer in the system encapsulates the OSD layer 
and controls the communication between file system and the 
OSDs via iSCSI. VMOFS is still under development so there is no 
evaluation at the current stage.

Characterizing Large Scale Workload and Its Implications
Dongwoo Kang, Seungjae Baek, Jongmoo Choi, Donghee Lee, and Sam H. Noh, 
Dankook University, University of Seoul and Hongik University 

Dongwoo Kang presented work about characterizing a group of 
recently released storage traces and explained their observations 
and possible implications. The traces the team used were from 
MSR-Cambridge and FIU. Their first finding was that such 
traces were not sensitive to cache size when using a simple LRU 
cache but have much variation on the change of cache hit ratio 
and I/O size. They also found long inter-reference gaps (IRG) 
from the traces and provide that as a reason for low cache sensi-
tivity. They propose two ways to improve the hit ratio: dynamic 
cache allocation and evicting short IRGs in the cache. They also 
propose ways for optimizing cache utility on a virtualized stor-
age environment.

MicroBrick: A Flexible Storage Building Block for Cloud 
Storage Systems
Junghi Min, Jaehong Min, Kwanghyun La, Kangho Roh, and Jihong Kim, 
Samsung Electronics and Seoul National University

Jaehong Min presented the design of MicroBrick for cloud stor-
age. The authors tried to solve the diverse resource requirement 
problem, such as balancing the computing and storage resource 
in cloud services. Each MicroBrick node adopts flexible control 
for both CPU-intensive and storage-intensive configuration 
through a PCIe switch. Thus, when the cloud system is com-
posed of MicroBrick nodes, they can use a software management 
layer for autoconfiguration for different resource requirements. 
The preliminary evaluation of MicroBrick shows competitive 
results by running cloud computation (e.g., wordcount) and sort 
programs.

OS and Storage Interactions
Summarized by Kuei Sun (kuei.sun@utoronto.ca)

Resolving Journaling of Journal Anomaly in Android I/O: 
Multi-Version B-Tree with Lazy Split
Wook-Hee Kim and Beomseok Nam, Ulsan National Institute of Science and 
Technology; Dongil Park and Youjip Won, Hanyang University

Wook-Hee Kim began the talk by reminding us that although 
Android is the most popular mobile platform to date, it has 
severe I/O performance bottlenecks. The bottlenecks are caused 
by the “journaling of journal anomaly” between ext4 and SQLite, 

which is used by many applications. Kim gave a stunning exam-
ple where one insert of 100 bytes resulted in nine random writes 
of 4 KB each. Currently, the database calls fsync() twice: once 
for journaling and once for insertion. Kim and his colleagues 
proposed to obviate the need for database journaling by imple-
menting a variant of multi-version B-tree named LS-MVBT. 

Kim presented several optimizations made to LS-MVBT based 
primarily on the characteristics of the common workloads. Lazy 
split seeks to reduce I/O traffic during node split by simultane-
ously garbage collecting dead entries so that the existing node 
(aka lazy node) can be reused. However, if there are concurrent 
transactions and the dead entries are still being accessed, then a 
workaround is needed. Their solution is to reserve space on each 
node so that new entries can still be added to the lazy node with-
out garbage collection. To further reduce I/O traffic, instead of 
periodic garbage collection, LS-MVBT does not garbage collect 
unless space is needed. Next, Kim showed that by not updating 
the header pages with the most recent file change counter, only 
one dirty page needs to be flushed per insertion. He pointed out 
that this optimization would not increase overhead during crash 
recovery because all B-tree nodes must be scanned anyway. 
Lastly, they disabled sibling redistribution from the original 
MVBT and forced a node split whenever a node became full. Kim 
showed that this optimization actually reduced the number of 
dirty pages.

In their evaluation, Kim showed that LS-MVBT improves 
performance of database insertions by 70% against the original 
SQLite implementation (WAL mode). LS-MVBT also reduces 
I/O traffic by 67%, which amounts to a three-fold increase in 
the lifetime of NAND flash. LS-MVBT is also five to six times 
faster than WAL mode during recovery. Lastly, LS-MVBT out-
performs WAL mode unless more than 93% of the workload are 
searches. At the end of the talk, Kim’s colleague demonstrated 
a working version of their implementation, showing the perfor-
mance improvement in a simulated environment. 

Journaling of Journal Is (Almost) Free
Kai Shen, Stan Park, and Meng Zhu, University of Rochester

Kai Shen started by arguing that journaling of journal is a viola-
tion of the end-to-end argument and showed that adding ext4 
journaling to SQLite incurs a 73% slowdown in their experi-
ments. Existing solutions require substantial changes to either 
the file system or the application. The authors proposed two 
simple techniques. 

Single-I/O data journaling attempts to minimize the number of 
device writes on the journal commit’s critical path. In this case, 
data and metadata are journaled synchronously. During their 
experiments, they discovered a bug with ext4_sync_file(), which 
unnecessarily checkpoints data to be overwritten or deleted 
soon. The problem with the data journaling is the large volume 
written due to the page-sized granularity of ext4. Therefore, 
they proposed a second technique called file adaptive journaling, 
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which allows each file to have a custom journaling mode. They 
found the solution effective for the journaling of journal problem. 
In particular, write-ahead logs would prefer ordered journaling 
due to little metadata change, and rollback logs would prefer data 
journaling due to heavy metadata change. In their evaluation, 
Shen showed that their enhanced journaling incurs either little 
to no cost.

Theodore Wong (Illumina, Inc.) asked what would happen if file 
system journaling were not used. Shen explained that protection 
of both file system metadata and application data still would be 
necessary because an untimely crash may cause the file system 
to become inconsistent. Because the database only protects its 
own data in a file, an inconsistent file system may cause the 
database file to become inaccessible. Kim commented on the 
fact that enterprise databases usually skip over the file system 
and operate directly on raw devices. However, lightweight data-
bases may still prefer running on top of file systems for simplic-
ity. Peter Desnoyer (Northeastern University) wanted to know 
whether these changes could affect the opportunity for inconsis-
tency. Shen replied that as long as the failure model is fail-stop, 
then all of the guarantees would still apply.

Checking the Integrity of Transactional Mechanisms
Daniel Fryer, Mike Qin, Kah Wai Lee, Angela Demke Brown, Ashvin Goel, and 
Jack Sun, University of Toronto

Daniel Fryer began his talk by showing us that corruptions 
caused by file system bugs are frequently catastrophic because 
they are persistent, silent, and not mitigated by existing reli-
ability techniques. The authors’ previous work, Recon, ensures 
that file system bugs do not corrupt data on disk by checking the 
consistency of every transaction at runtime to prevent corrupt 
transactions from becoming durable. Because Recon performs 
its checks at commit time, it requires the underlying file system 
to use a transaction mechanism. Unfortunately, Recon does 
not detect bugs in the transaction mechanism. Their solution 
is to extend Recon to enforce the correctness of transaction 
 mechanisms. 

Recon already checks the consistency of transactions by verify-
ing that metadata updates within a transaction are mutually 
consistent. To enforce atomicity and durability, Recon needs to 
also be able to catch unsafe writes and prevent them from reach-
ing disk. Fryer defined two new sets of invariants, atomicity and 
durability invariants (collectively called location invariants), 
which govern the integrity of committed transactions. These 
invariants need to be checked on every write to make sure that 
the location of every write is correct. Fryer walked us through 
two types of transaction mechanisms, journaling and shadowing 
paging, as well as their respective invariants. Next, he presented 
a list of file system features that are required for efficient invari-
ant checking at runtime. 

Fryer and his team implemented location invariants for ext3 and 
btrfs by extending Recon. They had to retrofit ext3 with a meta-
data bitmap to distinguish between data and metadata, which 

is required to detect unsafe overwrites to metadata blocks. To 
evaluate the correctness of their implementation, they corrupted 
file system writes of various types to simulate bugs in the trans-
action mechanism and successfully caught most of them. The 
ones they missed did not affect file system consistency. Finally, 
they showed that adding location invariants to Recon incurs 
negligible overhead.

Keith Smith (NetApp) asked what could be done after a violation 
was detected. Fryer responded that while optimistically delay-
ing a commit is plausible, what they’ve done at the moment is to 
return an error since their first priority is to prevent a corrupt-
ing write from reaching disk. Ted Ts’o (Google) wanted clari-
fication on why losing some writes did not affect correctness 
during the corruption experiments. Fryer explained that the 
particular implementation of the file system was suboptimal and 
was checkpointing some metadata blocks unnecessarily because 
future committed versions of those blocks exist in the journal. 
Therefore, losing those writes was inconsequential. Harumi 
Kuno (HP Labs) was baffled by the fact that checking both con-
sistency and location invariants resulted in better performance 
than just checking consistency alone. Fryer believed that it was 
simply due to an insufficient number of trials. 

OS and Peripherals
Summarized by Matias Bjørlin (mabj@itu.dk)

DC Express: Shortest Latency Protocol for Reading Phase 
Change Memory over PCI Express
Dejan Vučinić, Qingbo Wang, Cyril Guyot, Robert Mateescu, Filip Blagojević, 
Luiz Franca-Neto, and Damien Le Moal, HGST San Jose Research Center; 
Trevor Bunker, Jian Xu, and Steven Swanson, University of California, San 
Diego; Zvonimir Bandić, HGST San Jose Research Center

Dejan Vučinić began on a side note by stating that the next big 
thing isn’t DRAM, because of its high energy utilization, refer-
ring to the previous FireBox keynote. He then stated the motiva-
tion for his talk by showing upcoming non-volatile memories 
and their near DRAM access timings. He explained how they 
each compete with DRAM on either price or latency and showed 
why PCM has fast nanosecond reads but microsecond writes. 
He explained that to work with PCM, the team built a prototype, 
exposing it through a PCI-e interface.

Dejan then showed how PCI-e communicates with the host 
using submission and completion queues. When a new request 
is added to the queue, a doorbell command is issued to the PCI-e 
device. When received, the device sends a DMA request to which 
the host returns the actual data request. The request is pro-
cessed, and data with a completion command at the end is sent. 
The handshake requires at least a microsecond before any actual 
data is sent. To eliminate some of the overhead, they began by 
removing the need for ringing the doorbell. They implemented 
an FPGA that continuously polls for new requests on the mem-
ory bus. Then they looked at how completion events take place, 
which the host could poll for when the data is finished. However, 
instead of the host polling, they show that completion can be 
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inferred from the response data by inserting a predefined bit 
pattern in DRAM. Data is stored in DRAM from the device and 
should be different; thus, they could infer when all data packets 
have been received.

Dejan then showed that using their approach they achieve, using 
a single PCI-e lane, a 1.4 ms round-trip time for 512 bytes. Even 
with these optimizations, there continues to be large overhead 
involved, and thus the fundamental overhead of the communica-
tion protocol should be solved to allow PCM and other next-
generation memories to be used efficiently.

Brad Morrey (HP Labs) asked why they didn’t put it on the 
DRAM bus. Dejan replied that there is a need for queues within 
the DRAM. The queues are needed to prevent stalls while wait-
ing. He wants to have it there in the future, but PCM power 
limitations should be taken into consideration. Peter Desnoyers 
(Northeastern University) asked if they had a choice on how 
PCI-e on PCM could evolve and what would they do? Dejan 
answered that it could be used with, for example, hybrid memory 
cubes. Finally, Ted Ts’o (Google) noted that the polling might be 
expensive in power. What is the power impact? Dejan said that it 
is very low, as you may only poll during an inflight I/O.

MultiLanes: Providing Virtualized Storage for OS-Level 
Virtualization on Many Cores
Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu, and Jinpeng Huai, 
Beihang University

Junbin Kang began by stating that manycore architectures 
exhibit powerful computing capacity and that virtualization 
is necessary to use this capacity. He then continued to argue 
paravirtualization versus operating system virtualization and 
ended by comparing the many layers of a traditional virtualiza-
tion stack with a stack using containers. Containers are simpler 
in their architecture, but they expose scalability issues within 
the Linux kernel.

To solve the scalability issues, Junbin presented MultiLanes. 
The data access for containers are partitioned using a parti-
tioned Virtual File System (pVFS) abstraction. pVFS exposes 
a virtualized VFS abstraction for the containers. In turn, the 
pVFS eliminates contention within the host VFS layer and 
improves locality of the VFS data structures. pVFS communi-
cates with the host using a container-specific virtualized block 
driver (vDrive). The driver takes care of submitting the I/Os 
from the container to the host system. This allows each con-
tainer data partition to be split and thereby avoid contention on 
host VFS locks. Junbin then explained the internal structure of 
the virtualized driver.

They evaluated their solution using both micro and macro-
benchmarks on the file systems ext3, ext4, XFS, and btrfs, with 
microbenchmarks being metadata operations and sequential 
writes. For all of them, the operations scale significantly better 
with additional containers. The macrobenchmarks consist of 
varmail, fileserver, and MySQL, showing similar performance 

improvements. Finally, they discussed the overhead of their solu-
tion and show it to be negligible in most cases. However, exces-
sive block remapping did have a cost during high throughput.

Kai Shen (University of Rochester) asked whether MultiLanes 
adds a large memory footprint for each of the channels they 
create. Junbin said that their approach is complementary to 
previous approaches. Yuan (UCSC) noted that for a large number 
of containers using XFS the performance was much better than 
for ext4. The answer from Junbin and Theodore Ts’o, the ext4 
maintainer, was that it depends on the kernel version and other 
work. Further discussion was taken offline.

Linux FAST Summit ’14: 2014 USENIX 
Research in Linux File and Storage 
Technologies Summit
San Jose, CA 
February 20, 2014
Summarized by Rik Farrow

The Linux FAST Summit took place shortly after FAST ’14 had 
finished. Red Hat offices in Mountain View provided a class-
room that sat 30, but the room was full to the point that some of 
us were sitting in folding chairs at the front or back. Ric Wheeler 
(Red Hat) moderated the workshop.

Unlike the one Linux Kernel Summit I attended, the focus of this 
event was strictly on file systems and related topics. Another 
difference was that—instead of having mainly industry in 
attendance making requests of kernel developers—file system 
researchers, mostly students and some professors, were there to 
make requests for changes in how the kernel works.

The workshop began with Ric Wheeler encouraging people 
to submit changes to the kernel. He also explained the ker-
nel update process, where a release candidate will come up 
and be followed by multiple RCs that, outside of the first two 
RCs, should only include bug fixes. Someone asked about rude 
answers from Linus Torvalds, and James Bottomley (Paral-
lels) responded that sending in patches with new features late 
in the RC process is a common way to get an angry response 
from Linus. Also, the larger the patch set, the less likely it will 
be accepted. Ted Ts’o (Google) pointed out that just getting a 
response from Linus is a big deal and suggested seeing who is 
responding to such a response and who is being ignored. He also 
said that large intrusions to core infrastructure are less likely 
to be accepted. Christoph Hellwig (freelance) pointed out that 
changes to the core of the kernel are harder to validate and less 
likely to be accepted, which makes it very hard to get very high-
impact changes made. 

Ethan Miller (UCSC) wondered who would maintain the code 
that a PhD contributes after they graduate, and Christoph 
Hellwig responded that they want the code to be so good that the 
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candidate gets a job supporting it later. Ric Wheeler commented 
on “drive-by” code drops, and said those are fine; if there is broad 
community support for that area, like XFS or ext4, people will 
review and support the change. James Bottomley said that it is 
important to be enthusiastic about your patch. Ted Ts’o chimed 
in saying that even if your patch is not perfect, it could be seen 
as a bug report, or some portion of it might be successful. James 
added that Google recruiters look for people who can take good 
ideas and turn them into working implementations.

Jeff Darcy (Red Hat) asked where they find tests for patches, and 
James said they could look at other file systems. xfstests go way 
beyond XFS, and the VM crew has lots of weird tests.

Ethan Miller launched a short discussion about device drivers, 
wondering who maintains them, and James Bottomley said that 
any storage device that winds up in a laptop will be accepted into 
the kernel. Ted Ts’o said that there were lots of device drivers 
with no maintainer, and James Bottomley suggested that Feng-
guang Wu (Intel) runs all code in VMs for regression testing. 
Andreas Dilger (Google) pointed out that his is just basic testing. 
James said that SCSI devices might stay there forever, or until 
someone wants to change the interface.

Ric Wheeler suggested covering how the staging tree for the ker-
nel works. James explained that there are about 300 core main-
tainer trees, and kernel releases are on a two- to three-month 
cycle. Ted Ts’o said that RC1 and RC2 are where patches go in, 
with patches accepted to RC3 being rare, and that by RC7 they 
better be really critical patches, as that is just before a version 
release. Ted also suggested that if you are a commercial device 
builder, you want to test your device with RC2 to see if changes 
have broken the driver for your device.

Erez Zadok (Stony Brook) asked for a brief history of the memory 
management (MM) tree. Andrew Morton (Linux Foundation) 
explained that MM had become a catchall tree where stuff also 
falls through. Andrew collects these patches and pushes them up 
to Linus.

After a short break, Ric Wheeler opened the discussion about 
shingled drives. Ted Ts’o had suggested the ;login: article by 
Tim Feldman (Seagate) and Garth Gibson (CMU) [1] as good 
preparation for this part of the summit. Briefly, Shingled Mag-
netic Recording (SMR) means that written tracks overlap, like 
shingles on a roof. These tracks can still be read, but writing 
must occur at the end of a band of these shingled tracks, or a 
band can be completely rewritten, starting at the beginning. 
Random writes are not allowed. Vendors can make SMR drives 
that appear like normal drives (managing the changes), partially 
expose information about the drives (restricted), or allow the 
operating system to control writing the drives (host-aware).

Ted Ts’o explained that he had proposed a draft interface for 
SMR on the FSDEVEL list. The goal is to make the file system 
friendly to having large erase blocks like flash, which matches 
host-aware SMR behavior. If the device is restricted, you still 

need the operating system to be aware that it is an SMR drive. 
Ted suggested that this could be part of devmapper (if part of the 
OS) and could begin as a shim layer.

Erez Zadok said that a group at Stony Brook had been working 
with Western Digital and had received some SMR drives with 
a firmware that does more and more, along with a vanilla drive. 
One of his graduate students reports to Jim Molina, CTO of 
Western Digital. Erez wanted to share what they’ve learned so 
far with the Linux file system community.

First, the vendors will not let us put active code into drives. They 
will provide a way of knowing when garbage collection (GC) is 
about to start, and some standards are evolving. Vendors are 
conscious of the desire for more visibility into the 500k lines of 
code already in drives.

Because the drives come to Erez Zadok preformatted, Ric 
Wheeler wondered what percentage remains random, as 
opposed to shingled, bands. Erez said that the vendors wanted 
less than 1% of SMR drives as random (traditional tracks) 
because of the economics involved. They have already done some 
work using NULLFS with the drives, and Jeff Darcy said he had 
experimented with using a shim in the device mapper. Ted Ts’o 
pointed out there was a real research opportunity here in build-
ing a basic redirection layer that makes a restricted drive appear 
like a plain device.

James Bottomley thought that anything they wrote wouldn’t 
last long, as the vendors would move the code into the drive. Eric 
Reidel (Seagate) objected, saying that they need to determine the 
boundary between the drive and some amount of software. That 
boundary needs to take full advantage of the technology, cover-
ing the limitations and exposing the benefits. Eric encouraged 
people to think about this envelope of some hardware and some 
exposed interfaces.

Someone suggested using XFS’s block allocation mechanism. 
Ted Ts’o said that if we could solve multiple problems at once 
with Dave Chinner’s block allocation scheme, it would give us a 
lot of power. Both ext4 and XFS have block allocation maps that 
keep track of both logical and physical block addresses, but keep-
ing track of physical block addresses relies on getting informa-
tion back from drives.

Sage Weil (Inktank) wondered how many hints the drivers 
would need to send to drives; For example, block A should be 
close to B, or A will be short-lived. James Bottomley mentioned 
that most people assume that the allocation table is at the 
beginning of the disk. Erez Zadok replied that if we can produce 
a generic enough abstraction layer, lots of people will use it. It 
could be used with SMR, but also with raw flash. 

Error messages are another issue. Erez said that some drives 
produce an error if the block has not been written before being 
read, and someone else said that the driver could return all 
zeroes for initialized blocks. Erez said that currently, writing to 
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the first block in a zone automatically resets all blocks in that 
zone, but is that the correct behavior? Bernard Metzler (IBM 
Zurich) wondered whether it’s best to expose the full functional-
ity of this storage class, as was done with flash by Fusion-io. In 
10 years, non-volatile memory (NVM) will replace DRAM, so 
should we treat NVM like block devices or memory? 

The mention of NVM quickly sidetracked the discussion. 
Christoph Hellwig suggested that addressing NVM should not 
be an either-or decision, while Ric Wheeler suggested that the 
user base could decide. James Bottomley wondered about error 
handling of NVM. Someone said they had tried using NVM as 
main memory, but it was still too slow, so they tried it via PCI. 
And they did try mmap, and the performance was not very good. 
Christoph responded that what they have called mmap needs to 
be fixed. The idea is to allow writes directly to a page in memory 
and use DMA for backing store.

James Bottomley pointed out that putting NVM on the PCI bus 
causes problems, because it makes it cross-domain. Ric Wheeler 
said this was a good example of the types of problems we need to 
know more about in that vendors can’t talk about what they are 
doing, but then kernel developers and researchers don’t know 
how to prepare for the new technology. Ted Ts’o said that he 
knows that Intel is paying several developers to work on using 
NVM as memory, and not on the PCI bus. 

Erez Zadok said that this would be the first time we had a byte-
addressable persistent memory, with a different point in the 
device space. He hoped it would not wind up like flash, where 
there are very limiting APIs controlling access.

After another short break, two students from the University of 
Wisconsin, Vijay Chidambaram and Thanumalayan Sanka-
ranarayana Pillai, along with Jeff Darcy (Red Hat), addressed 
the group. They have a shared interest in new ways to flush data 
from in-memory cache (pages) to disk, although for different 
reasons. Vijay started the discussion by outlining the problem 
they had faced when needing to have ordered file system writes. 
The normal way of forcing a sync is via an fsync call on a partic-
ular file handle, but this has side effects. Sage Weil asked if they 
were trying to achieve ordering in a single file, and Vijay said 
yes. They had added a system call called osync to make ordered 
writes durable and had modified ext4 and were able to do this in 
a fairly performant way. Christoph Hellwig said that there really 
was no easy way of doing this without a sync, and that no one 
actually had written a functioning fbarrier (write data before 
metadata) call. Vijay said that they had created a new mode for a 
file, and Ted Ts’o asked if, when they osync, it involves a journal 
command. Vijay responded that the osync wraps the data in a 
journal command but does not sync it. 

Jeff Darcy, a lead programmer for Gluster, said that he just wants 
to know what ext4 has done, because they need the correlation 
between user requests and journal commits. Christoph said they 
could easily do that in the kernel because each time they commit, 

there is a log sequence number. They could wait for the return 
from disk and use the log sequence number to implement osync. 
Ted said that it’s the name that’s the problem, like a cookie to 
identify the osync write. Jeff said that getting a cookie back that 
can be used to check if a write has been committed would be 
enough for their purposes.

Vijay stated that their main concern was knowing when data 
has become durable (not that different from Darcy’s concern). 
Kai Shen (Rochester) said he liked the idea, but that it’s not easy 
to use in comparison with atomicity. Kai had worked on a paper 
about msync, for doing an atomic write to one file. Ric Wheeler 
pointed out that Chris Mason (btrfs lead) has been pushing for 
an atomic write, which has not reached upstream (submitted 
for a kernel update) yet, but is based on work done by Fusion-io. 
Vijay complained that with ext4, you have metadata going to the 
journal and data going to the disk, but they need a way of doing 
this atomically. Sage Weil pointed out that there is no such thing 
as a rollback in file systems. Jeff Darcy said that all distributed 
databases have the same problem with durability.

Thanumalayan finally spoke, saying that they had discovered 
people doing fsync after every write and had been searching for 
patterns of fsync behavior themselves. When they shared the 
patterns they had uncovered with application developers, the 
developers’ convictions about how things work were so strong 
they almost convinced him. The room erupted in laughter. On 
a more serious note, Thanumalayan asked, if he does a number 
of operations, such as renames, do they occur in order? Andreas 
Dilger said they don’t have to, but get bunched up. Ted Ts’o men-
tioned that an fsync on one file implies that all metadata gets 
sync’d in ext4 and XFS, but not zfs or btrfs. However, that could 
change, and we might add a flag to control this behavior later.

Ric Wheeler liked this idea and suggested having a flag for async 
vs. fsync behaviors and being able to poll a selector for comple-
tion. Christoph Hellwig thought this wouldn’t buy you much with 
existing file systems, but Ric thought it was worth something. 
Ted Ts’o said they could add a new asynchronous I/O type, and 
Christoph said that AIO sync has new opcode, IOCB_CMD_
FSYNC, exposed to user space, that is not “wired up.” Ethan 
Miller said it would be nice if you could request ordered writes. 
Greg Ganger (CMU) explained that there’s a good reason why 
databases use transactions, and that they had tried doing this, 
and it’s really difficult.

Erez Zadok commented that it’s interesting to listen to the com-
ments, as he has done 10 years of work on transactional storage, 
worked with umpteen PhDs on theses, and so on. The simplest 
interface to expose to users is start transaction/end transaction. 
To do this, you must go through the entire storage stack, from 
drivers to the page cache, which must be flushed in a particular 
order. Once he managed to do all that, he found that people didn’t 
need fsync. Vijay piped up with “that’s what we’ve been trying to 
do,” and Sage Weil said they had tried doing this with btrfs and 
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wondered if they ever got transactions to work. Erez replied that 
they had gotten transactional throughput faster than some, but 
Thanumalayan jumped in to say they had run into limits on how 
large a transaction could be. Vijay said that if you start writing, 
then use osync—it works like a transaction. 

Ric Wheeler then commented that this is where kernel people 
throw up their hands and say show us how easy this is to do. Ted 
Ts’o wondered why it couldn’t be done in user space (FUSE), and 
Ric replied that they need help from the kernel. Sage Weil had 
tried making every transaction checkpoint a btrfs snapshot, so 
they could roll back if they needed to. Jeff Darcy said that if you 
need multiple layers working together, you will have conflicting 
events. Thanumalayan just wants a file system with as much 
ordering as possible. He was experimenting with what hap-
pens to a file when a crash occurs, and said that POSIX allows 
a totally unrelated file to disappear. Christoph Hellwig shouted 
out that POSIX says nothing about crashes and power outages, 
and Jeff agreed that POSIX leaves this behavior undefined.

Jeff claimed he would be happy if he could get a cookie or trans-
action number, flush it with waiting, and select on that cookie 
for completion. Greg Ganger suggested he actually wanted more, 
to commit what he wants first. Vijay explained that the NoSQL 
developers they’ve talked to don’t need durability for all things, 
but for some things, and that they have code, used for an SOSP 
2013 paper, as an example. Jeff thought that NoSQL developers 
make assumptions about durability all the time, and about how 
fsync works. Ted Ts’o thought that all they needed to do was 
add new flags, or perhaps a new system call. Christoph Hellwig 
pointed out that there is sync_file_range, for just synchronizing 
file data within the given range, but not metadata, so it isn’t very 
useful.

Kai Shen suggested that perhaps fsync should work more like 
msync, which includes an invalidate flag that makes msync 
appear atomic. Christoph said that older systems didn’t have a 
unified buffer, so you had to write from the virtual memory sys-
tem to the file system buffers. Ric Wheeler mentioned user space 
file systems, and Sage Weil suggested that it would be nice if 
you could limit the amount stored in the caches based on cgroup 
membership. James Bottomley stated that the infrastructure is 
almost all there for doing this with cgroups already.

Sage brought up another problem: that when a sync occurs, the 
disk gets really busy. Because of this, they (Inktank) actually 
try to keep track of how many blocks might be dirty so they can 
guess how long a sync might take. Jeff Darcy concurred, saying 
that they do something similar with Gluster. They buffer up as 
much as they can in the FUSE layer before pushing it into the 
kernel via a system call. James said that the Postgres people 
want the ability to manage write-ahead as well. Christoph 
clarified this, saying that they want to use mmap for reads, but 
control when to commit data (write) when it changes. They don’t 

want the kernel storing the data on its own, but rather they want 
a backing store in place. This would be like mmap private.

James Bottomley said that the problem is related to journal lock 
scaling, when you want a lock for each subtree. You want to make 
the journal lock scale per subtree. Ted Ts’o pointed out that the 
last paper at FAST [2] covered this very topic. James pointed 
out that this would be a problem for containers, which are like 
hypervisors with only one kernel (like Solaris has in some form).

Kirill Korotaev (Parallels) then went to the front of the room to 
introduce another topic: FUSE performance. Most people think 
FUSE is slow, said Kirill, but they have seen up to 1 GB/s in real 
life. After that, bottlenecks slow more performance gains. To 
get past that, they need some interface to do kernel splicing and 
believe that would be quite a useful interface. Copying using 
pipes is very slow because pipes use mutex locks, and pipes don’t 
work with UNIX sockets. What they basically need is the ability 
to do random reads of data with these buffers and to send them 
to a socket. Kirill also questioned why there’s a requirement that 
data must be aligned in memory. Andrew Morton said that was 
a very old requirement for some devices, and James Bottomley 
said that’s why there is a bounce buffer for doing alignment 
under the hood.

Kirill wanted to revive IOBuff, where they could attach to pages 
in user space, then send them to sockets. James pointed out that 
except for DirectIO, everything goes through the page cache, and 
moving data from one file to another is hard. Ric Wheeler asked 
if the interface was doable, and Kirill said that they think it is. 
Andrew Morton wondered if this was different from sendfile, 
and Sage Weil thought perhaps splice would work as well, but 
Kirill responded that neither work as well. Sage thought the 
problems could be fixed, but Kirill ended on the note that if it 
were easier, it would have been done before.

George Amvrosiadis (University of Toronto) introduced the 
topic of maintenance and traces. For durability, storage systems 
perform scrubbing (background reads) and fsck for integrity, but 
today those things need to be done online. The issue becomes 
how to do this without disturbing the actual workload. For 
scrubbing in btrfs, you get an upper bound on the number of 
requests that can be processed during scrubbing. Ric Wheeler, 
who worked at EMC before moving to Red Hat, asked how often 
do you want to scrub, and how much performance do you want to 
give up, and for how long.

George Amvrosiadis wanted to monitor traces and then use the 
amount of activity to decide when to begin scrubbing during 
what appeared to be idle time. Ric Wheeler said that while he 
was at EMC, he saw disks that were busy for years, and the only 
“idle time” was when the disks performed self-checks. Andreas 
Dilger asked if there was an idle priority, and George said they 
wanted to do this for btrfs. The problem is that all requests look 
the same, as maintenance requests look like other requests. Ric 
responded that they need a maintenance hint. Ted Ts’o said you’d 



80   JUNE 2014  VOL.  39,  NO.  3  www.usenix.org

REPORTS

need to tag the request all the way down to the block device layer, 
orthogonal to priority. George then stated that all they want to 
do is optimize when to schedule scrubbing. James Bottomley 
said they already have a mechanism for increasing the prior-
ity of requests, and perhaps they could also support decreasing 
priority. Ric replied that this sounded like the “hints” stuff from 
last year’s Linux Filesystem Summit. If the file system supports 
it, although we can’t guarantee it, we can at least allow it, so this 
sounds easy.

Ethan Miller wondered if you have devices with built-in intel-
ligence, do you really want both the device and the kernel doing 
scrubbing? Ric answered that you want to scrub from the 
application down to the disk, checking the entire path. George 
Amvrosiadis then asked if scrubbing could cause more errors or 
increase the probability of errors. Ethan said that scrubbing has 
no effects; it’s just reading. But Eric Reidel pointed out that all 
disk activity has some small probability of causing a problem, 
like smearing a particle on a disk platter. These probabilities are 
small, compared to the MTBF for a drive. 

George Amvrosiadis still wanted some hint from the file system 
that work was about to begin. This brought up a tangent, where 
Ric Wheeler pointed out that batching up work for a device has 
caused problems in the past. Andreas Dilger explained that if 
just one thread were writing, you could get 1000 transactions 
per second, but if the application were threaded, and two threads 
were writing, the rate would go down to 250 per second. The 
problem occurred because the file system would wait a jiffy (4 ms 
at the time) trying to batch writes from threaded applications.

Greg Ganger said that there is a temptation to do all types of 
things at the SCSI driver level so it can do scheduling, and Ric 
Wheeler responded that the storage industry has been looking 
at hints from the file system for a long time. James Bottomley 
replied that the storage industry wanted hints about everything, 
a hundred hints, and Ted Ts’o added, not just hints, but 8–16 
levels for each hint.

George Amvrosiadis then asked about getting traces of read/
write activity, and Ethan Miller agreed, saying that they would 
like to have interesting traces shared. Ric Wheeler said that peo-
ple have worked around this using filebench, and Greg added that 
it would be nice to have both the file and block level trace data.

Erez Zadok, the co-chair of FAST ’15, said that USENIX is 
interested in promoting openness, so for the next FAST, when 
you submit a paper you can include whether you plan on sharing 
traces and/or code. Christoph Hellwig said just include a link to 
the code, and Ted Ts’o added that could be done once a paper has 
been accepted. Ethan Miller said that anonymization of traces 
is really hard, and they had experience working with NetApp on 
wireshark traces for a project in 2013. Erez pointed out that HP 
developed a standard, the Data Series format, and also developed 
public tools for converting to this format. He continued saying 
that EMC plans on releasing some traces they have been collect-

ing for several years, and that a past student, Vasily Tarasov, had 
spent a week at their datacenters collecting statistics.

Several other topics were covered during the final hour: RDMA, 
dedup, and scalability, but your correspondent missed this in 
order to catch a flight to SCaLE 12x in Los Angeles.

I did appreciate getting to watch another summit in progress, 
and was reminded of evolution. The Linux kernel evolves, based 
on both what people want, but even more on what contributors 
actually do. And, as with natural evolution, most steps are small 
ones, because changing a lot at once is a risky maneuver.
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