22222222

aaaaaaaaaaaaaa
Staff Scientist

Vickie Li
Developer Evangelist
ShiftLeft

AN

% e

22222222

WHAT YOU'LL LEARN
IN THIS SESSION

OWASPTOPTEN -
WHAT COULD GO WRONG?

® Tnjection

e Broken Authentication

e Sensitive Data Exposure

e XML External Entities (XXE)

e Broken Access Control

e Security Misconfiguration

® Cross-Site Scripting (XSS)

® Tnsecure Deserialization

e Using Components with Known Vulnerabilities
e Tnsufficient Logging & Monitoring

LISA 2021

€< shift

SUL INJECTION

. 13379 34th 6.99 94th 20.62 9ist
spaceraccoon (spaceraccoon)
Reputation Rank Signal Percentile Impact Percentile
715 m SQL Injection Extracts Starbucks Enterprise Accounting, Financial, Payroll Database Share:
State ® Resolved (Closed) Severity [Critical (9.3)
Disclosed August 6, 2019 12:51am -0500 Participants # ™ S
Reported to Starbucks Visibility Disclosed (Limited)

Reported at April 8, 2019 5:38am -0500

Other non domain specific items
(Other)

Asset

CVEID

Weakness SQL Injection

e Starbucks SQL injection: https://hackerone.com/reports/531051

LISA 2021

K< ShiftLeft

THE SDLC:
SUFTWARE DEVELOPMENT LIFE CYCLE

® Requirements
e Design

e Testing
eeeeeeee

22222222

THE SDLC:
SUFTWARE DEVELOPMENT LIFE CYCLE

® Requirements
e Design

® Testing
eeeeeeee

R Design Cod Testin
22222222 Shift left

THE SDLC:
SUFTWARE DEVELOPMENT LIFE CYCLE

® Requirements
e Design

® Testing
eeeeeeee

y | y |
R D eeeee COd - -
22222222 Shift left

THE SDLC:
SUFTWARE DEVELOPMENT LIFE CYCLE

® Requirements
e Design

® Testing
eeeeeeee

—

22222222 Shift left

SHIFTING LEFT

Relative Cost of Fixing a Bug

LISA 2021 The relative costs of fixing bugs in terms of person-hours. Data courtesy of NIST:
(Shift https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf.

https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf

SHIFT LEFT: REQUIREMENTS

® Ask security questions from the very start.
® Tnclude security folks in requirement planning.

d | |

LISA 2021

K7 ShiftLeft

Testing

Release

SHIFT LEFT: DESIGN

® Plan application design around security requirements.
® Consider building in security mechanisms 1like input validation,
output encoding, and prepared statements from the start.

| d | | Yy

Requirements - Code Testing Release

LISA 2021

K7 ShiftLeft

SHIFT LEFT: CODE

e Choose a secure programming language and framework.
® Handle untrusted data safely via validation, sanitization, and
output encoding.

e ITmplementing proper error handling and logging.

| | d | Yy

- Testing Release

Requirements Design

LISA 2021

K7 ShiftLeft

SHIFT LEFT: TESTING

® \lahual code review

e SAST (Static Analysis Security Testing)
e SCA (Software Composition Analysis)

e DAST (Dynamic Analysis Security Testing)
® Pentests + bug bounty programs

| | |

Requirements Design Code

LISA 2021

K7 ShiftLeft

SHIFT LEFT: RELEASE

® Pay attention to the security of your CICD pipeline.
e Build security tests into the pipeline, such as dependency
monitoring and SAST scans.

| | | |

Requirements Design Code Testing

LISA 2021

K7 ShiftLeft

SUL INJECTION

e A SQL Injection attack is when an attacker can inject arbitrary
SQL code into SQL statements that an application uses to access
its database.

LISA 2021

€< Shift

SUL INJECTION

e A SQL Injection attack is when an attacker can inject arbitrary
SQL code into SQL statements that an application uses to access
its database.

String queryString =
"SELECT * FROM USER WHERE
USERNAME = '" + Username + "'
AND PASSWORD = '" + Passmword + "'";

sql.executeQuery(QueryString)

LISA 2021

€< Shift

SUL INJECTION

e A SQL Injection attack is when an attacker can inject arbitrary
SQL code into SQL statements that an application uses to access
its database.

String queryString =
"SELECT * FROM USER WHERE
USERNAME = '" + Username + "'
AND PASSWORD = '" + Passmord + "'";

HTTP request:
POST /login

Username=Vickie

sql.executeQuery(QueryString) Password=pas smord123

LISA 2021

€< Shift

SUL INJECTION

e A SQL Injection attack is when an attacker can inject arbitrary
SQL code into SQL statements that an application uses to access
its database.

String queryString = z HTTP request:

"SELECT * FROM USER WHERE
USERNAME = '" + Username + "'

POST /login
AND PASSWORD = '™ + Password + "'";

Username=Vickie

sql.executeQuery(QueryString) Password=pas smord123

LISA 2021

€< Shift

SUL INJECTION

e A SQL Injection attack is when an attacker can inject arbitrary
SQL code into SQL statements that an application uses to access
its database.

SELECT Id FROM Users
WHERE Username='vickie' AND Password='passmordl23s’ ;

LISA 2021

€< Shift

SUL INJECTION

e A SQL Injection attack is when an attacker can inject arbitrary
SQL code into SQL statements that an application uses to access
its database.

String queryString = z HTTP request:

"SELECT * FROM USER WHERE
USERNAME = '" + Username + "'

POST /login
AND PASSWORD = '™ + Password + "'";

Username=admin’ ; - -

sql.executeQuery(QueryString) Password=pas smord123

LISA 2021

€< Shift

SUL INJECTION

e A SQL Injection attack is when an attacker can inject arbitrary

SQL code into SQL statements that an application uses to access
its database.

SELECT Id FROM Users

WHERE Username='admin';-- ' AND Password='passwordil23’;

LISA 2021

€< Shift

SUL INJECTION

e A SQL Injection attack is when an attacker can inject arbitrary

SQL code into SQL statements that an application uses to access
its database.

SELECT Id FROM Users
WHERE Username='admin’; --

LISA 2021

€< Shift

PREVENTING SQL INJECTION

e A SQL Injection attack is when an attacker can inject arbitrary

SQL code into SQL statements that an application uses to access
its database.

SELECT Id FROM Users
WHERE Username='admin’; --

LISA 2021

€< shift

PREVENTING SQL INJECTION

® How will sensitive data be stored and transported?
® llhen does this app need to take in user input?

® llhere does this app make database calls?

® Are user input needed in database calls?

d | | | Yy

- Design Code Testing Release

LISA 2021

K7 ShiftLeft

PREVENTING SQL INJECTION

® llhat mechanisms should we use to handle user input safely?

® llhere are input validation, sanitization, and escaping needed?

e How do we secure database calls?

* How do we store sensitive data safely to minimize damage in case
of a breach?

o llhat is the least privilege needed for the application to run?

* How do we backup data and code?

e How should we log potential attacks and errors?

Requirements Design Code Testing Release

LISA 2021

€< Shift

PREVENTING SQL INJECTION

e Implement input validation.

® Escape or reject dangerous characters.

e Implement prepared statements.

e ITmplement the principle of least privilege.
e Store data securely.

| | d | Yy

- Testing Release

Requirements Design

LISA 2021

K7 ShiftLeft

PREVENTING SQL INJECTION

® lanual code review of dangerous functions.
e SAST scanning for signatures of SQL injection.
e SCA to ensure third-party components are secure.

| | |

Requirements Design Code

LISA 2021

K7 ShiftLeft

PREVENTING SQL INJECTION

® Build security tests into the pipeline, such as SCA and SAST
scans.

e Bug bounty programs.
® Reqularly back up important data and code.
® \lonitor the application for potential attacks.

| | | |

Requirements Design Code Testing

LISA 2021

K7 ShiftLeft

LISA 2021

€< shift

THANK'YOU!

Feel free to connect:
avickieli?
a@atuxology

S N N\

