yahoo! TS Techcrunch Yam-l autchiog MAKERS yahoo! engadget yahoo! Aol. yahoo!

Performance Analysis of
XDP Programs

LISA 21

Zachary H. Jones, Verizon Media Platform

verizon
media

Verizon Media Platform

Europe
PoPs
Amsterdam
Tbps NOI'th_ Bucharest
America Copenhagen
Frankfurt
NGEiGHC it PoPs Helsinki)
etwork Capacity Ashburn Lisbon o020 Asia
Atlanta London 9% 'oo
quton 1) Madrid Q P PoPs
Chicago QQQQO Manchester o 2 @ Bangalore
+ Dallas °°o ° o Marseile = ° 50 Bangkok
Denver v Q % Milan o Chennai
Detroit) 4 Q Munich % Q 0 8 Hong Kong
PoPs Guadalajara o% Paris () . Jakarta
Houston Riga o0 Q Q Kaohsiung
Las Vegas % Sofia Manila
Los Angeles South 3 Stockholm 0 Q Mumbai
Mexico City ou \fiepna Mi New Delhi
- - iddle East ©
Miami America o Warsaw Dedia
Neyv York ' PoPs Seoul
Philadelphia PoPs _ 09 X Fujairah Singapore
Continents Phoenix Barranquilla Kuwait Taipei
Pittsburgh Bogota ® o Muscat 0 Tokyo
Puebla Buenos Aires i o 0
Querétaro Lima i ; i
X San Jose Medellin Africa Oceania
Seattle Rio de Janeiro PoPs PoPs
Washington D.C. Santiago Johannesburg Auckland
Sao Paulo Nairobi Melbourne

Interconnects Valparaiso Sydney

What is XDP (and BPF)?

® XDP (eXpress Data Path) is a BPF based high performance packet processor in the Linux
networking stack’

O It does not require specialized hardware, bypass the kernel, or replace the TCP/IP stack
O For higher performance, it does require driver support

® BPF (Berkeley Packet Filter) is a virtual machine-like construct inside the Linux kernel to
allow safe execution of arbitrary bytecode?

® More information:
O https://www.iovisor.org/technology/xd
O https://ebpf.io/

O https://aithub.com/iovisor/bpf-docs/blob/master/Express Data Path.pdf

verizon’
media 3

https://www.iovisor.org/technology/xdp
https://ebpf.io/
https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf

How did | get here?

ONE FRIDAY AFTEQNDON...—‘r

I HAD AN IDEA TODAY

BUOT HASH TABLES
REQUIRE LESS WORK

ZACH. A FEW MONTHS LATER.. ===

HEY' "M FINALLY DONE
AND THE ANSWER IS.-

IT DEPENDS ——\

TO CODE
LET'S ALWAYS VSE EFL\);-T gg%AYS ARE
BPF-MAP-TYPE-HASH
BPF IS FAST
ALAWAYS LSE
BPF-MAP-TYPE-ARRAY
UNLESS WE NEED $A0%>H'T:;m; DO
MORE COMPLEXITY \
B ’ AR "
[—‘ — — —
Verizon‘/ Made with http://cmx.io

media

N

NOW TO FILL IN A FEW

MONTHS Of DETAILS

A few months of details...

1. Whyis measuring XDP/BPF performance hard?

verizon
media

Observing XDP Test Deployment

1
® Ran a XDP program on one 1

server in a production test 14

POP 13

® Increased load in the POP e
1

® Observed difference in

SoftIRQ cpu utilization
between traditional kernel
code and XDP acceleration
code

® XDP test server (orange line
on the bottom) utilization is
much lower

® Isittoolow?

Soft IRQ CPU Utilization

verizon’
media

Think about what we are observing

® | could not explain the CPU utilization behavior.

® Brendan Gregg summarizes the concept of Active Benchmarking

O “With active benchmarking, you analyze performance while the benchmark is still

running (not just after it's done), using other tools. You can confirm that the benchmark
tests what you intend it to, and that you understand what that is.”3

® | went back to our test lab and investigated further
O Synthetic load against an XDP program at 20Mpps (64 byte packets)
O System under test configured using 20 RSS CPUs
O 1Mpps per RSS CPU was consuming 1% soft IRQ utilization on each RSS CPU

verizon’
media

Think about what we are observing (cont’d)

® 1% of aCPUis 10ms
O 10ms for 1M pkts is 10ns per packet, 10ns on a 3GHz is 30 cycles per packet
® 30 cycles to run driver and XDP code
O Parse IP address, port, TCP flags, window length, ttl, lookup connection in state table,
expand packet buffer to add VLAN tag, rewrite packet mac address, go through driver
Tx XDP code
® Thatis 3 cycles per task.
O It takes approximately 2 to 10 cycles for L1 and L2 cache data accesses alone
® Linux Network code, interrupt handler, Rx cleanup path all need to run in the 30 cycles.
® The utilization is unrealistically low.
® Before this point, | was doing what Gregg calls “casual benchmarking”
O “You benchmark A, but actually measure B, and conclude you've measured C.”®
verizon’

media

Time Accountingis a Hard Problem

® CPU utilization measurements in utilities like top and sysstat are skewed.

® Linux has multiple ways to keep track of time
O See CONFIG * ACCOUNTING * kernel options
O Different Linux distros use different default accounting methods

O The accounting methods impact the kernel's perception of time

® XDP code executes in interrupt driven soft IRQ context

verizon’
media

Time Accounting is a Hard Problem (cont’d)

® Timekeeping precision in hard and soft IRQs contextes is challenging
O Accounting based on ticks can miss entire softirq periods.

O Accounting based on hard/soft IRQ transitions is more accurate (can still be skewed by
8%%) but adds overhead to every transition.

O Idle polling (C-state O only) can help mitigate inaccuracies of tick accounting

® Hardware performance counters can be used for CPU utilization reporting as well

verizon’
media

10

This is not a talk about CPU utilization...

® ..but that 1% was really 60%
O CPU utilization measurements was good reinforcement for Active Benchmarking
O XDP/BPF is fast...out not 30 cycles per packet fast for our workload
® The performance of XDP/BPF does come at a cost
O BPF code is jitted and inlined aggressively
B Call graphs are flat, no bpf to bpf function calls before 4.16
O XDP programs exist within the limits of New API(NAPI) networking interface
B Scaling limited by overhead of interrupts, time slicing, DMA management, etc
O BPF programs do not have kprobe hooks

B With kernel 5.5 or newer and CONFIG DEBUG BTF=y, you can attach
fentry/fexit BPF prog probes and profile BPF progs

® BPF is moving fast and features are being introduced rapidly

verizon’
media

1

A few months of details...

2. Anapproach for XDP performance analysis

verizon
media

12

Focusis on Performance of BPF code

® Thisis not a talk about arrays vs hash tables...

O ..we already know the answer is “it depends”

O But, the conversation was a “springboard” to get serious about performance analysis
® Will not cover XDP-adjacent tuning topics

O RSS, RPS

O netdev budgets

O CPU affinity, isolation

O RCU tuning

O cpupower

® Will mention XDP-adjacent tuning efforts at times

verizon’
media

13

Three Components to Our Approach

Analytical Budget Building Block
Time Measurement Microbenchmarks
Goal: To understand where CPU Goal: To have an understanding of
time is being spent and remaining pathlength cost of BPF helpers and
free time data structures in ideal situations
verizon’

media

Instruction level
Sampling and
Annotation

Goal: To be able to find hot spots
and common branches in our BPF
code

14

Analytical budget time measurement

® Use flame graphs to visualize what the CPU is doing
O http://www.brendangrega.com/FlameGraphs/cpuflamegraphs.html
O Can see spires for XDP code, networking, and other code running on the CPU
O Networking code does not scale linear with load, so plan tests accordingly
® Flame graphs will not show idle time because the CPU is asleep without tuning the kernel
O Add“idle=po11” to GRUB kernel arg line
O Use cpupower to disable all C-states dynamically

O Note: Using “intel idle.max cstate=0"disables the intel_idle driver but under
certain circumstances will leave only C-state 1 enabled

® Record performance data for single CPU
O Configured P-states to run all cores at All-Core Turbo speed to ensure consistency

O Record one of the RSS CPUs running XDP program (perf record -c <cpu num>)

verizon’
media 15

http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

Flame Graph

| poll_idle
| cpuidle_enter_state
cpuidle_enter
| call cpuide
| ‘memcmp do_idle
\ lookup_nulls_elem_raw 3% [} cpu_startup_entry
I |_htab_map_lookup_elem " bpf. bpf_ [I
| 1| | bpf_prog_290e49f44e940077_xdp_test {BPEIPFeGI | secondary_startup_64
|| |swapper

Flame Graph

\
|
|
Networking and |
driver code \']
Housekeeping
and other
system activities
| poll_idle
| cpuidle_enter_state
cpuidle_enter
| call cpuidle
| [memcmp | do_idle
| lookup_nulls_elem_raw kt.. ([FECEEE [cpu_startup_entry)
1| (htab map lookupelem I bpfi. bpf_map.. | I
/|| §bpf_prog_290e49f44e940077_xdp_test {BPEIEeg | secondary_startup_64
| Isivapper

Flame Graph

Our XDP program and BPF helpers

| lookup_nulls_elem_raw

kt.. (ERGREE q
1Bpfl bpf_map.. © || (=

secondary_startup_64

1]
| Il §bpf prog 290e49f44e940077 xdp_test
||| swapper

Flame Graph

- an
-

Our XDP program and BPF helpers

Idle Time

| lookup_nulls_elem_raw

kt.. (ERGREE B [c
1Bpfl bpf_map.. © || (=

secondary_startup_64

1]
| Il §bpf prog 290e49f44e940077 xdp_test
||| swapper

Flame Graph

Packet rate under this test is our “max’
packet rate, so driver CPU time is not
going to increase.

We have ~25% idle time for additional
complexity in XDP program.

Idle Time

g
| poll_idle
| cpuidle_enter_state
cpuidle_enter
| cal cpuidle
| mememp do_idle
\ lookup_nulls_elem_raw kt.. ([FECEEE [} cpu_startup_entry
I _htab_map_lookup_elem ~ bpf. | l
| 1| | bpf_prog_290e49f44e940077_xdp_test {BPEIPFeGI | secondary_startup_64
|| 1swapper

Flame Graph

Driver interrupt coalescing, |
RSS configuration, and MTU
size can impact this.

Note: More RSS CPUs limits I
max packet rate to DMA from
NIC to RAM.

Use isolcpus and rcu nocbs
to move some work off this CPU.
(Certain kernel config options
must be enabled.)

Idle Time

|
| poll_idle
| cpuidle_enter_state
cpuidle_enter
| call cpuide
| ‘memcmp do_idle
\ lookup_nulls_elem_raw 3 [} cpu_startup_entry
I _htab_map_lookup_elem bpf. [I
/|| §bpf_prog_290e49f44e940077_xdp_test {BPEIPFeGI | secondary_startup_64

|Isjvapper

Microbenchmarking Building Blocks

® Kernel provides BPF_PROG_TEST_RUN command for the bpf syscall to run N iterations of your BPF
program and using the kernel BPF time keeping to return average runtime for the N iterations.

O Example:
>$ bpftool prog loadall ./xdp test.o /sys/fs/bpf/my xdp test
>$ bpftool prog run pinned /sys/fs/bpf/my xdp test/xdp-test data in pkt.in repeat 1000000
Return value: 0, duration (average): 10ns

O An alternative path is to build a test harness program using bpf prog load () and
bpf prog test run xattr()
® To measure the performance of a component or helper (e.g. bpf get numa node id())
O Perform a test run of N iterations of a pass through program (return XDP_PASS)
O Perform a test run of N iterations of a program that uses the component or helper

O Measure the difference in average runtime between the two programs

verizon’
media 2

So...Arrays or Hash Tables?

BPF Map Updates BPF Map Lookups

200 25

20
150

15

100
10

nanoseconds
nanoseconds

50

Array Hash Per-CPU Per-CPU LPM Trie Array Array Array Hash Per-CPU Array Per-CPU Hash LPM Trie
Array Hash Lookup + Lookup +
Spinlock Atomic

e The benchmark is a single consumer/producer model, so normal verses
per-CPU comparisons do not take into account contention from multiple
producers or consumers.

e The benchmark just shows pathlength of the operations

e The answer is still “it depends”

verizon’
media 23

CPU Architecture Comparison

Select BPF Operations bpf_tail_call()

B bpf_get_prandom_u32() [bpf_ktime_get_ns() Array Lookup + Spinlock Update 15

40

30 10
20
10

0

Gen 1 Gen 2 Gen 3 Gen 4 Gen 1 Gen 2 Gen 3 Gen4

nanoseconds
nanoseconds

o

Processor Processor

What makes System 3 unique?

This was a result of a configuration difference. Gen 3
verizon\/ system had Spectre/Meltdown mitigations disabled.

media

CPU Architecture Comparison

Select BPF Operations

B bpf_get_prandom_u32() [bpf_ktime_get_ns() Array Lookup + Spinlock Update
40
30
12}
kel
s
2 20
0
o
(=
©
(=
10
0
Gen 1 Gen 2 Gen 3 Gen 4
Processor

verizon’
media

bpf_tail_call()

nanoseconds

15

10

Gen1 Gen 2 Gen 3 Gen 4

Processor

25

Instruction level sampling and annotation

® Use annotation feature of perf to view annotated assembly code with utilization
percentages

O The profiler looks at the x86_64 assembly code output from the BPF JIT
O BTF annotations show BPF C code inline
® Prerequisites
O perf from kernel >= 51
O perf linked against libopcode (binutils-dev[el]) during compilation

O Compile BPF programs using clang >= 10

O Useperf record with your favorite arguments
O Load profile data with perf annotate or perf report

B Whenin areport, highlight the function of interest press ‘@’

verizon’
media

26

Samples: 1K of event 'cycles', 4000 Hz, Event count (approx.): 333611469 Samples: 1K of event 'cycles', 4000 Hz, Event count (approx.): 323918153
bpf_prog_54ee63da2d576a5e_xdp_test bpf_prog_54ee63da2d576a5e_xdp_test [F bpf_prog_5f78d0a2aee6f57a_xdp_test bpf_prog_5f78d0a2aee6f57a_xdp_test [F

Percent int xdp_test(struct xdp_md *ctx) { Percent int xdp_test(struct xdp_md *ctx) {
nop nop
xchg %ax,%ax xchg %ax,%ax
push %rbp push %rbp

4.00 mov %rsp,%rbp
sub $OX8,%rsp sub $OX8,%rsp
mov S0x7b,%edi mov SOXFFffffff,%edi
__u32 key = TEST_U32_KEY; __u32 key = -1;
mov %rbp,%rsi mov %rbp,%rsi
add SOXFEfffffffffffffc,%rsi add SOXFEfffffffffffffc,%rsi
__u64 *v = bpf_map_lookup_elem(&test_map, &key); __u64 *v = bpf_map_lookup_elem(&test_map, &key);
movabs $Oxffff917fb0ad4000,%rdi movabs $Oxffff917fb02f4000,%rdi
mov %rax,%rdi mov %rax,%rdi
if(v && *v == TEST_U64_VAL) if(v && *v == TEST_U64_VAL)
test %rdi,%rdi test %rdi,%rdi
je 4a
mov SOx2,%eax mov SOX2 ,%eax
if(v && *v == TEST_U64_VAL) if(v && *v == TEST_U64 VAL)
mov 0x0(%rdi),%rdi
if(v && *v == TEST_U64_VAL) if(v && *v == TEST_U64_VAL)
cmp $0x499602d2,%rdi cmp $0x499602d2,%rdi
je 4c je 4c
4a3: xor %eax ,%eax 4a: xor %eax ,%eax
} }
4cC 4c:

retq retq

e Same trivial function profiled on left and right, but with one difference

Samples: 1K of event 'cycles', 4000 Hz, Event count (approx.): 333611469 Samples: 1K of event 'cycles', 4000 Hz, Event count (approx.): 323918153
bpf_prog_54ee63da2d576a5e_xdp_test bpf_prog_54ee63da2d576a5e_xdp_test [F bpf_prog_5f78d0a2aee6f57a_xdp_test bpf_prog_5f78d0a2aee6f57a_xdp_test [F

Percent int xdp_test(struct xdp_md *ctx) { Percent int xdp_test(struct xdp_md *ctx) {
nop nop
xchg %ax,%ax xchg %ax,%ax
push %rbp push %rbp

4.00 mov %rsp,%rbp
sub $OX8,%rsp sub $OX8,%rsp
mov S0x7b,%edi mov SOXFFffffff,%edi
__u32 key = TEST_U32_KEY; __u32 key = -1;
mov %rbp,%rsi mov %rbp,%rsi
add SOXFEfffffffffffffc,%rsi add SOXFEfffffffffffffc,%rsi
__u64 *v = bpf_map_lookup_elem(&test_map, &key); __u64 *v = bpf_map_lookup_elem(&test_map, &key);
movabs $Oxffff917fb0ad4000,%rdi movabs $Oxffff917fb02f4000,%rdi
mov %rax,%rdi mov %rax,%rdi
if(v && *v == TEST_U64_VAL) if(v && *v == TEST_U64_VAL)
test %rdi,%rdi test %rdi,%rdi
je 4a
mov SOx2,%eax mov SOX2 ,%eax
if(v && *v == TEST_U64_VAL) if(v && *v == TEST_U64 VAL)
mov 0x0(%rdi),%rdi
if(v && *v == TEST_U64_VAL) if(v && *v == TEST_U64_VAL)
cmp $0x499602d2,%rdi cmp $0x499602d2,%rdi
je 4c je 4c
4a3: xor %eax ,%eax 43: xor %eax ,%eax
} }
4c 4c:

retq retq

e Look up element in array and compare to value.

Samples: 1K of event 'cycles', 4000 Hz, Event count (approx.): 333611469 Samples: 1K of event 'cycles', 4000 Hz, Event count (approx.): 323918153
bpf_prog_54ee63da2d576a5e_xdp_test bpf_prog_54ee63da2d576a5e_xdp_test [F bpf_prog_5f78d0a2aee6f57a_xdp_test bpf_prog_5f78d0a2aee6f57a_xdp_test [F

Percent int xdp_test(struct xdp_md *ctx) { Percent int xdp_test(struct xdp_md *ctx) {
nop nop
xchg %ax,%ax xchg %ax,%ax
push %rbp push %rbp
4.00 mov %rsp,%rbp

sub $0x8,%rsp sub $Ox8,%rsp
mov S0x7b,%edi mov SOXFFffffff,%edi

mmm)) __u32 key = TEST_U32_KEY; s __u32 key = -1;
mov %rbp,%rsi mov %rbp,%rsi
add SOXFEfffffffffffffc,%rsi add SOXFEfffffffffffffc,%rsi
__u64 *v = bpf_map_lookup_elem(&test_map, &key); __u64 *v = bpf_map_lookup_elem(&test_map, &key);
movabs $Oxffff917fb0ad4000,%rdi movabs $Oxffff917fb02f4000,%rdi
mov %rax,%rdi mov %rax,%rdi
if(v && *v == TEST_U64_VAL) if(v && *v == TEST_U64_VAL)
test %rdi,%rdi test %rdi,%rdi
je 4a —)
mov SOx2,%eax mov SOX2 ,%eax
if(v && *v == TEST_U64_VAL) if(v && *v == TEST_U64 VAL)

—} mov 0x0(%rdi),%rdi
if(v && *v == TEST_U64_VAL) if(v && *v == TEST_U64_VAL)
cmp $0x499602d2,%rdi cmp $0x499602d2,%rdi
je 4c je 4c

4a3: xor %eax ,%eax 4a: xor %eax ,%eax

) }

4cC: 4cC.:
retq retq

e Left side looks up valid index; right side looks up invalid index; annotations show the
branch difference

A few months of details...

3. Outcomes

verizon
media

30

Outcomes

® Does the methodology work?
O No flowcharts were consulted.
O Running XDP accelerate load-balancer in production POPs
O New areas of focus when evaluating changes to our systems
® Sometimes you need to break problems into smaller chunks
O Flame graphs to understand how time is spent
O Microbenchmarks to understand helpers and data structures
O Code annotation to look for hotspots
® Active Benchmarking is key for analysis success

O Make sure measurements make sense, tests do what they intend
to do, and you can understand the results.

® The introduction of BPF struct_ops and LSM hooks present
opportunities for performance analysis beyond XDP programs

verizon’
media

ARE YOU PREMATURELY
OPTMIZNG OR JUST 7AKING
TIME 020 TAINGS RIGHT?

ARE YoU CONSULTING A
FLOWCHART TO ANSUER
THIS QUESTION?

YoU ARE
PREMATURELY
OPTMIZING

xked 1691° (CC-BY-NC 2.5)

31

https://xkcd.com/license.html

A few months of details...

Ongoing Work

verizon
media

32

Ongoing Work

® BPF and networking stack are moving targets; new features every quarter to explore

O
O
O
O

More building blocks to understand costs such as sleeping in BPF functions and freplace
kthread-based Rx network processing added in kernel 512
Investigate using BPF fentry/fexit hooks to monitor our XDP programs

bpftool prog profile

® Measuring and understand jitter to ensure consistent performance

©)
©)

Use kernel CPU isolation techniques (CONFIG NO HZ FULLand isolcpus=)

BCC tools for observing hard and soft IRQ utilization with histograms

® How to visualize instruction level sampling and annotation?

©)

Visualizing hot branch paths versus hot instructions

® New consumer/producer based test harness added by Facebook last year to kernel selftests

O

verizon’
media

Build more robust benchmarks to simulate contention amongst

33

Conclusion

® We were reminded of the importance of Active Benchmarking
O The inaccuracy of CPU utilization metrics was unexpected but mitigated
O A misconfigured evaluation system was spotted when evaluating microbenchmark data

® We demonstrated how existing tools and new tools were used in our approach to XDP
performance analysis

O Flame graphs, BPF_PROG_TEST_RUN, perf annotate, and BTF support in perf

O Tackling a complicated or unfamiliar environment can be approached using existing
methods and expanded on with new tools.

® We hope this encourages others to dive deep into XDP and BPF analysis!
O Thisis a rapidly growing area of the Linux kernel

O Good performance is a key factor to continued adoption

verizon’
media 34

Thank You!

® (Questions?

® Contact

o zjones@edgecast.com

o https://zacharyjones.us

o https://www.linkedin.com/in/zacharyhjones/

verizon’
media

35

mailto:zjones@edgecast.com
https://zacharyjones.us
https://www.linkedin.com/in/zacharyhjones/

References

[11 XDP - 10 Visor Project. https://www.iovisor.org/technology/xdp. Accessed: 2021- 04- 30.

[2] BPF and XDP Reference Guide — Cilium 110.90 documentation. https://docs.cilium.io/en/latest/bpf/.
Accessed: 2021- 04- 30.

[3] Active Benchmarking. http://www.brendangregg.com/activebenchmarking.html. Accessed: 2021- 04- 30.

[4] LKML: Solio Sarabia: Re: Differences in cpu utilization reported by sar, emon.
https:/Ikml.org/lkml/2018/6/20/1075. Accessed: 2021- 04- 30.

[5] Optimization. https://xkcd.com/1691. Accessed: 2021- 04- 30.

verizon’
media

37

