
Can Infrastructure as Code 
apply to Bare Metal?
LISA 2021

Rob Hirschfeld (@zehicle)
CEO & Co-Founder, RackN



YES! Let’s IaC
some Bare Metal!
Lessons from 3+ years of IaC w/ Digital Rebar
LISA 2021

Rob Hirschfeld (@zehicle)
CEO & Co-Founder, RackN

Photo by cottonbro from Pexels

https://www.pexels.com/@cottonbro?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels
https://www.pexels.com/photo/young-creative-woman-choosing-paints-near-graffiti-wall-7117029/?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels


Sequel to my 2020 
SRECon PXE talk

Deep Diving into

● Netboot
● Image Deploy
● PXE / iPXE
● Cloud Init
● Secure Boot
● BMC Boot



Minimally, Automation in Source Code

A Degree of Immutability

Aware of Current State (Reconcilier)

Seeking a Desired State (GitOps)

Collaboration and Reuse

Ideally, use of an Infrastructure Pipeline

What is Infrastructure as Code (IaC?)

From my “Aspiring to IaC” Talk



So what’s new about IaC?

Why not call this DevOps? 
Or SRE?
Or Run Book Automation?

It’s not a job or product category, 
it’s an automation approach.

IMHO, it’s about making Operations 
more Developer like.

Image: Cameron Rainey from Pexels

https://www.pexels.com/photo/photo-of-graffiti-on-building-2600116/


Selling IaC to your boss?

Yes, it’s cool tech and it’s saves time/money/effort, but…

Selling IaC to business people is about RISK REDUCTION

● COMPLIANCE RISK IaC is more Transparent and Auditable
● DELIVERY RISK IaC is more Repeatable
● PEOPLE RISK IaC is more Collaborative

You’ll need money, time and political cover to implement IaC.



We can use these lessons from bare 
metal and cloud!

Even if cloud has better APIs, the 
challenges really are the same.

And the cloud process strategies also 
improve bare metal.

Why is Bare Metal 
so Hard?

Have to deal with what you find

APIs can’t recable the box

Necessary Complexity

Abstractions are not always useful 

Multiple APIs

Juggle DHCP, TFTP, HTTP, DNS, SSH...

Provisioning and Configuration

Work is outside and inside the server



Automation in Source Code

Your Ops tools should expect SCM

Git everything you use to build!

● Bash scripts, Ansible Playbooks, Terraform Plans
● Define and extract out the inputs!
● Use Git Checksums, Tags and Versions

And for Bare Metal?

● Kick Start, Preseed, Weasel

Image: Swapnil Deshpandey from Pexels

https://www.pexels.com/photo/white-and-yellow-woman-graphic-art-1309326/


Immutability

Build with Less Touch, More Love

Make it fast and easy to recreate instances

● Use image based deployment
● Some post-config is OK, but keep it minimal
● Replace, don’t patch

And for Bare Metal?

● When Resetting/Repaving systems include FIRMWARE update!



Current State (Reconcilier)

Do Not Trust any Single Source of Truth!

Tracking State is central to IaC

● All parts of your pipeline should accept EXTERNAL updates
● Expect state to drift outside of controls
● Automation should STOP if state does not match

And for Bare Metal?

● Assume everything changed: check, verify, act, confirm



Desired State (bleh, GitOps)

More Declarative!  (And Less Imperative) link

Set the end goal then let the automation do the work

● End goal description should be human understandable
● Beware of broken tool handoffs
● Beware of single source of truth mythology

And for Bare Metal?

● Be prepared for multiple reboots and many many different APIs

Image: Ficky on Pexels

https://codeburst.io/declarative-vs-imperative-programming-a8a7c93d9ad2
https://www.pexels.com/photo/man-sitting-on-top-of-wall-with-the-future-is-good-print-2364475/


Infrastructure Pipeline

No operation happens in isolation

Automation steps should connect together

● Require silos to have APIs that enable chaining
● Beware of systems that rely on their own state
● Bias towards event-based & observable systems

And for Bare Metal?

● Think cloud!  Use Immutability & Repaving aggressively

Image:  Shukhrat Umarov on Pexels

https://www.pexels.com/photo/child-sipping-from-pipe-graffiti-2103127/


Collaboration and Reuse

Build your automation so others can reuse it!

Collaboration is the soul of IaC

● Did you write some documentation?  No?!  Go back 2 squares.
● Decompose automation into reusable blocks
● Declare your variables!  Seriously, NO AD HOC INPUT/OUTPUT.

And for Bare Metal?

● If you are coding here, you are not adding any value.  Stop.



Let’s make
this work for
Bare Metal!

Topics:

1. Physical Control Challenges
2. Physical Reuse Challenges
3. Making Operations Immutable
4. Building Infrastructure Pipelines

And yet, none of these points are really 
bare metal specific!  

They apply for any heterogeneous 
system, so ALL systems.

Image: Myles

https://www.flickr.com/photos/ihatemyscreenname/11880227533/


Physical Control Challenges

Cloud APIs are BEAUTIFUL, but...

“Just give me a server” cannot be that simple in bare metal

● Limits of cloud and container APIs for infrastructure
● Balance of abstractions in APIs vs need to control

○ Java Hibernate vs Rails ActiveRecord
● Dealing with limitations of existing infrastructure

○ Don’t get frustrated when it happens
○ Take time to solve

Image: Pixabay via Pexels

https://www.pexels.com/photo/astronaut-graffiti-on-semi-trailers-163811/


Physical Reuse Challenges

● Why is firmware so hard?
○ Really!  I’m looking at you hardware OEMs
○ But Redfish?  Sorry, still hard.

● Dealing with heterogeneity in systems
○ Even if you are single vendor, there’s variation!
○ It’s normal - build it as an expected thing
○ Do not assume everything is the same

● Finding and sharing reusable components
○ Get out of the business of firmware if you can!
○ Reuse, Reuse, Reuse - you’ll have incent this behavior

Image: Leonid Danilov from Pexels 

https://www.pexels.com/photo/photo-of-landfill-2768961/


Making Operations Immutable

● Immutable image deployments
○ They are FASTER
○ They are more resilient
○ They are more secure
○ This is low hanging fruit!

● Think in RESETs, not provisions
○ More cloud-like behavior
○ Discourages single run automation



Building Infrastructure Pipelines

Pipelines ARE THE KEY to IaC!

● Provisioning AND Configuration
○ Needs to work in tandem
○ Should be a standard process
○ Do not assume they are layered - they are really MIXED

● Coordinating operations across systems
○ Every system needs to participate in the process
○ CI/CD Development Mantra translates to Infrastructure
○ Pipelines change State (no single source of truth!)

Image:  Shukhrat Umarov on Pexels

https://www.pexels.com/photo/child-sipping-from-pipe-graffiti-2103127/


Next level 
challenges

Scaling Up IaC

Better to handle variation
Deal with change over time

Distributed Infrastructure

IaC = easier to replicate sites!
Deal with change over time

Automation Portability

Portability is key for reusability
This is how DEVELOPERS work!

Image: Colourblind Bob 

https://www.flickr.com/photos/colour_blind_bob/6835684561


Demo!

We’ve been collaborating with our 
enterprise customers to build a 
“Universal Workflow” in Digital 
Rebar.

Out of the box, it includes all the 
process steps required to fully 
deploy any platform in our library.

Operators select a target profile and 
workflow chooses the right stages 
to deliver that target.

What does an
Infrastructure Pipeline

look like action?



To review

What can you do to advance IaC?

1. Adding Infrastructure to CI/CD
2. Figure out what you safely put in source control
3. Improving control but without customization
4. Rethinking how you store system state (no islands)
5. And legacy is not bad!  Get over that.

Image: Jimmy Tidwell via Pinterest

https://www.pinterest.com/pin/468444798736470042/


Thank you!

Image: Myles via Flickr

We’re sponsors, please come say 
“hey” to the team that the booth!

Rob Hirschfeld (@zehicle)
CEO & Co-Founder, RackN

https://www.flickr.com/photos/ihatemyscreenname/4253561156/

