Why you should burn down your datacenter

mikeelkin2 Production Engineer

FACEBOOK Infrastructure

mikeelkin2 bio

- Nota...
 - Controls Engineer
 - Mechanical Engineer
 - Electrical Engineer
 - Chemical Engineer
 - Those kinds of engineers
- DCIM Program Tooling
- 14 years industry, 8 years @ FB
- Backend Infrastructure Focus

This is not a talk about cloud computing

Photo source: @nimbus_vulpis

It's about controls

111111

Photo source: @ibrahimboran

Agenda

Datacenter 101

Smart Infra

Burn it down

Datacenter 101

Why do we need DC's?

Power

Without power, your servers are just expensive paperweights

Cooling

Without cooling, your equipment will overheat and you will not share cat pictures on the Internet today

Space

We need a secured footprint to place all this awesome equipment (and cat pictures)

Cooling

Chillers, Misters, Coils, oh my!

- Direct air cooling takes outside air and brings it to suitable temperature & humidity levels
- Both energy and water are required to keep servers happy
- The performance of the cooling system is limited by the environmental conditions and can be tracked through a psychrometric chart

A finite resource

- The Power Path for a server follows all the electrical distribution from your utility all the way to a server rack
- Each device in the power path has different limits and characteristics
- The coordination of the electrical environment intends to trip breakers closest to the fault

SB

(Total Energy) / (IT Load)

Values closer to 1 are "better"

(Annual Water Usage) / (Energy Consumed)

Lower water usage is better

Fault Domains

Not just your network

Fault Domains

Not just your network

- Cooling (blue)
- Electrical (yellow)
- Servers (red)

MSB3-SB1

MSB3-SB2

MSB3-SB1

MSB3-SB2

Row 06

Row 07

Row 08

So that's is a bit of high level - how do these controls environment actually work?

So, how do these controls work?

Purdue Model

Industrial Controls is just Input/Output at scale

Purdue Model

Many Datacenters, One Enterprise

Smart Infrastructure Opportunities

Many opportunities, handle it

- Electrical Breaker Trip Prevention
- Optimizing Service Placement
- Machine Learning
- Optimization for water/power
- Business Analytics
- Mechanical Analysis
- Colocation Billing

Smart Infrastructure Opportunities

Many opportunities, handle it

<u>Electrical Breaker Trip Prevention</u>

- Optimizing Service Placement
- Machine Learning
- Optimization for water/power
- Business Analytics
- Mechanical Analysis
- Colocation Billing

keep the lights on (literally)

Power Planning (MSB1-SB1)

RPP limit: 125kW SB breaker limit: 400kW

Planned load: 390kW Actual load: 250kW

Opportunity: 150kW

keep the lights on (literally)

MSB1-SB1 400kW Limit

keep the lights on (literally)

keep the lights on (literally)

Smart Infra

ICS Environmental Differences

Never put us in charge of nuclear reactors

- Less regulatory intervention
- Hard to make equipment cause huge explosions
- Generally self-controlling
- Needs most/all sensor data
- Low (ish) latency data demands for real-time decisions

Buy vs. build?

Integration Options

My day job and also agony

- Your building system probably is already collecting most/everything you want
- Speaking industrial controls protocols is "fun"
- Can the sensors even handle the load?
- Does your building system give you everything you want, when you want it?

Achieving ICS Data Success

Something like Home Assistant on steroids

Asset Management

Knowing all the ICS devices on your network

Collection System

Pulling sensor data, sanitizing, and normalizing

Data Access

Delivering collected results to your infrastructure control plane

Asset Tracking

• Store important device data

But the data model and device • relationships too

How do you get the asset data populated? •

How do you maintain data correctness • over time?

SB

feeds

Data Collection

All your points are belong to us

CurrentPhaseA CurrentPhaseB CurrentPhaseB CurrentPhaseC

Function Code? Register? Datatype? Byte endian? Word endian? Scaling? Precision?

Data Access

Tiers for every kind of user

RPP1 CurrentPhaseA 118.0A RPP1 CurrentPhaseB 118.7A RPP1 CurrentPhaseC 117.3A

Collector Service

Trending / "Big Data"

Infra Control Plane

Chapter 3: Burn it down

Photo source: @xxxxxyul

ICS Security - tl;dr

ICS Security

It's worse than you can imagine

Time-to-change

From fastest to slowest

Software

Network Performance: ping

"The ping of death"

\$ ping 192.168.12.80
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
Request timeout for icmp_seq 2

Network Performance: broadcast traffic

DDoS by any other means

Network Performance: Latency

Turtle vs. the sensor

Make a cup of tea

Network Performance: TCP connections

One TCP connection is all you need!

Data Quality: Internal Caches

I'm all out of that fresh data you wanted

Cached results Data is wrong

Data Quality: Totally Correct Values

Peak Flux Capacitance

Data Quality: Totally Consistent Configs

Humans never make mistakes

Don't ragequit!

Takeaways

DC Data is <3

Facilities resources can be managed a lot better when we get integrate their data across our systems.

ICS is very frustrating

They work very different from what we're used to, and we need to adapt.

ICS needs to be modernized

Many systems & platforms use heavily outdated technology, we need vendors to build flexible platforms that can last.

Dynamo: Facebook's Data Center-Wide Power Management System [whitepaper]

OpenCompute Facilities Security Incubator https://www.opencompute.org/projects/operation-technology-security-incubation

Ask me anything!

Thank you!