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This paper presents a novel unifying framework for electronic voting in the universal composability model that includes a
property which is new to universal composability but well-known to voting systems: universal verifiability. Additionally, we
propose three new techniques for secure electronic voting and prove their security and universal verifiability in the universal
composability framework. 1. A tally-hiding voting system, in which the tally that is released consists of only the winner
without the vote count. Our proposal builds on a novel solution to the millionaire problem which is of independent interest.
2. A self-tallying vote, in which the tally can be calculated by any observer as soon as the last vote has been cast — but before
this happens, no information about the tally is leaked. 3. Authentication of voting credentials, which is a new approach for
electronic voting systems based on anonymous credentials. In this approach, the vote authenticates the credential so that it
cannot afterwards be used for any other purpose but to cast that vote. We propose a practical voting system that instantiates
this high-level concept.

1. INTRODUCTION
For over two thousand years, voting systems have been in use. Recent developments in cryptography
have enabled the transition from roll call votes or paper ballots to electronic voting systems. The
application of cryptography to voting systems does not merely ensure correctness and security; on
the contrary, it improves on these and offers new desirable properties when compared to its low-tech
predecessors. However, the use of cryptography in this context leaves society no option but to trust
a small number of cryptographers, and hardware and software vendors who develop and distribute
these cryptographic voting systems.

Even more recently, the internet has revolutionized communication and the decision making pro-
cess. What used to be a theoretical exercise is now becoming a practical reality: the internet allows
us to hold votes and even state elections from our own personal computers.

However, the internet has had little effect on the theoretical foundation of electronic voting sys-
tems. The formalisms and techniques proposed in other research as well as in this paper make
abstraction of the communication channel and apply equally to any voting system not conducted
over the internet. On the other hand, there is one very important implication of internet voting that
bears endless repeating: no mechanism can prevent the coercer from being physically present when
the voter casts his vote, and hence internet voting is inherently coercible. In order to guard against
coercion, a fundamentally different adversarial model must be considered. While this is addressed
in the literature [Jonker and de Vink 2006] [Benaloh and Tuinstra 1994] [Sako and Kilian 1995]
[Canetti and Gennaro 1996], coercive adversaries are beyond the scope of this paper.

The standard framework for assessing the security of cryptographic protocols is the universal
composability (UC) framework proposed by Canetti [Canetti 2001]. While the UC framework im-
poses stringent constraints on the protocols and their design, it is beneficial for at least two reasons.
First, the UC framework applies to any protocol and not just a predefined subset of them. Second,
universal composability guarantees that the composition of UC-secure protocols is itself UC-secure,
whether the components are invoked once or multiple times, recursively or not, serially or in par-
allel. This principle enables protocol designers to adopt a modular approach whereby the global
protocol is composed of smaller subprotocols, each of which is proved UC-secure in its own right.

A voting system is a protocol like any other and hence the UC framework is applicable not just
to the whole but also to the various subprotocols. Groth [Groth 2004b], for example, uses the UC
framework to assess the security of some cryptographic voting systems. However, this assessment
applies only to homomorphic aggregation voting systems and does not extend to mixnet-based or
anonymous credential-based voting systems. Moreover, it does not take into account universal ver-
ifiability, i.e. the ability of any observer to verify the tally. Other formalisms, not explicitly taking
UC-security into account, include the ones by Benaloh [Benaloh 1987], Cramer et al. [Cramer et al.
1996; Cramer et al. 1997], Adida [Adida 2006] and Chevallier-Mames [Chevallier-Mames et al.
2010].
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Our contributions. We present a new formalism of voting systems which is more general than
that of Groth as it contains homomorphic aggregation schemes as a special case. We also take the
properties introduced in the other formalisms into account. Additionally, we formalize and prove a
composability theorem for universal verifiability. We note that, at first sight, this notion of universal
verifiability seems similar to the notion of public auditability for multiparty computation protocols
recently and independently introduced by Baum, Damgård and Orlandi [Baum et al. 2014]. How-
ever, there are several important differences, which will be explained in due course.

Moreover, we introduce three new techniques for electronic voting protocols and subsequently
prove their UC-security and, hence, their compatibility with our formalism. First, we propose a
“Tally-Hiding Vote”: a voting system where the result of the tallying process identifies the winner
of the vote but leaks no information on the vote count. Our proposal uses a novel solution to Yao’s
millionaire problem [Yao 1982] which depends on a well-known property of Damgård and Jurik’s
threshold cryptosystem [Damgård and Jurik 2001], namely the ability to lift a ciphertext from one
ciphertext space into another, larger space without modifying the plaintext. Our solution to the
millionaire problem invokes this lifting procedure as an abstract black box. While Damgård and
Jurik have proposed one instantiation of this protocol [Damgård and Jurik 2002], we propose another
one which is tailored to our particular use case.

Second, we propose a new “Self-Tallying” voting system, along the lines of Kiayias–Yung [Ki-
ayias and Yung 2002] and Groth [Groth 2004a]. In this type of voting system, the computationally
expensive part of the tallying process is completed beforehand. The tally is known — or is easily
computed by anyone — as soon as the last voter has cast his or her vote but not before. The obvious
drawback is that one voter can boycott the entire procedure by refusing to cast his or her vote. The
essence of our approach, like that of Kiayias and Yung, is that the randomizers used by the voters
to encrypt their votes are not entirely random but in fact cancel out when aggregated. As long as
at least one voting authority is not corrupt, the authorities are unable to determine any one voter’s
particular random value or vote. Our system allows for a practically unlimited number of secure
votes after just one initialization procedure of constant size, in contrast to the scheme of Kiayias
and Yung where this initialization procedure is linear in the number of intended elections.

Third, we present a new paradigm for credential-based voting, namely “Authenticated Voting
Credentials”, along with a scheme that implements this concept. In contrast to previous schemes for
electronic voting based on anonymous credentials, such as those of Chaum [Chaum 1988], Fujioka
et al. [Fujioka et al. 1992], and Ohkubo et al. [Ohkubo et al. 1999], our credentials are authenticated
by the vote that is cast. In this setting, a man-in-the-middle cannot intercept a credential and append
it to his own vote or just modify the vote; at most, he can prevent the voter’s vote from being cast
by blocking it entirely. While the concept applies to any credential system, we demonstrate it by
applying it to the credential system by Ferguson [Ferguson 1993], which draws from Chaumian
blind signatures [Chaum 1982], and which we use in combination with Guillou and Quisquater’s
zero-knowledge proof of an RSA signature [Guillou and Quisquater 1988].

Outline. We start by summarizing universal composability in Section 2 after which we present
our formalism of electronic voting and universal verifiability. In the subsequent sections, we cover
our three new techniques: Tally-Hiding Vote in Section 3, Self-Tallying Vote in Section 4, and
Authenticated Voting Credentials in Section 5. Finally, Section 6 concludes the text.

Notation and Preliminaries. Let κ ∈ N be a security parameter. We say a function ε : N→ R≥0
of the security parameter is negligible if ∀c ∈ R>0 .∃K ∈ N .∀κ ≥ K .ε(κ) ≤ κ−c. A public-key en-
cryption scheme consists of a tuple of possibly probabilistic algorithms (G,E,D) where G generates
a matching public and private key; E is an algorithm that encrypts a given message using the public
key and D decrypts a ciphertext provided that the matching private key is used. A public key cryp-
tosystem is semantically secure if no non-trivial function of the plaintext can be computed given
only the ciphertext and the public key. By x ← y we denote the assignment of the value y to the
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variable x; by x $←− S we denote a uniformly random selection from a finite set S and assignment of
this value to the variable x. Long arrows with values on top denote messages sent between parties.
For any positive integer n ∈ N, we use Zn to denote, depending on the context, either the ring of
integers modulo n, or the set of integers {0,1, . . . ,n−1}. Likewise, we use Z∗

n to denote either the
group of integers under multiplication modulo n or else the subset of Zn containing integers that are
invertible for multiplication modulo n.

The Paillier cryptosystem is a semantically secure public-key scheme whereby the public key
is given by n, a product of two large private primes, and the secret key is given by d, a number
which satisfies d = 0 mod ϕ(n) and d = 1 mod n. Encryption of a message m using randomness
r is defined as E(m) = (1+n)mrn mod n2. Decryption consists of first raising the ciphertext to the
exponent d in order to cancel the randomizer, and secondly computing the easy discrete logarithm
of the resulting value.

2. SECURE ELECTRONIC VOTING
2.1. Universal Composibility
The key idea of universal composability [Canetti 2001] is the comparison between two worlds in
both of which a set of participants compute a function of their inputs. In one world, they hand their
inputs to a trusted third party called the ideal functionality which calculates the result and hands
the correct outputs to the respective parties. In the other world, the computation is performed by a
protocol executed by the parties. In both worlds, there is an external environment E , modeled as a
polynomial-time program or Turing machine, which chooses the inputs of the participants and reads
their outputs. The environment interacts with the adversary throughout the process.

A protocol is a UC-secure realization of the ideal functionality if for every adversary A interact-
ing with the participants while they execute the protocol, there exists a simulator S which interacts
with the ideal functionality and with the parties involved such that no external environment E can
tell with non-negligible probability whether it is interacting with A or with S . This implies that any
attack that can be performed by A against the protocol can also be performed by S against the ideal
functionality.

The power of the UC framework is demonstrated by the universal composability theorem: if P1
securely realizes an ideal functionality F , and if a protocol P2 in which F is used as subprotocol is
secure, then replacing F by P1 will not change the security of P2. This theorem allows us to design
secure protocols by designing secure modules which realize smaller functionalities.

2.2. Voting
An option is any string of characters that is known by the voters to refer to a hypothetical situation.
Let O denote the set of options for a given vote; and let PO denote the set of permutations of O,
which corresponds to the set of expressible preferences with respect to O.1 A vote (in the first sense
of the word) is an expressed preference with respect to the options and thus an element of PO.

A tally is any string of characters which directly implies a partial ordering on the set of options
— an ordering where some subsets are allowed to have the same rank. A tally may be the encoding
of a mapping of the options to their vote counts, or of a string which identifies only the winning
option or of something else. Let T denote the set of tallies.

A tallying function f is any function that maps n votes to a tally:

f : (PO)n → T.

A voting system is an interactive protocol which evaluates a tallying function in the set of votes
cast by the voters. We distinguish two classes of participants: voters V1,V2, . . . ,Vn ∈ V, whose votes
should be counted by the tallying function; and authorities A1,A2, . . . ,Ak ∈ A, who bear the respon-

1Preferences are always necessarily ordinal. This implicit ordering is manifested when the ballot does not allow “no prefer-
ence”. This implicit ordering may be not encoded if the ballot does allow it.
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sibility for the correct execution of the protocol and who may be expected to perform more work.
The protocols are designed to work as long as a subset of size t of the authorities are not corrupt.

The second meaning of the word “vote” refers to one instantiation or execution of a voting system.
In an electronic voting setting, all participants are assumed to have access to a public append-only
bulletin board. In the Section 2.3, we model this bulletin board by an ideal functionality.

We aim to design voting systems which are universally verifiable, meaning that anyone can verify
the correctness of the protocol execution after its execution by requesting a transcript which certifies
this. Provided that verification succeeds, universal verifiability guarantees correctness, which means
that the tally that results from the protocol conforms to the tallying function and the cast votes.
Correctness, in turn, implies completeness — all valid votes are counted correctly; soundness —
invalid votes are not counted; eligibility — only votes from eligible voters Vi ∈ V are counted;
unreusability — no voter can vote in excess of his or her quota (possibly but not necessarily one
vote per person); and finality — no voter can change his or her vote after the deadline has expired.

In addition to correctness, we want the voting system to ensure privacy. This feature is formalized
by perfect ballot secrecy: the adversary cannot compute any information on any one individual’s
vote beyond what follows from the tally (and from the votes of the corrupted parties). Perfect ballot
secrecy implies fairness: no partial tallies can be known before the deadline — or, for that matter,
at any other point in time.

Other desirable features are receipt-freeness, where a voter cannot prove that he voted one way
or another and, related to it, uncoercibility, where a voter cannot be coerced into voting a specific
way even by a coercer who interacts with them while casting the vote. These properties fall outside
of the scope of this paper.

2.3. UC-Secure Voting Systems
A voting system can only be UC-secure if it is a secure realization of an ideal functionality. Hence,
we define the ideal functionality to be realized as well as the ideal functionalities that are allowed
to be invoked. We start with the second, from the bottom upwards.

Groth [Groth 2004b] correctly notes that the bulletin board as well as a public key generation
mechanism are in fact ideal functionalities. While Groth presents the two functionalities as a single
ideal functionality, we opt to separate the two. The reason is that one might want to use the one
functionality without using the other. The bulletin board is formalized by the ideal functionality
FBB and the system public key generation mechanism is formalized by the ideal functionality FSKG.
The functionalities run with voters V1, . . . ,Vn and authorities A1, . . . ,Ak, and with either an adversary
A or adversary-simulator S (but for the purpose of describing the ideal functionalities, these two are
interchangeable).

The bulletin board is a public append-only database of messages (any string of characters) from
any protocol participant. We extend the power of the adversary compared to Groth. In addition to
blocking honest voters’ messages, the adversary in our bulletin board model can even falsify their
messages — and the same holds for the messages of authorities. This is accomplished as follows:
the functionality forwards all messages not originating from the adversary, to the adversary; the
adversary can choose to allow them to the bulletin board by instructing the ideal functionality to
do so. In contrast, the adversary cannot prevent voters nor authorities from reading bulletin board
messages. Access to the bulletin board is not anonymous as all messages pass through the adversary.
However, in Section 5 we deviate from this model as we are only able to prove UC-security of a
credential-based voting system on the premise that access to the bulletin board is anonymous, i.e. ,
the adversary cannot determine who is posting messages to the bulletin board or even whether this
communication is taking place. The bulletin board functionality FBB is presented in Figure 1.

The system key generation mechanism is straightforward. The functionality starts by generating
a public key, matching private key shares and verification keys for those shares. The private key
shares are distributed to the proper authorities. The public key as well as the verification keys are
distributed to everyone such that anyone who assumes the role of the verifier can verify the correct
execution of the authorities’ distributed decryption protocol. The functionality is parameterized by
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Functionality FBB

— Upon receiving (message,sid,m) from any participant Pi ∈ V∪A, send (message,sid,Pi,m) to S .
— Upon receiving (post,sid,m) from S , store it.
— Upon receiving (read,sid) from any participant Pi ∈ V∪A∪{S}, send to Pi the list of all stored tuples

(post,sid,∗) in chronological order.

Fig. 1: bulletin board.

the public key cryptosystem to instantiate. For example, in a homomorphic aggregation type voting
system, an additively homomorphic public key encryption scheme is required while for a credential-
based voting system, a blind signature scheme is necessary. The system key generation functionality
is presented in Figure 2.

Functionality FSKG

— Upon invocation, generate keys for a public key threshold cryptosystem. Send (public key,sid, pk) ,
where pk is the public key, to all participants and to S . Send to all participants and to S the tuple
(verification keys,sid,vk1, . . . ,vkk) where vk j is the verification key for A j’s key share. Send to all
authorities A j ∈ A the message (secret share,sid,sk j) where sk j is the secret key share for A j.

Fig. 2: system key generation mechanism.

While more realistic than the alternative, allowing the adversary to also falsify voters’ messages
does come with a price. The authorities need a mechanism by which to separate eligible voters
from non-eligible voters (or more precisely: separate messages from eligible voters from messages
from an adversary masquerading as eligible voter). We achieve this property by introducing an ideal
participant key generation functionality, FPKG. The ideal participant key generation functionality
generates two public and private keys for each participant — one pair for encryption and one pair
for signatures. The private keys are communicated to the respective participants whereas the public
keys are sent to all participants including the adversary. After invoking the participant key generation
functionality, participants can authenticate all their outward communication if they should choose
to do so by signing it with their private signature key. After this functionality invocation, anyone can
distinguish between eligible and non-eligible voters based on the list of eligible voter public keys.

The ideal participant key generation functionality also turns out to be of crucial importance for
universal verifiability. We will formally define the concept later but at this point we introduce a
verifier V , which is another party in the protocol. The public keys produced by FPKG are also sent
to the verifier, who uses them to verify that genuine interaction between real parties has taken place.
Since the adversary does not possess the private keys from honest parties, he cannot fake their
communications. The verifier, too, can distinguish between votes from eligible voters and votes
from non-eligible voters based on the list of eligible voter public keys. FPKG is formally presented
in Figure 3.

Having properly formalized the ideal functionalities which a voting system might invoke, we can
turn to the voting system itself. The ideal voting system, FVS, is presented in Figure 4. Here, in
contrast to the bulletin board functionality, the adversary is not allowed to read the cast votes or to
falsify them. However, he is allowed to block them. In fact, the ideal functionality blocks the votes
by default and requires the intervention of the adversary, in the form of a no-block message, to
unblock the votes.

A UC-secure realization of FVS must necessarily satisfy the correctness and perfect ballot secrecy
properties. Thus, if we prove that a particular voting system is a UC-secure realization of FVS, then
we prove that all the implied properties enumerated at the end of Section 2.2 are satisfied (i.e.:
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Functionality FPKG

— Upon invocation, for each voter Vi ∈ V, generate a public/private key pair for encryption and a pub-
lic/private key pair for signatures. Send the private keys to the Vi and the public keys to all participants
including S and the verifier V .

— Upon invocation, for each authority A j ∈ A, generate a public/private key pair for encryption and a pub-
lic/private key pair for signatures. Send the private keys to the A j and the public keys to all participants
including S and the verifier V .

Fig. 3: eligible participant key generation mechanism.

Functionality FVS

— Upon receiving (vote,sid,vi) from voter Vi ∈ V and if vi is a valid vote, store (vote,sid,vi,Vi) and send
(vote,sid,Vi) to S . (Note that the vote vi itself is not sent to the adversary.)

— Upon receiving (no-block,sid,Vi) from S , store it for future reference.
— Upon receiving (tally,sid) from all the authorities, compute the tallying function on all the stored votes

vi from unique voters and for a matching no-block message was stored. If a voter Vi has multiple stored
votes in excess of his quota, choose the most recent quota-sized subset of votes for which there is a
matching no-block message. Calculate t = f (v1, . . . ,vn) and send (result,sid, t) to all parties including
S and halt.

Fig. 4: voting system.

correctness — completeness, soundness, eligibility, unreusability, and finality — as well as perfect
ballot secrecy). However, universal verifiability is less straightforward.

A naı̈ve approach to universal verifiability might grant the verifier access to the bulletin board
and demand that the transcript be of such a form that the verifier can easily catch any cheater. This
approach is insufficient because it does not adequately capture the power of the adversary who
attacks the protocol and who might be spoofing the verifier’s read access to the bulletin board or
manipulate its contents after the protocol has been executed.

However, we can demand that there be a transcript — either because a correct execution of the
protocol produced it, or else because the adversary is trying to fool someone with it. We can then
formalize universal verifiability as follows.

Definition 2.1. universal verifiability Let V (verifier) be a probabilistic polynomial-time algo-
rithm which takes as input the transcript T as produced by an adversary A attacking a protocol P .
V eventually outputs a bit b̃. Let b be a variable indicating whether the protocol was executed cor-
rectly by all parties — i.e., the parties behaved honestly and were not corrupted by the adversary —
and if the transcript is authentic, by assuming the value 1 if this is the case and 0 otherwise. Then
the protocol P is universally verifiable if there exists a verifier V such that, for all adversaries A
attacking the protocol, V has significant distinguishing power:

∣∣Pr
[
b = b̃

]
−Pr

[
b �= b̃

]∣∣≥ 1
2

,

where the probabilities are taken over all random coins used by V , A and P .

In other words, a protocol is universally verifiable if no adversary attacking it can convince the
verifier that it was executed correctly by all parties when it was not. Without loss of generality, we
assume that the verifier V indicates the transcript is authentic and the protocol execution was correct
by outputting b̃ = 1 and indicates the opposite with b̃ = 0. The constant 1

2 captures the notion of
“significant” distinguishing power but in effect, any constant not negligibly close to 0 or 1 will do.
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The verifier V trusts ideal functionalities and hence does not need to verify their correct execu-
tion. This makes the composability theorem for universal verifiability rather trivial.

THEOREM 2.2. If (1) P1 is a hybrid protocol invoking the ideal functionality F2, and (2) P1 is
universally verifiable for verifiers that trust F2, and (3) P2 is a universally verifiable protocol that
realizes F2; then P1 is still universally verifiable if it invokes P2 rather than F2.

PROOF. If there is a protocol P1 which invokes a universally verifiable ideal functionality F2,
then the verifier V1 for P1 will not need to verify F2 as this functionality is trusted anyway. If F2
is realized by a universally verifiable protocol P2, then there must exist a verifier V2 that verifies
its correct execution given a transcript T2. Rather than trusting F2, V1 now requests a transcript T2
for P2 from the adversary and simulates V2. V1 returns 0 if V2 returns 0. This is repeated for every
invocation of P2.

We stress that the verifier V must be able to differentiate between simulated parties created by
the adversary A and genuine protocol participants. As such, the verifier must be a recipient of the
public keys from FPKG.

This notion of universal verifiability is in essence very similar to that of Baum, Damgård and
Orlandi [Baum et al. 2014], which they name public auditability. Rather than in terms of a game
between the verifier and the adversary, Baum et al. define public auditability in terms of the root
ideal functionality which is extended so that it responds honestly to any participant who requests an
audit. This response indicates whether or not parties in the protocol have behaved corruptly. This
extension to the ideal functionality is realized by allowing anyone to have access to the bulletin
board and view the transcript of the protocol. Anyone who wishes to audit, can retrieve a transcript
of the protocol and decide themselves whether or not all participants behaved correctly. Only if
the protocol is well-formed (for example, because the correctness of every step is proven by non-
interactive zero-knowledge proofs), does the auditor stand a chance at deciding correctly, and only
then can they be said to realize this extension to the ideal functionality.

Public auditability is dependent on the existence of the bulletin board, which must contain the
transcript of the protocol. On the other hand, universal verifiability takes into account that the veri-
fier’s access to the bulletin board might be spoofed by the adversary. Instead, rather than relying on
the existence of an append-only (even for the adversary) bulletin board, the verifier in the universal
verifiability game requests the protocol transcript from the adversary. As such, universal verifiability
is a stronger concept as it provides a similar notion of verifiable correctness in the face of a more
powerful adversary.

Moreover, the verifier in the universal verifiability framework is able to verify the authenticity
of participant’s messages if they are accompanied by signatures, as the verifier has received the
public keys from FPKG. On the other hand, the auditor in the public auditability framework trusts
the bulletin board to record the identities of whoever posts a message — but if the bulletin board
guarantees this, then it precludes anonymous access. Universal verifiability does not depend on the
existence of a bulletin board and does not impose such stringent constraints. Hence, a protocol based
on anonymous communication cannot be publicly auditable, while it can be universally verifiable
— possibly by employing anonymous credentials.

Lastly, universally verifiable protocols are composable, and hence integrate nicely with univer-
sally composable protocols. On the other hand, public auditability was designed specifically for
multiparty computation and does not explicitly take into account modular design of just any proto-
col in the same way the UC framework does.

3. TALLY-HIDING VOTE
If the goal is to preserve voter privacy, the logical extreme is to release only the winning option of
the vote and not the number of votes each option received. This idea to “show the winner without the
tally” was first introduced for electronic voting by Benaloh [Cohen 1986]. We present a relatively
efficient instantiation of this idea.
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The key primitive used is a novel solution to the millionaire problem. Given two Paillier ci-
phertexts where the secret key is distributed among the voting authorities, there exists an efficient
protocol to determine which of the two plaintexts is larger. For now, we consider only the case where
there are two options. This strategy is sufficient for computing the winner in a preferential election
while keeping the particular vote counts secret, but this does leak the entire ranking of all the op-
tions. Later on, we show a solution to calculate the winner among r options all the while leaking no
information either on the ranking of the other options or on the particular vote counts.

Our scheme builds on a well-known property of the Damgård-Jurik cryptosystem [Damgård and
Jurik 2001] (a generalization of Paillier’s cryptosystem [Paillier 1999]) which allows the holders of
the secret key to turn a ciphertext from one space, Z∗

n2 into a ciphertext from another space, Z∗
n3 such

that it encrypts the same plaintext. Under certain conditions on the plaintext no information is leaked
by this procedure (except that the plaintext satisfies said conditions). We invoke this ciphertext
lifting procedure as a black box. While Damgård and Jurik themselves were the first to propose an
instantiation of this protocol, we propose an alternate one which is tailored to our needs.

First, we prove that, given access to an ideal functionality FMP which solves the millionaire prob-
lem for two ciphertexts, we can construct a UC-secure tally-hiding voting system. Then, we show
how we can realize FMP using ciphertext lifting as a black box ideal functionality. In Appendix A
we present our alternative to Damgård and Jurik’s lifting procedure.

3.1. UC-Secure Tally-Hiding Vote
In the original millionaire problem [Yao 1982], two millionaires want to decide who of them is richer
without disclosing any other information about their wealth. In our case, there are k participants,
each holding a share in the private key, who want to decide which one of two ciphertexts encrypts
the larger plaintext without revealing any other information. For now, we assume we have a solution
to this problem in the form of an ideal functionality and base a voting system on it. Later on, we
present such a solution.

We define the ideal functionality FMP for the millionaire problem in Figure 5. The functionality
takes two ciphertexts c1,c2 as input and compares the corresponding plaintexts, i.e.: it outputs 1 if
D(c1) < D(c2) and 0 otherwise. The functionality runs with all authorities. This functionality may
be considered part of FSKG, the system key generation functionality.

Functionality FMP

— Upon receiving (mp,c1,c2,sid) from all authorities A j, first check if all messages are identical. If not,
do nothing; otherwise respond as follows. If D(c1)<D(c2), send (smaller,sid,c1,c2) to all authorities
and S . Otherwise, send (not smaller,sid,c1,c2) to all authorities and S .

Fig. 5: millionaire problem solver.

Using the ideal functionalities FBB,FSKG,FPKG and FMP, we can define a protocol PTHVS which
securely realizes FVS with a tally-hiding tallying function. This protocol is presented in Figure 6.
The protocol runs with authorities and voters. There are two options: “A” and “B”. (See Section 3.3
for a generalization with more than two options.) Each voter publishes two ciphertexts, one corre-
sponding to each option. In addition, the voter supplies a non-interactive zero-knowledge proof that
one of his ciphertexts is an encryption of 1 and the other is an encryption of 0. Such a proof can be
constructed by applying the subset proof technique from Cramer et al. [Cramer et al. 1994] to a proof
of plaintext knowledge which in the case of Paillier encryption amounts to a Shoup proof [Shoup
2000]. The authorities apply homomorphic aggregation to obtain two ciphertexts encoding the num-
ber of votes for each option. They subsequently invoke FMP twice to determine which option has
received more votes.
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Protocol PTHVS

— Initiate by invoking FPKG followed by FSKG.
— All voters Vi ∈ V use the system public key to encrypt their vote vi = (v(A)i ,v(B)i ) and generate a proof

that the encryption is the encryption of a valid vote. The encryption and the proof are signed and then
sent to FBB. (The adversary A is assumed to allow them to pass.)

— The authorities A j ∈ A use the cryptosystem’s homomorphic property to calculate the aggregates: en-
cryptions c1 and c2 of the number of votes for “A” and for “B” respectively.

— The authorities invoke FMP twice. Once on input (mp,c1,c2,sid) and once on input (mp,c2,c1,sid).
— If FMP returns smaller,not smaller, all authorities send (message,sid,(A < B,sig)) to FBB. If FMP

returns not smaller,smaller, all authorities send (message,sid,(A > B,sig)) to FBB. If FMP returns
not smaller,not smaller, then all authorities send (message,sid,(A = B,sig)) to FBB. The adversary
is assumed to allow all messages to pass. In these messages, sig represents a signature by the authority
who sends the message on the tally.

— All voters Vi send (read,sid) to FBB.

Fig. 6: tally-hiding voting system.

PTHVS is a secure and universally verifiable realization of FVS. We demonstrate this by showing
that for every adversary A attacking an execution of the protocol, there exists an adversary-simulator
S attacking the ideal process such that a computationally bounded external environment machine
E cannot determine whether he is interacting with A and an execution of PTHVS or with S and an
execution of FVS. Moreover, we must show that there exists a verifier V who queries the adversary
for a transcript of PTHVS and who returns 1 with high probability if and only if the protocol was
executed correctly and 0 otherwise.

THEOREM 3.1. Protocol PTHVS is a secure and universally verifiable realization of FVS with
a tally-hiding tally function in the (FBB,FSKG,FPKG)-hybrid model for non-adaptive adversaries
corrupting up to k − t authorities, where k is the number of authorities and t is the threshold of
honest authorities.

The proof is in Appendix B.1

3.2. Ciphertext Lifting and the Millionaire Problem
We now describe a secure protocol for solving the millionaire problem. Let us first summarize
threshold decryption of a Paillier or Damgård-Jurik ciphertext c ∈ Z∗

ns+1 . Here, n is the product of
two large primes and s is a small integer (equal to 1 for the Paillier case).

The private decryption exponent, d, is distributed among k parties such that at least t of them
must cooperate in order to perform a decryption. Every participant Ai (indexing starts from 1) is in
possession of a value si, such that (i,si) is a point on the (t−1)-degree polynomial f (x)∈Z[x]. This
polynomial evaluates in zero to the secret exponent: f (0) = d where d satisfies d = 0 mod ϕ(n)
and d = 1 mod n

In addition to a share si in the secret exponent, all parties have a public verification key wi = w∆si

mod ns for some fixed w. The verification key binds them to their secret share. Here, ∆ = k!.
In order to decrypt a ciphertext c ∈ Z∗

ns , the parties proceed as follows. Each party publishes
a decryption share ci = c2∆si mod ns along with a non-interactive zero-knowledge proof that
dlogc2ci = dlogwwi.

Once we have a set S of at least t decryption shares, we can combine them using Lagrange
interpolation:

c′ = ∏
i∈S

c2λi
i mod ns where λi = ∆ ∏

j∈S\{i}

− j
i− j

.
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After combining the shares, the randomizer in the ciphertext will have been canceled and the result-
ing value will be of the form c′ = (1+n)4∆2m mod ns. Damgård and Jurik describe an algorithm to
efficiently compute the plaintext m ∈ Z∗

ns−1 from this value.
Our lifting procedure is founded on the following observation. As soon as the authorities decide

on an access structure Λ (a set of size t of indices of the authorities that will proceed with the
protocol), these authorities are able to obtain a multiplicative sharing of the plaintext modulo n2.

Each authority Ai computes ci = c4∆2 ∏ j∈Λ\{i}
− j
i− j mod n2 and then (1+ n)m = ∏i∈Λ ci mod n2 is

guaranteed to hold. A little more juggling results in an additive sharing modulo n where m = ∑i∈Λ ui
mod n is guaranteed to hold. Under favorable conditions on the plaintext, we can find an equivalent
additive sharing where no overflow occurs: m = r +∑i∈Λ u′i (where u′i remain secret). This sum
is subsequently computed homomorphically in ciphertext-domain by first encrypting r and all the
shares under the Damgård-Jurik cryptosystem (s = 2) and then multiplying all the summands. The
protocol is described in full detail in Appendix A.

By contrast, Damgård and Jurik’s solution [Damgård and Jurik 2002] involves regarding a cipher-
text c ∈ Z∗

ns as though it were a ciphertext in Z∗
ns+1 : c = Es(m,r) = Es+1(m+ tns,r′). The protocol

proceeds to compute t from this value — by first homomorphically adding sufficiently small noise
R, then decrypting and lastly by performing the division by ns on m+R+tns. The desired ciphertext
is obtained by encrypting tns and homomorphically calculating Es+1(m+ tns − tns,r′′). However,
this solution is cumbersome as it requires expensive range proofs on m and R in order to guarantee
on the one hand that no overflow will occur and on the other hand that no information on m is leaked.

In order to use this to solve the millionaire problem, we make the following observation. For the
Paillier cryptosystem, multiplication of two ciphertexts modulo n2 homomorphically corresponds
to addition of the plaintexts modulo n. However, for the Damgård-Jurik extension, multiplication of
two ciphertexts modulo n3 homomorphically corresponds to addition of the plaintexts modulo n2.
But modulo n2, subtraction of a larger value from a smaller value, both smaller than n, will result in
a number larger than n. That is, the second digit (in base n) becomes nonzero (in fact, this digit will
be equal2 to n−1).

We use this principle to solve the millionaire problem in the following way. Let � denote mul-
tiplication with the inverse of the right hand side, which corresponds to subtraction of the right
plaintext from the left plaintext. Let Lift : Z∗

n2 → Z∗
n3 be the black box lifting procedure that maps

Z∗
n2 -ciphertexts onto Z∗

n3 -ciphertexts while keeping the plaintext intact. Given two ciphertexts c1

and c2, we calculate B = Lift(c1 � c2) and b = Lift(c1)�Lift(c2). Next, we decrypt A = B�b. The
result can either be different from zero, in which case c2 > c1, or else 0 and in this case c2 ≤ c1.
Aside from this relation, no information is leaked on c1 and c2.

This protocol, PCLMP is formally presented in Figure 7. It runs with participants Ai holding shares
in a t-out-of-k threshold Paillier cryptosystem. The input consists of two ciphertexts c1 and c2. While
Lift is invoked as a function, in reality it represents an ideal functionality FLift.

Protocol PCLMP

— The authorities calculate B = Lift(c1 � c2), Lift(c1) and Lift(c2).
— Next, the authorities compute b = Lift(c1)�Lift(c2) and A = B�b.
— Lastly, the authorities decrypt A and output D(c1)≥D(c2) if D(A) = 0 and D(c1)<D(c2) otherwise.

Fig. 7: ciphertext lifting for the millionaire problem.

2Unless our lifting procedure is employed and a particular edge case is triggered in which case the digit in question equals
n−2. See Appendix A for details.
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This concludes the description of the ciphertext lifting protocol PCLMP. What remains to be shown
is that PCLMP is a secure realization of the ideal protocol FMP that solves the millionaire problem.
This security holds in the hybrid model as the protocol implicitly relies on a system public key whose
matching private key is distributed among the participants (FSKG), as well on the accessibility of this
public key, for instance by posting it on the bulletin board (FBB). Moreover, the zero-knowledge
proofs which are required for decryption (and possibly for the lifting procedure, depending on its
particular instantiation) are made non-interactive and retain their soundness in the random oracle
model. We formalize the random oracle model as an ideal functionality FRO, along the lines of
Hofheinz and Müller-Quade [Hofheinz and Müller-Quade 2004].

THEOREM 3.2. Protocol PCLMP is a secure and universally verifiable realization of FMP in the
(FBB,FSKG,FRO,FLift)-hybrid model against non-adaptive adversaries.

The proof is in Appendix B.2.

3.3. Winner among r Options
Thus far we have proposed a UC-secure protocol for calculating the winner without the vote count
in a vote with two options. It turns out that our particular solution extends to multiple options.

The key insight is that a lifted ciphertext c ∈ Z∗
n3 is homomorphic in the following sense. Let D

represent the Damgård-Jurik decryption and let D′ be defined as:

D′ : Z∗
n3 →{0,1} : c �→

{
0 if D(c) = 0
1 if D(c) �= 0 .

Then we have the following homomorphism for ciphertexts c1,c2 ∈ Z∗
n3 which holds with high

probability for random r1,r2
$←− Zn3 (where ∨ represents the OR operation):

D′(cr1
1 × cr2

2 mod n3) = D′(c1)∨D′(c2) .

We can exploit this property to solve the richest millionaire problem (as opposed to the richer
millionaire problem, which is necessarily between two participants) by modifying PCLMP in the
following way. For all pairs {ci,c j} of vote counts, the authorities invoke PCLMP up to the decryption
of A once on (ci,c j) and once on (c j,ci). Let the resulting ciphertexts be denoted Ai, j and A j,i.

Then, for each original ciphertext ci ∈O, the authorities combine all comparison ciphertexts, each
of which is randomized by exponentiation with a random r j

$←− Zn3 :

Ai ← Ar1
i,1 × . . .×A

r j
i, j × . . . mod n3

That ciphertext ci whose Ai decrypts to D′(Ai) = 0 encrypts the largest value because this value is
as great or greater than that of any c j. If there are more than one such Ai, then they are tied winners.

The tally-hiding voting system, PTHVS invokes this modified version of the richest millionaire
protocol on all the ciphertexts ci that encrypt the total number of votes on option Oi. The richest
millionaire protocol PCLMP will determine the winner of the vote. The security proofs are easily
adapted from the two option case.

4. SELF-TALLYING VOTE
A self-tallying voting system is a voting system in which any interested third party can compute the
tally after the last vote has been cast. This can be desirable in small-scale votes (e.g.: boardroom
votes) where all of the voters or a large part of them are simultaneously voting authorities. The price
to pay for this increase in efficiency is that one voter can boycott the vote by refusing to participate.
The concept was introduced by Kiayias and Yung [Kiayias and Yung 2002] and was later improved
on by Groth [Groth 2004b].

We follow the scheme of Kiayias–Yung where the randomizers used for ballot encryption are
not entirely random, but designed to cancel out when aggregated. In this way, when all ballots are
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put together, the randomizers disappear and we are left with the tally. We overcome the problem in
which the last voter can see the tally before he votes by introducing a control voter. This control
voter casts a dummy vote only after all voters have cast their votes. It turns out that this control voter
is essential for the UC-security of the scheme.

In the systems of both Kiayias–Yung and Groth, all voters are authorities. In our scheme, however,
we assume that some voters may not be authorities and that some authorities may not be voters. As
long as at least one authority remains honest, no voter’s randomizer can be computed.

We describe the protocol for Paillier encryption with the slight modification that the randomizer
is generated deterministically from a public seed r to make a cancellation possible. However, it
should be noted that our protocol applies to any group in which the discrete logarithm is hard. (Al-
though, eventually, the tally is obtained by computing a discrete logarithm; we selected the Paillier
cryptosystem precisely because it offers a subgroup in which this is easy.)

Every voter Vi possesses a secret exponent xi, such that ∑i xi = 0. When all ballots are combined,
the randomizers cancel:

∏
i
(1+n)vi rxin = (1+n)∑i vi mod n2 .

At the start of the protocol, the authorities decide on a base w ∈Zn for the verification keys. Next,
every authority A j chooses an xi, j for every voter Vi such that ∑i xi, j = 0. This value is sent to voter
Vi while wxi, j mod n is made public. After all authorities have done this, the voter obtains the secret
exponent xi = ∑ j xi, j and any scrutineer can determine that voter’s verification key wi = ∏ j wxi, j

mod n.
In order to start voting, the voters must first select a public seed r, for example by taking the hash

value of all the messages on the bulletin board up until that point. There is a new public seed for
every round of vote casting. It should be noted that dlogwr must not be knowable by any subset of
authorities, as knowledge of this value can be used to recover individual votes.

A vote is encrypted using the system public key. A non-interactive proof is generated that the vote
is correctly formed and the secret exponent was used (these two claims may be proved in a single
proof). The result is signed and sent to the bulletin board. A concise overview of this protocol,
PSTVS, is presented in Figure 8.

Protocol PSTVS

— Initiate by invoking FPKG followed by FSKG.
— All authorities A j choose random values xi, j

$←− Zn2 for all voters Vi such that ∑i xi, j = 0. They send
these values to FBB but encrypted with that voter’s public key. Also, they publish wxi, j for each xi, j .

— The scrutineers check that ∑i xi, j = 0 for all j by calculating ∏i wxi, j ?
= 1. Also, the scrutineers calculate

every voter’s verification key wi = w∑ j xi, j = ∏ j wxi, j .
— All voters Vi read their messages from the authorities and determine their own secret exponent xi =

∑ j xi, j.
— In order to vote, the voters select a public random seed r, for example by querying the random oracle.

Next, each voter encrypts his vote using rxi for randomizer. This encryption is posted to FBB along with
a proof that the ballot encrypts an allowable vote and that the correct secret exponent was used, and with
a signature on the previous two objects. When all real voters have cast their vote, the control voter casts
his dummy vote and proves that it does not alter the tally and that it uses the correct secret exponent.

— All participants send a (read,sid) message to FBB and combine all the votes and calculate the tally t.

Fig. 8: self-tallying voting system.

We can only prove that PSTVS is a secure and universally verifiable realization of FVS under an
additional assumption: the control voter Vn is uncorruptable. The reason is that the honest simulated
voters Vi must cast their votes before the authorities instruct FVS to tally. Therefore, their votes
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cannot be made to correspond to the tally unless they cast their votes after the invocation of FVS —
in which case the simulated adversary A can pick up on the time and order difference. To prevent
this, the simulated voters cast random votes, which are then “corrected” by the control voter.

THEOREM 4.1. PSTVS is a secure and universally verifiable realization of FVS with an additive
tallying function against a non-adaptive adversary who has not corrupted the control voter Vn in
the (FSKG,FPKG,FBB,FRO)-hybrid model.

The proof is in the Appendix B.3.

5. AUTHENTICATED VOTING CREDENTIALS
One of the first proposals for the construction of anonymous voting systems was by using anony-
mous credentials [Chaum 1988]: strings of characters whose membership to a certain class of strings
is easy to verify. However, without some trapdoor information pertaining to that class, generating
new or other members is intractable.

The idea is as follows. The authorities generate one credential for each eligible voter and securely
communicate them to their intended recipients. During voting, the voters log in to the bulletin board
via an anonymous channel and cast their votes anonymously. Only those votes that are accompanied
by a valid credential are tallied. In an internet setting, the anonymous channel can be approximated
by using an anonymization network such as Tor.

However, in recent years credential-based voting systems have fallen out of favor due to their
weak security properties. First, the anonymous access to the bulletin board is difficult to realize.
The adversary who monitors a target’s outgoing traffic as well as the bulletin board’s incoming
traffic is able to correlate the two and recover the voter’s vote. Moreover, to date, there exists no
security guarantee for credential-based voting systems. While there do exist UC-secure credential
systems [Chase and Lysyanskaya 2006; Camenisch et al. 2010; Trolin 2005], the inclusion of a
voting procedure introduces a whole new challenge.

Our contribution is twofold. First, at a conceptual level we introduce the concept of “authenticated
voting credentials” for credential-based voting systems. The idea is to protect against the adversary
who intercepts the credential or modifies the vote, or who modifies the protocol transcript before
presenting it to the verifier. The voter proves his eligibility to vote not by releasing the credential,
but by proving knowledge of it. This interactive proof doubles as a MAC on the vote that is cast.
The adversary is not able to modify the proof so that it is authenticated by a different vote.

Second, on the level of protocol design, we propose an instantiation of this idea. It is based on
Chaumian blind RSA signatures [Chaum 1982], using a credential withdrawal protocol introduced
by Ferguson [Ferguson 1993]. A credential consists of a preimage a, a one-way function of the
preimage A = ag f (ha) mod n, and an RSA signature on this value S = A1/v mod n. In these expres-
sions, g and h are publicly known base values in Z∗

n; f is a suitable one-way function; n is an RSA
modulus whose factorization is known only to the bank (or, in our case, to the authorities); v is the
public RSA exponent and 1/v = v−1 mod ϕ(n) is the private RSA exponent.

A simplified version of Ferguson’s protocol for credential withdrawal is given by Figure 9. In
this figure, H represents a random oracle (instantiated by a hash function) and f a generic one-
way function. Compared to Ferguson’s original version, the first step has been made non-interactive
using the Fiat-Shamir heuristic [Fiat and Shamir 1986].

In a voting system, the private RSA exponent would be distributed among the authorities. The
RSA signature is generated using Shoup’s protocol [Shoup 2000]. The message from B to A actually
consists of several messages as each of the authorities communicate their share in Ā, the blind
signature, to the recipient.

In order to use the credential, the voter must not release the entire string but rather prove knowl-
edge of it. Guillou and Quisquater have proposed an interactive proof of knowledge of an RSA
preimage [Guillou and Quisquater 1988], which perfectly matches our purposes. The prover pos-
sesses an RSA signature and proves that he knows it while not releasing the signature itself. In
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Protocol PCW

Public knowledge: n,v,g,h.
Private knowledge for B: 1/v = v−1 mod ϕ(n).

A B
a1,γ,σ

$←− Z∗
n

b ← γva1gσ mod n
a2 ← H(b)
a ← a1a2 mod n
c ← f (ha)−σ

b,c
−−−−−−−−−−−−−−−−−−→

a2 ← H(b)
Ā ← (ba2gc)1/v mod n

Ā
←−−−−−−−−−−−−−−−−−−

S ← Āγ−1 mod n

Sv ?
= ag f (ha) mod n

Fig. 9: protocol for credential withdrawal.

Camenisch-Stadler notation:

ZKPoK{(S) : Sv = A mod n} .

The transcript of the protocol in which the credential is spent, is unlinkable to the transcript of
the protocol that created it. The reason is that the transcript of the withdrawal protocol contains no
information on the credential. A given withdrawal transcript (b,c, Ā) may have created any valid
credential (a,A,S). To see this, choose σ = f (ha)− c; γ = ĀS−1 mod n and a1 = bγ−1g−σ mod n.

We now describe the entire authenticated voting credential protocol. The protocol is started by
invocations of the key generation mechanisms. FPKG generates a public and private key pair for
encryption and signing for every protocol participant and distributes the public keys such that each
participant has a list of public keys of authorities and a list of public keys of eligible voters. FSKG

generates an RSA public key and distributes shares in the private key to the authorities along Shoup’s
protocol [Shoup 2000].

In the second phase of the protocol, the voters withdraw their credential. They initiate the cre-
dential withdrawal protocol PCW (in the role of A) and sign their first message. The authorities (in
the role of B) assign credentials only to eligible voters — whom they can tell from non-eligible
voters by the signature which must match a public key in the list of eligible voter public keys. Each
participant performs the instructions of B from PCW separately, returning not the signature but the
signature share on A and encrypting it with that voter’s public key, along with a proof of correct
exponentiation. If at least t authorities do this honestly, the voter will be able to reconstruct the
signature S = A1/v mod n which is an essential part of the credential.

At this point, every eligible voter (or those who have initiated the withdrawal process) is in pos-
session of a valid credential C = (a,A,S) which is unlinkable to the transcript of the withdrawal
process that created it. During the voting phase, the voters log in to the bulletin board anonymously
and post one message containing all of the following. First, their vote vi. Second, the credential
preimage a. And last, a non-interactive proof of knowledge of S = A1/v = (ag f (ha))1/v mod n. This
non-interactive proof is generated by applying the Fiat-Shamir heuristic to the proof of RSA signa-
ture knowledge PRSA, where the challenge value e is computed as the hash of the proof claim, the
proof’s first message, and the vote that is cast:

e = H(A ‖ D ‖ vi) .
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Anyone can compute the tally by counting only those votes that are accompanied by a valid and
unique credential. A credential cannot be reused as the value a is fixed. Only eligible voters possess
credentials because the authorities only assume their role in the credential withdrawal protocol when
eligible voters request a credential (and they make sure not to issue multiple credentials to any one
voter). Since access to the bulletin board is anonymous and since the credentials cannot be linked to
the withdrawal process that created them, voter anonymity is preserved. Lastly, the votes that were
cast conform to the credential holder’s intention because otherwise the proof will not check out. The
protocol is formally presented in Figure 10.

Protocol PAVCS

— Initiate by invoking FPKG followed by FSKG.
— All voters Vi that wish to vote post to FBB the pair of values b and c, which constitutes the first message

in PCW. This pair is signed by the voter.
— All authorities A j, upon seeing this initial message from Vi, compute Ā j = (bH(b)gc)s j mod n (where

s j is the share in the private exponent for authority A j). They send this value, along with a proof of
correct exponentiation to FBB after encrypting it with Vi’s public key.

— All voters Vi compute the signature in their credentials by calculating Ā ← ∏ j Ā2∆s jµ j
j mod n where µ j

is the Lagrange coefficient, and then S ← Āγ−1 mod n.
— All voters cast their votes anonymously by sending (vi,a,Z) to FBB, where Z is the transcript of the

proof of knowledge of S = A1/v = (ag f (ha))1/v mod n made non-interactive by setting the challenge
value to e = H(A ‖ D ‖ vi).

— Anyone, including the scrutineers, can compute the tally by sending a (read,sid) message to FBB and
tallying the votes from all the messages (v,a,Z) where Z is a valid proof for v and a (and where a was
not used before).

Fig. 10: authenticated voting credential system.

We note that this protocol is not fair: voters can observe the current tally before casting their own
vote. Knowledge of this partial tally may influence the content of their vote or even whether or not
they choose to cast it. This drawback is addressed by universal composability. If the times at which
the votes are cast, can influence which votes are cast, then the protocol adversary A can exploit this
property and generate votes where the tallies are significantly different from the tallies that would
have been produced by FVS.

In order to make the voting system fair — and, hence, in order for the system to possibly be
universally composable — voters must not be able to read the bulletin board during the voting phase.
Conceptually, we modify FBB to offer this property. In particular: if FBB receives a (close,sid) from
at least one honest authority, FBB starts ignoring all (read,sid) requests. When at least one honest
authority sends a (open,sid) message, FBB starts responding again. This can be implemented on
top of FBB by introducing an interfacing layer that relays messages between FBB and the external
environment but blocks read messages when it is not readable.

The adversary who can read, block or falsify all incoming traffic to FBB breaks the security of
the protocol because he can trivially see which vote is coming from which voter. We can only prove
security under a far weaker adversarial model. In this model, the adversary can no longer read,
block or falsify messages sent by voters to the bulletin board. In other words, except for instructing
the corrupted parties, the adversary has become passive. In order to account for this adversary, we
modify the specification of the bulletin board functionality FBB to instantly store any message by
any participant without reference to the sender and without letting it pass through the adversary. In
this modified FBB model, we are able to prove the UC-security and universal verifiability of PAVCS.

THEOREM 5.1. Protocol PAVCS is a secure and universally verifiable realization of FVS with
an additive tallying function in the (FBB,FSKG,FPKG)-hybrid model for a passive, non-adaptive
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adversary corrupting up to k − t authorities, where k is the number of authorities and t is the
threshold of honest authorities.

The proof is in Appendix B.4.
Universal composability does not require authenticated voting credentials. As long as the bulletin

board offers anonymous, append-only access and is unreadable during voting but otherwise readable
by all participants, any credential system can be used for UC-secure voting. On the other hand, if the
adversary is able to control what the bulletin board shows to readers during the tallying process, then
authenticated voting credentials are necessary for UC-security. More importantly, they are necessary
for universal verifiability. Since the adversary controls the transcript that is verified by the verifier,
he could otherwise pretend the (unauthenticated) credentials were used to cast different votes and
so convince the verifier of a false tally. This is impossible if the credentials are authenticated by the
votes.

6. CONCLUSION
In this paper we have introduced three new techniques for electronic voting as well as a unifying
framework for their analysis. In particular, we have proposed a tally-hiding voting system, a self-
tallying voting system and an authenticated voting credential system and we have proved the UC-
security of each of these systems as well as their universal verifiability.

The UC-security of the systems is proved under various adversarial models. Our tally-hiding
system is secure against the strongest adversary: one who can observe, block or falsify any voter’s
messages and corrupt any number of voters and up to k− t authorities, where k is the number of
authorities and t is the threshold of honest authorities. In the self-tallying vote, the adversary is
nearly as strong. The only additional constraint is that there is a control voter who casts the last
dummy vote and who cannot be corrupted. In both cases, he is allowed to read, block and falsify
voters’ messages, extending the power of the adversary compared to Groth’s model [Groth 2004b].
On the other hand, Groth’s model includes protection against adaptive adversaries in the erasure and
in the erasure-free model. The adversary in the authenticated voting credential system is far weaker
as he is not able to observe voters’ messages — not even indirectly by observing the bulletin board
as this may be closed for reading. In all cases, we assume the adversary is computationally bounded
and that his power to corrupt is somehow constrained.

We offer a formalism of universal verifiability which is compatible with universal composability
in two senses: first, the verifier (from the universal verifiability paradigm) interacts with the ad-
versary (from the universal composability paradigm); second, universally verifiable protocols are
composable just as universally composable protocols are. While universal verifiability is indepen-
dent of the ideal bulletin board functionality, it is not independent of the participant key generation
functionality nor of the random oracle functionality. The verifier V needs to verify the authentic-
ity of, at the very least, the voters’ messages. The random oracle is necessary to make the proofs
non-interactive. While the adversary-simulator S may simulate a random oracle to convince a real
protocol adversary A of false claims, he cannot convince a skeptical verifier in the same way. In
order to convince a verifier of the correctness of a protocol, the adversary must invoke a random
oracle that is trusted by the verifier. To make this non-interactive, a cryptographic hash function is a
reasonable approximation.
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A. CIPHERTEXT LIFTING (AND THE MILLIONAIRE PROBLEM)
We now describe an alternative to Damgård and Jurik’s ciphertext lifting procedure [Damgård and
Jurik 2002]. One key ingredient is that the authorities decide on an access structure Λ (a set of t
indices indentifying the authorities that will perform the computation) in advance. When such an
access structure has been decided, each of the authorities uses their private exponent si to compute
a share ci starting from a ciphertext c as follows:

ci ← c
4∆2si ∏

j∈Λ\{i}

− j
i− j

mod n2 .

These shares constitute a multiplicative sharing modulo n2 as the following equation is guaranteed
to hold thanks to Lagrange:

(1+n)m = ∏
i∈Λ

ci mod n2 .

In the next step of the protocol, each authority divides their share into two digits base n: ci =
ai +bin where ai,bi < n. The ai are published; the bi are kept secret. It is easy to see that the ai do
not leak information on the plaintext m. Moreover, the proof of correct exponentiation which is used
to prove the correctness of a decryption share, can be performed modulo n rather than modulo n2 to
yield a zero-knowledge proof that ai is correctly formed.

The authorities proceed to compute an additive sharing modulo n of the plaintext as follows. Each
authority in the access structure computes their share ui:

ui ← bi ∏
j∈Λ\{i}

a j mod n .

Anyone can compute 1+nr = ∏i∈Λ ai mod n2. At this point, the following equality is guaranteed
to hold:

m = r+ ∑
i∈Λ

ui mod n .

In addition to computing their shares ui, the authorities commit to their shares by publishing
E(ui). Moreover, they choose some randomness to encrypt r as well. At this point the authorities
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use the regular threshold decryption procedure to prove that the value

c−1E(r)∏
i∈Λ

E(ui) mod n2

does indeed decrypt to 0 — implying that the commitments to their shares are correct.
The next step is to obtain an additive sharing of the message without modular reduction. This

step only works by leaking the most significant few bits of the plaintext. While this property is not
desirable (as it precludes UC-security), we argue that this is a minor compromise considering the
size of the modulus and the fact that this lifting procedure’s most pertinent use case is comparing
plaintexts — i.e. discovering certain information about the most significant bits.

We use a safety parameter ς ≥ 2 to divide the range Zn into a secret zone S = [0; n
ς )∩Zn and a

danger zone D = [n− n
ς ;n)∩Zn. These sets have the property that any secret element added to a

non-dangerous element is guaranteed not to overflow. Symbolically:

∀s ∈ S,d ∈ Zn\D . s+d < n .

We use this principle to find another sharing of the plaintext whose equation holds with and
without modular reduction. In particular, the sum of all the secret shares belongs to the safe zone,
and the new public remainder r′ does not belong to the danger zone. In particular, each authority in
the access structure chooses a new share u′i

$←−
{

0, . . . ,
⌊

n
ς t

⌋}
at random. (Bear in mind that t = |Λ|.)

The difference δi = ui −u′i is made public along with commitments such that anyone can verify that
E(ui) = E(δi)E(u′i) mod n2. The new remainder r′ is computed as r′ = r+∑δi mod n. Thus we
have an additive sharing which is guaranteed with high probability not to overflow:

r′+ ∑
i∈Λ

u′i < n .

Of course, there is a chance that the procedure as described above might overflow after all and
produce E(m+n) rather than E(m). This occurs whenever m < ∑i∈Λ u′i; the probability of this event
is 1

2ς . It is possible to make this probability small by increasing the safety parameter ς, but this
comes at the cost of leaking more information on the plaintext.

Whenever this event occurs, it will be signalled by r′ ∈ D (although r′ ∈ D does not automatically
imply m < ∑i∈Λ u′i). If the authorities discover that r′ ∈ D and if it is known that m �∈ D, then they
can circumvent the failure by adding � n

ς � to r′, performing the reduction modulo n, lifting, and
homomorphically subtracting � n

ς � from the lifted ciphertext.
Of course, this does leave open the question what to do when it is not known whether m �∈ D and

r′ is found to lie in D. We would argue that despite the lack of robustness against errors with respect
to all plaintexts, this lifting procedure does offer a practical solution to most use cases, especially
considering that ς can be balanced against the known distribution of m. More importantly, however,
this drawback does not seem to impact the solution to the millionaire problem. We now demonstrate
this.

Without loss of generality, we can assume that m1 �∈ S and m2 �∈ S, because we can homomor-
phically add � n

ς � to both plaintexts at no cost. However, if m1 or m2 happens to lie in D, then the
addition of � n

ς � will cause overflow, breaking the protocol. If this is the case then the solution is to
use a larger modulus n.

The protocol performs lifting on three numbers: C1 = Lift(c1),C2 = Lift(c2) and B= Lift(c1�c2).
The first two are guaranteed to succeed with this lifting procedure. However, the ciphertext B may
encode a plaintext that is larger than n, depending on the particular relation between m1 and m2. In
particular, with the application of the addition trick from the paragraph before last, we know that B
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satisfies:

D(B) =

{ m1 −m2 if m1 ≥ m2
2n+m1 −m2 if m2 −m1 ∈ S\{0}
n+m1 −m2 else

.

However, b =C1 �C2 will satisfy:

D(b) =





m1 −m2 if m1 ≥ m2
n2 +m1 −m2 if m2 −m1 ∈ S\{0}
n2 +m1 −m2 else

.

And hence the difference A = B�b will satisfy:

D(A) =

{ 0 if m1 ≥ m2
2n if m2 −m1 ∈ S\{0}
n else

.

Which implies in particular that the inequality test at the conclusion of the millionaire problem
solution still holds: D(A) �= 0 ⇒ m1 < m2 and conversely D(A) = 0 ⇒ m1 ≥ m2. In order to further
reduce the leakage of information, the ciphertext A must be raised to an unknown and random (but
provably nonzero) exponent prior to decryption.

B. UNIVERSALLY COMPOSABLE AND VERIFIABLE VOTING SYSTEMS
B.1. Security and Verifiability of the Tally-Hiding Voting System

PROOF. of Theorem 3.1. Correctness. Correctness follows from construction.
UC-security. We show that no environment E can tell the difference between an execution of the

protocol under attack by a real protocol adversary A or an invocation of the ideal functionality FVS

under attack by an adversary-simulator S .
The adversary-simulator S runs with dummy voters V̂i and dummy authorities Âi. The honest

dummy voters relay their inputs from E directly to the ideal functionality FVS. The corrupted
dummy voters and authorities are controlled by the adversary-simulator S . At the end of the ex-
periment, E reads the outputs of the voters.

The adversary-simulator simulates an execution of the protocol PTHVS and simulates the real pro-
tocol adversary A . The protocol runs with simulated voters Vi and authorities A j, some of which are
controlled by the real process adversary A and the others of which are controlled by the adversary-
simulator S . The set of corrupt dummy participants (i.e.: participants V̂i or Âi that are controlled by
S ) matches the set of corrupt simulated participants (i.e.: controlled by A). The adversary-simulator
S proceeds as follows.

— S forwards all messages between A and E .
— S starts by simulating the invocation of FPKG and FSKG. S uses FBB throughout. As a result, S

knows all private keys and shares in the system private key, in addition to all public keys.
— If one of the simulated voters Vi that is controlled by the real process adversary A casts a ballot bi

and a proof pi, the adversary-simulator S checks the proof and if it is valid, decrypts bi to obtain
Vi’s vote, vi. Next, S has V̂i send (vote,sid,vi,V̂i) to FVS. S follows up with a (no-block,sid,V̂i)
message.

— If the adversary-simulator S receives (vote,sid,V̂i) from FVS pertaining to an uncorrupted voter
V̂i, S simulates Vi’s vote in the simulated protocol by casting a zero vote vi = (0,0) to the bulletin
board.

— If the authorities in the simulated protocol invoke FMP, S lets all Âi’s under his control send
(tally,sid) to FVS, which will produce a tally t. S simulates FMP for the simulated protocol by
presenting the authorities with an answer conformant with t. The dummy voters V̂i receive the
tally from FVS.
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The real protocol adversary A has no way to determine whether or not he is being simulated by S .
The only messages that might indicate that he is being simulated, are the encryptions of votes that
are not conformant to the winner coming from FMP. However, if A can tell that the vote encryptions
do not conform to the tally, then he either breaks the semantic security of the cryptosystem or has
access to more than k− t shares in the private system key.

Similarly, the environment E has no way of detecting whether there is a adversary-simulator S
between himself and the real protocol adversary A . The tallies on the tapes of the voters Vi and
authorities A j are the same in both cases. All E’s queries are answered honestly by a real protocol
adversary A who has no way of knowing whether or not he is being simulated. Moreover, E is
subject to the same computational constraints, which in particular imply that E cannot break the
semantic security of the cryptosystem either.

Universal verifiability. We show this by constructing a verifier V which verifies an execution of
the protocol.

V does not need to verify the correct execution of FPKG or FSKG as these are trusted functionali-
ties. The ballots that are cast are accompanied by zero-knowledge proofs which prove their correct
composition. Moreover, they are signed, which authenticates the eligibility of their originator. V
can calculate the aggregates of the vote encryptions himself and verify that the input to FMP is the
correct input. He does not need to verify the execution of FMP as it is a trusted functionality. Lastly,
V checks whether the tally sent to the bulletin board conforms with the answer from FMP.

B.2. Security and Verifiability of the Millionaire Problem Solution based on Lifting
PROOF. of Theorem 3.2. Correctness. Correctness follows from construction. Let d = m1 −m2,

then we have:

A = B�b = Lift(c1 � c2)� (Lift(c1)�Lift(c2))

= Lift(E(m1)�E(m2))� (Lift(E(m1))�Lift(E(m2)))

= E(m1 −m2 mod n)�E(m1 −m2 mod n2)

E(n+d mod n)�E(n2 +d mod n2) = E(rn) .

If m1 < m2, then r �= 0 (and in fact r = 1). On the other hand, if m1 ≥ m2, then r = 0.
UC-security. We demonstrate that for every adversary A that attacks the protocol, there exists an

adversary-simulator S that attacks the ideal functionality with equal success such that any computa-
tionally bounded external environment E cannot determine whether it is interacting with A and the
protocol, or with S and the ideal functionality.

In the beginning of the experiment, E reads the system public key. He then chooses a pair of
plaintexts m1 and m2 and encrypts them using the public key to obtain c1 and c2. These values are
sent to all participants. At the end of the experiment, the participants communicate the result to E .
This implicit reliance on a pre-distributed private key is made explicit if the protocol invokes FSKG.
The implicit reliance that this public key is accessible by E is made explicit if the protocol uses FBB.
Since the protocol is only a subprotocol within PTHVS which does use these ideal functionalities,
this is not a problem. However, UC-security only holds in the hybrid model.

The adversary-simulator S controls the corrupt participants. Moreover, S runs a simulation of the
protocol PCLMP with participants Ai, mapping corrupt Âi to corrupt Ai and simulating honest Ai as
well as the adversary A that attacks the protocol. Lastly, S controls the random oracle, which means
that the simulated parties Ai can create valid proofs for false claims.

S behaves as follows:

— S forwards all messages between E and A .
— The simulated participants Ai hold the same ciphertexts c1 and c2.
— If S controls t or more participants Âi, then S is able to decrypt the ciphertexts and obtain plaintexts

m1, m2. Otherwise, he chooses plaintexts m1 and m2 at random.
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— When the participants Ai run the Lift subprocedure, they raise �i−1 to a random secret power and
generate a non-interactive proof that this exponentiation conforms to their share verification key
(v,vi) using the corrupt random oracle.

— When the participants Ai decrypt A, they produce random decryption shares consistent with 0 (i.e.:
produces 0 upon combination) if m1 ≥ m2 and rn otherwise, where r is a random value from Zn.
Since S controls the random oracle, the proofs of “correct” decryption are easy to falsify.

The real protocol adversary A has no way of discovering that he is being simulated by S . The
only messages that might indicate that he is being simulated, are the ciphertexts c1,c2 and inter-
mediate encryptions having to do with lifting that do not conform to the result coming back from
FMP. However, if A can infer this from the ciphertexts, then he breaks the cryptosystem’s seman-
tic security. Similarly, if he can glean from the transcripts of the zero-knowledge proofs that the
intermediate values do not conform to the result returned from FMP, then he breaks the computa-
tional zero-knowledge property. Since A trusts the random oracle, he has no reason to assume the
zero-knowledge proofs are incorrect.

Similarly, the environment E has no way of discovering that there is an adversary-simulator S
between himself and the protocol-adversary A , who also has no idea that such an S exists. More-
over, since E does not have access to the participants’ decryption shares, he cannot discover that the
ciphertexts and intermediate ciphertexts do not conform to the result of the protocol without break-
ing the cryptosystem’s semantic security. Moreover, this result is guaranteed to match the parties’
inputs as S invokes FMP.

Universal verifiability. Every step in the protocol has an associated message on the bulletin board.
Except for lifting and decryption, the verifier can check the new values by calculating them himself.
Lifting is a trusted ideal functionality. As for decryption, every step in this subprotocol is accompa-
nied by efficiently verifiable zero-knowledge proofs which ensures the validity of that one step.

B.3. Security and Verifiability of the Self-Tallying Vote
PROOF. of Theorem 4.1. Correctness. Correctness follows from construction. Let E(m,r) de-

note the encryption using the system public key of the message m using randomizer r. Let ⊕ denote
the operation on ciphertexts that homomorphically corresponds to addition. The aggregation of the
encrypted votes is given by:

E(v1,r1)⊕ . . .⊕E(vn,rn) = E

(
n

∑
i=1

vi,
n

∏
i=1

rxi

)
= E

(
t,r∑n

i=1 xi
)
= E

(
t,r0)= E(t,1)

UC-security. We demonstrate that for every adversary A who attacks the protocol, there exists an
adversary-simulator S who attacks the ideal functionality with equal success, such that no compu-
tationally bounded external environment E can tell whether he is interacting with an execution of
the protocol and a real adversary A attacking it, or with an invocation of the ideal functionality and
an adversary-simulator S that attacks it.

The adversary-simulator runs with dummy voters V̂i and dummy authorities Â j. The dummy
voters V̂1, . . . ,V̂n−1 receive their input from E . The corrupt voters and authorities are controlled by
S and the honest voters and authorities relay their inputs to FSTVS. At the end of the experiment,
E reads the outputs of the dummy voters. Throughout the experiment, E can query the adversary.
After the experiment, E is allowed a polynomial-time computation before he must decide whether
he was interacting with A or S .

The adversary-simulator S simulates an execution of the protocol between simulated authorities
A j and simulated voters Vi, along with the (simulated) real protocol adversary A . The set of cor-
rupt simulated voters and authorities matches the set of corrupt dummy voters and authorities. The
adversary-simulator S proceeds as follows:

— S forwards all messages between A and E .
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— S starts by simulating the invocation of FPKG,FSKG and simulates FBB throughout. As a result, S
knows all participants’ private keys as well as the system private key.

— S allows the authorities A j to generate secret exponents xi for all voters Vi. S is able to decrypt
these messages and obtain the xi.

— If one of the corrupt voters Vi casts their vote, S checks the proofs and decrypts the vote vi and
instructs Vi to send (vote,sid,vi,V̂i) to FVS. S follows up with a (no-block,sid,V̂i) message.

— On receiving (vote,sid,V̂i) from FVS pertaining to an honest voter V̂i, S instructs Vi to cast a
random vote. In order to generate sound proofs, S simulates the random oracle FRO to generate
suitable outputs.

— When all the corrupt voters Vi have cast their votes, S invokes FVS and receives the tally t. S
determines the current tally t ′ in the simulated protocol and instructs the control voter Vn to cast a
vote of the form E(t − t ′). Again, S simulates FRO so as to generate sound proofs.

The only ways in which A can discover that he is being simulated by S is by discovering that
the encrypted votes (from the honest voters as well as from the control voter) are not valid votes. In
order to come to this conclusion, A would have to break the semantic security of the cryptosystem
or else discover that the challenge values in the zero-knowledge proofs are not random. But as A
has bounded computational power and trusts FRO, this cannot happen.

The environment E gets to communicate with a real process adversary A who has no idea he is
being simulated. The tally on the tapes of the voters V̂i corresponds to the inputs given by E to the
voters at the start of the experiment or by A who has corrupted them. E , like A , cannot break the
semantic security of the cryptosystem nor does he have any cause to mistrust the random oracle’s
output.

Universal verifiability. Except for FPGK, FSKG and FRO, which are trusted functionalities, all steps
are either reproducible by the verifier himself or else accompanied by a zero-knowledge proof.

B.4. Security and Verifiability of the Authenticated Voting Credential System
PROOF. of Theorem 5.1. Correctness. Correctness follows trivially from construction. All voters

Vi cast their vote vi. The tally is given by t = ∑i vi.
UC-security. We show that the protocol is UC-secure by showing that for every adversary A

that attacks the protocol PAVS, there is an adversary-simulator S that attacks the ideal functionality
FVS with equal success and such that no computationally bounded external environment E can tell
whether he is interacting with A and PAVS or with S and FVS.

The adversary-simulator S runs with dummy voters V̂i, who receive their input from E and with
dummy authorities Â j. After the experiment is finished, E looks at the tapes of the voters Vi and
authorities A j, computes for a polynomial duration and eventually outputs a guess as to whether he
is interacting with A or S . Throughout the experiment, E can communicate with the adversary.

The adversary-simulator simulates an execution of the protocol between simulated authorities
A j, simulated voters Vi and a simulated real-protocol adversary A . The parties A j or Vi that were
corrupted by A correspond to the parties Â j or V̂i that were corrupted by S . The adversary-simulator
proceeds as follows:

— S forwards all messages between A and E .
— S starts by simulating the invocation of FPKG,FSKG and simulates FBB throughout. As a result, S

knows all private keys and private key shares.
— S instructs all honest voters Vi to withdraw a credential.
— S instructs all honest authorities Ai to approve all credential withdrawal requests from eligible

voters, including from the corrupted voters (provided that they made a valid credential withdrawal
request).

— S instructs the authorities to make the FBB unreadable by sending (close,sid) to the bulletin board.
— If any corrupt Vi casts a vote (i.e.: posts a (vi′ ,a,Z)-message to FBB), then S determines who cast

the vote and he instructs the matching V̂i to cast the same vote in FVS. S allows this vote to pass.
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— If S receives (vote,V̂i,sid) from FVS pertaining to an honest voter V̂i, S allows it to pass.
— When all V̂i have cast their votes, S allows FVS to compute the tally t. From this tally, S is able to

infer the votes that were cast by all the honest voters, without mapping any one vote to the voter
that cast it. S chooses a random mapping of honest votes vi′ to honest voters Vi. For each of these
honest voters Vi, the bulletin board FBB stores a post of the form (vi′ ,a,Z), where vi′ is the vote, a
is the preimage of Vi’s credential and Z is a non-interactive proof transcript attesting to knowledge
of a certificate and involving a and vi′ . The timestamps of these posts are chosen at random. (The
timestamps of the posts from the corrupt parties are not modified.)

— At this point, S instructs the honest authorities Ai to open FBB for reading by sending a (read,sid)
message. All participants including A can read the bulletin board and calculate the tally.

In order to discover that he is being simulated by the adversary-simulator S , the real protocol
adversary A must somehow discover a discrepancy. However, since the adversary cannot observe
the behavior of the honest parties except by what they post to the bulletin board, he has nothing to
compare the timings of their posts to and hence no indication that suggests they are not authentic.
Moreover, the timings of the posts of the corrupted parties conforms to what the adversary instructed
them to do.

Since access to the bulletin board is anonymous and since the credentials are unlinkable to the
transcript of the protocol that created them, the adversary has no way to determine which of the
honest votes was cast by which honest voter.

The external environment E communicates with A throughout the protocol. However, A has no
idea he is being simulated. Moreover, there is no indication that there is a S relaying messages
between E and a simulated A . Since the credentials are unlinkable to the voters, E cannot compare
the mapping between cast votes and the voters of the protocol with the mapping implicit in his input
to the voters at the start of the experiment.

Universal verifiability. Vote casting is verifiable as it is accompanied by a zero-knowledge proof
which authenticates the credential as well as the vote. It is trivial to check that credentials are not
reused as the value a must remain fixed. The verifier can check that only eligible voters are assigned
credentials via the bulletin board. This cannot happen as long as at least t authorities are honest. In
this sense, verifiability of correctness is still universal (i.e.: anyone can verify), but correctness itself
is reduced to an assumption of trust, down from no assumption at all.
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