
A file system for safely interacting with untrusted USB flash drives

Ke Zhong, Zhihao Jiang⋆, Ke Ma⋆, and Sebastian Angel
University of Pennsylvania ⋆Shanghai Jiao Tong University

Abstract
This paper introduces RBFuse, a system for interacting with
USB flash drives safely in commodity OSes while bypassing
the complex and bug-prone USB stack on the host. RBFuse
prevents attacks in which malicious USB flash drives exploit
low-level USB driver vulnerabilities to compromise the host
machine. The simple idea behind RBFuse is to remap the USB
stack to a virtual machine and export the flash drive’s file
system as a mountable virtual file system. The result of this de-
composition is that the host can access all the files in the flash
drive without speaking USB. This is beneficial from a security
standpoint, since the VFS interface is small, has well-defined
semantics, and can be formally verified. RBFuse requires no
hardware modifications and introduces low overhead.

1 Introduction
When users connect their peripheral devices (keyboards, flash
drives, chargers) into their machine, they expect them to work
right away. This convenience is built deep into the fabric of
the Universal Serial Bus (USB), which is the de facto protocol
(and nowadays also connector type) for peripheral devices.
USB has for decades assumed, even if tacitly, that any device
physically attached to a user’s machine has been vetted by the
user and is therefore trustworthy. Consequently, USB stacks in
existing OSes lack authentication mechanisms, blindly trust de-
vice payloads, and grant devices direct memory access (DMA).
Such state of affairs has led to a myriad of attacks in which
maliciously crafted devices abuse this trust to compromise
low-level drivers [62], masquerade as other devices [21–23],
and manipulate kernel memory via DMA [8, 55, 63, 65]; the
academic community has followed with proposals to address
many of these shortcomings [28, 31, 47, 49, 54, 66, 68–70].

While there is reason to be optimistic that newer versions
of USB (connectors and protocol) will take security more seri-
ously [24], safely interacting with the existing tens of billions
of devices that lack the proposed capabilities remains challeng-
ing. A particular concern are flash drives, which, even in to-
day’s well-connected and cloud-powered world, remain widely
popular for storing and sharing data (e.g., bitcoin keys, medical
records, old photos, music). To support safe interactions with
untrusted flash drives that may conduct the aforementioned
attacks, we propose a lasting remedy: instead of searching for
(and patching) vulnerabilities across the complex USB stack,
we arrange for the host to speak to the flash drive exclusively
over a virtual file system (VFS) interface, avoiding the host’s
USB stack in its entirety. This approach has the benefit that
VFS designs have simple and narrow interfaces, can be tested

using ideas borrowed from existing fuzzing [48, 71] and crash
frameworks [57], and actually stand a chance of being for-
mally verified to ensure the absence of memory errors and the
presence of crash consistency [33, 34]. The key challenge is
achieving the proposed architecture without hardware changes
and with low overhead.

To tackle the above challenge we introduce RBFuse, which
is the first system that efficiently allows interactions between
the host and USB flash drives through a VFS interface, by-
passing the USB stack on the host machine without the need
for new hardware. To do so, RBFuse adapts and specializes
the architecture proposed in Cinch [31] and Qubes OS [19].
Specifically, RBFuse sets up a virtual machine (VM), remaps
the USB host controller to the VM’s address space, mounts
the flash drive, and mediates access to it via a VFS interface.
A Fuse-based file system at the host proxies all operations to
the VFS via RPCs. From the perspective of the host, when
a flash drive is attached to the machine it appears as a new
directory in the VFS that can be accessed by the kernel and
all applications. From the perspective of the device, it talks
USB to the VM; attacks are contained within the VM and only
propagate to the kernel via the (hardened) VFS interface.

As one may expect, a straightforward implementation of
RBFuse’s architecture leads to unreasonably low performance
(up to 310× higher completion time compared to the base-
line of directly connecting the flash drive via the host’s USB
stack). To reduce costs, we adapt optimizations that have been
proposed for networked file systems to aggressively cache
metadata, batch operations, and prefetch files. The resulting
implementation achieves comparable performance to the base-
line on workloads that operate on a large single file, and less
than 4× higher completion time on workloads that operate on
thousands of small files. Additionally, we use formally verified
serializers and parsers [58] to reduce the attack surface of the
RPC layer used by the VFS and the proxy. Finally, inspired
by Cinch [31] and SandUSB [54], RBFuse can leverage an
optional hardware adapter that encrypts files and metadata be-
tween the flash drive and the Fuse-based proxy (kernel) with
low overhead, which prevents malicious USB hubs or promis-
cuous devices from inspecting the content of files transferred.

While RBFuse is presently tailored to flash drives, we intend
to accommodate other file-based devices such as USB SD card
readers and USB SSDs; this last one is particularly challenging
due to high USB 3 speeds. In the near future, we plan to borrow
ideas from formally verified file systems [33, 34] to prove the
correctness of our optimizations (particularly with respect to
crash consistency) and to further reduce the attack surface.
A major limitation of RBFuse is supporting multiple USB

devices: all devices attached to the same host controller are
remapped to the same VM, so a compromised VM can harm
other devices or take over for them. While desktops and newer
laptops have multiple host controllers that could allow users
to separate devices into untrusted (e.g., newly found flash
drive) and trusted (e.g., keyboard owned for years) groups,
this remains a major pain point.

2 Background and related work
The Universal Serial Bus (USB) is the de facto stack for in-
teracting with peripheral devices such as flash drives. On the
hardware side, it consists of the devices themselves, hubs
like monitors and adapters (e.g., Apple “dongles”), and the
host controller, which sits on the motherboard and is typically
connected via PCIe. On the software side, USB consists of
the host controller interface (HCI), which manages the host
controller; USB core drivers that handle device enumeration
and power management; and USB class drivers that manage
devices (e.g., mass storage drivers manage flash drives).

While threats such as USB devices carrying malware have
been around for decades (e.g., Stuxnet [42]), recent years have
seen an influx of devices that are themselves malicious [3–
5, 7, 13, 17, 18, 43, 56]. The difference between these two
threat models is that in the former (malware) the device itself
is entirely benign and follows the prescribed protocol. In the
latter, the device itself exploits the USB protocol. For example,
a flash drive could lie during the device enumeration process,
pretend to be a keyboard, and issue arbitrary key presses [18].
As another example, the USB device could issue malformed
packets to exploit vulnerabilities in USB’s core or class drivers
(which run inside the kernel), thereby gaining control over the
machine with root privileges [2, 9–12, 15, 32, 38, 39, 41, 62].

2.1 Existing efforts

To prevent the above attacks, existing efforts for commodity
OSes fall into three categories: (1) filtering USB packets; (2)
adding authentication to the USB protocol; (3) sandboxing the
device and monitoring its behavior. We discuss each of these.

Packet filtering. USBFilter [70] and Cinch [31] work by in-
tercepting USB packets and allowing the user to specify rules
to block devices or payloads (similar to specifying rules for a
network firewall). USBFilter operates within the kernel sim-
ilar to iptables. Cinch forces the USB device to connect to a
VM, converts the USB packets into IP packets, uses existing
network middleboxes to process the IP packets, and re-injects
the “cleaned” USB packets into the host’s USB subsystem.

A limitation of filtering is that devices with polymorphic
attacks (i.e., attacks that change payloads) are hard to pre-
vent with rules, so malicious devices could still exploit driver
vulnerabilities. This is a key difference between RBFuse and
these efforts: while Cinch goes from USB to IP, and then back
to USB (which means that the host still has a full USB stack
that can be exploited by polymorphic attacks), RBFuse goes
from USB directly to VFS RPCs.

Device authentication. Several efforts [28, 49, 66, 69] ex-
tend USB devices and drivers to allow the device to cryp-
tographically authenticate to the host (or vice versa). This
allows the devices of trusted manufacturers to continue to op-
erate, while preventing risky devices from being used. Similar
efforts are being discussed for devices that use the USB-C
connector [24]. A downside of this approach is that it prevents
third-party manufacturers and custom hardware, and raises
concerns that a small set of companies can dictate what de-
vices people can use. These works differ from RBFuse in that
they require new devices and protocols, whereas RBFuse’s ob-
jective is to support existing devices—albeit only flash drives.
In this light, RBFuse is complementary: should the above ap-
proaches be widely deployed, RBFuse can allow users to plug
in old USB flash drives that lack the necessary extensions.

Sandbox the device. Some works [47, 54, 68] redirect de-
vices to a sandbox rather than connecting them directly to
the host. The sandbox can be a separate device or a virtual
machine; while in the sandbox, the user (or an anomaly de-
tection algorithm) can monitor the behavior of the device. If
the device is deemed safe, it is then connected to the host ma-
chine. A challenge with these works is that it is hard for users
to determine whether a device is “safe”; further, malicious
devices could detect that they are running in a sandbox and
change their behavior accordingly (VW has taught us a lesson
here [1]). Unlike RBFuse, these works reconnect the device
into the USB subsystem.

3 Design
We approach the problem of safely supporting flash drives
from a pragmatic perspective: since fixing all bugs in the
USB stack is difficult and formal verification requires a clear
and narrow interface with easy to specify semantics (which
is not the case in USB since its specification contains a lot
of ambiguity [31]), we focus on avoiding USB at the host
altogether. In the following sections, we describe (1) our high
level architecture; (2) our concrete threat model; (3) how to
remap the USB’s host controller away from the kernel and
onto a VM; (4) how to export flash drives from this VM to
the host via a mountable virtual file system (VFS); (5) how to
notify the host that a new flash drive has been plugged in; (6)
an optional hardware adapter that encrypts file contents and
metadata; and (7) how to make this architecture efficient.

3.1 RBFuse’s architecture

RBFuse’s architecture, depicted in Figure 1, is inspired by
Rushby’s separation kernels [59, 60], Lampson’s idea of free-
dom and accountability (Red/Green) [52], and the recent
instantiation of these notions in Cinch’s Red and Blue ma-
chines [31]. At a high level, the system is divided into two
components: a “Red” machine that is untrusted (free to do
what it wants), and a “Blue” machine that constitutes the
trusted computing base (accountable). In RBFuse, the Red
machine is a VM that runs one or more VFS servers and a

VFS Server

Host Machine

Adapter

IOMMU

VFS Client

ɡ
ɢ

ɣ

ɤ

USB DirectoryVirtual
Machine

(optional)

Remapping

Virtual
Machine

Host Memory Space

IOMMU ɠ

USB device remapped to
memory space of
virtual machine

FIGURE 1—RBFuse’s high-level architecture. RBFuse remaps the
host controller to a deprivileged process, which exports the device to
the host via a networked file system. This interface is the only com-
munication between the device and the host. An optional adapter can
be added to further provide authentication and file-level encryption.

USB stack (HCI, USB core, and mass storage drivers); the
Blue machine consists of the host’s kernel, other processes,
and one or more VFS client instances. Following Rushby’s
methodology, the interactions between these two machines
should be done through a narrow and simple interface that, in
an ideal world, stands a chance of being formally specified.

3.2 Threat model

RBFuse’s goal is to prevent the following types of attacks.

Attack on the host’s USB stack. RBFuse should eliminate
attacks on the host’s USB stack and prevent DMA attacks on
the host. Note that RBFuse does not prevent a malicious USB
device from attacking the VM’s USB stack. As a result, we
assume that the attacker can corrupt the VM at any point, and
can use it to issue malformed requests to the host via any avail-
able communication channels. We assume that virtualization
software is not vulnerable to VM escapes [50], and that the
machine’s IOMMU prevents unauthorized memory accesses.

Attack on the VFS client. RBFuse should prevent attacks on
the VFS client stack that runs inside the host’s kernel. Since
the VFS server runs on the untrusted VM, the adversary is free
to issue malformed responses to exploit vulnerabilities (e.g.,
buffer and integer overflows) in the VFS client implementa-
tion. Note that attacks caused by the content of an otherwise
correctly behaving flash drive (e.g., malware) are out of scope.

Limitations. RBFuse cannot prevent a malicious USB device
from harming other USB devices connected to the same host
controller. For example, a malicious USB can compromise the
VM and then use it to misconfigure, snoop on, or imperson-
ate other connected USB devices (our adapter in Section 3.6
prevents snooping and spoofing). This limitation is shared by
other systems with similar architectures [16, 31]. However,

most desktops and newer laptops include multiple USB host
controllers. It is therefore possible to plug “trusted” USB de-
vices to one host controller, and dedicate another to RBFuse.
Note that RBFuse (and the VM) need only be active when the
user wishes to plug in an untrusted USB flash drive.

3.3 Remapping USB devices

RBFuse leverages the machine’s IOMMU (e.g., Intel VT-d)
to remap the host controller to the address space of the Red
machine (Step ➀ in Figure 1). This operation prevents the
host controller (which has DMA capabilities) from writing
anywhere else in memory. It also binds the host controller
to the HCI driver running on the Red machine; this machine
is now in charge of managing the host controller and any
connected device. In our implementation we use a VM running
Linux as the Red machine since it already has the necessary
USB stack and can run our VFS servers.

3.4 Interactions between VFS server and client

In RBFuse, all file system operations such like open, read,
write on the USB directory are captured by the running VFS
client (step ➁ in Figure 1). The VFS client converts these op-
erations into RPCs to the VFS server and supplies the required
parameters (step ➂). The VFS server parses the request and
executes it on the USB device (step ➃). After the execution,
the VFS server sends back the response to the VFS client,
specifying whether the operation succeeded, any error num-
ber, and other messages like attributes (for getattr requests)
and file contents (for reads). RBFuse also has an optional
step ➄ in which an adapter (§3.6) provides encryption and
authentication capabilities.

Since the entire USB stack is isolated in the Red machine,
the only communication between the host and the USB device
is via RPCs. However, if this RPC interface is not designed
carefully, a compromised Red machine could exploit memory
vulnerabilities on the VFS client implementation. To ensure
that the RPC layer is free of memory bugs, we leverage a recent
framework [58] to automatically generate formally verified
code for serializing and parsing all VFS RPCs. While this is a
far cry from formally verifying all of RBFuse (as we explain
in Section 6), it is a promising start.

3.5 Bootstrapping device connections

A key aspect of our design is figuring out when to spawn VFS
clients and servers. One possibility is to spawn as many client-
server pairs as there are USB ports in the machine. However,
USB hubs can dynamically change the port count. To address
this, we rely on a monitoring program (in addition to VFS)
that runs on both the Red and Blue machines. On the Red
machine, the monitoring program detects connect/disconnect
events and responds as follows: on a connect event, it spawns
a VFS server on an unused port, and sends the port number
to the Blue machine (it shuts down the server on a disconnect
event). On the Blue machine, the monitoring program receives

a port number, spawns a VFS client that connects to it.
We note that if the Red machine is compromised, this ad-

ditional channel allows an attacker to spawn an indefinite
number of VFS clients at the Blue machine. We prevent this
with a limit on the number of allowed concurrent flash drives.

3.6 Data encryption

An optional adapter can be used for data encryption and au-
thentication, thereby preventing a compromised Red machine
(or a malicious USB hub) from stealing or modifying file con-
tent or metadata. When using the adapter, instead of running
the VFS server on the Red machine, we run it on the adapter
itself; the Red machine merely forwards requests back and
forth. This is possible because, as demonstrated by Cinch [31],
the adapter can pretend to be a USB network card to the Red
machine and can send Ethernet frames directly.

The adapter performs the following operations: (1) it en-
crypts file content and metadata with an authenticated encryp-
tion scheme to ensure confidentiality and integrity; and (2) it
changes the key every time the device is plugged in to ensure
forward secrecy (i.e., if a key is compromised it cannot be
used to recover the content of data exchanged prior to the
compromise). For this to work, we assume that the adapter
knows the host’s public verification key and the host knows the
adapter’s (there are many ways to accomplish this, including
using QR codes). This assumption is crucial, as otherwise a
compromised Red machine can act as a man-in-the-middle.

Our protocol is based on mutual authentication TLS
(mTLS); in standard TLS, the application (e.g., the browser)
authenticates the Web server, but not the other way around
since the Web server does not care who is connecting to it.
Mutual authentication prevents a compromised Red machine
from pretending to be the flash drive to the host, or pretending
to be the host to the adapter.

Protocol. When a flash drive is plugged in and the moni-
tor spawns a new VFS client (§3.5), the VFS client sends a
new Diffie-Hellman [40] key share and a random string, both
signed with the host’s private signing key, to the VFS server
(running in the adapter). The adapter verifies the signature us-
ing the host’s public verification key and responds with its own
key share and random string, signed with the adapter’s private
signing key. Finally, the host verifies the adapter’s message.
Both the host and the adapter can derive a shared symmetric
key by first deriving a shared secret from their key shares (stan-
dard Diffie-Hellman), and then deriving the symmetric secret
key using a standard key derivation function [51] with the
shared secret and both of the random strings. This essentially
mirrors the TLS 1.3 handshake [26].

Once the adapter and the host agree on the same symmet-
ric key sk, they can encrypt all operations with an authen-
ticated encryption scheme, ensuring that the Red machine
learns only traffic patterns (file sizes, access frequency, etc.).
While this leakage could be prevented by adapting existing
techniques [30, 36], it is likely not warranted in this case.

4 Reducing costs
As one would expect, a straightforward implementation of a
VFS that proxies all operations through the Red machine on
their way to the flash drive brings high overheads. This is spe-
cially concerning since every file system operation, including
traditionally light-weight ones such as mknod and close, now
take a long time to be processed. Even worse, when we build
the VFS client on top of Fuse (as opposed to running it as a
native kernel module), we encounter a few implementation
issues. First, Fuse makes an excessive number of calls to func-
tions like getattr to read file and directory metadata. As an
example, when reading 1,000 different files from a USB flash
drive, Fuse issues roughly 3,000 getattr calls. Second, the
maximum size of read and write payloads in Fuse is 128 KB,
causing operations with data larger than 128 KB to be split
into multiple read/write RPCs in our VFS. This introduces
significant latency, since RPCs are synchronous.

The above suggests that making RBFuse practical requires
drastically reducing the number of unnecessary RPCs. A
similar observation has guided decades of optimization in
networked file systems (NFS), though our setting is dif-
ferent and allows certain actions that would not be ap-
propriate in traditional NFS deployments. We nevertheless
adapt many of these techniques, including caching meta-
data [20, 37, 45, 53, 72, 73], batching operations [35, 64],
and prefetching files [44, 74].

We note that we can address the data size issue in Fuse by
recompiling the Fuse kernel module with a higher FUSE_MAX_-
PAGES_PER_REQ value, but this is not ideal for several reasons.
First, requiring users to recompile Fuse, which often comes
statically linked with their OS, is burdensome. Second, other
applications or components in the system may be using Fuse,
and changing this value could have unintended consequences.
Last, our optimizations provide benefits beyond increasing
this global value and do not require recompilation.

4.1 Caching metadata

In our setting, while many applications can concurrently ac-
cess the USB’s file system via RBFuse, there is only one VFS
client per VFS server. This is a key difference from NFS de-
ployments that must support multiple clients. This gives rise
to a simple proposition: file and directory metadata will not
change once read, unless the VFS client itself performs an
operation that changes this metadata. Consequently, RBFuse’s
VFS client caches metadata when files are first opened, and
keeps this cache up to date (i.e., RBFuse treats this as a write-
trough cache). This significantly cuts down on the number of
RPCs that need to be issued by RBFuse’s VFS client.

Additionally, since the number of RPCs (and their syn-
chronous nature) is the key contributor to latency overhead in
our system, RBFuse goes one step further: during initialization
(when the device is first plugged in), RBFuse fetches the meta-
data of all files and directories, and caches this information
(we set a timeout to account for cases where the user plugs a

device with millions of files). This yields significant speedups
in the common case. For example, if an application asks for
a non-existent file, RBFuse can consult its local cache and
respond to the getattr request without issuing any RPCs.

4.2 Prefetching

RBFuse also exploits the spatial locality of files, taking into
account that a common workload in flash drives is to copy an
entire directory to or from the drive, or to copy one big file.
When an application reads a file, RBFuse reads other small
files in the same directory (up to a configurable total size limit),
and sends them back to the VFS client to be cached locally.
When the application reads a large file, since Fuse issues re-
quests at the granularity of 128 KB chunks, RBFuse’s VFS
client prefetches subsequent chunks. In this way, if the applica-
tion requests the next chunk, the VFS client can immediately
respond from its local cache, avoiding RPCs.

4.3 Batching operations

In our initial implementation, each file system operation was
translated to an RPC. To reduce the number of RPCs, RBFuse
batches many operations together. For mknod, open, write,
and close operations, RBFuse does not immediately issue
the corresponding RPCs to the VFS server. Instead, RBFuse
stores these operations for each file in a pending request queue
(writes get their own pending request queue). When a pending
queue exceeds a threshold, the VFS client tags the correspond-
ing requests as a compound request and issues them to the
VFS server in a single RPC.

Batching operations has significant benefits when copying
files from the host to the device. For large files, batching op-
erations allows RBFuse to combine many writes together to
mask the limit imposed by Fuse. For small files, the improve-
ments are even more significant. Typically, writing a small file
requires only one write request if the content is smaller than
128 KB. However, Fuse first calls getattr (to see if the file
exists), mknod, getattr again (to see if the file was created),
open, write, and close sequentially. Due to our caching op-
timization (§4.1), getattr is done locally. And with batching,
the other four operations are combined into one.

In order to support batching, RBFuse must speculatively
respond to Fuse with the outcome of an operation so that Fuse
may issue the next operation. For write and mknod, RBFuse
keeps track of the space remaining in the flash drive; if there
is enough space to perform the operation, RBFuse optimisti-
cally returns “success” or the number of bytes written. When
fsync and umount are issued, RBFuse flushes all requests
from its pending queues. This kind of lightweight speculation
is similar in flavor to the I/O buffering and disk write caching
mechanisms that OSes often do. An obvious drawback is that
if the drive is unplugged before fsync and umount are called,
or the queues reach the threshold, data may be lost.

5 Preliminary evaluation
We now discuss preliminary results of evaluating the following
prototype implementation.

Implementation. We build RBFuse’s VFS client using Fuse
2.9.4 [29]. Fuse mounts the USB directory on the host, and all
file system operations on the USB directory are forwarded to
the VFS server via RPCs. To instantiate the Red machine we
run Ubuntu 16.04 (Linux 4.15.0-45) on QEMU, and the Blue
machine is also Ubuntu 16.04 with KVM. The adapter for
authentication and data encryption is built on a BeagleBone
Black [6], which is 32-bit single-board computer with 1 GHz
ARM Cortex-A8 processor and 512 MB RAM. It runs Debian
9.1 (Linux 4.4.88-ti-r125) and performs all cryptographic op-
erations using the OpenSSL library [14]. We evaluate RBFuse
using a Kingston Digital DataTraveler SE9 Flash Drive with
the FAT32 file system.

5.1 Experiments and results

In this evaluation, we are interested in answering one simple
question: what is the overhead introduced by RBFuse for
common operations such as reading or writing a file to the
USB flash drive over a baseline that connects the flash drive
directly to the machine without our framework. To put the
performance results in context, we note that a straightforward
implementation of RBFuse without any optimizations resulted
in up to 310× higher response time for reading or writing a
large number (1,000) of small files.

We explore two common use cases: reading or writing a
single large file, and copying many small files (from device to
host or vice versa). Considering that in RBFuse flash drives
are (optionally) attached to our adapter (§3.6), we run all
tests on the host alone (this is the baseline), the adapter alone
(since it runs Debian, it can be thought of as another machine),
RBFuse without the adapter, and RBFuse with the adapter.
We use filebench [27, 67] for all of our experiments to drive
the copying of files back and forth, and measure the mean
read/write completion time over 10 runs. The only caveat is
that filebench does not work on the adapter (when tested in a
standalone way) when the file is large due to limited memory.
In this case, we run cp and measure its completion time.

One large file. We depict the results of reading and writing
a single large file (500 MB) in Figure 2. The key take away
is that with our optimizations, writing a file under RBFuse
takes 2% longer than the baseline without the adapter. With the
adapter, RBFuse takes 3× longer to complete the same task.
The majority of the overhead stems from the double copying
of data (from device to adapter and from adapter to host). The
results for reading a large file are much worse: RBFuse incurs a
70% increase in completion time without the adapter, and 10×
with the adapter. While these results are slightly discouraging,
we discuss several potential enhancements in Section 6.

Many small files. We perform a similar experiment, but this
time target the copying of 1,000 small files (16 KB each).

 0

 50

 100

 150

 200

 250

Write Read

C
om

pl
et

io
n

T
im

e
(s

)

Host
Adapter
RBFuse

RBFuse+Adapter

FIGURE 2—Mean response time for writing/reading one large file
(500MB) to/from a USB flash drive with different mechanisms. Error
bars depict one standard deviation.

 0

 5

 10

 15

 20

 25

 30

 35

Write Read

C
om

pl
et

io
n

T
im

e
(s

)

Host
Adapter
RBFuse

RBFuse+Adapter

FIGURE 3—Mean response time for writing/reading 1,000 small files
(16KB) to/from a USB flash drive with different mechanisms. Error
bars depict one standard deviation.

The results are given in Figure 3. Unlike the previous experi-
ment where the results were consistent with our expectations,
this experiment yields some unusual results. We find that RB-
Fuse with the adapter actually outperforms the baseline when
copying files from the host to the device (“Writes”) by 35%.
Note that this is not the result of caching or prefetching, since
caching metadata plays a small role here, and prefetching
helps reads but not writes. Furthermore, batching does not
fully explain this difference since we would otherwise had
seen similar improvement when copying large files (previous
experiment). Most importantly, RBFuse with the adapter also
outperforms RBFuse without the adapter!

Instead, we find that this performance difference is due to
the OS on which the VFS server runs. When RBFuse uses
the adapter, the VFS server runs on the adapter instead of on
the Red machine (the Red machine simply acts as a network
proxy). Prior discussions [25] have noted that Ubuntu has
high overhead when copying files to flash drives compared
to Windows; we are somewhat surprised to see such a big
difference between different Linux kernel versions. In our
case, the adapter runs 32-bit Linux 4.4.88; on its own, it can
copy 1,000 files in 2.73 seconds (6× faster than the 64-bit
Linux 4.15.0-45 running on the Red machine). We have also
reproduced this result with RBFuse without the adapter by

running different 64-bit Linux kernel versions on the Red
machine; performance varies substantially between versions.

The results for reading many small files are less interesting
and mirror those of the large file experiment: RBFuse without
the adapter has 4× higher request completion time than the
baseline; with the adapter the difference is 8.8×.

6 Discussion
This paper introduces RBFuse a framework for interacting
with USB flash drives while bypassing the USB stack. The
driving philosophy of this work is that getting the virtual
file system interface “right” is much easier than getting the
USB stack right. We think this view is justified since there
are numerous frameworks for fuzzing different aspects of file
systems [48, 57, 71] and for reasoning formally about their
operations [33, 34, 46]. Indeed, we take a tiny step in the latter
direction by using formally verified serializers and parsers for
our RPC layer (§3.4). Meanwhile, we are not aware of any
efforts of equivalent scope in the context of the USB stack
(although driver synthesis [61] is a promising direction).

Crash consistency. USB flash drives are notorious for being
unplugged at arbitrary times. It is therefore important that
RBFuse achieves crash consistency. We have adapted Crash-
Monkey [57] to support the vfat file system and used it to fuzz
RBFuse and our flash drives. A preliminary finding is that the
flash drive’s vfat file system loses empty files after a crash; we
have found no issues with RBFuse or its optimizations.

Possible extensions. In this work we have focused exclu-
sively on USB flash drives. However, other storage devices
such as USB SD cards and SSDs could likely be supported by
this same architecture. One challenge with SuperSpeed USB
SSDs is that they achieve order-of-magnitude higher through-
put than traditional USB 2.0 flash drives by leveraging the
host controller’s ability to perform DMA. However, RBFuse
limits the host controller to writing only in the Red machine’s
address space, and forces all data between the host and the Red
machine to be exchanged via message passing. It is unclear
how to retain the isolation benefits of our approach while lever-
aging the performance benefits of DMA—especially when the
DMA device could be malicious.

A more immediate question is whether we can reduce the
number of memory copies. We posit that since everything is
running on the same machine (ignoring the adapter for a mo-
ment), it might be possible to maintain the isolation provided
by NFS, but with zero-copy data movement between the VFS
server and client.

Acknowledgments
We thank Riad Wahby and Michael Walfish for discussions
that inspired this work. We also thank the anonymous Hot-
Storage reviewers, and in particular our shepherd Malte
Schwarzkopf, for their thorough comments and helpful ad-
vice that significantly improved our content and presentation.

References

[1] https://en.wikipedia.org/wiki/Volkswagen_
emissions_scandal.

[2] AnywhereUSB/5 integer overflow.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2006-4459.

[3] BadUSB—now with do-it-yourself instructions.
https://nakedsecurity.sophos.com/2014/10/06/
badusb-now-with-do-it-yourself-instructions/.

[4] BadUSB: Big, bad USB security problems ahead.
http://www.zdnet.com/article/badusb-big-bad-
usb-security-problems-ahead/.

[5] BadUSB: what you can do about undetectable malware on a
flash drive.
http://www.pcworld.com/article/2840905/badusb-
what-you-can-do-about-undetectable-malware-on-
a-flash-drive.html.

[6] BeagleBone Black. http://beagleboard.org/BLACK.
[7] Hubs—BadUSB exposure. https://opensource.srlabs.

de/projects/badusb/wiki/Hubs.
[8] Inception. https://github.com/carmaa/inception.
[9] Linux audio driver dereferences null pointer under invalid

device. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-2184.

[10] Linux serial driver dereferences null pointer under device with
no bulk-in or interrupt-in endpoints.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-2782.

[11] Linux hid-picolcd_core.c buffer overflow.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-3186.

[12] Linux report_fixup HID functions out-of-bounds write.
http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-3184.

[13] Only half of USB devices have an unpatchable flaw, but no one
knows which half.
http://www.wired.com/2014/11/badusb-only-
affects-half-of-usbs/.

[14] OpenSSL. https://www.openssl.org.
[15] OS X USB hub descriptor memory corruption.

http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2012-3723.

[16] Qubes OS project. https://www.qubes-os.org.
[17] This thumbdrive hacks computers.

http://arstechnica.com/security/2014/07/this-
thumbdrive-hacks-computers-badusb-exploit-
makes-devices-turn-evil/.

[18] USB Rubber Ducky. http://usbrubberducky.com.
[19] Using and Managing USB devices. Qubes OS Project.

https://www.qubes-os.org/doc/usb/.
[20] The vfs inode cache. http://www.science.unitn.it/

~fiorella/guidelinux/tlk/node110.html, 1997.
[21] Episode 709: Usb rubber ducky part 1.

https://www.hak5.org/episodes/episode-709, 2013.
[22] Usb rubber ducky payloads.

https://github.com/hak5darren/USB-Rubber-
Ducky/wiki/Payloads, 2013.

[23] Usbdriveby. http://samy.pl/usbdriveby/, 2014.

[24] USB 3.0 promoter group defines authentication protocol for
USB Type-C.
https://usb.org/sites/default/files/article_
files/USB_Type-C_Authentication_PR_FINAL.pdf,
2016.

[25] Why does my usb flash drive write performance drop by more
than 50% when running ubuntu vs windows 10?
https://askubuntu.com/questions/853736/why-
does-my-usb-flash-drive-write-performance-drop-
by-more-than-50-when-running, 2016.

[26] The transport layer security (tls) protocol version 1.3.
https://tools.ietf.org/html/rfc8446, 2018.

[27] Filebench. https://github.com/filebench/filebench,
2020.

[28] Kanguru flashtrust USB 3.0 flash drive with secure firmware |
kanguru solutions.
https://www.kanguru.com/storage-accessories/
kanguru-flashtrust-secure-firmware.shtml, 2020.

[29] Libfuse. https://github.com/libfuse/libfuse, 2020.
[30] S. Angel and S. Setty. Unobservable communication over fully

untrusted infrastructure. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), Nov. 2016.

[31] S. Angel, R. S. Wahby, M. Howald, J. B. Leners, M. Spilo,
Z. Sun, A. J. Blumberg, and M. Walfish. Defending against
malicious peripherals with cinch. In Proceedings of the
USENIX Security Symposium, 2016.

[32] D. Barrall and D. Dewey. “Plug and Root,” the USB key to the
kingdom. In Proceedings of the Black Hat USA Conference,
July 2005.

[33] H. Chen, T. Chajed, A. Konradi, S. Wang, A. undefinedleri,
A. Chlipala, M. F. Kaashoek, and N. Zeldovich. Verifying a
high-performance crash-safe file system using a tree
specification. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2017.

[34] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek,
and N. Zeldovich. Using crash Hoare logic for certifying the
FSCQ file system. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2015.

[35] M. Chen, G. B. Bangera, D. Hildebrand, F. Jalia, G. Kuenning,
H. Nelson, and E. Zadok. Vnfs: Maximizing nfs performance
with compounds and vectorized i/o. ACM Trans. Storage, Sept.
2017.

[36] W. Chen and R. A. Popa. Metal: A metadata-hiding
file-sharing system. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2020.

[37] M. D. Dahlin, C. J. Mather, R. Y. Wang, T. E. Anderson, and
D. A. Patterson. A quantitative analysis of cache policies for
scalable network file systems. SIGMETRICS Perform. Eval.
Rev., May 1994.

[38] A. Davis. Lessons learned from 50 bugs: Common USB driver
vulnerabilities. Technical report, NCC Group, Jan. 2013.

[39] A. Davis. USB attacks need physical access right? Not any
more. . . . In Proceedings of the Black Hat Asia Conference,
Mar. 2014.

[40] W. Diffie and M. E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 1976.

[41] R. Dominguez Vega. USB attacks: Fun with Plug and 0wn. In
Proceedings of the DEF CON Hacking Conference, Aug. 2009.

https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal
https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4459
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4459
https://nakedsecurity.sophos.com/2014/10/06/badusb-now-with-do-it-yourself-instructions/
https://nakedsecurity.sophos.com/2014/10/06/badusb-now-with-do-it-yourself-instructions/
http://www.zdnet.com/article/badusb-big-bad-usb-security-problems-ahead/
http://www.zdnet.com/article/badusb-big-bad-usb-security-problems-ahead/
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
http://beagleboard.org/BLACK
https://opensource.srlabs.de/projects/badusb/wiki/Hubs
https://opensource.srlabs.de/projects/badusb/wiki/Hubs
https://github.com/carmaa/inception
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2184
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2184
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2782
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2782
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3186
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3186
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3184
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3184
http://www.wired.com/2014/11/badusb-only-affects-half-of-usbs/
http://www.wired.com/2014/11/badusb-only-affects-half-of-usbs/
https://www.openssl.org
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3723
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-3723
https://www.qubes-os.org
http://arstechnica.com/security/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
http://arstechnica.com/security/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
http://arstechnica.com/security/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
http://usbrubberducky.com
https://www.qubes-os.org/doc/usb/
http://www.science.unitn.it/~fiorella/guidelinux/tlk/node110.html
http://www.science.unitn.it/~fiorella/guidelinux/tlk/node110.html
https://www.hak5.org/episodes/episode-709
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
http://samy.pl/usbdriveby/
https://usb.org/sites/default/files/article_files/USB_Type-C_Authentication_PR_FINAL.pdf
https://usb.org/sites/default/files/article_files/USB_Type-C_Authentication_PR_FINAL.pdf
https://askubuntu.com/questions/853736/why-does-my-usb-flash-drive-write-performance-drop-by-more-than-50-when-running
https://askubuntu.com/questions/853736/why-does-my-usb-flash-drive-write-performance-drop-by-more-than-50-when-running
https://askubuntu.com/questions/853736/why-does-my-usb-flash-drive-write-performance-drop-by-more-than-50-when-running
https://tools.ietf.org/html/rfc8446
https://github.com/filebench/filebench
https://www.kanguru.com/storage-accessories/kanguru-flashtrust-secure-firmware.shtml
https://www.kanguru.com/storage-accessories/kanguru-flashtrust-secure-firmware.shtml
https://github.com/libfuse/libfuse

[42] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet dossier.
http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/
w32_stuxnet_dossier.pdf.

[43] T. Goodspeed. Facedancer21. http://goodfet.
sourceforge.net/hardware/facedancer21/.

[44] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and
D. Watson. Informed mobile prefetching. In Proceedings of
the International Conference on Mobile Systems, Applications,
and Services (MobiSys), June 2012.

[45] D. Howells. Fs-cache: A network filesystem caching facility.
01 2006.

[46] A. Ileri, T. Chajed, A. Chlipala, F. Kaashoek, and N. Zeldovich.
Proving confidentiality in a file system using DISKSEC. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[47] M. Kang and H. Saiedian. Usbwall: A novel security
mechanism to protect against maliciously reprogrammed usb
devices. Information Security Journal: A Global Perspective,
26(4), 2017.

[48] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim.
Finding semantic bugs in file systems with an extensible
fuzzing framework. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2019.

[49] D. Kopeek. USB guard: USB device authorization policies.
https://usbguard.github.io/, 2020.

[50] K. Kortchinsky. CLOUDBURST: A VMware guest to host
escape story. In Proceedings of the Black Hat USA Conference,
2009.

[51] H. Krawczyk. Cryptographic extraction and key derivation:
The HKDF scheme. In Proceedings of the International
Cryptology Conference (CRYPTO), Aug. 2010.

[52] B. Lampson. Accountability and freedom.
http://research.microsoft.com/en-
us/um/people/blampson/slides/
accountabilityandfreedomabstract.htm, 2005.

[53] E. Lim, S. Ahn, Y. Kim, G. Cha, and W. Choi. Design of cache
backend using remote memory for network file system. In
2017 International Conference on High Performance
Computing Simulation (HPCS), July 2017.

[54] E. L. Loe, H. Hsiao, T. H. Kim, S. Lee, and S. Cheng.
SandUSB: An installation-free sandbox for USB peripherals.
In Proceedings of the IEEE World Forum on Internet of Things
(WF-IoT), Dec. 2016.

[55] F. Lone Sang, V. Nicomette, and Y. Deswarte. I/O attacks in
Intel PC-based architectures and countermeasures. In
Proceedings of the SysSec Workshop, July 2011.

[56] A. Mamiit. How bad is BadUSB? security experts say there is
no quick fix. http://www.techtimes.com/articles/
17078/20141004/how-bad-is-badusb-security-
experts-say-there-is-no-quick-fix.htm.

[57] J. Mohan, A. Martinez, S. Ponnapalli, P. Raju, and
V. Chidambaram. Finding crash-consistency bugs with
bounded black-box crash testing. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2018.

[58] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy,
T. Chajed, N. Kobeissi, and J. Protzenko. Everparse: Verified
secure zero-copy parsers for authenticated message formats. In

Proceedings of the USENIX Security Symposium, Aug. 2019.
[59] J. Rushby. The design and verification of secure systems. In

Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), Dec. 1981.

[60] J. M. Rushby. Proof of separability—a verification technique
for a class of security kernels. In Proceedings of the
International Symposium on Programming, Apr. 1982.

[61] L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath,
M. Stumm, and M. Vij. User-guided device driver synthesis. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2014.

[62] S. Schumilo, R. Spenneberg, and H. Schwartke. Don’t trust
your USB! How to find bugs in USB device drivers. In
Proceedings of the Black Hat Europe Conference, Oct. 2014.

[63] R. Sevinsky. Funderbolt: Adventures in Thunderbolt DMA
attacks. In Proceedings of the Black Hat USA Conference, July
2013.

[64] H. Shim, B. Seo, J. Kim, and S. Maeng. An adaptive
partitioning scheme for dram-based cache in solid state drives.
In 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), May 2010.

[65] P. Stewin. A primitive for revealing stealthy peripheral-based
attacks on the computing platform’s main memory. In
Proceedings of the International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), Oct. 2013.

[66] K. Suzaki, Y. Hori, K. Kobara, and M. Mannan. Deviceveil:
Robust authentication for individual usb devices using physical
unclonable functions. In Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), June 2019.

[67] V. Tarasov, E. Zadok, and S. Shepler. Filebench: A flexible
framework for file system benchmarking. ;login: The USENIX
Magazine, 41(1):6–12, March 2016.

[68] D. Tian, A. Bates, and K. Butler. Defending against malicious
USB firmware with GoodUSB. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), Dec.
2015.

[69] D. J. Tian, A. Bates, K. R. Butler, and R. Rangaswami.
Provusb: Block-level provenance-based data protection for usb
storage devices. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2016.

[70] J. Tian, N. Scaife, A. Bates, K. R. B. Butler, and P. Traynor.
Making USB great again with USBFILTER. In Proceedings of
the USENIX Security Symposium, Aug. 2016.

[71] W. Xu, H. Moon, S. Kashyap, P. Tseng, and T. Kim. Fuzzing
file systems via two-dimensional input space exploration. In
Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2019.

[72] J. Yang, J. Izraelevitz, and S. Swanson. Orion: A distributed
file system for non-volatile main memory and rdma-capable
networks. In Proceedings of the USENIX Conference on File
and Storage Technologies (FAST), Feb. 2019.

[73] J. Zhang, G. Wu, X. Hu, and X. Wu. A distributed cache for
hadoop distributed file system in real-time cloud services. In
2012 ACM/IEEE 13th International Conference on Grid
Computing, Sep. 2012.

[74] Zijian Liu, Fang Dong, Junxue Zhang, Pengcheng Zhou,
Zhuqing Xu, and Junzhou Luo. A client-side directory
prefetching mechanism for glusterfs. In 2016 IEEE

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://goodfet.sourceforge.net/hardware/facedancer21/
http://goodfet.sourceforge.net/hardware/facedancer21/
https://usbguard.github.io/
http://research.microsoft.com/en-us/um/people/blampson/slides/accountabilityandfreedomabstract.htm
http://research.microsoft.com/en-us/um/people/blampson/slides/accountabilityandfreedomabstract.htm
http://research.microsoft.com/en-us/um/people/blampson/slides/accountabilityandfreedomabstract.htm
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm

International Conference on Systems, Man, and Cybernetics
(SMC), Oct 2016.

	1 Introduction
	2 Background and related work
	2.1 Existing efforts

	3 Design
	3.1 RBFuse's architecture
	3.2 Threat model
	3.3 Remapping USB devices
	3.4 Interactions between VFS server and client
	3.5 Bootstrapping device connections
	3.6 Data encryption

	4 Reducing costs
	4.1 Caching metadata
	4.2 Prefetching
	4.3 Batching operations

	5 Preliminary evaluation
	5.1 Experiments and results

	6 Discussion

