
SelectiveEC: Selective Reconstruction in Erasure-coded Storage Systems

Liangliang Xu, Min Lyu, Qiliang Li, Lingjiang Xie, Yinlong Xu
University of Science and Technology of China

Anhui Province Key Laboratory of High Performance Computing, USTC

Abstract
Erasure coding has been a commonly used approach to pro-
vide high reliability with low storage cost. But the skewed
load in a recovery batch severely slows down the failure re-
covery process in storage systems. To this end, we propose a
balanced scheduling module, SelectiveEC, which schedules
reconstruction tasks out of order by dynamically selecting
some stripes to be reconstructed into a batch and selecting
source nodes and replacement nodes for each reconstruction
task. So it achieves balanced network recovery traffic, com-
puting resources and disk I/Os against single node failure in
erasure-coded storage systems. Compared with conventional
random reconstruction, SelectiveEC increases the parallelism
of recovery process up to 106% and averagely bigger than
97% in our simulation. Therefore, SelectiveEC not only speed-
s up recovery process, but also reduces the interference of
failure recovery on the front-end applications.

1 Introduction

A distributed storage system (DSS) consists of many devices
to provide massive storage capacity, such as GFS [6], HDF-
S [16], Ceph [19] and Azure [4]. The large amount of commer-
cial devices used in large-scale DSSes are prone to failures.
To keep data availability in case of failures, a usual approach
is to provide data redundancy in the form of replication or era-
sure coding (EC). Compared with replication, EC can achieve
the same fault tolerance with much less redundancy [18], and
therefore is widely used for better storage efficiency. Never-
theless, implementing EC is less efficient in the reconstruction
of lost data because of decoding and network transmission.
Nowadays, the storage capacity of nodes in DSSes becomes
larger and larger and "fat node" comes in, e.g. Pangu [17] is
comprised of more than 10K nodes and up to 72 TBs (about
1.5M chunks) per node. By investigating failure traces, single
node failure dominates failure cases, which accounts for over
90% of all failure events in real-world deployments [5]. So
how to reconstruct the large volume of lost data in case of

single node failure with minimal interference to foreground
traffic in a relatively short time is very meaningful and pretty
challenging.

In common DSSes, network is 1Gb or 10Gb Ethernet [17],
which is evidently less than aggregated disk bandwidth in a
node. Still they must reserve sufficient network bandwidth to
provide good online data services, such as MapReduce and
data query. So they usually configure limited network band-
width for lost data reconstruction, e.g. 30MB/s, 90MB/s or
150MB/s in Pangu [17]. The reconstruction of lost data with
EC needs connect multiple source nodes, which makes the
network transmission commonly becomes the bottleneck for
failure recovery. In addition, DSSes execute the reconstruc-
tion in batches for a long reconstruction queue due to limited
available system resources. It commonly induces imbalanced
recovery traffic in a batch with limited number of stripes.
Moreover, random selections of source and replacement n-
odes further aggravate imbalanced upstream and downstream
traffic. Though the deployment of high-speed network, such
as Infiniband, will speed up the recovery process [8, 11], it
induces much higher cost. Even so, the imbalanced workload
on different nodes for failure recovery still slows down the
recovery process.

In this paper, we will analyze the failure recovery process
and emphasize that imbalanced workload on different nodes
is an important factor contributing to the time cost of failure
recovery. We propose a graph model, based on which, the
degree of recovery parallelism (DRP) is defined and used to
reflect the load balance in the reconstruction tasks of a batch.
Based on DRP, we propose a balanced scheduling module,
SelectiveEC, to improve the load balance for single failure re-
covery with two optimization techniques. One is dynamically
selecting some stripes to be reconstructed into a batch and the
other is elaborately selecting source nodes and replacement
nodes, to balance upstream and downstream network usage of
nodes, moreover, also the disk I/O, CPU and memory usage.
A balanced recovery tasks schedule of SelectiveEC not only
speeds up recovery process, but also reduces interference of
recovery tasks with the front-end requests. We simulate Selec-

tiveEC and compare with random reconstruction. SelectiveEC
increases DRP up to 106% for tasks in the first batch, and
averagely, normalized DRP bigger than 0.97.

2 Background and Motivation

Reed Solomon (RS) codes [13] are the most popular erasure
codes widely deployed in real DSSes [4,6,16,19]. A (k,m)-RS
code encodes k data blocks into m additional parity blocks.
All the k + m data/parity blocks form a stripe of size k +
m. A (k,m)-RS code tolerates any m blocks being lost in a
stripe, satisfying the so-called maximum distance separable
(MDS) property [12]. DSSes commonly adopt random data
placement to guarantee the load balance of storage among
all nodes with sufficient stripes. Erasure coding saves storage
space while keeps the same level of fault tolerance compared
with replication. However, it also introduces some problems
in DSSes, especially in failure recovery. In the following, we
present three main problems based on our measurements.

2.1 Problem 1: Network becomes the bottle-
neck in reconstruction

The typical process of reconstructing a lost data chunk is
as follows. Take a (k,m)-RS code as an example, the DSS
first chooses a replacement node to execute the pending re-
construction task, then reads k chunks from any k out of
k+m− 1 source nodes, reconstructs the lost chunk by de-
coding, and at last writes the decoded chunk into its local
secondary storage. So the time cost of reconstructing a chunk
consists of four parts, reading time from k source nodes T1,
network transmission time T2, decoding time T3 and writ-
ing time to the replacement node T4. Let the chunk size be
B, the read bandwidth of a source node be Bs

I/O, the write
bandwidth of the replacement node be Br

I/O and the band-
width of network be Bw. The reconstruction time will be
T = T1 +T2 +T3 +T4 = max(B

Bs
I/O

)+ kB
Bw

+Tdecode +
B

Br
I/O

. It

is found that T2 is amplified k times because the replacemen-
t node should receive k data chunks from source nodes to
decode a lost chunk. We monitor the time in a local storage

Figure 1: Reconstructing a (3,2)-RS chunk in HDFS with
1Gbps Ethernet. Adopting zero-copy strategy in T1.

system consisting of 28 nodes with HDFS 3, each of which is

configured with quad-core 3.4 GHz Intel Core i5-7500 CPU,
8GB RAM, 1T HDD, set 128MB default chunk size and crash
a node with 1000 chunks. It is worthwhile to point out that
providing services to front-end applications has higher pri-
ority than failure recovery. Considering the interference to
foreground traffic, it usually sets a limited network bandwidth
for EC reconstruction in DSSes. As far as we know, the band-
width configured for data reconstruction in DSSes usually
does not exceed 1Gbps, e.g. 30MB/s, 90MB/s or 150MB/s
in Pangu, default Pangu-slow with 30MB/s [17]. So, in the
experiments, we use 1Gbps Ethernet to simulate the network
bandwidth for EC reconstruction.

Fig. 1 shows the average results of 1000 reconstruction
tasks, which shows that chunk transmission time contributes
the most part of reconstructing time, 85.23% of the total time
cost, even with very small setting of k = 3. Along with the
increase of k, the proportion of T2 in the total reconstructing
time will increase and become more severe bottleneck in
recovery.

2.2 Problem 2: How many stripes in a batch
are reasonable

Due to the limited system source and the requirement of fast
response to the front-end requests, a DSS realizes the data
reconstruction of a failed node in batches of data chunks. By
default in HDFS [2], the number of failed chunks reconstruct-
ed in a batch equals to twice the number of live DateNodes.
Though random distribution of data chunks achieves almost
uniform distribution among all nodes, it is hard to reach load
balance within a batch with limited number of chunks. We
propose a bipartite graph, Gs−r, to model the load of all nodes
for lost data recovery. The vertices of Gs−r are divided into
two groups, replacement nodes and chunk nodes. Each vertex
in Gs−r corresponds to a role of live nodes in the DSS. Each
live node can be a chunk node of a reconstruction task to
provide an available chunk and also be a replacement node
of another reconstruction task. When reconstructing a lost
chunk in a replacement node needs to read a data chunk from
a chunk node, there is an edge connecting the corresponding
vertices in Gs−r, referring to Fig. 2 as an example.

Figure 2: The optimal DRP based on Gs−r for a (3,2)-RS
coded DSS.

Suppose that the upstream and downstream bandwidth of
all nodes are the same, denoted as Bw. We first define the size

of a recovery timeslot as the time cost of transmitting k data
chunks for reconstructing a lost chunk from source nodes to
a replacement node. Let the chunk size be B with a (k,m)-
RS code. Then the size of recovery timeslot is kB

Bw
, e.g., 3B

Bw
in Fig. 2. We next define the degree of recovery parallelism
(abbr. as DRP) as the number of failed chunks processed in a
recovery timeslot. We find that, if the degrees of all vertices in
Gs−r are the same, i.e., k, and the network bandwidth of each
link connecting a source node and a replacement node is no
smaller than Bw

k , each live node in the DSS can reconstruct a
lost data chunk in a timeslot. So the DSS reaches the complete
load balance for failure recovery in the timeslot. In this case,
it is equivalent to finding k perfect matchings in Gs−r. So if
there are N live nodes in a DSS and there exists a k-regular
bipartite graph in the corresponding Gs−r, we can reach the
maximum DRP, N.

But for a large-scale DSS, although it is easy to find a re-
placement node for each reconstruction task, i.e. a perfect
matching between reconstruction tasks and replacement ver-
tices, it is still difficult to find k source nodes for each recon-
struction task and distribute the upstream traffic, which is a
k-regular subgraph of the Gs−r. Table. 1 shows that it can not
even find a k-regular subgraph in a DSS scaled up to 19 nodes.
It implies that the maximum DRP cannot be achieved if we
assume that each live node reconstructs a data chunk in a
timeslot (i.e., in a batch) and the DRP in production is indeed
only half of the maximum (see Fig. 7 and Fig. 8). We can
significantly increase the DRP with our balanced scheduling
module SelectiveEC.

of Nodes 7 10 13 16 19
Hall 85% 100% 100% 100% 100%

f-factor 96% 43% 13% 3% 0%

Table 1: Probability of perfect match for replacement and
k-regular links with source nodes for (3,2)-RS. We check
perfect match for replacement nodes by Hall theorem [1] and
k-regular links for source nodes by f-factor theorem [1]. Each
case runs 100 times.

2.3 Problem 3: Nonuniform data layout in a
batch

In order to keep uniform distribution of data chunks in a DSS,
random data layout [7,16,20] is commonly adopted. From the
analysis above, reconstructing N failed chunks can not reach
load balance in a batch. In Fig. 3(a), we write 2000 (3,2)-
RS coded stripes into a DSS with 2000 nodes and count the
number of data chunks on each node. Fig. 3(a) shows that
more than 80% nodes holds 2−8 chunks, and the maximum
number of chunks on a node is 14, 2.8× of the average. We are
to analyze the degree of imbalanced random data layout. The
binomial distribution (denoted by BD) of n events with the

(a) Data distribution

100 500 1000 1500 2000

of nodes

0.4

0.45

0.5

C
o

e
ff

ic
ie

n
t

o
f

v
a

ri
a

ti
o

n Random

BD

(b) Coefficient of variation

Figure 3: Simulation of random data layout based on (3,2)-
RS.

same probability p [21] is multiple independent experiments.
In our scene, the probability of there being a chunk on a
node when writing a data stripe nicely satisfies a event of BD,
where the parameters n and p correspond to N stripes in a
batch and (k+m)/N. The coefficient of variation (denoted by
CV) [22] is a general variate to measure uniform of data sets
with different scale. In Fig. 3(b), we use CV to compare the
random data layout and the simulation of BD, and find that
BD approximates well to random data layout and becomes
more closer to random data layout with larger scale of DSSes.

The CV of BD can be formulated as
√

N p(1−p)
N p =

√
1− k+m

N
k+m ≈√

1
k+m , which is a constant, independent to the configurations

of DSSes. As an example, the CV of BD for (3,2)-RS is√
1/5 ≈ 0.4472, which will induce serious load imbalance

for failure recovery, for a sample with CV greater than 0.15
is considered as seriously skewed in probability theory and
statistics. However, since there are usually lots of chunks to
be reconstructed in the pending queue in a node with large
storage capacity, we can adjust the order of reconstruction
stripes to get more balanced load for data reconstruction in a
batch.

3 SelectiveEC

Figure 4: Bipartite graph for selection of source nodes in a
(3,2)-RS coded DSS. Each task has k+m−1= 4 connections
with chunk nodes. The numbers below each chunk nodes are
the number of source chunks in each stripe node.

SelectiveEC realizes balanced scheduling of reconstruction

Figure 5: Scheduling chunks for source nodes. For (a), the capacity of dotted lines is k and that of each solid line is 1. For (b), the
flow value of black lines is 1, which means tasks will choose the corresponding chunk nodes as source. For (c), new T7 satisfies
whose number of chunk nodes are more than flow value 1.

tasks in two steps. It dynamically selects reconstruction tasks
into a batch to achieve high parallelism and load balance
among source nodes at the first step, and at the second step,
selects the replacement nodes to achieve load balance among
replacement nodes. It balances network traffic across nodes
during the failure recovery, meanwhile nearly balances the
memory usage, CPU usage and disk I/Os. So it achieves better
trade off between recovery performance and interference on
front-end requests than the commonly used recovery process
in DSSes.

3.1 Scheduling stripes in batch and selecting
source nodes

The random data distribution achieves uniform distribution
of data chunks among all nodes with huge number of stripes,
but it results in serious load imbalance in a batch with limited
number of successive stripes, which is the commonly used
scheduling of data chunks reconstruction in DSSes. Thanks to
the very long pending queue of stripes to be reconstructed, we
can adjust the reconstruction order of stripes, i.e., dynamically
select some stripes to be reconstructed into a batch to realize
load balance in a batch.

We start from constructing a bipartite graph Gs for the
selection of source nodes. Assume there are N live nodes in
a DSS. We take the N live nodes as a group of vertices in
Gs, named as chunk nodes, and take N stripes, each of which
having a lost chunk to be reconstructed, as another group of
vertices, named as stripe nodes. If there is a chunk of stripe
Ti in a live node N j, there is an edge (Ti,N j) in Gs. Refer to
Fig. 4 as an example of Gs in a (3,2)-RS coded DSS, which
shows nonuniform distribution of chunks among nodes in a
batch of stripes.

To reconstruct a chunk, we need to read k chunks in the
same stripe, each from a different chunk node. So for each
stripe node, we should choose k out of k+m− 1 edges in
Gs incident to it to reconstruct the lost chunk. The optimal
state is that all live nodes are saturated, which means that
each stripe node connects to k chunk nodes and vise versa. In
case of all nodes being saturated, we achieves load balance
in a batch of chunks to be reconstructed. So it becomes to

find a k-regular subgraph in a large bipartite graph Gs with a
large amount of stripes, where there is a lost chunk in each
stripe. But as a matter of fact, it is NP-hard to deal with it for
a large-scale DSS [3].

We use maximum flow to select a batch of lost chunks
achieving the saturated or nearly saturated state to maximize
the load balance within a batch. We construct a flow graph
FGs based on Gs, by adding a source vertex s and connecting
it to all stripe nodes, adding a sink vertex t and connecting
it to all chunk nodes. We assign the capacity of each edge
connecting a chunk node and t to be k, the capacity of each
edge connecting a stripe node and s be k, and the capacity
of other edges connecting a stripe node and a chunk node to
be 1. The flow corresponding to the optimal state is called a
saturated flow and its value is Nk. Given a flow f of FGs, a
stripe node Ti (chunk node N j) is called saturated if the edge
(s,Ti) ((N j, t)) is saturated, i.e. k edges incident to Ti (N j) are
with flow value 1. Refer to Fig. 5(a), the constructed flow
graph from Fig. 4.

With Ford-Fulkerson algorithm, we get a maximum flow
fFGs of FGs. If fFGs is saturated, we obtain a k-regular sub-
graph of Gs by choosing the edges with value 1 in fFGs . So we
get a batch of chunks to be constructed achieving load balance
of disk read among all live nodes. Otherwise, some nodes are
unsaturated. We then update the flow graph FGs by replacing
the stripe node with the minimum incident edges with flow
value 1 by a stripe from the remaining pending reconstruction
tasks queue, to get a flow with a bigger value. In particular,
the updating first finds the stripe node with the minimum
connections with chunk nodes whose flow values are 1 in
fFGs and deletes it (the responding chunk reconstruction will
be postponed to a coming batch), then lists the unsaturated
chunk nodes, and finally finds a new task in the queue with
more unsaturated chunk nodes than the unsaturated task and
replaces it. By repeating the steps above, we can obtain a
bigger flow which is a saturated flow or a nearly saturated
flow. Fig. 5(b) shows a maximum flow of Fig. 5(a), a stripe to
be replaced is T7 and the unsaturated nodes are N5,N6 and N7.
Fig. 5(c) finds a new stripe with chunk nodes N1,N5,N6,N7
and replaces T7, where we get an updated flow with a bigger
value.

3.2 Selecting replacement nodes
The selection of chunk nodes above achieves balanced up-
stream network bandwidth of nodes, while the downstream
bandwidth depends on the selection of replacement nodes.

We also start from constructing a bipartite graph Gr for
replacement nodes. To keep reliability in DSSes, no more
than two chunks of the same stripe are stored in a node, so
each lost chunk should be reconstructed in a node different
from its chunk nodes. Thus, Gr in fact is the complement
of Gs. To maximize the degree of recovery parallelism, it is
optimal if each live node executes a reconstruction task in a
batch. That is, it needs to find a perfect match in Gr. Since
there are lots of nodes in DSSes, the bipartite graph Gr is
usually dense and thus a perfect matching is easily obtained.
In fact, we find that Hall theorem holds for almost all cases
in practice. So a perfect matching for replacement nodes is
common.

3.3 Analysis on the DRP
After scheduling stripes and selecting chunks and replacement
nodes, we get a bipartite graph related to chunks and replace-
ment nodes Gr−s, a graph model representing the relation of
pending reconstruction tasks and live nodes. For example, Fig.
6 is Gr−s for Fig. 5(c). Based on Gr−s, it is easy to show the
improvement of SelectiveEC on recovery performance.

Figure 6: An example of Gr−s based on (3,2)-RS. The red
edge is the slowest in all three connections of N2.

We compute the DRP by summing up the completion ratio
of each reconstruction task in the recovery timeslot. Note
that the real network bandwidth of each task depends on the
slowest connection in all of its chunk nodes and replacement
nodes. Taking T2 in Fig. 6 as an example, the red edge is
slowest because N3 acts as a chunk node for 4 tasks, so DRP
of T2 is Bw

4 ∗
3B
Bw

/B = 0.75. Similarly we can compute DRPs
of other tasks and finally get the value of DRP is 5.5.

4 Performance Evaluation

4.1 Methodology
We implemented a simulative prototype of SeletiveEC. The
simulations run in a server with two 12-core Intel Xeon E5-

2650 processors, 64GB DDR4 memory, and Linux 3.10.0. We
conduct our evaluation using the (3,2)-RS codes in different
node scales. In order to simulate a single “fat node” failure,
we set the number of chunks on the failed node as 100 times
of the number of surviving nodes. We evaluate SeletiveEC
with the normalized DRP of the first batch and all batches,
which is defined by the ratio of DRP and the optimal DRP N.
The updating of SeletiveEC is finding new chunks to be recon-
structed in the total queue. We compared SelectiveEC with
random reconstruction, a default recovery scheduling imple-
mented in HDFS [2], which selects N successive stripes from
pending reconstruction queue in each batch and randomly
selecting chunk and replacement nodes.

4.2 Results
The first batch. We evaluated the normalized DRPs of the
first batch in small-scale DSSes presented in Fig. 7(a), where
the number of nodes varies from 21 to 201, and large-scale
DSSes presented in Fig. 7(b), where the number of nodes
varies from 401 to 1801. For small scale, we find the nor-
malized DRPs of SelectiveEC are all bigger than 0.975, even
reach 1 in some cases, while those of random reconstruction
are around 0.5. SelectiveEC improves the DRP up to 106%.
The results of large scale are similar to that of small scale, with
the improvement up to 97.6%. SelectiveEC almost achieves
the optimal result for maximum flow (with value kN) about
the first batch of tasks due to traversing the total reconstruc-
tion queue in simulation, moreover a perfect matching almost
exists for choosing replacement nodes. So normalized DRPs
for the first batch of SelectiveEC are steady near 1. As for ran-
dom reconstruction, we have proved that the non-uniformity
of random data layout is determined by the parameters k,m
of RS codes in § 2.3 and independent of the number of nodes
in DSSes. Because DRP depends on the selection of source
and replacement nodes, which relies on the data layout, the
DRPs of random reconstruction are almost steady. Because
the selection of source and replacement nodes hardly achieves
balance within a limited number of stripes, the DRPs stay low
for random reconstruction in our experiments.

(a) Regular case (b) Big case

Figure 7: The DRP of first batch in recovery.

Full batches. Fig. 8 shows the CDF of the normalized DRPs
in each batch with the number of nodes varies from 101 to

1001, which is around 0.97 for SelectiveEC, while it is only
around 0.50 for random reconstruction. We find that there are
a few batches with the normalized DRPs below 0.90 and these
batches account for only 5% to 10% and occur in the last few
batches. This is mainly because there are only fewer stripes
remaining in the reconstruction queue to be chosen when
updating the maximum flow. But even so, it is still bigger than
0.80.

Figure 8: The DRP of full batches in recovery.

5 Related work

Dayu [17] is a greedy scheduling algorithm for recovery of
lost data with replicas, while the reconstruction of a chunk
in a (k,m)-code needs to retrieve k blocks selectively from
k+m−1 chunk nodes. S3 [9,10] is an online algorithm taking
into account deadline of reconstruction tasks. SelectiveEC can
be extended by better maintenance of the reconstructed queue
considering the deadline of reconstruction task in future. CAR
[14, 15] balances the amount of cross-rack repair traffic about
source nodes across multiple racks by a greedy algorithm,
while SelectiveEC better balances traffic from source and
replacement nodes. SelectiveEC is based on maximum flow to
optimize traffic, which can be extended with weight at nodes
and on edges to deal with the common straggler problem in
heterogeneous environments.

6 Conclusion

This paper proposes SelectiveEC, a balanced scheduling mod-
ule, for single failure recovery by selecting pending recon-
struction tasks in batch, targetedly choosing source nodes and
replacement nodes. Compared with random reconstruction,
SelectiveEC improves the degree of recovery parallelism up
to 106% and averagely bigger than 97%. Moreover, Selec-
tiveEC is orthogonal to the existing works of speeding up
failure recovery in EC storage systems. So it can be common-
ly deployed in erasured-code storage systems.

Acknowledgments

We thank the anonymous reviewers and Ramnatthan Alagap-
pan (our shepherd) for their feedback. This work was support-
ed by the National Key R&D Program of China under Grant

No. 2018YFB1003204, and National Nature Science Founda-
tion of China under Grant No. 61832011 and 61772486.

7 Discussion

This paper tries to design a key module SelectiveEC to achieve
balanced scheduling for reconstruction tasks in erasure-coded
storage systems. Although we have proposed the modeling
and the scheduling algorithm, there are still a lot of works to
be done to efficiently deploy SelectiveEC in practical systems.

I Updating speed of maximum flows. On the one hand,
we update the value of the maximum flow for scheduling
stripes and source nodes in batch by finding a task with
more unsaturated source nodes, but the increment of the
value of the maximum flow may be small, which induces
a long delay of the scheduling algorithm. So how to
find a new indicator towards optimal update for selecting
a new task with maximum increment of the value of
the maximum flow? On the other hand, every updating
initializes a network flow on each edge as zero, which
also induces a long delay of the scheduling algorithm.
How to optimize the updating speed of maximum flows?

II Trade-offs of SelectiveEC. SelectiveEC updates a max-
imum flow by scanning the reconstruction queue whose
length is hundreds times of the number of surviving n-
odes, which induces a long delay of scheduling algorithm.
To efficiently implement SelectiveEC in DSSes, we have
to handle such a trade off between the executing time of
the scheduling algorithm and the completion time for re-
constructing a batch, especially for large heterogeneous
DSSes with stragglers. So we need to design an efficient
heuristic algorithm to find the near optimal maximum
flow.

III Multiple failures model. SelectiveEC also supports
multiple failures recovery. When concurrent failures oc-
cur in a DSS, a primary node is dedicated to execute
the recovery task of each stripe, and transfers the block-
s reconstructed by it to other backup nodes. Thus, in
case of concurrent failures, distributing the reconstructed
blocks from primary nodes to backup nodes will also be
an important part of recovery process, which should be
balanced.

We will next carefully analyze the complexity of the
scheduling algorithm, dynamically adjust SelectiveEC by
adding important parameters in face of diversified DSSes
and generalize SelectiveEC to support multiple failures mod-
el in algorithms and implementation. Until now, our program
still has plenty of room to be improved. We expect to share
our experiences with more researchers and look forward to
constructive suggestions to optimize our module.

References

[1] Jin Akiyama and Mikio Kano. Factors and factorization-
s of graphs: Proof techniques in factor theory, volume
2031. Springer, 2011.

[2] Apache. HDFS. https://hadoop.apache.
org/docs/r3.1.3/hadoop-project-dist/
hadoop-hdfs/HdfsUserGuide.html, 2019.

[3] J. A. Bondy and Usr Murty. Graph theory (graduate
texts in mathematics). 2008.

[4] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-
wat Srivastav, Jiesheng Wu, Huseyin Simitci, et al. Win-
dows azure storage: a highly available cloud storage
service with strong consistency. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 143–157, 2011.

[5] Daniel Ford, François Labelle, Florentina Popovici, Mur-
ray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in globally dis-
tributed storage systems. 2010.

[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The google file system. In Proceedings of the
nineteenth ACM symposium on Operating systems prin-
ciples, pages 29–43, 2003.

[7] RJ Honicky and Ethan L Miller. Replication under
scalable hashing: A family of algorithms for scalable
decentralized data distribution. In 18th International
Parallel and Distributed Processing Symposium, 2004.
Proceedings., page 96. IEEE, 2004.

[8] Nusrat S Islam, Mohammad Wahidur Rahman, Jithin
Jose, Raghunath Rajachandrasekar, Hao Wang, Hari
Subramoni, Chet Murthy, and Dhabaleswar K Panda.
High performance rdma-based design of hdfs over in-
finiband. In SC’12: Proceedings of the International
Conference on High Performance Computing, Network-
ing, Storage and Analysis, pages 1–12. IEEE, 2012.

[9] Shijing Li, Tian Lan, Moo-Ryong Ra, and Rajesh Kr-
ishna Panta. S3: joint scheduling and source selection
for background traffic in erasure-coded storage. In 37th
IEEE International Conference on Distributed Comput-
ing Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8,
2017, pages 2025–2030, 2017.

[10] Shijing Li, Tian Lan, Moo-Ryong Ra, and Rajesh Kr-
ishna Panta. Joint scheduling and source selection for
background traffic in erasure-coded storage. IEEE Trans.
Parallel Distrib. Syst., 29(12):2826–2837, 2018.

[11] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda.
High performance rdma-based mpi implementation over

infiniband. International Journal of Parallel Program-
ming, 32(3):167–198, 2004.

[12] Florence Jessie MacWilliams and Neil James Alexander
Sloane. The theory of error-correcting codes, volume 16.
Elsevier, 1977.

[13] Irving S Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of the society for in-
dustrial and applied mathematics, 8(2):300–304, 1960.

[14] Zhirong Shen, Patrick PC Lee, Jiwu Shu, and Wenzhong
Guo. Cross-rack-aware single failure recovery for clus-
tered file systems. IEEE Transactions on Dependable
and Secure Computing, 2017.

[15] Zhirong Shen, Jiwu Shu, and Patrick PC Lee. Reconsid-
ering single failure recovery in clustered file systems. In
2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages
323–334. IEEE, 2016.

[16] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th symposium on mass storage systems
and technologies (MSST), pages 1–10. Ieee, 2010.

[17] Zhufan Wang, Guangyan Zhang, Yang Wang, Qinglin
Yang, and Jiaji Zhu. Dayu: fast and low-interference
data recovery in very-large storage systems. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 993–1008, 2019.

[18] Hakim Weatherspoon and John D Kubiatowicz. Erasure
coding vs. replication: A quantitative comparison. In
International Workshop on Peer-to-Peer Systems, pages
328–337. Springer, 2002.

[19] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, pages 307–320, 2006.

[20] Sage A Weil, Scott A Brandt, Ethan L Miller, and Carlos
Maltzahn. Crush: Controlled, scalable, decentralized
placement of replicated data. In SC’06: Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing,
pages 31–31. IEEE, 2006.

[21] Wikipedia. Binomial distribution. https://en.
wikipedia.org/wiki/Binomial_distribution,
2020.

[22] Wikipedia. Coefficient of variation. https:
//en.wikipedia.org/wiki/Coefficient_of_
variation, 2020.

https://hadoop.apache.org/docs/r3.1.3/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/r3.1.3/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/r3.1.3/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Coefficient_of_variation

	Introduction
	Background and Motivation
	Problem 1: Network becomes the bottleneck in reconstruction
	Problem 2: How many stripes in a batch are reasonable
	Problem 3: Nonuniform data layout in a batch

	SelectiveEC
	Scheduling stripes in batch and selecting source nodes
	Selecting replacement nodes
	Analysis on the DRP

	Performance Evaluation
	Methodology
	Results

	Related work
	Conclusion
	Discussion

