
The Case for Benchmarking Control Operations in Cloud Native Storage
Alex Merenstein1, Vasily Tarasov2, Ali Anwar2, Deepavali Bhagwat2,

Lukas Rupprecht2, Dimitris Skourtis2, and Erez Zadok1
1Stony Brook University and 2IBM Research–Almaden

Abstract
Storage benchmarking tools and methodologies today suffer

from a glaring gap—they are incomplete because they omit
storage control operations, such as volume creation and deletion,
snapshotting, and volume reattachment and resizing. Control
operations are becoming a critical part of cloud storage systems,
especially in containerized environments like Kubernetes, where
such operations can be executed by regular non-privileged
users. While plenty of tools exist that simulate realistic data and
metadata workloads, control operations are largely overlooked by
the community and existing storage benchmarks do not generate
control operations. Therefore, for cloud native environments,
modern storage benchmarks fall short of serving their main
purpose—holistic and realistic performance evaluation. Different
storage provisioning solutions implement control operations in
different ways, which means we need a unified storage bench-
mark to contrast and comprehend their performance and expected
behaviors. In this position paper, we motivate the need for a cloud
native storage benchmark by demonstrating the effect of control
operations on storage provisioning solutions and workloads. We
identify the challenges and requirements when implementing
such benchmark and present our initial ideas for its design.

1 Introduction
Storage benchmarking is a well established and prolific
field [32,36]. Most systems papers conclude with a system eval-
uation using one or more benchmarks. Industry uses benchmarks
for performance and regression testing—and sometimes pub-
lishes results to inform and attract customers [1]. Many storage
benchmarks are publicly available and widely used [12,21,34].

Benchmarks (1) generate workloads and (2) measure a
system’s performance under those workloads—to analyze
system behavior and compare to others. Storage benchmarks
can be divided into two classes of workload generation: micro
and macro [36]. Micro benchmarks generate a relatively simple
workload focusing on a few I/O operations to stress-test one
system component or operational mode. Conversely, macro
benchmarks try to mimic real-world workloads by generating
a complex mix of operations with realistic properties—with the
purpose of exercising a system more holistically. Trace analysis
is frequently used to create macro benchmarks [33].

Both micro and macro benchmarks focus solely on data
operations (e.g., reads, writes) and metadata operations (e.g., file
creates and deletes). The third type of operations—control—is
largely ignored. Control operations include volume creations,
deletions, attachments, detachments, restores, and resizes;
partitioning and formatting; and snapshot creations and deletions.

In the past, control operations were relatively infrequent—
invoked only by system administrators. However, in cloud
native environments, control operations are routinely used by
non-privileged users and even automated users [11,15]. In the
cloud, owners and users control their applications and storage
exclusively, and they do not need administrators. Therefore, the
frequency of control operations has surged (see Section 2) and
is mostly dependent on the number of users and the speed of
software development and deployment.

Modern container clusters contain thousands of physical
nodes and can run hundreds of thousands of containers for many
users [3]. A storage system (e.g., Amazon Elastic Block Store or
a Ceph cluster) serving such large-scale deployments inevitably
experiences a high rate of control operations—volume creations,
deallocations, attachments, reattachments, etc.

The fundamental shift towards cloud native environments
creates a high, previously unseen rate of control operations. The
situation is further exacerbated by three more reasons. (1) The
use of the microservices architecture [35] in modern applications
increases the number of independent containers that may require
their own storage volumes [25]. (2) Control operations can
be data intensive: this makes them slow, but also increases
their impact on the data and metadata operations. For example,
volume creation often requires file system formatting; volume
resizing may require data migration; and volume reattachment
requires cache flushes and warmups. (3) In the past, control
operations were functionally tested but rarely benchmarked.
Anecdotally, we know that even high-performance storage
systems may be slow because they were not designed to service
many control operations.

Thus, there is a gap in the available storage benchmarking
solutions as they ignore cloud native use cases. We propose to
fill this gap by introducing a design of a cloud native storage
benchmark that focuses on control operations. This position
paper makes the following contributions:

1. We explore the issue of overlooked control operations and
their growing importance in cloud native environments.

2. We experimentally demonstrate that the performance of
control operations varies widely across storage systems, and
even affects data operations in cloud native environment.

3. We present the requirements, challenges, and initial design
for a flexible, inclusive cloud native storage benchmark.

2 Control Operations in Kubernetes
Control operations are becoming more important in cloud native,
containerized setups. Compared to traditional virtual machine



environments, the lifecycle of resources in a container environ-
ment can be shorter, whereas the number of resources, such as
containers and volumes, can be greater. The low overhead of
running containers and the micro-service architecture breeds an
environment of ephemeral, short-lived resource use. For example,
there was a reported “2× increase in the number of containers
that live for less than five minutes” in 2019 compared to 2018
on one DevOps platform [23]. Fast container startup times,
along with high container churn rate, result in frequent control
operations (e.g., creating, attaching, or mounting volumes).
Consequently, control operations are becoming latency sensitive,
adding significant load to the storage system and affecting I/O
operations and user experience.

Next, we describe how Kubernetes, a popular container
orchestrator, manages storage volumes. Although we focus on
Kubernetes, similar concepts exist in other orchestrators such
as Apache Mesos [2] and Docker Swarm [10].

Kubernetes is a platform for running containerized applica-
tions in a cloud native fashion [14]. In Kubernetes, if a user
wants to deploy a new application that requires persistent storage,
the user has to create a Persistent Volume Claim (PVC) to
request a new file system or block-based storage volume. A
PVC describes the high-level properties of the volume such
as size or expected performance. Using the specific storage
system’s Container Storage Interface (CSI) [7] driver, Kubernetes
automatically communicates with the storage system to allocate
a volume. When users start an application that uses a provisioned
volume, Kubernetes automatically attaches the volume to the
node where the application’s container is scheduled to run.

Kubernetes defines various resources such as the Pod (a group
of containers) and the Service (a frontend to a set of Pods) as
abstractions for deploying applications. Similar to compute and
networking resources, the orchestrators provide storage in the
form of volumes for application consumption. A volume in Ku-
bernetes is called a Persistent Volume (PV); it is usually backed
by storage hosted on a given storage provider (SP). A PV can be
provisioned either dynamically or manually by an administrator.

A user can request a PV by creating a Persistent Volume Claim
(PVC), specifying properties such as the required volume size and
access mode. The backing storage solution and its parameters,
referred to as the provisioner, can be expressed through a Storage
Class (SC). Upon creation of a PVC, Kubernetes tries to find a
corresponding PV that matches the request or asks the provisioner
to create a PV dynamically. The PV is then bound to the PVC.

Assuming that a PVC is bound to a PV, a user can consume
it through a Pod as a device or file system. During Pod creation,
once the Pod has been scheduled to a node, the PV is published or
staged onto that node and then published to the Pod. Alternatively,
a PVC may be described as part of a Pod specification. In
that case, dynamic provisioning takes place during Pod creation.
Staging and publishing operations must complete prior to the Pod
becoming available to the user, making their performance critical.

To support different SPs, Kubernetes, as well as other
orchestrators, use the Container Storage Interface (CSI) [7].

CSI enables SPs to develop and maintain a single plugin for
all orchestrators that support the CSI specification. There
are currently 23 operations specified in the CSI specification,
ranging from volume and snapshot creation, to publishing
volumes to nodes, and listing volume information.

Next we illustrate a Kubernetes-specific example that triggers
several control operations. Suppose that an application developer
wants to deploy multiple web server instances. Furthermore,
assume that the local administrator has set up a storage system
that provides a CSI plugin and has also created a Storage Class
corresponding to the storage system. The developer is given
access to the cluster and creates a Pod for their web server and
a PVC for the volume, to be used by the web server. The PVC
specifies that the volume should be provisioned from the Storage
Class created previously by the cluster administrator.

At this point, Kubernetes creates a PVC resource describing
the volume request. This triggers a call to the storage system’s
CSI plugin’s CreateVolume implementation, which creates
the volume as intended by the SP. Upon creation of the volume
CreateVolume returns a PV specification, which is then
created by Kubernetes and is bound to the PVC that initiated
the process.

Once the PV has been bound to the PVC and the
web server’s Pod is created and scheduled, the CSI
plugin’s NodeStageVolume operation is invoked.
NodeStageVolume prepares the PV to be used by a
Pod by formatting it with a file system and mounting its volume
on the Node where the Pod is scheduled.

Finally, the PV’s file system needs to be mounted to the
specific Pod. This happens through the NodePublishVol-
ume operation. Here, the NodePublishVolume simply
bind-mounts the node directory under a path corresponding
to the Pod’s volume. The web server Pod now starts and the
volume becomes visible to the Pod. In practice, a developer
would deploy multiple web server instances, potentially pointing
to the same volume, leading to multiple volume staging and
publishing events.

How many control operations per second should an SP be
able to sustain? We develop an example based on statistics
from a DevOps environment [23], where (1) each host runs a
median of 30 containers; (2) 54% of containers have a lifespan
of up to 5 minutes. Furthermore, we assume that the storage
system is attached to 1,000 hosts. This results in an estimate of
1000∗30/(5∗60)=100 container creations per second, implying
that the SP in this case needs to support 100 attach (and detach)
operations per second under typical operation. This shows that
the number of control operations in cloud native environments
can be far larger than is typically seen elsewhere—hence the
need to benchmark control operations carefully.

3 Impact of Control Operations
To better illustrate the need for a cloud native storage benchmark,
we demonstrate the importance of control operations using two
different experiments: (1) speed of volume creation and attach-



10 20 30 40
time (s)

0.0

0.5

1.0
1 Volume

20 40 60 80 100 120
time (s)

0.0

0.5

1.0
50 Volumes

OpenEBS Provision + Attach OpenEBS Attach Gluster Provision + Attach Gluster Attach Ceph Provision and Attach Ceph Attach

Figure 1: CDFs of how long it took storage providers to create and attach a volume to a Pod. Times were measured by attaching
(i) a single volume at a time (in a series of 50) and (ii) 50 volumes simultaneously.

ment; and (2) volume snapshotting impact on I/O operations.

Experimental setup. We instantiated a small Kubernetes
cluster consisting of three master nodes in a high availability
configuration and two worker nodes. Each node in the cluster
was a virtual machine in a VMware vSphere environment and
was allocated 8 GB of RAM and 4 vCPUs. The nodes ran
Centos 7.7.1908 with Linux kernel version 3.10, and we used
Kubernetes version 1.16.

Due to the rapid rise of containers’ popularity, many new
and existing storage products position themselves as cloud
native [4, 13, 16, 17, 19, 22, 24]. We used three popular and
different-by-design storage providers—OpenEBS, Gluster, and
Ceph—to provision Kubernetes volumes.

OpenEBS [17] is a cloud native storage provider that follows
the Container Attached Storage approach. This means that
OpenEBS deploys a separate container-based controller for each
PV which handles control operations for that PV. This approach
is more flexible as it permits each application to specify different
storage parameters (e.g., replication factor). We used OpenEBS
v1.15 and the OpenEBS cStor [8] storage engine, which formats
disks with ZFS and then provisions PVs by creating ZFS
volumes and formatting them with Ext4.

Gluster [13] is a distributed file system: it aggregates file
systems on local nodes to form volumes that can be mounted
via NFS or a Gluster FUSE driver. We configured a single
node Gluster cluster, running Gluster v6.0 on just one of our
Kubernetes workers.

Ceph [4] uses the RADOS [37] object store to provide object,
block, or file storage systems. We created a Ceph v14.2.7 storage
cluster and provisioned PVs by creating Ceph Block Devices
from the storage pool and formatting the block devices with Ext4.

All three storage providers we used support common storage
control operations such as provisioning, snapshotting, and
resizing volumes; all three expose these operations to Kubernetes
through their respective CSI drivers.

Experiment 1: Volume creation and attachment. We
compared the performance of volume attachment and creation
for OpenEBS, Gluster, and Ceph.

To measure volume attachment and creation, we timed
how long it took to start a Pod that used a 1 GiB volume
provisioned from one of the three storage providers. We used
both pre-existing and new volumes: using pre-existing volumes
measures volume attachment time; using new volumes measures
the combined volume attachment and volume provisioning

time. Because we measure the overall time to start a Pod, both
cases also include the extra time needed to create the Pod itself;
however, this time is small (only a few seconds) compared
to the other two operations and is the same regardless of the
storage provider used. To see the effect of a large number of
simultaneous control operations, we tested both starting (1) only
one Pod at a time and also (2) starting 50 Pods at once.

Figure 1 shows the results in CDF form. We can clearly
see that there are differences in how storage providers perform
these control operations. For example, although OpenEBS is
the fastest storage provider at attaching pre-provisioned volumes,
it is the slowest at provisioning and then attaching volumes. This
could be due to the fact that OpenEBS allocates and starts a
controller Pod for each new volume, which adds overhead to
volume provisioning not present in Gluster or Ceph.

Both the variation in and the overall provision times for all
three storage providers are surprisingly high. This is in part due
to Kubernetes’s asynchronous architecture: some components
batch updates and others poll for updates periodically. Since
provisioning volumes consists of a series of steps, delays at each
step can compound, increasing provisioning times and their
variance. More experimentation is needed to determine exactly
which parts of the provisioning process account for the high
delays and variance.

The speed with which volumes can be provisioned and
attached to application Pods mainly affects Pod startup time,
which in turn affects failure recovery time and the time required
to scale out applications. For example, Pods using OpenEBS
volumes would likely recover faster in the event of an application
failure, as OpenEBS is fastest at re-attaching volumes to new
Pods. Conversely, Pods using Gluster or Ceph volumes could
better respond to load increases by scaling out and deploying
additional Pods that require additional volumes.

Experiment 2: Snapshotting. Next, we aimed to study the
impact of snapshotting on I/O workloads. Although many storage
solutions now provide low-overhead volume snapshots, the actual
overhead incurred by the application workload depends on var-
ious factors, including the characteristics of the workload and the
storage solution itself. In addition, snapshots have the potential
to impact the workloads of other users that are either co-located
on the same node or that share the same underlying storage.

To measure the effects introduced by snapshotting, we
used the fio [12] benchmark to generate a workload with
five fio threads accessing the same 5 GB file with an even
mix of sequential reads and writes. This workload is based



0 20 400.
00

0.
02

0.
04

la
te

nc
y 

(s
)

Gluster

0 20 40

Number of snapshots

0.
00

0.
02

0.
04

Ceph

0 20 400.
0

0.
5

1.
0

OpenEBS

0 20 400.
00

0
0.

00
2

0.
00

4

Gluster

0 20 40

Number of snapshots

0.
00

0.
02

0.
04

Ceph

0 20 40

0
1

2

OpenEBS
Write LatenciesRead Latencies

p50
p95
p99
p99.9

Figure 2: Effect of snapshotting on latency of I/O operations. We show 50th, 95th, 99th, and 99.9th percentiles. Note that the Y axes’
scales are different for each plot, because the ranges of latencies varies significantly across storage providers.

on a configuration recommended for evaluating database I/O
performance [38]. We ran five instances of fio for 30 minutes.
Each instance was a separate Pod and was attached to a different
volume provisioned from the same storage provider. During
the 30 minute run, we cycled through each of the five volumes,
taking snapshots at regular intervals: every 90 seconds for the
20 snapshot test; and every 45 seconds for the 40 snapshot test.
An individual volume therefore was snapshotted every 7.5 and
3.75 minutes for the 20- and 40-snapshot tests, respectively.

We configured fio to log I/O operation latencies. Figure 2
shows how these latencies were affected when a different number
of snapshots were taken during the test. Again, the difference
in storage providers is apparent. Although Gluster and Ceph
are minimally affected, OpenEBS is affected more significantly.
For example, when 20 snapshots are taken during fio’s run,
OpenEBS’s 99.9th percentile read-latency grows 3.3× compared
to the baseline, and when 40 snapshots are taken it grows to 17×.

Together, the experiments show that (1) storage providers
differ in how they perform and scale with frequent control
operations and (2) control operations do influence the I/O latency
for workloads running in neighboring containers. Both factors
impact the end users of cloud services directly and indirectly.
Workflows that rely on creating new containers frequently—e.g.,
Continuous Integration (CI) services—can be impacted directly
by the performance of control operations such as volume creation
and attachment. Additionally, the overhead caused by control
operations can indirectly reduce the user-visible performance
of applications [31]. Understanding these behaviors allows
cloud administrators to make informed decisions when choosing
storage solutions.

4 Benchmark Design
We believe that the aforementioned trend analysis and ex-
ploratory experiments justify the need to create a benchmark that
treats control operations as first-class citizens.

Such a benchmark would be useful to anyone making design
or operational decisions regarding their cloud-based services. For
instance, an administrator could use the benchmark to examine
the relationship between the number of containers deployed
concurrently and their startup times. We first discuss the design
requirements for a cloud native storage benchmark and then
present our initial design.

Requirements. We identify 9 core requirements a cloud native
storage benchmark should address. The requirements cover

aspects of workload generation (W), result measurement and
visualization (R), and usability (U).
�W1: The workload of a cloud native storage benchmark is
two-dimensional as it needs to evaluate both the performance
of control operations and their effect on I/O operations. Hence,
the benchmark should generate a mix of both operation types.
Each dimension should be separately controllable to allow
measuring the performance of control operations in isolation and
in combination with I/O operations, under different loads.
�W2: The benchmark’s workload description should allow users
to specify the type and frequency of control operations and the
amount of work performed. In addition to straightforward control
operations (volume creation, snapshot deletion, etc.), the bench-
mark should also trigger aborting a running I/O workload in order
to evaluate fault recovery performance. Generating the faults of
the storage system itself, however, is out of scope for the bench-
mark, but tools such as Chaos Monkey [5] could be used for that.
It should also be possible to compose different control-operation
patterns to generate more complex and realistic workloads.
�W3: I/O operations can be generated by a variety of existing
sources (e.g., fio or real-world applications). The benchmark
has to support these different sources using a pluggable
architecture. The benchmark should also ship with default
sources that can be used without additional configuration efforts.
�W4: The target environment of the benchmark are cloud
native setups, which normally host a large number of different
tenants, isolated through different QoS mechanisms. The
benchmark should allow to evaluate the quality and reliability
of the mechanisms used for storage I/O isolation. In particular,
the benchmark needs to enable users to configure QoS targets
to detect potential QoS violations.
�R1: As stated in W3, I/O operations can come from a variety
of sources. Hence, performance measurements of I/O operations
should be decoupled from their workload generation, to be able
to capture basic metrics (e.g., IOPS, bandwidth, and latency) for
any source. As cloud native environments often already contain
elaborate monitoring tools such as Prometheus [20], the bench-
mark should integrate with those tools. It should also allow one
to easily export workload-specific metrics, such as transactions-
per-second in a DB benchmark, to specific analysis tools.
�R2: A single run of the benchmark can produce a large amount
of measurement data, coming from a variety of different sources
at different granularities (cluster nodes, Pods, PVs, etc.). In its
raw form, this data will be hard to interpret for end users due



to its variety. The benchmark needs to aggregate all the results
and present them in a comprehensive, clear, and actionable way.
�R3: Cloud native clusters can have thousands of nodes [3].
Hence, the benchmark should scale to large clusters while
keeping the overhead of metrics collection low; the benchmark
should utilize the deployment management and monitoring ca-
pabilities offered by cloud native environments. Experimentation
will be needed to measure the overhead and find an acceptable
threshold. For large clusters it may be necessary to tune the
number and level of detail of the metrics collected, in order to
keep the overhead within the desired threshold.
�U1: The benchmark should support reproducibility as a
first-class citizen to allow easy comparison of different results.
To support reproducibility, the benchmark has to collect and
store enough information on the experiment, the cluster, and
the storage configuration. Experimentation will be needed to
determine what information is necessary to collect to ensure
reproducibility. To avoid any external dependencies, collection
should be restricted to information that can be retrieved natively
from the environment (e.g., through Kubernetes’s API server).
�U2: The benchmark should be easy to deploy and use. While
this is a general requirement for any benchmark, it is especially
important in this context due to the scale and complexity of
cloud native environments. This means the benchmark needs
to package and deploy all required dependencies, seamlessly
integrate with the platform by relying on available primitives
(e.g., Operators and DaemonSets in Kubernetes), and allow for
simple workload descriptions in accepted formats (e.g., YAML).

Although there are many popular I/O benchmarks such
as fio or filebench, these tools lack the capabilities
and infrastructure necessary to orchestrate running multiple
workloads from different sources while also executing control
operations. Moreover, we do not view orchestration and control
operations as a simple extension to capabilities of I/O storage
benchmarks. Further, requirement W3 necessitates being able to
use a variety of existing benchmarks to generate I/O workloads.
Therefore, we believe a new benchmark is needed that includes
orchestration, control operations, and support for a variety of
existing I/O benchmarks to generate I/O operations.

Design. Our preliminary design addresses some of the above
requirements (W1–W3, R1, R3, and U2); we plan to address the
remaining ones (W4, R2, and U1) in the final implementation.
For the purpose of illustration, we describe our design in terms of
a possible implementation for Kubernetes. However, this does not
mean that the design is applicable only to Kubernetes; the bench-
mark could be implemented for any cloud platform that can be in-
terfaced with through an API (e.g., OpenStack or VMWare ESX).

Our design is well suited for Kubernetes’ operator design
pattern [18]. This pattern has two components: (i) a custom user
object and (ii) a controller that watches object modifications and
acts accordingly [18].

The benchmark controller 1 is the centerpiece of our cloud
native storage benchmark (see Figure 3). The controller runs in

Image Repository

PVC

Worker 

Node

…

IOU

IOU

Definition of

an instance of a

Custom Object 

Benchmark:

(in YAML format)

Benchmark

Controller

PV

Filebench

fio

specsfs

iozone

PVC

control

operations

1

IOU

IOU

IOU

IOU

MEASURE
2

3

Storage Class 
pointing to 
CSI Plugin

4

5
6

8

ioOpsUnits:

- filebench:latest

config: URL

count: 20

- fio:v2.1

config: ConfigMap

quantity: 10%

7

Worker 

Node

Worker 

Node

kind: Benchmark

metadata:

name: myBench

spec:

iterations = 10

StorageClass: OpenEBS

controlOps:

- cr-per-min: 10

- snap-per-min: 1

- reattach-per-min: 0.5

…

6

Figure 3: Proposed high-level system design

one or more Pods and subscribes to Kubernetes for the creation,
deletion, and modification of Benchmark objects. A Benchmark
is a custom object type [9] defined in Kubernetes during the instal-
lation of the benchmark. To run a benchmark, a user 2 creates an
instance of a Benchmark type, defined as per Kubernetes conven-
tion, in YAML format 3 . This instance represents one or more
runs of the same workload. Using existing Kubernetes constructs
in the benchmark design addresses requirements R3 and U2.

To meet requirements W1–W3, workloads are defined in
two parts: (i) ioOpsUnits, which describe the characteristics
of the I/O operations to run; and (ii) controlOps, which
describe the control operation characteristics. I/O operations
are represented as a collection of I/O units—IOUs 4 —each of
which corresponds to a single Pod running some I/O workload
consisting of both data and metadata operations. IOU Pods start
from container images; we plan to provide a curated set of IOU
images (e.g., filebench, fio, iozone, specSFS) in a public image
registry like Docker Hub 5 . Users will also be able to specify
their own IOU images.

Control operations are specified in the benchmark as part
of the controlOps section. These operations are directly
executed by the controller on PVCs and their corresponding
PVs 6 and Pods. For example, the controller may periodically
create several new PVCs, snapshot some PVs, and reschedule
IOU Pods to trigger PV reattachment. To fully understand
the extent to which users will want to customize their control
workloads, more analysis and user feedback is necessary.

When the controller receives a Benchmark definition, it
creates the specified number of Pods. Kubernetes schedules
the IOU Pods in the cluster, pulls the necessary images, and
starts the Pods. Benchmarks can typically generate a number of
different IOUs, configurable with parameters. Users can specify
IOU-specific configurations in the benchmark definition through
a ConfigMap [6] or a URL to a config file. PVs used by the
benchmark are created in the Storage Class 7 listed by a user



in the Benchmark object definition. This allows one to specify
which storage provider (e.g., OpenEBS) to benchmark.

Besides the workload, a separate Pod will be running to collect
the system performance, resource utilization, and performance
numbers reported by benchmarks 8 . We plan to utilize the
ELK stack [28, 29] to analyze and visualize the collected
measurements. This addresses R1.

5 Related Work
The need to test the performance of cloud storage has motivated
academia and industry to develop several micro-benchmarks
such as YCSB [26] and COSBench [39]. YCSB is an extensible
workload generator that evaluates the performance of different
cloud serving key-value stores. COSBench measures the
performance of Cloud Object Storage services. Unlike YCSB,
COSBench targets more generic workloads and is not limited
to key-value or object storage.

TailBench [30] provides a set of interactive macro-benchmarks:
web servers, databases for speech recognition, and machine
translation systems to be executed in the cloud. Similarly,
DeathStarBench [27] is a benchmark suite for microservices and
their hardware-software implications for cloud and edge systems.
Both TailBench and DeathStarBench target cloud applications
and are not explicitly storage benchmarks.

Traeger et al. [36] conducted an extensive study of file systems
and storage benchmarks. Yet, we are not aware of any studies
that focused on benchmarking control operations in cloud native
storage systems—this position paper’s focus.

6 Conclusion
There are many, diverse cloud native storage solutions but their
real-world performance is poorly understood. This is largely due
to the shortcomings of existing benchmarks, which are not able
to generate control operations. Control operations are an essential
part of the cloud native storage workflow and are becoming in-
creasingly more frequent as regular, non-privileged users are able
to issue control operations without involving a storage adminis-
trator. Therefore, we argue that it is essential for any cloud native
storage benchmark to treat control operations as a first-class cit-
izen. In this position paper, we demonstrated this need with two
sample studies; we show that control operations can impact the
I/O workloads of containers significantly and that they result in
large performance variations across different solutions. We pre-
sented a set of requirements for cloud native storage benchmarks
and an initial design to address those challenges and get one step
closer to effectively benchmarking cloud native storage systems.

To implement this design as a practical benchmark, commu-
nity input will be critical. Discussions with academics and profes-
sionals will help reach the optimal level of versatility, expressive-
ness, realism, and ease-of-use. Therefore, we envision the bench-
mark as an open-source project with a community built around it.
In addition, as current storage traces lack control operations, we
hope to find partners that can share traces or aggregated statistics
from their environments with control operations included. This
will be important in developing realistic control workloads.

References
[1] All SPEC SFS 2014 Results Published by SPEC.

https://www.spec.org/sfs2014/results/
sfs2014.html.

[2] Apache Mesos. https://mesos.apache.org.

[3] Building large clusters. https://kubernetes.
io/docs/setup/best-practices/
cluster-large/.

[4] Ceph. https://ceph.io/.

[5] Chaos monkey. https://github.com/Netflix/
chaosmonkey.

[6] Configure a Pod to Use a ConfigMap. https:
//bit.ly/2Jgx97S.

[7] Container Storage Interface (CSI) Specification.
https://bit.ly/3bqQX4b.

[8] cStor. https://docs.openebs.io/docs/
next/cstor.html.

[9] Custom Resources. https://kubernetes.
io/docs/concepts/extend-kubernetes/
api-extension/custom-resources/.

[10] Docker Swarm. https://github.com/docker/
swarm.

[11] Dynamic Provisioning and Storage Classes in Kubernetes.
https://bit.ly/2Uh3Qbw.

[12] fio. https://github.com/axboe/fio.

[13] Gluster. https://www.gluster.org/.

[14] Kubernetes. https://kubernetes.io/.

[15] Kubernetes Storage. https://kubernetes.io/
docs/concepts/storage/.

[16] NetApp Trident. https://github.com/NetApp/
trident.

[17] OpenEBS. https://openebs.io/.

[18] Operator pattern. https://kubernetes.io/
docs/concepts/extend-kubernetes/
operator/.

[19] Portworx. https://portworx.com/.

[20] Prometheus. https://prometheus.io/.

[21] SPEC SFS 2014.
https://www.spec.org/sfs2014/.

[22] StorageOS. https://storageos.com/.

[23] Sysdig 2019 Container Usage Re-
port. https://sysdig.com/blog/
sysdig-2019-container-usage-report/.

[24] The IBM Spectrum Scale Container Storage Inter-
face (CSI) project. https://github.com/IBM/
ibm-spectrum-scale-csi.



[25] Marc Brooker, Tao Chen, and Fan Ping. Millions of tiny
databases. In Proceedings of the 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
2020.

[26] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC), 2010.

[27] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An Open-source
Benchmark Suite for Microservices and their Hardware-
software Implications for Cloud & Edge Systems. In
Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019.

[28] Clinton Gormley and Zachary Tong. Elasticsearch: The
Definitive Guide: A Distributed Real-time Search and
Analytics Engine. O’Reilly Media, Inc., 2015.

[29] Yuvraj Gupta. Kibana Essentials. Packt Publishing Ltd,
2015.

[30] Harshad Kasture and Daniel Sanchez. Tailbench: A
Benchmark Suite and Evaluation Methodology for Latency-
critical Applications. In Proceedings of the 2016 IEEE
International Symposium on Workload Characterization
(IISWC), 2016.

[31] Pulkit Misra, Maria Borge, Inigo Goiri, Alvin Lebeck,
Willy Zwaenepoel, and Ricardo Bianchini. Managing
Tail Latency in Datacenter-Scale File Systems Under
Production Constraints. In Proceedings of the Fourteenth
EuroSys Conference, 2019.

[32] Vasily Tarasov, Saumitra Bhanage, Erez Zadok, and Margo
Seltzer. Benchmarking File System Benchmarking: It *IS*
Rocket Science. In Proceedings of the 13th USENIX Con-
ference on Hot Topics in Operating Systems (HotOS), 2011.

[33] Vasily Tarasov, Santhosh Kumar, Jack Ma, Dean Hilde-
brand, Anna Povzner, Geoff Kuenning, and Erez Zadok.
Extracting Flexible, Replayable Models from Large Block
Traces. In Proceedings of the 10th USENIX Conference
on File and Storage Technologies (FAST), 2012.

[34] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A Flexible Framework for File System
Benchmarking. USENIX ;login:, 41(1), 2016.

[35] Johannes Thönes. Microservices. IEEE Software, 32(1),
2015.

[36] Avishay Traeger, Erez Zadok, Nikolai Joukov, and
Charles P Wright. A Nine Year Study of File System and
Storage Benchmarking. ACM Transactions on Storage
(TOS), 4(2), 2008.

[37] Sage Weil, Andrew Leung, Scott Brandt, and Carlos
Maltzahn. RADOS: A Scalable, Reliable Storage Service

for Petabyte-scale Storage Clusters. In Proceedings of the
2nd International Workshop on Petascale Data Storage
(PDSW), 2007.

[38] Mark Wong. Filesystem Performance from a Database
Perspective, 2009. https://bit.ly/33M5RiU.

[39] Qing Zheng, Haopeng Chen, Yaguang Wang, Jian Zhang,
and Jiangang Duan. COSBench: Cloud Object Storage
Benchmark. In Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering
(ICPE), 2013.


