StripeFinder: Erasure Coding of Small Objects over Key-Value Storage Devices
(An Uphill Battle)

Umesh Maheshwari
Chiku Research

Abstract

Emerging key-value storage devices are promising because
they rid the storage stack of the intervening block namespace
and reduce 10 amplification. However, pushing the key-value
interface down to the device level creates a challenge: erasure
coding must be performed over key-value namespaces.

We expose a fundamental problem in employing parity-
based erasure coding over key-value namespaces. Namely,
the system must store a lot of per-stripe metadata that includes
the keys of all objects in the stripe. Furthermore, this metadata
must be find-able using the key of each object in the stripe.

A state-of-the-art design, KVMD, does not quantify this
metadata overhead [10]. We clarify that, when storing D data
and P parity objects, KVMD stores D x P metadata objects,
each of which stores D+P object keys. This nullifies the
benefit of parity coding over replication in object count. For
small objects, it might also nullify the benefit in byte count;
e.g., to protect 256 byte objects with 16 byte keys against
two failures (P=2), KVMD would cause byte amplification
of 2.8x (D=4) and 3.3x (D=8) vs. 3x with plain replication.

We present an optimized version, StripeFinder, that signifi-
cantly reduces metadata byte and object counts; e.g., to pro-
tect 256 byte objects against two failures (P=2), StripeFinder
reduces byte amplification to 1.9x (D=4) and 1.6x (D=8).
However, even StripeFinder does not provide enough savings
for 100 byte objects to justify its complexity over replication.

1 Introduction

A key-value store maps application-selected keys to variable-
size values. The storage engine of many database systems,
including MongoDB [3] and MySQL/MyRocks [9], can be
viewed as employing key-value storage.

A distinctive feature of key-value storage is that the key
space is huge and sparsely filled. Most key-value stores sup-
port a maximum key size of 16 B to multiple KBs. This huge
space enables applications to select meaningful names as keys
instead of using storage addresses that happen to be available.

To make the context around this paper more specific, con-
sider a host running a key-value server with access to multiple
storage devices. (This "server" might actually be an embedded
library or a kernel module, and the storage devices might be
attached directly to the host or connected over a network.) A
device might fail or lose some of its data due to uncorrectable

bit errors. Therefore, it is desirable for the server to use some
form of erasure coding so it can recover lost data.

Most storage devices today present a block namespace. It
is relatively simple to employ storage-efficient erasure codes
such as Reed-Solomon over block namespaces [11].

However, the use of block devices is known to add an un-
necessary layer of translation and 10 amplification [8]. Below
we summarize this problem and motivate the emergence of
two new types of storage namespaces. We contrast the funda-
mental characteristics of the three namespace types, as this is
deeply relevant to the discussion in this paper.

1.1 The Problem with Block Namespace Type

A block namespace is a sequence of fixed-size blocks (typi-
cally 0.5 or 4 KB) also known as "logical" blocks. A key-value
server using a block device must translate from the key-value
namespace to the block namespace. This translation requires
a large map and induces heavy IO amplification, and we refer
to it as a heavyweight translation [8].

This heavyweight translation is not so bad for spinning
disks. Once the server has done the heavy lifting, disk devices
don’t have to do much because block addresses can be mapped
to predictable locations on disk with a lightweight translation.

This paper is focused on flash-based solid-state drives
(SSDs). Flash comprises large blocks (multiple MBs) that
must be filled sequentially and erased fully. A logical block
cannot be updated in place within a flash block and must be
relocated, so SSDs use a large map to track block locations
and perform garbage collection. Thus, block SSDs result in
two heavyweight translations: one in the server from the key-
value namespace to logical blocks, and another in the SSD
from logical blocks to flash blocks.

1.2 Emerging Namespace Types

The SSD industry is working on standardizing two new types
of storage namespaces to remove double translation.

Zoned Namespace: This namespace is a sequence of large
fixed-size zones (typically > 10 MB), each of which must be
filled sequentially and erased fully. (The actual spec is more
nuanced [1].) This enables an SSD to map a zone to one or
more flash blocks with a lightweight translation. Heavyweight
translation is left to the key-value server on the host [12].

Key-Value Namespace: Here, the SSD presents a key-
value namespace and does the heavyweight translation from

Host Host Host

KV API KV API KV API

KV KV

[} [}
L.block Zoned
L.block Zoned KV

()) U
F.block F.block F.block
| flash | | flash |
Block Device Zoned Device KV Device

Figure 1: Translation and IO amplification with different de-
vice types. Trapezoids represent translations. Vertical lines
represent 0. Heavier lines represent heavier IO/translation.

that namespace directly to flash blocks [6]. The key-value
server on the host does not need to perform much translation.

The intent is that a future SSD might serve multiple names-
paces, each configurable to a supported namespace type:
block, zoned, or key-value. However, for simplicity, we as-
sume a device serves a single namespace, and we use the
notions of namespace type and device type interchangeably.

Both zoned and key-value device types rid the storage stack
of the intervening block namespace, enable a stack with only
one heavyweight translation, and reduce IO amplification on
flash (each to about the same level). An advantage of key-
value device type is that it keeps the residual IO amplification
close to flash media, where bandwidth is most plentiful, and
frees up bandwidth on higher-level resources such as PCle
and main memory. This is shown in Figure 1.

However, there is an understated challenge with using key-
value devices. Pushing the key-value namespace down to the
device level implies that the server must perform erasure cod-
ing over key-value namespaces—without visibility into the
data layout within each device. This paper shows that layering
erasure coding over key-value namespaces adds complexity
and high overhead in the number of objects and bytes stored.

1.3 Outline

Section 2 exposes the challenge of erasure coding over key-
value devices. Section 3 analyzes the overhead in a state-of-
the-art design, KVMD [10]. Section 4 presents an optimized
version, StripeFinder. Section 5 states our conclusions.

This paper presents a conceptual analysis of design alter-
natives. It does not cover many details needed to build a real
system, e.g., buffering objects before parity coding, atomic
update of data and parity, detailed layouts, rebalancing when
scaling the number of devices, and performance analysis.

2 Parity Coding of Key-Value Objects

Erasure coding is useful to recover from the loss of some
devices or the corruption of some data due to bit errors. Cor-
ruption is a particularly big concern in flash devices, because
high-density flash is prone to a high rate of bit errors.

To tolerate P full/partial failures, the server could replicate
each piece of data on P+1 devices. Replication is the simplest
form of erasure coding but incurs high storage amplification
of P+1. Therefore, it is desirable to use parity coding, by
which we mean an optimal code such as Reed-Solomon [11].

With parity coding, data is encoded into stripes, each a
sequence of D pieces of original data and P pieces of parity.
We refer to each piece of data or parity as a stripe unit. Any D
units in a stripe are sufficient to recover the remaining units.
Recovering a corrupted unit requires the server to identify the
other units in the same stripe. This is trivial with block/zoned
devices, but it can be tricky with key-value devices

2.1 Parity Coding over Block/Zoned Devices

A key-value server using block/zoned devices can pack ob-
jects into blocks/zones, which can then be treated as stripe
units without much difficulty. In-memory key-value stores
that pack objects into fixed-size pages are similar [14].

Identifying the blocks/zones in a stripe requires little effort.
A zone is a large enough unit to keep metadata on where each
unit resides. A logical block is not so large, but the server can
collocate successive stripes to effectively form large units and
calculate the offset of a block within such a unit [4].

Parity coding can be implemented as the bottom layer
within the key-value server, or it can be encapsulated within
a filesystem layered below the key-value server and above
the block/zoned devices. In fact, hyperscale filesystems with
multi-MB blocks/extents, such as HDFS and Windows Azure
Storage, can be seen as providing zoned-like namespaces and
have been extended to support parity coding [5, 13].

2.2 Parity Coding over Key-Value Devices

When using key-value devices, there are two key-value inter-
faces: at the frontend, between the application and the server,
and at the backend, between the server and the devices.

In the absence of erasure coding, the server can store
application-provided objects directly on the devices without
much translation. Given a key, it only needs to know the de-
vice that might hold the corresponding object. It can achieve
this using a small home map, H, based on either partitioning
the key range or hashing the keys. Even though H maps all
possible keys, its memory footprint is small.

With parity coding, the server might need to transform ap-
plication objects (e.g., by splitting or packing) before storing
them. We refer to application objects as frontend objects and
objects stored on the devices as backend objects. The next
two sections describe how objects might be parity encoded.

2.3 Splitting Large Objects

For a large-ish object (>16 KB, give or take a factor of two),
parity coding is simple. The server splits the object into D
data units of (almost) equal size, computes P parity units, and
stores the D+ P units as backend objects on distinct devices.

The size of a unit need not be a multiple of some sector
size, because key-value devices support variable-size objects.
The only desirable constraint is that the unit size is larger than
2-4 KBs so that the aggregate read throughput from flash
devices is not greatly reduced.

The server can map a frontend key to the backend objects
generated by splitting without storing a large map. Here we
describe the method employed in KVMD [10]. The server
generates the backend key for the ith unit in the stripe by
extending the frontend key k as k:i. Furthermore, it stores
this unit on device H (k:i) = (H(k)+i) mod N, where N is the
number of devices in the system (N>D+P). This preserves
the locality and load-balancing provided by the home map H
while ensuring that the units are placed on distinct devices.

This paper is focused on small objects, so we do not discuss
splitting much further in this paper.

2.4 Packing Small Objects

Splitting small objects is undesirable because it would dimin-
ish read throughput and create a large number of even smaller
backend objects. Below we describe two alternatives for small
objects that we refer to as multi-packing and uni-packing.

2.4.1 Multi-Packing

It is tempting to follow the approach used on block/zoned
devices: pack many small objects into a large intermediate
object, and encode this object using splitting as described
earlier. (An advantage of this approach is that it can pack
objects of widely different sizes into a stripe.) The server
assigns a key k,, for the intermediate object, which is extended
during splitting to generate backend keys of form k,,:i.

This method is relative simple, but it belies a massive in-
efficiency: the server must keep a large map to translate a
frontend key k to the backend key k,,:i. This re-introduces
double translation (one in the server and one in the devices)
and thereby negates the benefit of using key-value devices.

One solution is to create such large stripe units that the
key-value devices do not need a heavyweight translation, but
this same result is better achieved using zoned devices instead.
Therefore, we do not discuss multi-packing further.

2.4.2 Uni-Packing

Here we generalize the method employed in KVMD [10],
where it is called "packing." The server composes a stripe
where each data unit is a single frontend object. To that end,
it buffers recently-received frontend objects. When it has

accumulated D objects of similar sizes that are destined to D
distinct devices (based on the home map H), it packs them
into a stripe. To generate P parity objects, it temporarily pads
all data objects to the size of the largest such object.

The server places the D data objects on their home devices
using the frontend key of each object (or a simple extension
thereof) as the backend key. (Because there is no significant
difference between frontend and backend keys of data objects,
we will refer to them as data keys.) The server can place the
P parity objects on any P of the remaining N—D devices. For
each parity object, it assigns a fresh backend key k.

A big advantage of uni-packing over multi-packing is that
the server can service read requests without needing a large
map to translate frontend keys to backend keys.

However, uni-packing faces its own challenges. First, the
server might need to buffer recently-received objects longer
than usual, as it encodes only objects of similar sizes that are
destined to distinct devices. It can loosen the size constraints,
but that might increase the parity overhead. Or, it can generate
a shorter stripe after a wait threshold, but that also increases
the parity overhead. Similarly, when a data object is deleted,
the server might need to effectively shrink the stripe.

Second, more importantly, the server needs to store a lot
of stripe metadata. To recover a corrupted object, the server
needs to fetch the other data and parity objects in the same
stripe. The server cannot intuit the keys of these objects be-
cause the key space is huge and sparsely filled, so it stores
per-stripe metadata that includes the key of every object in the
stripe. Furthermore, this stripe metadata must be find-able us-
ing the key of any of the data objects in the stripe. Finally, the
metadata itself must be stored redundantly to tolerate failures.

While both challenges are of immense practical concern,
the second challenge is more fundamental and less amenable
to workarounds, and it is the focus of this paper. In the next
section, we analyze the metadata overhead in KVMD.

3 Metadata Overhead in KVMD

The KVMD paper [10] does not quantify the metadata over-
head, perhaps because it is focused on objects that are 1 KB
or larger and the overhead is assumed to be small. Here we
quantify and analyze its metadata overhead formally.

For each stripe, KVMD creates a metadata object that holds
the sequence of D+P keys in the stripe. We refer to this
metadata object as a stripe object. KVMD stores multiple
instances of the stripe object:

e For each data key k in the stripe, KVMD stores a separate
version of the stripe object and assigns it a key that is an
extension of ky, say, kg:1.

e To tolerate P failures, KVMD stores P clones of each of
the above versions. For data key k,, these clones are as-
signed the keys k;:1, k4:2, ..., kq:P and stored on distinct
devices using the home map, as described in Section 2.3.

(D,P) parity repl unipack-md unipack-md2

D+P D(P+1) D+P+DP DTPTD(P11)

D D D D

1+P/D P+l P+1+P/D P+24P/D
4,1 125 2.0 2.25 3.25
“4,2) 1.50 3.0 3.50 4.50
8,2) 1.25 3.0 3.25 425

Table 1: Object amplification for tolerating P failures.

Thus, KVMD stores D x P instances of the stripe object. We
name this version of uni-packing "unipack-md." We believe
a more robust version would store P+1 clones of the stripe
object for each data key. (With only P clones, P failures can
wipe out all clones find-able using a data key k;. Now, if
object k4 is deleted, the server will not be able to find its
stripe metadata, which it needs to re-encode the stripe.) This
robust version keeps D(P+1) instances of the stripe object,
and we name it "unipack-md2." In the rest of this paper, we
focus on the robust version.

We define object amplification of a code as the ratio of the
number of backend objects (including data, parity, and meta-
data) to the number of frontend (data) objects. Table 1 shows
object amplification for protecting D data objects against P
failures. Here, "parity" refers to a hypothetical and optimal
code that does not require stripe metadata, and "repl" refers
to replication, which does not require stripe metadata.

The object amplification of unipack-md and unipack-md2
is even higher than that of replication, which is high to be-
gin with. This is problematic because the performance of
key-value stores is often limited by the number of objects
stored rather than the number of bytes stored, especially after
optimizations such as key-value separation [7].

Now we analyze the number of bytes stored. Suppose the
average key size is K and the average value size is V. We
calculate the average object size, W=K+V, and the object-
key ratio, X=W /K. The object-key ratio is relevant because
we show later that the metadata overhead of uni-packing is
inversely proportional to this ratio. Table 2 is copied from
a recent study of key-value data at Facebook [2]; we added
two columns to the right for W and X. The table shows that
object-key ratios for these data sets are small—Iess than 6.

AVG-K SD-K AVG-V SD-V AVG-W X=V
UDB 271B 2.6B 1267B 22.1B 1538B 5.7
ZippyDB 479B 37B 429B 261B 908B 1.9
UP2X 105B 14B 468B 11.6B 573B 55

Table 2: Stats from key-value data at Facebook [2].

We define byte amplification (B) as the ratio of the total
size of all backend objects to the total size of all frontend
objects. A backend data or parity object is roughly the same
size as a frontend object, W. Each stripe object stores D+P

(D,P) parity repl
1+P/D P+1

unipack-md2
(14+P/D)+(P+1)(1+D+P)/X

X=4 X=8 X=16 X=32 X=64 X=128
4,1) 125 20 43 28 20 16 14 13
4,2) 1.50 3.0 68 41 28 22 18 1.7
8,2) 125 3.0 95 54 33 23 18 15
(Dopt-2) 1.00 30 58 39 28 22 18 15

D= D=1 D=2 D=2 D=3 D=5 D=7 D=9

Table 3: Byte amplification () for tolerating P failures.

keys and is of size K+(D+P)K.

(D4+P)W+D(P+1)(K + (D+P)K)
DW
= (14P/D)+(P+1)(1+D+P)/X (1)

Bmd2 =

Table 3 shows byte amplification from encoding D objects
to tolerate P failures. For unipack-md2, it shows results for a
range of object-key ratios (X) from 4 to 128. If object keys
are 16 B, this range is equivalent to objects of 64 B to 2 KB.
The table manifests two surprises. First, for small object sizes,
Bmaz2 is even higher than B,.p. We require uni-packing to
provide at least, say, 20% savings over replication to be worth
its complexity and be practically useful. The table shows
impractical combinations in red.

The second surprise is that Bygp for (D=8,P=2) is higher
than that for (D=4,P=2), even though increasing D is supposed
to lower amplification. The anomaly is explained by Eq 1: one
term in Py is inversely proportional to D (parity overhead)
and another is proportional to D (metadata overhead). This
makes Brgz hit a lower bound for some optimal value of D:
Bma2/0D =0 = Doy = sqrt(XP/(P+1)).

The last two rows of Table 3 show results for tolerating two
failures (P=2) when D is set optimally for each value of X.
Thus, Bmgz cannot be reduced below the values shown here.
E.g., to protect 256 B objects with 16 B keys (X=16) against
two failures, Bngz cannot be reduced below 2.8.

Note that byte amplification from stripe metadata results
in higher space usage as well as write amplification. There
are other contributors to write amplification within the server,
such as re-encoding a stripe when an object is deleted or
updated, which we do not analyze in this paper.

4 StripeFinder: Optimizing Uni-Packing

This section presents StripeFinder, which adds optimizations
to uni-packing to reduce byte and object amplification.

4.1 Reducing byte amplification

In KVMD, each stripe object contains all D+P keys in the
stripe, and this information is repeated in multiple versions
of the stripe object. StripeFinder replaces each stripe object
with a finder object, which contains a single key such that the

finder objects for a stripe form a ring. Thus, given any data
key, the server can recover all other data keys in the stripe.

Specifically, suppose the data objects in a stripe have keys
ki, ko, ..., and kp. A finder object associated with data key
kg (whose key is an extension of kg, such as k;:1) contains
the single key k44 (if d<D) or k; (if d=D). A flag is set in
the finder object associated with & to identify the start of the
sequence, because parity computation is order sensitive.

Like stripe objects, each finder object is cloned P+1 times
to tolerate P failures. For data key ky, these clones are as-
signed the keys kg4:1, k42, ..., kg:(P-+1) and stored on dis-
tinct devices using the home map, as described in Section 2.3.

The server generates the keys for parity objects using a
strong hash of the sequence of data keys. Given this strong
hash value, ¢, the P parity objects are assigned the keys c:1,
G:2,...,0:P. Thus, given any data key, the server can recover
all other data keys (through finder objects), and subsequently
recover all parity keys (by computing the strong hash over
the data keys). This mechanism is sufficient in a server that
accesses parity objects only to recover data objects.

A server that might access parity objects independently
of data objects, such as when scrubbing the devices, needs
an additional mechanism to repair a corrupted parity object.
Namely, affix the key of the first data object, k1, to each parity
object. This enables the server to find all data and parity
objects in the stripe and repair corrupted parity objects. It
assumes, however, that at least one copy of the affixed data
key (in the P parity objects) has survived corruption.

The server also needs to be able to recover the identities
of the devices holding the parity objects. If there are only
D+P devices in the system, the server can infer these devices
by excluding the devices holding the data objects (which,
in turn, are determined from the home map). If the system
includes more devices (N > D+P), information identifying
these devices can be embedded in the finder objects associated
with the first data object in the sequence.

We name this optimized version "unipack-sf." For each
stripe, it stores D data, P parity, and D(P+1) finder objects.
The size of each finder object is K+ K. In addition, unipack-sf
affixes a data key to each parity object to enable scrubbing-
based repair. Thus, the byte amplification of unipack-sf is

(D+P)W +D(P+1)(K+K) + PK

Bsf - DW
= (1+P/D) +2(P+1)/X + P/(DX) 2)

Note that Bs does not suffer the anomaly of Ppg» because it
decreases monotonically with D to an asymptotic value. (In
practice, however, D cannot be increased arbitrarily, because
that increases the risk of more than P failures in a stripe, and
also because uni-packing requires the server to accumulate D
objects of similar sizes before they can be encoded.)

Table 4 shows that unipack-sf reduces byte amplification
relative to unipack-md2 for a wide range of configurations:
dramatically for small objects and significantly even for 1 KB

(D, P) parity repl unipack-md2
unipack-sf
(14-P/D)+(P+1)(1+D+P)/X
(14-P/D)+2(P+1)/X+P/(DX)
X=4 X=8 X=16 X=32 X=64 X=128
“4,1) 125 20 43 28 20 16 14 13
“4,1) 125 20 23 18 15 14 13 13
4,2) 150 30 68 41 28 22 18 1.7
4,2) 150 30 31 23 19 17 16 1.6
8,2 125 30 95 54 33 23 18 15
@®,2) 125 30 28 20 16 14 13 13

1+P/D P+1

Table 4: Byte amplification for tolerating P failures. White
rows are for unipack-md2; gray rows are for unipack-sf.

objects with 16 B keys (X=64). In particular, unipack-sf pro-
vides useful savings over replication for protecting objects
as small as 128 B (X=8) against two failures. However, even
unipack-sf is not usable for tiny objects such as those studied
at Facebook, where the object-key ratio is below 6.

4.2 Reducing Object Amplification

The second optimization in StripeFinder reduces the number
of objects. The basic idea is to combine some number of finder
objects residing on a device (possibly belonging to different
stripes) into a combined finder object. The combined object
contains a sequence of finder entries. Each entry is a pair of
keys (ky,kq+1), where kg is the data key it is associated with
and k441 is the key of the next data object in the stripe.

The combined finder object must be accessible using any of
the data keys for which it holds an associated finder entry. The
server achieves this by using a hash function that partitions
the data keys into B buckets, keeping a single (combined)
finder object for each bucket on every device, and using the
bucket number as the key of the combined finder object.

The number of buckets B is configured to result in roughly
C entries in each bucket. As the total number of entries stored
on a device changes, buckets may need to be split or merged
to keep the average bucket size close to C (within a factor of
2 or so). The server achieves this by using more or fewer bits
from the hash value to assign bucket numbers.

We name this optimized version "unipack-sf2." Table 5
shows how unipack-sf2 reduces object amplification for a
range of values of C, which can be characterized as follows:

_ D+P+D(P+1)/C
o D

(ON) = 14P/D+(P+1)/C

The table shows that a relatively modest value of C such as

10 is sufficient to get useful savings over replication.
Combining multiple entries into a finder object implies

that the server must search for an entry within the object, but

this is not a concern because there are only about 10 entries.

A bigger problem is that adding or removing a finder entry

(D,P) parity repl unipack-md2 unipack-sf2

1+P/D P+1 P+2+P/D 1+P/D+(P+1)/C

C=5 C=10 C=20

4,1) 125 20 3.25 1.65 145 1.35
4,2) 150 3.0 4.50 2.10 1.80 1.65
8,2) 125 3.0 4.25 1.85 1.55 1.40

Table 5: Object amplification for tolerating P failures.

requires a read-modify-write of the combined object. Thus,
even though unipack-sf2 preserves the optimization provided
by unipack-sf in bytes stored, it increases write amplification.
This write amplification could be reduced if the key-value
device interface were to support an "append" operation.

5 Conclusion

We explored multiple design options for erasure coding of ob-
jects over emerging key-value devices such as KV SSDs [6].
Objects larger than about 16 KB can be parity encoded
by splitting and striping across multiple key-value devices.
Splitting does not require metadata or induce wastage from
padding, so it provides the optimal byte amplification of
14-P/D to tolerate P failures. The only constraint is that the
splits be large enough to avoid creating too many objects and
diminishing the aggregate read throughput from SSDs.

Parity coding of smaller objects has proven tricky. One
option is to use multi-packing, where multiple application
objects are first packed into a large object and then split. How-
ever, this requires maintaining a large map to translate keys
and causes double translation (one above and one below the
device namespace), which defeats the purpose of using key-
value devices. We conclude that multi-packing is best imple-
mented over zoned devices instead, which avoids translation
below the device namespace.

A recent design, KVMD [10], employs uni-packing, where
each application object is stored as a separate object on a
device, so application keys can be used without translation.
However, this method requires a lot of metadata. We have
shown that it creates even more backend objects than replica-
tion, which is problematic because the performance of key-
value stores is often limited by object count. Furthermore,
for small objects, it also adds a high overhead in byte count.
In fact, when the ratio of object size to key size is below 24
(e.g., for 360 B objects with 16 B keys), it fails to provide
practically useful savings (of at least 20%) over replication.

We have proposed an optimized version of uni-packing
called StripeFinder. It reduces byte count by storing stripe
information in a ring of metadata objects to avoid unnecessary
repetition. As a result, it provides useful savings over repli-
cation even when the object-key ratio is as small as 8 (e.g.,
for 128 B objects with 16 B keys). However, it too fails to
provide useful savings for tiny objects such as those studied
at Facebook, where the object-key ratio is below 6 [2].

\%/ replication
\6\60 ~128 B

rb\\e‘ ©_~ parity coding: uni-packing
N
S

~16 KB
parity coding: splitting

Figure 2: Erasure coding choices for different object sizes.

StripeFinder also reduces metadata object count by combin-
ing small pieces of metadata into larger objects. This gets the
object count close to that provided by optimal parity coding.
However, the improvement incurs write amplification from
having to read-modify-write larger metadata objects.

Figure 2 summarizes our conclusions for erasure coding
over key-value devices. Large-ish objects (>16 KB) can be
parity encoded using splitting, which provides the optimal
byte amplification of 1+P/D. Tiny objects (with object-key
ratio below 8) are best replicated, which is the simplest form
of erasure coding but incurs high amplification of 14P. Small
objects (of size between the above two ranges) can be parity
encoded using uni-packing, which is much more complex but
provides useful savings over replication.

The view shown in Figure 2 is optimistic because it is
based on a conceptual analysis and does not fully account for
the complexities and inefficiencies that might be associated
with uni-packing in practice. These inefficiencies might arise
from having to wait longer to accumulate objects that can be
uni-packed together, differences in the sizes of objects in a
stripe, handling object deletion and size-changing updates,
using elaborate metadata structures, etc.

Overall, parity coding of small objects over key-value de-
vices seems to be an uphill battle. The main challenge is not
so much the variable size of objects, but the fact that the key
space is huge and sparsely filled, making it difficult to use a
simple function or small map to determine the set of objects in
a stripe. This seems to be an intractable problem, but it would
be useful to examine it through the lens of coding theory.

On the other hand, a workable solution might be to add
extensions to the key-value device interface to help maintain
the stripe metadata efficiently. For example, small metadata

objects could be tagged as "infrequently-accessed" so the
key-value device might store them more economically.

Finally, there might not be a strong need for storage-
efficient erasure coding over key-value devices. This would
happen if the amount of data stored on key-value devices is a
small fraction of that stored on block/zoned devices, which in
turn could happen because of key-value separation within the
server or in the application. In that case, for key-value devices,
simplicity and robustness might be more important than stor-
age efficiency, and replication might be good enough for all
but large objects that can be parity encoded using splitting.

Acknowledgments

Thanks to anonymous reviewers and Tomasz Barszczak for
their comments. This research was conducted while the au-
thor was affiliated with Hewlett Packard Enterprise (HPE).
The views expressed here are those of the author and do not
necessarily reflect the official position of HPE. The author
can be contacted at umesh@alum.mit.edu.

References

[1] Matias Bjgrling. From Open-Channel SSDs to Zoned
Namespaces. In Linux Storage and Filesystems Con-
ference (Vault 19). USENIX Association, Boston, MA,
2019.

[2] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, Modeling, and Benchmarking
RocksDB Key-Value Workloads at Facebook. In /8th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 209-223, 2020.

[3] Kristina Chodorow. MongoDB: The Definitive Guide:
Powerful and Scalable Data Storage. O’Reilly Media,
Inc., 2013.

[4] Mark Holland and Garth A Gibson. Parity Declustering
for Continuous Operation in Redundant Disk Arrays.
ACM SIGPLAN Notices, 27(9):23-35, 1992.

[5] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey
Yekhanin. Erasure Coding in Windows Azure Storage.
In Presented as part of the 2012 USENIX Annual Techni-
cal Conference (USENIX ATC 12), pages 15-26, 2012.

[6] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,
Yang-suk Kee, Francisco Londono, Sangyoon Oh,
Jongyeol Lee, and Daniel DG Lee. Towards Building a
High-Performance, Scale-In Key-Value Storage System.
In Proceedings of the 12th ACM International Confer-
ence on Systems and Storage, pages 144-154, 2019.

[7] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. WiscKey: Separating Keys
from Values in SSD-Conscious Storage. ACM Transac-
tions on Storage (TOS), 13(1):1-28, 2017.

[8] Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, Raju Rangaswami, Sushma Devendrappa,
Bharath Ramsundar, and Sriram Ganesan. NVMKYV: A
Scalable and Lightweight Flash Aware Key-Value Store.
In 6th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 14), 2014.

[9] Yoshinori Matsunobu. InnoDB to MyRocks Migration
in Main MySQL Database at Facebook. In SREconi7
Asia/Australia. USENIX Association, 2017.

[10] Rekha Pitchumani and Yang-suk Kee. Hybrid Data Re-
liability for Emerging Key-Value Storage Devices. In
18th USENIX Conference on File and Storage Technolo-
gies (FAST 20), pages 309-322, 2020.

[11] Irving S Reed and Gustave Solomon. Polynomial Codes
over Certain Finite Fields. Journal of the society for in-
dustrial and applied mathematics, 8(2):300-304, 1960.

[12] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An Efficient
Design and Implementation of LSM-Tree Based Key-
Value Store on Open-Channel SSD. In Proceedings of
the Ninth European Conference on Computer Systems,
pages 1-14, 2014.

[13] Mingyuan Xia, Mohit Saxena, Mario Blaum, and
David A Pease. A Tale of Two Erasure Codes in HDFS.
In 13th USENIX Conference on File and Storage Tech-
nologies (FAST 15), pages 213-226, 2015.

[14] Matt MT Yiu, Helen HW Chan, and Patrick PC Lee.
Erasure Coding for Small Objects in In-Memory KV
Storage. In Proceedings of the 10th ACM International
Systems and Storage Conference, pages 1-12, 2017.

	Introduction
	The Problem with Block Namespace Type
	Emerging Namespace Types
	Outline

	Parity Coding of Key-Value Objects
	Parity Coding over Block/Zoned Devices
	Parity Coding over Key-Value Devices
	Splitting Large Objects
	Packing Small Objects
	Multi-Packing
	Uni-Packing

	Metadata Overhead in KVMD
	StripeFinder: Optimizing Uni-Packing
	Reducing byte amplification
	Reducing Object Amplification

	Conclusion

