
StripeFinder: Erasure Coding of Small Objects over Key-Value Storage Devices
(An Uphill Battle)

Umesh Maheshwari
Chiku Research

Abstract

Emerging key-value storage devices are promising because
they rid the storage stack of the intervening block namespace
and reduce IO amplification. However, pushing the key-value
interface down to the device level creates a challenge: erasure
coding must be performed over key-value namespaces.

We expose a fundamental problem in employing parity-
based erasure coding over key-value namespaces. Namely,
the system must store a lot of per-stripe metadata that includes
the keys of all objects in the stripe. Furthermore, this metadata
must be find-able using the key of each object in the stripe.

A state-of-the-art design, KVMD, does not quantify this
metadata overhead [10]. We clarify that, when storing D data
and P parity objects, KVMD stores D×P metadata objects,
each of which stores D+P object keys. This nullifies the
benefit of parity coding over replication in object count. For
small objects, it might also nullify the benefit in byte count;
e.g., to protect 256 byte objects with 16 byte keys against
two failures (P=2), KVMD would cause byte amplification
of 2.8x (D=4) and 3.3x (D=8) vs. 3x with plain replication.

We present an optimized version, StripeFinder, that reduces
the metadata byte count by a factor of D and the metadata
object count by a configurable factor; e.g., to protect 256 byte
objects against two failures (P=2), StripeFinder reduces byte
amplification to 2.2x (D=4) and 1.9x (D=8). However, even
StripeFinder does not provide enough savings for 128 byte
objects to justify its complexity over replication. Overall,
parity coding of small objects over key-value devices seems
to be an uphill battle, and tiny objects are best replicated.

1 Motivation

A key-value store maps application-selected keys to variable-
size values. The storage engine of many database systems,
including MongoDB [3] and MySQL/MyRocks [9], can be
viewed as employing key-value storage. Most database sys-
tems today use their own custom key-value stores, but it is
desirable to standardize interfaces and create shareable imple-
mentations on which optimization efforts can be focused.

A distinctive feature of key-value storage is that the key
space is huge and sparsely filled. Most key-value stores sup-
port a maximum key size of 16 B to multiple KBs. This huge
space enables applications to select meaningful names as keys
instead of using storage addresses that happen to be available.

A key-value store translates from the key namespace to
the underlying storage namespace. This translation amplifies
reads and writes to underlying storage, such as when merging
sorted runs, reading over multiple runs, and garbage collecting
obsolete versions. This IO amplification is often 5–50x [8].

Most storage devices today present a block namespace.
Below we recap how a key-value store layered over a block
namespace compounds IO amplification and motivate the
emergence of two new types of storage namespaces. We con-
trast the fundamental characteristics of the three namespace
types, as this is deeply relevant to the discussion in this paper.

1.1 The Problem with Block Namespace Type
A block namespace is a sequence of fixed-size blocks (typi-
cally 0.5 or 4 KB) also known as "logical" blocks.

This simple namespace type has been a good choice for
hard disk drives (HDDs). Block addresses can be mapped to
disk locations systematically, and blocks can be updated in
place, so this mapping is mostly static and requires very little
memory. We refer to translations that need only a small map
and cause little IO amplification as being lightweight.

This paper is focused on flash-based solid-state drives
(SSDs). Internally, flash comprises large blocks (multiple
MBs) that must be filled sequentially and erased fully. To
avoid confusion with logical blocks, we refer to flash blocks
as segments—as in LFS [12]. A logical block cannot be up-
dated in place within a segment and must be relocated, so
SSDs need a large map to track the location of each block.

Thus, a key-value store built over block SSDs incurs two
heavyweight translations: (1) from key namespace to block
namespace, and (2) from block namespace to flash segment
namespace. Each heavyweight translation consumes memory
and compute and imposes IO amplification.

1.2 Emerging Namespace Types
The SSD industry is working on standardizing two new types
of storage namespaces to remove double translation.

Zoned Namespace: This namespace is a sequence of large
fixed-size zones (typically ≥ 10 MB), each of which must be
filled sequentially and erased fully. (The actual spec is more
nuanced [1].) An SSD might map a zone to one or more flash
segments, which is a lightweight translation. Heavyweight
translation is left to the key-value store on the host [13].

Key-Value Namespace: Here, the SSD presents a key-
value namespace and does the heavyweight translation from



Host

KV
⇓

block

app

Block Device

block
⇓

segment

flash

Host

KV
⇓

zoned

app

Zoned Device

zoned
⇓

segment

flash

Host

app

KV Device

KV
⇓

segment

flash

Figure 1: Translation and IO amplification with different de-
vice types. Trapezoids represent translations. Vertical lines
represent IO. Heavier lines represent heavier IO/translation.

that namespace directly to flash segment namespace [6]. The
host OS and applications do not need to perform translation.

The intent is that a future SSD might serve multiple names-
paces, each configurable to a supported namespace type:
block, zoned, or key-value. However, for simplicity, we equate
namespace types and device types and refer to them inter-
changeably, as if a device serves a single namespace.

Both zoned and key-value device types rid the storage stack
of the intervening block namespace, enable a stack with only
one heavyweight translation, and reduce IO amplification on
flash (each to about the same level). An advantage of key-
value device type is that it keeps the residual IO amplification
close to flash media, where bandwidth is most plentiful, and
frees up bandwidth on higher-level resources such as PCIe
and main memory. This is shown in Figure 1.

However, there is an understated challenge with using key-
value devices. Pushing the key-value namespace down to the
device level creates need for erasure coding over key-value
namespaces—without visibility into the data layout within
each device. This paper shows that layering parity-based era-
sure coding over key-value namespaces adds complexity and
high overhead in the number of objects and bytes stored.

1.3 Outline

Section 2 exposes the challenge of parity coding over key-
value devices. Section 3 analyzes the overhead in a state-of-
the-art design, KVMD [10]. Section 4 presents an optimized
version, StripeFinder. Section 5 states the conclusions and
suggests some directions for future work.

This paper presents a conceptual analysis of design alter-
natives. It does not cover many details needed to build a real
system, e.g., buffering objects before parity coding, atomic
update of data and parity, detailed layouts, rebalancing when

scaling the number of devices, and performance analysis.
The paper is written in the context of a host with direct-

attached devices, but most of the arguments are applicable to
a disaggregated system with network-attached devices.

2 Parity Coding of Key-Value Objects

Systems with multiple storage devices employ erasure cod-
ing because a device might fail, become inaccessible, or lose
some data due to bit errors. We use the term "erasure coding"
regardless of whether a device is a drive within a host or a
node within a distributed system. Also, note that erasure codes
include simple but storage-inefficient codes such as replica-
tion as well as optimal/MDS codes such as Reed-Solomon
codes [11]; we refer to the latter loosely as parity codes.

When parity coding, data is encoded into stripes, each a
sequence of D pieces of original data and P pieces of parity.
We refer to each piece of data or parity as a stripe unit. Any
D units in a stripe are sufficient to reconstruct the remaining
units. Reconstruction requires that, given the identity of one
stripe unit, the system be able to identify the other units in the
same stripe. We refer to this information as stripe metadata.

2.1 Parity Coding over Block/Zoned Devices
When a key-value store is built over block/zoned devices,
objects are packed into blocks/zones, which can be parity
encoded without much difficulty. In-memory key-value stores
that pack objects into fixed-size pages are similar [15].

In this case, parity coding is simple because identifying the
blocks/zones within a stripe requires little metadata. A zone
is a large enough stripe unit to keep a small map. A logical
block is not so large, but the system can collocate successive
stripes to effectively form large stripe units [4].

Parity coding can be implemented as the bottom layer of a
key-value store, or it can be encapsulated within a filesystem
below the key-value store and above the block/zoned devices.
In fact, hyperscale filesystems with multi-MB blocks/extents,
such as HDFS and Windows Azure Storage, can be seen as
providing zoned-like namespaces and have been extended to
support parity coding [5, 14].

2.2 Parity Coding over Key-Value Devices
First, consider a system with multiple key-value devices in the
absence of any redundancy. A set of objects can be partitioned
across the devices based on partitioning the key range or
hashing the key. Given a key k, the system can use a function
or a small map H to identify the home device H(k) that might
hold the object. Even though H maps all possible keys, its
memory footprint is small.

We refer to the overarching system that interfaces with
applications as the external key-value store and the objects it
receives from applications as external objects. The external



store might transform external objects (e.g., through splitting
or packing) and generate additional objects (e.g., for parity
and metadata) and store the resultant objects, which we refer
to as internal objects, on the underlying key-value devices.
The external store can access the underlying devices only
through their key-value namespaces.

The next two sections describe how large and small objects
might be parity encoded in such a system.

2.3 Splitting Large Objects
Parity coding a large-ish object (say, ≥ 16 KB) is relatively
simple. The external store splits the object into D data units
of (almost) equal size, computes P parity units, and stores the
D+P units as internal objects on distinct devices.

The size of a unit need not be a multiple of some sector size,
because key-value devices support variable-size objects. The
only desirable constraint is that the unit size be larger than
a couple of KBs so that the aggregate read throughput from
flash-based SSDs is not greatly reduced. This constraint also
limits the number of internal objects per GB of SSD capacity.

There are several options to map an external key to the
corresponding internal keys efficiently—without storing a
large map. Here we describe a generalization of the method
employed in KVMD [10]. For each unit, the external store
appends the unit number i to the external key k to generate an
internal key k:i. It stores this unit on device Hs(k, i), where Hs
is a home-sequence function, e.g., Hs(k, i) = (H(k)+i)mod N,
where N is the number of devices. This preserves the local-
ity and load-balancing provided by the home map H while
ensuring that the units are placed on distinct devices.

This paper is focused on small objects, so we do not discuss
splitting much further in this paper.

2.4 Packing Small Objects
Splitting small objects is undesirable because it would dimin-
ish read throughput and also create a large number of internal
objects. Below we describe two options for encoding small
objects that we refer to as multi-packing and uni-packing.

2.4.1 Multi-Packing

Here, the external store packs multiple small objects into a
large intermediate object, and stores this large object using
splitting as described in Section 2.3. (An advantage of multi-
packing is that it can pack objects of widely different sizes
into a stripe.) The external store assigns a key km for the
intermediate object, which is then extended during splitting
with unit numbers to generate internal keys of form km:i.

This method is simple and perhaps the most intuitive option,
but it belies a massive inefficiency: the external store must
keep a large map to translate an external key k to the internal
key km:i. This would re-introduce double translation (one in

the external store and one within the key-value devices) and
thereby negate the benefit of using key-value devices.

One solution is to create such large stripe units that the
key-value devices do not need a heavyweight translation, but
this same result is better achieved using zoned devices instead.
Therefore, we do not discuss multi-packing further.

2.4.2 Uni-Packing

Here we generalize the method employed in KVMD [10],
where it is called "packing." The external store composes a
stripe where each data unit is a single external object. To that
end, it buffers recently-written objects. When it has accumu-
lated D external objects of similar sizes that are destined to D
distinct devices based on the home map H, it packs them into
a stripe. To generate P parity objects, it temporarily pads all
data objects to the size of the largest such object.

The external store places the D data objects on their home
devices (which are distinct by construction) using their exter-
nal keys as internal keys. It can place the P parity objects on
any P of the remaining N−D devices. For each parity object,
it assigns a fresh internal key kp such that H(kp) matches the
chosen home device.

A big advantage of uni-packing over multi-packing is that
an external object can be read from an underlying device
using only its external key, without needing a large map.

However, uni-packing creates its own problems. First, the
external store might need to buffer recently-written objects
longer than usual, as it encodes only objects of similar sizes
that are destined to distinct devices. It can push out a shorter
stripe after a wait threshold, but that increases the parity over-
head. Similarly, when an external object is deleted, the exter-
nal store must re-encode the other objects in the stripe before
deleting the object on the underlying device.

Second, more importantly, the external store needs to keep
a lot of metadata to enable reconstruction. To reconstruct a
lost object, the external store needs to fetch the other data and
parity objects in the same stripe. Because it cannot intuit the
keys of these objects, it must store per-stripe metadata that
includes the key of every object in the stripe. Furthermore,
this stripe metadata must be find-able using the key of any of
the external objects in the stripe. Finally, the metadata itself
must be stored redundantly to tolerate failures.

In the next section, we analyze the metadata overhead of
the representation employed in KVMD.

3 Metadata Overhead in KVMD

The KVMD paper [10] does not quantify the metadata over-
head, perhaps because it is focused on objects that are 1 KB
or larger and the overhead is assumed to be small. Here we
quantify and analyze the metadata overhead formally.

In KVMD, stripe metadata is stored as an object, which
we refer to as a stripe object. Thus, each stripe includes three



(D, P) parity repl unipack-md unipack-md2
D+P

D
D(P+1)

D
D+P+DP

D
D+P+D(P+1)

D
1+P/D P+1 P+1+P/D P+2+P/D

(4, 1) 1.25 2.0 2.25 3.25
(4, 2) 1.50 3.0 3.50 4.50
(8, 2) 1.25 3.0 3.25 4.25

Table 1: Object amplification for tolerating P failures.

types of objects: D external data objects, P parity objects, and
multiple instances of the stripe object driven by two factors:
• For each external key k in the stripe, KVMD stores a sep-

arate instance of the stripe object with internal key kα (k
extended with constant α to mark this as a metadata object).

• Each of the above instances must survive P failures, so
KVMD stores P clones of each. The ith clone is assigned
the internal key kα:i and stored on a distinct device using
the home-sequence function, Hs.

Thus, KVMD keeps D×P instances of the stripe object. We
name this version of uni-packing "unipack-md." We believe a
more robust version would need P+1 clones for each external
key. (With only P clones, P failures can wipe out all clones
find-able using an external key k. Now, if object k is deleted,
the external store will not be able to find its stripe metadata,
which it needs to re-encode other objects before it can delete k
on the underlying device.) This robust version keeps D(P+1)
instances of the stripe object, and we name it "unipack-md2."
In the rest of this paper, we focus on the robust version.

We define object amplification of a code as the ratio of the
number of objects stored internally (including data, parity,
and metadata) to the number of external data objects. Ta-
ble 1 shows object amplification for protecting D data objects
against P failures. Here, "parity" refers to a hypothetical and
optimal code that does not require stripe metadata, and "repl"
refers to replication, which never requires stripe metadata.

The object amplification of unipack-md and unipack-md2
is even higher than that of replication, which is high to be-
gin with. This is problematic because the performance of
key-value stores is often limited by the number of objects
stored rather than the number of bytes stored, especially after
optimizations such as key-value separation [7].

Now we analyze the number of bytes stored. Suppose the
average key size is K and the average value size is V . We
calculate the average object size, W=K+V , and the object-
key ratio, X=W/K. The object-key ratio is relevant because
we show later that the metadata overhead of uni-packing is

AVG-K SD-K AVG-V SD-V AVG-W X=W
K

UDB 27.1 B 2.6 B 126.7 B 22.1 B 153.8 B 5.7
ZippyDB 47.9 B 3.7 B 42.9 B 26.1 B 90.8 B 1.9
UP2X 10.5 B 1.4 B 46.8 B 11.6 B 57.3 B 5.5

Table 2: Stats from key-value data at Facebook [2].

(D, P) parity repl unipack-md2
1+P/D P+1 (1+P/D)+(P+1)(1+D+P)/X

X=4 X=8 X=16 X=32 X=64 X=128

(4, 1) 1.25 2.0 4.3 2.8 2.0 1.6 1.4 1.3
(4, 2) 1.50 3.0 6.8 4.1 2.8 2.2 1.8 1.7
(8, 2) 1.25 3.0 9.5 5.4 3.3 2.3 1.8 1.5

(Dopt, 2) 1.00 3.0 5.8 3.9 2.8 2.2 1.8 1.5
D=∞ D=1 D=2 D=2 D=3 D=5 D=7 D=9

Table 3: Byte amplification (β) for tolerating P failures.

inversely proportional to this ratio. Table 2 is copied from
a recent study of key-value data at Facebook [2]; we added
two columns to the right for W and X . The table shows that
object-key ratios for these data sets are small—less than 6.

We define byte amplification (β) as the ratio of total bytes
stored internally to the size of external data. An internal data
or parity object is the same size as an external object, W . Each
stripe object stores D+P keys and is of size K+(D+P)K.
(Keys for parity objects are assigned internally and might be
more compact than external keys, but we ignore that nuance.)

βmd2 =
(D+P)W+D(P+1)(K +(D+P)K)

DW
= (1+P/D)+(P+1)(1+D+P)/X (1)

Table 3 shows byte amplification from encoding D objects
to tolerate P failures. For unipack-md2, it shows results for a
range of object-key ratios (X) from 4 to 128. If object keys
are 16 B, this range translates to objects of 64 B to 2 KB.
The table manifests two surprises. First, for small object sizes,
βmd2 is higher than βrepl. We consider a parity code that does
not provide at least, say, 20% savings over replication as not
worth its complexity and therefore impractical. The table
shows impractical combinations in red.

The second surprise is that βmd2 for (D=8,P=2) is higher
than that for (D=4,P=2), even though increasing D is supposed
to lower amplification. The anomaly is explained by Eq 1: one
term in βmd2 is inversely proportional to D (parity overhead)
and another is proportional to D (metadata overhead). This
makes βmd2 hit a lower bound for some optimal value of D.

∂βmd2

∂D
= 0 =⇒ Dopt =

√
XP/(P+1) (2)

The last two rows of Table 3 show results for tolerating two
failures (P=2) when D is set optimally for each value of X .
Thus, βmd2 cannot be reduced below the values shown here.
E.g., to protect 256 B objects with 16 B keys (X=16) against
two failures, βmd2 cannot be reduced below 2.8.

Note that byte amplification from stripe metadata results in
higher space usage as well as write amplification. There are
other contributors to write amplification within the external
store, such as re-encoding a stripe when an object is deleted
or updated, which we do not analyze in this paper.



4 StripeFinder: Optimizing Uni-Packing

This section presents StripeFinder, an optimized version of
uni-packing to reduce byte and object amplification.

4.1 Reducing byte amplification

The basic idea is to share stripe metadata as much as possible.
Specifically, StripeFinder keeps two kinds of metadata:
• Stripe record, which contains D+P keys and is cloned P+1

times. P of these clones are affixed to the P parity objects,
and one is stored by itself in a stripe object. There is synergy
in storing stripe records within parity objects because both
need to be updated when the stripe composition changes.

• Finder object, which maps a single external key k to a single
internal key kp of one of the parity/stripe objects (which, in
turn, contain a stripe record). The finder object is assigned
an internal key kα and holds the key kp as value. It is cloned
P+1 times, each clone (kα:i) holding the key of a different
parity/stripe object (kp).

We name this version "unipack-sf." For each stripe, it stores
D data objects, P parity objects, 1 stripe object, and D(P+1)
finder objects. The total number of objects per stripe is one
more than that in unipack-md2. But unipack-sf stores fewer
bytes because finder objects for different external keys within
a stripe share the same set of stripe records, so it stores P+1
instances of the stripe record instead of D(P+1) in unipack-
md2. It does store D(P+1) finder objects, but a finder object
contains only one key, so the object size is only K+K.

To tolerate P failures, the stripe object is placed on a device
different from where the P parity objects are placed. The P+1
clones of a finder object kα are stored on P+1 distinct devices
using the home-sequence function with keys of form kα:i.

To look up the stripe record using an external key k, the
external store iterates over the finder object clones (kα:i) until
it finds one that is not lost to failure and that points to a parity
object that is also not lost. This adds a non-obvious constraint:
If a device holds a finder object kα:i as well as a parity/stripe
object kp for the same stripe, that finder object must point to
kp. Otherwise, a failure of this device will cause two finder
object clones for the same external key to become ineffective:
(1) kα:i and (2) some other kα: j that points to kp.

Now we analyze the byte amplification of unipack-sf.

βsf =
(D+P)W+(P+1)(D+P)K+K+D(P+1)2K

DW
= (1+P/D)+(P+1)(1+P/D)/X+1/(DX)+2(P+1)/X

= (1+P/D)+(P+1)(3+P/D)/X+1/(DX) (3)

Note that βsf does not suffer the anomaly of βmd2, because it
decreases monotonically with D to an asymptotic value. (In
practice, D cannot be increased arbitrarily for a fixed value of
P, because that increases the risk of more than P failures, and

(D, P) parity repl unipack-md2
unipack-sf

1+P/D P+1 (1+P/D)+(P+1)(1+D+P)/X

(1+P/D)+(P+1)(3+P/D)/X+1/(DX)

X=4 X=8 X=16 X=32 X=64 X=128

(4, 1) 1.25 2.0 4.3 2.8 2.0 1.6 1.4 1.3
(4, 1) 1.25 2.0 2.9 2.1 1.7 1.5 1.4 1.3
(4, 2) 1.50 3.0 6.8 4.1 2.8 2.2 1.8 1.7
(4, 2) 1.50 3.0 4.2 2.8 2.2 1.8 1.7 1.6
(8, 2) 1.25 3.0 9.5 5.4 3.3 2.3 1.8 1.5
(8, 2) 1.25 3.0 3.7 2.5 1.9 1.6 1.4 1.3

(Dopt, 2) 1.00 3.0 5.8 3.9 2.8 2.2 1.8 1.5
(∞, 2) 1.00 3.0 3.3 2.1 1.6 1.3 1.1 1.1

Table 4: Byte amplification for tolerating P failures. White
rows are for unipack-md2; gray rows are for unipack-sf.

also because uni-packing requires the system to accumulate
D objects of similar sizes before they can be encoded.)

Table 4 shows that unipack-sf provides significant reduc-
tion in byte amplification for a broad range of configurations.
(Lower byte amplification also reduces write amplification.)
In particular, when protecting 256 B objects with 16 B keys
(X=16) against two failures, unipack-sf provides practically
useful savings over replication. However, it too struggles with
encoding 128 B objects (X=8), in which case D must be in-
creased to 12 to eke out 20% savings over replication. Thus,
even unipack-sf is not practical for tiny objects such as those
studied at Facebook, where the object-key ratio is below 6.

4.2 Reducing Object Amplification

Unipack-sf employs one more object per stripe than unipack-
md2, which is high to begin with; see Table 1. This is because
unipack-sf keeps a large number of small finder objects. Now
we add an optimization to reduce the number of finder objects.

The basic idea is to group a configurable number (C) of
finder entries placed on a device into a grouped finder object.
A finder entry maps a single external key k to the key of
a parity/stripe object kp. A grouped finder object contains
roughly C finder entries as an array of pairs (k,kp).

The finder object must be accessible using any of the ex-
ternal keys that it holds. This is achieved by hashing external
keys into B buckets, keeping a single finder object for each
bucket on every device, and using the bucket number as the
internal key of that finder object. The number of buckets B
is configured to result in roughly C entries in each bucket.
(As the total number of entries stored on a device changes,
buckets can be split or merged to keep the bucket size close
to C. This can be achieved by using more or fewer bits from
the hash value to assign bucket numbers.)

We name this optimized version "unipack-sf2." Table 5
shows how unipack-sf2 reduces object amplification for a



(D, P) parity repl unipack-md2 unipack-sf2
1+P/D P+1 P+2+P/D 1+(P+1)/D+(P+1)/C

C=8 C=16 C=32
(4, 1) 1.25 2.0 3.25 1.8 1.6 1.6
(4, 2) 1.50 3.0 4.50 2.1 1.9 1.8
(8, 2) 1.25 3.0 4.25 1.8 1.6 1.5

Table 5: Object amplification for tolerating P failures.

range of values of C, which can be characterized as follows:

ωsf2 =
D+P+1+D(P+1)/C

D
= 1+(P+1)/D+(P+1)/C

The table shows that a relatively modest value of C such as
16 is sufficient to get useful savings over replication.

Grouping multiple entries into a finder object implies that
the external store must search for an entry within the object,
but this is not a concern because there are only about 16
entries. A bigger problem is that adding or removing an entry
requires a read-modify-write of the finder object. Thus, even
though unipack-sf2 preserves the optimization provided by
unipack-sf in bytes stored, it does increase write amplification.
This write amplification could be reduced if the key-value
device interface were to support an "append" operation.

5 Conclusion

We explored multiple design options for erasure coding of ob-
jects over emerging key-value devices such as KV SSDs [6].

Objects larger than, say, 16 KB can be parity encoded by
splitting and striping across multiple key-value devices. Split-
ting does not require much metadata, so it preserves the low
byte amplification of parity coding: 1+P/D to tolerate P
failures. The only constraint is that the splits must be large
enough to avoid creating too many internal objects and dimin-
ishing the aggregate read bandwidth from SSDs.

Parity coding of smaller objects has proven tricky. One
option is to encode small objects using multi-packing, where
multiple external objects are first packed into a large object
and then split. However, this requires maintaining a large map
to translate keys and causes double translation (one above
and one below the device namespace), defeating the benefit
of using key-value devices. We conclude that multi-packing
is best implemented over zoned devices instead, which avoids
translation below the device namespace.

A recent design, KVMD [10], employs uni-packing, where
each external object is stored as a separate stripe unit, so exter-
nal keys can be used internally without translation. However,
this method requires a lot of metadata. We showed that it
creates even more internal objects than replication, which is
problematic because the performance of key-value stores is
often limited by object count. Furthermore, for small objects,
it also adds a high overhead in byte count. In fact, when the

replication

parity coding: uni-packing

parity coding: splittingsm
aller objects

 →
 

~16 KB

~200 B

Figure 2: Erasure coding choices for different object sizes.

ratio of object size to key size is below 24, it fails to provide
practically useful savings (of at least 20%) over replication.

We proposed an optimized version of uni-packing called
StripeFinder. It reduces byte count by sharing metadata, thus
providing useful savings over replication even when the
object-key ratio is as small as 12 (e.g., for 192 B objects with
16 B keys). However, it too fails to provide practically useful
savings for tiny objects such as those studied at Facebook,
where the object-key ratio is below 6 [2].

StripeFinder also reduces metadata object count by group-
ing small pieces of metadata into large objects. This gets the
object count close to that provided by optimal parity coding.
However, the improvement incurs write amplification from
having to read-modify-write larger metadata objects.

Figure 2 summarizes the conclusions for erasure coding
over flash-based key-value devices. Large-ish objects (≥16
KB) can be parity encoded using splitting, which provides
the optimal storage efficiency of 1+P/D. Tiny objects (with
object-key ratio below 12) are best replicated, which is the
simplest erasure code but has the worst storage efficiency of
1+P. Small objects (of size between the above two ranges)
can be parity encoded using uni-packing, which is relatively
complex but provides useful savings over replication.

The view shown in Figure 2 is optimistic because it is based
on a conceptual analysis and does not fully account for the
complexities and inefficiencies that might be associated with
uni-packing in practice. These inefficiencies might arise from
having to wait longer to accumulate objects that can be uni-
packed together, handling object deletion and size-changing
updates, using elaborate metadata structures, etc.

Overall, parity coding of small objects over key-value de-
vices seems to be an uphill battle. The main challenge is not
so much the variable size of objects, but the fact that the key
space is huge and sparsely filled, making it difficult to use a
simple function or small map to determine the set of objects in
a stripe. This seems to be an intractable problem, but it would
be useful to examine it through the lens of coding theory.

On the other hand, a practical solution might be to add
extensions to the key-value device interface to help maintain
the stripe metadata efficiently. For instance, small metadata
objects could be tagged as "infrequently-accessed" so the
key-value device might store them more economically.

Without a robust solution, erasure coding of small objects
might become the Achilles’ heel of key-value storage devices.



Acknowledgments

Thanks to anonymous reviewers for their comments. This re-
search was conducted while the author was affiliated with
Hewlett Packard Enterprise (HPE). The views expressed
here are those of the author and do not necessarily reflect
the official position of HPE. The author can be contacted at
umesh@alum.mit.edu.

References

[1] Matias Bjørling. From Open-Channel SSDs to Zoned
Namespaces. In Linux Storage and Filesystems Con-
ference (Vault 19). USENIX Association, Boston, MA,
2019.

[2] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, Modeling, and Benchmarking
RocksDB Key-Value Workloads at Facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 209–223, 2020.

[3] Kristina Chodorow. MongoDB: The Definitive Guide:
Powerful and Scalable Data Storage. O’Reilly Media,
Inc., 2013.

[4] Mark Holland and Garth A Gibson. Parity Declustering
for Continuous Operation in Redundant Disk Arrays.
ACM SIGPLAN Notices, 27(9):23–35, 1992.

[5] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and Sergey
Yekhanin. Erasure Coding in Windows Azure Storage.
In Presented as part of the 2012 USENIX Annual Techni-
cal Conference (USENIX ATC 12), pages 15–26, 2012.

[6] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,
Yang-suk Kee, Francisco Londono, Sangyoon Oh,
Jongyeol Lee, and Daniel DG Lee. Towards Building a
High-Performance, Scale-In Key-Value Storage System.
In Proceedings of the 12th ACM International Confer-
ence on Systems and Storage, pages 144–154, 2019.

[7] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and

Remzi H Arpaci-Dusseau. WiscKey: Separating Keys
from Values in SSD-Conscious Storage. ACM Transac-
tions on Storage (TOS), 13(1):1–28, 2017.

[8] Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, Raju Rangaswami, Sushma Devendrappa,
Bharath Ramsundar, and Sriram Ganesan. NVMKV: A
Scalable and Lightweight Flash Aware Key-Value Store.
In 6th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 14), 2014.

[9] Yoshinori Matsunobu. InnoDB to MyRocks Migration
in Main MySQL Database at Facebook. In SREcon17
Asia/Australia. USENIX Association, 2017.

[10] Rekha Pitchumani and Yang-suk Kee. Hybrid Data Re-
liability for Emerging Key-Value Storage Devices. In
18th USENIX Conference on File and Storage Technolo-
gies (FAST 20), pages 309–322, 2020.

[11] Irving S Reed and Gustave Solomon. Polynomial Codes
over Certain Finite Fields. Journal of the society for in-
dustrial and applied mathematics, 8(2):300–304, 1960.

[12] Mendel Rosenblum and John K Ousterhout. The De-
sign and Implementation of a Log-Structured File Sys-
tem. ACM Transactions on Computer Systems (TOCS),
10(1):26–52, 1992.

[13] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An Efficient
Design and Implementation of LSM-Tree Based Key-
Value Store on Open-Channel SSD. In Proceedings of
the Ninth European Conference on Computer Systems,
pages 1–14, 2014.

[14] Mingyuan Xia, Mohit Saxena, Mario Blaum, and
David A Pease. A Tale of Two Erasure Codes in HDFS.
In 13th USENIX Conference on File and Storage Tech-
nologies (FAST 15), pages 213–226, 2015.

[15] Matt MT Yiu, Helen HW Chan, and Patrick PC Lee.
Erasure Coding for Small Objects in In-Memory KV
Storage. In Proceedings of the 10th ACM International
Systems and Storage Conference, pages 1–12, 2017.


	Motivation
	The Problem with Block Namespace Type
	Emerging Namespace Types
	Outline

	Parity Coding of Key-Value Objects
	Parity Coding over Block/Zoned Devices
	Parity Coding over Key-Value Devices
	Splitting Large Objects
	Packing Small Objects
	Multi-Packing
	Uni-Packing


	Metadata Overhead in KVMD
	StripeFinder: Optimizing Uni-Packing
	Reducing byte amplification
	Reducing Object Amplification

	Conclusion

