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Abstract

We present MicroMon, a multi-dimensional monitoring
framework for geo-distributed applications using heteroge-
neous hardware. In MicroMon, we introduce micrometrics,
which is a set of fine-grained hardware and software met-
rics required to study the combined impact of heterogeneous
resources on application performance. Besides collecting mi-
crometrics, in MicroMon, we propose anomaly reports and
concerted effort between the programmable switches and
host OSes to reduce the overhead of collecting and dissemi-
nating thousands of micrometrics in WAN. We evaluate the
MicroMon prototype on Cassandra deployed across multiple
data centers and show 10-50% throughput gains in a geo-
distributed setting with storage and network heterogeneity.

1 Introduction

Modern enterprises deploy large scale applications across
tens of geographically-distributed data centers (DCs) to over-
come the storage and wide-area network (WAN) limitations
within and across DCs. These DCs use heterogeneous storage
(e.g., SSD, NVMe, Harddisk), and WAN resources (e.g., fiber
optics, InfiniBand), among others', to avoid vendor lockout,
achieve scalability, and reduce operational and end-user costs.
Consequently, applications are beginning to reap the benefits
of heterogeneity; for example, the use of a combination of
fast-but-expensive SSDs as well as bandwidth- and latency-
constrained HDDs with large capacity [20,25].

While resource heterogeneity is beneficial, realizing those
benefits introduces several application-specific performance
(e.g., low latency, high throughput, etc.) and correctness (con-
sistency, durability, etc.) challenges. These challenges stem
from the lack of understanding of the combined impact of het-
erogeneous resources and lightweight monitoring frameworks
that can provide end-to-end monitoring of multi-dimensional
resources across DCs. In this position paper, we posit that
there is a fundamental disconnect between the requirements

I'We intend to consider compute (e.g., CPU, GPU, TPU) and memory
(e.g., DRAM and NVM) as part of future work.

of geo-distributed applications using heterogeneous resources
and today’s coarse-grained monitoring frameworks.

First, state-of-the-art monitoring frameworks are unidi-
mensional i.e., they either monitor hosts [1,21], storage de-
vices [16, 27, 28], or network [17, 29] in isolation. For ex-
ample, while the innovations in programmable switch data-
planes [7, 18] are compelling, they are siloed and do not work
holistically with the OS at end hosts. Second, current frame-
works cannot monitor large-scale applications with diverse
requirements running on heterogeneous resources. Their mon-
itoring techniques only support coarse-granular monitoring
of host and network resources [6, 11, 14, 15], or unaware of
host-level and network-level heterogeneity [3]. Take the ex-
ample of modern NoSQL database such as Cassandra [2]
that ship snitching mechanisms [6] to monitor replicas at a
coarse-grained scope, collecting information such as round-
trip times, access, and wait times, resource utilization and
re-routing requests across replicas.

To tackle these challenges, this paper presents MicroMon,
a monitoring framework that efficiently collects, disseminates,
and processes the combined impact of storage and WAN
heterogeneity—i.e., heterogeneous hardware and software
resources—for improving the performance of Cassandra.

To overcome the problem of coarse-grained monitoring
in general, MicroMon introduces micrometrics, which is a
set of fine-grained hardware and software metrics required
to study the combined impact of heterogeneous resources on
application performance. In our current prototype, MicroMon
collects several fine-grained storage and network hardware
micrometrics (e.g., storage SMART counters, network packet
drops) and software micrometrics (e.g., host-level page cache,
block and network stack’s I/O queues length) in addition
to straight forward hardware metrics (choice of disks and
network bandwidth and latency across replicas).

Next, collecting and disseminating thousands of micro-
metrics in WANSs could impact application performance. Mi-
croMon overcomes this challenge in two steps. First, Mi-
croMon introduces anomaly reports, where for all possible
host-level micrometrics, the host OS only reports anomalies.



We note that current OSes could be augmented (in addition
to what they provide) to report host-level anomalies easily. In
a similar vein, MicroMon works in concert with host OSes
and network resources (e.g., switches) and reports aggregated
events (similar to anomaly reports) by leveraging advances in
programmable switch data planes. This is a drastic shift from
network telemetry efforts whose sole focus is on network-
specific events (e.g., flooding attack-induced congestion).

As a driving use case, we study and deploy MicroMon’s
prototypic design on Cassandra for optimal replica selection.
Our preliminary evaluation of MicroMon on Cassandra for
a geo-distributed deployment” on CloudLab shows 10-40%
performance gains compared to using Cassandra’s widely-
used coarse-grained monitoring (Snitch).

2 Background

Geo-distributed applications and their diverse require-
ments. With increasing data processing, analytics, and stor-
age demands, geo-distributed applications are becoming a
lifeline of modern enterprises and content providers, span-
ning across several DCs. These applications range from
compute-intensive streaming (e.g., Apache Spark, Hadoop)
and batch processing applications to I/O-intensive data serv-
ing applications such as NoSQL Cassandra [2], Google Span-
ner [9], Amazon’s Dynamo that must support millions of
operations with microsecond-level latency. In addition, these
geo-distributed applications have varying levels of consis-
tency, availability, security, and partition tolerance require-
ments. For example, compared to streaming applications, data
serving applications such as Spanner demand higher availabil-
ity and stronger consistency; hence data placement and replica
selection becomes a key aspect of the application design.

For example, Cassandra allows the end-user request to land
on any quorum-based replica node. For data partitioning and
request routing across replicas, Cassandra (and other simi-
lar applications) use consistent hashing [10]. Each node gets
assigned to some key range and acts as a coordinator node
responsible for replication. The coordinator is responsible
for replication of data on different nodes and replicating to
other n — 1 replica nodes. For replica selection and request
routing, Cassandra uses snitch [6] in each of its nodes, which
informs about the network topology, workload, historical la-
tency conditions, and the detection of failing or slow nodes.
Snitch allows Cassandra to distribute replicas according to the
replication strategy by grouping machines into datacenters
and racks. In this work, we use Cassandra as an example ap-
plication (specifically, in our evaluations) to demonstrate that
it has diverse requirements and that it is unaware of resource
heterogeneity.

The aforementioned challenges prevail not only across geo-distributed
DCs but also within a single DC deployment of applications such as Cassan-
dra. We note that our MicroMon is applicable for such a specific case, too:
that is, instead of considering WAN micrometrics (e.g. delays between router
hops), our solution can be easily configured to consider an intra-DC network

micrometrics (e.g. delays between core switches and servers).
Programmable switches and network telemetry. Moni-

toring the state of the network—also known as network
telemetry—has been well-studied by the community for
decades. Telemetry information is collected at different granu-
larities (e.g., packets, flows, samples of flows, etc. [4,5]) by in-
stalling network taps at key locations—along with switches—
in the network. Recently, programmable switches [7] are
slowly replacing the traditional setup; this is primarily due
to their increased flexibility and functionality. The collected
telemetry is sent either out-of-band (directly) or in-band (via
dataplane packets to a “telemetry sink") to a remote inference
engine or a controller and further actions are taken [4, 17,29].
Unlike traditional network telemetry, programmable switches
enable collection and dissemination of processed telemetry
reports that are succinct (e.g., reporting heavy hitters vs. send-
ing raw packets or counters to the collector) and that captures
the state of the network effectively.

3 Motivation

Our research is motivated by the need to close the semantic
gap between (a) the growing requirements of geo-distributed
applications and the heterogeneity of the DC resources on
which they are deployed as well as (b) the paucity of monitor-
ing frameworks to capture fine-grained telemetry information
at multiple dimensions (i.e., at the heterogeneous resource
level and at the end-to-end application level).

3.1 Growing Resource Heterogeneity and Ap-
plication Requirements

While applications are scaling across DCs that are geo-
graphically distributed, the hardware resources of DC systems
are also becoming more and more heterogeneous [16,19]. For
example, take the case of storage heterogeneity: though DCs
are moving towards an era of fast SSDs and nonvolatile mem-
ory (NVMe), traditional low cost-but-slower alternatives such
as HDDs continue to be a vital part of a storage tier, thereby
increasing storage heterogeneity across datacenters [19].

In addition, the heterogeneity of resources impacts applica-
tion management, request routing, data placement, replica se-
lection, and has a direct impact on applications’ performance
and requirements. For example, Cassandra is highly network-
intensive as well as storage-intensive. Unfortunately, such an
application must quickly decide on which replica to route to
and what request to perform during data placement or fetch-
ing. Unfortunately, today’s geo-distributed applications (1)
are unaware of resource heterogeneity (e.g. storage SSD vs.
hard disk), (2) network dynamism (e.g., routing delays, link
outages, and path failures) [26], and (3) fine-grained host-level
hardware metrics (e.g., the storage hardware’s program-erase
(P/E) cycles, temperature, /O traffic), or software bottlenecks
(e.g., application page cache state, storage I/0 queue, TCP
queue occupancy, segmentation Qdisc queue). We refer to
these fine-grained metrics as micrometrics.



3.2 Lack of Multi-dimensional Monitoring

The problem is complicated further by the lack of multi-
dimensional resource monitoring frameworks. For example,
deploying Cassandra in a WAN is fraught with challenges
including WAN heterogeneity, path failures, unplanned out-
ages, and performance and topological changes. Prior efforts
attempt to address these challenges—in isolation—Dby creat-
ing topology awareness [14], latency and bandwidth aware-
ness [15], network-level multi-dimensional resource moni-
toring and aggregation [11], and snitching mechanisms [6].
While the above-mentioned efforts are as compelling as ever,
they are mostly one-dimensional. Other multi-dimensional
work such as [13] deal with CPU and bandwidth heterogene-
ity for long-running stream processing systems and is not de-
signed in the context of geo-distributed applications in general.
In addition, these approaches are an ill-fit for latency-sensitive
applications. Moreover, these approaches are mostly focused
on application-level resource adaptability and a lack of high-
resolution resource monitoring does not have a significant
impact on performance.

In the networking front, while the programmable switches
and network telemetry efforts provide the needed micromet-
rics (e.g., path that a packet takes, number of unique flows
per second, heavy hitters), they are network specific, and we
require concerted effort between the programmable switches
and host OSes.

4 Design of MicroMon

4.1 Micrometrics Selection

A key technical challenge towards the design of Mi-
croMon lies in identifying and selecting the key software-
and hardware-based micrometrics to collect from all the re-
sources (e.g., network, storage).

4.1.1 Mapping Micrometrics to Resource Sensitivity

One problem is that the choice of micrometrics could sub-
stantially vary across applications, applications perceived
performance-metrics, and DC/cloud deployments. For exam-
ple, latency sensitive microservices, and geo-distributed key-
value stores like Cassandra and memcached [24] are highly
latency sensitive and are directly dependent on I/O latency
with short request times compared to previously studied geo-
analytics such as Apache Spark that use compute-intensive
and throughput sensitive queues. We observe that one way to
scope the problem of micrometrics selection is by mapping
applications to hardware and software resource sensitivity.

4.1.2 Storage H/W and S/W Micrometrics

To scope the solution in our current design of MicroMon,
we focus on I/O-intensive Cassandra in this paper. Without
loss of generality, these metrics are applicable to several large
classes of I/O-intensive applications.

Interplay between hardware micrometrics. Most DCs
monitor and collect system (and storage) health and perfor-

mance metrics. For storage, this includes straightforward met-
rics such as latency and bandwidth as well as device-level
SMART counters such as Raw Read Error Rate (read error
rate), Program Fail Count (write error count), device block
wear, and temperature. We note that these metrics are used
by prior studies in isolation towards data placement and load
imbalance [22]. We posit the importance of considering the
interplay between such hardware micrometrics, network per-
formance, and application’s data access patterns. For example,
in NoSQL store replica selection and request routing, a node
with low network latency but high program error (PE) count
can still be used as a reliable read replica as long as read error
rates and temperature do not increase. Unfortunately, current
one-dimensional monitoring systems simply quarantine the
entire physical node with high PE, routing requests to nodes
with higher network latency [22].

Interplay between Software micrometrics. Storage soft-
ware micrometrics such as per-node page cache and out-
standing block I/O requests could play a crucial role towards
request routing and replica selection. For example, in Cas-
sandra’s LSM design, the software storage is maintained as
String Sorted Tables (SST tables) composed of several files,
with each file storing a range of key-value pairs. As we will
discuss in our evaluation, accessing data from a replica with
hard-drives but significantly large page cache state can sig-
nificantly boost throughput and lower latency compared to
accessing data from a SSD replica without pagecache. How-
ever, current monitoring and replica selection mechanisms
clearly lack such semantic awareness.

4.1.3 Network H/W and S/W Micrometrics

While several metrics are available via Simple Network
Management Protocol (SNMP) including sensor information
(e.g., temperature, fan status, etc.), collections of hardware and
software micrometrics from the network and joint decision
with micrometrics host-specific micrometrics (in § 4.1.2) are
critical to the success of our work. To this end, we identify
several network hardware-specific micrometrics including
status of relevant links (ifOperStatus in SNMP to link speed),
SFP status (if available); resource information (e.g., CPU load,
memory usage) via SNMP get, up/down status of devices/port,
queue and buffer utilization, and link-specific information
including Q-drops, SNR; among others. For example, prior
effort utilized the signal quality information (i.e., Q-drop) to
predict future outages in large optical backbones [12]. Indeed,
we propose to leverage these micrometrics and expose them
to applications.

Similar to the hardware micrometrics, recent innovations
in programmable data planes support seamless extraction of
software micrometrics from the network including port vio-
lation, QoS statistics including drops per queue, packets per
Differentiated Services Code Point (DSCP), packet errors and
discards, and aggregated network states including heavy hit-
ters, flow arrival rate, etc. to further enhance the performance
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Figure 1: High-level MicroMon Design. Figure shows the
integration of our HW and SW micro-metrics collection and
dissemination in MicroMon.

4.1.4 MicroMon Components

We develop MicroMon, a replacement of Cassandra’s
Snitch mechanism for fine-grained micrometrics collection
and multi-dimensional resource monitoring as shown in Fig-
ure |. As discussed earlier in § 2, in Cassandra, each node gets
assigned to some key range and act as a coordinator as well
as replica for other set of keys. Hence, in each node, a user-
level component—MicroMon-engine—integrated with Cas-
sandra, is responsible for collecting micrometrics from its own
node as well as replicas. In addition to the user-level compo-
nent, MicroMon also contains an OS-level driver (MicroMon-
driver) to monitor hardware micrometrics (e.g., SMART coun-
ters [23] such as high P/E warnings, NIC packet drops) and
software micrometrics (e.g., application’s page cache state,
storage and network I/O queue delays, TCP queue occupancy).
Further, our choice of extending snitch as opposed to design-
ing a new tool is mainly because of Snitch’s wide usage and
to avoid polluting replicas with new monitoring tools.

4.2 Micrometrics Collection & Dissemination

We next focus on designing techniques to reduce micromet-
rics collection and dissemination overheads, since collection
and dissemination happens at both hosts and the network.

4.2.1 Host-level collection with Anomaly Reports

One issue complicates the collection of micrometrics at
the host level. Specifically, the number of micrometrics in-
creases with the number of hardware resources and software
subsystems used by an application. For example, even a single
SSD’s SMART counters contain close to 32 counters that can
impact performance [23]. This, coupled with software micro-
metrics, could significantly impact the resolution at which
this information is collected and disseminated, micrometrics
in data plane at high resolution could impact impacting the
performance of applications. To address the issue, we propose
anomaly reports, where for all possible host-level micromet-

rics, the host OS only reports anomalies. Such reports require
no further processing at the inference and decision engine (ex-

plained below). We argue that host OSes can already identify

software and hardware anomalies, given a better holistic view
of the system. For example, monitoring anomalies such as
high page cache misses, network queue latency or high SSD
P/E count can be done at the host, only reporting anomalies
rather than processing them. Further, we propose to extend
the MicroMon-driver to report such anomalies. MicroMon-
driver periodically collects the required software and hard-
ware micrometrics and composes a monitoring packet with
anomalies.

4.2.2 Co-designing Network-level Dissemination with
Host OSes

We leverage the innovations in programmable switches
and co-design two mechanisms (with host OSes) to extend
network telemetry to support heterogeneous resource moni-
toring. Our first mechanism (a) generates monitoring packets
using MicroMon-driver with anomalies identified at hosts as
payload and (b) uses in-band network telemetry (INT), subse-
quently, to add network micrometrics (identified in § 4.1.3)
to those monitoring packets and disseminate them via sink
nodes to the decision engine. In a general INT model, data
packets contain headers which in turn contain instructions
for the traffic sources (e.g., applications, end-host networking
stacks) about what state to collect and write into the packets as
it transits the network. However, given the limitations of INT
packet metadata sizes and INT instruction fields (16-bits),
and the possibility of hundreds of micrometrics, we lever-
age anomaly reports and using techniques such as run-length
encoding and memoization for the ones collected at the net-
work. Telemetry reports can be generated at switches based
on pre-established anomalies, opening up the possibility of
reporting only aggregated network events and naturally over-
coming the micrometrics collection and dissemination. For
geo-distributed deployments as shown in Figure 1, we plan
to leverage INT over any encapsulation (e.g., over TCP/UDP,
depending on the application) to collect and disseminate mi-
crometrics.

Our second mechanism is very similar to the first one, ex-
cept the usage of INT in the dissemination step above. Specifi-
cally, programmable switches also support out-of-band report-
ing of telemetry reports directly to the decision engine. This is
to overcome the difficulties in strategic placement of INT sink
nodes in an enterprise WAN. In light of this, we support out-
of-band telemetry reports containing aggregated network and
host micrometrics to be reported directly to decision engine.

4.3 Scalable Inference Logic

Next, we discuss our preliminary scoring-based inference
in Cassandra and then discuss our ongoing work on building
a generalized inference logic.

Scoring-based Inference. The current snitching mechanism
in Cassandra uses a scoring mechanism that sorts the end-
points by their latency with an adaptive replica failure detec-



tor. The coordinator node initially sorts the replicas based
on their network proximity and then uses response latency to
update the score frequently. Instead, in MicroMon, we mod-
ify the scoring mechanism to consider different software and
hardware storage and network micro-metrics in addition to
straight forward network latency and bandwidth. Our current
prototypic scoring mechanism (as evaluated), assigns equal
weights to all software and hardware micro-metrics and higher
weights to network latency and bandwidth.

Ongoing: Generic Inference System in MicroMon. We
are currently re-designing the simple scoring-based inference
system to create a framework in a generic, data-driven, multi-
objective optimization that not only collects micro-metrics but
also to produce a ranks stable and/or performant nodes. When
the marginal utility of the micro-metrics collected is low (or
below the Pareto front of the analysis objectives), those micro-
metrics can be excluded. For example, for a delay-sensitive
operation, the collection of compute metrics can be relaxed
with minimal or no impact on the application’s performance.

5 Experimental Evaluation of MicroMon

To understand the performance benefits and implication
of our proposed MicroMon, we compare the performance of
MicroMon with the vanilla dynamic snitching mechanism in
Cassandra, under different deployments, by varying multidi-
mensional micrometrics such as storage heterogeneity (SSD
vs. HDD), application threads, network latencies across repli-
cas, and the page cache.

Benchmark. We run the industry standard and widely-used
YCSB [8] benchmark with Cassandra. Due to space restric-
tions, we study three key-value access patterns from the
YCSB cloud suite: (1) Workload A (a write-heavy workload
with 50/50 read-write ratio), Workload B with 95% read, and
Workload C (a read-only workload).

Experimental Setup. We design our experiments in the
CloudLab infrastructure with three physical nodes located
within the Utah and Utah-APT clusters. For the SSD replica
located in the Utah cluster, we use a system with a 2.0GHz,
8-core Intel Xeon D-1548 processor and 64 GB ECC memory.
For the other two replicas residing in the Utah-APT cluster,
their systems entail a 2.1GHz, 8-core Intel Xeon E5-2450 pro-
cessor with 16 GB RDIMM memory. The keys are mapped
across these three Cassandra nodes, where each node acts as
a coordinator for a range of keys with other nodes acting as
areplica. Two out of three Cassandra nodes use a hard-disk
drive with 1-2 ms random-access latency and 5-15 MB/s ran-
dom access bandwidth compared to the SSD node with 10-30
us latency and 300 MB/s bandwidth. The average network
latency between nodes solely within Utah-APT is around
0.25-0.35 ms latency, and between nodes from Utah-APT and
Utah is around 0.35-0.45ms latency. In all our experiments,
we compare MicroMon against the default dynamic snitching
mechanism that mainly considers network latency.

5.1 Impact of Heterogeneous Storage

First, to understand the impact of considering underlying
storage hardware’s latency and bandwidth, we compare the
default dynamic-snitching mechanism in Cassandra against
MicroMon. For avoiding undue overheads of network latency,
we maintain two replicas of Cassandra at the same datacenter,
with one replica using SSD and other replica using hard-disk
to serve YCSB requests. We maintain Cassandra’s in-memory
buffer (skiplist) size to the default 32MB and commit the log
(using fsync) every 10ms (a parameter in Cassandra).
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Figure 2: Storage hardware impact. Results for YCSB
workloads varying the number of threads and the storage
hardware across replicas.

Figure 2 shows the throughput of YCSB workloads A, B,
and C in the y-axis, and the number of client threads issu-
ing requests on the x-axis. The client issue 1KB (YCSB’s
default request size) requests totaling SO0K operations. First,
the dynamic snitch in Cassandra is oblivious to storage laten-
cies and only considers network latencies. Due to the lack
of network latencies, it just sends most requests to both SSD
and HDD replicas. In contrast, MicroMon also considers stor-
age latency through the micro-metric collection, redirecting a
significant number of requests to SSD replica. Workload A
with 50% read and writes shows higher gains over workload
B with 5% writes. Further, with increasing client threads (in
the x-axis), the MicroMon gains improve by exploiting SSDs
higher parallelism, leading to 40% gains for workload A. Fi-
nally, for read-only workload C combined with the YCSB’s
uniform distribution, the benefits are lower for our current
evaluation scale. Also, note that we only report the run-phase
and not the warmup phase (cold access). The results highlight
the need for multi-dimension micrometrics, which includes
storage hardware monitoring.

5.2 Network Latency and Page Cache

To understand the combined impact of storage and network
heterogeneity, in Figure 3, we compare the Default Dynam-
icSnitch with our MicroMon based on synthesized latency
toward the SSD replica, whereas the Utah-APT replicas’ net-
work latency (<1ms) is unchanged. In the x-axis, we gradually
increase the network latency of SSD from Oms and 25ms. We
include two types of comparisons with respect to the SSD
node, one where the cache remains as default and the other
where the SSD replica has a lower page cache footprint (Mi-
croMon No Cache and Default DynamicSnitch No Cache)
simulated by frequently clearing the cache. For brevity, we
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YCSB workload A with 16-threads.

only show YCSB’s workload A (50% write and read) for 64
threads.

First, without any added network latency, the SSD replica
in a remote cluster provides a significant throughput (40% in-
crease; see "Default DynamicSnitch" and "MicroMon" bars in
Figure 3) compared to the Utah-APT replicas. However, when
adding Sms latency to the SSD replica’s network latency, the
throughput reduces when compared to the Utah-APT replicas,
but still maintaining a considerable (10% increase) through-
put increase. Next, regarding the page cache, for the SSD
replica with lower page-cache (see "No Cache" bars), we no-
tice that even without network latency, MicroMon prioritizes
the Utah-APT nodes a little more than the default Dynamic-
Snitch resulting in slightly higher average throughput (37%
increase; see "Default DynamicSnitch No Cache" and "Mi-
croMon No Cache" bars in Figure 3). In case of increase in
network latencies, we observe a marginal decrease in through-
put gains. For example, while we observe a throughput gain of
33% using MicroMon for 2ms network latency, the through-
put gain decreases to 24% in case of 25ms of latency. These
results highlight the need for multidimensional monitoring.

6 Summary and Future Work

We present MicroMon, a multi-dimensional monitoring and
inference framework for geo-distributed applications using
heterogeneous hardware. We introduce micrometrics, which
is a set of fine-grained hardware and software metrics re-
quired to study the combined impact of heterogeneous WAN
and storage resources on Cassandra’s performance. To re-
duce micrometrics collection and dissemination overheads,
we propose anomaly reports and concerted effort between the
programmable switches and host OSes to reduce the overhead
of collecting and disseminating thousands of micrometrics in
WAN. Our prototype deployed in a geo-distributed Cassandra
using heterogeneous storage and network shows close 49%
performance gains.

Future Work. Only capturing currently available hardware
and software micrometrics (for network and storage) is
insufficient. This calls for consideration of broader class

of (multi-dimensional) resources (e.g., compute, memory,
network, storage). Further, identifying and innovating new

microarchitecture-level micrometrics that capture the impact
of multi-dimensional resource usage holistically is critical.
For example, no micrometrics exists to capture the hardware
overheads in using the same PCI channels for a storage-
intensive and network-intensive application. We believe a
cross-stack fine-grained heterogeneous monitoring of mem-
ory, storage, network, and compute requires microarchitecture-
level innovations in the hardware and new software micro-
metrics. We plan to consider microarchitectural innovations
for MicroMon as part of future work. In addition, the deci-
sion of what micrometrics to use must be automated without
relying on administrators, application developers or network
operators.

Finally, as noted in § 4.3, the current prototype of Mi-
croMon assigns equal weights to all software and hardware
micrometrics. Unfortunately, this is not applicable for all
the applications. For example, micrometrics for bandwidth-
sensitive applications require higher weights for micrometrics
collected from the WAN than those collected from the end
hosts. Profiling the weights micrometrics for diverse applica-
tions atop heterogeneous resources is a complex problem. We
intend to consider this in MicroMon as part of future work.
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