
In support of workload-aware streaming state management

Vasiliki Kalavri∗

vkalavri@bu.edu
John Liagouris∗†

liagos@bu.edu
∗Boston University, †Hariri Institute for Computing

Abstract
Modern distributed stream processors predominantly rely on
LSM-based key-value stores to manage the state of long-
running computations. We question the suitability of such
general-purpose stores for streaming workloads and argue
that they incur unnecessary overheads in exchange for state
management capabilities. Since streaming operators are in-
stantiated once and are long-running, state types, sizes, and
access patterns, can either be inferred at compile time or
learned during execution. This paper surfaces the limitations
of established practices for streaming state management and
advocates for configurable streaming backends, tailored to the
state requirements of each operator. Using workload-aware
state management, we achieve an order of magnitude improve-
ment in p99 latency and 2x higher throughput.

1 Introduction

Any non-trivial streaming computation maintains and contin-
uously updates state: rolling aggregations, synopses, window
contents, triggers and timers. To support larger-than-memory
state, streaming dataflow systems rely on data partitioning and
(embedded) persistent key-value stores. The most prominent
store is RocksDB [4], used by open-source systems such as
Apache Spark Structured Streaming [9], Apache Flink [13],
Apache Kafka [2], and Apache Samza [27], as well as Face-
book’s Stylus [17]. RocksDB has been widely adopted by
many stream processors due to its solid performance on SSDs,
incremental checkpointing capabilities, robustness, and ac-
tive community. However, it was not designed with streaming
workloads in mind.

We argue that the state management capabilities general-
purpose stores provide to streaming applications come at
considerable cost. The established monolithic approach to
streaming state management is problematic: one type of state
store (either RocksDB or in-memory) manages the state of all
dataflow operators. Some operators, such as joins, accumulate
large state and benefit form efficient range scans, while others,

such as rolling counters, store small state and need efficient in-
place updates. Yet, state requests are served by stores which
are configured in a manner oblivious to each operator’s state
types, sizes, and access patterns.

With this paper, we advocate for workload-aware state man-
agement. The central idea is to exploit the fact that streaming
dataflow operators are instantiated once and are long-running.
Thus, their access patterns and state size bounds are largely
known in advance. We believe that streaming systems would
greatly benefit from novel configurable state stores, support-
ing different physical layouts and data types, and capable of
leveraging knowledge about operator state characteristics.

As a proof of concept in support of workload-aware state
management, we build a testbed that allows defining custom
state stores per operator and we use it to compare state man-
agement strategies. As an alternative to RocksDB, we experi-
ment with FASTER [15], a recent key-value store backed by
a cache-optimized hash index with efficient in-place updates
and support for custom data types. Our testbed is implemented
on top of Timely dataflow [19], a high-performance streaming
dataflow engine written in Rust.

To quantify the benefits of workload-aware state manage-
ment, we compare RocksDB and FASTER on window opera-
tors and stateful queries from a streaming benchmark suite.
Our evaluation shows that not one store fits all when it comes
to streaming workloads. Although FASTER’s in-place up-
dates favor some queries, RocksDB’s lazy evaluation is supe-
rior for others. Using FASTER instances with explicit type
information and tailored to the needs of individual operators,
we achieve an order of magnitude improvement in p99 latency
and 2x higher throughput.

2 State management in streaming dataflows

We first revisit the fundamentals of dataflow stream process-
ing and then describe established practices for streaming state
management. The dataflow model described below applies
with minor variations to the majority of distributed stream
processors supporting data-parallelism and local state, such

Figure 1: Logical and physical dataflow plans. Each parallel worker
executes one or more stateful tasks and manages their state via an
embedded k-v store instance.

as Apache Flink, Kafka, Samza, and Timely dataflow. Stream
processors with external state management are briefly dis-
cussed in Section 2.2.

2.1 The dataflow programming model

A dataflow stream processor executes data-parallel compu-
tations on shared-nothing architectures. A program is repre-
sented as a logical directed graph G = (V,E), where vertices
in V denote operators and edges in E are data dependencies.
Upon deployment, the logical graph is translated to a physical
execution plan, G′ = (V ′,E ′), which maps dataflow operators
to provisioned workers. We call vertices in V ′ tasks of an
operator in V and edges in E ′ physical data channels. One or
more tasks of the same or different operators can be assigned
to the same worker, and the assignment strategy is system-
specific. The assignment is computed at deployment time and
remains static throughout job execution, unless a reconfigura-
tion occurs. Tasks are scheduled once and are long-running.

Figure 1 shows the logical graph and corresponding physi-
cal plan for Nexmark Q4 [3, 31]. The query joins a stream of
auctions and a stream of bids and outputs a rolling average
of winning bid prices for each auction category. The provi-
sioned workers, w1,w2, execute parallel tasks as indicated by
the enclosing rectangles, and each owns an embedded store
to manage state. The join and average operators are stateful
and data-parallel, so that each worker operates on disjoint
partitions of the input streams.

2.2 State management

A streaming application can define and maintain different
types of state throughout its lifetime, including partial re-
sults, sketches, buffered tuples in window buckets, triggers,
timers, and notifications. A state backend defines the physi-
cal location where streaming state resides. The backend type
determines how state is organized into data structures, its
maximum supported size, and whether it is guarded against
failures. For instance, an in-memory backend keeps working
state in memory and, thus, the maximum supported state size
is limited. A database backend keeps working state in an

embedded key-value store and leverages the disk to support
larger-than-memory state.

Users interact with state through APIs provided by the
stream processor. Those allow defining state primitives of
different types, such as lists, maps, and arbitrary values. Most
dataflow programming models assume a key-value schema for
input records [9,13,14,20,25] and always associate state with
a key. The API also enforces state scopes, which determine
the accessibility of state through the application.

The assignment of tasks to worker threads shown in Fig-
ure 1 has significant implications to state scoping. The run-
time guarantees that input records with the same key will
be processed by the same task. As a result, any state associ-
ated with a particular key is read and modified by a single
worker at any point in time. By employing data parallelism,
the dataflow model provides single-writer isolation to state.
Thus, it is crucial that any key-value store used as a streaming
backend provides excellent single-thread performance.

External state management. An alternative to managing
state inside the stream processor is essentially making all op-
erators stateless and externalizing all intermediate data. While
this design simplifies fault-tolerance and re-configuration,
it induces higher latency and presumes access to a highly
available and scalable external state store. Some systems
that follow this approach include Storm [30], which can spill
state to HDFS or Cassandra [6], and MillWheel [8] that uses
BigTable [16]. For further details, we refer interested readers
to a recent survey on streaming state management [29].

3 Flaws of monolithic state management

Stream processors use embedded stores as out-of-the-box
solutions for state management. This straw man approach
restricts applications to using one type of backend, which is
configured globally for all dataflow operators, regardless of
their state requirements1. In this section, we summarize the
drawbacks of this monolithic design.

3.1 Unnecessary data marshalling

An evident issue with storing multiple operator states in the
same store is the requirement to manage keys and values of
different types. To support arbitrary types, RocksDB main-
tains all in-memory and disk-resident data as byte arrays.
This eager de/serialization approach means that every state
access includes one or more data marshalling operations, all
of which are on the critical path of the request. A recent
study [23] finds that Flink spends 20% of execution time
de/serializing RocksDB data of non-primitive types (e.g.,
Vec<String>), while similar results are shown in other works

1Flink’s recent release (1.10) provides some flexibility, as it allows users
to partially configure RocksDB column families (one per state primitive).

as well [7]. Samza tries to mitigate this overhead by maintain-
ing a cache [28].

While a well-designed cache policy can avoid some data
marshalling, we believe this task must be the responsibility
of the state store. State types in streaming dataflow applica-
tions are known at compile time and do not change during
execution. If each primitive is backed by a dedicated store,
in-memory data can be kept in their native format, incurring
de/serialization only when fetching or flushing pages from/to
disk, asynchronously.

3.2 Oblivious store configuration
The second major issue with monolithic state management is
that all state stores in a streaming job use the same configura-
tion, regardless of the access patterns and size requirements of
the operators they serve. This is problematic, as operators in
a dataflow can have vastly different behavior in terms of state.
For example, in the query of Fig. 1, the join is write-heavy
and can potentially accumulate large state, while the aggre-
gation performs two read-modify-write operations per input
event and its state can fit in memory. A write-optimized store
capable of spilling state to disk is suitable for managing the
join state, while a hash-based in-memory store with in-place
updates would fit the rolling aggregation better.

3.3 Unnecessary store features
Streaming backends do not need all sophisticated features of
general-purpose key-value stores. In case we use one backend
per operator task or state primitive, there is no need to sup-
port concurrent external requests within the backend, since
dataflow systems already guarantee single-thread access to
state. Although concurrency control does not affect single-
thread performance in practice, it introduces unnecessary com-
plexity and maintenance overhead. Similar simplifications are
also possible for other features of existing key-value stores.
For instance, the performance of deletes can be significantly
improved by leveraging the knowledge of streaming operators.
In the case of windows, the backend can simply purge the
entire window state when it expires.

The following operations are handled by dataflow systems
already and need not be implemented in state backends:

State partitioning is performed according to the input data
partitioning functions used by shuffling operators.

State scoping is enforced by the dataflow state APIs, which
abstract store operations and provide access to per-key
local state only.

Per-key read/write isolation is guaranteed by the dataflow
model. Worker threads process disjoint data partitions,
thus, each key will always be accessed by a single thread.

Checkpointing is coordinated by the streaming runtime
which uses locks and synchronization mechanisms to

Figure 2: With flexible state management, each task can define multi-
ple state stores of different types and configurations. Each instance of
the join operator has two backends, one for each of its input streams.

copy the state. Stream processors implement global snap-
shot algorithms [13] and do not rely on key-value stores
for fault-tolerance.

4 A flexible testbed for state management

To explore the potentials of a more flexible state manage-
ment approach, we have implemented a testbed on top of the
Timely Dataflow stream processor [19]. Timely is a Rust im-
plementation of Naiad [26] and allows for a fair performance
evaluation, free from runtime and JNI overheads or other
incompatibility issues present in JVM-based systems. For ex-
ample, Flink’s JNI bridge to RocksDB imposes a maximum
key-value pair size of 2.2GB 2. This limit may be too restric-
tive in some cases. A window operator can represent its state
as a key-value pair, where the key is the start or end times-
tamp and the value contains the window contents, whose size
may exceed 2.2GB (cf. Section 5.1). Further, custom merge
comparators are not supported in Java, as RocksDB expects
C++ code. Custom merge comparators are used by RocksDB
for lazy evaluation in the merge operator. Merging is semanti-
cally equivalent to a Read-Modify-Write operation: each time
a key-value pair is added to the database using merge, the pair
is appended to the mutable mem-table and the actual value
update is performed “lazily” during compaction (if any) or
upon a get for the respective key, by calling the comparator
function. Our testbed does not have any of the above restric-
tions, it minimizes the FFI overhead when interacting with
the key-value store, and allows defining custom RocksDB
comparators directly in Rust.

Currently, the testbed supports three types of backends: in-
memory, RocksDB, and FASTER. We use a wrapper around
FASTER’s C++ library [1] to expose its interface for access-
ing the key-value store and performing internal operations.
For the integration with RocksDB, we use the Rust wrap-
per [5]. We also provide a versatile API so that users can

2https://ci.apache.org/projects/flink/
flink-docs-release-1.10/ops/state/state_backends.html#
the-rocksdbstatebackend

https://ci.apache.org/projects/flink/flink-docs-release-1.10/ops/state/state_backends.html#the-rocksdbstatebackend
https://ci.apache.org/projects/flink/flink-docs-release-1.10/ops/state/state_backends.html#the-rocksdbstatebackend
https://ci.apache.org/projects/flink/flink-docs-release-1.10/ops/state/state_backends.html#the-rocksdbstatebackend

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

C
C
D
F

Latency	[ms]

FASTER
RocksDB PUT/GET

RocksDB MERGE

(a) 30s-1s sliding window COUNT

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

C
C
D
F

Latency	[ms]

FASTER
RocksDB PUT/GET

RocksDB MERGE

(b) 30s tumbling window RANK

Figure 3: RocksDB vs FASTER latency CCDFs for (a) a sliding
window of 30s length and 1s slide with incremental aggregation and
(b) a tumbling window of 30s length with holistic aggregation.

define basic state primitives in their streaming dataflows, in-
cluding ManagedCount (for counters), ManagedValue (for
arbitrary values), and ManagedMap (for maps) [11].

Figure 2 illustrates how users can take advantage of flexible
state management with our API and testbed. Each operator
can define one or more individually configured state stores, in-
stantiated with specific types. Store configuration is currently
manual, but we are working on automating this process by
leveraging knowledge about the computation.

5 Experimental evaluation

We present a set of evaluation results with RocksDB and
FASTER using our state management testbed3. The evalu-
ation does not aim to thoroughly compare RocksDB with
FASTER but to showcase that not one store fits all stream-
ing workloads. We demonstrate the effect of a backend’s
data layout when evaluating window operators in § 5.1 and
the effect of leveraging knowledge about types, state sizes,
and state accesses in § 5.2. The evaluation is focused on
tail latency, as the major performance metric for real-time
streaming applications, and on single-thread performance,
as the dataflow model guarantees per-key read/write isola-
tion (§ 3.3). To provide a clear picture of tail latency, we use
complementary CDFs (CCDFs): a (x,y) point indicates that
y% of records have at least x ms end-to-end latency. Thus,
the lines at y = 10−1 and y = 10−2 correspond to p90 and
p99 latency, respectively. We briefly discuss throughput and
multi-worker dataflows in § 5.2.

Benchmarks. We use the Nexmark streaming benchmark [31,
32]. Queries include an incremental join (Q3), window joins
(Q4, Q6, Q8), and custom window aggregations (Q5, Q7).

Experimental setup. We use Timely 0.9.0, compiled with
Rust 1.37.0, the latest FASTER C++ version from [1], and
the RocksDB Rust wrapper (0.12.4) [5]. We configure
FASTER with a 128MB hash index and 8GB in-memory
log, where 10% (resp. 90%) is given to the immutable (resp.
mutable) region, as in the FASTER paper [15]. RocksDB is

3Available at https://github.com/jliagouris/wassm

configured with 128KB block size, 2 mem-tables of 4GB each,
a 256MB LRU cache, and a 100MB hash block index. We use
c5d.2xlarge and r5d.12xlarge instances on Amazon EC2,
for single-thread and multi-thread experiments, respectively.

10-5

10-4

10-3

10-2

10-1

100

100 101

C
C
D
F

Latency	[ms]

Monolithic
Workload-aware

(a) Q3

10-5

10-4

10-3

10-2

10-1

100

100 101 102

Latency	[ms]

Monolithic
Workload-aware

(b) Q4

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102

C
C
D
F

Latency	[ms]

Monolithic
Workload-aware

(c) Q5

10-6

10-5

10-4

10-3

10-2

10-1

100

100

Latency	[ms]

Monolithic
Workload-aware

(d) Q7

Figure 4: Latency CCDFs for monolithic vs. workload-aware imple-
mentation of Nexmark queries using FASTER.

5.1 The effect of data layout on windows
Any streaming state management backend needs to efficiently
support windows, as they are perhaps the most common
streaming operators. Windows enable evaluation of blocking
computations, such as aggregations and joins on streams, and
provide continuous fresh results to applications. For the pur-
pose of this paper, we consider fixed windows which can be
identified by their start and end timestamps. Windowing splits
unbounded inputs into a series of bounded sets of records
and we say that a window triggers when the system’s notion
of time arrives at its end timestamp. At this point, the win-
dow produces results and deletes its state. Window evaluation
functions can be applied eagerly, upon receiving a new record
that belongs to the window, or lazily, on trigger.

We evaluated various strategies and window functions and
concluded that there is no clear winner between LSM-based
and hash-based approaches. Nevertheless, we identified the
parameters which affect performance and can guide the design
of a configurable, workload-aware store. Our results indicate
that FASTER performs better than RocksDB across config-
urations for eager aggregations, especially for large sliding
windows. As for holistic aggregations, RocksDB’s merge per-
forms best across configurations and, it is the only approach
that can keep up with high input rates. In the interest of space,
we discuss only one representative experiment.

We evaluate RANK, a holistic aggregation that fetches the
entire window contents on trigger, and COUNT, which can be

https://github.com/jliagouris/wassm

Query RocksDB FASTER Workload-aware Speedup
Q3 1.36 1.32 1.27 1.04
Q4 357.62 230.18 36.90 6.24
Q5 490.65 286.12 20.52 13.94
Q6 307.69 209.78 37.10 5.65
Q7 1.85 1.7 1.39 1.22
Q8 1.49 1.32 1.31 1

Table 1: p99 latencies (ms) for RocksDB, FASTER, and workload-
aware implementations of Nexmark queries. The rightmost column
shows the speedup of workload-aware over FASTER.

eagerly computed to maintain a single value per window. We
run each experiment for 10 minutes in an open loop and
measure the end-to-end latency per record. The input rate
was set to 1K rec/s for RANK and 10K rec/s for COUNT. In
both operators, the state is organized as follows: the key is the
window start timestamp and the value is the window content
(a vector of integers in RANK and a single integer in COUNT).

Figure 3 plots the latency CCDF for a sliding and a tum-
bling window. For every input record, the operator performs
one read-modify-write operation for each active window
state4. While FASTER supports in-place updates, RocksDB
issues either a pair of get + put operations or a merge,
depending on the implementation. On trigger, the operator
retrieves the window contents with one get operation and
then purges state. FASTER performs best for COUNT (100×
lower p99 latency than RocksDB MERGE) as it can lever-
age fast lookups with in-place updates. For RANK, FASTER
and RocksDB with PUT/GET continuously remove and re-
insert growing vectors of integers, while lazy evaluation with
RocksDB MERGE pays off (p99 latency is orders of magni-
tude lower than FASTER’s).

5.2 State types, sizes, and access patterns
To showcase the additional benefits of workload-aware store
configuration, we use carefully configured implementations of
Nexmark queries that leverage knowledge about (i) k-v types
(to reduce de/serialization), and (ii) state size and access pat-
terns. FASTER was superior to RocksDB in all these queries,
thus, our implementations use FASTER; in particular, one
instance per primitive configured according to Table 2. The
monolithic baseline uses one FASTER instance per worker
configured as described in the experimental setup. We use 1M
rec/s input rate for Q3, Q7 and Q8, and 10K rec/s for Q4-6.

The first set of experiments evaluates single-thread latency
for monolithic and workload-aware configurations. Then, we
evaluate scaling with respect to the input rate (throughput)
and the number of parallel workers.

Single-thread latency. Figure 4 shows the latency CCDFs for
Q3, Q4, Q5, and Q7 run with a single worker thread (Q6 has
almost identical behavior to that of Q4, and Q8 accumulates

4Note that several windows can be active (open) at the same time, as
stream processors support asynchronous execution and out-of-order streams.

Query Configuration
Q3 1GB (people), 7GB (auctions)
Q4 6GB (bids), 1.5GB (auctions), 512MB (average)

Q5 6GB (additions), 1GB (deletions)
512MB (accumulations), 512MB (hot items)

Q6 6GB (bids), 1.5GB (auctions), 512MB (average)
Q7 6GB (pre-reduce), 2GB (all-reduce)
Q8 4GB (people), 4GB (auctions)

Table 2: Memory given to FASTER instances in workload-aware
implementations of the Nexmark queries from [32].

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000

La
te
nc
y	
[m
s]

Throughput	[Krec/s]

 FASTER
 RocksDB
 Workload-aware

(a) Median latency vs throughput

 0

 0.5

 1

 1.5

 2

 2 4 6 8 10 12 14 16

La
te
nc
y	
[m
s]

#workers

 FASTER
 RocksDB
 Workload-aware

(b) Median latency over #workers

Figure 5: Q7 latency with monolithic and workload-aware state
management over (a) throughput and (b) varying number of workers.

negligible state). Table 1 summarizes the p99 latency and
speedup for all queries and state management approaches.
The workload-aware implementation achieves significant p99
latency speedups for many queries: 14× for Q5 and 6× for
Q4, Q6. Q3 has a 10× speedup as well, for higher percentiles.

To understand the source of performance improvements, we
describe how our workload-aware implementations compare
to the monolithic ones. Primitives that can grow arbitrarily
and accumulate larger-than-memory state are backed by a
dedicated FASTER store that is instantiated with the respec-
tive data types. For example, each of the two join inputs in
Q3 (people and auction streams) has its own FASTER in-
stance. The instances are typed after the stream they manage
and their configuration is shown in Table 2. In Q3, most of
the available memory is allocated to the auctions state, as
auctions accumulate faster than people. As shown in Fig. 4a,
this optimization pays off for the tail latency, where we see
more than 10× speedup. The benefit is more evident for Q4
(Fig. 4b) and Q7 (Fig. 4d). In Q5, we split state further and
use two more primitives with dedicated FASTER backends
for auction counts and hot items (cf. Table 2). Small state
with bounded size, such as the computation progress in Q8,
is kept in memory.

Throughput vs latency. Fig. 5a plots the median per-record
latency for Q7 for increasing input rates. We vary the input
rate from 100K rec/s up to 2M rec/s, on a single thread. The
latency of the workload-aware implementation scales better
with increasing throughput and remains below 1ms for up to
1M rec/s. Further, with the workload-aware implementation,
a single thread can comfortably sustain a 2M rec/s input rate
with a median latency of 1.3ms. That is 2× higher throughput

than the monolithic approaches, which cannot keep up with
input rates over 1M rec/s.

Multiple worker threads. To confirm that the benefits
of workload-aware implementation persist in multi-worker
dataflows, we run Q7 with an increasing number of worker
threads (1-16), in an open-loop setting, with input rate fixed
at 1M rec/s. Note that the dataflow model still ensures single-
thread isolation to state, however, the number of key-value
store instances sharing the resources of the same machine
increases significantly. The monolithic approach uses one
FASTER instance per worker, whereas the workload-aware
uses two (cf. Table 2). Fig. 5b plots the median per-record la-
tency. The workload-aware implementation scales similarly to
the monolithic and remains consistently better as we increase
the number of workers.

6 Conclusion

Workload-aware streaming state management can boost per-
formance, beyond avoiding data marshalling costs. A careful
assignment of state backends to primitives not only reduces
latency but also improves throughput and scalability. Our re-
sults motivate the need for configurable streaming backends,
in the spirit of the recent developments on designing data
structures tailored around a particular workload [21, 22].

7 Discussion

One store that fits all or many? An open question to-
wards implementing workload-aware state management for a
production-ready stream processor is whether it is worth de-
signing a new stream-optimized key-value store from scratch.
One could argue that a selected set of existing key-value stores
can be plugged-in via a flexible API like the one we discuss
in Section 4. It certainly appears that a store like RocksDB
could serve range queries and lazy evaluation whereas a store
like FASTER could be used for operators with frequent point
lookups and in-place updates. However, this approach intro-
duces undesirable project dependencies for the streaming
system and does not account for changes in state charac-
teristics (e.g. due to increased input rates) that might make
pre-configured backends unsuitable over time.

Streaming state benchmarks. Despite the fact that key-
value stores are an integral component of streaming systems
and crucial to their performance, their suitability for stream-
ing state management has not been studied prior to this paper.
In fact, no benchmark exists that captures the workload char-
acteristics and temporal locality of streaming applications.
Existing key-value store evaluations [10, 15, 24] focus on
multi-threaded performance and use request-driven bench-
marks, such as YCSB [18], which is oblivious to key-space
locality [12]. Such benchmarks and metrics cannot provide

reliable results for data-parallel stream processors, which in-
stead execute continuous queries, perform single-thread state
access, and issue frequent deletions (e.g. for windows).

Fault-tolerance and re-configuration. Even though stream
processors that implement their own checkpointing mecha-
nisms do not rely on key-value stores for providing exactly-
once guarantees upon failures, certain store features are still
desirable. Besides reads and writes in regular processing, a
streaming engine must also support efficient state operations
for fault-tolerance and re-configuration. Those include quick
copies, incremental checkpointing, state migration upon re-
partitioning, and bulk loads for quick recovery. For example,
although RocksDB supports incremental checkpoints (at the
SST level) by leveraging key order, hash-based stores, such
as FASTER, do not. How to support all these operations effi-
ciently within the same key-value store is an open question.

Extracting and/or learning state characteristics. The
queries of Section 5 use built-in operators, however, most
real streaming computations include operators with UDFs.
One option to infer state access patterns in UDFs is to use
static code analysis. This approach can be further combined
with online learning techniques to infer data-dependent access
patterns and changes in state characteristics. Learning access
patterns with temporal dependencies in a streaming setting is
an interesting direction for future research.

References

[1] FASTER. https://github.com/microsoft/
FASTER. Last access: March 2020.

[2] Kafka Streams Internal Data Management. https://
cwiki.apache.org/confluence/display/KAFKA/
Kafka+Streams+Internal+Data+Management. Last
Access: March 2020.

[3] Nexmark Benchmark Suite. https://beam.
apache.org/documentation/sdks/java/testing/
nexmark/. Last access: March 2020.

[4] Rocksdb. https://rocksdb.org/. Last access:
March 2020.

[5] RocksDB Rust Wrapper. https://github.com/
rust-rocksdb/rust-rocksdb. Last access: March
2020.

[6] Apache Cassandra. http://cassandra.apache.org,
2020. Last access: March 2020.

[7] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin.
Fast key-value stores: An idea whose time has come and
gone. In Proceedings of the Workshop on Hot Topics
in Operating Systems, HotOS ’19, pages 113–119, New
York, NY, USA, 2019. ACM.

https://github.com/microsoft/FASTER
https://github.com/microsoft/FASTER
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Management
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Management
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Streams+Internal+Data+Management
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://beam.apache.org/documentation/sdks/java/testing/nexmark/
https://rocksdb.org/
https://github.com/rust-rocksdb/rust-rocksdb
https://github.com/rust-rocksdb/rust-rocksdb
http://cassandra.apache.org

[8] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava
Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,
Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-
Wheel: Fault-tolerant Stream Processing at Internet
Scale. Proceedings of the the VLDB Endowment,
6(11):1033–1044, August 2013.

[9] Michael Armbrust, Tathagata Das, Joseph Torres, Burak
Yavuz, Shixiong Zhu, Reynold Xin, Ali Ghodsi, Ion Sto-
ica, and Matei Zaharia. Structured streaming: A declar-
ative api for real-time applications in apache spark. In
Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, pages 601–613,
New York, NY, USA, 2018. ACM.

[10] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. SILK: Preventing latency spikes in log-structured
merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 753–766,
Renton, WA, July 2019. USENIX Association.

[11] Matthew Brookes, Vasiliki Kalavri, and John Liagouris.
Faster state management for timely dataflow. In Proceed-
ings of Real-Time Business Intelligence and Analytics,
pages 1–3. 2019.

[12] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, modeling, and bench-
marking rocksdb key-value workloads at facebook.
In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 209–223, Santa Clara,
CA, February 2020. USENIX Association.

[13] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi,
Stefan Richter, and Kostas Tzoumas. State manage-
ment in Apache Flink R©: Consistent Stateful Distributed
Stream Processing. Proceedings of the VLDB Endow-
ment, 10(12):1718–1729, August 2017.

[14] Raul Castro Fernandez, Matteo Migliavacca, Evangelia
Kalyvianaki, and Peter Pietzuch. Integrating Scale out
and Fault Tolerance in Stream Processing Using Opera-
tor State Management. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 725–736, New York, NY,
USA, 2013. ACM.

[15] Badrish Chandramouli, Guna Prasaad, Donald Koss-
mann, Justin Levandoski, James Hunter, and Mike Bar-
nett. FASTER: A Concurrent Key-Value Store with
In-Place Updates. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD
’18, pages 275–290, New York, NY, USA, 2018. ACM.

[16] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar

Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A distributed storage system for structured data. In Pro-
ceeding of the 7th Symposium on Operating Systems
Design and Implementation, 2006.

[17] Guoqiang Jerry Chen, Janet L Wiener, Shridhar Iyer, An-
shul Jaiswal, Ran Lei, Nikhil Simha, Wei Wang, Kevin
Wilfong, Tim Williamson, and Serhat Yilmaz. Real-
time data processing at facebook. In Proceedings of the
2016 International Conference on Management of Data,
pages 1087–1098. ACM, 2016.

[18] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[19] Frank McSherry. Timely Dataflow. https://github.
com/TimelyDataflow/timely-dataflow. Last Ac-
cess: March 2020.

[20] Moritz Hoffmann, Andrea Lattuada, Frank McSherry,
Vasiliki Kalavri, John Liagouris, and Timothy Roscoe.
Megaphone: Latency-conscious state migration for dis-
tributed streaming dataflows. Proceedings of the VLDB
Endowment, 12(9), 2019.

[21] Stratos Idreos and Tim Kraska. From auto-tuning one
size fits all to self-designed and learned data-intensive
systems. In ACM SIGMOD, 2019.

[22] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel,
Michael S Kester, and Demi Guo. The data calculator:
Data structure design and cost synthesis from first prin-
ciples and learned cost models. In Proceedings of the
2018 International Conference on Management of Data,
pages 535–550. ACM, 2018.

[23] Gyewon Lee, Jeongyoon Eo, Jangho Seo, Taegeon Um,
and Byung-Gon Chun. High-performance stateful
stream processing on solid-state drives. In Proceedings
of the 9th Asia-Pacific Workshop on Systems, APSys ’18,
pages 9:1–9:7, New York, NY, USA, 2018. ACM.

[24] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. Mica: A holistic approach to fast
in-memory key-value storage. In Proceedings of the
11th USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, pages 429–444, Berke-
ley, CA, USA, 2014. USENIX Association.

[25] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs,
and Michael Isard. Differential dataflow. In CIDR, 2013.

[26] Derek G Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Naiad:
a timely dataflow system. In SOSP ’13: Proceedings

https://github.com/TimelyDataflow/timely-dataflow
https://github.com/TimelyDataflow/timely-dataflow

of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, 2013.

[27] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Nav-
ina Ramesh, Jon Bringhurst, Indranil Gupta, and Roy H
Campbell. Samza: stateful scalable stream process-
ing at linkedin. Proceedings of the VLDB Endowment,
10(12):1634–1645, 2017.

[28] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina
Ramesh, Jon Bringhurst, Indranil Gupta, and Roy H.
Campbell. Samza: Stateful scalable stream processing
at linkedin. Proc. VLDB Endow., 10(12):1634–1645,
August 2017.

[29] Quoc-Cuong To, Juan Soto, and Volker Markl. A survey
of state management in big data processing systems.

The VLDB Journal, 27(6):847–872, December 2018.

[30] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik
Ramasamy, Jignesh M. Patel, Sanjeev Kulkarni, Jason
Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy.
Storm @Twitter. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of data
(SIGMOD ’14), 2014.

[31] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and
David Maier. NEXMark—A Benchmark for Queries
over Data Streams. Technical report, OGI School of
Science & Engineering at OHSU, 2002.

[32] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and
David Maier. Nexmark Benchmark Suite, 2002.

	Introduction
	State management in streaming dataflows
	The dataflow programming model
	State management

	Flaws of monolithic state management
	Unnecessary data marshalling
	Oblivious store configuration
	Unnecessary store features

	A flexible testbed for state management
	Experimental evaluation
	The effect of data layout on windows
	State types, sizes, and access patterns

	Conclusion
	Discussion

