
Rethinking WOM Codes to Enhance the Lifetime in New SSD Generations

Shehbaz Jaffer Kaveh Mahdaviani Bianca Schroeder
University of Toronto

Abstract
New generations of Solid State Drives (SSDs) offer increased
storage density with higher bits per cell, but an order of mag-
nitude lower Program and Erase (P/E) cycles. This decreases
the number of times one can rewrite on the SSD, and hence,
the overall lifetime of the drive. One way of improving drive
lifetime is by applying Write-Once Memory (WOM) codes
which can rewrite on top of pre-existing data without erasing
previous data. This increases the total logical data that can
be written on the physical medium before an erase operation
is required. Traditional WOM codes are not scalable and
only offer up to 50% increase in total writable logical data
between any two erase operations. In this paper we present
a novel, simple and highly efficient family of WOM codes.
Although our design is generic and could be applied to any
N-Level cell drive, we focus on QLC drives to demonstrate
and evaluate the proposed scheme and show that it can in-
crease the total logical writable data before an erase in a
range of 50-375% the physical medium capacity with vary-
ing storage overheads. Next, we argue that it is possible to
further increase the total logical writable data between two
erase operations by up to 500% with the help of a carefully
chosen internal error-correcting code (ECC) already present
in SSDs.

1 Introduction
Flash-based Solid State Drives (SSDs) offer a faster alterna-
tive to Hard Disk drives (HDDs), but have a major limitation:
unlike HDDs where previously written data is over-writable,
a flash cell needs to be erased before it can be programmed,
and each erase operation causes wear-out that reduces a cell’s
lifetime. Older generations of flash were based on single-level
cells (SLC), which store only a single bit in a cell and can typ-
ically tolerate several thousand program erase cycles before
wearing out. However, to keep up with the increasing demand
for storage capacity, more bits need to be stored in a cell.
Recent work [25] shows that with each additional bit stored
in 1 SSD cell, the number of erase cycles that the SSD can
endure reduces by an order of magnitude. Figure 1 illustrates

Figure 1: P/E cycles decrease with increased storage den-
sity [2]. Smaller sized cells can endure lower number of P/E
cycles within the same SSD type.
the problem based on recent projections [2]. Flash based on
Multi-level Cells (MLC) and Triple Level Cells (TLC), which
are are common nowadays, can tolerate a significantly smaller
number of P/E cycles. Even more worrisome is a look into the
future with QLC and PLC drives, which might see P/E cycle
limits drop to tens or a few hundred. To make high-density
SSD drives such as QLC drives usable beyond archival ap-
plications, it is paramount to reduce the number of times the
storage media is erased.

One way to reduce the number of times we erase a flash
block before storing new data is to use WOM codes. WOM
codes can be overwritten on top of each other without erasing
the previously written code. In this paper our position is that
traditional WOM codes, as they have been used in previous
work to extend flash lifetime, are not efficient for the spe-
cific characteristics of flash with multiple levels and that great
improvements are possible with a better code design. More
precisely, we observe that traditional WOM codes impose a
bit-level constraint on each code, where each bit in a code-
word can only be set from 0 to 1 while it is being overwritten.
This constraint is not only a sub-optimal fit for flash with mul-
tiple levels, it also limits the number of code-words that can be
overwritten as media becomes denser and stores more bits per
cell and is therefore not scalable. This significantly reduces
the number of overwrites that can be done before an erase



operation is required. Further, several other codes like Polar
WOM Codes [33] involve multiple iterations for encoding
and decoding data which is complicated and inefficient.

In this paper, we propose a highly efficient family of WOM
codes for QLC flash that can be implemented using simple
table lookups. Our scheme is generic and can be extended to
TLC, PLC or any N-Level Cell SSD drive. First, we present a
family of WOM codes that model QLC cells as monotonically
increasing voltage values instead of a collection of bits that
can only be set from 0 to 1. This creates a more efficient
WOM coding scheme by utilizing all intermediate voltage
levels, and helps to improve the additional logical writable
capacity of the disk before erase, compared to uncoded writes,
from 50% to 375%. Second, we show that by using a carefully
chosen internal ECC embedded within flash, typically used
to correct flash raw bit errors, we may be able to extend the
amount of logical writable capacity of drive before erase to
500% the physical disk capacity.

2 Limitations of traditional WOM codes

data Gen1 Gen2
00 000 111
01 100 011
10 010 101
11 001 110

Table 1: WOM(2,3)

data Gen1 Gen2 Gen3
00 0 000 1 000 1 111
01 0 100 1 100 1 011
10 0 010 1 010 1 101
11 0 001 1 001 1 110

Table 2: WOM(2,4)
Historically, Write Once Memory (WOM) Codes were mo-

tivated by media, such as punch cards and optical disk, where
data is written at the granularity of bits, and once written a
bit can only be changed in one direction, e.g. from 0 to 1.
Seminal work by Rivest and Shamir [22] presents a way to
accommodate multiple writes on such media by encoding x
bits of (data bit sequences) into a code-word of y bits such
that a certain number of overwrites in place are possible. This
is referred to as a WOM(x,y) code.

Table 1 shows a simple example of a WOM(2,3) code, which
can guarantee at least two writes in place. The first write uses
the mapping from data bit sequences to code-word given
in the column labelled Generation 1, and the second write
uses the mapping in the column labelled Generation 2. For
example, to consecutively write the two data bit sequences
01 and 10 in place, one would write the physical words 100
(Generation 1) and 101 (Generation 2). Note that the second
write only requires valid transitions of bits from 0 to 1.

It’s easy to verify in Table 1 that any data bit sequences
encoded in Generation 1 can be overwritten by any other data
bit sequences encoded in Generation 2, with only valid bit
transitions from 0 to 1. That means we can always guarantee
at least one overwrite in place. The actual number of times
we can write in place can be larger than the number of gen-
erations if the data bit sequence contains consecutive writes
of the same data bit sequence, which don’t require changes

to the physical medium. We call each time data is transferred
to the media for writing as one Write Cycle (WC). For exam-
ple, writing the 4 data bit sequences 01, 01, 10, 10 requires
only two writes to the medium (the same as in the previous
example: 100 and 101), but count as 4 Write Cycles.

The assumption of being able to change a bit in only one
direction (from 0 to 1) matches the characteristics of a (single-
level) flash cell and inspired prior work [18, 28, 30, 33] to use
WOM codes to increase the lifetime of flash. However, these
prior applications of WOM codes have several limitations:
Modelling cells as group of bits
WOM codes, as described before in the context of flash, work
at bit-level and assume bits can only be changed from 0 to 1.
We call such codes bit based codes. Prior work has explored
non-binary WOM codes [11] but not in the context of QLC
flash. The bit-based model is not a good fit for modern flash,
which stores multiple bits in a cell. For example, a QLC cell
distinguishes 16 different voltage levels, where each voltage
level represents a 4 bit binary code. Any transition between
different states of a cell is governed by the current voltage
level: reducing the voltage level is not possible without first
erasing, but increasing is possible. It is not dependent on
the individual bit values of the 4 bit value stored in a cell
(represented by the current voltage level).
Scalability
The bit based model creates unnecessary constraints that limit
the usability for QLC flash. In order to show these restrictions,
we introduce a naive extension of WOM(2, 3) to a WOM(2,
4) code which encodes any 2 bits of data into 4 coded bits
to be written in a cell for a QLC drive where all the bit-level
constraints are still satisfied. To this end we add a 0 / 1 to
all code-words in Gen 1 of WOM(2, 3) (Table 1 column 2)
to create Gen 1 / Gen 2 for WOM(2, 4). Next, we add a 1 to
all code-words in Gen 2 of WOM(2, 3) to create Gen 3 in
WOM(2, 4) (Table 2 bits colored green). Non-Binary WOM
codes have been well studied and optimized for various met-
rics [4, 5, 7, 9–11, 13, 15, 24, 29] but we limit extending to
a code-word scheme with 4 bits per code-word and 4 code-
words per generation each representing a unique data bit
sequence to model a QLC cell. Although WOM(2,4) enables
an additional generation before erasure, only 12 out of 16
possible four-bit code-words that could be written in a QLC
drive’s cell are used in this scheme as we try to maintain the
bit-level constraint. This limits the total number of potential
generations to 3 instead of 4 generations. The artificial reduc-
tion in code-word usability due to bit constraints will only
worsen with denser media.
3 Solution
SSD cells that store multiple bits have different characteristics
than how WOM codes in the past have modeled them. In [18]
Margaglia et. al. examined possible reprogramming opera-
tions between different intermediate states in MLC SSDs.
Their observation confirms that some transitions are possi-
ble which are not compatible with the bit-level constraints.



Moreover, there are cases where the bit-level constraints as-
sume the transition is possible but in practice that transition
is not possible due to hardware constraints. In order to design
WOM codes that are capable of utilizing the full potential of
QLC drives, we consider a different model for WOM code
constraints. Although we evaluate our approach on the most
recent and dense drive commercially available, our approach
is generic and can be extended to any N-Level Cell drive, and
also matches better with the actual underlying constraints of
the flash cell hardware to the best of our knowledge.
Voltage Based QLC WOM Code

Figure 2: Voltage based codes for encoding 3 2 and 1 data
bit(s) into 4 coded bits respectively. Each oval represents a
generation. Each generation contains a set of code-words
mapped to a set of all possible data bit sequence for the code.

In this section we change the model by imposing the invari-
ant constraints for WOM coding in terms of voltage levels
stored in flash cells rather than encoded bits. In this model
the only invariant constraint that should be satisfied in WOM
code reprogram operations is that the voltage level in each
flash cell can only be increased or kept unchanged before
an erasure. We refer to WOM codes designed based on this
constraint model as voltage based WOM codes, and denote
them by WOM-v(k,n) when the coding scheme maps any k
data bits to one of 2n voltage levels stored in the flash cell.

In a QLC drive, each voltage level could be considered
as a sequence of 4 coded bits. In Figure 2, we present 3
instances of a family of WOM-v codes, WOM-v(3,4), WOM-
v(2, 4) and WOM-v(1,4). In summary, a WOM-v(k,n) code
is a unique mapping between any sequence of k data bits
and a set of voltage levels (or equivalently their coded bit
sequence representations), referred to as code-words. A set
of consecutive code-words that cover all possible data bit
sequence make one generation. Each coding scheme can have
GEN_MAX number of generations, which are 2,5 and 15 in
WOM-v(3, 4),WOM-v(2, 4) and WOM-v(1, 4) respectively. All
coding schemes have a maximum voltage V_MAX (shown in

red) after which the cell needs to be erased.
Consider WOM-v(2, 4) code (Figure 2 center) where 2 data
bits are encoded into 4 code bits. Therefore, we have four
possible data bit sequences, indicated by 00, 01, 10 and 11.
Each generation has 4 code-words mapped to a unique data
bit sequence within a generation. With voltage based coding,
the following three optimizations help us accommodate 5
generations for WOM-v(2,4) efficiently:
Code-word Sharing
One feature used in the design of this WOM-v code family is
that each pair of consecutive generations are sharing one com-
mon code-word. A voltage based model has a linear structure
where we are able to overlap code-words between successive
generations. This compresses all generations leaving space
for additional generations. For example, in WOM-v(2, 4) code,
without sharing code-words we would only be able to ac-
commodate 4 Generations consisting of voltage levels 0-3,
4-7, 8-11 and 12-15 respectively (not shown). With shared
code-words between generations, we now can have 5 gener-
ations from 0-3, 3-6, 6-9, 9-12, 12-15, (Fig 2) with shared
code-words 3,6,9 and 12 between consecutive generations
(shown in yellow). The data bit sequence corresponding to
each shared code-word is the same in both generations. Ex-
ample. code-word 0011 maps to data bit sequence 11 in both
Gen 1 and Gen 2. Note that having larger GEN_MAX trans-
lates into more logical data write cycles before erasure. The
gain of code-word sharing are much higher in WOM-v(1, 4),
where GEN_MAX increases from 8 disjoint generations, to 15
generations with overlapping states, Fig 2).
Same Generation Transition
Another feature we suggest in the design of this WOM-v code
family is to perform reprogram operations by transition to
a higher voltage level within the same generation whenever
possible. In other words, in each write cycle, we suggest to
simply increase the voltage level in each cell to the lowest
voltage level corresponding to the data bit sequence we need
to write in that cell which is not below the current voltage
level in that cell. For example, consider WOM-v(2,4), if data
bit sequences 01, 01, 10 and 00 are written in 4 successive
write cycles, we would encode and change the voltage level to
0001, 0001, 0010 and 0100 for the write cycles one through
four respectively. The second write does not change the first
code-word as the corresponding data bit sequences are the
same. While writing the third code-word on 0001, instead
of transitioning to 0110 in the next higher generation, we in-
crease the voltage level from 0001 to 0010. Finally, the fourth
write cycle involves writing data bits 00 so we overwrite 0010
to 0100. Note that without self generation transition, the code-
word would have the following order 0001, 0001, 0110 and
1000.

As demonstrated in this example, with the same generation
transitions we could potentially achieve a significant saving
in voltage level increase during write cycles, and therefore,
enables us to perform more write cycles before we need



an erasure. However, this comes with a drawback, which
is addressed in the next subsection. The drawback here is that
the voltage level stored in different cells in a page would end
up being in different generations after a few write cycles. That
is due to the fact that the pattern of voltage level increment
in each cell depends on the pattern of data bits written in
successive write cycles. This albeit does not affect reading the
stored data, since the decoding mapping from voltage levels
to data bits is unique.

Reusing underutilized Cells
In this section we present another optimization that further
increases the number of writes before an erase becomes un-
avoidable. Our idea is based on two key observations: a) A
page spans many flash cells and as soon as only one of the
cells in a page reaches a state where it needs to be erased the
entire page becomes unusable for rewriting. b) Flash drives
incorporate ECC for each page and that this ECC is designed
conservatively for the high bit error rates expect at the end of
a drive’s life, i.e. for much of the drive’s life (when bit error
rates are still low) the ECC could handle significantly larger
error rates than what it actually experiences.
Our idea is to allow further rewrites of pages where only
some limited number of cells have reached the V-MAX by
marking those cells as invalid and let ECC recover the value
in those cells. Considering random data bits, it is easy to see
the variance in stored voltage levels across different cells in a
page increases with the number of generations designed in the
WOM-v code. While each WOM-v code certainly guarantee at
least GEN_MAX number of possible write cycles in each cell,
one could see that for a WOM-v code with larger GEN_MAX,
there is a good chance to have majority of the cells still being
capable of accommodating more reprograms after write cycle
GEN_MAX. In order to enable writing beyond the write cy-
cle GEN_MAX, we suggest to identify the cells not writable
anymore by increasing the voltage level in them to V-MAX
which would be interpreted as invalid for write cycles beyond
GEN_MAX. As long as the percentage of such cells remains
low in each page, an slightly stronger error correcting code
(ECC) could handle these cells as noise, and enable reading
stored data from the page.
Current literature on QLC flash drive reliability [25] pro-
vides limited insight to the existing ECC within a QLC drive.
Given the increasing trend in error rates with denser media,
we hypothesize QLC drive to have provisions for strong ECC
mechanisms to correct uncorrectable bit errors. We suggest
to use an enhanced ECC mechanism, rather than the already
existing ECC embedded in the flash drives to correct raw bit
errors in the SSDs. Since invalid cells in our proposed scheme
would be identified as cells reaching V-MAX for write cycles
beyond GEN_MAX, correcting this type of noise is easier than
other types such as rotten bits caused by retention or pro-
gram interference errors. This is because unlike traditional
errors or corruptions that require reading parity or checksums
for identifying the location of corrupted or errored cell, our

approach simply checks for the value in a cell reaching the
V-MAX voltage level.

Note that the maximum voltage level is marked as inval-
idated or EINVAL after the number of write cycles become
more than GEN_MAX. This gives us a guaranteed GEN_MAX
number of write cycles even without using ECC. Since all
pages in a block undergo same number write cycles before
erase, keeping count of write cycles has minimal storage over-
head. Using pre-existing flash ECC to correctly reconstruct
cells in V-MAX after write cycles reach GEN_MAX helps repro-
gram under-utilized cells which are still at lower Generations.
By correcting cells that cannot be reprogrammed further, we
increase the number of write cycles. For example, in WOM-
v(1,4), increasing the number of writes helps increase logical
space from 15X to 20X with a 4X physical space overhead.
This raises the total logical writable bytes from 375% to 500%
the original physical storage capacity of the drive.

Each of the three optimizations - code-word sharing, same
generation transition and reusing underutilized cells, may be
done for TLC drives as well, but the resultant gains will not
be significant. However, as the disks become denser (eg. PLC)
which is an upcoming trend for SSDs, our optimizations will
reap great benefits while using WOM codes.

4 Evaluation
Our WOM coding scheme is based on simple table lookups
and does not involve large firmware changes or complicated
computation. In this section, we provide an analysis of the
tradeoffs involved in implementing our scheme for QLC
drives.

P/E Cycle versus Physical Space Tradeoff

Figure 3: Each point represents physical space required for 1
unit of user data, and corresponding logical writes possible
before erase.

Each WOM coding scheme offers a trade-off between num-
ber of write cycles possible before erase and the physical
space overhead. For instance, in WOM(2,3) (Table 1), if a
user has 1 unit of physical storage, we may write at least 2X
logical data before erase is required. However, for each 2-bit
data sequence, a 3-bit code-word is written, increasing storage



overhead by 50%. While this might seem like a large space
overhead, let’s compare it with a solution that does not use
codes, and therefore needs to perform an erase after every
write. The only way to double the number of writes that is
feasible for such a device is to double the physical capacity
and spread all writes and erases over twice as many cells. This
would be an additional 100% physical storage overhead.

Figure 3 shows the increased logical data before an erase
versus the physical space overhead. With no coding NO
WOM(+), the total amount of logical space written equals
the total amount of physical space available. For more logi-
cal writes with a constant number of P/E cycles, the physical
space required needs to be increased proportionately. For a
2X increase in logical writes using WOM(2,3)(X), we only
need 1.5X physical space. Similarly, using WOM(2,4)(?), one
can write 3X more logical data, with a space overhead of 2X.
For WOM-v codes, although we need 1.33X, 2X and 4X phys-
ical space, we are able to write 2X, 5X and 15X amount of
logical data for WOM-v(3,4), WOM-v(2,4) and WOM-v(1,4) re-
spectively, before any cell reaches V-MAX. This is a huge gain
over existing WOM(2,4) coding scheme that gives us a 50%
additional logical space per physical unit. Using WOM-v(1,4)
scheme, we get 375% additional logical space per physical
unit. The lines joining WOM-v points show that underlying
firmware may choose to take a middle-ground and use a com-
bination of multiple codes based on available physical storage.

For example, if a firmware encodes half of the user data
using WOM-v(2,4) and the other half using WOM-v(1,4), the
overall physical space overhead per 1 unit of user facing physi-
cal storage equals 0.5×2+0.5×4= 3 units. The correspond-
ing logical data that can be written before we need an erase
operation would be 0.5×5+0.5×15 = 10 units increasing
overall logical space usage of physical media before erase by
333%.

Reprogramming beyond GEN_MAX

Once a cell in a page reaches V-MAX it can no longer be
reprogrammed. The number of cells that have reached V-MAX
can be easily computed in practice by reading cell values. In
order to determine the probability of a cell reaching V-MAX,
we use a Markov model considering each data bit sequence
that is written to be an Independent and Identically Distributed
(IID) random variable. At each voltage level, a transition to
the same code-word or one of the other valid code-words
takes place with equal probability. Therefore, in the worst
case a cell will become unwritable only if each write cycle
(WC) writes different data GEN_MAX times. Recall that after
WC equals GEN_MAX, we treat V-MAX as EINVAL and treat
all cells having EINVAL value unwritable. A coding scheme
with larger GEN_MAX has less unwritable cells when WC
equals GEN_MAX.

Figure 4 shows the amount of logical data that can be writ-
ten for a given fraction of cells in EINVAL state after each WC

for two coding schemes. We observe that for the same per-
centage of cells (0.02) in EINVAL, we are able to write more
logical data beyond each code’s respective GEN_MAX with
WOM-v(1,4) as compared to WOM-v(2,4). We propose that if
the fraction of cells reaching EINVAL beyond GEN_MAX is
low (Eg. 0.02) and correctable using ECC, we can enhance
the number of logical bytes written from 5X to 7X and from
15X to 20X in WOM-v(1,4) and WOM-v(2,4) respectively.
To analyze the total number of cells in a flash page that reaches
EINVAL after GEN_MAX write cycles, we create a binomial
distribution for each WC as shown in Figure 5. We consider
the flash page size to be 4096. The X axis denotes the number
of cells (k) in a flash page (between 0 and 4096). The Y axis
denotes the probability of k cells having EINVAL value. For
each WC, we provide the minimum correctable error rate (su-
perscript on each curve) that needs to be maintained in flash
ECC to correct cells in EINVAL. As the number of WC in-
crease, the total number of cells in EINVAL in a page increase,
which requires a stronger ECC.

We leave determining the exact value of ECC to the system
designer based on the underlying media being used, as the un-
correctable bit error rate varies widely across flash media [25].
Rather, we provide an estimate of the ECC required to recover
data in cells that have reached EINVAL after specific number
of write cycles. For example, an ECC with error correction
capability of 1/35 would help us do WC 7 and WC 20 increas-
ing the logical bytes writable before erase from earlier 250%
to 350% for WOM-v(2,4) and from earlier 375% to 500% for
WOM-v(1,4) respectively.

5 Related Work
Flash memory reliability has been well studied in the past [6,
12, 14, 16, 17, 20, 21, 23, 28, 32]. These studies have become
more relevant with denser media such as QLC drives that
are less reliable and have decreased lifetime [25]. WOM
Coding schemes [8, 22] have been evaluated for MLC and
TLC flash [27, 28, 32]. The implementation and limitations of
such approaches considering hardware constraints have been
evaluated [18, 19, 33]. Further, biasing code-words towards
one type of data format as opposed to another to keep voltage
levels to a minimum have been studied [30, 35]. Recent work
also suggests how encoding data such that eventual code is
kept at a lower or middle voltage level helps reduce program
interference errors [26, 30, 35]. Such approaches can be made
complimentary to our approach as the voltage based model
also tries to increase voltage by a minimum value during each
write cycle and therefore keeps most cells at a lower/middle
voltage level.

6 Future Work and Conclusion
We present a novel family of WOM codes to increase QLC
flash lifetime. Our scheme is based on simple table lookups
and does not involve complicated changes in underlying SSD
firmware. We plan to test these models in field on real QLC
flash chips and run real world workloads to get more accurate



Figure 4: Number of cells that reach EINVAL versus Log-
ical Data Writable before erase. Each point shows the
conditional probability of a cell being in V-MAX and the
Write cycle (WC). Each additional WC increases Logical
data writable before erase by 1. The probability of the cell
in EINVAL is 5 and 16 for WOM-v(2,4) and WOM-v(1,4),
not shown in figure due to log scale on the X-Axis. The
probability is conditional based on a cell having a lower
voltage than EINVAL.

Figure 5: Binomial distribution of the number of cells
reaching EINVAL in a 4096 cell page for each write cycle
for WOM-v(2,4) and WOM-v(1,4). The X axis denotes the
number of cells (k) in a flash page. The Y axis denotes the
probability of k cells having EINVAL value. 1/p denotes
1 additional ECC correction bit that needs to be main-
tained for every p data bits to continue reprogramming
underutilized cells WC times.

estimates of improvement in flash lifetime. We plan to evalu-
ate the impact on performance caused by reading previously
written data, reading and writing additional pages and saving
time consuming erase operation during garbage collection
in the future. Our solution is generic and can work for any
N-Level Cell SSD.

7 Discussion
A new family of WOM codes for high density flash drives
leads to some open questions for future research:

1. Using Over-provisioned Space v/s ECC Once flash
cells start reaching EINVAL state, one way to not rely on
ECC would be to write data of any unprogrammable cell
to the over-provisioned space in the SSD. This brings
additional management overhead but does not depend on
internal ECC. This also improves the read performance
as we no longer use ECC to correct the cells in EINVAL.

2. Existing QLC RBER During our preliminary discus-
sions with some industry partners, we observed that
there is a large variation in accepted values of RBER
(Raw Bit-Error Rate) between different SSD vendors
and across different SSD types. More discussion should
be done to determine what is the industry accepted range
of RBER rates for QLC flash and what error rates should
academics assume for future reliability based research
on dense flash storage media.

3. Voltage Transition Limitations Some voltage levels
may be reserved. Our WOM code model can discard
such reserved voltage levels while dividing different
voltage levels into generations. Hence, our model would
continue to work irrespective of forbidden voltage levels
in hardware.

4. Differential error rates at different voltage levels All
voltage thresholds are not equally error prone, and some
states may have a higher error rate than others [26, 35].
One approach to implement WOM-v scheme would be
give a larger voltage range between error prone voltage
states. In voltage based model this can be achieved by
merging multiple voltage states at a higher voltage level
together and assigning a single code word to that voltage
range.

5. Re-programming Feasibility Previous reliability stud-
ies attribute erase operation as a primary cause for flash
wear. WOM codes involve reprogramming the same
cell multiple times. It would be interesting to discuss
the impact of re-programming on flash wear and if we
should take the wear into account while quantifying in-
creased QLC flash lifetime, as discussed for MLC flash
in [31, 34].

6. Hardware Tool Kits for QLC experiments There exist
limited support for QLC flash in open sourced tool kits
and simulators [1, 3] to do benchmarks and experiments.
It would be interesting to investigate some industry stan-
dard tool kits available for performing experiments, and
get hardware level estimate of gains with the new class
of WOM codes.

7. Impact on simplifying SSD circuit design Our WOM
coding scheme restricts the number of transitions pos-
sible from one code word to another by 1/number of
generations. For example, with NO WOM, a voltage may
transition to one of the 16 transition levels. However,
with WOM-v(2,4), we may only transition to the next 4
voltage levels. A future line of research could be towards
simplifying SSD circuitry.



References

[1] Open-source solid-state drive project for research and
education. http://openssd.io. Accessed: 2020-03-
24.

[2] Western digital and toshiba talk up penta-level cell
flash. https://blocksandfiles.com/2019/08/07/
penta-level-cell-flash/. Accessed: 2020-03-24.

[3] Xylinx boards and kits. https://www.xilinx.com/
products/boards-and-kits.html. Accessed: 2020-
03-24.

[4] Nicolas Bitouzé, Alexandre Graell i Amat, and Eirik
Rosnes. Using short synchronous wom codes to make
wom codes decodable. IEEE transactions on communi-
cations, 62(7):2156–2169, 2014.

[5] Sarit Buzaglo and Tuvi Etzion. Tilings with n-
dimensional chairs and their applications to asymmet-
ric codes. IEEE transactions on information theory,
59(3):1573–1582, 2012.

[6] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo,
and Onur Mutlu. Error characterization, mitigation, and
recovery in flash-memory-based solid-state drives. Pro-
ceedings of the IEEE, 105(9):1666–1704, 2017.

[7] Yuval Cassuto and Eitan Yaakobi. Short q-ary fixed-rate
wom codes for guaranteed rewrites and with hot/cold
write differentiation. IEEE transactions on information
theory, 60(7):3942–3958, 2014.

[8] Amos Fiat and Adi Shamir. Generalized’write-
once’memories. IEEE Transactions on Information
Theory, 30(3):470–480, 1984.

[9] Hilary Finucane, Zhenming Liu, and Michael Mitzen-
macher. Designing floating codes for expected perfor-
mance. In 2008 46th Annual Allerton Conference on
Communication, Control, and Computing, pages 1389–
1396. IEEE, 2008.

[10] Fang-Wei Fu and AJ Han Vinck. On the capacity of
generalized write-once memory with state transitions
described by an arbitrary directed acyclic graph. IEEE
Transactions on Information Theory, 45(1):308–313,
1999.

[11] Ryan Gabrys and Lara Dolecek. Constructions of non-
binary wom codes for multilevel flash memories. IEEE
Transactions on Information Theory, 61(4):1905–1919,
2015.

[12] Laura M Grupp, Adrian M Caulfield, Joel Coburn,
Steven Swanson, Eitan Yaakobi, Paul H Siegel, and
Jack K Wolf. Characterizing flash memory: anomalies,

observations, and applications. In 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 24–33. IEEE, 2009.

[13] Qin Huang, Shu Lin, and Khaled AS Abdel-Ghaffar.
Error-correcting codes for flash coding. IEEE transac-
tions on information theory, 57(9):6097–6108, 2011.

[14] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and
Bianca Schroeder. Evaluating file system reliability
on solid state drives. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 783–798, Renton,
WA, July 2019. USENIX Association.

[15] BM Kurkoski. Notes on a lattice-based wom construc-
tion that guarantees two writes. In Proc. 34th Symp.
Information Theory and Applications, pages 520–524,
2011.

[16] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch,
and Onur Mutlu. Improving 3d nand flash memory
lifetime by tolerating early retention loss and process
variation. In Abstracts of the 2018 ACM International
Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’18, pages 106–106, New York,
NY, USA, 2018. ACM.

[17] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and
Bianca Schroeder. A study of SSD reliability in large
scale enterprise storage deployments. In 18th USENIX
Conference on File and Storage Technologies (FAST
20), pages 137–149, Santa Clara, CA, February 2020.
USENIX Association.

[18] Fabio Margaglia and André Brinkmann. Improving
mlc flash performance and endurance with extended
p/e cycles. In 2015 31st Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–12. IEEE,
2015.

[19] Fabio Margaglia, Gala Yadgar, Eitan Yaakobi, Yue Li,
Assaf Schuster, and Andre Brinkmann. The devil is in
the details: Implementing flash page reuse with WOM
codes. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 95–109, Santa Clara, CA,
February 2016. USENIX Association.

[20] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu.
A large-scale study of flash memory failures in the field.
ACM SIGMETRICS Performance Evaluation Review,
43(1):177–190, 2015.

[21] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
Ssd failures in datacenters: What? when? and why? In
Proceedings of the 9th ACM International on Systems

http://openssd.io
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
https://blocksandfiles.com/2019/08/07/penta-level-cell-flash/
https://www.xilinx.com/products/boards-and-kits.html
https://www.xilinx.com/products/boards-and-kits.html


and Storage Conference, SYSTOR ’16, New York, NY,
USA, 2016. Association for Computing Machinery.

[22] Ronald L Rivest and Adi Shamir. How to reuse a “write-
once memory. Information and control, 55(1-3):1–19,
1982.

[23] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash reliability in production: The expected and the
unexpected. In 14th USENIX Conference on File and
Storage Technologies (FAST 16), pages 67–80, Santa
Clara, CA, February 2016. USENIX Association.

[24] Amir Shpilka. Capacity-achieving multiwrite wom
codes. IEEE Transactions on Information Theory,
60(3):1481–1487, 2013.

[25] Amy Tai, Andrew Kryczka, Shobhit O Kanaujia, Kyle
Jamieson, Michael J Freedman, and Asaf Cidon. Who’s
afraid of uncorrectable bit errors? online recovery of
flash errors with distributed redundancy. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 977–992, 2019.

[26] Debao Wei, Libao Deng, Peng Zhang, Liyan Qiao, and
Xiyuan Peng. Nrc: A nibble remapping coding strategy
for nand flash reliability extension. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 35(11):1942–1946, 2016.

[27] Eitan Yaakobi, Laura Grupp, Paul H Siegel, Steven
Swanson, and Jack K Wolf. Characterization and error-
correcting codes for tlc flash memories. In 2012 In-
ternational Conference on Computing, Networking and
Communications (ICNC), pages 486–491. IEEE.

[28] Eitan Yaakobi, Jing Ma, Laura Grupp, Paul H Siegel,
Steven Swanson, and Jack K Wolf. Error characteriza-
tion and coding schemes for flash memories. In 2010

IEEE Globecom Workshops, pages 1856–1860. IEEE,
2010.

[29] Eitan Yaakobi and Amir Shpilka. High sum-rate three-
write and nonbinary wom codes. IEEE Transactions on
Information Theory, 60(11):7006–7015, 2014.

[30] Eitan Yaakobi, Gala Yadgar, Nachum Bundak, and Lior
Gilon. A case for biased programming in flash. In 10th
USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 18), 2018.

[31] Gala Yadgar and Roman Shor. Experience from two
years of visualizing flash with ssdplayer. ACM Trans.
Storage, 13(4), November 2017.

[32] Gala Yadgar, Eitan Yaakobi, Fabio Margaglia, Yue Li,
Alexander Yucovich, Nachum Bundak, Lior Gilon, Nir
Yakovi, Assaf Schuster, and André Brinkmann. An anal-
ysis of flash page reuse with wom codes. ACM Transac-
tions on Storage (TOS), 14(1):1–39, 2018.

[33] Gala Yadgar, Eitan Yaakobi, and Assaf Schuster. Write
once, get 50% free: Saving SSD erase costs using WOM
codes. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), pages 257–271, 2015.

[34] Gala Yadgar, Alexander Yucovich, Hila Arobas, Eitan
Yaakobi, Yue Li, Fabio Margaglia, André Brinkmann,
and Assaf Schuster. Limitations on mlc flash page reuse
and its effects on durability. Technical report, Computer
Science Department, Technion, 2016.

[35] Yutong Zhao, Wei Tong, Jingning Liu, Dan Feng, and
Hongwei Qin. Cesr: A cell state remapping strategy to
reduce raw bit error rate of mlc nand flash. In 2019 35th
Symposium on Mass Storage Systems and Technologies

(MSST), pages 161–171. IEEE, 2019.


	Introduction
	Limitations of traditional WOM codes
	Solution
	Evaluation
	Related Work
	Future Work and Conclusion
	Discussion

