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Abstract
Modern advanced storage devices, such as modern NVMe
SSD and non-volatile memory based persistent memory (PM),
provide different access features when data size varies. Exist-
ing key-value stores adopt unified IO path for all key-value
items, which cannot fully exploit the advantages of different
advanced storage devices. In this paper, we propose to split
IO paths for different sized key-value items. We let small
key-value items be written directly to PM and then migrated
to SSD. Meanwhile, large key-value items are directly writ-
ten to SSD. We present and discuss design choices towards
challenging issues of splitting IO paths. We build SplitKV,
a key-value store prototype to show the benefits of splitting
IO paths. The preliminary results show SplitKV outperforms
RocksDB, KVell, and NoveLSM under small-large KV mixed
workloads.

1 Introduction

Persistent Key-Value (KV) stores are widely deployed as a
key component of storage infrastructure in today’s data cen-
ters. Persistent KV stores usually serve interactive applica-
tions, such as web search [7, 20], e-commerce [9], and social
networks [12]. Thus, KV stores are required to provide fast
access of data for ensuring service quality for upper-level ap-
plications [10, 17, 26]. A few recent works have analyzed the
real-world KV store workloads and reported that the size of
key-value items varies from a couple of bytes to hundreds of
kilobytes [4, 20, 33]. More importantly, small key-value items
are dominant in real-world workloads [4]. For example, the
average value sizes of three workloads in Facebook, including
social graph, distributed KV store, and AI/ML services, are
126.7 B, 42.9 B, and 46.8 B.

Over the past decade, a number of research efforts are
made to design and optimize block device based key-value
stores [6, 23, 25, 27, 28, 30]. Conventional block devices, such
as hard disk drives and low-end/medium-end solid state drives
(SSDs), provide better performance when serving sequen-
tial access with large granularity, Log-Structured Merge Tree

(LSM-Tree) structure [24] is widely adopted in existing KV
stores [12, 14]. LSM-Tree converts random writes to sequen-
tial writes to make full use of maximum bandwidth.

Recently, advanced storage devices exhibit different fea-
tures compared to conventional block devices, which provides
new design choices for building high-performance KV stores.
On one hand, non-volatile memory based persistent memory,
such as Intel DC persistent memory (Intel DC PM [1]), pro-
vides byte-addressable access and sub-microsecond latency
for directly persisting data. A few recent works propose to
adopt persistent memory to remove write-ahead log and re-
duce (de-)serialization overhead [18, 19]. On the other hand,
modern NVMe SSD, such as Intel Optane SSD [3], sustains
high throughput with sub-millisecond latency and provides
similar performance for both sequential and random accesses.
This motivates research effort to batch KV requests and write
to SSD directly without commit log and sorting on disk [21].

In this paper, we take the insight that KV items with differ-
ent sizes benefit differently from PM and modern fast SSD
(e.g. Optane SSD). Table 1 shows the write latencies of PM
and Optane SSD. Writing 64 B data to PM outperforms writ-
ing it to Optane SSD by 79.2x. However, the write latency
gaps between PM and SSD decrease when the data size in-
creases. For example, when writing 16 KB or above, the gap
decreases under 3x. Existing KV stores adopt unified IO path
for all KV items. However, this design choice cannot fully ex-
ploit the advantages of these advanced storage devices. Thus,
we explore to split IO paths for different sized KV items. We
let small KV items be written to PM directly and migrated to
SSD later. As for large KV items, we directly write them to
SSD.

Although providing different IO paths to different sized
KV items sounds intuitive, applying it to build KV store faces
several challenges. First, the size boundary to distinguish
small and large KV items needs to carefully decide. Writing
KV items directly on PM benefits from lower write latency
than writing to SSD. However, these KV items require to be
flushed to SSD later at the cost of competing PM read band-
width as well as SSD write bandwidth. Thus, it is necessary



Random Write Latency (us)
Access Size 64 B 256 B 1 KB 4 KB 16 KB 64 KB 128 KB 1 MB 4 MB 16 MB
Optane SSD 14.09 14.09 14.09 14.09 21.44 45.79 145.58 532 2091 8223

Optane DC PM 0.18 0.20 0.43 1.05 3.90 15.50 61.88 247.25 1440 6840
Ratio 79.2 70.5 33.0 13.4 5.50 2.9 2.4 2.2 1.45 1.2

Table 1: Random write latencies (us) of Optane DC Persistent Memory and Optane SSD. The performance gap between
PM and SSD decreases when the access size increases.

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8

B
an

d
w

id
th

 (
M

B
/s

)

write thread

read write

(a) 1 read thread.

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8

B
an

d
w

id
th

 (
M

B
/s

)

write thread

read write

(b) 4 read threads.

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8

B
an

d
w

id
th

 (
M

B
/s

)

write thread

read write

(c) 8 read threads.

Figure 1: Trends of PM bandwidth. These figures show the trends of read and write bandwidth of Optane PM with changing
read and write threads.

to carefully decide the size boundary of small/large KV items
to balance the benefit of writing PM and the migration cost.

Second, due to the PM space limitation, small KV items
still need to be migrated to SSD. On one hand, accessing
small KV items in SSD suffers from read/write amplification.
Especially, it causes degraded performance when reclaiming
invalid small KV items on SSD. Byte-addressable PM allows
in-place-update for small KV items. Thus, one needs to care-
fully figure out cold KV items and migrate them to SSD to
help reduce read/write amplification. On the other hand, KV
migration affects the foreground query operations on both PM
and SSD. It is necessary to design well-controlled migration
to avoid negative impact on KV store performance.

Third, taking the querying process of a KV store into ac-
count, index searching and updating contribute a significant
part to the accessing performance, especially when KV item
accessing only needs sub-microsecond on PM. Thus, it is
non-trivial to build a highly-efficient indexing for SplitKV for
managing small KV items on PM and large ones on SSD.

In this paper, we build a key-value store prototype SplitKV
to explore the advantages of splitting IO paths for different
sized key-value items. We explore the design choices for the
above first and second issues and discuss the third one. We
show the preliminary results of SplitKV against conventional
LSM-Tree based RocksDB, Optane SSD based KVell, and
PM based NoveLSM. Under small-large mixed workloads,
SplitKV improves throughput by up to 7.8x ,and reduce aver-
age write latency by up to 14.4x.

2 Background and Related Works

Existing KV stores make design choices to fully adapt to the
access features of underlying storage devices.

LSM-Tree based KV store. Considering the performance
of sequential access is faster than that of random access in
earlier storage devices (e.g. hard disk drives and earlier solid
state drives), Log Structured Merge Tree is widely adopted in
KV stores to convert random writes to sequential writes [24].
LSM-Tree first writes KV items to in-memory buffer. When
the buffer is full, the KV items are sorted and flushed to disk.
This is beneficial to write-intensive workloads, which fully
exploits the fast sequential access of earlier storage devices.
However, LSM-Tree based KV store suffers from costly data
compaction and slow data read. Recently, a number of re-
search efforts are made to optimize LSM-Tree based KV
stores [6, 13, 23, 25, 27, 30].

Modern NVMe SSD based KV store. Compared to earlier
storage device, modern NVMe SSD (e.g. Intel Optane SSD)
provides higher bandwidth and lower access latency. Espe-
cially, modern NVMe SSD provides similar performance for
random and sequential accesses. Conventional LSM-Tree
based KV stores show CPU bottleneck instead of storage
device bottleneck when running on Optane SSD [3]. Thus,
KVell [21] proposes several design choices to reduce oper-
ations incurring CPU overhead. For example, KVell adopts
exclusive data structures to reduce conflicts between threads,
and batches requests to reduce the number of syscalls. More-
over, KVell does not sort data to avoid costly CPU operations.

Persistent Memory based KV store. Non-Volatile Memo-
ries (NVMs), such as 3D XPoint [2], Phase Change Memory
(PCM) [29], and Resistive Memory [5], provide low latency
and byte-addressable access. Thus, a number of persistent
KV stores are proposed to build on NVM-based persistent
memory. Some works [15, 31, 32, 34] focus on optimizing
indexing in KV stores. Meanwhile, a few works instead ex-
plore applying PM to reduce the overheads of logging and
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Figure 2: SplitKV overview. (1) Large items are batch
flushed to unsorted tables (ust) in SSD. (2) Small items are
directly written to segments in PM. (3) Small items with low
weights are migrated to SSD to generate sorted tables (st).
(4) A global B+-Tree index is used to index KV items in both
PM and SSD. The B+-Tree index is persisted in PM.

(de-)serialization in LSM-Tree based KV stores [11, 18, 19].
Motivation Although making design choices to adapt to dif-
ferent features of different storage devices, existing KV store
design a unified IO path for handling all KV items. As re-
ported in [4], the size ranges of real-world KV workloads are
from a couple of bytes to hundreds of kilobytes. As shown
in Table 1, PM is friendly to serve small data (e.g. less than
1 KB) and meanwhile this advantage is weakened when data
size increases. On the contrary, modern NVMe SSD suffers
from read/write amplification when serving small data (e.g.
less than 4 KB). This disadvantage does not exist when data is
multiple block size1 Moreover, modern NVMe SSD behaves
similarly when serving sequential and random accesses as
shown in Table 1. Thus, we are motivated to design different
IO paths for different sized KV items in this paper.

3 SplitKV

In this section, we present the design of SplitKV. Figure 2
shows the system overview of SplitKV. SplitKV adopts dif-
ferent IO paths for small/large KV items. As for small KV
items, SplitKV first stores them in PM. To reclaim PM space,
SplitKV selects part of KV items and migrate them to SSD.
Small KV items are stored in the form of sorted tables in
SSD similar to LevelDB/RocksDB. Instead, SplitKV applies
similar techniques as in KVell [21] to directly write large KV
items to SSD without sorting them. Similar to SLM-DB [18],
SplitKV adopts a global B+Tree index to locate KV pairs in
both PM and SSD. The global B+Tree index is persisted in
persistent memory. We guarantee its persistency and crash
consistency as existed persistent B+Tree index [15] do.

1Here the size of a block is 4 KB, which is the default block granularity
for most block devices.

3.1 Size Boundary of KV Items
Unlike byte-addressable persistent memory, modern NVMe
SSD provides block interface which usually requires data ac-
cess with 4 KB alignment. Thus, accessing KV items that are
less than 4 KB in SSD suffers from read/write amplification.
Moreover, as shown in Table 1, the latencies of writing data
less than 4 KB in PM are greatly improved by up to 79.2x
compared to writing them in SSD. However, directly writing
data with the sizes of 4 KB, 16 KB, and 64 KB in PM also
achieves at least 2.9x faster performance compared to writing
to SSD as in Table 1. In order to decide the size boundary of
small/large KV items, we also take the migration cost into
account. KV items still need to be migrated from PM to SSD
due to the limited PM space. The migration introduces ex-
tra competition for both PM read bandwidth and SSD write
bandwidth.

Access Size 256 B 1 KB 4 KB 16 KB
PM + SSD 1.48 4.47 15.70 27.57

SSD 23.35 25.39 14.79 21.33
Ratio 15.82 5.68 0.94 0.77

Table 2: Average write latencies (us) of writing PM and
writing SSD. PM + SSD indicates first writing KV items in
PM and then migrating them to SSD when 80% of PM is filled.
SSD indicates directly writing KV items to SSD.

Table 2 shows the average write latencies when adopting
different IO paths for different sized KV items. The ratios
indicate the write latency benefit of writing KVs in PM first
and then migrating to SSD. As shown in Table 2, the benefit
starts to decrease when a KV items is equal to or greater than
4 KB. This is because the background migration competes
for more PM bandwidth for migrating larger KV items.

Thus, SplitKV sets the size boundary of a small key-value
pair to be 4 KB. Any KV pair whose size is equal to or greater
than 4 KB is considered to be large one. The IO path for
small KV items is first writing in PM and then migrating to
SSD. This not only accelerates accessing small KV items,
but also provides the opportunity of applying in-place-update
in PM. A KV items is directly updated in case of existing
in PM. Otherwise, the updated one is written in PM as log-
structuring does. Moreover, small KV items can be sorted
and clustered into 4 KB blocks when migrated to SSD. When
serving scan queries, SplitKV is able to read these sorted small
KV pairs with a couple of 4 KB blocks and thus reduces read
amplification. We show the improved scan performance of
SplitKV in Section 5.

3.2 Direct Writing Small KV Items
Batch writing is widely used in block devices by increasing
IO queue depth. Batch writing helps to increase KV store
throughput. However, when applying batch writing to PM,
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Figure 3: A simple example of migrating KV items from
PM to SSD.

one requires to buffer KV items first in DRAM, and then flush
them into PM in a batch. As reported in some works [16, 22],
the write latency of PM is close to that of DRAM. Instead
of bringing throughput benefit, batch writing to PM causes
additional memory copy overhead. Moreover, batching data in
DRAM before flushing them to SSD takes the risk of data lost
in case of power failure. In order to provide data reliability,
extra efforts are required, such as data logging. Thus, SplitKV
directly writes a KV item into PM with IO queue depth of 1.

3.3 Hotness-aware KV Migration

Due to the limited space of PM, KV items in PM need to
be migrated to underlying SSD for reclaiming PM space.
As SplitKV applies appending write to small KV items in
SSD, any update to an in-SSD small KV brings expensive
garbage collection. Thus, SplitKV adopts hotness-aware KV
migration and figures out KV items that are less frequently
accessed for migration. The hotness-aware KV migration
actually works like a cache, and existing or new cache policies
can be explored to filter cold KV items. In this paper, we apply
a simple policy for demonstration purpose. We set a weight
for each KV item by using its access count. SplitKV runs
a background thread to periodically calculate the average
weight of all KV items in PM. When the PM capacity usage
goes beyond a certain threshold (e.g. 80%), SplitKV selects
the KV items whose weights are lower than the average one.
These selected KV items are then migrated to SSD. For a KV
item whose weight is greater than the average one, SplitKV
instead updates its weight by subtracting the average one.
Figure 3 shows an example. There exist 6 KV items with
different weights in PM, and the average weight is 3. SplitKV
selects the items with the keys of 124, 661, 724 and 60 as
the cold ones as their weights are less than 3. These four KV
items are flushed to SSD. The weights of the KV items with
keys 423 and 123 are updated by being subtracted by 3.

The background KV migration from PM to SSD introduces
extra reads to PM. In order to reduce its impact on foreground
queries, one needs to control the bandwidth competition by
the background migration. However, slow migration in turn

results in slowed PM space reclamation. Figure 1 shows the
read bandwidth changes of Optane DC PM as write threads
increase. We can see that about 2 write threads can saturate
the write bandwidth. Meanwhile, the write bandwidth can still
be sustained around 1.2 GB/s even co-running 8 read threads.
However, when the number of write threads increases, the read
bandwidth is first reduced and then can also sustain stable.
Moreover, the read bandwidth increases with increased read
threads. Thus, we by default adopt 1 background thread to
execute KV migration. On one hand, this has limited impact
on PM writes. On the other hand, one still can increase the
background threads in case of urgent PM space reclaiming.

4 KV Operations

Put When serving KV item insertion, SplitKV adopts differ-
ent IO paths for different sized KV items. As for large KV
items, SplitKV batches items in a queue, and then submit the
whole queue. Otherwise, SplitKV directly writes small KV
items in PM. After successfully writing KV item(s) in either
PM or SSD, SplitKV creates the index entry(ies) in B+-Tree
and returns success to upper-level applications.
Update When updating a large KV item, SplitKV applies
in-place-update by executing read-modify-write to the target
KV item. In case of updating a small KV item, SplitKV ap-
plies in-place-update to the target KV item if it is located in
PM. Otherwise, the KV item is already migrated to SSD, and
SplitKV adopts out-of-place update by directly writing the
updated one in PM. Then, SplitKV updates the location of the
KV item in the global B+-Tree index. The KV item in SSD
is marked as invalid and then recycled. We leave the garbage
collection process as the future work.
Get/Scan To search a KV item or a range of KV items,
SplitKV first searches the B+-Tree index to locate the item(s).
Then, SplitKV fetches the item(s) according to its location(s)
from either PM or SSD.

5 Evaluation

5.1 Experiment Setup
System and hardware configuration. We conduct all exper-
iments on a server equipped with two Intel Xeon Gold 5215
CPU (2.5GHZ), 64GB memory, one Intel Optane SSD P4800
and one Intel Optane DC PM. We run CentOS Linux release
7.6.1810 with 4.18.8 kernel.
Compared systems. We compare SplitKV against
RocksDB [12], KVell [21] and NoveLSM [19]. We set
MemTable size of RocksDB to 64MB. Note that, RocksDB
does not use PM and adopts asynchronous write ahead log.
KVell does not sort data on disk, and uses non-shared data
structures and batches I/O requests to reduce CPU overhead.
NoveLSM uses PM to reduce (de-)serialization cost and
is implemented on LevelDB. We set up 8 GB persistent



KV Store Uniform Zipfan
A B C D E F A B C D E F

NoveLSM 96.69 69.77 61.04 64.56 476.19 145.14 48.35 34.89 30.52 32.28 445.83 72.57
RocksDB 21.11 26.13 26.08 25.89 529.10 43.27 17.47 21.82 21.72 21.13 497.02 35.19

KVell 17.86 14.02 13.31 13.80 670.69 23.09 11.76 8.60 8.64 9.20 609.38 14.12
SplitKV 8.81 12.78 12.77 9.22 346.02 13.87 3.81 4.65 4.56 4.56 306.65 5.05

Table 3: Average latencies of different KV stores. This table shows the average latency (us) comparison of different KV stores
with single thread under YCSB mixed workloads.
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Figure 4: Normalized throughputs of different KV stores.
The figure shows the throughput of different KV stores with
four threads under YCSB mixed workloads.

MemTable and 64 MB in-DRAM MemTable for NoveLSM.
For SplitKV, we set 8 GB PM for it.
Workloads. We use the 6 default workloads in YCSB [8]
for evaluation. Workload A performs 50% reads and 50%
updates; Workload B performs 95% reads and 5% updates;
Workload C performs 100% reads; Workload D performs
95%reads for latest keys and 5% inserts; Workload E performs
95% range queries and 5% inserts; Workload F performs 50%
reads and 50% read-modify-writes. We evaluate both uniform
and zipfian distributions. All workloads include small KV
items with 256 B value and large KV items with 4 KB value.
All keys have a length of 8 B. We first warm up a 200 GB
database and then run workloads A, B, C, D, E in turn. Each
workload handles 128 GB data set, in which small/large KV
items account for half respectively. We execute 5 runs for
each experiment and use average results.

5.2 Evaluation Results
Table 3 shows latency results of different KV stores using
single thread, and meanwhile Figure 4 shows the through-
put results normalized to RocksDB using four threads2. For
workloads A and F, SplitKV reduces latency by 14.4x, 6.9x,
and 3.1x compared to NoveLSM, RocksDB and KVell under
zipfan workloads. As for throughput, SplitKV outperforms
RocksDB and KVell by 5.8x and 1.6x respectively. LSM-
Tree based NoveLSM and RocksDB perform compaction
to ensure ordered data and recycle invalid data. This causes
high write amplification and reduces performance. KVell ap-
plies in-place-update for all KV items to avoid sorting over-

2Note that NoveLSM only supports single thread.

head to achieve better performance. However, KVell suffers
from read/write amplifications for small KV items. Instead,
SplitKV writes small KV items in PM to accelerate KV ac-
cessing. Moreover, SplitKV exploits PM to conduct in-place-
update for small KV items to reduce read/write amplifications.
Thus, SplitKV further outperforms KVell.

For read-intensive workloads B, C and D, SplitKV and
KVell achieved better performance than NoveLSM and
RocksDB due to the adoption of the global B+-Tree index.
SplitKV is able to fetch small KV items from PM instead of
SSD. Thus, SplitKV improves both latency and throughput
compared to KVell.

For workload E, SplitKV outperforms RocksDB and KVell
by 1.6x and 1.7x respectively under zipfan workloads in terms
of throughput. Meanwhile, SplitKV achieves lowest latency
among all KV stores. KVell does not sort small KV items
in SSD. This introduces read amplification to KVell when
serving scan query by reading a plenty of blocks. Thus, KVell
suffers from the highest latency. NoveLSM and RocksDB
performs better than KVell as they sort all KV items in SSD.
SplitKV does not sort large KV items in SSD which reduces
CPU overhead. Meanwhile, SplitKV flushes sorted small
KV items into SSD, which helps to accelerate scan perfor-
mance. Therefore, SplitKV further outperforms NoveLSM
and RocksDB.

Note that, compared to the results under zipfan workloads,
the latency and throughput improvements of SplitKV decrease
under uniform workload. This is because the current hotness-
aware migration policy is difficult to figure out cold items
under uniform workloads.

6 Conclusion

Modern NVMe SSD and persistent memory provide different
access features when serving small/large data. In this paper,
we propose SplitKV to provide different IO paths for different
sized KV items for building KV stores with such advanced
storage devices. SplitKV let small KV items be written in PM
directly and then selectively migrated to SSD. As for large KV
items, SplitKV directly writes them to SSD. Our preliminary
evaluations show SplitKV outperforms state-of-the-art KV
stores in terms of both throughput and latency.



7 Discussion Topics

Exploration of advanced storage devices in KV stores.
Earlier storage devices prefer sequential access with large
granularity than small random writes. This results in the
widely adopted design choice of LSM-Tree in existing KV
stores. However, LSM-Tree suffers from expensive data com-
paction and slow reads. A number of research efforts propose
optimizations based on LSM-Tree [6, 13, 23, 25, 27]. With
the development of advanced storage devices, such as Intel
Optane SSD and Intel Optane DC PM, it is desirable to fully
discuss the impact of these devices on KV stores as well as
explore their usages on designing KV stores. A few recent
works, such as KVell [21] and NoveLSM [19]/SLM-DB [18],
have explored the design choices of KV stores towards Optane
SSD and Optane PM respectively.

We argue splitting IO paths for different sized KV items
to match different features of advanced storage devices. Al-
though the preliminary results show SplitKV outperforms
existing KV stores, several interesting topics deserve further
discussion.

(1) Handling small items. As for large KV items, KVell pro-
poses an effective approach to handle with modern NVMe
SSDs. However, small KV items cannot benefit much from
such design choices. SplitKV writes small KV items first in
PM to shorten its write path, but the organization and update
of small KV items in SSD are still open issues. LSM-Tree
may not be a well-suited choice for modern NVMe SSDs.
An alternative approach is keep small items in PM as much
as possible. SplitKV explores filtering KV items before they
are migrated to SSD with a simple policy. This policy can
be further studied to distinguish different types of KV items
according to features of PM and SSD. In such doing, PM
friendly KV items can be figured out and kept in PM to accel-
erate KV access. Meanwhile, this helps to reduce IO pressures
to SSD.

(2) Efficient indexing. Table 1 shows that PM improves write
latency by almost 2 orders of magnitude compared to SSD
with small granularity. However, we observe in the system
level, the small-item write latency of SplitKV is only 10x
faster than that of KVell which directly writes KVs to SSD (as
shown in Table 2). This is because the indexing contributes
more overhead when accessing KV items with underlying PM.
One explorable direction is to design hybrid index for data in
PM and SSD. For example, a global index is adopted to locate
data in both PM and SSD to provide fast read, and meanwhile
a PM friendly and highly efficient index is designed to search
items in PM. We leave this for our future work.

(3) Flow control of PM. Migrating KV items from PM to
SSD competes for PM bandwidth when reading data and
meanwhile competes for SSD bandwidth when writing data.
A carefully designed flow control or request scheduling is still
an open issue.
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