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Abstract

This paper explores how to design a garbage collection
scheme for ZNS (Zoned NameSpace) SSDs (Solid State
Drives). We first show that a naive garbage collection
based on a zone unit incurs a long latency due to the huge
size of a zone. To overcome this problem, we devise a
new scheme, we refer to it as LSM ZGC (Log-Structured
Merge style Zone Garbage Collection), that makes use of
the following three features: segment based fine-grained
garbage collection, reading both valid and invalid data in
a group manner, and merging different data into separate
zones. Our proposal can exploit the internal parallelism
of a zone and reduce the utilization of a candidate zone
by segregating hot and cold data. Real implementation
based experimental results show that our scheme can en-
hance performance by 1.9 times on average.

1 Introduction

ZNS SSDs are a double-edged sword. It gives an oppor-
tunity to improve performance and reduce WAF (Write
Amplification Factor) by separating different workloads
into separate zones [2, 6]. The downside is that a host
needs to manage ZNS SSDs directly such as a zone reset
and they have the sequential write constraint.

This paper examines design considerations when we
devise a garbage collection scheme for ZNS SSDs. One
simple approach is applying the conventional scheme
such as segment cleaning used by LFS (Log-structured
File System) [16, 22] or garbage collection used by FTL
(Flash Translation Layer) [11, 14]. The only difference
is that it applies garbage collection based on a zone unit
instead of a segment one. However, our analysis reveals
that this naive approach incurs a long garbage collection
latency since the size of a zone (e.g. 0.5 GB or 1 GB) is
much larger than that of a segment (2 MB or 4 MB).

To overcome this problem, we propose a new zone
garbage collection scheme, called LSM ZGC. We find

that the traditional segment concept is still valuable for
reclaiming a zone in ZNS SSDs. Specifically, LSM ZGC
divides a zone into multiple segments and manages their
information such as validity bitmap and utilization indi-
vidually. It conducts garbage collection in a LSM (Log-
Structured Merge) style [18, 19] that reads all data from
a candidate zone, identifies cold data, merges them into
a zone while merging remaining data into another zone.

Our proposal has several advantages. Garbage collec-
tion based on a segment unit instead of a zone unit be-
comes an effective basis for hot/cold segregation and
making our scheme in a pipelined fashion. Reading all
data, both valid and invalid in a segment, can reduce the
garbage collection overhead by exploiting the internal
parallelism in a zone. Merging data into separate zones
according to their hot/cold characteristics can enhance an
opportunity to find a zone with lower utilization.

We evaluate LSM ZGC on a real ZNS SSD prototype.
We implement a user level benchmark tool that can ma-
nipulate the prototype directly and measure the overhead
of various garbage collection schemes. Experimental re-
sults show that our scheme improves garbage collection
performance by up to 2.3 times with an average of 1.9
times. It also reduces interference with other applications
and provides better scalability with multiple threads.

The rest of this paper is organized as follows. In Sec-
tion 2, we present our two observations that motivate this
study. Section 3 describes how to design our scheme.
Evaluation results are discussed in Section 4. We explain
conclusion and future work in Section 5. Finally, discus-
sion topics are given in Section 6.

2 Motivation

In this section, we briefly introduce the features of ZNS
SSDs. Then, we discuss our observations conducted on
a real ZNS SSD prototype. Details of our experimental
prototype will be explained further in Section 4.



2.1 ZNS SSDs
ZNS SSDs are a kind of OCSSDs (Open Channel SSDs)
that exposes SSD internals using the zone concept [2].
Specifically, the address space of a ZNS SSD device is
divided into zones, which provides two benefits. First,
they give a chance to enhance performance and decrease
WAF by allocating data with different characteristics into
separate zones. Second, they can reduce or even remove
FTL functionalities, which allows to lessen DRAM us-
age and over-provisioning area in SSDs. Hence, many
vendors recently announce their ZNS SSD solution and
plan [3, 4, 13].

However, there are two challenges in ZNS SSDs. The
first one is that host software needs to handle a zone ex-
plicitly such as a zone reset, open, read, write and zone
garbage collection. The second challenge is that ZNS
SSDs have a unique constraint, called sequential write
constraint. All data in a zone are required to be written
sequentially, like SMR (Shingled Magnetic Recording)
drives [23, 24].

2.2 Observations
Figure 1 shows the quantitative zone garbage collection
overhead on various zone utilizations. In this experiment,
the sizes of a zone, a segment and a block are 1GB, 2MB
and 4KB, respectively. It implies that a zone consists of
512 segments, while a segment consisting of 512 blocks.
We measure the zone garbage collection overhead, that
is the total elapsed time to copy a valid block from a can-
didate zone into a new zone until there is no remaining
valid blocks in the candidate zone. The overhead also in-
cludes the time to reset the candidate zone.

Figure 1: Zone garbage collection overhead under vari-
ous utilizations of a zone

From this figure, we can observe that the garbage col-
lection overhead increases as utilization grows as ex-
pected. One surprising thing is that the overhead be-
comes more than 20 seconds when utilization is bigger
than 0.4 due to the copying overhead of valid blocks.
This long elapsed time might interfere with user requests,
incurring a long latency. Even though we can hide the
overhead by introducing a preemptive approach, the huge

size of a zone makes it quite complicated. This observa-
tion uncovers that reducing the utilization of a candidate
zone is indispensable for ZNS SSDs.

Figure 2: Access blocks individually vs. in a group man-
ner

Figure 2 presents our second observation, comparison
between the total elapsed time for reading all blocks in
a zone individually (4KB I/O size per each request) and
in a group manner (8KB ∼ 128KB I/O size per each re-
quest). The results reveal that accessing in a group man-
ner is much faster than individual accesses. This is be-
cause it can not only reduce the number of requests but
also make use of the internal parallelism in ZNS SSDs.
In general, a zone in ZNS SSDs is spread into multi-
ple channels which gives a chance to process a request
with consecutive blocks in parallel, like OCSSDs [20].
This observation motivates us to design our LSM-style
garbage collection scheme.

3 Design

In this section, we first describe a basic garbage col-
lection scheme for ZNS SSDs. Then, we explain our
scheme, contrasting differences between ours and the ba-
sic scheme.

One simple approach for zone garbage collection in
ZNS SSDs is selecting a candidate zone whose utiliza-
tion is the smallest. Then, it reads valid blocks from the
selected zone and write them into a new zone. Finally, it
issues the reset command for the selected zone. We refer
to this scheme as Basic ZGC as shown in Figure 3.

Our LSM ZGC scheme has three differences. First, it
conducts garbage collection based on a segment unit for
reclaiming a zone. This approach makes it easy to seg-
regate hot and cold data into different zones, which will
be discussed further using Figure 4. In addition, it allows
a zone garbage collection to be executed with a fined-
grained segment unit where reading, merging and writing
a segment can be done in a pipelined fashion.

Second, during garbage collection, it reads not only
valid blocks but also invalid blocks in 128KB I/O size,
whereas Basic ZGC reads valid blocks only. Note that
the original LFS, designed for hard disks, reads all data



Figure 3: Design concept of LSM ZGC in comparison
with Basic ZGC

like our scheme [22]. However, most of file systems and
FTLs designed for SSDs reads valid data only since there
is no seek overhead in flash memory [11, 14, 16]. We
carefully argue that reading all blocks is a viable option
in ZNS SSDs to fully obtain the internal parallelism ob-
served in Figure 2. In actuality, we consider the utiliza-
tion of a candidate segment when we design LSM ZGC.
Specifically, when the number of valid blocks in a seg-
ment is less than 16, LSM ZGC reads valid blocks only.
Otherwise, it reads all blocks since 16 requests with
128KB size can cover the whole 2MB segment data.

The third difference is that LSM ZGC tries to iden-
tify cold data and merge them into a separate zone. For
this purpose, we define four states of a zone, namely
C0 zone, C1C zone, C1H zone and C2 zone, as shown
in Figure 4. Newly arrived data is written sequentially
into a zone whose state is C0 zone and deleted data is
going out of the states presented in the figure.

Figure 4: Zone state and transition

Now assume that LSM ZGC selects a candidate zone
whose state is C0 zone. It reads all segments in the
zone and tries to identify cold segments. We define a
segment whose utilization is above a threshold, called
thresholdcold , as cold. This decision is based on our
observation that data which has similar lifetime shows
strong spatial locality. For example, in a key-value store,
each level shows different lifetime and SSTables in a
same level are written in a batch manner, which are also
observed in previous studies [8, 15]. Valid blocks in a
segment identified as cold are merged and written into a

zone whose state is C1C zone. Valid blocks of other seg-
ments are merged and written into another zone whose
state is C1H zone.

When a candidate zone is either C1C zone or
C1H zone, LSM ZGC reads all segments and treats all
valid blocks as cold. This is because these valid blocks
are survived after two garbage collection trials. They are
merged and written into a zone whose state is C2 zone.
We can extend further such as C3 zone and so on, but,
in this study, we stop here and write valid blocks sur-
vived from C2 zone into another C2 zone. We expect
that this mechanism enables to isolate cold data from
others, which enhance an opportunity to find a candidate
zone with lower utilization during garbage collection.

4 Evaluation

4.1 Experimental environment
We evaluate LSM ZGC via real implementation based
experiments. Our experimental system consists of Intel
Core i7-6700K processor (8 cores), 16GB DRAM and
1TB ZNS SSD prototype. This prototype is developed by
our team for research purpose, not a commercial product.
Its internals are similar to the published ZNS SSDs [3, 9].
The prototype information is summarized in Table 1.

Table 1: ZNS SSD prototype information
Item Specification
SSD Capacity 1TB
Size of a Zone 1GB
Number of Zones 1024
Interface PCIe Gen3
Protocol NVMe 1.2.1

On this hardware environment, we build a garbage col-
lection benchmark tool that runs at a user level to eval-
uate our scheme. The tool is composed of three stages.
In the first stage, it initializes the ZNS SSD prototype by
writing dummy data until the overall utilization becomes
a predefined target value. In this stage, we can configure
control parameters such as the number of zones used for
initialization and an overall target utilization value.

In the second stage, it updates the initialized data un-
der various patterns such as uniform, skewed or user-
specified. This updating is carried out until all initialized
zones are covered either valid or invalid blocks. For in-
stance, when we set up the number of zones and target
value as 512 and 0.5, respectively, it fills 256 zones with
dummy data in the first stage. Then, in the second stage,
it modifies data (invalidating the original data and writ-
ing new valid data) until all blocks in 512 zones are either
valid or invalid. Note that the utilization is still 0.5.



In the third stage, the tool executes Basic ZGC or
LSM ZGC and measures its elapsed time. We can con-
figure the number of free blocks we want to reclaim dur-
ing garbage collection and thresholdcold . The tool also
equips with functionalities such as a zone reset, open,
read and write so that it can manipulate ZNS SSDs di-
rectly at a user level. Besides, it takes care of several
data structures such as a bitmap per segment to distin-
guish valid and invalid blocks and usage information per
segment and zone. We implement the tool by modifying
the NVMe command line interface [1].

4.2 Garbage collection overhead
Figure 5 shows performance comparison results between
two schemes. In this experiment, we set up the number of
zones for initialization as 512 and the overall target uti-
lization values as denoted in the X-axis in the figure. We
also configure the update pattern as uniform, meaning
that all segments have utilization similar to the overall
target utilization. The number of reclaimed blocks and
thresholdcold are set as 512x512 and 0.4, respectively.

Figure 5: Performance comparison between Basic ZGC
and LSM ZGC under uniform update pattern

From Figure 5, we can observe that our proposed
LSM ZGC outperforms Basic ZGC by up to 2.3 times
with an average of 1.9 times. When we count the number
of copied blocks to a new zone during garbage collection,
LSM ZGC and Basic ZGC show same numbers. It im-
plies that the performance gain is derived from request-
ing all I/Os with 128KB size. Note that, for fair com-
parison, we implement Basic ZGC that writes all data
in 128KB size and reads valid blocks as large as pos-
sible if they are consecutive. However, the existence of
invalid blocks prevents Basic ZGC from generating re-
quests with 128KB size. On the contrary, our scheme
generates all requests with 128KB size, which are al-
lowed by reading both valid and invalid blocks.

4.3 Effect of data separation
To evaluate the effect of data separation, we carry out an
experiment that updates data in a skewed pattern. Specifi-

cally, in the second stage, the tool updates 30% data with
70% probability. Then, some segments have lower uti-
lization than others, which eventually merged and writ-
ten into zones with different states explained in Figure 4.
After performing the second and third stages repeatedly,
we measure the overhead under two schemes.

Figure 6: Performance comparison between Basic ZGC
and LSM ZGC under skewed update pattern

Figure 6 shows performance comparison result when
utilization is 0.8 (due to the page limitation, we present
this result only, but other results with different utiliza-
tions show similar trends). It reveals that LSM ZGC can
reduce the garbage collection overhead, compared with
Basic ZGC. This gain comes from two sources. One is
requesting I/Os with 128KB size. The second source is
decreasing the copied blocks during garbage collection
as shown in Figure 6 (b). LSM ZGC segregates cold data
from others, which allows to select a candidate zone that
has lower utilization. This is more evident in Figure 7
that presents the utilization distribution of Basic ZGC
and LSM ZGC. As you can see, data separation produces
a bimodal distribution, which allows to boost the possi-
bility to find a zone with low utilization.

Figure 7: Zone utilization distribution between Ba-
sic ZGC and LSM ZGC

One essential reason that we employ the segment-
based fine-grained garbage collection for reclaiming a
zone is to separate hot and cold data appropriately. Due to
the huge size of a zone, a zone has a tendency to contain
both hot and cold data even in the skewed pattern, blur-
ring whether a zone is hot or cold. But, it is more obvious
at a segment level since a segment is much smaller than
a zone. However, the effectiveness of data separation



depends on various parameters including hot/cold ratio,
hot/cold data size, our control parameter thresholdcold ,
and initial hot/cold placement which are governed by al-
location policy. We leave the investigation of these issues
as a future work.

4.4 Effect on other applications

Figure 8 presents how LSM ZGC affects the latency
of other applications. For this experiment, we build
a worker thread that writes a new 1GB file into the
ZNS SSD prototype and reads it randomly. We measure
the execution time of the worker under three cases; 1)
when it runs alone, 2) when it runs concurrently with
LSM ZGC and 3) with Basic ZGC.

Figure 8: Effect of garbage collection on other applica-
tions

From Figure 8, we can observe that the execution time
of the worker is around 40 seconds when it runs alone.
With LSM ZGC, the time is 45 seconds while it be-
comes 53 seconds with Basic ZGC. These results show
the tradeoff between the cost and benefit of LSM ZGC.
The cost is that LSM ZGC increases the amount of read
by reading both valid and invalid blocks during garbage
collection, while the benefit is that it reduces the garbage
collection overhead. Figure 8 demonstrates that the bene-
fit can compensate the cost, diminishing the interference
greatly.

4.5 Scalability

Figure 9 shows the performance when we run the worker
with multiple threads. In this figure, the Y-axis is the
throughput (MB/sec) relative to the case when we run
a single worker thread with Basic ZGC. These results
reveal that multiple threads can enhance throughput on
ZNS SSDs. We also observe that LSM ZGC provides
better scalability than Basic ZGC.

However, the scalability of our ZNS SSD prototype is
not linear. When we design ZNS SSDs, there is a spec-
trum between two extremes. One extreme is assigning
channels into a zone as many as possible to improve
intra-parallelism in a zone. The other extreme is assign-
ing a different channel (or channels) into a zone to sup-

Figure 9: Performance comparison using different num-
ber of threads

port isolation. Real ZNS SSDs lie between these two ex-
tremes. In actuality, due to the limited number of chan-
nels, sharing channels among zones is inevitable, which
causes the non-linear scalability. But it is clear that our
scheme can reduce the interference among zones by re-
ducing the garbage collection overhead.

One beneficial feature of LSM ZGC is that it gives a
positive effect on generating sequential writes. It writes
new written data sequentially into a zone whose state
is C0 zone. In addition, reclaimed data managed by
LSM ZGC is also written sequentially. Hence, our pro-
posal is in accordance with the sequential write con-
straint required by ZNS SSDs. However, guaranteeing
the constraint is a complex problem related to not only
allocation policy but also caching and I/O scheduling.
Exploring this issue is left as a future work.

5 Conclusion

This paper proposes a new zone garbage collection
scheme, called LSM ZGC. Our contributions include 1)
devising a new LSM-style garbage collection scheme, 2)
providing real implementation based evaluation results
and 3) raising several issues to address the ZNS SSD fea-
tures such as zone size and sequential write constraint.

There are two directions for future research. The first
one is implementing our scheme in a real file system. We
are currently extending F2FS on our ZNS SSD prototype
to integrate LSM ZGC and to comply with the sequential
write constraint for not only data but also metadata such
as checkpoint and NAT (Node Address Table) [16]. The
second direction is evaluating LSM ZGC under diverse
workloads with different hot/cold ratio, data size, initial
placement and classification policies [12].
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6 Discussion

Our proposal introduces several interesting topics for fu-
ture studies. They can be classified into three categories.
The first one is about what features a file system for
ZNS SSDs are required? How to change the conven-
tional caching and I/O scheduling mechanism to guar-
antee the sequential write constraint? How to identify
different workloads and distribute them depending on
their characteristics? How to make use of the nameless
writes [25] to support the zone append command in ZNS
SSDs [6]?

The second category is regarding which applications
can obtain the benefits of ZNS SSDs. For example, are
applications that have the property of write once and read
multiple times suitable for ZNS SSDs? A key value store
is considered as a good candidate since it has a sequential
write pattern [18, 24]. However, there still exist several
issues such as a new compaction algorithm and how to
allocate levels into zones. In addition, how to integrate
ZNS SSDs into a distributed storage backend, such as
Ceph, is an open question [5].

The final category is about the internal structure of
ZNS SSDs. How to balance the tradeoff between par-
allelism in a zone and among zones. It affects greatly
between performance and isolation. The zone size and
the number of zones that can be opened concurrently
also impact on designing system software for ZNS SSDs.
More fundamental question is which one is better? Either
managing SSDs in a host [7, 17] or processing in stor-
age [10, 21]. We would like to ask for feedback about
these topics.
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