SGX-SSD: A Policy-based Versioning SSD with Intel SGX

Jinwoo Ahn[†], Seungjin Lee[†], Jinhoon Lee[†], Yungwoo Ko[†], Donghyun Min[†], Junghee Lee[‡], Youngjae Kim[†]

[†]Sogang University, Republic of Korea,

‡Korea University, Republic of Korea

Motivation: Malware's Data Tampering Attack

Problem: Ring-0 level rootkit malware's data tampering attack

- It enhances the privilege of victim, and compromises software-based backup system.
- It finds and destroys victim's local or remote backup data.

Motivation: Malware's Data Tampering Attack

Existing Solution: Versioning SSD [BVSSD, Systor 12], [Project Almanac, Eurosys 19]

- Versioning SSD implements versioning system in SSD firmware.
- SSD firmware is isolated from host server.
- Even if OS is compromised, it is impossible to destroy backup data.

Motivation: Integrity vulnerability of Versioning SSD

Versioning SSD preserves all file data for a *fixed retention time(RT)*.

- Space overhead extremely increases as all files are backed up regardless of the importance.
- To free up space, Versioning SSD aggressively erases old backup data in a way that limits RT.

Dwell Time: A period that the malware stays

Integrity vulnerability occurs when:

undetected in victim system

Malware Dwell Time (DT) > Versioning SSD Retention Time (RT)

550	3/3	3/4	3/7	3/11
	Files are created	Malware	V1 is removed	Recovery failed
Versioning SSD		encrypts files	V2	V2
	secure.txt temp.txt			RT : 3 days DT : 7 days

Motivation: Integrity vulnerability of Versioning SSD

Malware's average DT is longer than the RT of Versioning SSDs.

- Project Almanac provides 3-56 days of RT depending on the workload's write intensity.
- However, more than 50% of malware has a DT of 60 days or more.

Motivation: Keeping deeper history for important files

SGX-SSD: Policy-based per-file versioning SSD

- Each file version is maintained according to policy set by users.
- We defined 3 types of policy a user can set.
- SGX-SSD minimizes the space consumption for versions to keep deeper history for important files.

Motivation: Keeping deeper history for important files

SGX-SSD guarantees integrity from malware with long DT.

Malware DT: 7days, RT of secure.txt: 30days, RT of temp.txt: 0day

Challenge 1: Secure Host Interface on Compromised OS

• How can the policy request entered by a user be safely delivered to the SSD?

Challenge 2: Per-file versioning management by SSD

• How can SSD recognize the file semantics corresponding to each block?

- We defined the integrity vulnerability of the existing Versioning SSD.
- To solve this, we proposed a per-file versioning implementation in SSD firmware.
- By solving the aforementioned two challenges, the integrity of the file can be selectively guaranteed even if the OS is compromised.
- Detail of SGX-SSD can be found at [<u>https://arxiv.org/abs/2004.13354</u>].

SGX-SSD: A Policy-based Versioning SSD with Intel SGX

Jinwoo Ahn jinu37@sogang.ac.kr

