
Designing a Storage Software 
Stack for Accelerators
Shinichi Awamoto1, Erich Focht2, Michio Honda3

1NEC Labs Europe; 2NEC Deutschland; 3Univerisity of Edinburgh

<shinichi.awamoto@gmail.com>



SoC-based Accelerators

photos from: xilinx.com, www.mellanox.com, uk.nec.com, nvidia.com

SmartNICs

Xilinx Zynq NEC SX-Aurora TSUBASA
Vector Engine

general
core

special
core

execute the entire application code unlike GPUs.

GPU kernel function



The I/O problem in the accelerator

general
core

special
core

I/O access

But still, the host system mediates data access, 
which incurs overhead.



How does this problem happen?
Multiple data copies and 
dispatch inside of redirected 
system calls increase latency.

Even on microbenchmarks, 
the overhead is obvious.

KHUQHO

UVHU
AccHO. ASS

HW

AccHO. OS

LLQX[

HRVW CPU

DLVN

AccHO.
DULYHU

AccHO. DHYLcH

JOLbc

PURc. CRUHV
PCIH HXb

105ns

42748ns



Designing a Storage Stack

Design options

• Linux kernel library (RoEduNet ‘10)
Expensive kernel emulation

• Buffer cache sharing
e.g. GPUfs (ASPLOS ‘13), SPIN (ATC ‘17)
Only DMAs are mitigated.

• Heterogeneous-arch kernels
e.g. Multikernel (SOSP ‘09), Popcorn Linux (ASPLOS ‘17)
No kernel context in the accelerator

Goal: Fast storage access in the accelerator applications.

ext4fs 
overhead

Conventional system software does not 
perform well on wimpy accelerator cores. 



Accelerator storage stack

• NVMe device driver within the 
accelerator user-space

• File system for data organization 
and buffer caches

• LevelDB for KVS interface

KeUQeO

UVeU

HW

AcceO. FS
LeYeODB

DLUecW I/O EQJLQe

AcceO. ASSgOibc

DiVN

Ha\aJXL

PCIe
HXb

PURc. CRUeV
AcceO. DeYice



host physical memory space

registers

accelaratorʼs
memory space

DMA buffers

Direct I/O Engine

DMA buffersregisters

remapping

How Direct I/O Engine controls 
SSDs?

• UIO manages a device access right 
on the host side. 

• Device registers and DMA buffers 
are remapped using APIs provided 
by the accelerator vendor.

• No host side intervention is 
needed throughout the entire 
process.



• AccelFS provides file names, organized data, buffer caches 
without sacrifice of performance. 
The current ext2-like design would be replaced with accelerator-aware 
implementation.

• LevelDB is also ported on top of AccelFS. 
As a further step, we are exploring accelerator specific optimizations. 
(e.g. vectorized LSM-tree compactions)

AccelFS & LevelDB



Evaluation
• Host:
Intel Xeon Gold 6126 (2.60GHz, 12-core)
96GB RAM

• Accelerator: NEC SX-Aurora TSUBASA
• NVMe SSD: Samsung EVO 970

photos from: sx-aurora.github.io



Microbenchmarks
How much does HAYAGUI improve file operations?

• read, write and write+sync
• In baselines, read(2), write(2), 
fdatasync(2) are used.

• 20-99% reduction in latency

Lo
w

er
 is

 b
et

te
r.



LevelDB evaluation (db_bench)
How much does HAYAGUI improve KVS workloads?

• sequential and random access workloads via db_bench
• 33-81% latency improvements

Lo
w

er
 is

 b
et

te
r.



LevelDB evaluation (YCSB)
Realistic KVS workloads
• Small- or medium-sized data
• 12-89% throughput improvements

Hi
gh

er
 is

 b
et

te
r.



Genome sequence matching app
How does Hayagui improve realistic apps?

• an accelerator application analyzing DNA sequences
• Bulk-read workloads
• 33-46% reduction in execution time

(2.1GB)

(7.0GB)

(15.0GB) Smaller is better.



Summary
• On SoC-based accelerators, I/O access matters.
• HAYAGUI: an accelerator storage stack

• reads and writes the storage medium directly.
• provides various interfaces: raw I/O, file system and KVS
• outperforms the system call redirection baselines

• Ongoing work
• Is the direct access architecture feasible in other accelerators?
• How do we overcome the weakness of general-purpose cores in accelerators?
• How could we exploit specialized engines in accelerators?
• Is it possible to build a generic, one-size-fit-all storage stack for accelerators?



Designing a Storage Software 
Stack for Accelerators

Thank You Q&A
Shinichi Awamoto1, Erich Focht2, Michio Honda3

1NEC Labs Europe; 2NEC Deutschland; 3Univerisity of Edinburgh

<shinichi.awamoto@gmail.com>


