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STREAMING DATAFLOWS

Logical Dataflow

Worker 1

Worker 2

Physical Dataflow

auctions 
source

bids 
source

join rolling 
average

sink

Nexmark Streaming Benchmark Suite: https://beam.apache.org/documentation/sdks/java/testing/nexmark/  

Nexmark Q4:  “Rolling average of winning bids”
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LARGER-THAN-MEMORY STATE MANAGEMENT

put/get

put/get

<k,v>

<k,v>

Worker 1

Worker 2

Large operator state is 
backed by key-value stores

3



LARGER-THAN-MEMORY STATE MANAGEMENT

put/get

put/get

<k,v>

<k,v>

Worker 1

Worker 2

Large operator state is 
backed by key-value stores

LSM-based write-optimized 
store with efficient range scans
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STATE REQUIREMENTS VARY ACROSS OPERATORS

Average: Read-Modify-Write a single value

Join: Write-heavy and can potentially 
accumulate large state

auctions 
source

bids 
source

join rolling 
average

sink

Dataflow operators may have different state 
access patterns and memory requirements

Nexmark Q4:  “Rolling average of winning bids”
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CURRENT PRACTICE: MONOLITHIC STATE MANAGEMENT

All key-value stores in the 
dataflow are globally-configured

One key-value store (RocksDB) 
per stateful operator instance

<k,v>

<k,v>

Worker 1

Worker 2

<k,v>

<k,v>
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FLAWS OF MONOLITHIC STATE MANAGEMENT

<k,v>

<k,v>

Worker 1

Worker 2

<k,v>

<k,v> - Oblivious store configuration 

- Unnecessary data marshaling

- Unnecessary key-value store features
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UNNECESSARY KEY-VALUE STORE FEATURES

- State partitioning

- State scoping

- Concurrent access to state

- State checkpointing

All these operations are handled by modern 
stream processors outside the state store

Stream processors guarantee 
single-thread access to state
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WORKLOAD-AWARE STREAMING STATE MANAGEMENT

Multiple state stores of different 
types and configurations 
according to the requirements 
of the stateful operators

Worker 1

Worker 2

put/get

store:u64

rmw_u64

store:<u64,auction>

store:<u64,bid>

Streaming operators are instantiated 
once and are long-running: their 
access patterns and state sizes are 
largely known in advance
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A FLEXIBLE TESTBED FOR STREAMING STATE MANAGEMENT
- Implemented in Rust

- Based on Timely Dataflow stream processor

- Supports two key-value stores

- RocksDB

- FASTER

- Supports different window evaluation strategies

Timely Dataflow:  https://github.com/TimelyDataflow/timely-dataflow 

FASTER: Hybrid log with efficient 
lookups and in-place updates

FASTER:  https://github.com/microsoft/FASTER 

Testbed:  https://github.com/jliagouris/wassm 

RocksDB: LSM-based 
with efficient range scans
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EXPERIMENTAL RESULTS
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EVALUATION GOALS

1. Study the effect of the backend’s data layout on the evaluation of streaming 
windows

2. Study the effect of workload-aware configuration on queries with multiple 
stateful operators
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- Query 1: Count the number of records in a 

30s window that slides every 1s

- Input rate:  10K records/s

- Single thread execution

- Report end-to-end latency (ms) per record

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
COUNT-30s-1s
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p99
p99.9

Complementary CDF: Each 
point (x,y) indicates that y% of 
the latency measurements are 
at least x ms

…

Lower is better

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
COUNT-30s-1s
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RocksDB PUT/GET: On record, 
retrieve window contents, apply 
new record, and put the updated 
contents back to the store

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
COUNT-30s-1s

Lower is better 15
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RocksDB MERGE: On record, put 
record to the store using MERGE. 
The record is applied to the window 
contents lazily on trigger

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
COUNT-30s-1s

Lower is better 16
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100X in p99 FASTER performs better 
due to in-place updates

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
COUNT-30s-1s

Lower is better 17



- Query 2: Rank records in a 30s tumbling 
window

- Input rate:  1K records/s

- Single thread execution

- Report end-to-end latency (ms) per 
record
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EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
RANK-30s-30s

Lower is better 18



100X
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RocksDB MERGE performs 
best due to lazy evaluation

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
RANK-30s-30s

1000X

Lower is better 19



THERE IS NO CLEAR WINNER
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100X in p99

COUNT-30s-1s

100X
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RANK-30s-30s

1000X
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MONOLITHIC VS WORKLOAD-WARE STATE MANAGEMENT

- Experiments with six Nexmark* queries

- Different stateful operators (joins, window aggregations, custom aggregations)

- Simple workload-aware configuration of data types and available memory size 

*Nexmark Streaming Benchmark Suite: https://beam.apache.org/documentation/sdks/java/testing/nexmark/  21

https://beam.apache.org/documentation/sdks/java/testing/nexmark/


MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 custom join and 
 rolling aggregate

- State store used: FASTER

- Input rate:  10K records/s

- SIngle thread execution 

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB 
(bids), 1.5GB (auctions), 512MB (average)

- Report end-to-end latency (ms) per record
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MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 custom join and 
 rolling aggregate
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- State store used: FASTER

- Input rate:  10K records/s

- SIngle thread execution 

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB 
(bids), 1.5GB (auctions), 512MB (average)

- Report end-to-end latency (ms) per record
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MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 custom join and 
 rolling aggregate
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- State store used: FASTER

- Input rate:  10K records/s

- SIngle thread execution 

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB 
(bids), 1.5GB (auctions), 512MB (average)

- Report end-to-end latency (ms) per record
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MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 custom join and 
 rolling aggregate

6X in p99
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- State store used: FASTER

- Input rate:  10K records/s

- SIngle thread execution 

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB 
(bids), 1.5GB (auctions), 512MB (average)

- Report end-to-end latency (ms) per record
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MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q5 sliding window  
aggregation
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- State store used: FASTER

- Input rate:  10K records/s

- Single thread execution

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB 
(additions), 1GB (deletions), 512MB 
(accumulations), 512MB (hot items)

- Report end-to-end latency (ms) per record
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MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q5 sliding window  
aggregation
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14X in p99

- State store used: FASTER

- Input rate:  10K records/s

- Single thread execution

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB 
(additions), 1GB (deletions), 512MB 
(accumulations), 512MB (hot items)

- Report end-to-end latency (ms) per record
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Q4 latency vs throughput 
with a single thread Q7 latency with varying  

the number of threads
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MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT
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Q4 latency vs throughput 
with a single thread Q7 latency with varying  

the number of threads
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2X higher 
throughput 

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT
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Q4 latency vs throughput 
with a single thread Q7 latency with varying  

the number of threads
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2X higher 
throughput 

FASTER (monolithic) and RocksDB (monolithic) 
do not keep up with 2M records/s

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT
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Q4 latency vs throughput 
with a single thread Q7 latency with varying  

the number of threads
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benefits persist in multi-
worker dataflows

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT
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OPEN QUESTIONS

• One store fits all or many?

• Do we need new streaming benchmarks?

• What are the desirable store features to support advanced state 
operations (e.g. state migration, etc.)?

• How can we learn streaming state characteristics?
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SUMMARY
Workload-aware streaming state management

https://github.com/jliagouris/wassmTestbed:

- We need to revisit current monolithic 
approaches

- State store layout affects query 
performance significantly

- Workload-aware state management 
achieves up to 14X speedup and 2X 
higher throughput in Nexmark queries

Worker 1

Worker 2

put/get

store:u64

rmw_u64

store:<u64,auction>

store:<u64,bid>
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