IN SUPPORT OF WORKLOAD-AWARE
STREAMING STATE MANAGEMENT

Vasiliki Kalavri John Liagouris
vkalavri@bu.edu liagos@bu.edu

HotStorage 2020 14 July 2020

STREAMING DATAFLOWS

auctions
source

Nexmark Q4: “Rolling average of winning bids”

rolling
average

—
Worker 1

bids

source

Logical

0@

Dataflow

sink

Worker 2
_

Physical

Nexmark Streaming Benchmark Suite: hitps://beam.apache.org/documentation/sdks/java/testing/nexmark/

Dataflow

https://beam.apache.org/documentation/sdks/java/testing/nexmark/

LARGER-THAN-MEMORY STATE MANAGEMENT

(")
Worker 1 \.4 put/get

(

Q
030

Worker 2
_

Large operator state Is
backed by key-value stores

LARGER-THAN-MEMORY STATE MANAGEMENT

-
Worker 1

x

——

v

put/get

—Q_

Worker 2
_

G%

Large operator state Is

backed by key-value stores

Mutable
/ mem-table

Immutable
mem-table

=

2
E
e
(7))
()]
=
c
©
=

RocksDB

0000,
SST SST

00.00. -
SST SST

00 . - 8. "
\ S ss1/

Disk

Block Index

[SM-based write-optimized
store with efficient range scans

STATE REQUIREMENTS VARY ACROSS OPERATORS

Nexmark Q4: “Rolling average of winning bids”

auctions
source

rolling

average Join: Write-heavy and can potentially

O I accumulate large state

sink

Average: Read-Modify-Write a single value

bids

source

Dataflow operators may have different state
access patterns and memory requirements

CURRENT PRACTICE: MONOLITHIC STATE MANAGEMENT

-
Worker 1

Worker 2
 Worker

One key-value store (Rocks

D

)

per stateful operator instance

All key-value stores in the
dataflow are globally-configured

FLAWS OF MONOLITHIC STATE MANAGEMENT

-

Worker 1

- Oblivious store configuration

- Unnecessary data marshaling

- Unnecessary key-value store features

Worker 2
 Worker

UNNECESSARY KEY-VALUE STORE FEATURES

- State partitioning
All these operations are handled by modern

_ State scoping stream processors outside the state store

- Concurrent access to state
Stream processors guarantee

o single-thread access to state
- State checkpointing 5

WORKLOAD-AWARE STREAMING STATE MANAGEMENT

Worker 1
store:<u64,auction> Multiple state stores of different

store:u64 types and configurations
- - '
=) according to the requirements

store:<u64,bid>

rm_u64 of the stateful operators
» =0 ,
’—X?‘ Streaming operators are instantiated
:] once and are long-running: their

access patterns and state sizes are
largely known in advance

——

Worker 2

A FLEXIBLE TESTBED FOR STREAMING STATE MANAGEMENT

RocksDB: L SM-based
with efficient range scans

0000
SST SST
00, 00.
SST SST
2 mem-table

- Supports two key-value stores \ m 20 . ’o et

- RocksDB Memory Disk

- Implemented In Rust

- Based on Timely Dataflow stream processor / memabie

Immutable

Block Index

L
E
el
n
[
=
c
I
=

- FASTER FASTER: Hybrid log with efficient
lookups and in-place updates

Request

Increasing Logical Address /\ ’\
Read-only A/ Updates
Testbed: https://github.com/jliagouris/wassm
| | | | Mutable
Timely Dataflow: https://github.com/TimelyDataflow/timely-dataflow

FASTER: https://github.com/microsoft/FASTER Disk > Memory

- Supports different window evaluation strategies

https://github.com/TimelyDataflow/timely-dataflow
https://github.com/microsoft/FASTER
https://github.com/jliagouris/wassm

EXPERIMENTAL RESULTS

11

EVALUATION GOALS

|, Study the effect of the backend's data layout on the evaluation of streaming

WINdows

2. St

dy the e

fect of workload-aware configuration on queries with multiple

sta

reful ope

~ators

12

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION

COUNT-30s-1s

R FASTER ;
: RocksDB PUT/GET ----- -
L RocksDB MERGE -

\

\

\

\
\
\
|
\
|
|
|
|
|
|
|
|
|
|
|

10Y 101 10° 103

Latency [msS]

Query |: Count the number of records in a
30s window that slides every |s

Input rate: 10K records/s

Single thread execution

Report end-to-end latency (ms) per record

13

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION

COUNT-30s-1s

o FASTRR ——
10t |\ ~RocksDBPUT/GET --—---

5 Complementary CDF; Each
-1 p99.9 boint (x,y) Indicates that y7% of

. the latency measurements are
10 :
| at least x ms
107 |
10° 10" 10° 10°

Latency [ms]

C——

| ower Is better)

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION

RocksDB PUT/GET: On record,

COUNT-30s-1Is
10° — -
S . EASTFR —— |
10°1 \ RocksDB PUT/GET -----
e RocksDB MER(
10—2 TSNS
a \
3
010 \
U |
10~* \
i
107> :
i
1076
10° 10" 102 103

Latency [msS]

—

| ower Is better

retrieve window CoO

new record, and pu

ntents, apply

- the updatea

contents back to the store

15

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION

COUNT-30s-1Is
107 — -—
; FASTER

1071

10| | RocksDB MERGE: On record, put
5103 .| record to the store using MERGE
O '
O i |

The record Is applied to the window
contents lazily on trigger

=
- ©
U1

10° 102 10 103
Latency [msS]

D ————

| ower Is better y

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION

COUNT-30s-1s

10 — -
| FASTER 5
101 \ RocksDB PUT/GET ----- -
S RocksDB MERGE ‘=
10 2 M s .
G103 100X in p99
010 \
~ \
107 \
107> :
1076
10° 10" 102 103

Latency [msS]

—

| ower Is better

FAS TER performs better
due to in-place updates

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION

RANK-30s-30s

109, — . .
N FAS - Query 2:Rank records in a 30s tumbling
10_]_ \| RocksDB PUT/GET\ - ---- WIﬂdOW
i RocksDB MERGE
102l T
" - Input rate: |K records/s
O10-3)
810 _ : :
| ‘; _3 - Single thread execution
-5 !
107 | _ - Report end-to-end latency (ms) per
B K record

10° 10t 10% 10 10* 10°
Latency [ms]

—

| ower Is better "

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION

RANK-30s-30s
°—
R FAS
10°1] RocksDB PUT/GET\ ----- |
RocksDB MERGE
107} : —| I
L | RocksDB MERGE performs
01073 | O0X \ 000X | .
S \ ' best due to lazy evaluation
107 |
107 i
107° '

10° 10t 10% 10 10* 10°
Latency [ms]

—

| ower Is better N

THERE IS NO CLEAR WINNER

COUNT-30s-1s
00—
FASTER
10-11 | RocksDB PUT/GET -----
N RocksDB MERGE
10_2 M ~~\\\\
5 00X in p99
O 10 \‘
O 4 :
10" |
107> |
107 5L " " Y
10° 10° 10° 10°

Latency [ms]

Latency [ms]

RANK-30s-30s
FASTER
RocksDB PUT/GET\ -----
RocksDB MERGE
\%
00X\ 1000X
10° 10t 10° 10 10* 10°

20

MONOLITRIC VS WORKLOAD-WARE STATE MANAGEMENT

- Experiments with six Nexmark™ queries

- Different stateful operators (joins, window aggregations, custom aggregations)

- Simple workload-aware configuration of data types and available memory size

“Nexmark Streaming Benchmark Surte: https://beam.apache.org/documentation/sdks/java/testing/nexmark/

21

https://beam.apache.org/documentation/sdks/java/testing/nexmark/

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

custom join and
Q4 rolling aggregate

———
——
—_—
~
-~
-
~

Workload-aware

Manolithic ——

10°

Latency [ms]

101

10°

- State store used: FASTER

- Input rate: 0K records/s

- Slngle thread execution

- Monolithic memory configuration: 83GB

- Workload-aware memory cor

fisuration: 6GB

(bids), 1.5GB (auctions), 5 12M

3 (average)

- Report end-to-end latency (ms) per record

22

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

custom join and
Q4 rolling aggregate

L —
_——
~
~
-
~ 8

Wo

d

Manolithic —
d-aware

10°

10°

Latency [ms]

10°

- State store used: FASTER

T~ ‘npu‘t rate: ‘OK reCOrdS/S

- Slngle thread execution

<T - configuration: 8GE-

—_—— —

- Workload-aware memory cor

fisuration: 6GB

(bids), 1.5GB (auctions), 5 12M

3 (average)

- Report end-to-end latency (ms) per record

23

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

04 custom join and - State store used: FASTER

rolling aggregate

e
e nolithic —— - Input rate: 10K records/s

1071 CWorkload-aware 15
-2 - Slngle thread execution

-3 : : :
10 - Monolithic memory configuration: 8GB
107* P - —_

5 rkload-aware memory configuration: 6GB
T T ds), 1.5GB (auctions), 51 2MB (average)—

Latency [ms]

- Report end-to-end latency (ms) per record
24

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

custom join and
Q4 rolling aggregate

L —
_——
~
~
-
~

Workload-aware

6X in p99

Manolithic ——

10°

Latency [ms]

101

10°

- State store used: FASTER

- Input rate: 0K records/s

- Slngle thread execution

- Monolithic memory configuration: 83GB

- Workload-aware memory cor

fisuration: 6GB

(bids), 1.5GB (auctions), 5 12M

3 (average)

- Report end-to-end latency (ms) per record

25

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

sliding window

Q5 .
aggregation
e ~ Monolithic ——
10° 10° 10°

Latency [ms]

- State store used: FAST

-R

- Input rate: 0K records/s

- Single thread execution

- Monolithic memory configuration: 8GB

- Work

(addit

oad-awa

or

(accumu

ations), 51 2M

"e memory cor
s), |GB (delet

or

5 (

S), O

NOt I

fisuration: 6GB
2MB

‘ems)

- Report end-to-end latency (ms) per record

26

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

sliding window

Q5 .
aggregation
e ~ Monolithic ——
10° 10° 10°

Latency [ms]

- State store used: FAST

-R

- Input rate: 0K records/s

- Single thread execution

- Monolithic memory configuration: 8GB

- Work

(addit

oad-awa

or

(accumu

ations), 51 2M

"e memory cor
s), |GB (delet

or

5 (

S), O

NOt I

fisuration: 6GB
2MB

‘ems)

- Report end-to-end latency (ms) per record

27

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

latency vs throughput
with a single thread

7 ————
FASTER +
RocksDB X
el Workload-aware
— 1
E ¥
>
1
= X
= X
5 %
0.5
O —"500 1000 1500 2000

Throughput [Krec/s]

Latency [ms]

p—
U

O
U1

—

latency with varying

#workers

Q7 the number of threads
~ FASTER +
RocksDB X
_ Workload-aware
X

+ X X X]
+ | +

2 4 6 8 10 12 14 16

28

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 latency vs throughput Q7 latency with varying
with a single thread the number of threads
- 2
FASTER + FASTER +
RocksDB X RocksDB X

Workload-aware | Workload-aware

(-
Ul
(-
Un

73 P

= X c X

L ' L X

> ! 2X higher > 1l X x) !
S throughput S 1 i
E *X E;

=
Ul
o
Ul

0~ 500~ 1000 1500 2000 O~ 8 10 12 14 16
Throughput [Krec/s] #workers

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 latency vs throughput Q7 latency with varying
with a single thread the number of threads
e 2
FASTER + FASTER +
RocksDB X RocksDB X
el Workload-aware | el Workload-aware
— 1 R — 1
E ¥ . E F
~ 2X hig ~ X
2 + o L+ X X X
o throug o N i
4+ -t 4+
(O 4 G
_1 b 3 _1
0.5 0.5}
06500 1000 1500 | 2000] Oy~ 10 12 14 16
Throughput [Krec/s] \ | #workers

FAS TER (mono\'c) and RocksDB (monolithic)
do not keep up with 2M records/s

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 latency vs throughput
with a single thread

7 ————
FASTER +
RocksDB X
el Workload-aware
— 1
E ¥
>
1
= X
= X
5 ¥
0.5
O —"500 1000 1500 2000

Throughput [Krec/s]

Latency [ms]

Q7

latency with varying
the number of threads

~ FASTER
RocksDB
Workload-aware

_ .

e——

benefits |

N Multl-

‘worker dataflows

X+

"4

6 8
#workers

10 12 14

16

31

OPEN QUESTIONS

® One store fits all or many?

® Do we need new streaming benchmarks!?

® What are the desirable store features to support advanced state
operations (e.g. state migration, etc.)?

® How can we learn streaming state characteristics?

SUMMARY BOSTON
UNIVERSITY
Workload-aware streaming state management
Worker 1 - We need to revisit current monolithic

store:<u64 ’ auction> approaches
\./ store:u64
— store:<u64,bid> -
C=
——
put/get = rmw_u64 - State store layout affects query

performance significantly

__
i g Ny,

>

- Workload-aware state management
achieves up to [4X speedup and 2X
higher throughput In Nexmark queries

>
-
S——

Worker 2

lestbed: https://github.coml/jliagouris/wassm

Vasiliki Kalavri John Liagouris
vkalavri@bu.edu liagos@bu.edu

33

