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STREAMING DATAFLOWS
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LARGER-THAN-MEMORY STATE MANAGEMENT
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LARGER-THAN-MEMORY STATE MANAGEMENT
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STATE REQUIREMENTS VARY ACROSS OPERATORS

Nexmark Q4: “Rolling average of winning bids”
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access patterns and memory requirements




CURRENT PRACTICE: MONOLITHIC STATE MANAGEMENT
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dataflow are globally-configured



FLAWS OF MONOLITHIC STATE MANAGEMENT
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- Oblivious store configuration

- Unnecessary data marshaling

- Unnecessary key-value store features
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UNNECESSARY KEY-VALUE STORE FEATURES

- State partitioning
All these operations are handled by modern

_ State scoping stream processors outside the state store

- Concurrent access to state
Stream processors guarantee

o single-thread access to state
- State checkpointing 5



WORKLOAD-AWARE STREAMING STATE MANAGEMENT
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A FLEXIBLE TESTBED FOR STREAMING STATE MANAGEMENT

RocksDB: L SM-based
with efficient range scans
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- FASTER FASTER: Hybrid log with efficient
lookups and in-place updates
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Timely Dataflow: https://github.com/TimelyDataflow/timely-dataflow

FASTER: https://github.com/microsoft/FASTER Disk > Memory

- Supports different window evaluation strategies
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EXPERIMENTAL RESULTS
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EVALUATION GOALS
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EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
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EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
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EFFECT OF DATA LAYOUT ON WINDOW EVALUATION

RocksDB PUT/GET: On record,
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EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
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EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
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EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
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EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
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THERE IS NO CLEAR WINNER
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MONOLITRIC VS WORKLOAD-WARE STATE MANAGEMENT

- Experiments with six Nexmark™ queries

- Different stateful operators (joins, window aggregations, custom aggregations)

- Simple workload-aware configuration of data types and available memory size

“Nexmark Streaming Benchmark Surte: https://beam.apache.org/documentation/sdks/java/testing/nexmark/
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https://beam.apache.org/documentation/sdks/java/testing/nexmark/

MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT
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MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT
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MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT
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MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT
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MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT
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MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT
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MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

latency vs throughput
with a single thread
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MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT
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MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT
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MONOLITRIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 latency vs throughput
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OPEN QUESTIONS

® One store fits all or many?

® Do we need new streaming benchmarks!?

® What are the desirable store features to support advanced state
operations (e.g. state migration, etc.)?

® How can we learn streaming state characteristics?
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