
HotStorage 2020 14 July 2020

IN SUPPORT OF WORKLOAD-AWARE
STREAMING STATE MANAGEMENT

John Liagouris
liagos@bu.edu

Vasiliki Kalavri
vkalavri@bu.edu

STREAMING DATAFLOWS

Logical Dataflow

Worker 1

Worker 2

Physical Dataflow

auctions
source

bids
source

join rolling
average

sink

Nexmark Streaming Benchmark Suite: https://beam.apache.org/documentation/sdks/java/testing/nexmark/

Nexmark Q4: “Rolling average of winning bids”

2

https://beam.apache.org/documentation/sdks/java/testing/nexmark/

LARGER-THAN-MEMORY STATE MANAGEMENT

put/get

put/get

<k,v>

<k,v>

Worker 1

Worker 2

Large operator state is
backed by key-value stores

3

LARGER-THAN-MEMORY STATE MANAGEMENT

put/get

put/get

<k,v>

<k,v>

Worker 1

Worker 2

Large operator state is
backed by key-value stores

LSM-based write-optimized
store with efficient range scans

4

STATE REQUIREMENTS VARY ACROSS OPERATORS

Average: Read-Modify-Write a single value

Join: Write-heavy and can potentially
accumulate large state

auctions
source

bids
source

join rolling
average

sink

Dataflow operators may have different state
access patterns and memory requirements

Nexmark Q4: “Rolling average of winning bids”

5

CURRENT PRACTICE: MONOLITHIC STATE MANAGEMENT

All key-value stores in the
dataflow are globally-configured

One key-value store (RocksDB)
per stateful operator instance

<k,v>

<k,v>

Worker 1

Worker 2

<k,v>

<k,v>

6

FLAWS OF MONOLITHIC STATE MANAGEMENT

<k,v>

<k,v>

Worker 1

Worker 2

<k,v>

<k,v> - Oblivious store configuration

- Unnecessary data marshaling

- Unnecessary key-value store features

7

UNNECESSARY KEY-VALUE STORE FEATURES

- State partitioning

- State scoping

- Concurrent access to state

- State checkpointing

All these operations are handled by modern
stream processors outside the state store

Stream processors guarantee
single-thread access to state

8

WORKLOAD-AWARE STREAMING STATE MANAGEMENT

Multiple state stores of different
types and configurations
according to the requirements
of the stateful operators

Worker 1

Worker 2

put/get

store:u64

rmw_u64

store:<u64,auction>

store:<u64,bid>

Streaming operators are instantiated
once and are long-running: their
access patterns and state sizes are
largely known in advance

9

A FLEXIBLE TESTBED FOR STREAMING STATE MANAGEMENT
- Implemented in Rust

- Based on Timely Dataflow stream processor

- Supports two key-value stores

- RocksDB

- FASTER

- Supports different window evaluation strategies

Timely Dataflow: https://github.com/TimelyDataflow/timely-dataflow

FASTER: Hybrid log with efficient
lookups and in-place updates

FASTER: https://github.com/microsoft/FASTER

Testbed: https://github.com/jliagouris/wassm

RocksDB: LSM-based
with efficient range scans

10

https://github.com/TimelyDataflow/timely-dataflow
https://github.com/microsoft/FASTER
https://github.com/jliagouris/wassm

EXPERIMENTAL RESULTS

11

EVALUATION GOALS

1. Study the effect of the backend’s data layout on the evaluation of streaming
windows

2. Study the effect of workload-aware configuration on queries with multiple
stateful operators

12

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
���

��������������

�����������
- Query 1: Count the number of records in a

30s window that slides every 1s

- Input rate: 10K records/s

- Single thread execution

- Report end-to-end latency (ms) per record

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
COUNT-30s-1s

13

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
���

��������������

����������� p90
p99
p99.9

Complementary CDF: Each
point (x,y) indicates that y% of
the latency measurements are
at least x ms

…

Lower is better

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
COUNT-30s-1s

14

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
���

��������������

�����������

RocksDB PUT/GET: On record,
retrieve window contents, apply
new record, and put the updated
contents back to the store

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
COUNT-30s-1s

Lower is better 15

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
���

��������������

�����������

RocksDB MERGE: On record, put
record to the store using MERGE.
The record is applied to the window
contents lazily on trigger

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
COUNT-30s-1s

Lower is better 16

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
���

��������������

�����������

100X in p99 FASTER performs better
due to in-place updates

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
COUNT-30s-1s

Lower is better 17

- Query 2: Rank records in a 30s tumbling
window

- Input rate: 1K records/s

- Single thread execution

- Report end-to-end latency (ms) per
record

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
���

��������������

�����������

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
RANK-30s-30s

Lower is better 18

100X

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
���

��������������

�����������

RocksDB MERGE performs
best due to lazy evaluation

EFFECT OF DATA LAYOUT ON WINDOW EVALUATION
RANK-30s-30s

1000X

Lower is better 19

THERE IS NO CLEAR WINNER

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
���

��������������

�����������

100X in p99

COUNT-30s-1s

100X

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
���

��������������

�����������

RANK-30s-30s

1000X

20

MONOLITHIC VS WORKLOAD-WARE STATE MANAGEMENT

- Experiments with six Nexmark* queries

- Different stateful operators (joins, window aggregations, custom aggregations)

- Simple workload-aware configuration of data types and available memory size

*Nexmark Streaming Benchmark Suite: https://beam.apache.org/documentation/sdks/java/testing/nexmark/ 21

https://beam.apache.org/documentation/sdks/java/testing/nexmark/

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 custom join and
 rolling aggregate

- State store used: FASTER

- Input rate: 10K records/s

- SIngle thread execution

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB
(bids), 1.5GB (auctions), 512MB (average)

- Report end-to-end latency (ms) per record

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��������	
��

�	
	�����

�	���	��������

22

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 custom join and
 rolling aggregate

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��������	
��

�	
	�����

�	���	��������

- State store used: FASTER

- Input rate: 10K records/s

- SIngle thread execution

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB
(bids), 1.5GB (auctions), 512MB (average)

- Report end-to-end latency (ms) per record
23

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 custom join and
 rolling aggregate

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��������	
��

�	
	�����

�	���	��������

- State store used: FASTER

- Input rate: 10K records/s

- SIngle thread execution

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB
(bids), 1.5GB (auctions), 512MB (average)

- Report end-to-end latency (ms) per record
24

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q4 custom join and
 rolling aggregate

6X in p99

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��������	
��

�	
	�����

�	���	��������

- State store used: FASTER

- Input rate: 10K records/s

- SIngle thread execution

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB
(bids), 1.5GB (auctions), 512MB (average)

- Report end-to-end latency (ms) per record
25

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q5 sliding window
aggregation

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
�
����

�
���
��������

- State store used: FASTER

- Input rate: 10K records/s

- Single thread execution

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB
(additions), 1GB (deletions), 512MB
(accumulations), 512MB (hot items)

- Report end-to-end latency (ms) per record
26

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

Q5 sliding window
aggregation

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

�
�
�
�

�����	
����

	
�
����

�
���
��������

14X in p99

- State store used: FASTER

- Input rate: 10K records/s

- Single thread execution

- Monolithic memory configuration: 8GB

- Workload-aware memory configuration: 6GB
(additions), 1GB (deletions), 512MB
(accumulations), 512MB (hot items)

- Report end-to-end latency (ms) per record
27

Q4 latency vs throughput
with a single thread Q7 latency with varying

the number of threads

��

����

��

����

��

�� �� �� �	 ��� ��� ��� ���

�
�
��
�
�
�
�	

�
�

�������

��
����

���������

����������������

��

����

��

����

��

�� ���� ����� ����� �����

�
�
��
�
�
�
�	

�
�

����������	�������

����	
��

��������

��������������

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

28

Q4 latency vs throughput
with a single thread Q7 latency with varying

the number of threads

��

����

��

����

��

�� �� �� �	 ��� ��� ��� ���

�
�
��
�
�
�
�	

�
�

�������

��
����

���������

����������������

��

����

��

����

��

�� ���� ����� ����� �����

�
�
��
�
�
�
�	

�
�

����������	�������

����	
��

��������

��������������

2X higher
throughput

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

29

Q4 latency vs throughput
with a single thread Q7 latency with varying

the number of threads

��

����

��

����

��

�� �� �� �	 ��� ��� ��� ���

�
�
��
�
�
�
�	

�
�

�������

��
����

���������

����������������

��

����

��

����

��

�� ���� ����� ����� �����

�
�
��
�
�
�
�	

�
�

����������	�������

����	
��

��������

��������������

2X higher
throughput

FASTER (monolithic) and RocksDB (monolithic)
do not keep up with 2M records/s

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

30

Q4 latency vs throughput
with a single thread Q7 latency with varying

the number of threads

��

����

��

����

��

�� �� �� �	 ��� ��� ��� ���

�
�
��
�
�
�
�	

�
�

�������

��
����

���������

����������������

��

����

��

����

��

�� ���� ����� ����� �����

�
�
��
�
�
�
�	

�
�

����������	�������

����	
��

��������

��������������

benefits persist in multi-
worker dataflows

MONOLITHIC VS WORKLOAD-AWARE STATE MANAGEMENT

31

OPEN QUESTIONS

• One store fits all or many?

• Do we need new streaming benchmarks?

• What are the desirable store features to support advanced state
operations (e.g. state migration, etc.)?

• How can we learn streaming state characteristics?

32

SUMMARY
Workload-aware streaming state management

https://github.com/jliagouris/wassmTestbed:

- We need to revisit current monolithic
approaches

- State store layout affects query
performance significantly

- Workload-aware state management
achieves up to 14X speedup and 2X
higher throughput in Nexmark queries

Worker 1

Worker 2

put/get

store:u64

rmw_u64

store:<u64,auction>

store:<u64,bid>

John Liagouris
liagos@bu.edu

Vasiliki Kalavri
vkalavri@bu.edu 33

