
Too Many Knobs to Tune?
Towards Faster Database Tuning by

Pre-selecting Important Knobs

Konstantinos Kanellis, Ramnatthan Alagappan, Shivaram Venkataraman

Database tuning is important!

1

...
commitlog_sync_period_in_ms: 10000
commitlog_segment_size_in_mb: 32
compaction_throughput_mb_per_sec: 16
concurrent_reads: 32
concurrent_writes: 32
memtable_heap_space_in_mb: 2048
memtable_cleanup_threshold: 0.33
native_transport_max_threads: 128
...

Cassandra Default Configuration

HotStorage’20

Properly tuned database systems can achieve 2-3x higher throughput

(or lower 99-tile latency) compared to default configuration (PostgreSQL) [1]

[1] Dana Van Aken et. al. Automatic Database Management System Tuning Through Large-scale Machine Learning. (SIGMOD ’17)

...
commitlog_sync_period_in_ms: 50000
commitlog_segment_size_in_mb: 128
compaction_throughput_mb_per_sec: 16
concurrent_reads: 128
concurrent_writes: 64
memtable_heap_space_in_mb: 1024
memtable_cleanup_threshold: 0.85
native_transport_max_threads: 256
...

CassandraTuned Configuration

Tuning

Process

Realizing high performance requires finding optimal values for configuration knobs

… but it’s hard …

- 100s knobs in a typical system

- Most knobs take continuous values

- Unknown interactions among knobs

- Evaluating a single configuration is expensive

2HotStorage’20

Earlier tuning efforts relied on
experience from human experts

Recently proposed tuning frameworks can automate the procedure

Can achieve same (or even better) performance compared to manual tuning [2]

[2] Zhang, Ji, et al. An end-to-end automatic cloud database tuning system using deep reinforcement learning (SIGMOD’19)

...
commitlog_sync_period_in_ms: 50000
commitlog_segment_size_in_mb: 128
compaction_throughput_mb_per_sec: 16
concurrent_reads: 128
concurrent_writes: 64
memtable_heap_space_in_mb: 1024
memtable_cleanup_threshold: 0.85
native_transport_max_threads: 256
...

Cassandra configuration

Automated database tuning

Most existing auto-tuning database frameworks consist of
(a) initial offline profiling phase and (b) an online tuning phase

3

All Tunable Knobs

Mix of Workloads

Generate and

Evaluate Configs

Offline Profiling/Training Phase

Train / Store or

Evaluate

Config

Online Tuning Phase

Propose Config
or

Subset of Knobs

Target Workload Feedback

HotStorage’20

Motivation

Offline profiling is vital for the quality of proposed configurations

4

All Tunable Knobs ?

Mix of Workloads ?
Generate and

Evaluate Configs

Offline Profiling/Training Phase

Train / Store

Yet, this phase may account for >95% of the entire tuning time

HotStorage’20

How many knobs do we need to achieve “good” performance?

Can we exploit this to accelerate the offline phase?

Experimental study

5

How many knobs do we need
to achieve “good” performance?

Do similar results hold
for different workloads?

Do similar results hold
for a different database system?

Cassandra
YCSB-A

5 out 155!

Cassandra
YCSB-B

Same 5 knobs!

PostgreSQL
YCSB-A, YCSB-B

Yes!

HotStorage’20

Outline

Background & Motivation

Methodology

Results

Towards Faster Database Tuning

6

Methodology

7

(I) Ground-truth

dataset collection

(II) Identify most

important knobs

Evaluate top-k

knobs performance

Generate and evaluate
configuration samples

(many knobs)

Generate samples and
find one with best perf.

(top-k knobs)

Identify relationship
of each knob with

system performance

Dataset Knobs
Ranking

System Compare
with

ground-truth

HotStorage’20

>=<

(I) Generate and collect configuration samples

Latin Hypercube Sampling (LHS)

- Uniformly and thoroughly cover configuration space

- Employed by multiple existing systems

8

Intractable configuration space – limited number of samples

Number of Samples

Knobs / Range of values

{
commitlog_sync_period: 10 ms
concurrent_writes: 8
memtable_cleanup_threshold: 0.2
}

{
commitlog_sync_period: 5 ms
concurrent_writes: 64
memtable_cleanup_threshold: 0.8
}

HotStorage’20

(II) Identify Important Knobs

9HotStorage’20

,

,

CART

…

{

commitlog_sync_period: 10 secs
concurrent_writes: 8
memtable_cleanup_threshold: 0.2
}

{

commitlog_sync_period: 5 secs
concurrent_writes: 64
memtable_cleanup_threshold: 0.8
}

,

{

commitlog_sync_period: 2 secs
concurrent_writes: 24
memtable_cleanup_threshold: 0.5
}

Knobs values

Random Forest
Performance

Train Regression

Model

commitlog_sync_period

Knob Relative
Importance Ranking

concurrent_writes

memtable_cleanup_threshold

More Important

(features)
(outcome)

Experimental Setup

10

Machine hardware

- Intel Xeon Silver 4114 CPU, 64 GB RAM, 480GB SSD, Ubuntu 18.04

- Employ 30 identical machines to parallelize the evaluation process (CloudLab)

Ground-truth sample collection

- Apache Cassandra v3.11, PostgreSQL v9.6

-YCSB-A (50% read/50% write), YCSB-B (95% read/5% write)

- 25,000 samples with LHS – tweaking ~30 knobs for both systems

- Each sample takes ~9 minutes to evaluate

HotStorage’20

Outline

Background & Motivation

Methodology

Results

Towards Faster Database Tuning

11

How many knobs matter?

12

Apache Cassandra –YCSB-A

Most important knobs

- concurrent_reads: number of concurrent read operations

- native_transport_max_threads: number of threads used to handle requests

- memory table–related knobs: size of memtable, when to flush to disk

HotStorage’20

According to the ML
model, these 5 knobs
have the most impact

on system performance

…but how much performance can we achieve?

13

Apache Cassandra –YCSB-A

Best Configuration
Performance

Throughput
(ops/sec)

Read Latency
(micro-seconds)

Write Latency
(micro-seconds)

Tuning 30 knobs 74780.33 744.34 302.82

Tuning 5 knobs 74304.42 750.56 308.08

% of tuning 30 knobs 99.36% 100.84% 101.41%

HotStorage’20

Tuning just a few important
knobs can still yield
high performance!

What about a different workload?

14

Apache Cassandra –YCSB-B

YCSB-B (95%/5% r/w) YCSB-A (50%/50% r/w)

#1: A handful of knobs affect the performance for YCSB-B

#2: Overlap of important knobs across the two workloads

HotStorage’20

What about a different database system?

15

PostgreSQL –YCSB-A, YCSB-B

YCSB-A (50%/50% r/w) YCSB-B (95%/5% r/w)

In general, we observe similar results for PostgreSQL

Knob importance ranking more diverse between the workloads

… still top-8 knobs are almost identical
HotStorage’20

Outline

Background & Motivation

Methodology

Results

Towards Faster Database Tuning

16

Pre-selecting Important Knobs

Utilize the ML model to identify important knobs before running the tuner

Reduces configuration search space size / training dataset of tuners

17

All Tunable Knobs

Mix of Workloads

Auto-Tuning

Framework

Configurations

Current design

All Tunable Knobs

Few Workloads
Auto-Tuning

Framework

Pre-select

Important Knobs

Important

Knobs

Configurations

Our proposed
two-level design

Mix of Workloads

HotStorage’20

Pre-selecting Important Knobs

Utilize the ML model to identify important knobs before running the tuner

Reduces configuration search space size / training dataset of tuners

18

All Tunable Knobs

Mix of Workloads

Auto-Tuning

Framework

Configurations

Current design

All Tunable Knobs

Few Workloads
Auto-Tuning

Framework

Pre-select

Important Knobs

Important

Knobs

Configurations

Our proposed
two-level design

Mix of Workloads

HotStorage’20

Early results with an existing tuner, BestConfig.

When tuning top-5 knobs the best performance is reached
with 5x fewer iterations compared to tuning 30 knobs

(Apache Cassandra, YCSB-A)

Discussion

Can we make the pre-selection step cheaper? (25,000 samples)

- With our ML-based method ~400 samples are needed (early results)

- Can we use some other (cheaper) method? (evaluate few workloads?)

How does the hardware affect the important knobs?

- Can we avoid (or minimize) tuner adaptation time to new hardware?

Can we account for system reliability when tuning?

- Existing tuners may sacrifice reliability for performance

- fsync / recovery-related flags / checkpointing settings

19HotStorage’20

Summary

20

Tuning with few important knobs can yield high performance

-Trend seems to hold across different workloads and systems

- Significant overlap of top knobs across different workloads

Proposed an initial design to accelerate database auto-tuners

- Pre-selecting important knobs reduces configuration search space

- Exploit top knobs similarity across workloads to make it faster?

HotStorage’20

Summary

21

Tuning with few important knobs can yield high performance

-Trend seems to hold across different workloads and systems

- Significant overlap of top knobs across different workloads

Proposed an initial design to accelerate database auto-tuners

- Pre-selecting important knobs reduces configuration search space

- Exploit top knobs similarity across workloads to make it faster?

HotStorage’20

Thank you! Questions?

Reach me at kkanellis@cs.wisc.edu

