HotStorage '20
JULY 13-14, 2020

SplitKV: Splitting 10 Paths for Different Sized Key-
Value Items with Advanced Storage Devices

&y

Shukai Han, Dejun Jiang, Jin Xiong
Institute of Computing Technology, Chinese Academy of Sciences
University of Chinese Academy of Sciences

HotStorage '20

Outline

v Background & Motivation
* Design
« Evaluation

« Conclusion

HotStorage '20

Key-Value Store

« Key-Value (KV) stores are widely deployed in data centers

. RocksDB ' LEVELDB é redis M

« The sizes of KV items vary from a couple of bytes to hundreds of kilobytes

— Facebook's analysis on Memcached's workload found that more than
80% of requests are less than 500B in sizelll.

— The workload data on a typical day in Baidu: over 90% of requests are
over 128KB in sizel? .

[1] Berk, SIGMETRICS 2012
[2] Lai, MSST '2015 3

HotStorage '20

Conventional Storage Device based KV Store

Log-Structured Merge (LSM) Tree based KV Store

v _1.write

Write Buffer DRAM

2.flush SSD

Leveln | Table Table Table

Conventional Storage Devices
« Block access Log Structured Merge Tree is widely adopted in KV

* Low random access performance stores to convert random writes to sequential writes.

HotStorage '20

Advanced Storage Device based KV Store

Optane SSD

Optane DC
PMM

Advanced Storage Devices
« PM:Byte access

« SSD: Block access
« High random access performance

KVell3! builds low CPU overhead Key-Value
Store Based on Modern SSDs

Some worksl4 based on the low latency
characteristics of PM, in which persistent buffers
are built to reduce the logging overhead.

write

Persistent Write Buffer

flush PM

v SSD
[SSD Store]

[3] Lepers, SOSP'19 @
[4] Kannan, ATC'18

HotStorage '20

Motivation

Random Write = 64B ~ 256B = 1KB 4KB = 16KB = 64KB = 256KB

OptaneSD 1400 1400 1409 1409 2144 4579 14558 532 2091 8223

Op::a“r’\I:nDC 0.18 0.20 0.43 1.05 3.90 15.5o§ 61.88 247 1440 6840

 PMis friendly to small KV items
 NVM based SSD is friendly to large KV items without suffering from random access cost

HotStorage '20

Outline

« Background & Motivation
v Design
« Evaluation

e Conclusion

HotStorage '20

SplitKV Overview

Key idea: Splitting 10 Path for small/large KV items
KV items

large KV items
large KV items

small KV items

directly write batch write
4 N O I
\ small KV items store global index) _ ust 4KB ust_16KB)
Persistent Memory NVM based SSD @

HotStorage '20

SplitKV Overview

Reclaim PM space

select & sort

flush
sort table (st)

K ___________ SR B \\ \ (/ ______________ b \
' ! ! St_3 X

| i i st_2 i

| | i gl

\:small KV items store / global index) Q____________S_j_,bst_4KB ust_16KB y
Persistent Memory NVM based SSD @

[5] Hwang, FAST16

HotStorage '20

SplitKV Overview

Global indexI3]

B+Tree
(FAST-FAIR)

Persistent Memory NVM based SSD @

[5] Hwang, FAST'16 2

HotStorage '20

Design challenges

Challenge 1: How to decide the
KV items size boundary of KV items?

small KV items large KV items

Persistent Memory

—

{ NVMe SSD }

Challenge 2: How to handle the
migration of small items? @

HotStorage '20

Size Boundary of KV ltems

10 Path 1: KV is written to PM and then Access Size 256B 1KB
migrated to SSD through a background : | '
threed. lOPath1 | 1 5] e
10 Path 2: KV is directly written to SSD. IOPath2 | 234 | 213

Ratio \158/ 57 \ 09/ 08
Write Iatenciesﬁﬁ) of different 10 path

 When the KV item size is large,

. the data is written directly to the
[Persistent Memory] SSD for better performance.

? « Any KV pair whose size is equal

KV items

to or greater than 4 KB is
[NVMe SSD considered to be large one.

HotStorage '20

Hotness-aware KV Migration

Average Weight = 3

Key2 Key:4 Key:5 Key:3 Key:6 Key:1
Weight:5 Weight:2 Weight:3 Weight:4 Weight:3 Weight:1

se/ec

Key:1 Key:4 Key:5 Key:6 flush N
Weight:1 Weight:2 Weight:3 Weight:3 -

batch sort table (st)

\ Average Weight = 1.5

\\> Key:2 Key:3
Weight:2 Weight:1

HotStorage '20

Outline

« Background & Motivation
* Design
v Evaluation

e Conclusion

HotStorage 20

Experiment Setup

« System and hardware configuration
— Server equipped with two Intel Xeon Gold 5215 CPU (2.5GHZ)
— 64GB memory, one Intel Optane SSD P4800 and one Intel Optane DC PMM
— CentOS Linux release 7.6.1810 with 4.18.8 kernel

Workload Description
- Compared systems | AL ...59.%.’..F?.’?‘..‘?‘?.?.?9..59%’..9.9,‘?'?‘???
— RocksDB. NoveLSM[4]. KVell[3] |5 . OXcreacsenddbupdaes
C - 100% reads
D 95%reads for latest keys and 5% inserts |
. Workload I s oy —
— YCSB with zipfan and unifrom skew | F 50% reads and 50% read-modify-writes |

— Each workload handles 128 GB data set (3] Lepers, SOSP"9 @
— 50% of the KV items are 256B/4KB in size [4] Kannan, ATC'18 15

HotStorage '20

Average Latency with Single Thread (Zipfan)

NoveLSM | 4835 | 3489 3052 3228 44583 | 7257

splitkv. | 381 | 465 456 456 30665 | 5.5

For workloads A and F, SplitKV reduces latency by 14.4x, 6.9x, and 3.1x compared to
NovelLSM, RocksDB and KVell under zipfan workloads.

HotStorage '20

Average Latency with Single Thread (Zipfan)

NoveLSM 4835 | 3489 3052 3228 | 44583 7257

splitkv. 381 | 465 456 456 | 30665 = 5.05

For read-intensive workloads B, C and D, SplitKV and KVell achieved better
performance than NoveLSM and RocksDB due to the adoption of the global

B+-Tree index.

HotStorage '20

Average Latency with Single Thread (Zipfan)

Splitkv. 381 465 456 456 | 30665 | 505

For workload E, KVell does not sort small KV items in SSD. This introduces
read amplification to KVell when serving scan query by reading a plenty of

blocks.

HotStorage '20

Average Latency with Single Thread (Zipfan .vs Uniform)

Note that, the hotnessaware migration policy is difficult to figure out cold
items under uniform workloads.

HotStorage '20

th Four Threads

in YCSB w

Throughput

|
>
<|)
=
o
(Vs)
52
 —
[o o o o e e
[ttt
o)
>
<
B | e
on
Q RXRRIIILLL
R bt
@)
o
@
<t [qV} o
indybnouy] wioN

C
Workload

B SplitkV

B KVell

B RocksDB

s

7.9X

RnnnnnRS
[y

o s ot e ot
i, B
P

retetatatets!

Lo

&

C
Workload

indybnouy] wioN

20

HotStorage '20

Outline

« Background & Motivation
* Design
« Evaluation

v Conclusion

HotStorage 20

Conclusion

 Modern NVMe SSD and persistent memory provide different access
features when serving small/large data.

* We propose SplitKV to provide different 1O paths for different sized
KV items for building KV stores with such advanced storage devices.

* The throughput of SplitKV is up to 7.9 times that of other KV stores
under zipfan load skew.

HotStorage '20

THANK YOU !
Q&A

cy

*@ﬂzfﬂaA£Mﬁé

CHINESE ACADEM

Author Email: hanshukai@ict.ac.cn

