
SplitKV: Splitting IO Paths for Different Sized Key-
Value Items with Advanced Storage Devices

Shukai Han, Dejun Jiang, Jin Xiong
Institute of Computing Technology, Chinese Academy of Sciences

University of Chinese Academy of Sciences

HotStorage '20
JULY 13-14, 2020

HotStorage '20

2

Outline

ü Background & Motivation

• Design

• Evaluation

• Conclusion

HotStorage '20

3

Key-Value Store
• Key-Value (KV) stores are widely deployed in data centers

• The sizes of KV items vary from a couple of bytes to hundreds of kilobytes
– Facebook's analysis on Memcached's workload found that more than

80% of requests are less than 500B in size[1].
– The workload data on a typical day in Baidu: over 90% of requests are

over 128KB in size[2] .

[1] Berk, SIGMETRICS '2012
[2] Lai, MSST '2015

HotStorage '20

Conventional Storage Device based KV Store

4

Log Structured Merge Tree is widely adopted in KV
stores to convert random writes to sequential writes.

Write Buffer

Table Table

Table Table Table

Level 0

Level 1

1.write

2.flush
3.compaction

Table Table TableLevel n

...

...
...

DRAM
SSD

Conventional Storage Devices
• Block access
• Low random access performance

Log-Structured Merge (LSM) Tree based KV Store

HotStorage '20

Advanced Storage Device based KV Store

5

Advanced Storage Devices
• PM:Byte access
• SSD: Block access
• High random access performance

• KVell[3] builds low CPU overhead Key-Value
Store Based on Modern SSDs

• Some works[4] based on the low latency
characteristics of PM, in which persistent buffers
are built to reduce the logging overhead.

Persistent Write Buffer

SSD Store

write

flush PM
SSD

Optane SSD

Optane DC
PMM

[3] Lepers, SOSP'19
[4] Kannan, ATC'18

HotStorage '20

Motivation

6

Random Write 64B 256B 1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB

Optane SSD
P3700 14.09 14.09 14.09 14.09 21.44 45.79 145.58 532 2091 8223

Optane DC
PMM 0.18 0.20 0.43 1.05 3.90 15.50 61.88 247 1440 6840

Ratio 79.2 70.5 33.0 13.4 5.5 2.9 2.4 2.2 1.45 1.2

• PM is friendly to small KV items
• NVM based SSD is friendly to large KV items without suffering from random access cost

?

HotStorage '20

7

Outline

• Background & Motivation

ü Design

• Evaluation

• Conclusion

HotStorage '20

SplitKV Overview

8

small KV items store global index

Persistent Memory NVM based SSD

ust_4KB ust_16KB

…

small KV items large KV items
large KV items

KV items

directly write batch write

Key idea: Splitting IO Path for small/large KV items

HotStorage '20

SplitKV Overview

9

small KV items store global index

Persistent Memory NVM based SSD

st_3

st_2

st_1 ust_4KB ust_16KB

…

Reclaim PM space

sort table (st)

select & sort flush

[5] Hwang, FAST'16

HotStorage '20

SplitKV Overview

10

small KV items store global index

Persistent Memory NVM based SSD

st_1

st_2

st_3 ust_4KB ust_16KB

…

Global index[5]
B+Tree

(FAST-FAIR)

index index

[5] Hwang, FAST'16

HotStorage '20

Design challenges

11

Persistent Memory NVMe SSD

small KV items large KV items

KV items
Challenge 1: How to decide the

size boundary of KV items?

Challenge 2: How to handle the
migration of small items?

HotStorage '20

Size Boundary of KV Items

12

Persistent Memory

NVMe SSD

KV items

1

1

2

Access Size 256B 1KB 4KB 16KB

IO Path 1 1.5 4.5 15.7 27.6

IO Path 2 23.4 25.4 14.8 21.3

Ratio 15.8 5.7 0.9 0.8

• When the KV item size is large,
the data is written directly to the
SSD for better performance.

• Any KV pair whose size is equal
to or greater than 4 KB is
considered to be large one.

IO Path 1: KV is written to PM and then
migrated to SSD through a background
thread.
IO Path 2: KV is directly written to SSD.

Write latencies (us) of different IO path

HotStorage '20

Hotness-aware KV Migration

13

Key2
Weight:5

Key:4
Weight:2

Key:5
Weight:3

Key:3
Weight:4

Key:6
Weight:3

Key:1
Weight:1

Key:4
Weight:2

Key:1
Weight:1

Key:5
Weight:3

Key:6
Weight:3

batch sort table (st)

flush

1

2 Key:2
Weight:2

Key:3
Weight:1

Average Weight = 3

Average Weight = 1.5

select

HotStorage '20

14

Outline

• Background & Motivation

• Design

ü Evaluation

• Conclusion

HotStorage '20

Experiment Setup
• System and hardware configuration

– Server equipped with two Intel Xeon Gold 5215 CPU (2.5GHZ)
– 64GB memory, one Intel Optane SSD P4800 and one Intel Optane DC PMM
– CentOS Linux release 7.6.1810 with 4.18.8 kernel

• Compared systems
– RocksDB、NoveLSM[4]、KVell[3]

• Workload
– YCSB with zipfan and unifrom skew
– Each workload handles 128 GB data set
– 50% of the KV items are 256B/4KB in size 15

Workload Description

A 50% reads and 50% updates

B 95% reads and 5% updates

C 100% reads

D 95% reads for latest keys and 5% inserts

E 95% scan and 5% inserts

F 50% reads and 50% read-modify-writes

[3] Lepers, SOSP'19
[4] Kannan, ATC'18

HotStorage '20

Average Latency with Single Thread (Zipfan)

16

zipfan A B C D E F

NoveLSM 48.35 34.89 30.52 32.28 445.83 72.57

RocksDB 17.47 21.82 21.72 21.13 497.02 35.19

KVell 11.76 8.60 8.64 9.20 609.38 14.12

SplitKV 3.81 4.65 4.56 4.56 306.65 5.05

For workloads A and F, SplitKV reduces latency by 14.4x, 6.9x, and 3.1x compared to
NoveLSM, RocksDB and KVell under zipfan workloads.

HotStorage '20

Average Latency with Single Thread (Zipfan)

17

For read-intensive workloads B, C and D, SplitKV and KVell achieved better
performance than NoveLSM and RocksDB due to the adoption of the global
B+-Tree index.

zipfan A B C D E F

NoveLSM 48.35 34.89 30.52 32.28 445.83 72.57

RocksDB 17.47 21.82 21.72 21.13 497.02 35.19

KVell 11.76 8.60 8.64 9.20 609.38 14.12

SplitKV 3.81 4.65 4.56 4.56 306.65 5.05

HotStorage '20

Average Latency with Single Thread (Zipfan)

18

For workload E, KVell does not sort small KV items in SSD. This introduces
read amplification to KVell when serving scan query by reading a plenty of
blocks.

zipfan A B C D E F

NoveLSM 48.35 34.89 30.52 32.28 445.83 72.57

RocksDB 17.47 21.82 21.72 21.13 497.02 35.19

KVell 11.76 8.60 8.64 9.20 609.38 14.12

SplitKV 3.81 4.65 4.56 4.56 306.65 5.05

HotStorage '20

Average Latency with Single Thread (Zipfan .vs Uniform)

19

uniform A B C D E F

NoveLSM 96.69 69.77 61.04 64.56 476.19 145.14

RocksDB 21.11 26.13 26.08 25.89 529.10 43.27

KVell 17.86 14.02 13.31 13.80 670.69 23.09

SplitKV 8.81 12.78 12.77 9.22 346.02 13.87

zipfan A B C D E F

NoveLSM 48.35 34.89 30.52 32.28 445.83 72.57

RocksDB 17.47 21.82 21.72 21.13 497.02 35.19

KVell 11.76 8.60 8.64 9.20 609.38 14.12

SplitKV 3.81 4.65 4.56 4.56 306.65 5.05

Note that, the hotnessaware migration policy is difficult to figure out cold
items under uniform workloads.

HotStorage '20

Throughput in YCSB with Four Threads

20

0

2

4

A B C D E F

N
or

m
.T

hr
ou

gh
pu

t

Workload

RocksDB KVell SplitKV

0

2

4

6

8

10

A B C D E FN
or

m
.T

hr
ou

gh
pu

t

Workload

RocksDB KVell SplitKV

3.5X

7.9X

HotStorage '20

21

Outline

• Background & Motivation

• Design

• Evaluation

ü Conclusion

HotStorage '20

Conclusion
• Modern NVMe SSD and persistent memory provide different access

features when serving small/large data.

• We propose SplitKV to provide different IO paths for different sized
KV items for building KV stores with such advanced storage devices.

• The throughput of SplitKV is up to 7.9 times that of other KV stores
under zipfan load skew.

22

HotStorage '20

23

THANK YOU !
Q & A

Author Email: hanshukai@ict.ac.cn

