It's Time to Revisit LRU vs. FIFO

Ohad Eytan^{1,2}, Danny Harnik¹, Effi Ofer¹, Roy Friedman² and Ronen Kat¹

July 13, 2020

HotStorage '20

¹IBM Research ²Technion - Israel Institute of Technology

The Essence of Caching

- A fast but relatively small storage location
- Temporarily store items from the "real storage"

The Essence of Caching

- A fast but relatively small storage location
- Temporarily store items from the "real storage"
- Improves **performance** if hit-ratio is high

LRU & FIFO

Least Recently Used and First In First Out Policies

- The core component of the cache is the admission/eviction policy
- FIFO holds the items in a queue:
 - \star On a miss: admit new item to the queue and evict the next in line
 - $\star\,$ On a hit: no update is needed
- LRU holds the items in a list:
 - \star On a miss: add new item to list tail and evict item from list head
 - * On a hit: move item to the list tail
- Both are simple & efficient

Does it still hold?

New World

- New workloads:
 - $\star\,$ Old world: file and block storage
 - Today: videos, social networks, big data, machine/deep learning

In particular we are interested in
object storage (e.g. Amazon S3, IBM COS)

- New workloads:
 - $\star\,$ Old world: file and block storage
 - Today: videos, social networks, big data, machine/deep learning

In particular we are interested in
object storage (e.g. Amazon S3, IBM COS)

- New scale of data:
 - \star Orders of magnitude higher
 - * Emergence of cloud storage and persistent storage caches
 - $\star\,$ Cache metadata can potentially surpass memory

Motivation - Cloud Object Storage

- Data resides on an "infinite scale" remote hub
- Local "limited scale" on a local spoke to improve latency
 - * Possibly 100s of TBs in size
 - \star Some of the metadata will have to reside on persistent storage

• Metadata accesses:

• Hit rate paints only part of the picture

• Metadata accesses:

- Hit rate paints only part of the picture
- We formulated a cost model that accounts also for persistent storage latency:

$$Cost_{LRU} = HR_{LRU} \cdot \underbrace{(\ell_{Cache} + \ell_{CacheMD})}_{data} + (1 - HR_{LRU}) \cdot \underbrace{\ell_{Remote}}_{data}$$
$$Cost_{FIFO} = HR_{FIFO} \cdot \underbrace{\ell_{Cache}}_{dache} + (1 - HR_{FIFO}) \cdot \underbrace{\ell_{Remote}}_{dache}$$

IBM Cloud Object Storage Traces

- We collected 99 traces from IBM public Cloud Object Storage service
- Over 850 millions accesses to over 150TB of data

IBM Cloud Object Storage Traces

- We collected 99 traces from IBM public Cloud Object Storage service
- Over 850 millions accesses to over 150TB of data
- Some observations about the IBM traces:

Object Count Total Capacity 20 20 10 < 1 KB 10-100 KB 0.1-1.049 1-10 MB 10-100 MB 0.1-1.68 > 1 GB Object Size

Great variance in object sizes

Hours

24 48 72 96

Great variance in access patterns

0.0

120 144 168

IBM Cloud Object Storage Traces

- We collected 99 traces from IBM public Cloud Object Storage service
- Over 850 millions accesses to over 150TB of data
- Some observations about the IBM traces:

Great variance in object sizes

Great variance in access patterns

• We are publishing the traces and encourage you to use it

• We evaluated FIFO vs. LRU using 4 sets of traces:

Group	Traces	Accesses	Objects	Objects Size
Name	#	Millions	Millions	Gigabytes
MSR	3	68	24	905
SYSTOR	3	235	154	4,538
TPCC	8	94	76	636
IBM COS	99	858	149	161,869

- Tested different cache sizes (as percentage of trace object size)
- Simulated different ratios between latency of cache and remote

Results

Pure Hit Rate:

Results

Cost Winners:

$$\ell_{Cache} = 1, \ \ell_{Remote} = 50$$

Results

Cost Heatmap:

 $\ell_{Cache} = 1, \ \ell_{Remote} = 50$ Cache Size = 30%

Conclusions & Discussion

- It's no longer clear that LRU is a better choice than FIFO
- Hit rate doesn't tell the entire story
- Our IBM COS traces can provide new insights and opportunities for research

Thank You!

Ohad Eytan

ohadey@cs.technion.ac.il

Effi Ofer

effio@il.ibm.com

Danny Harnik

dannyh@il.ibm.com

Roy Friedman

roy@cs.technion.ac.il

Ronen Kat

ronenkat@il.ibm.com