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LRU & FIFO

Least Recently Used and First In First Out Policies

e The core component of the cache is the admission/eviction policy
e FIFO - holds the items in a queue:

* On a miss: admit new item to the queue and evict the next in line
* On a hit: no update is needed

e LRU - holds the items in a list:

* On a miss: add new item to list tail and evict item from list head
* On a hit: move item to the list tail

e Both are simple & efficient
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Does it still hold?
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o New workloads:

* Old world: file and block storage
* Today: videos, social networks, big data,
machine/deep learning
o In particular we are interested in
object storage (e.g. Amazon S3, IBM COS)

e New scale of data:

* Orders of magnitude higher

* Emergence of cloud storage and persistent
storage caches

* Cache metadata can potentially surpass memory



Motivation - Cloud Object Storage

e Data resides on an “infinite scale” remote hub

e Local “limited scale” on a local spoke to improve latency

* Possibly 100s of TBs in size
* Some of the metadata will have to reside on persistent storage

Hub

Spoke

imited sl &
S
Object Storage RESTful API ‘ j

“infinite scale”
Cloud Object Storage
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e Metadata accesses:
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e Hit rate paints only part of the picture
e We formulated a cost model that accounts also for persistent

storage latency:
data+metadata data

S
Costiry = HRiru - (Ccache + Lcachemp) + (1 — HRLRrU) - LRemote

data data
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Costriro = HRFiFo - Ccache + (1 — HRFiFO) - Remote



IBM Cloud Object Storage Traces

e We collected 99 traces from IBM public Cloud Object Storage service
e Over 850 millions accesses to over 150TB of data
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e We are publishing the traces and encourage you to use it


http://cs.technion.ac.il/~ohadey/lru-vs-fifo/IBMCOSTraces.html

Evaluation

e We evaluated FIFO vs. LRU using 4 sets of traces:

Group Traces | Accesses | Objects | Objects Size
Name =ik Millions | Millions Gigabytes
MSR 3 68 24 905
SYSTOR 3 235 154 4,538
TPCC 8 94 76 636

IBM COS 99 858 149 161,869

e Tested different cache sizes (as percentage of trace object size)

e Simulated different ratios between latency of cache and remote
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Results
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Cost Heatmap:
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Conclusions & Discussion
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e It's no longer clear that LRU is a better choice than FIFO
e Hit rate doesn't tell the entire story

e Our IBM COS traces can provide new insights and opportunities

for research
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