
The Key-Value SSD as a
First-Class Citizen in the
Operating System

Carl Duffy1

Sang-Hoon Kim2

Jin-Soo Kim1

1Systems Software &
Architecture Lab,

Seoul National University
2Systems Software Lab,

Ajou University

2

§ Key-value stores running on block SSDs require several lookups from
key to physical address

”userkey001” 00000001.sst 00001024 00065536

Lookup #1
(key to file)

Lookup #2
(file to LBA)

Lookup #3
(LBA to PPA)

User Program KV Store File System SSD

3

§ Compaction is later required to remove stale data and reclaim logical
space

00000005.sst
00000006.sst

00000001.sst
00000002.sst
00000003.sst
00000004.sst

aaaa cdef
aaab erfg
cdcb aaaa
aaaa bcde
lfre cdef

aaaa bcde
cdcb cdef
ergf lfre

4

§ Key-value SSDs use keys to access files, not
LBAs

§ Data management operations are handled
inside the device

§ Less translation overheads, no compaction
(or similar data management)

”userkey001” 00065536

Lookup #1
(key to PPA)

User Program SSD

5

§ Key-value interface affords a leaner I/O stack
§ However, bypasses important OS layers
• Cannot safely use KVSSDs in cloud and multi-user environments
• No OS level page caching

§ Current system calls unsuitable for KVSSD I/O

6

§ First proposal : a thin pseudo file
system designed for KVSSDs
• Provide a special file for each unique key

space (bucket)
• open() these files for bucket level permissions

and locking
• Key-value tailored data cache inside the file

system
• Call familiar functions on buckets (ls, cat)

7

§ Second proposal : system calls for
KVSSD I/O
• Current Linux system calls unsuitable for

key-value I/O
• Perform I/O at the bucket level
• put(), get(), delete(), batch(), iterate()
• Larger value size support than allowed by

device

Thank You

cduffy@snu.ac.kr

sanghoonkim@ajou.ac.kr

jinsoo.kim@snu.ac.kr

csl.snu.ac.kr

sslab.ajou.ac.kr

