Carl Duffy!

Sang-Hoon Kim?

Jin-Soo Kim! The Key-Va|Ue SSD 1S 2

'Systems Software &

Architecture Lab, First-Class Citizen in the

Seoul National University O .
eratin
2Systems Software Lab, P at g S)’Stem
Ajou University

Key-Value SSDs vs Block SSDs

= Key-value stores running on block SSDs require several lookups from
key to physical address

User Program KV Store File System

SSD

“userkey001” 00000001.sst 00001024 00065536

Lookup #1 Lookup #2 Lookup #3
(key to file) (file to LBA) (LBA to PPA)

Key-Value SSDs vs Block SSDs

* Compaction is later required to remove stale data and reclaim logical
space

aaaa bcde

cdcb cdef g % 00000005.sst
ergf Ifre 00000006.sst
aaaa- edef -

aaab erfg 00000001.sst
cdcb aaaa 00000002.sst
aaaa bcde Q D 00000003.sst
Ifre cdef 00000004.sst

Key-Value SSDs vs Block SSDs

User Program SSD

N 4

= Key-value SSDs use keys to access files, not
LBAs

* Data management operations are handled
inside the device

"userkey001” 00065536
= | ess translation overheads, no compaction

(or similar data management) Lookup #1
(key to PPA)

Missing KVSSD Support at the OS Level

= Key-value interface affords a leaner 1/O stack

* However, bypasses important OS layers
* Cannot safely use KVSSDs in cloud and multi-user environments

* No OS level page caching
" Current system calls unsuitable for KVSSD /O

Kernel Support for KVSSDs
File System and Page Cache

First proposal :a thin pseudo file
system designed for KVSSDs

Provide a special file for each unique key
space (bucket)

open() these files for bucket level permissions
and locking

Key-value tailored data cache inside the file
system

Call familiar functions on buckets (Is, cat)

User Application mount()
open()
put()

Pseudo Key-Value SSD File System
Bucket Permission and Locking Checks

Bucket Key-Value Page Cache
" y " g Found

Existence Check

Key-Value SSD Kernel Driver
nvme user kv _cmd()

blk execute rq()

Key-Value SSD
Key to Physical Address Translation

Kernel Support for KVSSDs
System Calls

" Second proposal : system calls for int fd, ret, keylen = 8, vallen = 128;
KVSSD I/O void* key = "ABCDEFGH";

. . . void* putval = (char*)malloc(vallen);
Current Linux system calls unsuitable for void* getval = (chaz*)malloc(vallen):
key-value 1/0O

fd = open("/mnt/kvssd/my_bucket", O_CREATE);

* Perform I/O at the bucket level

. . fill_buf (write_val);
put(), get(), delete(), batch(), iterate() ret = kv.put (fd, kev, keylen, putval,

* Larger value size support than allowed by vallen, NULL);

ret = kv_get (fd, key, keylen, getval,

device vallen, NULL);

cduffy@snu.ac.kr
sanghoonkim@ajou.ac.kr

jinsoo.kim@snu.ac.kr

csl.snu.ac.kr

sslab.ajou.ac.kr

Thank You

