
A file system for safely interacting with 
untrusted USB flash drives

Ke Zhong, Zhihao Jiang⋆, Ke Ma⋆, and Sebastian Angel
University of Pennsylvania ⋆Shanghai Jiao Tong University



Most Storage has moved to cloud!



USB flash drives remain popular

u Legacy data

u No network connections

u Store confidential data
− Bitcoin keys
− Medical records
− ID photos



USB stack has several issues

u Trust-by-default design principle

u Devices can bypass kernel and access memory (DMA)

u Driver code tends to be buggy
− There are many drivers by third party producers

u Masquerade as other devices
− A device could declare to be a keyboard



u Trust-by-default design principle

u Devices can bypass kernel and access memory (DMA)

u Driver code tends to be buggy
− There are many drivers by third party producers

u Masquerade as other devices
− A device could declare to be a keyboard

USB stack has several issues

Could be exploited by
a malicious flash drive



u Trust-by-default design principle

u Devices can bypass kernel and access memory (DMA)

u Driver code tends to be buggy
− There are many drivers by third party producers

u Masquerade as other devices
− A device could declare to be a keyboard

USB stack has several issues



Previous work

u Packet filtering 
− Cinch: Security’16
− USBFilter: Security’16

u Device authentication
− ProvUSB: CCS’16

u Sandbox the device
− GoodUSB: ACSAS’15



Limitation

u Packet filtering 
− Malicious payload that changes dynamically avoids rule-based detection

u Device authentication
− Require new hardware/kernel modifications

u Sandbox the device
− False negative (i.e., a device is malicious but sandbox says it's ok)



We propose RBFuse, which is a file system 
that accesses flash drives without interacting 

with the USB stack on the host machine



Key idea

RBFuse remaps memory space of
host controller to a virtual machine,

and exports file system of flash drives as
a mountable virtual file system



System overview

IOMMU



System overview

IOMMU

VFS
Server

Virtual machine



System overview

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory



System overview

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

User space
daemon



System overview

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

User space
daemon

Fuse kernel
driver



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

① getattr



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

① getattr

Execute
① getattr



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

“No such file”
“No such file”



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

① getattr
② mknod

Execute
① getattr



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

① getattr
② mknod

Execute
① getattr
② mknod



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

“Succeed!”

“Succeed!”



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

① getattr
② mknod
③ getattrExecute

① getattr
② mknod



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

① getattr
② mknod
③ getattrExecute

① getattr
② mknod
③ getattr



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

“foo exists!”

“foo exists!”



How RBFuse runs

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

Done!

Execute
① getattr
② mknod
③ getattr

① getattr
② mknod
③ getattr



Performance issues

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

Execute
① getattr
② mknod
③ getattr

① getattr
② mknod
③ getattr



Performance issues

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

Execute
① getattr
② mknod
③ getattr

① getattr
② mknod
③ getattr

Too many requests for accessing metadata
3,000 getattr calls are issued when reading 1,000 files



Performance issues

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Write 1024KB
to “foo”!

Execute
①write 128KB
②write 128KB

……
⑧write 128KB

①write 128KB
②write 128KB

……
⑧write 128KB

Write requests are split into smaller chunks



Performance issues

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Read 1024KB
from “foo”!

Execute
①read 128KB
②read 128KB

……
⑧read 128KB

①read 128KB
②read 128KB

……
⑧read 128KB

Read requests are split into smaller chunks



Compromised virtual machine

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Malicious



Compromised virtual machine

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Compromised

Malicious



Compromised virtual machine

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

①Confidential data might be stolen
②Files transferred might be tampered
③Issue malformed file system responses

Compromised

Malicious



Parsing errors

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Requests

Serialize
requests

Parse
responses



Parsing errors

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Requests

Serialize
requests

Parse
responses

Parsers, if not designed correctly,
can be easily compromised to exploit
memory errors and integer overflow.



Agenda

u How to address those challenges
− Optimizations
− Encrypted communication
− Formally verified serializer and parser

u Preliminary evaluation

u Discussion & Conclusion



Agenda

u How to address those challenges
− Optimizations
− Encrypted communication
− Formally verified serializer and parser

u Preliminary evaluation

u Discussion & Conclusion



Caching metadata

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

Execute
① getattr
② mknod
③ getattr

① getattr
② mknod
③ getattr



Caching metadata

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

Execute
① getattr
② mknod
③ getattr

① getattr
② mknod
③ getattr

u Cache during initialization
− RBFuse fetches and caches the metadata of all files

and directories during initialization

getattr could be done locally
at the VFS Client



Caching metadata

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Create a file
“foo”!

Execute
① getattr
② mknod
③ getattr

① getattr
② mknod
③ getattr

u Cache during initialization
− RBFuse fetches and caches the metadata of all files

and directories during initialization
u Update metadata accordingly

− Mknod, write, etc.



Prefetching

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Read 1024KB
from “foo”!

Execute
①read 128KB
②read 128KB

……
⑧read 128KB

①read 128KB
②read 128KB

……
⑧read 128KB



Prefetching

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Read 1024KB
from “foo”!

Execute
read 128KB
+ 896KB

①read 128KB
②read 128KB

……
⑧read 128KB

Read subsequent chunks for large file



Prefetching

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Read all files
in “dir”

Execute
①read f1
②read f2

……
⑧read f8

①read f1
②read f2

……
⑧read f8



Prefetching

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Read all files
in “dir”

Execute
read f1
+ f2 ~ f8

①read f1
②read f2

……
⑧read f8

Read other small files in the same directory



Batching operations

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Write 1024KB
to “foo”!

Execute
①write 128KB
②write 128KB

……
⑧write 128KB

①write 128KB
②write 128KB

……
⑧write 128KB



Batching operations

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Write 1024KB
to “foo”!

Execute
write 128KB

+ write 128KB
+ ……
+ write 128KB

write 128KB
+ write 128KB
+ ……
+ write 128KB

u Multiple write are combined into one



Batching operations

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Write 1024KB
to “foo”!

Execute
write 128KB

+ write 128KB
+ ……
+ write 128KB

write 128KB
+ write 128KB
+ ……
+ write 128KB

u Multiple write are combined into one
u Other requests related to write can also be merged

− getattr, mknod, getattr, open, write, close
u Speculatively respond to requests first

− By monitoring remaining size of flash drives,
if size permitted, then responds “succeed”



Agenda

u How to address those challenges
− Optimizations
− Encrypted communication
− Formally verified serializer and parser

u Preliminary evaluation

u Conclusion & Discussion



Encrypted communication

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Adapter
Optional hardware adapter can be used

which could encrypt all read/write contents

Malicious



Encrypted communication

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Adapter
Optional hardware adapter can be used

which could encrypt all read/write contents
Only two endpoints would see unencrypted contents

Endpoint 1

Endpoint 2

Malicious





Agenda

u How to address those challenges
− Optimizations
− Encrypted communication
− Formally verified serializer and parser

u Preliminary evaluation

u Conclusion & Discussion



Formally verified serializer and parser

IOMMU

VFS
Server

Virtual machine

VFS Client

USB
Directory

Requests

Serialize
requests

Parse
responses

Our parser and serializer are based on 
EverParse(Security’19), which has been 
formally verified. This avoid vulnerabilities, 
such as memory errors.



Agenda

u How to address those challenges
− Optimizations
− Encrypted communication
− Formally verified serializer and parser

u Preliminary evaluation

u Discussion & Conclusion



Experiment setup

u For virtual machine we run Ubuntu 16.04 (Linux 4.15.0-45) on QEMU.
Host machine is also Ubuntu 16.04 with KVM.

u Adapter for authentication and data encryption is built on a BeagleBone Black 
which runs Debian 9.1 (Linux 4.4.88-ti-r125).

u We used filebench to run our experiments.

u Our baseline is flash drive connected to the host without any of our mechanisms.



One large file (500MB)

 0

 50

 100

 150

 200

 250

Write Read

C
om

pl
et

io
n 

Ti
m

e 
(s

)

Host
Adapter
RBFuse

RBFuse+Adapter

Takeaway:
① RBFuse itself brings little overhead



One large file (500MB)

 0

 50

 100

 150

 200

 250

Write Read

C
om

pl
et

io
n 

Ti
m

e 
(s

)

Host
Adapter
RBFuse

RBFuse+Adapter

Takeaway:
① RBFuse itself brings little overhead
② RBFuse + adapter brings about 3x-10x
overhead, due to the bad performance
of adapter and increased roundtrips
between flash drive and host



1,000 small files (16KB each)

Takeaway:
① RBFuse itself brings 2x-4x overhead

 0

 5

 10

 15

 20

 25

 30

 35

Write Read

C
om

pl
et

io
n 

Ti
m

e 
(s

)

Host
Adapter
RBFuse

RBFuse+Adapter



1,000 small files (16KB each)

Takeaway:
① RBFuse itself brings 2x-4x overhead
② For write, RBFuse + adapter
outperforms directly accessing due to
better performance of adapter on this
task

 0

 5

 10

 15

 20

 25

 30

 35

Write Read

C
om

pl
et

io
n 

Ti
m

e 
(s

)

Host
Adapter
RBFuse

RBFuse+Adapter



1,000 small files (16KB each)

Takeaway:
① RBFuse itself brings 2x-4x overhead
② For write, RBFuse + adapter
outperforms directly accessing due to
better performance of adapter on this
task

 0

 5

 10

 15

 20

 25

 30

 35

Write Read

C
om

pl
et

io
n 

Ti
m

e 
(s

)

Host
Adapter
RBFuse

RBFuse+Adapter

Note: adapter could be viewed as another machine with Debian



1,000 small files (16KB each)

Takeaway:
① RBFuse itself brings 2x-4x overhead
② For write, RBFuse + adapter
outperforms directly accessing due to
better performance of adapter on this
task
③ For read, RBFuse + adapter brings
8.8x overhead, due to that adapter
itself would bring about 2x overhead 0

 5

 10

 15

 20

 25

 30

 35

Write Read

C
om

pl
et

io
n 

Ti
m

e 
(s

)

Host
Adapter
RBFuse

RBFuse+Adapter

Note: adapter could be viewed as another machine with Debian



Agenda

u How to address those challenges
− Optimizations
− Encrypted communication
− Formally verified serializer and parser

u Preliminary evaluation

u Discussion & Conclusion



Crash consistency test

u We modified and ran crashmonkey (OSDI’18) on RBFuse
− ext4
− vfat



Crash consistency test

u We modified and ran crashmonkey (OSDI’18) on RBFuse
− ext4
− vfat

open foo O_RDWR|O_CREAT 0777
fsync foo
checkpoint 1
close foo



Crash consistency test

u We modified and ran crashmonkey (OSDI’18) on RBFuse
− ext4
− vfat

open foo O_RDWR|O_CREAT 0777
fsync foo
checkpoint 1
close foo

vfat and RBFuse on vfat would fail!



Crash consistency test

u We modified and ran crashmonkey (OSDI’18) on RBFuse
− ext4
− vfat

open foo O_RDWR|O_CREAT 0777
fsync foo
checkpoint 1
close foo

vfat and RBFuse on vfat would fail!

Hydra (SOSP’19):
Parent directory of foo
need to be sync



Previous file system fuzzing

File system User(Client)

u Janus (S&P’19): two-dimensional input fuzzing



Previous file system fuzzing

File system User(Client)

u Janus (S&P’19): two-dimensional input fuzzing

Image fuzzing



Previous file system fuzzing

File system User(Client)

u Janus (S&P’19): two-dimensional input fuzzing

Image fuzzing Client program fuzzing



Server side fuzzing

File system
Server

(flash drive)
User(Client)

u We assume the (file system) server is malicious



Server side fuzzing

File system
Server

(flash drive)
User(Client)

u We assume the (file system) server is malicious

Malicious messages fuzzing



Formal verification

u VFS interface is small, has better-defined semantics than USB

u Formal verification on our system
− Getting the virtual file system interface “right” 



Conclusion

u We propose RBFuse, which is a file system that accesses flash drives without 
interacting with the USB stack on the host machine with reasonable overhead

u Discussion
− Crash consistency test for RBFuse
− Server side fuzzing
− Formal verification



Thank you! Any questions or suggestions?

u We propose RBFuse, which is a file system that accesses flash drives without 
interacting with the USB stack on the host machine with reasonable overhead

u Discussion
− Crash consistency test for RBFuse
− Server side fuzzing
− Formal verification


