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B Most Storage has moved to cloud!

L (& Bverleaf

Google Drive OneDl‘Ive



B USB flash drives remain popular

¢ Legacy data
¢ No network connections

& Store confidential data
— Bitcoin keys
— Medical records
— ID photos



l USB stack has several issues

@ Trust-by-default design principle
# Devices can bypass kernel and access memory (DMA)

¢ Driver code tends to be buggy
— There are many drivers by third party producers

¢ Masquerade as other devices
— A device could declare to be a keyboard
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l Previous work

¢ Packet filtering
— Cinch: Security’16
— USBFilter: Security’16

& Device authentication
— ProvUSB: CCS’16

& Sandbox the device
— GoodUSB: ACSAS’15



3 Limitation

¢ Packet filtering
— Malicious payload that changes dynamically avoids rule-based detection

¢ Device authentication
— Require new hardware/kernel modifications

¢ Sandbox the device
— False negative (i.e., a device is malicious but sandbox says it's ok)



We propose RBFuse, which is a file system
that accesses flash drives without interacting
with the USB stack on the host machine



. Key idea

RBFuse remaps memory space of
host controller to a virtual machine,
and exports file system of flash drives as
a mountable virtual file system
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l How RBFuse runs
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l How RBFuse runs
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l How RBFuse runs
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B Performance issues
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b Compromised virtual machine

USB |
Directory | = N z
Compromised x
.| VFS Client

@®Confidential data might be stolen
- ®@Files transferred might be tampered
| ®lssue malformed file system responses

-
|
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b Parsing errors
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b Parsing errors

Virtual machine USB Requests
. < (7
Directory

Serialize
requests x

VFES Client

- |OMMU |, responses

Parsers, if not designed correctly,

can be easily compromised to exploit
Cj memory errors and integer overflow.
O
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B Agenda

¢ How to address those challenges
— Optimizations



B Caching metadata
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b Caching metadata
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~ IOMMU ¢ Cache during initialization
— RBFuse fetches and caches the metadata of all files
and directories during initialization
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B Caching metadata

. . Create a file
Virtual machine USB “£60"""
) + &,
Directory - ‘&9
@ mknod x
Execute
.| VFS Client
@ mknod

~ IOMMU ¢ Cache during initialization
— RBFuse fetches and caches the metadata of all files
and directories during initialization
¢ Update metadata accordingly
Cj — Mknod, write, etc.
O




B Prefetching
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3 Prefetching

Read 1024KB

Virtual machine USB from “foo’!
@read 128KB | Directory - . g
Execute ‘
read 128KB - .| VFS Client
+ 896KB
- |IOMMU

Read subsequent chunks for large file



B Prefetching
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B Prefetching
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b Batching operations

Write 1024KB
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b Batching operations
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b Batching operations

Write 1024KB
Virtual machine USB to “foo’"!
write 128KB | Directory N > 2

+ write 128KB ‘

+ ececeee
Execute g

+ write 128KB .
write 128KB < .| VFS Client

+ write 128KB

o .
+ write 128KB IOMMU ¢ Multiple write are combined into one

¢ Other requests related to write can also be merged
— getattr, mknod, getattr, open, write, close

¢ Speculatively respond to requests first

" — By monitoring remaining size of flash drives,

@ if size permitted, then responds “succeed”




B Agenda

¢ How to address those challenges

— Encrypted communication



. Encrypted communication

Virtual machine USB

Directory

I

.| VFS Client

Optional hardware adapter can be used
which could encrypt all read/write contents




. Encrypted communication

Virtual machine USB

Directory

VFS Client | Endpoint 2

——_—— 1 .:-'-t'-?-:-{-'-:-:-'-:': Optional hardware adapter can be used

| [El Lo Adapter !, which could encrypt all read/write contents

Y 1-.4- : .

Ate) N 1 Only two endpoints would see unencrypted contents

I_ ~ k..Ij
Malicious Q
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B Agenda

¢ How to address those challenges

— Formally verified serializer and parser



B Formally verified serializer and parser

Virtual machine USB Requests
________ | Directory |~
Serialize |
requests ! x
VFS Client
— e >
' Parse :
L IOMMU |! responses |

Our parser and serializer are based on
EverParse(Security’19), which has been
v formally verified. This avoid vulnerabilities,
@ such as memory errors.



B Agenda

¢ Preliminary evaluation



l Experiment setup

¢ For virtual machine we run Ubuntu 16.04 (Linux 4.15.0-45) on QEMU.
Host machine is also Ubuntu 16.04 with KVM.

¢ Adapter for authentication and data encryption is built on a BeagleBone Black
which runs Debian 9.1 (Linux 4.4.88-ti-r125).

¢ We used filebench to run our experiments.

¢ Our baseline is flash drive connected to the host without any of our mechanisms.
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@ RBFuse + adapter brings about 3x-10x
overhead, due to the bad performance
of adapter and increased roundtrips
between flash drive and host



¥ 1,000 small files (16KB each)
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¥ 1,000 small files (16KB each)

Completion Time (5s)
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¥ 1,000 small files (16KB each)
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¥ 1,000 small files (16KB each)
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Note: adapter could be viewed as another machine with Debian
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Takeaway:

(® RBFuse itself brings 2x-4x overhead
@ For write, RBFuse + adapter
outperforms directly accessing due to
better performance of adapter on this
task

® Forread, RBFuse + adapter brings
8.8x overhead, due to that adapter
itself would bring about 2x overhead



B Agenda

& Discussion & Conclusion



¥ Crash consistency test

¢ We modified and ran crashmonkey (OSDI’18) on RBFuse
— ext4
— vfat
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¥ Crash consistency test

¢ We modified and ran crashmonkey (OSDI’18) on RBFuse

— ext4
— vfat
open foo O RDWR|O CREAT 0777 Hydra (SOSP’19):
fsync foo Parent directory of foo
checkpoint 1 need to be sync
close foo

vfat and RBFuse on vfat would fail!



B Previous file system fuzzing

¢ Janus (S&P’19): two-dimensional input fuzzing
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B Previous file system fuzzing

¢ Janus (S&P’19): two-dimensional input fuzzing

Image fuzzing Client program fuzzing
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File system User(Client)
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J Server side fuzzing

¢ We assume the (file system) server is malicious
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J Server side fuzzing

¢ We assume the (file system) server is malicious

|

|

|

| " File system A
| Server
|

|

|

|

L (flash drive) )

Malicious messages fuzzing

-

\_

User(Client)

~N

J




l Formal verification

# VFS interface is small, has better-defined semantics than USB

¢ Formal verification on our system
— Getting the virtual file system interface “right”



l Conclusion

¢ We propose RBFuse, which is a file system that accesses flash drives without
interacting with the USB stack on the host machine with reasonable overhead

¢ Discussion
— Crash consistency test for RBFuse
— Server side fuzzing
— Formal verification



l Thank you! Any questions or suggestions?

¢ We propose RBFuse, which is a file system that accesses flash drives without
interacting with the USB stack on the host machine with reasonable overhead

& Discussion

— Crash consistency test for RBFuse
— Server side fuzzing
— Formal verification
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