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Most Storage has moved to cloud!



USB flash drives remain popular

u Legacy data

u No network connections

u Store confidential data
− Bitcoin keys
− Medical records
− ID photos



USB stack has several issues

u Trust-by-default design principle

u Devices can bypass kernel and access memory (DMA)

u Driver code tends to be buggy
− There are many drivers by third party producers

u Masquerade as other devices
− A device could declare to be a keyboard



u Trust-by-default design principle

u Devices can bypass kernel and access memory (DMA)

u Driver code tends to be buggy
− There are many drivers by third party producers

u Masquerade as other devices
− A device could declare to be a keyboard

USB stack has several issues

Could be exploited by
a malicious flash drive



u Trust-by-default design principle

u Devices can bypass kernel and access memory (DMA)

u Driver code tends to be buggy
− There are many drivers by third party producers

u Masquerade as other devices
− A device could declare to be a keyboard

USB stack has several issues



Previous work

u Packet filtering 
− Cinch: Security’16
− USBFilter: Security’16

u Device authentication
− ProvUSB: CCS’16

u Sandbox the device
− GoodUSB: ACSAS’15



Limitation

u Packet filtering 
− Malicious payload that changes dynamically avoids rule-based detection

u Device authentication
− Require new hardware/kernel modifications

u Sandbox the device
− False negative (i.e., a device is malicious but sandbox says it's ok)



We propose RBFuse, which is a file system 
that accesses flash drives without interacting 

with the USB stack on the host machine



Key idea

RBFuse remaps memory space of
host controller to a virtual machine,

and exports file system of flash drives as
a mountable virtual file system
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③Issue malformed file system responses
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Parsers, if not designed correctly,
can be easily compromised to exploit
memory errors and integer overflow.
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u Cache during initialization
− RBFuse fetches and caches the metadata of all files

and directories during initialization
u Update metadata accordingly

− Mknod, write, etc.
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Execute
write 128KB

+ write 128KB
+ ……
+ write 128KB

write 128KB
+ write 128KB
+ ……
+ write 128KB

u Multiple write are combined into one
u Other requests related to write can also be merged

− getattr, mknod, getattr, open, write, close
u Speculatively respond to requests first

− By monitoring remaining size of flash drives,
if size permitted, then responds “succeed”
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Formally verified serializer and parser
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Our parser and serializer are based on 
EverParse(Security’19), which has been 
formally verified. This avoid vulnerabilities, 
such as memory errors.
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Experiment setup

u For virtual machine we run Ubuntu 16.04 (Linux 4.15.0-45) on QEMU.
Host machine is also Ubuntu 16.04 with KVM.

u Adapter for authentication and data encryption is built on a BeagleBone Black 
which runs Debian 9.1 (Linux 4.4.88-ti-r125).

u We used filebench to run our experiments.

u Our baseline is flash drive connected to the host without any of our mechanisms.
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② RBFuse + adapter brings about 3x-10x
overhead, due to the bad performance
of adapter and increased roundtrips
between flash drive and host
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1,000 small files (16KB each)

Takeaway:
① RBFuse itself brings 2x-4x overhead
② For write, RBFuse + adapter
outperforms directly accessing due to
better performance of adapter on this
task
③ For read, RBFuse + adapter brings
8.8x overhead, due to that adapter
itself would bring about 2x overhead 0
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Crash consistency test

u We modified and ran crashmonkey (OSDI’18) on RBFuse
− ext4
− vfat

open foo O_RDWR|O_CREAT 0777
fsync foo
checkpoint 1
close foo

vfat and RBFuse on vfat would fail!

Hydra (SOSP’19):
Parent directory of foo
need to be sync
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Previous file system fuzzing

File system User(Client)

u Janus (S&P’19): two-dimensional input fuzzing

Image fuzzing Client program fuzzing
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Server side fuzzing

File system
Server

(flash drive)
User(Client)

u We assume the (file system) server is malicious

Malicious messages fuzzing



Formal verification

u VFS interface is small, has better-defined semantics than USB

u Formal verification on our system
− Getting the virtual file system interface “right” 



Conclusion

u We propose RBFuse, which is a file system that accesses flash drives without 
interacting with the USB stack on the host machine with reasonable overhead

u Discussion
− Crash consistency test for RBFuse
− Server side fuzzing
− Formal verification



Thank you! Any questions or suggestions?

u We propose RBFuse, which is a file system that accesses flash drives without 
interacting with the USB stack on the host machine with reasonable overhead

u Discussion
− Crash consistency test for RBFuse
− Server side fuzzing
− Formal verification


