A file system for safely interacting with
untrusted USB flash drives

Ke Zhong, Zhihao Jiang*, Ke Ma*, and Sebastian Angel
University of Pennsylvania *Shanghai Jiao Tong University

&

UNIVERSITY 0f PENNSYLVANIA

B Most Storage has moved to cloud!

L (& Bverleaf

Google Drive OneDl‘Ive

B USB flash drives remain popular

¢ Legacy data
¢ No network connections

& Store confidential data
— Bitcoin keys
— Medical records
— ID photos

l USB stack has several issues

@ Trust-by-default design principle
Devices can bypass kernel and access memory (DMA)

¢ Driver code tends to be buggy
— There are many drivers by third party producers

¢ Masquerade as other devices
— A device could declare to be a keyboard

l USB stack has several issues

@ Trust-by-default design principle

Devices can bypass kernel and access memory (DMA)

_ Could be exploited by
¢ Driver code tends to be buggy a malicious flash drive

— There are many drivers by third party producers

¢ Masquerade as other devices
— A device could declare to be a keyboard

l USB stack has several issues

@ Trust-by-default design principle
Devices can bypass kernel and access memory (DMA)

¢ Driver code tends to be buggy
— There are many drivers by third party producers

¢ Masquerade as other devices
— A device could declare to be a keyboard

l Previous work

¢ Packet filtering
— Cinch: Security’16
— USBFilter: Security’16

& Device authentication
— ProvUSB: CCS’16

& Sandbox the device
— GoodUSB: ACSAS’15

3 Limitation

¢ Packet filtering
— Malicious payload that changes dynamically avoids rule-based detection

¢ Device authentication
— Require new hardware/kernel modifications

¢ Sandbox the device
— False negative (i.e., a device is malicious but sandbox says it's ok)

We propose RBFuse, which is a file system
that accesses flash drives without interacting
with the USB stack on the host machine

. Key idea

RBFuse remaps memory space of
host controller to a virtual machine,
and exports file system of flash drives as
a mountable virtual file system

l System overview

IOMMU

J

l System overview

Virtual machine

- IOMMU

l System overview

Virtual machine USB

Directory

I

.| VFS Client

- |IOMMU

l System overview

Virtual machine

USB
Directory

I

- |IOMMU

%

VFES Client

User space
daemon

l System overview

Virtual machine

USB
Directory

I

- |IOMMU

%

VFES Client

User space
daemon

Fuse kernel
driver

l How RBFuse runs

Virtual machine

USB
Directory

l

- |IOMMU

VFES Client

Create afile

47

“f00”!

(=7

®

l How RBFuse runs

Virtual machine

@ getattr

USB
Directory

l

- |IOMMU

VFES Client

Create afile

47

“f00”!

(=7

® I

l How RBFuse runs

Execute
@ getattr

- |IOMMU

Virtual machine

@ getattr

USB
Directory

l

VFES Client

Create afile

“f00”!

47

(=7

® I

l How RBFuse runs

Create a file
Virtual machine USB “£60"""

Directory |~ 2

“No such file” l
.| VFS Client

“No such file”

IOMMU

%

l How RBFuse runs

Execute
@ getattr

- |IOMMU

Virtual machine

@ getattr
@ mknod

USB
Directory

l

VFES Client

Create afile

“f00”!

47

(=7

® I

l How RBFuse runs

Virtual machine

Execute
@ getattr

@ getattr
@ mknod

USB
Directory

l

@ mknod

- |IOMMU

VFES Client

Create afile

“f00”!

47

(=7

® I

l How RBFuse runs

“Succeed!”’

Virtual machine

“Succeed!”’

IOMMU

>

USB
Directory

l

VFES Client

Create afile

“f00”!

47

(=7

l How RBFuse runs

Virtual machine

USB
Directory

l

@ getattr
@ mknod
Execute ® getattr
@® getattr -
@ mknod
- IOMMU

VFES Client

Create afile

“f00”!

47

(=7

® I

l How RBFuse runs

Create afile
Virtual machine USB “fo0’"
Directory |~ g

@ getattr a
@ mknod l

Execute @ getattr)

@ getattr - VES Client

@ mknod

3 getattr

& - |OMMU

l How RBFuse runs

Create a file
Virtual machine USB “£60"""
. <= ‘@r
Directory £
“foo exists!”’ l
“foo exists!”’ .| VFS Client

IOMMU

l How RBFuse runs

Create afile
Virtual machine USB “£60"""
Directory | — N 2
@ mknod ‘

Execute ® getattr .

@ getattr - .| VFS Client

@ mknod

3 getattr

& - |OMMU

B Performance issues

Create afile
Virtual machine USB “£60"""
Directory | — N 2

@ getattr
@ mknod ‘

Execute @ getattr)

@ getattr - .| VFS Client

@ mknod

3 getattr

& - |OMMU

B Performance issues

Create afile
Virtual machine USB “£60"""
Directory | = N 2

@ getattr
@ mknod x

Execute @ getattr)

@ getattr « .| VFS Client

@ mknod

3 getattr

& - |OMMU

Too many requests for accessing metadata
3,000 getattr calls are issued when reading 1,000 files

%

B Performance issues

Write 1024KB
Virtual machine USB to “foo’"!
@write 128KB| Directory N > g
@write 128KB ‘ |
Execute ®write 128KB .
®Dwrite 128KB < .| VFS Client
@write 128KB
®write 128kg | |IOMMU

Write requests are split into smaller chunks

%

B Performance issues
Read 1024KB

Virtual machine USB from “foo’!
@read 128KB | Directory N . g
@read 128KB x "
Execute ®read 128KB ,
Mread 128KB < .| VFS Client
@read 128KB
®read 128k | |OMMU

Read requests are split into smaller chunks

%

b Compromised virtual machine

"O)
I

Malicious

- |IOMMU

Virtual machine

%

USB
Directory

Y

VFES Client

b Compromised virtual machine

Compromised

:OI

Malicious

USB
Directory

Y

VFES Client

%

b Compromised virtual machine

USB |
Directory | = N z
Compromised x
.| VFS Client

@®Confidential data might be stolen
- ®@Files transferred might be tampered
| ®lssue malformed file system responses

-
|
O)

I_ ~ k,.Ij

Malicious Q

b Parsing errors

Virtual machine

Serialize
requests

-

Parse
- |OMMU responses

USB
Directory

Y

VFES Client

Requests 5
f
@

b Parsing errors

Virtual machine USB Requests
. < (7
Directory

Serialize
requests x

VFES Client

- |OMMU |, responses

Parsers, if not designed correctly,

can be easily compromised to exploit
Cj memory errors and integer overflow.
O

B Agenda

¢ How to address those challenges

¢ Preliminary evaluation

& Discussion & Conclusion

B Agenda

¢ How to address those challenges
— Optimizations

B Caching metadata

. . Create a file
Virtual machine USB “£60"""
Directory | — N 2
@ getattr
@ mknod ‘
Execute @ getattr
@ getattr - .| VFS Client
@ mknod
® getattr
- [OMMU

b Caching metadata

Create a file
Virtual machine USB “foo’’!
. < ‘@
Directory - S
@ mknod x
Execute
.| VFS Client getattr coulc! be done locally
@ mknod at the VFS Client

~ IOMMU ¢ Cache during initialization
— RBFuse fetches and caches the metadata of all files
and directories during initialization

%

B Caching metadata

. . Create a file
Virtual machine USB “£60"""
) + &,
Directory - ‘&9
@ mknod x
Execute
.| VFS Client
@ mknod

~ IOMMU ¢ Cache during initialization
— RBFuse fetches and caches the metadata of all files
and directories during initialization
¢ Update metadata accordingly
Cj — Mknod, write, etc.
O

B Prefetching

Read 1024KB

Virtual machine USB from “foo’”
@read 128KB | Directory - . g
@read 128KB ‘ “
Execute ®read 128KB ,
Mread 128KB - .| VFS Client
@read 128KB
®read 128k | |OMMU

3 Prefetching

Read 1024KB

Virtual machine USB from “foo’!
@read 128KB | Directory - . g
Execute ‘
read 128KB - .| VFS Client
+ 896KB
- |IOMMU

Read subsequent chunks for large file

B Prefetching

Execute
Mread f1
@read f2

®read f8

Virtual machine

- |IOMMU

@read f1
@read f2

®read f8

>

-

USB
Directory

Y

VFES Client

Read all files

47

in “dir”’

>

(=7

®

B Prefetching

Virtual machine

Execute
read f1

Read all files

USB in “dir”
@read f1 Directory hl > 2
.| VFS Client

+f2 ~f8

- |IOMMU

Read other small files in the same directory

b Batching operations

Write 1024KB
Virtual machine USB to “foo’"!
] . « =)
@®write 128KB| Directory - ‘€3
@write 128KB ‘
Execute ®write 128KB .
®Dwrite 128KB < .| VFS Client
@write 128KB
®write 128kg | |IOMMU

%

b Batching operations

Virtual machine

write 128KB

+ write 128KB
+ ececeee

+ write 128KB
< >

Execute

write 128KB
+ write 128KB
+ ececeee

USB
Directory

Y

VFES Client

Write 1024KB

4,

to “foo’’!

>

+ write 128KB IOMMU ¢ Multiple write are combined into one

%

&,

b Batching operations

Write 1024KB
Virtual machine USB to “foo’"!
write 128KB | Directory N > 2

+ write 128KB ‘

+ ececeee
Execute g

+ write 128KB .
write 128KB < .| VFS Client

+ write 128KB

o .
+ write 128KB IOMMU ¢ Multiple write are combined into one

¢ Other requests related to write can also be merged
— getattr, mknod, getattr, open, write, close

¢ Speculatively respond to requests first

" — By monitoring remaining size of flash drives,

@ if size permitted, then responds “succeed”

B Agenda

¢ How to address those challenges

— Encrypted communication

. Encrypted communication

Virtual machine USB

Directory

I

.| VFS Client

Optional hardware adapter can be used
which could encrypt all read/write contents

. Encrypted communication

Virtual machine USB

Directory

VFS Client | Endpoint 2

——_—— 1 .:-'-t'-?-:-{-'-:-:-'-:': Optional hardware adapter can be used

| [El Lo Adapter !, which could encrypt all read/write contents

Y 1-.4- : .

Ate) N 1 Only two endpoints would see unencrypted contents

I_ ~ k..Ij
Malicious Q

R R
e NMI N ..\,,“..unﬂl/i AW
SR ST
L AT
» ,./40.7
SN
W\

pdby qse s

. ‘151z Bsi{ean - o RRsiN 5

. nﬂﬁ af el reapsty - T
Lk 8D m.@p ampsiy

£515 * ;

@ =

el

= TR T s
: - L Rrees s 2 m '}
P lilii| e a=a ‘

(© 4
N fl =]
‘‘‘‘ i {1
g u
¢ 1

LLN

€O WOYVDIZTa

3110G9|bBaq

e B
amn

¥

L3)} -

3@

= Rer L
° |

93!1654

At

At shrhy ~
por [

MI acacec
SRR]

b= BOPODOULU LTS

PRI _anﬂ _Inmr.w
i

= xm

) PR LU

Jl4

chilh

e]

$3uJay43 oot/o0m | .
L } 12 -

AT LPJ0O11BBNI [g

B Agenda

¢ How to address those challenges

— Formally verified serializer and parser

B Formally verified serializer and parser

Virtual machine USB Requests
________ | Directory |~
Serialize |
requests ! x
VFS Client
— e >
' Parse :
L IOMMU |! responses |

Our parser and serializer are based on
EverParse(Security’19), which has been
v formally verified. This avoid vulnerabilities,
@ such as memory errors.

B Agenda

¢ Preliminary evaluation

l Experiment setup

¢ For virtual machine we run Ubuntu 16.04 (Linux 4.15.0-45) on QEMU.
Host machine is also Ubuntu 16.04 with KVM.

¢ Adapter for authentication and data encryption is built on a BeagleBone Black
which runs Debian 9.1 (Linux 4.4.88-ti-r125).

¢ We used filebench to run our experiments.

¢ Our baseline is flash drive connected to the host without any of our mechanisms.

B One large file (500MB)

Completion Time (5s)

250

N
-
-

[
Ul
)

100

Ul
-

\J

|
Host EEEA
Adapter E=X7
RBFuse L1
RBFuse+Adapter ——1

N

_—

Write

Read

Takeaway:
(® RBFuse itself brings little overhead

B One large file (500MB)

Completion Time (5s)

250

N
-
-

[
Ul
)

100

Ul
-

\J

|
Host EEEA
Adapter E=X7 _
RBFuse L1
RBFuse+Adapter ——1

_—

N _

Write

Read

Takeaway:

(® RBFuse itself brings little overhead

@ RBFuse + adapter brings about 3x-10x
overhead, due to the bad performance
of adapter and increased roundtrips
between flash drive and host

¥ 1,000 small files (16KB each)

35 | |
Host &=z | Takeaway:

— 0T 1 Adapter E==J 71 (@) RBFuse itself brings 2x-4x overhead
< 5l / RBFuse L4 _
= S RBFuse+Adapter 1
F 20 F / -
c
RS
g 15| o
= : *
o 10 B -
O L .)

0 N oA\

Write Read

¥ 1,000 small files (16KB each)

Completion Time (5s)

1 1
Host EEEXE]
I Adapter E=X1 7
//j RBFuse 22 |
" RBFuse+Adapter C—1
/S -
e
/ _
+ _
N et N
Write Read

Takeaway:

(® RBFuse itself brings 2x-4x overhead
@ For write, RBFuse + adapter
outperforms directly accessing due to
better performance of adapter on this
task

¥ 1,000 small files (16KB each)

Completion Time (5s)

Note: adapter could be viewed as another machine with Debian

35
30
25
20
15
10

\
N\
HH

\\\\\

N\
N\
AN

AN

|
Host EEEA
Adapter E=X1
RBFuse L1
RBFuse+Adapter ——1

Hh

Write

Read

Takeaway:

(® RBFuse itself brings 2x-4x overhead
@ For write, RBFuse + adapter
outperforms directly accessing due to
better performance of adapter on this
task

¥ 1,000 small files (16KB each)

Completion Time (5s)

Note: adapter could be viewed as another machine with Debian

35
30
25
20
15
10

|
Host EEEA
Adapter E=X1
RBFuse L1
RBFuse+Adapter ——1

Hh

Read

Takeaway:

(® RBFuse itself brings 2x-4x overhead
@ For write, RBFuse + adapter
outperforms directly accessing due to
better performance of adapter on this
task

® Forread, RBFuse + adapter brings
8.8x overhead, due to that adapter
itself would bring about 2x overhead

B Agenda

& Discussion & Conclusion

¥ Crash consistency test

¢ We modified and ran crashmonkey (OSDI’18) on RBFuse
— ext4
— vfat

¥ Crash consistency test

¢ We modified and ran crashmonkey (OSDI’18) on RBFuse
— ext4
— vfat

open foo O RDWR|O CREAT 0777
fsync foo

checkpoint 1

close foo

¥ Crash consistency test

¢ We modified and ran crashmonkey (OSDI’18) on RBFuse
— ext4
— vfat

open foo O RDWR|O CREAT 0777
fsync foo

checkpoint 1

close foo

vfat and RBFuse on vfat would fail!

¥ Crash consistency test

¢ We modified and ran crashmonkey (OSDI’18) on RBFuse

— ext4
— vfat
open foo O RDWR|O CREAT 0777 Hydra (SOSP’19):
fsync foo Parent directory of foo
checkpoint 1 need to be sync
close foo

vfat and RBFuse on vfat would fail!

B Previous file system fuzzing

¢ Janus (S&P’19): two-dimensional input fuzzing

4) 4)

File system User(Client)

- J _ J

B Previous file system fuzzing

¢ Janus (S&P’19): two-dimensional input fuzzing

Image fuzzing

4) 4)

File system User(Client)

- J - J

B Previous file system fuzzing

¢ Janus (S&P’19): two-dimensional input fuzzing

Image fuzzing Client program fuzzing
4 N 4 N

File system User(Client)

- J - J

J Server side fuzzing

¢ We assume the (file system) server is malicious

" File system A
Server
L (flash drive))

-

_

User(Client)

~N

J

J Server side fuzzing

¢ We assume the (file system) server is malicious

|

|

|

| " File system A
| Server
|

|

|

|

L (flash drive))

Malicious messages fuzzing

-

_

User(Client)

~N

J

l Formal verification

VFS interface is small, has better-defined semantics than USB

¢ Formal verification on our system
— Getting the virtual file system interface “right”

l Conclusion

¢ We propose RBFuse, which is a file system that accesses flash drives without
interacting with the USB stack on the host machine with reasonable overhead

¢ Discussion
— Crash consistency test for RBFuse
— Server side fuzzing
— Formal verification

l Thank you! Any questions or suggestions?

¢ We propose RBFuse, which is a file system that accesses flash drives without
interacting with the USB stack on the host machine with reasonable overhead

& Discussion

— Crash consistency test for RBFuse
— Server side fuzzing
— Formal verification

S [

—_—

