Reinforcement Learning-Based SLC Cache
Technique for Enhancing SSD Write Performance

Sangjin Yoo and Dongkun Shin
Sungkyunkwan University, Korea
newlandlord@skku.edu, dongkun@skku.edu

Qual-level-cell (QLC) flash memory 0

18

* A mainstream storage medium of solid-state drives (SSDs)
« Higher density and lower cost

 Slower performance and lower endurance
— especially, significantly worse write performance

SLC TLC QLC
Program time (page) 160us | 730us | 3102 us
Read time (page) 30 us 66 us 140 us
Erase time (block) 3 ms 48ms | 3.5ms
Endurance (Max. P/E) 100,000 | 3,000 1,000

[Comparison of SLC, TLC and QLC flash memory]"

[1] Analysis on Heterogeneous SSD Configuration with Quadruple-Level Cell NAND Flash Memory, 2019

Hybrid SSD Architecture e

18

« A partitioned SLC region
— a cache space of the remaining QLC region

— hide the slow performance of QLC flash memory
----------- QlCregion - - - - - = - = = ===

Typical SSD Architecture

Hybrid SSD Architecture

SLC block QLC block

Important factors in the hybrid SSD °

1. SLC region size

18

- considering the trade-off between capacity loss and SLC-to-QLC

migration overhead

Capacity loss

QLC

block | >

SLC
block

SLC-to-QLC migration

SLC region QLC region

*Capacity (SLC block) = Capacity (QLC block) / 4

~ - -
-
-~ -
Il I

Data migration

Important factors in the hybrid SSD 6

18

2. Hot/cold separation threshold
- write only frequently-updated (hot data) at SLC region
- small data tend to be frequently updated!?

 write request size can be used to distinguish between hot data and cold data

Q—Iot/CoId separatoD

-

~
- ~

Data length < Q,,—*’/ \\\Qata length > 6
e s
SLC region QLC region

[2] LAST: locally-aware sector translation for NAND flash memory-based storage system, 2008

SLC cache management schemes °

18

« Two types of hybrid SSDs
— Static scheme
« fixed SLC cache size and fixed hot/cold separation threshold

— Dynamic scheme

 adjust the SLC region parameters depending on the system states
(e.g., amount of stored data, |/O access pattern, etc.)

« Recent QLC SSDs adopt the dynamic scheme-based
hybrid SSD architecture

— The proper SLC cache sizes at different space utilizations are
investigated at offline with representative workloads

— Not exact under unexamined or variable workloads

Problem of the current dynamic hybrid SSDs a

and workload

2500

L 2000
1500
1000
500

I/O execution time (s)

o

BQLC to QLC OSLC to QLC

S2

31\52

_ 5000
S 4000
=

lad
—
e
=
-
=
<=

1on f1

2000
1000
0

1/0 execut

18

« Optimal policy is different depending on space utilization

BQLC ®@SLC

- - Hot/cold separation threshold :

S B OB setting1(64KB), setting2(16KB)

o Space 0 [20 | 30 | 40 | 50 | 60 | 70

= B utilization (%) | ~20 | ~30 | ~40 | ~50 | ~60 | ~70 | ~100

= Setting | 56 | 50 | 40 | 30 | 25 | 20 | 10

W w Setting 2 40 40 30 25 20 10 5

S1 | s2 | sI \ S2 [A table of the SLC cache size]

0% 70%

* Need a more intelligent algorithm
— to adjust the SLC cache parameters considering the changing system states

0%

70%

Space utilization (%)

(a)

PC

Space utilization (%)
(b) YCSB-A

Reinforcement Learning for dynamic SLC cache °
18
« Q-learning
— to learn the optimal SLC cache parameters according to the
system states
— calculates Q-values that tell which action is right in a given state
Q(s,a) = Q(s,a) + a(r + ymax Q(s',a’) — Q(s,a))
- a(action), s(state), r(reward), s’ (next state),a’ (action in s"), a(learning rate), y(discount factor)
— size of (Q-table) = # of states x # of actions
— &-greedy algorithm
« Set € to 0.07 in our experiments

a* =argmax,0(s,a),1 —¢

Reinforcement Learning for dynamic SLC cache o

e SLC cache manager
— Select an action A4; includin

State
(5¢)

Environment
— Defines the state S; based on the workload characteristics and the

internal status of the SSD, and estimates the reward R;

hot/cold separation threshold

Reward
(Re)

Agent

J (SLC Cache Manager)

Environment
(Storage System)

Action (A,)
{* SLC Cache Size,
+Hot-Cold Threshold)

[SLC cache management with RL]

changes of the SLC cache size and

Algorithm 1 SLC Cache Management
Input: State (S;), State (S;_1), Action (A;_)
Output: Action (A;)

A, = GetAction(S,)

: Perform A,
R, = GetReward()
: Update Q-value (5,_, A,_;) with Equation |

J’-‘-':..nlir-.b:

State

« Observe to know the change of environment
— Includes both the host and the SSD subsystem
— Q-table size = 5,184 bytes (=1,296 state x 4 bytes)

Category Information used for State # of bins
SLC cache size 9
SSD Space utilization 4
Previous action 9
Host Demand for SLC writes 2
Workload | Update write frequency in SLC cache 2

Reward G

18

Algorithm 2 Reward function

« Need to consider all write
Input: T5ic_ro—orc. Torc—to—o1es Tsicwrites ToLcwrite, SPace
costs to calculate the reward utilization U
of the previous action Output: Reward (R,)

. reclaim cost = Ty c_yo—p1c + TorLc—10—0LC
— I host write cost = Tspcwrire + TQLCH rife
SLC/QLC erte latency Of total write cost = (1-U)xhost write cost + U xreclaim
SLC/QLC mode cost
. . . if total write cost > average total cost then
— Delayed time by migration 5. g, = negative reward

i

else
and QLC garbage R, = positive reward
collection end if

oo oy b

Update average total write cost

Experiments @
18

Host
« QLC-based Hybrld SSD Simulator [Trace Set | [write latency log |
— 32GB density (1channel, Tbank) [Command Decoder
— Total 2,138 blocks + over-provision 3% SSD (FTL) E
— 256 pages/SLC block, 1024 page/QLC block 2P Map O Scheduler
]

SLC cache manager

— DRAM memory : 144KB

— Page size : 16KB %
[
[

[Lnan

« # of free block of each region < 5 QLC blocks *5F SLC blocks

Block manager DRAM Memory]
« FIL Flash memory Interface
— 4KB Page-level L2P mapping
* Fully cached address mapping table e e e — E
— GC or migration trigger condition [Command Decoder |
)

[Operation time calculator

[Our trace-driven simulator]

Experiments

« Compared with two previous dynamic SLC techniques
— Utilization-aware self tuning (UST)3!

— Dynamic write accelerator (DWA)®!

— Baseline: use only QLC blocks without SLC cache
« Workload characteristics

Trace PC Phone | TPC-C | OLTP | LinkBench | YCSB-A

Address space (MB) 1,029 7.606 4,622 5.694 4482 30,241

Total write amount (MB) 46,426 | 81,833 | 39,506 | 25,866 38.391 97,294

Avg. request size (KB) 66.7 428 343 358 28.2 896.3
< 125KB 2947 2522 53.25 534 61.76 0.09
Write request size distribution (%) < 256KB 23.08 1.47 2.06 5.01 3.21 0.06
o) < 512KB 27.03 1.76 16.05 12.42 15.58 3.87

> 512KB 2042 71.55 28.64 20.17 19.45 05.98

[3] Utilization-aware self-tuning design for TLC flash storage devices, 2016
[4] Optimized client computing with dynamic write acceleration, 2014

Write Throughput

B Baseline (QLC Only) ®UST ODWA ORL

LI T N

-

Mormalized throughput

bl o] il el

PC Phone TPC-C OLTP LinkBench YCSB-A

=

« RL outperforms all other techniques under most workloads
— PC trace includes a larger number of hot data

— In YCSB-A trace, most of the write requests are large and most of
data are cold

Change of SLC cache parameters

% 2000

8 1500 r--

1000

of SLC bl

0

» 2000
1500
1000

500

of SLC block:

amRL =eDWA ==UST i3
2 128
8
0 250 500 750 0 LU 00 ™
Episode Episode
(a) PC (a) PC
am=RL ==DWA ==UST ;
v 512
5 128
o 32
8
0 250 500 750 0 250 . 500 750
Episode Episode
(b) OLTP (b) OLTP

« The RL-based method adjusts more dynamically the SLC cache

parameters
(PC trace) allocates a smaller number of SLC blocks than UST, but
maintains a large value of 6

‘ 18

/0 Latency Breakdown

BQLC to QLC OSLC to QLC OSLC to SLC @QLC @SLC

2000 1200

= = 1000

2 1500 e &

E = £ 800

g e g :

E 500 % N Y}

O 7, | 7| 2w |7 || %

O o ©

u//% o
UST DWA RL UST DWA RL
(a) PC (b) OLTP

« 65.2% reduction at migration and garbage collection cost vs. UST
« Large QLC write overhead in DWA =» removed in the RL scheme

Effect of Agent Pre-training

BMQLCto QLC BSLCto QLC EQLC @SLC
1 200 00

Z 1000 Z 500 o]

£ s00 . — £ 400

% GO0 g 300 ,

2 400 s = 2200 | ﬁ/

‘pIE BN EESOE BN
Untrained Pre-trained Untrained Pre-trained
agent agent agent agent
(a) TPC-C (b) OLTP

« Pre-trained agent improves the write performance by up to
12.8% over untrained agent

— can be applied quickly to a new system with a pre-trained agent

Conclusion @

18

* Proposed an RL-based SLC cache technique

— dynamically determines the optimal SLC cache parameters
based on the system states

— enhance write throughput and write amplification factor by
77.6% and 20.3% on average, respectively

— without any prior knowledge about host workload or storage
characteristics
« Future work
— examine the effect of the proposed scheme at a real SSD
— apply the technique at multi-stream SSDs

