@ RUTGERS O OrEGON

TTTTTTTTTTTTTTTTTT
EEEEEEEEEEE

MicroMon: A Monitoring Framework for
Tackling Distributed Heterogeneity

Babar Khalid*+, Nolan Rudolpht+,
Ramakrishnan Durairajant, Sudarsun Kannan*
*Rutgers University, TUniversity of Oregon

(+co-primary authors)

Background

* Modern applications are increasingly becoming geo-distributed
- e.g., Cassandra, Apache Spark

* Geo-distributed datacenters (DCs) use heterogeneous resources
- storage heterogeneity (e.g., SSD, NVMe, Harddisk)
- WAN heterogeneity (e.g., fiber optics, InfiniBand)

* Hardware heterogeneity in DCs avoids vendor lockout and reduces
operational cost (by combining older/cheaper and newer/expensive

hardware)

* Careful provisioning can provide high performance at lower cost

Problem With Current Systems

Current monitoring frameworks for geo-distributed applications are
unidimensional

- can only monitor hosts, storage devices, networks in isolation

Lack hardware heterogeneity awareness
- e.g. no awareness for storage heterogeneity
- could impact I/O intensive applications

Coarse-granular monitoring
- unaware of host-level micro-metrics in software and hardware
- e.g. page cache, node-level |/O traffic, node’s network queue delays

Our Solution - MicroMon

* MicroMon is a fined grained monitoring, dissemination, and inference
framework

* Collects fine-grained (micrometrics) software and hardware metrics in
end-hosts and network

- e.g., page cache utilization, disk read/write throughput in end host
* Filters micrometrics into anomalies to efficiently disseminate

* Enables replica selection for geo-distributed Cassandra

* Preliminary study of Micromon integrated with geo-distributed
Cassandra shows high throughput gains

Outline

. Background
- Case Study
. Design

. Evaluation
. Conclusion

Case Study - Cassandra

* Distributed NoSQL database system deployed geographically
* Manages large amounts of structured data in commodity servers
* Provides highly available service and no single point of failure

* Typically focuses on availability and partition tolerance

S .
wamart < (©)) @ @ NeTrL

Cassandra - Replication

\
@ \\@\J
B Node 4
= . @

Client

Cassandra Cluster

Cassandra - Replication

Rack Awareness

Client

Cassandra - Replication

DC Awareness

DC: Europe

Cassandra’s Snitch Monitoring

Cassandra uses Snitch to monitor network topology and route requests
across replicas

Also provides capability to spread replicas across DCs to avoid
correlated failures

Snitch monitors (read) latencies to avoid non-responsive replicas

Different types: Gossiping, MultiRegionSnitch

- Gossiping uses rack and datacenter information to

gossip across nodes and collect latency information

Problem: No hardware heterogeneity awareness

Analysis Goal and Methodology

Goal: Highlight the lack of heterogeneity awareness

Replica Configuration

- SSD Replica: Sequential storage b/w - 600MB/s, rand b/w: 180 MB/s
- HDD replica: Sequential storage b/w - 120MB/s, rand b/w: 10 MB/s

Network latency across replicas same (for this analysis)

Workload — YCSB benchmark

- workload A (50% read and writes)
- workload B (95% reads)
- workload C (100% reads)

Impact of Storage Heterogeneity Awareness

20000 HDD-only W SSD-only 3 Snitch
40000
& 30000
£ 20000
O
10000
A B C
Y CSB Workloads

* Significant performance impact over optimal SSD-only configuration

* Snitch: Lack of awareness to storage hardware heterogeneity

Outline

. Background
. Case Study
- Design

. Evaluation
. Conclusion

Our Design: MicroMon

* Monitoring and inference framework for geo-distributed applications

* Performs micro-metrics monitoring at the host and network-level

- micro-metrics includes fine-grained software and hardware metrics

* Efficiently disseminates collected micro-metrics

* Ongoing - Distributed inference engines to guide application requests
to the best replica

MicroMon Challenges

e Selection Problem: What micrometrics to consider?
e Dissemination Problem: How to send all micrometrics?

* Inference Problem: How to quickly infer from micrometrics?

Design - Micrometrics Selection

Huge combinations of micrometrics across app, host OS, and network

Micrometrics could vary for different application-level metrics
e.g. micrometrics for latency different than those for throughput

Our approach: Start with storage and network micrometrics

|dentify hardware and software micrometrics using resource usage

- e.g. high storage usage -> monitor page cache, read/write latency

MicroMon High-level Design

Enterprise DC A Enterprise DC B

Enterprise Backbone

.

ST/

Networking stack Networking stack Storage stack
micrometrics at DC micrometrics at switches micrometrics at DC
— Transport — — Ingress/Egress — Page cache (SW)
Flags (syn, ack, etc.) Port File system (SW)

B Server Window size Packet count Block device driver (SW)
Goodput Byte count Hard disk (HW)

‘ Switch Bytes transmitted/received Drop count
Round-trip time Utilization

—p Collected — Application — — Buffer —
micrometrics Throughput g‘;ge'fe“ed:s;ecnﬁ:t
Congestion status

Reducing Dissemination — Anomaly Reports

* Problem: Prohibitive cost of dissemination across thousands of nodes
- cost increases with hardware and software components
¢ -e.g,SSD’s SMART counters contain close to 32 counters

* Observation: OSes already expose anomalies (indirectly)

- e.g. high 1/O wait time of process -> higher page cache misses

- e.g. sustained storage BWV against max. hardware BW
- e.g. network I/O queue wait time alludes to TCP congestion

* Proposed ldea: Instead of sending thousands of micrometrics to
decision agent, only report OS perceived anomalies

Reducing Dissemination - Network Telemetry

* Network telemetry offers aggregated stats about state of the network
* |dea: co-design in-band network telemetry (INT) with end host OS
- monitor packets at end host with anomaly reports as payload

- get network anomaly reports using INT

* Pre-established anomaly thresholds reduce total aggregated stats further

INT header INT payload

Network End-host
anomalies anomalies

Scalable Inference - Scoring-based Inference

* Simple scoring—based inference in Cassandra
- replicas sorted and ranked by network latency

* Problem: for bandwidth sensitive applications, need higher weights for
WAN-based micrometrics compared to host-level micrometrics

* Our approach:
- we assign equal weights to all software and hardware micrometrics
- use collected micrometrics to calculate a replica score
- route request to replicas with higher scores
- flexibility to assign higher weights for WAN-based micrometrics

* Ongoing: Designing a generic, self-adaptive inference engine

Outline

. Background
. Case Study
. Design

- Evaluation
. Conclusion

Evaluation Goals

Goals:
* Understand the impact of storage heterogeneity with Micromon

* Understand the impact of storage heterogeneity + network latency

Analysis Methodology

Multiple DCs from CloudLab Infrastructure
- three nodes located in UTAH, APT, and Emulab DCs

Replica Configuration

- UTAH replica: NVMe storage (seq bw: 600MB/s, rand bw: 180 MB/s)
- APT replica: HDD (seq bw: 120 MB/s, rand bw: |10 MB/s)

- Emulab master node: HDD (same as above)

Network Latencies

- 400us between UTAH (NVMe) replica and master node
- 600us between APT (HDD) replica and master node

Workload — YCSB benchmark
- workload A (50% read and writes)
- workload B (95% reads)
- workload C (100% reads)

Ops/sec

MicroMon’s - Storage Heterogeneity

50000
40000 ® HDD-only m SSD-only I Snitch B MicroMon
30000) B I
il wil:
10000
, s ol &L IIHI I I II I I
32 64 128 32 64 128 32 64 128
clients clients clients clients clients clients clients clients clients
Workload A Workload B Workload C

Snitch lacks storage heterogeneity awareness

MicroMon’s storage heterogeneity awareness provides performance
close to SSD-only (optimal) configuration

Performance improves by up to 49% for large thread configuration

24

Storage Heterogeneity + Network Latency

* Introduce network latency for SSD-only node

~ 9000
&
a 7000
O 1 Snitch B MicroMon
8 5000
o
o 3000
S
£ 1000 HI
-
-1000 Oms | ms 2ms S5ms |Oms | 5ms 25ms

Network Latency

* For high network latencies (e.g., beyond 10ms) SSD benefits reduce

25

Conclusion

Datacenter systems are becoming more and more heterogeneous

Deploying geo-distributed applications in heterogeneous datacenters
requires redesign of monitoring mechanisms

We propose MicroMon, a fine-grained micrometric monitoring,
dissemination, and inference framework

Our on-going work will focus on efficient dissemination and self-
adaptive inference mechanisms

Thanks!

Questions!?

Contact:

sudarsun.kannan@rutgers.edu

ram@cs.uoreqgon.edu

http://rutgers.edu
http://cs.uoregon.edu

