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Background
• Modern applications are increasingly becoming geo-distributed

- e.g., Cassandra, Apache Spark

• Geo-distributed datacenters (DCs) use heterogeneous resources
- storage heterogeneity  (e.g., SSD, NVMe, Harddisk) 
- WAN heterogeneity (e.g., fiber optics, InfiniBand)

• Hardware heterogeneity in DCs avoids vendor lockout and reduces 
operational cost (by combining older/cheaper and newer/expensive 
hardware)

• Careful provisioning can provide high performance at lower cost
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Problem With Current Systems
• Current monitoring frameworks for geo-distributed applications are 

unidimensional
- can only monitor hosts, storage devices, networks in isolation

• Lack hardware heterogeneity awareness
- e.g. no awareness for storage heterogeneity
- could impact I/O intensive applications

• Coarse-granular monitoring
- unaware of host-level micro-metrics in software and hardware
- e.g. page cache, node-level I/O traffic, node’s network queue delays
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Our Solution - MicroMon
• MicroMon is a fined grained monitoring, dissemination, and inference 

framework
• Collects fine-grained (micrometrics) software and hardware metrics in 

end-hosts and network

- e.g., page cache utilization, disk read/write throughput in end host

• Filters micrometrics into anomalies to efficiently disseminate 

• Enables replica selection for geo-distributed Cassandra

• Preliminary study of Micromon integrated with geo-distributed 
Cassandra shows high throughput gains



• Background
• Case Study
• Design
• Evaluation
• Conclusion

5

Outline



6

Case Study - Cassandra

• Distributed NoSQL database system deployed geographically 

• Manages large amounts of structured data in commodity servers 

• Provides highly available service and no single point of failure

• Typically focuses on availability and partition tolerance
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Cassandra – Replication
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Cassandra – Replication
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Cassandra – Replication
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Cassandra’s Snitch Monitoring
• Cassandra uses Snitch to monitor network topology and route requests 

across replicas

• Also provides capability to spread replicas across DCs to avoid 
correlated failures

• Snitch monitors (read) latencies to avoid non-responsive replicas

• Different types: Gossiping, MultiRegionSnitch

- Gossiping  uses rack and datacenter information to 
gossip across nodes and collect latency information

• Problem: No hardware heterogeneity awareness
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Analysis Goal and Methodology
• Goal: Highlight the lack of heterogeneity awareness

• Replica Configuration
- SSD Replica: Sequential storage b/w - 600MB/s, rand b/w: 180 MB/s
- HDD replica: Sequential storage b/w - 120MB/s, rand b/w: 10 MB/s

• Network latency across replicas same (for this analysis)

• Workload – YCSB benchmark
- workload A (50% read and writes)
- workload B (95% reads)
- workload C (100% reads)
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Impact of Storage Heterogeneity Awareness

• Significant performance impact over optimal SSD-only configuration

• Snitch: Lack of awareness to storage hardware heterogeneity
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Our Design: MicroMon
• Monitoring and inference framework for geo-distributed applications 

• Performs micro-metrics monitoring at the host and network-level

- micro-metrics includes fine-grained software and hardware metrics

• Efficiently disseminates collected micro-metrics

• Ongoing - Distributed inference engines to guide application requests 
to the best replica
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MicroMon Challenges

• Selection Problem: What micrometrics to consider?

• Dissemination Problem: How to send all micrometrics?

• Inference Problem: How to quickly infer from micrometrics?
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Design - Micrometrics Selection 
• Huge combinations of micrometrics across app, host OS, and network

• Micrometrics could vary for different application-level metrics 
e.g. micrometrics for latency different than those for throughput

• Our approach: Start with storage and network micrometrics

• Identify hardware and software micrometrics using resource usage

- e.g. high storage usage -> monitor page cache, read/write latency
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MicroMon High-level Design
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Reducing Dissemination – Anomaly Reports

• Problem: Prohibitive cost of dissemination across thousands of nodes
- cost increases with hardware and software components

• - e.g., SSD’s SMART counters contain close to 32 counters 

• Observation: OSes already expose anomalies (indirectly)

- e.g. high I/O wait time of process -> higher page cache misses
- e.g. sustained storage BW against max. hardware BW
- e.g. network I/O queue wait time alludes to TCP congestion

• Proposed Idea: Instead of sending thousands of micrometrics to 
decision agent, only report OS perceived anomalies
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Reducing Dissemination - Network Telemetry

• Network telemetry offers aggregated stats about state of the network

• Idea: co-design in-band network telemetry (INT) with end host OS
- monitor packets at end host with anomaly reports as payload
- get network anomaly reports using INT

• Pre-established anomaly thresholds reduce total aggregated stats further
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Scalable Inference - Scoring-based Inference

• Simple scoring–based inference in Cassandra
- replicas sorted and ranked by network latency

• Problem: for bandwidth sensitive applications, need higher weights for 
WAN-based micrometrics compared to host-level micrometrics

• Our approach: 
- we assign equal weights to all software and hardware micrometrics
- use collected micrometrics to calculate a replica score
- route request to replicas with higher scores 
- flexibility to assign higher weights for WAN-based micrometrics

• Ongoing: Designing a generic, self-adaptive inference engine
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Evaluation Goals
Goals:

• Understand the impact of storage heterogeneity with Micromon

• Understand the impact of storage heterogeneity + network latency

• Analyze the page cache impact (see paper for details)
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Analysis Methodology
• Multiple DCs from CloudLab Infrastructure

- three nodes located in UTAH, APT, and Emulab DCs

• Replica Configuration
- UTAH replica: NVMe storage (seq bw: 600MB/s, rand bw: 180 MB/s)
- APT replica: HDD (seq bw: 120 MB/s, rand bw: 10 MB/s)
- Emulab master node: HDD (same as above)

• Network Latencies
- 400us between UTAH (NVMe) replica and master node
- 600us between APT (HDD) replica and master node 

• Workload – YCSB benchmark
- workload A (50% read and writes)
- workload B (95% reads)
- workload C (100% reads)
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MicroMon’s - Storage Heterogeneity

• Snitch lacks storage heterogeneity awareness
• MicroMon’s storage heterogeneity awareness provides performance 

close to SSD-only (optimal) configuration
• Performance improves by up to 49% for large thread configuration
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Storage Heterogeneity + Network Latency 

-1000

1000

3000

5000

7000

9000

0ms 1ms 2ms 5ms 10ms 15ms 25ms

T
hr

ou
gh

pu
t 

(o
ps

/s
) 

 

Network Latency

Snitch MicroMon

• Introduce network latency for SSD-only node

• For high network latencies (e.g., beyond 10ms) SSD benefits reduce



26

Conclusion
• Datacenter systems are becoming more and more heterogeneous  

• Deploying geo-distributed applications in heterogeneous datacenters 
requires redesign of monitoring mechanisms

• We propose MicroMon, a fine-grained micrometric monitoring, 
dissemination, and inference framework

• Our on-going work will focus on efficient dissemination and self-
adaptive inference mechanisms



Thanks!
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Questions?

Contact:
sudarsun.kannan@rutgers.edu

ram@cs.uoregon.edu

http://rutgers.edu
http://cs.uoregon.edu

