
MicroMon: A Monitoring Framework for
Tackling Distributed Heterogeneity

Babar Khalid*+, Nolan Rudolph†+,

Ramakrishnan Durairajan†, Sudarsun Kannan*

*Rutgers University, †University of Oregon

(+co-primary authors)

2

Background
• Modern applications are increasingly becoming geo-distributed

- e.g., Cassandra, Apache Spark

• Geo-distributed datacenters (DCs) use heterogeneous resources
- storage heterogeneity (e.g., SSD, NVMe, Harddisk)
- WAN heterogeneity (e.g., fiber optics, InfiniBand)

• Hardware heterogeneity in DCs avoids vendor lockout and reduces
operational cost (by combining older/cheaper and newer/expensive
hardware)

• Careful provisioning can provide high performance at lower cost

3

Problem With Current Systems
• Current monitoring frameworks for geo-distributed applications are

unidimensional
- can only monitor hosts, storage devices, networks in isolation

• Lack hardware heterogeneity awareness
- e.g. no awareness for storage heterogeneity
- could impact I/O intensive applications

• Coarse-granular monitoring
- unaware of host-level micro-metrics in software and hardware
- e.g. page cache, node-level I/O traffic, node’s network queue delays

4

Our Solution - MicroMon
• MicroMon is a fined grained monitoring, dissemination, and inference

framework
• Collects fine-grained (micrometrics) software and hardware metrics in

end-hosts and network

- e.g., page cache utilization, disk read/write throughput in end host

• Filters micrometrics into anomalies to efficiently disseminate

• Enables replica selection for geo-distributed Cassandra

• Preliminary study of Micromon integrated with geo-distributed
Cassandra shows high throughput gains

• Background
• Case Study
• Design
• Evaluation
• Conclusion

5

Outline

6

Case Study - Cassandra

• Distributed NoSQL database system deployed geographically

• Manages large amounts of structured data in commodity servers

• Provides highly available service and no single point of failure

• Typically focuses on availability and partition tolerance

7

Cassandra – Replication

Node 1

Node 2

Node 3
Node 4

Node 5

Client

Update (key)

Cassandra Cluster

8

Cassandra – Replication

Node 1

Node 2

Node 3
Node 4

Node 5

Client

Update (key)

Rack 1

Rack 1

Rack 2

Rack Awareness

9

Cassandra – Replication

Node 1

Node 2

Node 3
Node 4

Node 5

Client

Update (key)

Rack 1

Rack 1

Rack 2

Node 1

Node 2

Node 3
Node 4

Node 5

Rack 1

Rack 1

Rack 2

DC: US DC: Europe

DC Awareness

10

Cassandra’s Snitch Monitoring
• Cassandra uses Snitch to monitor network topology and route requests

across replicas

• Also provides capability to spread replicas across DCs to avoid
correlated failures

• Snitch monitors (read) latencies to avoid non-responsive replicas

• Different types: Gossiping, MultiRegionSnitch

- Gossiping uses rack and datacenter information to
gossip across nodes and collect latency information

• Problem: No hardware heterogeneity awareness

11

Analysis Goal and Methodology
• Goal: Highlight the lack of heterogeneity awareness

• Replica Configuration
- SSD Replica: Sequential storage b/w - 600MB/s, rand b/w: 180 MB/s
- HDD replica: Sequential storage b/w - 120MB/s, rand b/w: 10 MB/s

• Network latency across replicas same (for this analysis)

• Workload – YCSB benchmark
- workload A (50% read and writes)
- workload B (95% reads)
- workload C (100% reads)

12

Impact of Storage Heterogeneity Awareness

• Significant performance impact over optimal SSD-only configuration

• Snitch: Lack of awareness to storage hardware heterogeneity

0
10000
20000
30000

40000
50000

A B C

O
PS

/s
ec

YCSB Workloads

HDD-only SSD-only Snitch

• Background
• Case Study
• Design
• Evaluation
• Conclusion

13

Outline

14

Our Design: MicroMon
• Monitoring and inference framework for geo-distributed applications

• Performs micro-metrics monitoring at the host and network-level

- micro-metrics includes fine-grained software and hardware metrics

• Efficiently disseminates collected micro-metrics

• Ongoing - Distributed inference engines to guide application requests
to the best replica

15

MicroMon Challenges

• Selection Problem: What micrometrics to consider?

• Dissemination Problem: How to send all micrometrics?

• Inference Problem: How to quickly infer from micrometrics?

16

Design - Micrometrics Selection
• Huge combinations of micrometrics across app, host OS, and network

• Micrometrics could vary for different application-level metrics
e.g. micrometrics for latency different than those for throughput

• Our approach: Start with storage and network micrometrics

• Identify hardware and software micrometrics using resource usage

- e.g. high storage usage -> monitor page cache, read/write latency

17

MicroMon High-level Design

Enterprise Backbone
Enterprise DC A

Storage stack
micrometrics at DC
Page cache (SW)
File system (SW)
Block device driver (SW)
Hard disk (HW)

Networking stack
micrometrics at DC
----- Transport -----
Flags (syn, ack, etc.)
Window size
Goodput
Bytes transmitted/received
Round-trip time
----- Application -----
Throughput

Networking stack
micrometrics at switches
----- Ingress/Egress -----
Port
Packet count
Byte count
Drop count
Utilization
----- Buffer -----
Avg. queue length
Queue drop count
Congestion status

Collected
micrometrics

Server

Enterprise DC B

Switch

18

Reducing Dissemination – Anomaly Reports

• Problem: Prohibitive cost of dissemination across thousands of nodes
- cost increases with hardware and software components

• - e.g., SSD’s SMART counters contain close to 32 counters

• Observation: OSes already expose anomalies (indirectly)

- e.g. high I/O wait time of process -> higher page cache misses
- e.g. sustained storage BW against max. hardware BW
- e.g. network I/O queue wait time alludes to TCP congestion

• Proposed Idea: Instead of sending thousands of micrometrics to
decision agent, only report OS perceived anomalies

19

Reducing Dissemination - Network Telemetry

• Network telemetry offers aggregated stats about state of the network

• Idea: co-design in-band network telemetry (INT) with end host OS
- monitor packets at end host with anomaly reports as payload
- get network anomaly reports using INT

• Pre-established anomaly thresholds reduce total aggregated stats further

Network
anomalies

INT header INT payload

End-host
anomalies

20

Scalable Inference - Scoring-based Inference

• Simple scoring–based inference in Cassandra
- replicas sorted and ranked by network latency

• Problem: for bandwidth sensitive applications, need higher weights for
WAN-based micrometrics compared to host-level micrometrics

• Our approach:
- we assign equal weights to all software and hardware micrometrics
- use collected micrometrics to calculate a replica score
- route request to replicas with higher scores
- flexibility to assign higher weights for WAN-based micrometrics

• Ongoing: Designing a generic, self-adaptive inference engine

• Background
• Case Study
• Design
• Evaluation
• Conclusion

21

Outline

22

Evaluation Goals
Goals:

• Understand the impact of storage heterogeneity with Micromon

• Understand the impact of storage heterogeneity + network latency

• Analyze the page cache impact (see paper for details)

23

Analysis Methodology
• Multiple DCs from CloudLab Infrastructure

- three nodes located in UTAH, APT, and Emulab DCs

• Replica Configuration
- UTAH replica: NVMe storage (seq bw: 600MB/s, rand bw: 180 MB/s)
- APT replica: HDD (seq bw: 120 MB/s, rand bw: 10 MB/s)
- Emulab master node: HDD (same as above)

• Network Latencies
- 400us between UTAH (NVMe) replica and master node
- 600us between APT (HDD) replica and master node

• Workload – YCSB benchmark
- workload A (50% read and writes)
- workload B (95% reads)
- workload C (100% reads)

24

MicroMon’s - Storage Heterogeneity

• Snitch lacks storage heterogeneity awareness
• MicroMon’s storage heterogeneity awareness provides performance

close to SSD-only (optimal) configuration
• Performance improves by up to 49% for large thread configuration

0

10000

20000

30000

40000

50000

32
clients

64
clients

128
clients

32
clients

64
clients

128
clients

32
clients

64
clients

128
clients

Workload A Workload B Workload C

O
ps

/s
ec

HDD-only SSD-only Snitch MicroMon

25

Storage Heterogeneity + Network Latency

-1000

1000

3000

5000

7000

9000

0ms 1ms 2ms 5ms 10ms 15ms 25ms

T
hr

ou
gh

pu
t

(o
ps

/s
)

Network Latency

Snitch MicroMon

• Introduce network latency for SSD-only node

• For high network latencies (e.g., beyond 10ms) SSD benefits reduce

26

Conclusion
• Datacenter systems are becoming more and more heterogeneous

• Deploying geo-distributed applications in heterogeneous datacenters
requires redesign of monitoring mechanisms

• We propose MicroMon, a fine-grained micrometric monitoring,
dissemination, and inference framework

• Our on-going work will focus on efficient dissemination and self-
adaptive inference mechanisms

Thanks!

27

Questions?

Contact:
sudarsun.kannan@rutgers.edu

ram@cs.uoregon.edu

http://rutgers.edu
http://cs.uoregon.edu

