
SelectiveEC: Selective Reconstruction in 

Erasure-coded Storage Systems

Liangliang Xu, Min Lyu, Qiliang Li, Lingjiang Xie, and Yinlong Xu

University of Science and Technology of China

HotStorage 2020



Distributed Storage Systems (DSSes)

Data is important

• Large scale

• Exponential growth

DSSes are the core 

infrastructures 

• Thousands of nodes

• “Fat node”

• Up to 72 TB of storage (about 

1.5M chunks) per node in Pangu[1]

• Frequent failures

Disk 

faults

Network 

failures

Artificial 

errors

Cluster 

crushed

[1] ATC2019: Dayu: Fast and Low-interference Data Recovery in Very-large Storage Systems



Erasure Coding (EC) 

EC popularly adopted in DSSes

• Provide high reliability with low 

storage cost

• (k, m)-Reed Solomon (RS) codes

• k data chunks 

• m parity chunks

• Tolerate any m nodes failures

Client

D0 D1 D2 P0 P1

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Writing a (3,2)-RS stripe



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Node5

D0



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Node5

D0

111

① Reading chunks from source nodes



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Node5

D0

111

2 2 2

① Reading chunks from source nodes
② Transferring data in network



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Node5

D0

111

2 2 2

3

① Reading chunks from source nodes
② Transferring data in network
③ Decoding



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Node5

D0

111

2 2 2

34

① Reading chunks from source nodes
② Transferring data in network
③ Decoding
④ Writing decoded data



Breakdown of EC Reconstruction Time

Network transferring contributes most to the reconstruction time

 Settings
• 28 nodes: 1NN + 27DNs

• quad-core 3.4 GHz Intel Core i5-

7500 CPU

• 8GB RAM

• 1T HDD

• 1Gbps switch (30MB/s, 90MB/s 

or 150MB/s in Pangu[1])

• 128MB chunk size

Reconstructing a (3,2)-RS chunk in 1Gbps network

[1] ATC2019: Dayu: Fast and Low-interference Data Recovery in Very-large Storage Systems

Stages

Reading 

chunks from 

source nodes

Transferring 

data in 

network

Decoding

Writing 

decoded 

data

Time 

Ratio
0.68% 85.23% 7.82% 6.27%



Random Data Layout

Random distribution

• Load balance in a large amount of stripes

Reconstruction batch by batch

• Limited network, disk I/O, CPU and memory resource

• Optimal batch size

• # of live nodes

• Detailed analysis in the paper



Random Data Layout

Nonuniform data layout in a batch

• Unbalanced upstream bandwidth occupation

Node0 Node1 Node2 Node3 Node4 Node5 Node6 Node7

Random data layout of (3,2)-RS stripes



Random Data Layout

Nonuniform choices of replacement nodes

• Unbalanced downstream bandwidth occupation

Node0 Node1 Node2 Node3 Node4 Node5 Node6 Node7

Random data layout of (3,2)-RS stripes



Goals

Balanced distribution of source nodes

Node0 Node1 Node2 Node3 Node4 Node5 Node6 Node7

Random data layout of (3,2)-RS stripes



Goals

Balanced distribution of source nodes

Balanced distribution of replacement nodes

Node0 Node1 Node2 Node3 Node4 Node5 Node6 Node7

Random data layout of (3,2)-RS stripes



SelectiveEC

Schedule reconstruction tasks out of order

Select source nodes dynamically

Select replacement nodes dynamically



Graph Model

Bipartite graph Gs = (T ∪ N, E) for the selection of source nodes

• T: tasks, i.e. each having k+m-1 source nodes

• N: source nodes, i.e. all of live nodes

• (Ti, Nj) ∈ E iff there is a chunk of stripe Ti in source node Nj

4 5 7 5 5 1 1

Tasks

Source nodes

• Connections of tasks 

and live nodes

• Nonuniform distribution 

of chunks

Gs = (T ∪ N, E) for (3, 2)-RS 



Select k Source Nodes Dynamically

Goal: balance upstream 

bandwidth occupation 

Using maximum flow to select k 

source nodes

• Construct a flow graph FGs

• Find a maximum flow

• Maximum flow value = 17

• No conflict in the chosen source 

connections



Schedule Reconstruction Tasks Out of Order

Preparation work

• Find the most unsaturated task

• Compute an unsaturated list of source nodes

• Task to be replaced: T7

• Unsaturated list: N5, N6, N7



Schedule Reconstruction Tasks Out of Order

Schedule reconstruction tasks

• Scan the reconstruction queue

• Find a new task

• More connections with unsaturated list

• Update FGs

• Find a maximum flow

Maximum flow value = 19

Replace a new task: T7



Schedule Reconstruction Tasks Out of Order

Schedule reconstruction tasks

• Scan the reconstruction queue

• Find a new task

• More connections with unsaturated list

• Update FGs

• Find a maximum flow

Achieve more balanced upstream

bandwidth occupation



Select Replacement Nodes Dynamically

Construct bipartite graph Gr for the selection of replacement 

nodes

• Complement of Gs

• Find a perfect matching

• Easy to find in large-scale DSSes

Achieve load balance of replacement nodes

• Balanced downstream bandwidth occupation

• Balanced disk I/O, CPU and memory usage



Evaluation

 Implement simulative prototype of SeletiveEC

The simulations run in a server with 

• Two 12-core Intel Xeon E5-2650 processors

• 64GB DDR4 memory

• Linux 3.10.0

 (3,2)-RS stripes

 # of chunks in a “fat node” 

• 100 times of the number of live nodes

DRP: the degree of recovery parallelism 



The First Batch

For small scale, DRP of SelectiveEC are all bigger than 0.975

For large scale, DRP of SelectiveEC improves the DRP up to 97.6%

Small scale Large scale



Full Batches

Around 0.97 for SelectiveEC

Around 0.50 for random reconstruction



Summary

SelectiveEC, a balanced scheduling module

• Schedule reconstruction tasks out of order

• Select source nodes dynamically

• Select replacement nodes dynamically

• Improve the load balance for single failure recovery effectively

Simulation results

• Improve the degree of recovery parallelism significantly

Future work

• Deploy in practical systems

• Optimize the algorithms to support multiple failures



Thanks for your attention!

Q&A

Liangliang Xu@USTC

llxu@mail.ustc.edu.cn

http://staff.ustc.edu.cn/~ykli/

