
SelectiveEC: Selective Reconstruction in 

Erasure-coded Storage Systems

Liangliang Xu, Min Lyu, Qiliang Li, Lingjiang Xie, and Yinlong Xu

University of Science and Technology of China

HotStorage 2020



Distributed Storage Systems (DSSes)

Data is important

• Large scale

• Exponential growth

DSSes are the core 

infrastructures 

• Thousands of nodes

• “Fat node”

• Up to 72 TB of storage (about 

1.5M chunks) per node in Pangu[1]

• Frequent failures

Disk 

faults

Network 

failures

Artificial 

errors

Cluster 

crushed

[1] ATC2019: Dayu: Fast and Low-interference Data Recovery in Very-large Storage Systems



Erasure Coding (EC) 

EC popularly adopted in DSSes

• Provide high reliability with low 

storage cost

• (k, m)-Reed Solomon (RS) codes

• k data chunks 

• m parity chunks

• Tolerate any m nodes failures

Client

D0 D1 D2 P0 P1

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Writing a (3,2)-RS stripe



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Node5

D0



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Node5

D0

111

① Reading chunks from source nodes



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Node5

D0

111

2 2 2

① Reading chunks from source nodes
② Transferring data in network



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Node5

D0

111

2 2 2

3

① Reading chunks from source nodes
② Transferring data in network
③ Decoding



Reconstruction 

Reconstructing a chunk of (3,2)-RS stripe

D0 D1 D2 P0 P1

Node0 Node1 Node2 Node3 Node4

Node5

D0

111

2 2 2

34

① Reading chunks from source nodes
② Transferring data in network
③ Decoding
④ Writing decoded data



Breakdown of EC Reconstruction Time

Network transferring contributes most to the reconstruction time

 Settings
• 28 nodes: 1NN + 27DNs

• quad-core 3.4 GHz Intel Core i5-

7500 CPU

• 8GB RAM

• 1T HDD

• 1Gbps switch (30MB/s, 90MB/s 

or 150MB/s in Pangu[1])

• 128MB chunk size

Reconstructing a (3,2)-RS chunk in 1Gbps network

[1] ATC2019: Dayu: Fast and Low-interference Data Recovery in Very-large Storage Systems

Stages

Reading 

chunks from 

source nodes

Transferring 

data in 

network

Decoding

Writing 

decoded 

data

Time 

Ratio
0.68% 85.23% 7.82% 6.27%



Random Data Layout

Random distribution

• Load balance in a large amount of stripes

Reconstruction batch by batch

• Limited network, disk I/O, CPU and memory resource

• Optimal batch size

• # of live nodes

• Detailed analysis in the paper



Random Data Layout

Nonuniform data layout in a batch

• Unbalanced upstream bandwidth occupation

Node0 Node1 Node2 Node3 Node4 Node5 Node6 Node7

Random data layout of (3,2)-RS stripes



Random Data Layout

Nonuniform choices of replacement nodes

• Unbalanced downstream bandwidth occupation

Node0 Node1 Node2 Node3 Node4 Node5 Node6 Node7

Random data layout of (3,2)-RS stripes



Goals

Balanced distribution of source nodes

Node0 Node1 Node2 Node3 Node4 Node5 Node6 Node7

Random data layout of (3,2)-RS stripes



Goals

Balanced distribution of source nodes

Balanced distribution of replacement nodes

Node0 Node1 Node2 Node3 Node4 Node5 Node6 Node7

Random data layout of (3,2)-RS stripes



SelectiveEC

Schedule reconstruction tasks out of order

Select source nodes dynamically

Select replacement nodes dynamically



Graph Model

Bipartite graph Gs = (T ∪ N, E) for the selection of source nodes

• T: tasks, i.e. each having k+m-1 source nodes

• N: source nodes, i.e. all of live nodes

• (Ti, Nj) ∈ E iff there is a chunk of stripe Ti in source node Nj

4 5 7 5 5 1 1

Tasks

Source nodes

• Connections of tasks 

and live nodes

• Nonuniform distribution 

of chunks

Gs = (T ∪ N, E) for (3, 2)-RS 



Select k Source Nodes Dynamically

Goal: balance upstream 

bandwidth occupation 

Using maximum flow to select k 

source nodes

• Construct a flow graph FGs

• Find a maximum flow

• Maximum flow value = 17

• No conflict in the chosen source 

connections



Schedule Reconstruction Tasks Out of Order

Preparation work

• Find the most unsaturated task

• Compute an unsaturated list of source nodes

• Task to be replaced: T7

• Unsaturated list: N5, N6, N7



Schedule Reconstruction Tasks Out of Order

Schedule reconstruction tasks

• Scan the reconstruction queue

• Find a new task

• More connections with unsaturated list

• Update FGs

• Find a maximum flow

Maximum flow value = 19

Replace a new task: T7



Schedule Reconstruction Tasks Out of Order

Schedule reconstruction tasks

• Scan the reconstruction queue

• Find a new task

• More connections with unsaturated list

• Update FGs

• Find a maximum flow

Achieve more balanced upstream

bandwidth occupation



Select Replacement Nodes Dynamically

Construct bipartite graph Gr for the selection of replacement 

nodes

• Complement of Gs

• Find a perfect matching

• Easy to find in large-scale DSSes

Achieve load balance of replacement nodes

• Balanced downstream bandwidth occupation

• Balanced disk I/O, CPU and memory usage



Evaluation

 Implement simulative prototype of SeletiveEC

The simulations run in a server with 

• Two 12-core Intel Xeon E5-2650 processors

• 64GB DDR4 memory

• Linux 3.10.0

 (3,2)-RS stripes

 # of chunks in a “fat node” 

• 100 times of the number of live nodes

DRP: the degree of recovery parallelism 



The First Batch

For small scale, DRP of SelectiveEC are all bigger than 0.975

For large scale, DRP of SelectiveEC improves the DRP up to 97.6%

Small scale Large scale



Full Batches

Around 0.97 for SelectiveEC

Around 0.50 for random reconstruction



Summary

SelectiveEC, a balanced scheduling module

• Schedule reconstruction tasks out of order

• Select source nodes dynamically

• Select replacement nodes dynamically

• Improve the load balance for single failure recovery effectively

Simulation results

• Improve the degree of recovery parallelism significantly

Future work

• Deploy in practical systems

• Optimize the algorithms to support multiple failures



Thanks for your attention!

Q&A

Liangliang Xu@USTC

llxu@mail.ustc.edu.cn

http://staff.ustc.edu.cn/~ykli/

