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Motivation
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How to hide GC latency?

ﬁ"\ * Let’s perform GCs at user idle times!
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Hiding GC latency : Background GC
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Hiding GC latency : Background GC
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https://trace.camelab.org/

GC-Tutor

DNN-based GC scheduler

* Precisely predict future request arrivals

] EE % % * Schedules GC in user-invisible time

* Consistently accurate regardless of workload
with lightweight online learning mechanism
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DNN-based GC Scheduling
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DNN-based GC Scheduling
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Lightweight Online Learning

Naive Meta Learning*
Offline Online
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Online Learning
0‘”!‘”” *Chelsea Finn, et al., Model Agnostic Meta Learning for Fast Adaptation of Deep Networks, ICML 2017 8 MI S I
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Evaluation

10T A o GC-Tutor can accurately predict idle time
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Conclusion : GC-Tutor
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DNN-based GC scheduler

* Accurate request arrival prediction using DNN model
Meta learning-based light-weight online learning mechanism

Making GC overhead invisible to users!
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Thank you!

Junhyeok Jang
Electrical Engineering, KAIST
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