ﬁ% Practical Provable End-to-End Guarantees at the Edge

Amit Vasudevan Petros Maniatis Ruben Martins Sagar Chaki
SEl/Carnegie Mellon University Google Research CSD/Carnegie Mellon University Mentor/Seimens

https://uberspark.org

—

ElderSafe, an Exemplar Edge Service Design-time Abstraction: uobject
/D - @ , \S;gn;d ‘cal‘le;S/ = Exclusive guard for indivisible system
[lnte .. & nviDIA. MICRCHIE i pale \. ﬁ I = @ é’ \. resource
Monitor - ;g data;. mmorre | 8 =| ™= Principled entry, interruption, legacy code,
watch] earable | ~devicer] and Uobject invocations:
0S andl0d Linux == pEIngows @ - ® 'g behavior + resourcem 'q_)\ et
’ 'l\ I /‘a;, U manifest g/ o Execution traces respecting program
e Timin | control-flow enables use of state-of-the-
UGtSJarant:Zj UGuarantgej / |

; \1ega°Y Cailefs / art program verification tools
: UInformation = = ° .1 - "
UFunCtlonaq Flow o Facilitates AG reasoning and composition
Guarantees)| |~ _.._ ...) Smart Health

—/

" call-return interfacing retrofits with legacy code and common programming
idioms at fine-granularity, while remaining development compatible

Door Scoring

Lock System
Caregiver Oﬂ D |
Tablet mn \

" FlderSafe, an exemplar edge service for elders who live in
an assisted-care facility, comprises:

= Resource interface confinement provides resource protection and access
control while supporting shared memory concurrency; enables multi-threaded
implementation and reasoning

Run-time Abstraction: uobject collection

legacy / uobiject
signal callers

o Heterogeneous hardware

o Heterogeneous software

uberSpark - Architectural Components

o Heterogeneous properties P *r e
. . Observer | I = Set of Uobjects
= Challenge: How do we achieve practical and provable end- — \ | . / - that share a
to-end guarantees in this heterogeneous ecosystem? N 0
0 o - & L memory address
Q@ ® - o u. (o)
e : : : Q . b= 2 O space
uberSpark - Universal Object Abstractions 59 ® - I taw
Q
:\>. S &---- e ® ‘(”,:. Q
: ea o &—-——--- — 2 J (o]
vonitor A ﬁ’;’iit® Scoring o 4 — o = = Observers:
\Wearable 'kl — Lock System -EI, a | 2 a _ .
ct Boot-strapping
— (o)
Base System 54 GP/GPU device \ * o+ o i. / > and root-of-trust
hardware model W [W : : : : : entities
?ifiér n - N App. c ¢ 0 % & ¢
: Layer | |] legacy callees
0S : ;
Sver BIOS L] . :
il - = = Layer l = Sentinels: Enforce call routings, caller-callee mediation, logical privilege
Hyp ; : : : : :
Layer | H N st device . : separation, and provide flexible implementations
BIOS : orage ev:l:‘s:“e“y L
rarer it A R . hardware iiodel Wﬁ
‘ %o, ‘ ", :: “““““““““““ BIOS - o0 ' ol . .
Platform il | fed Layer | ... — — uberSpark - Verification Bridge
iobject SRR
;:ooiic) ?Q ; o |
P g Network device iobject D uobjects sent;nel:
| ; I hardware model M%‘ collection * ! ? . . .
Input device - -, B - P - . hardware model " (Uobject independent base
: = ¥ Layer . .
hardware model; | & Y - le 6 33 invariants

" (object specific invariants

|| BIOS :
Layer = Lo To Remote v

e remaereaneranne e rnnernns ¢ Platform

. . o . uberSpark Verification Bridge and properties
" Implementation level verifiable and trusted computing . Verify liobiect and ¢
- . . . UOA High-level erify Uobject and generate
building blocks (liobjects and tiobject collections) \ Specifications f S0 . 4 J .g
—F LR binary while allowing the use
- ' " " Verification Tools ... O . . [.
Applicable to all software layers and realizable on disparate o oy [T | S §§ of multiple verification tools
\\\:::\ o O .
hardware platforms (Intermediate S N and techniques
«. Verification Languages [' O
= Retrofit incrementally with legacy code at a fine-granularity (e.g., Why3, Boogie) | : 3& = Hardware model to bridge
" Preserve existing functionality e (Pfo‘;efsc s % o heterogenous hardware and
e.g., 43, V. .
= Compositional reasoning verify and compose
~_ i
- Development compatible iobieat/ sobent/ properties over hardware
iiobject collection iiobject collection states
= Support multiple verification techniques Proofs Binaries

Research Questions

Open Challenges

= Can we automate the creation of Uobjects = Can uberSpark guarantee verified Expressivity of the verification bridge,

and automatically infer invariants? properties with practical performance? hardware model, specification language, and
= What are the classes of properties thatcan = Can tiberSpark be applied to hardware itself protocols while preserving soundness

be formally veritied and bridged with (e.g., CPU micro-code, FPGA)? Adoptability by platform owners and

uberSpark?

developers

= Can uberSpark be applied hierarchically?
= What programming languages/model can (e.g., JVM written in C Giobjects running Physical platform tampering

uberSpark accommodate? Java Gobjects as bytecode) Spurious platform failures

