
ü
b

e
rS

p
ar

k
-

A
rc

h
it

ec
tu

ra
l C

o
m

p
o

n
en

ts

hardware model

Storage device

BIOS
Layer überSpark - Verification Bridge

Design-time Abstraction: üobject

https://uberspark.org

Vitals 

Monitor

Wearable

Health 

Scoring

System

Smart 

Door

Lock
Caregiver 

Tablet

Functional

Guarantees

Security 

Guarantees

Timing 

Guarantees

Information

Flow

Guarantees

 ElderSafe, an exemplar edge service for elders who live in
an assisted-care facility, comprises:

 Challenge: How do we achieve practical and provable end-
to-end guarantees in this heterogeneous ecosystem?

hardware model

Input device

BIOS
Layer

hardware model

Base System

App.
Layer

OS 
Layer

Hyp
Layer

BIOS 
Layer

hardware model

Network device

BIOS
Layer

hardware model

GP/GPU device

App.
Layer

BIOS 
Layer

hardware model

Platform

(üobject) 

Report

To Remote 

Platform

Vitals 

Monitor

Wearable

Smart

Door 

Lock

Health 

Scoring

System

Caregiver 

Tablet

 Set of üobjects
that share a 
memory address 
space

 Observers: 
Boot-strapping 
and root-of-trust 
entities

überSpark - Universal Object Abstractions

Run-time Abstraction: üobject collection

signal callers

m
e
t
h
o
d
 
c
a
l
l
e
r
s

legacy callees

ü
o
b
j
e
c
t
 
c
a
l
l
e
e
s

code; 

data; 

stack;

resource

CPU state; 

memory; 

device;

behavior + resource

manifest

 Implementation level verifiable and trusted computing 
building blocks (üobjects and üobject collections)

 Applicable to all software layers and realizable on disparate 
hardware platforms

 Retrofit incrementally with legacy code at a fine-granularity

 Preserve existing functionality

 Compositional reasoning

 Development compatible

 Support multiple verification techniques

Observer

(RoT)

legacy / üobject

signal callers

legacy callees

l
e
g
a
c
y
/
 
ü
o
b
j
e
c
t

m
e
t
h
o
d
 
c
a
l
l
e
r
s

i
n
t
e
r
-
ü
o
b
j
e
c
t
 
c
o
l
l
e
c
t
i
o
n

ü
o
b
j
e
c
t
 
c
a
l
l
e
e
s

üobject 

collection

hardware model

UOA High-level 

Specifications

Verification Tools

(e.g., Frama-C, Coq)

Intermediate 

Verification Languages 

(e.g., Why3, Boogie)

Provers 

(e.g., Z3, CVC4)

B
i
n
a
r
y
 
T
o
o
l
c
h
a
i
n
 

(
e
.
g
.
,
 
C
o
m
p
c
e
r
t
,
 

L
L
V
M
/
c
l
a
n
g
)

üobject/ 

üobject collection

Binaries

überSpark Verification Bridge

üobjects sentinels

üobject/ 

üobject collection

Proofs

 Expressivity of the verification bridge, 
hardware model, specification language, and 
protocols while preserving soundness

 Adoptability by platform owners and 
developers

 Physical platform tampering

 Spurious platform failures

 üobject independent base 
invariants

 üobject specific invariants 
and properties

 Verify üobject and generate 
binary while allowing the use 
of multiple verification tools 
and techniques

 Hardware model to bridge 
heterogenous hardware and 
verify and compose 
properties over hardware 
states

 Can we automate the creation of üobjects
and automatically infer invariants? 

 What are the classes of properties that can 
be formally verified and bridged with 
überSpark? 

 What programming languages/model can 
überSpark accommodate?

 Can überSpark guarantee verified 
properties with practical performance?

 Can überSpark be applied to hardware itself 
(e.g., CPU micro-code, FPGA)?

 Can überSpark be applied hierarchically? 
(e.g., JVM written in C üobjects running 
Java üobjects as bytecode)

Research Questions Open Challenges

 Sentinels: Enforce call routings, caller-callee mediation, logical privilege 
separation, and provide flexible implementations

ElderSafe, an Exemplar Edge Service

Practical Provable End-to-End Guarantees at the Edge
Amit Vasudevan

SEI/Carnegie Mellon University

Petros Maniatis
Google Research

Ruben Martins
CSD/Carnegie Mellon University

Sagar Chaki
Mentor/Seimens

 call-return interfacing retrofits with legacy code and common programming 
idioms at fine-granularity, while remaining development compatible

 Resource interface confinement provides resource protection and access 
control while supporting shared memory concurrency; enables multi-threaded 
implementation and reasoning

 Exclusive guard for indivisible system 
resource

 Principled entry, interruption, legacy code, 
and üobject invocations:

o Execution traces respecting program 
control-flow enables use of state-of-the-
art program verification tools

o Facilitates AG reasoning and composition

o Heterogeneous hardware

o Heterogeneous software

o Heterogeneous properties


