
RUSTFUZZ: Scalable Concolic Security Fuzzing Tool for Rust
Mohammadreza Ashouri
ashouri@uni-potsdam.de

University of Potsdam

1 Introduction

Rust is a popular system programming language introduced by
Mozilla in 2010 that provides strong compile-time correctness and
high performance. The language has improved upon the ideas
of other system languages, such as C++. For instance, the Rust
compiler provides a reliable memory protection mechanism by
performing a robust control over the memory life cycle to eradicate
common reliability issues (e.g. memory violation and data race)
in system programming languages. Consequently, a wide range
of programs, such as operating systems (e.g. RustOS), web
frameworks (e.g. Rocket), and blockchain clients (e.g. Parity
Ethereum Client) have been built in Rust.

In this work, we have evaluated the security of the Rust compiler
in a real-world situation on a new benchmark suite, including core
libraries and popular open-source projects. Our analysis aims to
measure the usefulness of the memory model and safety structure
of the Rust memory model in practice. Particularly, we aim to
determine the trade-off between high-level safety guarantees
and low-level control over the memory model in this compiler.
Accordingly, we implemented a scalable concolic fuzzing tool
for the Rust compiler, which is called "RUSTFUZZ", and we have
evaluated our approach on 10,693 real-world projects and core
libraries written in Rust. As a result, we could successfully identify
19 actual security vulnerabilities in our collected benchmark suite.

Contributions. The main contributions of our work are as
follows:

1. We have designed RUSTFUZZ as a practical and scalable
security fuzzing tool for performing scalable security analysis
in Rust. Our tool works without the source code, based on a
parallel concolic testing module. In our analysis, RUSTFUZZ
could successfully report multiple security issues, some of
which can impose severe security threats to the end-users.

2. We have analyzed the safety of the provided core libraries
(e.g., network, cryptography, process and file management)
for Rust developers, and we found security issues are rising
by using unsafe blocks in RUST projects, which results in
compromising the type safety in the compiler.

2 Security Analysis

Give the fact that Rust uses LLVM as the backend and produces
the LLVM IR as an intermediate outcome of its compilation
process; we have implemented our analysis system basedon the
LLVM bytecode. Thus, RUSTFUZZ takes the LLVM as the IR code
and leverages a distributed concolic execution engine to identify
vulnerable execution path and trigger them with concrete values.
We illustrated a cycle of a program under analysis in Figure 1. We
have also specified a wide range of potential system vulnerabilities
associated with memory boundaries issues (e.g. Integers, array
access, Stack and Heap) for the root engine of RUSTFUZZ.
Figure 2 represents the abstract structure of RUSTFUZZ.

Figure 1: showing the abstract of Condition Life Cycle.

Figure 2: Overview structure of RUSTFUZZ.

We have written RUSTFUZZ in RUST, and we used Ubuntu
Linux 16.04 LTS alongside with the QEMU emulator as a fast
and portable dynamic translator to provide a cross-platform
environment to track any suspicious activities associated with
memory issues.

3 Benchmark Collection & Preliminary Result

In order to perform our security analysis, we have collected 10,693
popular open-source Rust project along with various core libraries
available at the Crates.io repository. Our corpus comprises
14,796 Rust files, which holds 651,193 lines of code (LoC) in total.
In Table 1, we represent the summary of our security analysis on
some of the benchmarks in our collected corpus.

Table 1: SECURITY ISSUES DETECTED BY RUSTFUZZ

Benchmark M
em

or
y

Le
ak

D
en

ia
lo

fS
er

vi
ce

S
ta

ck
O

ve
rfl

ow

H
ea

p
O

ve
rfl

ow

In
te

ge
rO

ve
rfl

ow

In
se

cu
re

D
es

er
ia

liz
at

io
n

Ya
m

lI
nj

ec
tio

n

S
id

e
C

ha
nn

el

Fo
rm

at
S

tr
in

g

Lucet 7 3 7 7 7 7 7 7 7

Trust-DNS 7 3 3 7 7 7 7 7 7

Rust-Base64 7 7 7 3 7 7 7 7 7

Standard HTTP 7 7 7 7 3 7 7 7 7

Safe-Transmute 7 7 7 3 3 7 7 7 7

Yaml 7 7 7 7 7 7 3 7 7

LibSec 7 7 7 7 7 7 7 3 7

CBOR 7 7 7 7 7 3 7 7 7


	Introduction
	Security Analysis
	Benchmark Collection & Preliminary Result

