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Abstract
Deep Convolutional Neural Networks (CNNs) have achieved
remarkable progress in the field of face recognition (FR).
However, developing a robust FR system in the real-world
is still challenging due to vast variance of illumination, vi-
sual quality, and camera angles in different scenarios. These
factors may result in significant accuracy drop, if the pre-
trained model doesn’t have perfect generalization ability. To
mitigate this issue, we present a solution named SAFACE,
which helps to improve FR accuracy through unsupervised
online-learning in an edge computing system. Specifically,
we propose a novel scenario-aware FR flow, then decouple the
flow into different phases and map each of them to different
levels of a three-layer edge computing system. For evaluation,
we implement a prototype and demonstrate its advantages in
both improving recognition accuracy and reducing processing
latency.

1 Introduction

In recent years, deep learning algorithms have revolution-
ized the field of face recognition (FR), attributing to the emer-
gence of powerful deep CNN architectures [3, 9, 12] deli-
cate loss functions [3, 7, 8, 20], and large scale (public) face
datasets [6, 11, 21]. However, deploying these FR models
in the real-world is still challenging. Recent studies have
shown that those FR algorithms trained with static datasets
will suffer significant performance degradation when applied
to real-world scenarios [4,10]. This is caused by vast variance
of face poses, illumination and visual quality of the captured
pictures in different scenarios, as well as the limited general-
ization ability of FR models trained with static datasets [10].
A straightforward solution is to collect more training data
from the target scenario and then fine-tune the FR models.
Unfortunately, this method will introduce several issues: First,
the procedure of collecting and labeling training data is both
technically challenging and labor-intensive. Second, as data
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volume increases infinitely, it seems to be impossible to man-
age the data and build/train a model atop to best fit every
scenario to deliver seamless service. These issues altogether
suggest that such a solution cannot scale in practice.

To tackle these challenges, we present SAFACE, a practical
face recognition system. It employs the idea of unsupervised
online learning, which can gradually fine-tune the FR model
and improve its accuracy in the targeted scenarios. It is real-
ized by a novel computing flow to unify the inference (face de-
tection and recognition) and online model training. SAFACE
performs face detection, verification, and tracking simultane-
ously. By leveraging implicit information from continuous
images in time series, SAFACE learns the discriminative fea-
tures to retrain the FR model in an unsupervised manner with
such online data.

From the deployment perspective, SAFACE borrows edge
computing paradigm [15, 19, 23] as the substrate to natively
solve the scalability issue. We decouple the scenario-aware
FR flow into different phases and map each of them to differ-
ent levels of a three-layer edge computing system. We further
introduce the following optimization techniques to improve
efficiency. First, we use a strategy only to fine-tune a portion
of the FR model. This strategy can improve training efficiency,
without sacrificing the accuracy and latency. Second, we pro-
pose a context-aware scheduling strategy based on the flow
density of persons (faces). This strategy is capable of coor-
dinating the FR inference and online training tasks so that
both high inference throughput and high training efficiency
are promised. For evaluation,we implement a prototype and
demonstrate its advantages in both improving recognition
accuracy and reducing processing latency.

2 Basic FR Flow

We start with the typical open-set FR problem. In a standard
surveillance process, we first employ a face detection model
FD to detect the probes (the faces that need to be recognized)
in a frame. Then, these probes are aligned based on the fa-
cial landmarks obtained from a face aligning model FA. We
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Figure 1: Illustration of a basic FR flow: step 1© FR model
training, step 2© face detection and alignment, step 3© feeding
probes into FR model, step 4© extracting face representations,
and step 5© comparing and determining the identity.
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Figure 2: SAFACE overview.

denote p as the aligned version of a probe captured from
the original frame. Formally, the aligned probes in It can
be obtained by {pi} = FA◦FD(It). After that, we can feed
these aligned face images into the FR model to calculate their
face representations, denoted as {xi}. At last, we compare
the representations with those pre-registered in the gallery
and determine their identities. The pipeline for open-set face
recognition is also illustrated in Figure 1.

3 System Overview

The overall structure of the SAFACE is depicted in Figure 2.
On the right side, the flow of SAFACE consists of three parts.
The first one (top) is initializing and training a model using
a public dataset. This is a one-time step, which is performed
on a cloud server. Then, this pre-trained model is sent to edge
servers at the starting point for FR inference. As addressed be-
fore, the performance may be degraded in different scenarios.
The second part (middle) of SAFACE is responsible for FR
inferences and online learning tasks, which are deployed on
edge servers. The middle piece in this part is a context-aware
scheduler. It is responsible for run-time adjusting computation
resource utilization of on-line learning tasks. The goal is to
avoid interfering the FR inference tasks. The input data for
both FR inference and online learning tasks come from the
last part (bottom), which is deployed on each smart camera.
This part is responsible for face detection, alignment, and
tracking tasks. It generates probes and extracts related timing

information from live video streams and send them to edge
servers.

The partition and mapping of SAFACE flow highly de-
pends on the computation and communication characteristics
of each sub-tasks. Face detection [24], alignment [17,24], and
tracking are considered as light-weight tasks, which can be
processed directly on smart cameras. It is also called scenario-
shared stage of the flow. On the contrary, the middle part
running on edge servers are called scenario-aware stage.
The original FR model is adjusted into different versions
by online learning, according to the specific environment of
each camera. The reasons why we choose edge servers to de-
ploy scenario-aware stage, rather than cloud servers are that,
online learning algorithm involves significant extra data trans-
mission between cameras and servers. This is not scalable as
the number of surveillance cameras increases with a speed
of 50 million per year [18]. In addition, the communication
latency between surveillance cameras and the remote cloud
server is relative high (typically range from 50 to 200 ms). It
is not acceptable for some real-time FR scenarios. Using edge
servers can efficiently solve these problems. Finally, since
the pre-traning of FR model demands tremendous comput-
ing resources [7, 8] and only needs to be done once, we can
naturally deploy it in cloud servers.

4 FR Flow of SaFace

In this section, we depict our scenario-aware FR flow. It can
dynamically adjust a pre-trained FR model through unsuper-
vised face representation learning. In order to achieve this, we
divide the traditional flow into two stages, namely, scenario-
shared stage and scenario-aware stage. Illustration of this
scenario-aware FR flow is shown in Figure 3, which is intro-
duced in detail in the rest of this section.

4.1 Scenario-shared Stage
The scenario-shared stage contains all essential steps in a
traditional one. Besides, a face tracking step is introduced to
leverage implicit information contained in live video streams.
In fact, a probe with the same identity may appear in several
consecutive frames of a stream. Thus, we use a face tracking
algorithm to obtain the track associated with one specific iden-
tity. In this paper, we propose to track the faces by detection,
as introduced in the prior study [2, 25]. All steps of this stage
are shown in Figure 3.

Given a probe p (associated with a face box) in the t-th
frame It ,we firstly extract a set of face boxes in the next
frame It+1. The overlap between these boxes and p should
be larger than a given threshold. Then, the face box with the
maximum overlap is selected into the track. The tracking is
terminated when there is no matched face in the next frame.
Specifically, to reduce the noises in the face tracking caused
by false alarm, we set a minimum length (10 in our design)
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Figure 3: Detailed flow of SAFACE: (A) model pre-training, (B) face detection& tracking, (C) FR inference, (D) triplet generation,
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for each track. We ignore the tracks that are shorter than this
threshold. These tracks are used for online training in next
stage. Note that in some very crowded scenes, the risk of
tracking wrong faces may increase. Adopting more advanced
tracking methods [1, 14] will mitigate this risk. In our test
cases, we find that simply using tracking-by-detection is good
enough.

4.2 Scenario-aware Stage
In scenario-aware stage, we use the probe tracks from the
last stage to incrementally improve the FR model with online
learning. Motivated by prior works [3, 25], we adopt triplet
loss to fine-tune the FR model. To introduce the way to lever-
age triplet loss for online learning, we first describe the triplets
generation procedure with the face tracks.

4.2.1 Triplet Generation

A triplet consists of three probes, namely, an anchor probe, a
negative probe, and a positive probe. For each track, we first
select a probe as the anchor probe. Then, we go through all
other probes in the same frame containing the anchor probe.
Obviously, the identities of these probes are different from
that of the anchor probe. Thus, they are named as negative
samples in this work. The feature distance between the anchor
probe and negative samples is calculated. The negative probe
is the negative sample that has the minimum distance from
the anchor probe. Similarly, we go through all other probes
in the same track, which are supposed to be positive samples.
The positive sample having the maximum distance with the

Algorithm 1: Face triplets generation
1 Input:
2 Face tracks T
3 Frame number = Nv
4 Face triplets P = {}
5 for t← 0 to Nv−1 do
6 for pa in Tt do
7 pp = argmax

pk

({dist(FR(pa),FR(pk)) : pk ∈

T (pa)∧pk 6= pa})
8 pn = argmin

pk

({dist(FR(pa),FR(pk)) : pk ∈ It ∧ pk 6= pn})

9 P.push(
〈
pa,pp,pn

〉
)

10 end
11 end
12 return P

anchor probe is selected as the positive probe in the triplet.
An example is illustrated in Figure 4.

Note that, if there is only one probe (i.e., anchor probe)
in a frame, we cannot find the corresponding negative probe
for this anchor probe. Thus, we skip this anchor probe. For
each track, we need to extract all triplets. The corresponding
process is listed in Algorithm 1. Each triplet is represented
as < pa,pp,pn >. These generated triplets are used for pro-
viding the supervised signal for the online learning, which is
introduced as follows.

4.2.2 Online Training

We adopt the triplet-loss function [8] to learn from the gener-
ated triplets. In the context of training deep CNN model, the
common practice is to train on all the weight parameters, but
in our case, it suffices to adjust a part of the parameters of the
FR model. To be specific, we divide the FR CNN model into
two separated parts: scenario-shared extractor and scenario-
aware learner, as shown in Figure 3. During the online learn-
ing phase, the parameters in the scenario-shared extractor are
fixed once the initialized FR model is deployed. All scenarios
share the parameters in this part. On the other hand, to learn
dedicated face representations from a specific scenario, the
SGD is performed on the parameters in the scenario-aware
learner.
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4.3 Context-aware Scheduling
When deploying SAFACE on an edge computing system, both
FR model inferences and online training tasks are assigned
to edge servers. Each edge server is responsible for multiple
cameras, as shown in Figure 2. Obviously, the original FR
tasks should be given a higher priority to guarantee real-time
responses. The online learning tasks, on the contrary, are
performed incrementally without any real-time requirement.
Thus, the online learning tasks should not interfere with the
FR tasks and only leverage the idle resources on edge servers.
Thus, we propose a context-aware scheduling method for
online training tasks.

In practice, the number of video frames are sampled in a
fixed rate (e.g. 25fps) at each surveillance camera. This rate is
denoted as RC. Assume that the maximum number of cameras
that can be connected to an edge server is denoted as NC. We
assume that the maximum number of probes contained in a
frame is limited as NPmax . Thus, the total number of probes
that can be processed on an edge server in a time interval
∆t = 1/RC is defined as its computation capability, denoted
as NE , which should satisfy the following requirement,

NE ≥ NC×NPmax (1)

Since the incoming rates of probes vary a lot in a real-work
application, the pivot is to select a proper number (batch size)
of triplets for training in a time interval ∆t = 1/RC. It should
adjust according to the run-time computation utilization oc-
cupied by FR. An example is illustrated in Figure 5. In the
daytime, the incoming rate is high so that a small batch size
is used for online training. During the night, a larger batch
size is used.

The maximum batch size that can be processed in a time
interval can be obtained in advance. This is denoted as Bmax.
Then, the run-time batch size Bt can be calculated with the
following equation,

Bt = max(0,Bmax× (1−α
∑

NC
i=1 NPi

NE
)) (2)

The term ∑
NC
i=1 NPi
NE

represents the computation utilization by

current FR model processing, where ∑
NC
i=1 NPi calculate the

total number of probes from all cameras in this time interval.
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Figure 6: Dataset visualization. (The faces are intentionally
covered in consideration of privacy)

Parameter α is a pre-defined coefficient to adjust so-called
effective computation utilization. It accounts for the over-
head caused by task switching, data movement, etc. This is a
scenario dependent parameter, which should be adjusted in
deployment.

5 Prototype

For evaluation, we implement a prototype. We adopt sev-
eral models of InsightFace [3] to serve as the baseline FR
models. To simulate the edge computing system, We adopt
Hisilicon Hi3516CV500 IP Camera to serve as the camera
node, whose computation power is sufficient to conduct real-
time face detection and tracking. The edge node is emulated
with a desktop PC equipped with an Intel i7-6700k CPU and
Nvidia GTX1080 GPU. For communication between the edge
server and camera nodes, we use a TP-Link WDR5620 router
through a 100Mbps Ethernet cable. The round trip time be-
tween camera nodes and the edge server is less than 20ms.
The cloud side is a powerful GPU server with 4×GTX 1080TI
GPU.

We build the training and testing datasets based on a private
dataset used in [16], which is obtained by the real surveillance
cameras located in two different scenarios. As shown in Fig-
ure 6, Scene0 and Scene1 have different camera angles, illumi-
nation and face resolution. We split each video sequence into
two time-independent parts, one for training and another for
test. The ratio of training and test frames is 5 to 1. Note that
the test data is manually labeled, while the training data has
no labels, and our system learns with it through unsupervised
manner.

6 Evaluation Results

In this section we present some preliminary results that
demonstrate the efficiency of our designed FR system, includ-
ing the accuracy improvement, speedup of partial fine-tuning
and the throughput improvement of context-aware scheduling.

6.1 Accuracy Improvement
As introduced before, for each scenario there is a training
dataset and a testing dataset based on the experiment settings.
For unsupervised online learning, we fine-tune the initialized
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Figure 8: Speed-accuracy trade-off (#Scenario2)

model via the proposed flow using video streams from the
training dataset of the specific scenario. The verification accu-
racy on the testing dataset is used to measure the performance
of the FR model quantitatively. We perform experiments on
three different FR models with different CNN models. The
overall results are shown in Table 1.

As the results show, there is a considerable performance
gap between the research benchmark and the benchmark built
on real surveillance data. For example, ResNet50 achieves a
superior accuracy of 99.80% on LFW [3]. There is an obvious
drop when applying this model to our surveillance images.
Specifically, ResNet50 achieves an accuracy of 96.74% on
Scenario1 and 95.62% on Scenario2, respectively. With the
help of the proposed flow, ResNet50 fine-tuned using online
learning (denoted as After) has obviously improved the ac-
curacy. It indicates that the fine-tuned model has a better
generalization in the real scenario than the original FR model.

6.2 Partial Fine-tuning

Motivated by previous practice in transfer learning [5, 22],
we introduce a strategy in Section 4, which is to fine-tune
a part of parameters while freezing others in the phase of
online learning. Here, we quantitatively show how the strategy
affects the performance of the online learning. To this end,
we conduct experiments to fine-tune different parts of the
Sphere-20 network and show how the performance changes.

Figure 7 and Figure 8 show the speed-accuracy trade-off
in the two scenarios. We can easily find that in Sphere-20
model, even if we freeze he first 12 layers in the CNN model
and only fine-tune the last 8 layers, the FR accuracy drops a
little compared to fine-tuning the whole model. However it
achieves about 1.8x speed up. If we further freeze more layers,
say 16 layers, the accuracy drops a lot in both two scenarios.

Table 1: Face verification accuracy (%).

Model
Scenario1 Scenario2

Before After Before After
MobileNet 95.70 96.12 92.69 93.51
Sphere20 96.22 97.13 94.71 96.20
ResNet50 96.74 97.33 95.62 96.43
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Figure 9: The comparison of context-aware scheduling (de-
noted as dynamic) and the strategy that uses fixed batch
size (denoted as fixed). The x-axis is the fixed batch size,
while the y-axis represents the throughput (triplets/min)

6.3 Context-aware Scheduling
As mentioned in Section 4, we introduce a context-aware
scheduling strategy (denoted as dynamic) to coordinate the
online learning and inference tasks. In this part, we validate
the effectiveness of this strategy on both benchmarks com-
pared with a fixed strategy, which uses a fixed training batch
size (denoted as fixed). For the fixed strategy, we test dif-
ferent batch sizes. Note that using different batch size leads
to different training speed of the fixed strategy. Therefore,
for fair comparison, we adjust al pha in Equation 2 to en-
sure dynamic strategy has a similar training speed to fixed
strategy. The results are shown in Figure 9.

As shown in results, our dynamic strategy achieves con-
sistent improvements (measured as throughput) on different
batch sizes, also in different scenarios. The throughput in our
context is defined as the number of probes that the system can
process in one second. For example, given a batch size of 40
for fixed strategy in scenario1, dynamic achieves a through-
put of 51.03 probes per second while fixed achieves the
throughput of 38.52 probes per second. Our strategy shows a
32.4% relative improvements. All these results indicate that
our dynamic strategy can achieve better inference throughput
while at a high training efficiency compared with the fixed
strategy.

7 Conclusion

In this paper we introduce SAFACE. It exploits implicit timing
series information from live video to perform un-supervised
online training. It can improve performance of the FR model
according to the real environment of a scenario. In addition,
SAFACE deploys the whole algorithm flow on an edge com-
puting system rather than a centric cloud system. With further
assistance of a run-time task scheduler, efficient execution of
both FR inference and online training tasks can be promised.



8 Discussion

• Generality of SAFACE. In this work, we focus on face
recognition problems. However, we believe that SAFACE can
be generalized to support many other tasks such as person re-
identification tasks [13, 26]. Since they share similar dataflow
with CNN based face recognition. More experiments need to
be done to confirm this conjecture.
• Better Offloading Strategy. SaFace currently adopts an of-
floading strategy which allocates the face detection/alignment
to the IoT device and offloads other tasks into edge nodes.
This method reduces the average face detection and recog-
nition latency from about 120ms to less than 60ms in our
prototype. Theoretically, we can build better analytic model
to achieve optimal latency based on the current states of the
edge and its managing IoT node. We mark this as future work.
• Different Training Modes. For online-learning, there are
two different modes. 1) Always-on mode: SAFACE collects
triplets all the time and performs fine-tuning immediately af-
ter a batch of training data is prepared. 2) Periodical training
mode: SAFACE periodically fine-tune the FR model. It col-
lects triplets, stores it, and then fine-tunes the model every one
or two hours. The differences of the two modes with respect
to performance/accuracy remain to be discussed.
• Evaluate in More Realistic Scenarios. For fast evaluation,
we use two video sequences to evaluate SAFACE. It is better
to deploy SAFACE in a more realistic scenarios to evaluate
its effectiveness, stability and scalability, etc. More works
remain to be done to make SAFACE a more practical system
for actual use.
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