
Cost-effective Hardware Accelerator Recommendation for Edge Computing∗

Xingyu Zhou, Robert Canady, Shunxing Bao, Aniruddha Gokhale
Dept of EECS, Vanderbilt University, Nashville,TN

(xingyu.zhou,robert.e.canady, shunxing.bao, a.gokhale)@vanderbilt.edu

Abstract
Hardware accelerator devices have emerged as an alter-
native to traditional CPUs since they not only help per-
form computations faster but also consume much less
energy than a traditional CPU thereby helping to lower
both capex (i.e., procurement costs) and opex (i.e., en-
ergy usage). However, since different accelerator tech-
nologies can illustrate different traits for different appli-
cation types that run at the edge, there is a critical need
for effective mechanisms that can help developers select
the right technology (or a mix of) to use in their context,
which is currently lacking. To address this critical need,
we propose a recommender system to help users rapidly
and cost-effectively select the right hardware accelera-
tor technology for a given compute-intensive task. Our
framework comprises the following workflow. First, we
collect realistic execution traces of computations on real,
single hardware accelerator devices. Second, we utilize
these traces to deduce the achievable latencies and amor-
tized costs for device deployments across the cloud-edge
spectrum, which in turn provides guidance in selecting
the right hardware.

1 Introduction
An issue that is often encountered by developers plan-
ning to deploy their applications, particulary those in-
volving data-driven machine learning elements, is what
device hardware is best suited (performance and cost-
wise) for a given task under varying data processing de-
mands. This question is even more pronounced [26] for
resource-constrained edge computing/IoT.

This problem is particularly acute in scenarios where
cameras with video streams are involved [1] because
compute intensive tasks, especially deep learning based
machine learning applications on these data, often re-

∗This work was supported in part by AFOSR DDDAS FA9550-18-
1-0126 program. Any opinions, findings, and conclusions or recom-
mendations expressed are those of the author(s) and do not necessarily
reflect the views of the sponsor.

quire millions of operations for each inference [16].
Thus, to maintain low latencies and compliance with
the power sensitivity of edge deployment, smaller mod-
els [8] operating on more efficient hardware are pre-
ferred [14]. To that end, hardware acceleration technolo-
gies, such as field programmable gate arrays (FPGAs),
graphical processing units (GPUs) and application-
specific integrated circuits (ASICs) among others, have
shown significant promise for edge computing [20].

With the proliferation of different accelerator tech-
nologies, developers are faced with a significant
dilemma: which accelerator technology is best suited
for their application needs such that response times are
met under different workload variations, the overall cost
of the deployment fits their budget and the energy con-
sumption for these devices are below a threshold. This
dilemma stems from the fact that different accelera-
tor technologies illustrate different performance and en-
ergy consumption traits for different application scenar-
ios. Contemporary techniques that evaluate acceleration
technologies are either too specific to a device type and
incorporate only a single inference instance level [22,36]
or comprise low-level circuit design optimization analy-
sis [12, 30]. Consequently, there remains a significant
lack of understanding on the applicability of these ac-
celerator technologies in at-scale, edge-based applica-
tions [33] due to diversity of systems settings [24].

In a general sense, selecting a suitable hardware ac-
celerator technology for a given computational task can
be regarded as finding out a hardware device placement
and optimization strategy for a given topology. Prior
work has explored this general problem for service place-
ment for edge computing [18, 27]. From a hardware per-
spective, workload-specific accelerator placement frame-
works for automobiles and unmanned aircraft have been
proposed [2, 17, 29]. In these workloads, energy usage
is dominated by vehicles rather than computational over-
head. From a higher cloud-level point of view, research
on device and service placement also exists [3, 37]. Yet,

widespread adoption of these different hardware plat-
forms requires more systematic understanding of both
spatial and temporal impacts in realistic deployments in
a network with compute-intensive tasks.

To address these challenges, we present HARE (Hard-
ware Accelerator Recommender for the Edge), which is
a framework to help users rapidly and cost-effectively se-
lect the right hardware accelerator for a given compute-
intensive task. Our work focuses on a general framework
to model compute latency and energy usage across accel-
erator devices, and makes the following contributions:

• We present a novel hardware-software co-
evaluation framework that formalizes the perfor-
mance comparison involving training samples
obtained on real hardware.
• We develop a simple approximation method that

can be utilized to implement long-term cost anal-
ysis for hardware-based machine learning inference
behavior at the edge.
• We show case studies involving two realistic ma-

chine learning application settings and demonstrate
HARE in these contexts.

The remainder of the paper is organized as follows:
Section 2 describes the design of the HARE hardware ac-
celerator evaluation framework; Section 3 provides em-
pirical experiment design and evaluation results of ap-
plications across different hardware platforms; and Sec-
tion 4 concludes the paper.

2 Recommender System Methodology
We now present technical details about HARE. In real-
izing it, we faced several challenges. The broad range
of hardware options and settings makes performance
quantification on the different device types very diffi-
cult. There are numerous hardware-related metrics and
we had to decide which metrics were most significant
and how to depict hardware acceleration patterns in a
compact manner. Finally, for at-scale deployment of de-
vices, the overall system performance is not just a simple
addition of individual performance cases.

Our approach to realizing HARE uses the following
steps: (1) Conduct performance and energy benchmark-
ing in isolation per device type, and (2) Use these insights
to approximate the performance, energy and cost metrics
for at-scale deployments, which is then used as the rec-
ommendation engine.

2.1 Benchmarking in Isolation
For our first step, we have used machine learning-based
applications to drive our benchmarking efforts. This
choice stems from the fact that state-of-art deep learning
advances have enabled higher demands for compute in-
tensive data stream processing tasks from edge sources,

especially video and image processing using deep learn-
ing [1]. We chose application cases belonging to classi-
fication (ResNet-50 [9]) and detection (Tiny Yolo [25]) as
test functions to explore and compare their performance
across different hardware platforms. Note that machine
learning comprises many more techniques and deploy-
ment on different hardware, such as random forests [32]
or decision trees [21]. However, there is a general lack
of comparison standards due to heterogeneous platform
workflows and limited deployment scale. Further, al-
though it is desirable for the same model to illustrate sim-
ilar accuracy across different hardware [22] as is illus-
trated by TensorFlow [28], the performance across these
hardware may be different.

To that end we consider four types of hardware in-
cluding CPU, GPU, ASIC and FPGA. CPUs are the
most general hardware platform. GPUs, particulary the
NVIDIA products with CUDNN [4] support both desk-
top and embedded training and inference. For ASICs,
we used two currently available neural network accel-
eration chips on the market: the Intel Neural Compute
Stick (NCS) [10] and Google Coral with Tensor Process-
ing Unit (TPU) [12]. For FPGAs, High-level synthe-
sis (HLS) is a technology that can translate behavioral-
level design descriptions using C/C++ into RTL descrip-
tions [13] and make them easier for application devel-
opers to test edge applications [11]. For deep learning
tasks, Xilinx provides a toolkit called DNNDK [7] based
on HLS that is aimed at providing users with an end-to-
end workflow to deploy a trained network on FPGA de-
vices. The design flows for different hardware platforms
that we have used are summarized in Table 1.

Single device executions aim at collecting time and
power consumption data for the task under consideration.
Time experiment records are series of data points of exe-
cution time length for each inference. From these data
records, the mean and standard deviation of response
time and its inverse (inference frequency) are determined
to document the capability of this device. That is, we use
a normal distribution conforming to N(muTdev,stdT 2

dev)
to approximate time consumption per inference for a de-
vice and N(muFreqdev,stdFreq2

dev) to denote the infer-
ence frequency. We use random variables rather than
static values of average or maximum to allow uncertainty
quantification for overall system performance. As the
computation system is assumed to be active throughout
the deployment cycle, for power consumption data both
static and dynamic inference consumption is recorded.

2.2 Inferring the Desired Metrics At-Scale
The aim of this step is to infer the performance, energy
and cost metrics for large-scale deployments of ML ap-
plications that span the cloud-to-edge spectrum using in-
sights from benchmarking of isolated use cases and solv-

Table 1: Device-level Acceleration Deployment Workflows for Different Hardware Platforms

Design Flow Edge CPU Embedded GPU FPGA ASIC Server GPU Server CPU
Hardware Raspberry Pi 3 b+ NVIDIA Jetson Nano Avnet Ultra96 Intel NCS NVIDIA GTX1060 6Gb AMD FX-6300
ResNet-50 Tensorflow/Keras TensorRT DNNDK OpenVINO Tensorflow/Keras/Cuda Tensorflow/Keras
Tiny Yolo Darknet Darknet/TensorRT DNNDK OpenVINO Tensorflow/Keras/Cuda Tensorflow/Keras

ing an optimization problem.
Our method for inferring the desired metric inference

can be thought of as an optimistic upper bound approxi-
mation for the hardware device selection for application
deployment across the cloud and edge without consider-
ing the underlying model-related error metrics like clas-
sification accuracy. Under a linear speedup assumption
with additional device parallelism, further speed up with
multiple devices would increase total inference capabil-
ity without increasing uncertainty in performance (vari-
ance) [6]. To ensure nHWdev that a specific type of device
with total inference capability Rdev ∼ N(muFreqdev ∗
nHWdev,stdFreq2

dev) can handle input data load Ldev ∼
N(muFreqin,stdFreq2

in), there should be enough devices
deployed for the given input pressure with a design con-
fidence level con f :

Pr(Rdev−Ldev)> con f (1)

For latency constraint, we have the latency as the sum
of hardware running time and communication time in the
inference loop. The average latency can be compared in
a straightforward way:

Tapp(dev) = Thw +Tcomm = muTdev + te2 f + t f 2c (2)

where te2 f = Se2 f /Be2 f refers to the communication time
from edge to fog (which is a layer between the edge and
cloud) and t f 2c = S f ec/B f 2c refers to the communication
time from edge to cloud. The communication time is
computed using the transfer package size S divided by
the bandwidth B, where bandwidths are assumed to be
stable. For different application scenarios, communica-
tion bandwidths vary [19].

We set the unit cost of electricity costElec as a con-
stant $0.1/kwh [31]. Moreover, the total electricity cost
can be denoted as:

costP(dev,Tcycle) = Papp(dev,Tcycle)∗ costElec (3)

Likewise, the total power consumption for a given de-
ployment cycle length Tcycle can be computed by the sum
of idle power and working power:

Papp(dev,Tcycle) = Pidle(dev)∗Tcycle

+Pperinf(dev)∗muFreqin ∗Tcycle (4)

Based on the definitions given above, we formulate
the problem of hardware accelerator selection as min-
imizing the total deployment cost while lowering time

and power consumption to a lower target level. We con-
sider performance requirements at the application level
using hardware commercial cost, latency Tapp for each
inference loop and total working power consumption
Papp(dev,Tcycle) over the design deployment cycle Tcycle.

min
dev∈ListHW

∑costHWdev ∗nHWdev + costP(dev,Tcycle)

subject to:
Tapp(dev)6 ttarget

(5)

3 Empirical Validation of HARE
We now validate the effectiveness of the HARE frame-
work. Based on the functional descriptions and hardware
design workflows discussed above, in this part we de-
scribe experiments involving hardware deployment and
other metric evaluations on test applications.

3.1 Testbed Configuration
The testbed and commercial price (costHWdev) of de-
ployment platforms at the time we conducted the experi-
ments are presented below.

1. CPU: CPU is the most general option. Two options
from both server and edge side are considered in our
test framework.

1. Raspberry Pi 3B ($40): Edge deployment
with a Broadcom BCM2837B0, Cortex-A53
(ARMv8) 64-bit SoC @ 1.4GHz

2. AMD FX-6300 CPU ($70): Server deploy-
ment with 6 cores, 6 threads @ 3.5-3.8GHz

3. GPU: For GPU, two options from both server and
edge side are considered in our test framework.

1. Jetson Nano ($99): Edge deployment with
embedded GPU 128-core Maxwell and CPU
Quad-core ARM A57 @ 1.43 GHz

2. GTX 1060 6Gb ($180): Server deployment
with 1280-core Pascal architecture

3. ASIC: ASIC stands for application specific in-
tegrated circuits. We choose Neural Compute
Stick(NCS) from Intel ($75). It is equipped with
Movidius Myriad 2 Vision Processing Unit (VPU)
with nominal 600 MHz operations at 0.9V.

4. FPGA: Machine learning inference tasks re-
quire both general-purpose computations and

application-specific computations. We choose the
relative high-end Ultra96 ($250) Zynq Ultrascale+
Development board (www.zedboard.org).

As a result, the list of potential hardware in
our problem setting can be shown as: ListHW =
{RPi,FX6300,JetsonNano,GT X1060,NCS,Ultra96}.
In this set of devices, the Raspberry Pi (RPi) could be
regarded as the baseline for acceleration comparisons
due to its lowest performance (being a CPU). Some
devices need to work with a host. NCS needs to be
plugged into a USB port. And GTX1060 needs to be
connected to a PCIE port with external power support.

3.2 Per-Device Benchmarking Results
Experiments on classification tasks are conducted on a
set of 500 images with a resolution of 640 ∗ 480. Ex-
periments on detection tasks are conducted on a road
traffic video consisting of 874 frames with a resolution
of 1280 ∗ 720. We primarily gather power and time
consumption on these high-dimensional data compatible
with ImageNet [16] to guarantee higher generalization
than cifar-10 [15] or other lower-dimensional datasets.
The power consumption data is gathered using a spe-
cific power measurement instrument called Watts Up
Pro. For time consumption, it is worth pointing out that
the time metric we are using here is the total response
time running on hardware for inference tasks. As a re-
sult, Thw = Tpreprocess + Tinference. That is, the total time
consumption includes both the input data preprocessing
time and the inference time. Tables 2 and 4 show re-
sponse times for each Resnet50 and Tiny Yolo inference,
respectively, while Tables 3 and 5 show both their idle
and execution power consumptions.

Table 2: Response Time (Thw) for Object classification
Task using ResNet-50 (Unit: Second)

Time RPi JetsonNano Ultra96 NCS GTX1060 FX6300
mean 2.089 0.133 0.029 0.218 0.039 0.268
std 0.058 0.016 0.001 0.003 0.005 0.006

Table 3: Power Consumption for Object classification
using ResNet-50 (Unit: Watt)

Power RPi JetsonNano Ultra96 NCS GTX1060 FX6300
Idle 1.8 2.2 6.2 0.4 10 72
Infer 4.8 5.6 7.6 1.9 122 145

Table 4: Response Time (Thw) for Traffic Detection Task
using Tiny Yolo (Unit: Second)

Time RPi JetsonNano Ultra96 NCS GTX1060 FX6300
mean 2.874 0.096 0.023 0.238 0.059 0.217
std 0.068 0.008 0.001 0.003 0.002 0.076

Table 5: Power Consumption for Traffic Detection using
Tiny Yolo (Unit: Watt)

Power RPi JetsonNano Ultra96 NCS GTX1060 FX6300
Idle 1.8 2.3 7.4 0.4 10 72
Infer 4.8 11.7 9.2 2.1 122 150

3.3 At-Scale Approximation Results
We make evaluations for time, power and cost for at-
scale deployments using our approximation approach.

3.3.1 Application Topology

We present a prototypical smart application case [5]
comprising distributed camera networks that can be gen-
eralized to scenarios like unmanned shopping using ob-
ject classification and surveillance using detection as
shown in Figure 1. Computation burdens are conducted
on edge nodes. There would be different design stan-
dards for various scenarios. Without loss of generality,
we set the system deployment goal as computation re-
sources should guarantee to handle no less than half (2
of 4) of input loads from every fog group (3 groups) with
an overall confidence level of 99%. We set the input with
relatively high uncertainty when stdFreqin = muFreqin.

Figure 1: Three-level Design Topology Layout: (1)
Top:Cloud servers; (2) Intermediate:3 Fog groups in-
clude communication control and some computation
power; (3) Bottom:4 Edge nodes in each fog group clos-
est to sensors and data needs to be processed.

3.3.2 Latency Estimation

A straightforward comparison for response times per in-
ference can be conducted using inference time data from
Tables 2 and 4. From the time point of view, Rapsberry
Pi 3 b+ consumes the most for each inference task. Data
for bandwidth between edge/fog and cloud is retrieved
from standard IEEE802.11n Wifi setting [19] as the opti-
mal upper bound of 135Mbps. The size of control signal
is set as 1kb and data signal using JPEG [34] 100% with
24bit/pixel. Based on the definitions from Section 2, we
show latency estimations of Tapp(dev) in Table 6.

3.3.3 Power Consumption

Based on the method discussed, we can approximate the
total power consumption holding application accelera-
tions for a given cycle length. We use the idle power
of one device to denote the total idle power of this type

www.zedboard.org

Table 6: Inference Cycle Time Tapp(dev)(Unit:Second)

Time RPi JetNano Ultra96 NCS GTX1060 FX6300
Loc Edge Edge Edge Edge Cloud Cloud
Res 2.088 0.131 0.029 0.218 0.046 0.275
Yolo 2.869 0.096 0.023 0.238 0.081 0.190

of devices in a network based on an ideal time-division
setting. We set the deployment time length as 24 months
for our simulated at-scale setup and the total power con-
sumption for both classification and detection tasks is
computed for this period as shown in Table 7.

Table 7: Total Working Power Consumption (Unit:kWh)

Power RPi JetNano Ultra96 NCS GTX1060 FX6300
Res 3720 372.6 87.2 144.8 2243 14236
Yolo 5040 485.7 87.1 173.9 2660 27685

3.3.4 Cost Evaluation

Figures 2a and 2b show results for devices with ResNet-
50 classification and Tiny Yolo detection applications, re-
spectively. Under increasing input pressure, the number
of devices required steps up like stairs. For a given de-
sign cycle, the total cost consisting of device and power
cost would be proportional to the number of devices.

(a) ResNet-50 Classification (b) Tiny Yolo Detection

Figure 2: Cost (Unit:k$) for a 24 Month Deployment
Cycle Under Increasing Data Input Pressure (Frequency)
and Medium Complexity(muFreqin = stdFreqin)

Traditional CPUs like Raspberry Pi on the edge and
FX6300 on the cloud both show worst performances.
This explains why hardware accelerators are necessary
for such use cases involving compute-intensive tasks
like ML inference. For long-term deployments, power
consumption would play a significant role in the total
cost. For classification and detection tasks, the Ultra96
(FPGA) and JetsonNano (embedded GPU) illustrate the
two most cost-efficient options for the edge side at high
input pressures. NCS (ASIC) could be easily deployed to
existing network topology but relatively lower individual

device performance becomes its limitation. Edge accel-
erators show more obvious advantage for video detection
case; this indicates the necessity for offloading streaming
data processing in the edge computing pattern.

4 Conclusions
This paper presents a simple recommendation system to
help users select an accelerator hardware device for their
applications deployed across the cloud to edge spectrum.
Our approach first measures realistic execution traces
of computations on individual hardware accelerator de-
vices. We then use these data to approximate latency,
power consumption and long-term cost for at-scale de-
ployments, which provides guidance on device selection.
Summary: For the hardware devices used, FPGAs show
both highest absolute computation power and highest en-
ergy efficiency. This makes it a good option for flex-
ible acceleration tasks at the edge. However, for rela-
tively low pressure scenarios, the device costs could be
dominant and FPGAs are harder to program. Further-
more, the number of devices needed is based only on an
ideal assumption and a large number of connected nodes
might still lead to a larger number of devices needed
and higher usage threshold for seeking the desired paral-
lelism. For machine learning inference tasks, server-side
GPUs can have the most computation power and higher
energy efficiency than CPUs and some lightweight edge
devices. Thus, embedded GPUs like Jetson Nano could
have much potential for more general computation tasks,
particularly those related to graphics and vision. ASIC
devices like NCS do not show the highest time efficiency
or power efficiency but considering its low cost and low
threshold to use, it is still competitive for neural network-
specific and relatively low input frequency tasks.
Limitations: So far we have only considered a device se-
lection strategy where only one type of device is consid-
ered at one time. In addition, we only consider an ideal
minimum number of devices needed for a given input
pressure without accounting for the cost of task schedul-
ing. Moreover, we only consider a relatively simple ap-
plication scenario where only one type of acceleration
task is executed at a time. More experiments beyond
classification and detection would be needed. We plan
to investigate the possibility of at-scale deployment of
RNN [23] and GAN [35] in edge scenarios. Another po-
tential issue is the cost and power requirements to keep
switches and gateways operational, which are not negli-
gible especially in cases where commercial cloud envi-
ronments are involved. Finally, we have not taken inter-
ference effects between device executions into consid-
eration. This will shed light on further research in de-
sign and optimization of fog/edge topologies involving
heterogeneous hardware accelerators targeting heteroge-
neous tasks.

5 Discussion Topics

This paper describes a device selection problem that
must be overcome for the use of hardware accelerators
in edge computing. The main challenge lies in the het-
erogeneity of hardware devices and in contrast the lack of
systematic research about their impact on application de-
velopment, operational costs and performance. We hope
that our ideas will stimulate discussion on several open
issues as follows regarding the applicability of hardware
acceleration techniques at the edge:
• How far can the hardware acceleration pattern reach

in edge application scenarios? We discuss the state-
of-art deep learning accelerations but what other ap-
plications can benefit from accelerator technologies
where our framework will be useful?
• Is our objective function correct or do we need to

incorporate additional or different cost function and
constraints? Some applications may need mixed ac-
celerators. How does this change the approach?
• Should hardware acceleration techniques just be

used for inference computations for already learned
models, or can it also be used for model re-learning?
• Anonymous reviews pointed out that the power

models are relatively straightforward and require a
lot of profiling. Can we develop models that cut
across accelerators? That is, can we find a math-
ematical function that subsumes everything from a
GPU to an FPGA?

Some of our claims may be considered controversial,
and we are looking forward to hearing different points of
view on these issues:
• We have used simulations to scale hardware de-

vice deployments. This was based on parameters
obtained using devices at hand and executing two
deep learning tasks. We have not experimented with
other lower level computations like matrix multipli-
cations and do not know if their performance accel-
erations are similar.
• Our experiments used single processing functions.

This is based on a full computation task offload-
ing which put all task burden on the target device.
We need additional experimentation with more inte-
grated complex applications like streaming process-
ing applications.
• The edge is a highly dynamic environment and there

may be a need to dynamically schedule and migrate
applications. For multiple different types of tasks,
how can this be made feasible given that the cir-
cuitry devices like FPGA and ASIC need to be pro-
grammed and how can this be achieved on-the-fly?
• We call this a recommendation system. Is this ap-

propriate or what more needs to be done?

References
[1] ANANTHANARAYANAN, G., BAHL, P., BODÍK, P., CHINTALA-

PUDI, K., PHILIPOSE, M., RAVINDRANATH, L., AND SINHA,
S. Real-time video analytics: The killer app for edge computing.
computer 50, 10 (2017), 58–67.

[2] BOUBIN, J. G., BABU, N. T., STEWART, C., CHUMLEY, J.,
AND ZHANG, S. Managing edge resources for fully autonomous
aerial systems. In Proceedings of the 4th ACM/IEEE Symposium
on Edge Computing (2019), pp. 74–87.

[3] CHEN, F., SHAN, Y., ZHANG, Y., WANG, Y., FRANKE, H.,
CHANG, X., AND WANG, K. Enabling fpgas in the cloud. In
Proceedings of the 11th ACM Conference on Computing Fron-
tiers (2014), ACM, p. 3.

[4] CHETLUR, S., WOOLLEY, C., VANDERMERSCH, P., CO-
HEN, J., TRAN, J., CATANZARO, B., AND SHELHAMER, E.
cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014).

[5] DOC-GROUP,VANDERBILT UNIVERSITY. Edge Hardware
Accelerator Recommender Demo. https://github.com/
dustinjoe/EdgeHardwareAcceleratorRecommender/,
2020. [Online; accessed 01-May-2020].

[6] FOSTER, W. Leverage Multiple Intel® Neural Com-
pute Sticks with Intel® Distribution of OpenVINO™
Toolkit. https://software.intel.com/en-us/articles/
leverage-multiple-intel-neural-compute-sticks-

with-intel-distribution-of-openvino-toolkit, 2019.
[Online; accessed 20-Feb-2020].

[7] GUO, K., HAN, S., YAO, S., WANG, Y., XIE, Y., AND YANG,
H. Software-hardware codesign for efficient neural network ac-
celeration. IEEE Micro 37, 2 (2017), 18–25.

[8] HAN, S., MAO, H., AND DALLY, W. J. Deep compression:
Compressing deep neural networks with pruning, trained quan-
tization and huffman coding. arXiv preprint arXiv:1510.00149
(2015).

[9] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition (2016), pp. 770–778.

[10] INTEL INCORPORATION. Intel® Movidius™ Neural Compute
Stick. https://software.intel.com/en-us/movidius-
ncs, 2018. [Online; accessed 19-Jan-2020].

[11] JIANG, S., HE, D., YANG, C., XU, C., LUO, G., CHEN, Y.,
LIU, Y., AND JIANG, J. Accelerating mobile applications at the
network edge with software-programmable fpgas. In IEEE IN-
FOCOM 2018-IEEE Conference on Computer Communications
(2018), IEEE, pp. 55–62.

[12] JOUPPI, N. P., YOUNG, C., PATIL, N., PATTERSON, D.,
AGRAWAL, G., BAJWA, R., BATES, S., BHATIA, S., BODEN,
N., BORCHERS, A., ET AL. In-datacenter performance analysis
of a tensor processing unit. In 2017 ACM/IEEE 44th Annual In-
ternational Symposium on Computer Architecture (ISCA) (2017),
IEEE, pp. 1–12.

[13] KASTNER, R., MATAI, J., AND NEUENDORFFER, S. Parallel
programming for fpgas. arXiv preprint arXiv:1805.03648 (2018).

[14] KHONA, C. Key Attributes of an Intelligent IIoT Edge Platform.
http://aiweb.techfak.uni-bielefeld.de/content/
bworld-robot-control-software/, 2017. [Online;
accessed 19-July-2019].

[15] KRIZHEVSKY, A., NAIR, V., AND HINTON, G. The cifar-10
dataset. online: http://www. cs. toronto. edu/kriz/cifar. html 55
(2014).

https://github.com/dustinjoe/EdgeHardwareAcceleratorRecommender/
https://github.com/dustinjoe/EdgeHardwareAcceleratorRecommender/
https://software.intel.com/en-us/articles/leverage-multiple-intel-neural-compute-sticks-with-intel-distribution-of-openvino-toolkit
https://software.intel.com/en-us/articles/leverage-multiple-intel-neural-compute-sticks-with-intel-distribution-of-openvino-toolkit
https://software.intel.com/en-us/articles/leverage-multiple-intel-neural-compute-sticks-with-intel-distribution-of-openvino-toolkit
https://software.intel.com/en-us/movidius-ncs
https://software.intel.com/en-us/movidius-ncs
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/

[16] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Im-
agenet classification with deep convolutional neural networks.
In Advances in neural information processing systems (2012),
pp. 1097–1105.

[17] LIN, S.-C., ZHANG, Y., HSU, C.-H., SKACH, M., HAQUE,
M. E., TANG, L., AND MARS, J. The architectural implica-
tions of autonomous driving: Constraints and acceleration. In
Proceedings of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (2018), pp. 751–766.

[18] MAHMUD, R., SRIRAMA, S. N., RAMAMOHANARAO, K., AND
BUYYA, R. Profit-aware application placement for integrated
fog–cloud computing environments. Journal of Parallel and Dis-
tributed Computing 135 (2020), 177–190.

[19] MAO, Y., YOU, C., ZHANG, J., HUANG, K., AND LETAIEF,
K. B. A survey on mobile edge computing: The communication
perspective. IEEE Communications Surveys & Tutorials 19, 4
(2017), 2322–2358.

[20] NAJAFI, M., ZHANG, K., SADOGHI, M., AND JACOBSEN, H.-
A. Hardware acceleration landscape for distributed real-time an-
alytics: Virtues and limitations. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS) (2017),
IEEE, pp. 1938–1948.

[21] NARAYANAN, R., HONBO, D., MEMIK, G., CHOUDHARY, A.,
AND ZAMBRENO, J. An fpga implementation of decision tree
classification. In 2007 Design, Automation & Test in Europe Con-
ference & Exhibition (2007), IEEE, pp. 1–6.

[22] NURVITADHI, E., SHEFFIELD, D., SIM, J., MISHRA, A.,
VENKATESH, G., AND MARR, D. Accelerating binarized neural
networks: Comparison of fpga, cpu, gpu, and asic. In 2016 Inter-
national Conference on Field-Programmable Technology (FPT)
(2016), IEEE, pp. 77–84.

[23] NURVITADHI, E., SIM, J., SHEFFIELD, D., MISHRA, A., KR-
ISHNAN, S., AND MARR, D. Accelerating recurrent neural
networks in analytics servers: Comparison of fpga, cpu, gpu,
and asic. In 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL) (2016), IEEE, pp. 1–4.

[24] REDDI, V. J., CHENG, C., KANTER, D., MATTSON, P.,
SCHMUELLING, G., WU, C.-J., ANDERSON, B., BREUGHE,
M., CHARLEBOIS, M., CHOU, W., ET AL. Mlperf inference
benchmark. arXiv preprint arXiv:1911.02549 (2019).

[25] REDMON, J., DIVVALA, S., GIRSHICK, R., AND FARHADI, A.
You only look once: Unified, real-time object detection. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (2016), pp. 779–788.

[26] SATYANARAYANAN, M. The emergence of edge computing.
Computer 50, 1 (2017), 30–39.

[27] SKARLAT, O., NARDELLI, M., SCHULTE, S., AND DUSTDAR,
S. Towards qos-aware fog service placement. In 2017 IEEE 1st
international conference on Fog and Edge Computing (ICFEC)
(2017), IEEE, pp. 89–96.

[28] SZE, V., CHEN, Y.-H., YANG, T.-J., AND EMER, J. S. Effi-
cient processing of deep neural networks: A tutorial and survey.
Proceedings of the IEEE 105, 12 (2017), 2295–2329.

[29] TANG, J., LIU, S., LIU, L., YU, B., AND SHI, W. Lopecs:
A low-power edge computing system for real-time autonomous
driving services. IEEE Access 8 (2020), 30467–30479.

[30] UMUROGLU, Y., FRASER, N. J., GAMBARDELLA, G., BLOTT,
M., LEONG, P., JAHRE, M., AND VISSERS, K. Finn: A frame-
work for fast, scalable binarized neural network inference. In
Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (2017), ACM, pp. 65–74.

[31] U.S. ENERGY INFORMATION ADMINISTRATION. Electric
Power Monthly with Data for November 2019. https:

//www.eia.gov/electricity/monthly/current month/

epm.pdf, 2020. [Online; accessed 06-Feb-2020].

[32] VAN ESSEN, B., MACARAEG, C., GOKHALE, M., AND
PRENGER, R. Accelerating a random forest classifier: Multi-
core, gp-gpu, or fpga? In 2012 IEEE 20th International Sym-
posium on Field-Programmable Custom Computing Machines
(2012), IEEE, pp. 232–239.

[33] VARGHESE, B., WANG, N., BERMBACH, D., HONG, C.-H.,
DE LARA, E., SHI, W., AND STEWART, C. A survey on edge
benchmarking, 2020.

[34] WALLACE, G. K. The jpeg still picture compression standard.
IEEE transactions on consumer electronics 38, 1 (1992), xviii–
xxxiv.

[35] YAZDANBAKHSH, A., BRZOZOWSKI, M., KHALEGHI, B.,
GHODRATI, S., SAMADI, K., KIM, N. S., AND ES-
MAEILZADEH, H. Flexigan: An end-to-end solution for fpga
acceleration of generative adversarial networks. In 2018 IEEE
26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM) (2018), IEEE, pp. 65–72.

[36] ZHOU, Y., GUPTA, U., DAI, S., ZHAO, R., SRIVASTAVA,
N., JIN, H., FEATHERSTON, J., LAI, Y.-H., LIU, G., VE-
LASQUEZ, G. A., ET AL. Rosetta: A realistic high-level syn-
thesis benchmark suite for software programmable fpgas. In Pro-
ceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (2018), ACM, pp. 269–278.

[37] ZHU, H., LO, D., CHENG, L., GOVINDARAJU, R., RAN-
GANATHAN, P., AND EREZ, M. Kelp: Qos for accelerated ma-
chine learning systems. In 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA) (2019),
IEEE, pp. 172–184.

https://www.eia.gov/electricity/monthly/current_month/epm.pdf
https://www.eia.gov/electricity/monthly/current_month/epm.pdf
https://www.eia.gov/electricity/monthly/current_month/epm.pdf

	Introduction
	Recommender System Methodology
	Benchmarking in Isolation
	Inferring the Desired Metrics At-Scale

	Empirical Validation of HARE
	Testbed Configuration
	Per-Device Benchmarking Results
	At-Scale Approximation Results
	Application Topology
	Latency Estimation
	Power Consumption
	Cost Evaluation

	Conclusions
	Discussion Topics

