
Understanding and Tackling the Hidden Memory Latency for Edge-based
Heterogeneous Platform

Zhendong Wang, Zhen Wang, Cong Liu, Yang Hu
The University of Texas at Dallas

Abstract
With the burgeoning of autonomous driving, the edge-
deployed integrated CPU/GPU (iGPU) platform gains signifi-
cant attention from both academia and industries. NVIDIA
issues a series of Jetson iGPU platforms that perform well
in terms of computation capability, power consumption, and
mobile size. However, these iGPU platforms typically contain
very limited physical memory, which could be the bottleneck
of these autonomous driving and edge computing applica-
tions. Although the introduction of the Unified Memory (UM)
model in GPU programming can reduce the memory foot-
print, the programming legacy of the UM model initializes
data on the CPU side by default as the conventional copy-
and-execute model does, which causes significant latency of
application execution. In this paper, we propose an enhanced
unified memory management model (eUMM), which deliv-
ers a prefetch-enhanced data initialization method on the
GPU side of the iGPU platform. We evaluate eUMM on the
representative Jetson TX2 and Xavier AGX platforms and
demonstrate that eUMM not only reduces the initialization
latency significantly but also benefits the following kernel
computation and the entire application execution latency.

1 Introduction
The emergence of heterogeneous SoCs has pushed the com-
puting platforms of many edge-intelligence applications (i.e.,
driving automation system and drone) to shift from high-
performance, energy-consuming discrete CPU and GPU-
equipped platforms (dGPU) to effective, energy-efficient inte-
grated CPU and GPU platform (iGPU). As the major game
player, NVIDIA has developed a series of heterogeneous
iGPU platforms, such as Jetson series and Drive AGX, for au-
tonomous embedded systems and driving automation systems,
respectively [17].

Exploiting iGPU for edge autonomous intelligent work-
loads processing can bring better size, weight, and power
(SWaP) trade-off compared to traditional dGPU-based solu-
tions. However, building future embedded autonomous sys-
tems based on this hardware is further stymied by the un-

DNN YOLO2 [21] YOLO3 SSD [14] DAVE-2 [4]
M.O.S. 49K 81K 10K 250K

Table 1: The matrix operation scale (M.O.S.) of typical DNN
models applied in autonomous driving, including matrix mul-
tiplication and addition.

precedented challenges that are specifically imposed by the
memory footprint and stringent latency requirements of au-
tonomous systems, and the intrinsic hardware restrictions of
iGPU-enabled heterogeneous SoCs. For example, NVIDIA
TX2 possesses an on-chip memory of 8GB, which is phys-
ically shared by both CPUs and GPUs. In practice, modern
autonomous systems such as driving automation and drone
systems need a vast amount of perception data for decision-
making guidance. A typical automated vehicle equips with
8 to 12 cameras to provide 360-degree visibility around the
vehicle, with 1440 Mbs of data generated every second. If
a poorly-managed memory allocation method (e.g.,the tradi-
tional copy-and-execute model) is used, such a large amount
of raw data can easily exhaust the memory space of iGPU-
based heterogeneous platform.

Secondly, modern autonomous systems consider the pro-
cessing latency as one of the most important tenets for safety
and functionality. The latency from image capture to recog-
nition completion is critical since the response time of the
control operations depends on it. Failing to execute actua-
tion in time may cause catastrophic consequences. Typically,
modern autonomous driving systems adopt a variety of DNN
models to achieve complete functionalities. However, the
DNN functions typically involve large-scale matrix opera-
tions. Table. 1 shows the matrix operations scale involved
in several representative DNNs models adopted by the main-
stream autonomous driving solutions. We observe that the
existing CPU-initiated matrix initialization can cause great
latency for GPU tasks with large-scale matrix operations.

To meet these rigorous requirements of memory footprint
and processing latency for the iGPU-based heterogeneous
platforms, tapping into the emerging unified memory (UM)



model is considered a promising solution. Recent NVIDIA
GPU architectures support UM to ease the explicit program-
ming efforts to handle data movement and address mapping
[6]. We observe that the UM is memory footprint-friendly
to iGPU platform to process autonomous workloads since
it replaces the explicit data copy in the traditional copy-and-
execute model with implicit data initialization and addresses
mapping, which significantly saves the memory footprint.
However, we observe that the current UM model fails to pro-
vide efficient memory management on iGPU-based heteroge-
neous platforms, such as NVIDIA Jetson TX2. Our character-
ization shows that the inherited routine of data initialization
on the CPU side provided by existing UM typically results
in significant data initialization latency, which is caused by
the limited computation capability of CPU, and overwhelms
the execution time of the following GPU kernel. These find-
ings suggest a potential opportunity to optimize the data ini-
tialization and thus significantly reduce the GPU-based task
processing.

In this paper we propose an enhanced unified memory man-
agement model (eUMM) that delivers a prefetch-enhanced
GPU-initialization method. The eUMM innovatively imple-
ments data initialization on GPU (GPU-Init.), which leverages
GPU’s advantages in large-scale computation to reduce the
latency of data initialization. Furthermore, the eUMM inte-
grates prefetch technique in the process to reduce the latency
caused by the data address mapping, which is brought by the
inherent limits of the kernel launch in pristine UM model. We
conduct a series of experiments on emerging iGPU platforms
and demonstrate that eUMM can reduce the latency of initial-
ization up to 99.4% and 97.3% for assorted benchmarks on
Jetson TX2 and AGX, respectively.

2 Limits of Unified Memory Management
Data Initialization Latency. In default copy-and-execute
model, application program typically initializes data on CPU
side. On iGPU platform, UM model inherits the legacy pro-
gramming style, though it can reduce the memory footprint.
To explore how this CPU-side initialization brings the latency,
we breakdown the execution time of applications for both
copy-and-execute model (Def.) and unified memory model
(UM), as shown in Fig. 1. Specifically, in Def. model, we
divide the entire benchmark time into two parts: data ini-
tialization time (init.) and other time which covers the data
migration between CPU and GPU as well as the kernel exe-
cution (others). In UM model, the benchmark time includes
the init. time and others which covers the page mapping and
kernel execution. Note that there is no data copy under UM
for iGPU platform. We utilize two representative benchmarks,
Matrix Add (MatAdd) and Matrix Multiplication (MatMul)
to illustrate the init. latency and its ratio in application execu-
tion time, as is shown in Fig. 1. We repeat the benchmarking
five times and report the average latency.

For MatAdd in Fig. 1a, we observe that the init. latency

Figure 1: CPU-side initialization latency and the ratio under Def.
and UM models. (a) MatAdd. (b) MatMul. The bar indicates latency
corresponding to left-y axis, and triangle indicates the ratio of init.
in the entire benchmark execution time corresponding to the right-y
axis. x-axis indicates increasing input size.

Figure 2: Hidden latency during kernel launch under Def. and UM
models. (a) MatAdd. (b) MatMul.

is non-trivial in Def. model, which can compete with the
latency of others latency. With input data size increasing, the
init. latency increases drastically. Intuitively, the CPU has to
process larger amount of data, thus leading to greater latency.
In UM model, the init. latency is significant as well, which
even dominates the entire benchmark execution time. For
MatMul in Fig. 1b, in either Def. model or UM model, the
init. latency almost follows the same principle. Besides, we
calculate the init. ratio in the entire benchmark execution
time under the two models, as indicated by the dots in Fig.
1. For both benchmarks, the ratio of init. latency is around
50% in Def. model, and around 90% in UM model, indicating
that the init. latency is even exacerbated under UM model. In
fact, UM model on iGPU platform doesn’t require explicit
copy of initialized data from CPU as Def. model does, the
initialization may not be necessarily performed on CPU side.
Kernel Launch Latency. As we stated above, under UM
model, such iGPU platform as Jetson TX2 doesn’t support
on-demand paging as well as concurrent access from CPU
and GPU when the code is running. For each kernel launch,
the GPU tries to access the data that is originally populated in
the CPU side. The driver has to perform address translation
and page mapping such that the GPU can know the pages
reside on its own space, which inevitably introduces extra
latency in kernel execution.

To find the hidden latency caused by the address transla-
tion and pages mapping during the kernel launch process, we
compare the kernel execution time of the two benchmarks,
MatAdd and MatMul, under Def. and UM models on TX2
platform. Fig. 2a shows the result of MatAdd, where the
x-axis indicates increasing input data size and the y-axis indi-
cates kernel execution time. We can observe that the kernel
latency under UM model is significantly larger than the la-
tency under Def. model. With data size increasing, the differ-



Figure 3: GPU-side data initialization in eUMM model.

ence is even exacerbated. Under Def. model, data is explicitly
copied to the GPU side before kernel launches, while under
UM model, there is no explicit data copy and the data has
to be mapped to the GPU side when kernel launches. Com-
pared to the real kernel computation time under Def. model,
the data pages mapping really contributes a lot to the kernel
execution time under UM model. Fig. 2b shows the result of
MatMul, where the kernel latency under two models almost
follows the same pattern. The latency caused by the mapping
process is significant as well. Therefore, if the data pages
mapping can be removed from the kernel execution under the
UM model, the real kernel execution time will be reduced.
In fact, chances are that the data allocation and initialization
can be well managed such that the data can be pre-mapped
and populated on the GPU side, thus benefiting the kernel
execution time.

3 Enhanced Unified Memory Management
In this section, we propose an enhanced unified memory man-
agement (eUMM) model to optimize the memory manage-
ment for iGPU and reduce the latency of the time-critical
workloads.
Initializing Data on GPU Side. As the programming legacy
in the copy-and-execute model, conventional UM still imple-
ments data initialization on CPU side, which significantly
contributes to the application’s latency. However, UM al-
lows CPU and GPU to share a pointer to access the data
in the allocated memory region, providing an opportunity to
perform data initialization on the GPU instead of the CPU
side. Furthermore, data initialization is typically a process
of assigning values to variables, and thus is well structured
and paralleled. GPU-Init. may gain significant benefit due to
GPU’s advantages in parallel computing and further reduce
the application’s latency.

Fig. 3 illustrates the design of eUMM which initializes
data on GPU side. The figure on the top shows the process
of data being initialized on CPU in conventional UM model:
(1-2) data allocation and initialization on CPU; (3) page fault
handling indicates pages covering the data allocation are un-
mapped from CPU page table and remapped to GPU page
table; (4) kernel execution on the GPU. The figure on the bot-
tom shows the process of eUMM: (1) data allocation on CPU;
(2) page fault handling; (3-4) data initialization and kernel

Figure 4: Prefetch-enhanced GPU-Init. in eUMM model.(a) pristine
GPU-Init. (b) prefetch-enhanced GPU-Init.

execution on GPU. As shown in the bar figures, the GPU-Init.
latency can be significantly reduced compared to the latency
on the CPU side due to the powerful GPU capability in paral-
lel computation. On the other hand, upon GPU-Init., all pages
covering the data will populate in GPU prior to the following
kernel execution. Therefore, there is no need for GPU to wait
for page faulting and mapping any more when it implements
the kernel, which consequently reduces the kernel execution
latency.
Prefetch-enhanced GPU-Init. Typically, the prefetch tech-
nique and NVIDIA CUDA streams [16] can be combined
to benefit the kernel execution. In CUDA 8.0, the API,
cudaMemPre f etchAsync() is provided to hint where and how
data are to be used. On dGPU platform, the data pages can be
speculatively prefetched across PCI-e connection with negligi-
ble opportunity cost. If the data page to be used is successfully
prefetched, only translation lookaside buffer (TLB) miss is
incurred upon GPU accessing the data, which can be resolved
locally instead of being converted into a far page fault. There-
fore, GPU kernel execution latency can be reduced.

On an iGPU platform, such as Jetson TX2, address transla-
tion and mapping are required in the UM model when a GPU
kernel tries to touch the data in the allocated region for the
first time due to the fact the data populates in CPU side in the
beginning. As indicated in the step (2) of eUMM in Fig. 3,
page mapping has to be implemented in bulk after CPU’s allo-
cating data completes, which inevitably causes extra latency
to the following GPU-Init. kernel, though GPU-Init. is typ-
ically faster than CPU initialization. Therefore, we propose
to apply the prefetch technique in eUMM to further optimize
the GPU-Init. performance, as shown in Fig. 4.

Fig. 4a indicates the pristine GPU-Init. case, where the
GPU-Init. kernel in eUMM doesn’t execute until all mappings
complete. While Fig. 4b indicates the prefetch enhanced GPU-
Init. case, where prefetch combined with CUDA streams is
introduced. As a result, the page mapping for a tile of ini-
tialized data can be overlapped with the GPU-Init. kernel of
the data in different streams. Theoretically, the summation
latency of serialized mapping and GPU-Init. can be reduced.
Specifically, the 1st tile of data is prefetched for address map-
ping and subsequently initialized by the following gpu−init
kernel. Then, the 2nd tile of data is prefetched and initialized.
Based on our measurement, the prefetch operation can cause
around 5us latency by itself. By adapting the tile numbers, we
can control the total number of prefetch and further manage
the overall latency caused by prefetch. Meanwhile, by adapt-
ing the grid and block size of the GPU-Init. kernel, we can



manage the latency of one-tile GPU-Init. kernel. Therefore,
the pages mapping latency of (i+1)th tile data in one stream
can be overlapped with the latency of the ith GPU-Init. kernel
in another stream. Instead of serializing all pages mapping
and GPU-Init. kernel, the overlapping of the mapping and
initialization operations can effectively reduce the overall
latency of the process in eUMM model further. Basically,
in the ith loop, the (i+ 1)th tile of data is prefetched and
is sequentially initialized by the kernel in the (i+1)th loop.
Besides, by adapting the initialization kernel size (i.e., the
grid dimension and block dimension of the kernel) and the
number of prefetch, the prefetch and initialization can be well
overlapped in various streams, thus reducing latency.

4 Implementation of eUMM
Effectiveness of Prefetch-enhanced GPU-Init. We imple-
ment our eUMM model on Jetson TX2 platform, which
installs NVIDIA L4T 28.2.1. In addition to MatAdd and
MatMul, we utilize another two applications, needle (NW ),
and random access (RA), to test the irregular memory access
scenario. We execute all benchmarks under conventional UM
model and eUMM model to demonstrate the effectiveness
of prefetch-enhanced GPU-Init. under eUMM model and its
improvement over the conventional UM model.

Fig. 5 shows the results, where x-axis represents the in-
creasing input data size for each benchmark and y-axis rep-
resents data initialization latency. We can observe that for
MatAdd, MatMul and RA, the data initialization latency un-
der eUMM (i.e., prefetch-enhanced GPU-Init.) is higher than
conventional UM (i.e., pristine CPU initialization) when the
input data size is small (50-500). The eUMM significantly out-
performs the UM when input data size exceeds the thresholds.
Specifically, the initialization latency under eUMM can be
reduced up to 76.2%, 99.4%, and 59.4% for MatAdd, MatMul,
and NW, respectively. Intuitively, GPU has a large number
of paralleling cores and can be scaled up well to handle the
increasing amount of data initialization requests. Furthermore,
with prefetch applied, the data address mapping and GPU-Init.
kernel can be overlapped to further reduce the latency. In con-
trast, CPU has limited cores and can be easily saturated by the
increasing amount of data initialization requests. However,
we also observe that there are inherent overheads for GPU-
Init. mechanism. As a kernel, GPU-Init. has to be launched
from the host CPU. Then it will be scheduled and dispatched
to the GPU processing cores to execute. Notice that the kernel
launch, schedule, and dispatch are unavoidable overheads for
GPU-Init. When the input data size is small and there is not
enough tiles of data mapping to overlap the GPU-Init. kernel,
the benefit of data initialization acceleration could be offset.

Besides, it appears that the GPU-Init. latency under eUMM
has been smaller than latency under UM for NW even in the
case of small input data size. This is due to the input size of
NW cannot be set as less than 16 * 16, which has exceeded
the threshold. Fig.5c indicates that the latency under eUMM

Figure 5: Initialization latency comparison under UM and eUMM
models on TX2. y-axis is logarithmic coordinate to indicate latency
in millisecond and x-axis indicates increasing data size.

Figure 6: Kernel execution time under UM and eUMM models on
TX2. The data sizes are chosen as the same sizes in Figure 5.

is quite close to the latency under UM in 16*16 case.
In addition, we analyze the kernel latency (i.e., the kernel

execution time) of all benchmarks under UM and eUMM
models to demonstrate that GPU-Init. in eUMM can also
benefit the execution time of following kernel. Fig. 6 shows
the results, where x-axis indicates the increasing data size
corresponding to the size of each benchmark in Fig.5 and
y-axis indicates the latency. Obviously, the kernel execution
latency under eUMM is significantly reduced than the latency
under UM, though for NW both latency increases drastically.
Specifically, the kernel latency under eUMM can be reduced
up to 61.0%, 63.0%, 10.1% and 76.9% for MatAdd, MatMul,
NW and RA, respectively. Under eUMM model, the GPU-
Init. enables much page fault handling and mapping to be
processed prior to the real kernel computation. The data to
be used in the kernel computation has populated in GPU
locally (i.e., the page tables covering the data is set up well
on GPU side) before the kernel launches. Therefore, kernel
latency can be reduced as well. Therefore, eUMM not only
reduces data initialization significantly but also benefits the
following kernel execution as well as the entire benchmark
execution latency. It’s critical to the safety of autonomous
driving system.
GPU-side Initialization on Xavier AGX. We implement our
eUMM model on the Xavier AGX [1] as well, which installs
NVIDIA L4T 32.3.1. The result is shown in Fig. 7, where (a-
d) indicates the initialization latency of the four benchmarks
under UM and eUMM models, respectively. Basically, the
initialization latency follows the same pattern as on TX2.
The eUMM can significantly reduce the initialisation latency,
which can be up to 93.4%, 97.3%, and 87.4% for MatAdd,
MatMul, and NW respectively, though the UM outperforms



Figure 7: Initialization latency comparison under UM and eUMM
models on AGX. Y-axis is logarithmic coordinate to indicate latency
in millisecond and x-axis indicates increasing data size.

eUMM in the beginning input data size.

5 Prospects and Challenges
Extending eUMM to a Broad Spectrum of Workloads.
Our current characterizations and design only cover repre-
sentative GPU benchmarks, MatAdd, MatMul, and part of
the Rodinia benchmarks [5]. We will continue to explore if
the acceleration opportunity also apply to a broader spectrum
of edge-based workloads by leveraging the GPU initializa-
tion and prefetch, such as the full Rodinia benchmark suite
and PolyBench [8], which exhibits diverse computation and
memory access patterns. Also, we will extend eUMM to ac-
commodate emerging autonomous driving workloads, such
as YOLO for objective detection, and GoTurn [11] for mobile
objectives tracking. It’s anticipated that eUMM can reduce
the latency of these DNN models execution considering that
the MatAdd and MatMul are the basic operations in DNN
models. We plan to provide transparent API, which can ease
users to apply eUMM in practice.
Generalizing eUMM to Other Platforms. Our current im-
plementations of eUMM are based on Jetson TX2 and Xavier
AGX. To further proof the generalization of eUMM, we will
also validate eUMM on high-end edge heterogeneous plat-
forms such as PX2 and AGX Drive [2]. Also, we expect
eUMM can apply to discrete GPU platforms to achieve a
broader impact to datacenter computing.
Reduce the Inherent Overheads of GPU-Init. In our pre-
liminary investigation, we observe that the GPU-Init. in-
evitably incurs overheads that are caused by the GPU kernels
scheduling and dispatching. Such overheads can even offset
the performance benefits of GPU-Init. when input data size
is small. Simply applying high-level programming optimiza-
tions (e.g., fine-tiled prefetch, scheduling) cannot thoroughly
eliminate the overhead. We plan to mitigate the inherent over-
head of GPU-Init. in eUMM through low-level design and
optimization. For example, GPU persistent model can start
up GPU faster without warming up and the data can directly
utilized without being returned back to CPU. A specified hard-
ware/model could be proposed to implement the initialization
function considering that the process cannot be omitted by
almost all applications.

6 Related work
UM model and iGPU Platform for Autonomous Applica-
tions. UM model provides an illusion of CPU-GPU unified
virtual memory to avoid explicit data copy and ease memory
management. NVIDIA’s UM model is introduced in CUDA
6 [9]. and enhanced in CUDA 8 to support on-demand pag-
ing and migration mechanism [7, 10]. However, on-demand
paging is only supported on dGPU [23], which hurts its ben-
efit. On the other hand, NVIDIA proposes its Jetson line
of iGPU platforms targeting at autonomous systems, which
mainly includes a series of Tegra SoCs, such as Parker TX2
and Xavier AGX. Actually, much effort has been dedicated
to the UM model performance on iGPU platform. [18] sum-
marizes the main characteristics of Def. and UM models on
Tegra platforms. [13] measures the performance loss of UM
in CUDA on both iGPU and dGPU platforms and explores
the underlying reasons. [6, 20] compare applications perfor-
mance under default and UM models on TK1 platform. [3]
comprehensively compares applications performance under
three memory management models and co-optimize memory
footprint and performance on Jetson iGPU platforms. Even
so, these works don’t deep excavate the latency hidden in
UM model, especially the significant initialization latency
and mostly optimize the latency in existing UM model.
Prefetch in GPU Programming. [12] demonstrate that
prefetch may degrade the application’s performance if being
not judiciously used. [22] designs an adaptive GPU prefetch
technique to dynamically select the appropriate time step to
achieve timely prefetch. [19] proposes the warp-aware selec-
tive prefetch to monitor the progress of the warps. Besides,
several other works are dedicated to the hardware prefetcher
under UM model. [24] classifies prefetchers into different
types based on different selection ways. [7] analyzes the re-
lationship between hardware prefetcher and page eviction
policy. However, these works mainly utilize prefetch to opti-
mize the data migration overhead on dGPU platfrms and don’t
apply the technique to optimize the hidden latency under UM
model, especially on iGPU platforms.

7 Conclusion
In this work, we explore the hidden latency issues when the
UM model is applied to the emerging edge-based iGPU plat-
form for autonomous driving. Through comprehensive charac-
terizations, we observe that the existing CPU-side data initial-
ization mechanism incurs significant latency under the conven-
tional UM model and can hurt the response time of real-time
tasks on iGPU platforms. We propose eUMM model, which
delivers a prefetch-enhanced GPU-Init. method, to signifi-
cantly mitigate the latency and benefit the entire application
execution time.
Acknowledgment This work is supported in part by
NSF grants CNS 1527727, CNS 1750263 (CAREER), CCF
1822985, and CCF 1943490 (CAREER). Yang Hu is the cor-
responding author.



Discussion Topics
Desired feedback. We are looking forward to hearing more
opinions from edge computing and GPU experts whether
the GPU-Init. delivered by eUMM is a promising method
for GPU programming and applications. Since we are not
aware of similar work in this area, we would like to learn
from experts and peers’ comments about whether eUMM
seems to be pervasive to GPU computing applications. We
also appreciate it if any advice is provided to pinpoint the key
challenges that we may face in developing the full framework
for eUMM. We also welcome the experts’ comments from
the autonomous driving area and would like to learn their
willingness and doubts to deploy eUMM in real practice.

Open issues. Firstly, we have observed that the benefits of
GPU utilization may diminish due to the increasing com-
plexity of memory access patterns of workloads. Therefore,
we have to comprehensively evaluate the performance gains
of eUMM for a variety of workloads in practice. Based on
these characterizations, we may determine if it is beneficial to
further optimize the GPU initialization process or designing
an adaptive memory initialization controller to help us with
the decision. Concerning the complex DNN workload suites
in autonomous driving applications, they typically capture
sensed data in real-time besides initializing the large amount
of weight data. Extending eUMM model to this scenario
could be a non-trivial job. Therefore, we consider to leverage
GPUDirect [15] to further enhance the eUMM model for the
purpose of efficient data transfer. Secondly, when we apply
eUMM in such high-end heterogeneous platforms such as
PX2, which incorporates dGPUs besides iGPUs, the benefits
of eUMM may be negatively impacted due to the complicated
architecture. Therefore, techniques such as smart scheduling
and CPU-GPU cooperative initialization can be considered on
the platforms to guarantee the benefit of eUMM model. Be-
sides, we wonder how eUMM is well compatible with other
discrete GPUs or other vendors products.

Depreciating Circumstances. As we stated, we target at au-
tonomous driving and other real-time tasks, which care about
the latency on the iGPU platforms. Therefore, the UM model
can be enhanced to mitigate the large data initialization la-
tency and benefit the entire application execution time. How-
ever, if non-time-critical applications are implemented, it may
be not necessarily to apply eUMM model to ease the situation.

References

[1] Jetson agx xavier developer kit.

[2] Nvidia drive - autonomous vehicle development plat-
forms.

[3] Soroush Bateni, Zhendong Wang, Yuankun Zhu, Yang
Hu, and Cong Liu. Co-optimizing performance and

memory footprint via integrated cpu/gpu memory man-
agement, an implementation on autonomous driving
platform. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2020 IEEE. IEEE,
2020.

[4] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron.
Rodinia: A benchmark suite for heterogeneous com-
puting. In 2009 IEEE international symposium on
workload characterization (IISWC), pages 44–54. Ieee,
2009.

[6] Mohammad Dashti and Alexandra Fedorova. Analyzing
memory management methods on integrated cpu-gpu
systems. In ACM SIGPLAN Notices, volume 52, pages
59–69. ACM, 2017.

[7] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami
Melhem. Interplay between hardware prefetcher and
page eviction policy in cpu-gpu unified virtual memory.
2019.

[8] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ay-
alasomayajula, and John Cavazos. Auto-tuning a high-
level language targeted to gpu codes. In 2012 Innovative
Parallel Computing (InPar), pages 1–10. Ieee, 2012.

[9] Mark Harris. Unified memory in cuda 6, 2013.

[10] Mark Harris. Cuda 8 features revealed, 2016.

[11] David Held, Sebastian Thrun, and Silvio Savarese.
Learning to track at 100 fps with deep regression net-
works. In European Conference on Computer Vision,
pages 749–765. Springer, 2016.

[12] Jaekyu Lee, Nagesh B Lakshminarayana, Hyesoon Kim,
and Richard Vuduc. Many-thread aware prefetch-
ing mechanisms for gpgpu applications. In 2010
43rd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 213–224. IEEE, 2010.

[13] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Si-
mon See. An evaluation of unified memory tech-
nology on nvidia gpus. In Cluster, Cloud and
Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on, pages 1092–1098. IEEE,
2015.



[14] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer,
2016.

[15] NVIDIA. Gpudirect, 2010.

[16] Nvidia. Gpu pro tip: Cuda 7 streams simplify concur-
rency, 2015.

[17] NVIDIA. Hardware for every situation, 2018.

[18] Nvidia. Cuda for tegra, 2019.

[19] Yunho Oh, Myung Kuk Yoon, Jong Hyun Park, Yongjun
Park, and Won Woo Ro. Wasp: Selective data prefetch-
ing with monitoring runtime warp progress on gpus.
IEEE Transactions on Computers, 67(9):1366–1373,
2018.

[20] Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung
Park, James H Anderson, F Donelson Smith, Alex
Berg, and Shige Wang. An evaluation of the nvidia
tx1 for supporting real-time computer-vision work-
loads. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2017 IEEE, pages
353–364. IEEE, 2017.

[21] Joseph Redmon and Ali Farhadi. Yolo9000: better,
faster, stronger. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7263–
7271, 2017.

[22] Ankit Sethia, Ganesh Dasika, Mehrzad Samadi, and
Scott Mahlke. Apogee: Adaptive prefetching on
gpus for energy efficiency. In Proceedings of the
22nd international conference on Parallel architectures
and compilation techniques, pages 73–82. IEEE Press,
2013.

[23] Trinayan. On demand paging, 2017.

[24] Tianhao Zheng, David Nellans, Arslan Zulfiqar, Mark
Stephenson, and Stephen W Keckler. Towards high
performance paged memory for gpus. In 2016
IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 345–357. IEEE,
2016.


	Introduction
	Limits of Unified Memory Management
	Enhanced Unified Memory Management
	Implementation of eUMM
	Prospects and Challenges
	Related work
	Conclusion

