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Abstract
Edge computing environments, being resource-limited, can-
not tolerate the bloat in size of edge applications due to use
of thick, complex software runtimes and hardware acceler-
ation support. But such capabilities are critical to support
rich, diverse and high performance applications. Performance
includes deployment time, responsiveness and scalability, and
is impacted by the bloat if using cloud-native container-based
systems at the edge. If not addressed, this will limit the ability
of the edge to scale to increasing number of workloads.

This paper makes a case for a new featherweight system
– Pocket– to support edge computing. Pocket addresses the
limitations in current container-based systems while retain-
ing their benefits. Pocket achieves this by splitting container-
ized applications into two parts: application container and a
bloat-causing execution environment container. Experimental
evaluations of an early prototype show that by sharing the
execution environment containers across multiple application
containers, Pocket is able to achieve significant reductions
of the resource pressure at the edge, thus presenting a path
toward greater efficiency and scalability for edge computing.

1 Introduction
As edge computing is gaining momentum, the software/hard-
ware infrastructure that will enable it is getting defined
[2, 5, 9, 12, 20, 21]. Across these initiatives, cloud-native
container-based solutions, in particular Docker containers
and Kubernetes, are emerging as leading contenders that will
shape the edge computing software stack. Containers offer
a number of benefits by offering a well-established robust
infrastructure with years of investments of a large develop-
ers community, unconstrained application development with
support for packaging, distribution and deployment, and desir-
able properties such as near-native performance and isolation.
However, edge computing presents unique execution and de-
ployment constraints, distinct from datacenter-based cloud
environments. This warrants a deeper investigation of the per-
formance, efficiency, and scalability implications of using a
cloud-native technology at the edge.

Edge applications are as rich and diverse as cloud applica-
tions, and developing them raises the need for using complex
runtimes, such as for analytics and ML/AI [18, 19]. Their
data and performance requirements are such that they re-
quire hardware acceleration support [4, 10, 11, 13]. The soft-
ware/hardware requirements of these application stacks lead
to a bloat in container sizes, which impacts container deploy-
ment times, resource footprint, responsiveness/launch times,
execution time, and other metrics critical when operating at
the edge. For instance, Table 1 shows that the size of a con-
tainer supporting a CPU-based TensorFlow library increases
by nearly 17× compared to the latest “vanilla” Linux con-
tainer. This factor will only increase once support for GPU
accelerators, such as the CUDA runtime, is added [18].

This is a major problem for the edge, where, due to the
fixed resource capacity at an edge location, the only way to
scale to larger numbers of services or service instances is
by reducing the per instance resource requirements, and thus
improving the resource efficiency. The edge is envisioned as
instrumental in addressing the latency and data movement
requirements for many applications that rely on support for
such “thick” runtimes, for AR/VR (e.g., Unity [26]), machine
learning [1, 6, 7], event streaming [16, 28], etc. These applica-
tions will need to be deployed and configured dynamically,
and can potentially be long-running. Furthermore, each edge
location will need to support many such applications, each
deployed independently with their own container images, op-
erating potentially on behalf of different users or stakeholders.
To ensure the scalability of edge computing for meeting the de-
mand of the many new services and use cases it is positioned
to support, it is critical to revisit current trends of defining
container-based software stacks for the edge.

In response, we explore an approach which combines use of
specialized higher-level runtime services as part of a container-
based infrastructure, combined with lightweight, “pocket-
sized” application-specific containers. The outcome of this
is Pocket, an edge-native solution that creates an edge that
can scale to a larger number of application instances, each of
which can be independently configured, deployed, and man-



Images from
Docker Hub

ubuntu:latest tensorflow/tensorflow:
2.0.1-py3)

Size 25.9 MB 428.21 MB

Table 1: Image sizes of a container with heavy runtime. Heavy
runtimes such as accelerator support or machine learning frameworks
lead to bloat in image size.

aged. More specifically, by partitioning a container into two
parts, Pocket proposes a new application architecture that is
more suitable for the edge environment, providing improved
application performance and resource efficiency. At the same
time, Pocket retains the advantages of container-provided
packaging, delivery infrastructure, and resource management.

2 Limitations of Containers at the Edge
Monolithic containers. Monolithic containers provide con-
venience in terms of managing legacy applications, while
retaining a familiar environment and access to file systems
and resources, as in a native deployment. However, in terms
of image size, traditional monolithic containers are not suit-
able for all edge applications. Container images with heavy
runtimes, such as TensorFlow or NVidia CUDA, range in size
from hundreds of megabytes to a few gigabytes. For edge envi-
ronments, this presents challenges in terms of dynamic image
distribution and management over (wide-area) networks.

Monolithic containers also present challenges in terms
of the application responsiveness. Creating and launching
a container with the docker run command, generally takes
a few seconds, and the launch time typically increases with
image sizes, and the number of concurrently created con-
tainers. Warm launch or restart techniques reduce this over-
head [22, 23], but at the expense of maintaining in-memory
snapshots of pre-initialized container state. For a resource-
constrained edge, the footprint size of the snapshots will have
an impact on scaling to larger numbers of instances. More
importantly, warm restart alone is not sufficient for containers
encapsulating heavy runtimes – in our measurements restart-
ing from a warm snapshot of a pre-initialized TensorFlow
image still requires 1.6s, which is orders of magnitude larger
than the latency ranges relevant for many emerging edge com-
puting applications [24].

Modernized container-based applications. A new trend in
datacenters is to modernize legacy applications by rewrit-
ing them for microservice-based and serverless deployments.
While these approaches address some of the issues with mono-
lithic containers raised above, they require modification to
applications. This will limit how existing applications and
application-development skills and toolchains can be lever-
aged to create the edge-based application ecosystem. Fur-
thermore, they pose additional limitations in terms of run-
time overheads related to RPC, data serialization and data
movement costs, or expectations of executing only short-lived
stateless codes, that will further impact their applicability.

3 Pocket Overview
Approach. The above discussion points to two desirable fea-
tures of an edge-native solution for applications: (i) use of
shared, long-running runtime services as part of the edge plat-
form stack to reduce bloat and improve resource efficiency
at the edge, and (ii) use of lightweight data sharing meth-
ods to eliminate the need for serialization and copying of
complex data structures. To address these needs, Pocket uses
the concept of pocketizing which allows edge applications
to be treated as (i) containerized pockets that only include
application-specific functionality, and (ii) containerized ser-
vices that comprise the execution environment including the
heavy runtimes, hardware accelerator-related software sup-
port, etc. While the containerized services are assumed to be
deployed offline, perhaps as part of the edge platform stack,
and can be bulky, the pockets are featherweight container with
small image size, and can be quickly deployed and executed
while still providing the same functionality as full containers.
Pockets become the new application deployment unit for edge
computing.

Unique about the approach advocated by Pocket is the
way containerized pockets interact with the containerized
services. The pockets latch onto service domains, but have ac-
cess to their own namespace and carry out their own functions.
Pockets get access to the execution environment (including
software frameworks and access to specialized hardware)
of the service domain but use it for their function. In this
manner, Pocket allows multiple applications to share runtime
resources, while also offering a path to leverage desirable
containerization properties such as packaging, deployment
of legacy applications, and per application-pocket resource
controls (via Docker’s cgroups).

There are several advantages that Pocket achieves in doing
this. First, it allows for compact pocket (application)- contain-
ers, enabling faster deployment with lower network bandwidth
requirement. Second, pocket containers contain only applica-
tion functionality, increasing cohesion and maintainability.

By designing Pocket to be based on containers, we lever-
age the existing momentum of a large developer community,
providing delivery infrastructure for containers (e.g., con-
tainer registries), support for orchestration of containers and
their resources, including important system-level mechanisms
(cgroups, namespaces, runc, etc.) that are reaching maturity.
Any edge system should be built on these, as opposed to start-
ing from scratch. One concrete example of this is that Pocket
leverages the built-in resource management support for con-
tainers in the form of new cgroups being created; the Pocket
platform reuses cgroups for application containers without
creating new ones and avoids associated overheads. Finally,
the advantage of being able to operate as and in the container
ecosystem is that Pocket can immediately provide benefits
to existing service architectures and cloud applications being
planned for deployment at edge.



Design Considerations. Core design decisions toward real-
izing Pocket concern support for (i) concurrency, to permit the
concurrent execution of pocket applications, (ii) lightweight
cross-container interactions, to limit the impact of the pocket-
service communications, and (iii) dynamic resource manage-
ment, to control how service container resources are adjusted
and allocated to pockets.

Spawning separate monolithic Docker instances for each re-
quest trivially achieves concurrency and provides per-instance
resource controls. For Pocket, this requires support for concur-
rency and resource allocation controls in the shared service
runtime. For instance, TensorFlow v2.0 core supports the no-
tion of sessions [8] which encapsulate the environment in
which operations in a graph are run. Each session owns its
own resources which allows for resource management across
pockets. Important to note is that use of sessions replicates
some portions of the runtime functionality and resources, how-
ever, there are benefits from reusing the rest of the runtime
stack.

A conventional way for cross-container interactions in mi-
croservice based architecture is use of RPC. Popular frame-
works such as gRPC introduce data movement runtime over-
heads due to data serialization, which can be significant for
data structures used in DNN such as tensors [18]. They also
increase resource demand, since now each pocket container
would need to have access to a gRPC runtime, which trans-
lates to both launch time and execution time overheads.

One way to remove data movement costs is to provide
the service container with access to the pocket namespace,
and then to simply pass identifiers as part of the cross-domain
RPCs. At a fundamental level, this approach trades data move-
ment (serialization, copying) cost for session-based permis-
sion management. This can be achieved by exposing a session
interface in the service container. For Pocket-rpc we achieve
this by leveraging the existing session support in TensorFlow.
This retains the runtime overheads of per-pocket resource
footprint increases due to the RPC runtime, which for gRPC
is significant. Another appoach to completely eliminate the
gRPC-dependency in Pocket is to offer a generic SSH inter-
face to service containers, which we use in Pocket-ssh. The
trade-offs here depend on the kind of support for concurrency
in the runtime and the overhead associated with passing con-
trol, data, resource allocations and namespace isolation. In
that sense, the above decisions impact the binding among
pocket and service containers, and the mechanisms and gran-
ularity at which pocket resources can be managed.

Exposing the pocket namespace to the service container
requires changes in the conventional view of logical isolation
in containers. Specifically, Pocket does in a way circumvent
the isolation provided by Linux-provided mount namespaces,
as they are implemented today. However, one can envision
support for hierarchical mount namespaces with an API-level
permission management module running in the service, much
like the permission module in Android.

Figure 1: Pocket Architecture: Pocket plays a role as an inter-
face/medium between a server container and a client containers
and manages their health and communication. Client containers can
benefit from shared runtimes offered by Pocket.

Early Implementation Details. Pocket divides a service con-
tainer into two layers of containers: a pocket application
container and a service container. Pocket exposes comman-
dline APIs, such as pocket [service_container_name]
on and pocket [application_container_name], to cre-
ate and launch first the service container, and then any other
application container. Internally, Pocket runs Docker contain-
ers, puts them into its containers pool, and facilitates their
interactions.

The service container exposes its resources to applications
by presenting a pocket login interface akin to a secure remote
login server. Since each pocket login is a different isolated
instance, service containers can support several application
containers simultaneously, and as a result, the heavy runtimes
can be shared. Service containers are created as a privileged
container in order to dynamically bind and reuse the cgroup
of the container in a pocket login session, and also because
some namespaces have to be visible to the service container
to facilitate application execution.

The application containers contain the application itself
and functionality needed to interact with the service container
– a gRPC runtime for Pocket-rpc or an SSH login session
in Pocket-ssh. Application containers are created by Pocket
and stored internally in the container pool, and launched in
response to client requests. As such any container can be an
application container, the only requirement is that it contains
files relevant to its workload in its own home directory.

At launch, the application container opens a pocket login
session to the server container. For Pocket-ssh, this also in-
volves mounting (parts of) the pocket file system as a subdi-
rectory in the service container. In this session, an application
workload runs in the context of the service container. Each ses-
sion is a process in the service container, but the cgroup of the
application container is reused to manage session resources.

The communication among the host, service and applica-
tion containers, as well as the support for initializing cross-



Processors Intel(R) Xeon(R) CPU E5-2670 v3
@ 2.30GHz; 2 Processors;
24 cores; 48 threads

Motherboard Dell Inc. 0CNCJW
OS Drive ATA ST9250610NS
Memory 128GiB

Operating System 18.04.3 LTS
(GNU/Linux 4.15.0-76-generic
x86_64)

Software Settings tensorflow/tensorflow:2.1.0-py3
gcc 7.4.0
python 3.6.9
tensorflow 2.1.0
libprotoc 3.11.2

Base Images tensorflow: 2.0.0-py3
(476.25 MB, for Monolithic apps
and Pocket service container)
python:3.6-slim-buster
(55.96 MB, for Pocket app container)

Table 2: Testbed Setup

container interactions, are facilitated via a Pocket daemon.
The daemon also provides a monitoring and debugging inter-
face.

One intricate implementation detail of the current imple-
mentation of Pocket is how to mount paths of application
containers to the service container dynamically, since mount
namespaces of the service containers are isolated from the
host on creation. At present, to facilitate dynamic binding,
Pocket errs on the side of simplicity, and mounts the entire file
system of the application when its container is created. This
can be hardened by separating application container specific
files, e.g., pocket login keys from workload specific files in
different directories and selectively mounting only the work-
load specific directory into the service container namespace.
Another idea is to use separate volumes which then can be
mounted through an orchestrator like Kubernetes.

4 Initial Results and Discussion
The goal of the experimental evaluation is to provide early
insights into the feasibility of the approach. We aim to answer
the following questions:
• What is the impact of Pocket on application performance

(execution time) and responsiveness (launch time)?
• What is the impact of Pocket on the scalability of the edge

infrastructure in terms of supporting larger number of ap-
plication instances?

Testbed. The experimental testbed is summarized in Table 2.
All experiments are performed using an object detection ap-
plication operating on a single image input using Yolo version
3, ported to TensorFlow 2 [30].

Application performance. Table 3 compares the application
performance with Pocket vs. with monolithic Docker, with
respect to application execution time. Each experiment con-
sists of one or more concurrent instances of Pocket clients
generating object detection requests. The results show that
Pocket improves execution time, reducing in down to 0.26×

# Instances Pocket Monolithic
(second) (second)

n=1 10.75 10.64
n=5 9.944 11.288

n=10 4.442 12.335
n=20 3.3245 12.663

Table 3: End-to-end average execution time

# Instances Pocket-ssh Pocket-rpc Monolithic
1 58.69 2793.50 2575.63

10 63.55 6622.37 5800.86

Table 4: Mean time to launch 1 & 10 concurrent instances

for the 20 client case.
We also measure the application launch time with Pocket

and Docker. The gRPC-based version of Pocket does not
lead to performance improvements since it substitutes the
initialization overhead of the TensorFlow for the gRPC run-
time. Pocket-ssh eliminates the initialization-time overheads
of gRPC, resulting in application responsiveness that is 44×
faster than that of conventional container launch times. When
running multiple concurrent workload instances, i.e., 10 in
Table 4, the benefits of Pocket with respect to application
responsiveness further increase.

Scalability of edge resources. To demonstrate the impact of
Pocket on the efficiency of the edge platform, and its ability
to scale to larger number of instances, we compare Pocket
and monolithic Docker with respect to several system-level
metrics, while varying the number of concurrent instances.
As Figure 2 shows, Pocket is overall superior with respect to
all of the measured attributes – CPU utilization, peak memory
usages and page faults. For the case of a single concurrent
Pocket container, the results expose the resource overheads
of Pocket. This is not surprising, given that Pocket uses a
service container with a resource footprint comparable to the
monolithic instance, and an additional Pocket application con-
tainer. However, as the number of concurrent instances starts
increasing, these overheads are outweighed by the benefits
of using a shared application runtime backend, and lead to
2× reduction in resource utilization across different metrics.
This is important, as the design goal of Pocket is to provide
improvements in scenarios where multiple function instances
use the runtime service. Furthermore, the compound effect of
reduced execution time and reduced resource consumption
(e.g., CPU), points to opportunities for nearly 3× reduced
energy demand, based on our measurements.

5 Related Work
Recently, there have been a number of developments on im-
proving the resource footprint, performance and responsive-
ness of container-based workloads. SOCK [23] is aimed at
reducing the launch time of Docker containers by relying
on warm restart from snapshots of pre-initialized images.
While this greatly reduces start-up time, upon launch the run-
times are not shared. Runtime memory overheads are reduced



(a) CPU Usage measured in CPU Seconds (b) Peak Memory Usage (c) Page Faults

Figure 2: Normalized performance measurements with varying the number of concurrent instances

through techniques such as those adopted in AWS Layers or
Catalyzer [15] targeting serverless computing. Both of these
projects rely on memory or image file overlays to promote
sharing of read-only state, which, combined with warm restart,
contributes to improved launch times compared to monolithic
approaches. These solutions require additional program re-
structuring to separate the custom from shared state. Fur-
thermore, regardless of the degree of memory sharing across
application instances, there remain separate runtime instances
for each Lambda function.

Catalyzer [15] and other solutions [14] exploit language-
level techniques for encapsulation and isolation, that can be
used in conjunction with managed runtimes. Such techniques
are limited to the target programming languages, for instance
Rust in [14], and cannot be generally used for existing cloud
applications without a significant porting effort. This is be-
cause cloud-native applications are multi-glot, which is one of
the reasons they are deployed using OS containers. For exam-
ple, most microservices support lambdas written in scripting
languages such as node.js and Python, so moving all such
implementations to Rust might not be practical.

Pocket shares similar goals with Cntr [27], which also pro-
poses a solution to reduce container image sizes without re-
stricting their programming stack or deployment. Cntr also
splits a container into two, storing the application in a “slim”
image, and storing the tools for debugging the application in
a “fat” image. However, the notion of fat images in Cntr is dif-
ferent from the service containers in Pocket. Cntr’s fat images
provide an interface to tools and runtimes to avoid application
container having to install additional packages that are not
relevant to the core application functionality. Thus, unlike in
Pocket, the services in the a fat containers in Cntr are off the
critical path and their resource management and performance
are not a key focus of the design. Moreover, a slim container
is granted access to a fat container which is opposite of what
Pocket achieves, i.e., Pocket service containers gains access
to the application container resources and namespace to carry
out the application’s core functions.

Finally, concerning the shared use of accelerators such as
GPUs, which are important for the edge use cases that Pocket

considers, prior work has identified a number of optimiza-
tion opportunities through the use of higher-level (library)
interface virtualization and use of shared runtimes such as
CUDA [17,25], in general, and more recently, in the context of
TensorFlow applications [29]. Pocket allows such techniques
to be integrated in the service container as well. Concerning
the image sizes of TensorFlow containers with GPU sup-
port, according to the image history from Docker Hub, most
of the image bloat (around 800 MB) comes from integrating
CUDA support, including for toolkits such as cuDNN. Nvidia-
docker [3] allows for Docker instances to leverage the layered
image support to facilitate access to the physical device, but
do not reduce the bloat from the upper levels of the full run-
time stack. Future work will further investigate the tradeoffs
that Pocket can provide over such low-level techniques.

6 Summary and Future Directions
With Pocket, we started exploring the design choices for edge-
native support for application deployment, execution and scal-
ability. Through our experimental evaluation, we investigated
the obstacles in using cloud-native container-based solution,
a prevailing trend in ongoing software stack proposals for the
edge. We designed Pocket, which argues for edge infrastruc-
ture based on much more lightweight containers, to maintain
performance and scalability, and retain application portability
and the convenience of the container-based toolchains. We
plan to continue to evolve the Pocket prototype, to investigate
its suitability for different classes of edge use cases, and to
seek appropriate isolation and security mechanisms.

We believe that given the ultimate goals of delivering a
software solution for the edge that provides performance and
scalability, and minimizes the disruption to existing applica-
tions and toolchains, a prototype such as Pocket presents a
unique design point, and opens up fertile ground for further
research opportunities for the community.
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Discussion

Edge computing (coupled with 5G advancements) is tasked to
address the challenges to support latency-sensitive real-time
applications such as autonomous driving, industrial automa-
tion, AR/VR, etc. The crux of the solution is to migrate those
applications from central cloud servers to the edge of the
network. To make this possible and practical, requires an ap-
propriate software solution that is well-suited for the edge
infrastructure and the semantics of the edge applications.

Pocket presents an approach to accelerate the migration of
a rich, existing applications base to an edge-ready status, in a
way that creates opportunities for a scalable, multi-tenant edge
with ability to concurrently host many workloads. Pocket is a
design point in a spectrum of options – from creating entirely
new types of application implementations optimized to oper-
ate in the edge resource footprint, to building out an entirely
new ecosystem of edge-specific (micro)services. We believe
that Pocket is an important design choice, as it creates an
opportunity to maximize the utilization of the edge infrastruc-
ture while leveraging existing applications, toolchains, and
developers expertise, particularly given the nascent state of
edge computing. We welcome the community discussion on
how future edge developments should navigate this space, and
the role they see for a solution such as Pocket in jump-starting
the applications’ process of edge migration.

We recognize the limitations of the current implementation
of Pocket, and acknowledge that some of the “fixes”, related
to dynamic coupling of pocket containers with the platform
service(s), security and isolation, privilege management, etc.,
will introduce some overheads. We believe that there are
technical solutions that address these limitations, while still
retaining the benefits of Pocket, in terms of effort required
for application edge-readiness and scalability. Ongoing work
delves deeper into quantitatively and qualitatively understand-
ing the tradeoffs between Pocket and other designs based on
lighter-weight containers, ranging from popular microservice-
based and serverless computing, to other approach developed
in the research community.

Open questions such as distribution and deployment
of service-side functionality, discovery and resolution of
application-runtime dependencies, etc., are largely orthogonal
to the main ideas presented in this paper, but we acknowl-
edge that they must be explored for a robust operation of a
Pocket-based edge.
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