
Adaptively Compressing IoT Data on the Resource-constrained Edge

Tao Lu
Marvell Tech. Group

Wen Xia∗, Xiangyu Zou
Harbin Institute of Technology, Shenzhen, China

Qianbin Xia
Marvell Tech. Group

Abstract
Big IoT data needs to be frequently moved between edge
and cloud for efficient analysis and storage. Data movement
is costly in low-bandwidth wide area network environments.
Data compression can dramatically reduce data size to mit-
igate the bandwidth bottleneck. However, compression is
compute-intensive and compression throughput can be limited
by available CPU resources. The impact of available com-
putation capability of the resource-constrained edge on the
edge-to-cloud data transfer rate is apparent. Our study reveals
compressors, including gzip, bzip2, lzma, and zstd, perform
very differently under various resource-constrained condi-
tions. This motivates us to propose models for the best com-
pressor selection under CPU, network, and storage resource
limitation conditions on the edge. We implement ZipMate, a
middleware that enables resource-aware and adaptive com-
pression policy based on the model. Our evaluation shows that
adaptive policies consistently outperform unitary or random
compressor selection policies.

1 Introduction
We are living amid an invisible revolution driven by the In-
ternet of Things (IoT). IoT consists of billions of connected
devices that are transforming many domains, continually pro-
ducing data. IDC suggests that by 2025, there will be 41.6
billion connected IoT devices or things, generating more than
79 zettabytes (ZB) of data [5]. According to an NSF Data
Storage Research Report [10], IoT brings an explosion of data
collection, storage, and processing demands. It is crucial to
identify and reduce IoT data in a timely fashion, as well as
balancing among storage, preprocessing, and communication
between the resource-constrained IoT devices and cloud.

The lifecycle of data within an IoT system proceeds from
data production at IoT devices to data aggregation, transfer-
ring, filtering, preprocessing, preliminary analysis and con-
sumption, and finally in-depth analysis, permanent storage
and archiving. Data collection, aggregation, simple querying
and even preliminary processing can be conducted at the edge.
Limited by the available computing power and storage space
at the edge, IoT data are usually moved from the edge to the
cloud for in-depth analysis, long-term storage, and permanent
archiving.

Moving data from the resource-constrained edge to the
cloud is costly [21,24,29,30]. Zhang et al. [30] propose Global
∗Corresponding author: xiawen@hit.edu.cn.

Data Plane to change cloud-centric IoT architecture into data-
centric to avoid the pitfalls. Bharde et al. [12] observe the
similarity of time series data, and they apply discrete wavelet
transform based deduplication to considerably reduce the size
of video frames data needs be transferred in autonomous car
environments. Gupta et al. [18] recognized that edge-cloud
datastore has data items being partitioned across edge and
cloud nodes, causing detrimental delay of queries. They pro-
pose a simple compression approach to reduce the time series
data to reduce edge-to-cloud data access latency. Altarawneh
et al. [9] propose only storing the extracted result data and
metadata for video streaming applications, instead of sending
full data from the edge to the cloud. Elgazar et al. [17] pro-
pose smart media compression, which takes file popularity
and dynamic networking environment into consideration to
reduce the file access latency. Chen et al. [14] propose to
compress sensor data to improve real-time performance of
the industrial robot system. Stojkoska et al. [27] apply delta
compression to temporally correlated data for energy saving.
Azar et al. [11] use SZ [16] to compress wearable device data
on an Android device, reducing the Android to edge traffic
by up to 103 times. Taking limited processing capability of
low-power IoT devices into consideration, Blalock et al. [13]
introduce a time series compression algorithm called Sprintz,
which achieves high compression ratios while adding little
memory and latency overheads. In the traditional file and vol-
ume storage scenario, Harnik et al. [19] propose prefix-based
heuristic estimation to predict the effectiveness of zlib in real
time so as to make the ‘compress or not’ decision.

Existing IoT data reduction each mainly targets a specific
application scenario. There lacks a universal framework that
cohesively considers multiple optional compressors, data het-
erogeneity, and available server and network resource con-
straints to make the best compressor selection on IoT edges.
To fill this gap, we are conducting the following work. First,
we study datasets, obtaining important observations about
data compressibility, compressor performance on the datasets,
and the potential benefits of applying specific compressors to
the data. Second, we build mathematical models to recognize
data compression or transfer bottlenecks under CPU, network,
and storage resource limitations, to make optimal compres-
sion policy for a dataset in real time before transfer. Third,
we implement ZipMate, a middleware for efficient edge cloud
storage management. ZipMate is under development, and the
version presented in this paper is archived at GitHub/ZipMate.
We present preliminary results of our adaptive compression.

https://github.com/taovcu/ZipMate

Table 1: Data compressibility evaluation using four general compressors gzip, bzip2, lzma, and zstd, as well as specific (denoted as
spec) compressors including webp for images (i.e., Data 3,6), SZ for floating-point/integer data (i.e., Data 1,5,7,9), and gdcmconv
for DICOM medical images (i.e., Data 2).

Data IoT Domain / Scenario / Device Format/Type Compression Ratio | Throughput (MB/s)
gzip bzip2 lzma zstd spec

1 Energy/Appliance Power/ Meter [25] CSV/Integer 24.1 | 3.2 30.1 | 4.7 28.2 | 4.8 23.8 | 10.5 50.0 | 148
2 Health Care/ Cancer/ DCE-MRI [15] DCM/Image 2.4 | 6.8 3.3 | 4.8 2.8 | 7.8 2.5 | 10.0 3.1 | 13.6
3 Space Science/Exoplanet/Satellite [6] TIFF/Image 1.4 | 21.9 1.86 | 12.2 1.82 | 2.5 1.49 | 10.9 2.6 | 4.0
4 Petro Science / Oil Well / Meter [28] CSV/Float 8.0 | 6.8 10.4 | 11.9 15.8 | 2.0 9.6 | 15.9 N/A
5 Agriculture / Soil / Sensor [26] CSV/Float 2.6 | 3.2 2.9 | 9.8 2.6 | 6.4 2.6 | 5.2 10.0 | 34.0
6 Biology / Cell / Simulator [22] TIFF/Image 1.8 | 3.9 2.3 | 8.2 2.0 | 5.9 1.9 | 8.7 2.7 | 0.9
7 Climate / Weather / Thermometer [1] CSV/Float 3.1 | 5.8 3.8 | 2.9 3.0 | 2.3 3.2 | 2.3 3.1 | 6.1
8 Smart City / User Study / Phone [3] JSON/K-V 6.3 | 19.7 7.5 | 7.6 8.6 | 18.4 12.6 | 22.1 N/A
9 Earth / Ocean / Sensor [4] CSV/Float 2.8 | 5.0 3.2 | 9.6 2.9 | 7.0 2.9 | 10.7 3.9 | 14.5

2 IoT Datasets Study
We study multiple IoT datasets from the Awesome Public
Datasets repository [2], which contains hundreds of datasets
crossing tens of application domains. As Table 1 shows, some
datasets are collected from typical IoT devices, such as smart
farming application sensors which record soil moisture data.
Some datasets are not claimed to be collected by IoT devices,
but their application scenarios could be typical or emerging
IoT scenarios. For example, we adopt satellite images because
connecting IoT devices through satellites is emerging. We
conduct data compression on data samples with gzip, bzip2,
lzma, and zstd (the experimental setup is presented in Sec-
tion 4.1). Some specific compressors on corresponding data
types are also studied, such as SZ [16] on floating-point and
integer data, webp [8] on TIFF image, and gdcmconv [7] on
DCM medical images. About the sampling method, for small
datasets we simply use the whole data, for large datasets, we
use the first file in the dataset folder. The samples and test
scripts are included in the codebase we have shared. We make
the following key observations in the dataset study.

First, IoT data exhibits good compressibility. For most
datasets, general compressors can achieve a compression ratio
higher than 3×, some even over 10×. The gzip compressor,
which usually delivers the lowest compression ratio, can even
reduce the data size by over 60% on average. Thus, we envi-
sion data compression in the edge cloud path can considerably
reduce data transfer traffic, and shorten data access latency.

Second, no single compressor can be fit for all datasets.
We observed that bzip2, zstd, and specific compressor SZ,
webp, and gdcmconv are winners on different datasets, re-
spectively. There is no single compressor that can win on all
datasets or most datasets. In contrast, on different datasets,
compressors demonstrate different compression ratio or rate.
In heterogenous data environments and changeable computa-
tion resource conditions, adaptive compressor selection can
be very beneficial.

Third, specific compressors can dramatically outper-

Figure 1: A system overview of ZipMate on the edge.

form general compressors in either compression ratio, or
rate, or even both. Floating-point data and image data are
pretty common, especially in IoT scientific application sce-
narios. SZ was a lossy compressor originally designed for
floating-point data in HPC environments. Our tests show that
SZ dramatically outperforms general compressors on both
compression ratio and throughput (about 2× and 20× higher
respectively), only at the small cost of an error-bounded fi-
delity loss. Screening and integrating specific compressors in
ZipMate and intelligently using them is our ongoing work.

3 Adaptive Compression Design
Figure 1 shows the operating environment of ZipMate. We as-
sume various IoT devices such as camera devices, connected
cars, smart sensors, telemetric devices, medical devices, etc.,
collect source data, and then send them to edge servers for stor-
age, processing, and analysis. When the IoT data accumulate
at the edge, becoming big data, requiring in-depth analysis or
permanent storage, they are pushed to the cloud cores. Our
adaptive compression aims to minimize data transfer time
from the edge to the cloud or maximize the compression ratio,
depending on user-defined requirements.

To make the middleware portable, we believe it should

have minimal overlap with the ‘device-to-edge’ and ‘edge-to-
cloud’ communication protocols in the system I/O path. In
our current design, ZipMate provides APIs to HTTP servers
and MQTT brokers to write data received from IoT devices
into edge local storage. ZipMate also provides APIs to HTTP
or SCP cloud clients to retrieve edge local data and send it
to the cloud for analysis. Currently, ZipMate implements put,
get, list, and delete APIs for storage management:

The job type, that’s the purpose of edge-to-cloud data move-
ment, which we suppose to be user-defined, is important to
make proper compression policy. We target two representative
data movement scenarios. In the first scenario, data needs to
be moved from edge to the cloud for in-depth analysis. We
call this scenario computation offloading. In this case, we treat
the edge-to-cloud data transfer a business critical and time-
sensitive task. The data transfer should be finished as soon
as possible, so analysis can quickly start, insights and knowl-
edge can be obtained in time. In the second scenario, data
transfer to the cloud is not for analysis, but for releasing edge
storage capacity. We treat this task time-insensitive, thus can
tolerate long transfer latency. Instead, storage space saving is
the most important metric, which demands the highest data
compression ratio. We call this scenario storage offloading.

We are discussing our adaptive compression design on
the two scenarios respectively, using mathematical models
to recognize data compression or transfer bottlenecks under
CPU, network, and storage resource limitations.

Scenario 1: For computation offloading jobs, adaptive com-
pression aims to accelerate the data transfer so that analysis
of IoT data in the cloud can be launched as soon as possible.

In Scenario 1, data needs to be transferred from the edge
to cloud servers as soon as possible, and the best compressor
should be the one that enables the fastest data transfer, in
terms of uncompressed data size. Symbols are summarized in
Table 2. For a specific compressor c, assuming its compres-
sion throughput on a dataset is T (c) with computation power
of one CPU core, and the available spare utilization of ith
CPU core for compression is Ai, then the potential aggregate
compression throughput TA(C) of all cores can be calculated
as:

TA(c) = T (c)∗
n

∑
i=1

Ai (1)

Data compression needs to read data from storage systems,
thus the storage system’s available I/O bandwidth also limits
the achievable compression rate. Assuming the available I/O
bandwidth is D, we get the aggregate compression throughput
with storage system I/O limit:

TL(c) = min(TA(c),D) (2)

Assuming the compression ratio of compressor c is R(c),
and the available network bandwidth is B, which is limited

Table 2: Symbols used in Models for adaptive compression.
Symbol Description

Ai Available/Spare CPU utilization of Corei (1 <= i <= N).
B Available edge-to-cloud network bandwidth.
c Representing a compressor.
D Available storage system I/O bandwidth.
N Number of CPU cores.

R(c) Data compression ratio of a compressor.
T (c) Compression rate of a compressor with one dedicated core.
TA(c) Compression rate under CPU limitation.
TL(c) Compression rate under CPU and storage limitation.
TN(c) Compression rate under CPU, storage, network limitation.

by both available edge network bandwidth and cloud stor-
age bandwidth, then the data transfer throughput, in terms
of uncompressed size, that can be supported by the network
is B ∗R(c). Cloud-side decompression can be conducted in
parallel with edge-side compression, and decompression is
much (∼4× for gzip) faster than compression, thus we do not
specifically consider decompression in the end-to-end trans-
fer time. Taking run-time available CPU computation power,
storage I/O bandwidth, and edge-to-cloud network bandwidth
into consideration, the data transfer throughput is:

TN(c) = min(TL(c),B∗R(c)) (3)

In Scenario 1, the best compressor c is the one that can
deliver maximal TN(c). To screen out the best compressor,
there are a few challenges.

First, it is challenging to predict compression throughput
T (c) and compression ratio R(c). For a specific compressor
c, T (c) and R(c) are both dataset dependent. They can not be
known a priori. Considering the computation cost, it is not
feasible to compress the full dataset to get T (c) and R(c). We
need mechanisms to accurately and efficiently predict T (c)
and R(c) for a specific dataset. Our previous work [23] shows
that the accuracy of simply using data features such as byte
entropy and coreset size to predict the compression ratio is
not satisfactory. We have observed that there is a more direct
relationship between compressor data structures for encod-
ing and compression ratio. Therefore, we propose to sample
a small subset of a full dataset, conducting compression on
the sample to get the performance data and compressor en-
coding data structures information, to predict T (c) and R(c).
To achieve the best prediction accuracy, sampling methods
should be compressor specific and compressor internal en-
coding data structures need to be probed. To integrate tens of
compressors in ZipMate, investigating sampling methods and
building prediction models are real challenges.

Second, it’s challenging to monitor and accurately calculate
available computation power, storage I/O, and network
bandwidth in real-time. Calculating computation power and
network bandwidth utilization are relatively straightforward.
It’s very challenging to calculate available storage I/O
bandwidth, because storage system performance is workload
dependent while the sequential I/O and random I/O perform

very differently. Moreover, we expect storage systems to be
shared by multiple workloads and I/O interference a real
problem. We plan to measure the storage system pressure
from two dimensions, bandwidth for sequential I/O and IOPS
for random I/O, to achieve a reasonable calculation.

Scenario 2: For storage offloading job, adaptive compres-
sion aims to reduce data as much as possible, maximizing
cloud storage cost savings.

In Scenario 2, a data transfer job intends to release storage
capacity of edge storage servers. In this case, data needs to be
compressed as much as possible to minimize the data volume
and maximize cloud storage cost savings. This kind of job
can be categorized into data archiving, which does not have
strict timing requirements and can be treated as a job with low
priority, being processed when the computation resources are
sufficient. Therefore, the best compressor c for Scenario 2
is the one that achieves the highest R(c). Meanwhile, if the
challenges in Scenario 1 are well resolved, selecting the best
compressor in Scenario 2 will be straightforward.

Metadata Module. The metadata fields of file objects in
ZipMate are stored at edge servers. This is different from
cloud storage where metadata are stored along with objects
because ZipMate file objects are not plain files but compressed
or encrypted, and the decompression or decryption operations
are conducted at the edge which require the metadata informa-
tion. When file objects are at large scale, we expect metadata
management to be a big challenge. Sophisticated metadata
management is our on-going work.

4 Prototype and Evaluation
4.1 Experimental Setup

We use an x86 workstation as the edge server, which is de-
ployed with a 4-core Intel(R) Core(TM) i5-3470 CPU @
3.2GHz, totally 16 GB DRAM running a Linux Ubuntu Server
(x86_64). It communicates with a Google Computer Engine
server with a machine type e2-standard-2 (2 vCPUs, 8 GB
memory), located at us-west1-a zone, which serves as the
cloud server. ZipMate runs on the edge server, supporting two
protocols: scp when the cloud storage is backed by Google
Compute Engine Server and http when the cloud storage is
backed by Google Drive. Our evaluation is based on scp pro-
tocol. We use software at edge servers to accurately control
the edge upload network bandwidth, and set different com-
pression threads in ZipMate to control the CPU cores being
used, so as to emulate various resource conditions. In our
tests, we do not limit storage system bandwidth and thus it’s
not a real bottleneck in any test case.

We use the first 4 datasets in Table 1 for evaluation. Specifi-
cally, Data 1, 2, 3, 4 consists of 5, 12, 6, 9 and files, totally 227,
126, 123, and 192 MB, respectively. We treat the 4 datasets as
an ensemble, 668 MB in total, using edge-to-cloud transfer
time of the ensemble as the metric to measure the perfor-

mance of compressors. For adaptive compression we need
samples to predict data compression ratio and rate. For Data 1,
2, and 4, we employ prefix sampling [19], which simply takes
the first 1 MB contents of the data as samples. For Data 3,
which consists of large tiff images, we notice prefix sampling
is not accurate. Therefore, we simply use a small 3MB tiff
file as the sample. We configure compressors with default
parameters. The only exception is lzma, because its default
mode is too slow. We set the lzma speed parameter as ‘-1’,
indicating the fastest mode to make it competitive.

4.2 Results
In this subsection, we discuss our key observations from the
evaluation of adaptive compression.

Observation 1: Network bandwidth and computing power
both have obvious impact on data transfer time, but the
bandwidth dominates the impact.

As Figure 2 shows, in general the edge-to-cloud data trans-
fer time decreases when network bandwidth or the number
of CPU cores increases. For example, with 1 core for com-
pression, when network bandwidth increases from 10 to 20,
40, and 80 Mbps, the average data transfer time dramatically
reduces from 145 to 81, 57, and 50 seconds respectively. With
2 or 4 cores for compression, increasing network bandwidth
has a similar impact on data transfer time. In comparison, the
impact of increasing CPU cores for compression is not as
much as increasing network bandwidth. At 80 Mbps network
bandwidth, as the number of CPU cores increases from 1 to 2
and 4, the edge-to-cloud transfer time with bzip2 dramatically
reduces from 84 to 44 and 36 seconds. However, for zstd, the
data transfer time only slightly changes from 38 to 35 and
36 seconds, respectively. The reason is that the default speed
mode of bzip2 is more compute-intensive than zstd and other
compressors. As a result, with only one core, compute capa-
bility is the main bottleneck of bzip2. As the number of cores
increases to two, network bandwidth bottleneck emerges for
bzip2, and dominates for other compressors. Thus, further
increasing the number of CPU cores to four does not reduce
the edge-to-cloud data transfer time much.

Observation 2: There is no single compressor which per-
forms best in all or even most cases, either in terms of edge-
to-cloud transfer time in resource limitation conditions, or
in terms of highest compression ratio.

Compression introduces overheads, if compression does
not bring benefits, no compression is also an option in our
framework. For the datasets we have tested, all compressors
can dramatically reduce data size, shortening data transfer
time especially in low-bandwidth conditions. For example,
when the bandwidth is 10Mbps, even the worst gzip can re-
duce data transfer time by 74%, compared with transferring
uncompressed data. Our preliminary evaluation on datasets
listed in Table 1 has shown that compressor performance is
dataset dependent. Our comprehensive tests further validated

 0

 45

 90

 135

 180

80 40 20 10

E
d
g
e
 t
o
 C

lo
u
d
 T

im
e
 (

S
e
c
o
n
d
s
)

Edge to Cloud Bandwidth (Mbps)

GZIP
BZIP2
LZMA
ZSTD

Random
Adaptive

(a) 1 Core

 0

 45

 90

 135

 180

80 40 20 10

E
d
g
e
 t
o
 C

lo
u
d
 T

im
e
 (

S
e
c
o
n
d
s
)

Edge to Cloud Bandwidth (Mbps)

GZIP
BZIP2
LZMA
ZSTD

Random
Adaptive

(b) 2 Cores

 0

 45

 90

 135

 180

80 40 20 10

E
d
g
e
 t
o
 C

lo
u
d
 T

im
e
 (

S
e
c
o
n
d
s
)

Edge to Cloud Bandwidth (Mbps)

GZIP
BZIP2
LZMA
ZSTD

Random
Adaptive

(c) 4 Cores

Figure 2: Edge-to-cloud end-to-end data transfer time integrating various data compression schemes with 1, 2, 4 CPU cores
under various network bandwidth. Compressors run at their default configurations, except LZMA, which is reconfigured to its
fastest mode, because the default mode is too slow to be competitive.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

GZIP
BZIP

2
LZMA

ZSTD

Random

Adaptiv
e

C
o
m

p
re

s
s
e
d
 t
o
 U

n
c
o
m

p
re

s
s
e
d

 D
a
ta

 S
iz

e

(a) Compression Impact

 0

 40

 80

 120

 160

GZIP
BZIP

2
LZMA

ZSTD

Random

Adaptiv
e

C
o
m

p
re

s
s
io

n
 T

im
e
 (

S
e
c
o
n
d
s
)

(b) Compression Time

Figure 3: Extreme compression ratio and time cost compari-
son at best compression ratio mode with 4 cores.

this observation. When the network bandwidth is 80Mbps,
compressing with 1 core, gzip is the best compressor. How-
ever, as the network bandwidth reduces to 10Mbps, gzip be-
comes the worst. Also, with 40Mbps bandwidth and 1 core,
bzip2 is the worst. However, with 4 cores and the same band-
width, bzip2 becomes the best.

Observation 3: The resource-aware adaptive compressor
selection scheme consistently outperforms unitary or ran-
dom solutions in either achieving the shortest edge-to-cloud
transfer time or achieving the highest compression ratio.

We compare adaptive compression with unitary and ran-
dom compressor selection. We implement multi-threading to
consume 1, 2, and 4 cores for compression to emulate vari-
ous computation resource limit conditions. We limit network
bandwidth to 10, 20, 40, and 80 Mbps to emulate various
network resource limit conditions. We always use 4 threads
for data transfer to ensure network bandwidth is maximally
utilized. Our evaluation shows that in 9 out of the 12 test
cases, our adaptive compression outperforms the best unitary
compressor. In the other 3 cases the adaptive compression is
only outperformed by 1%, 3%, and 4.5%, respectively. On
average, our adaptive compression outperforms unitary com-
pressor selection by 12% to 31% in 1-core condition, by 14%
to 22% in 2-core condition, and by 10% to 22% in 4-core
condition. Averaging all 12 test cases, adaptive compression
is 13% faster than random compressor selection.

In Scenario 2, compression ratio is the most significant

metric. Therefore, we compare compressors running at their
best compression ratio mode. As it shows in Figure 3, for the
4 datasets we tested as an ensemble, lzma and bzip2 perform
better than zstd and gzip in compression ratio. Our adaptive
compression scheme can choose the better one between lzma
and bzip2, thus achieving a better compression ratio than any
unitary compressor or random compressor selection. Specifi-
cally, adaptive outperforms the best unitary compressor lzma
by 5% in compression ratio with 17% less compression time.

5 Conclusion and Future Work
For a dataset, different compressors show contrasting perfor-
mance. In resource limitation conditions, compressors get
stuck due to various resource bottlenecks, which has mo-
tivated us to propose adaptive schemes for resource-aware
compressor selection. Our preliminary evaluation validates
the effectiveness of adaptive compression.

We plan to extend our work in four directions. 1©, we con-
tinue enhancing our adaptive compression model, especially
how to properly sample a dataset so as to make accurate com-
pression ratio and rate prediction, which we believe is very
challenging but crucial to our model accuracy. 2©, we plan
to compare the data feature-based black-box method with
our compression encoding based white-box method. Jin et
al. [20] recently proposed using Long short-term memory
(LSTM), a deep learning method to extract data features and
make adaptive compression algorithm selection for database
storage. The potential of using these sophisticated models for
compression ratio prediction in our scenario is unclear and we
plan to explore. 3©, as data compression and transfer cause
computation, storage, and network resource competition, we
plan to run representative edge analytics workloads to mea-
sure the performance degradation of other edge applications
caused by compression and propose a solution to mitigate the
performance degradation of the business-critical edge tasks.
4©, we understand the importance of data security and pri-

vacy. We plan to comprehensively investigate the security
challenges in IoT, edge, and cloud environments, to enforce
proper data security policies in our middleware.

6 Discussion
Feedback expectations: A bunch of related work supports
our observation that data transfer between edge and cloud
dramatically stresses the network link. Our preliminary tests
show that data compression is effective to mitigate the net-
work link bottleneck. We especially expect two kinds of feed-
back. First, why there has not been a solid and universal data
compression solution in this context. With this information,
we may know more challenges of applying data compression
to IoT data in practice. Second, where is the best point to
deploy a data compression solution in the I/O stack. This
feedback will help us deliver a really practical solution.
Controversial points: Edge-to-cloud data transfer usually
happens when the edge does not have enough computation
resources for in-depth data analysis, and data has to be moved
to the cloud for analysis. We propose data compression to
accelerate edge-to-cloud data transfer, but data compression
is compute-intensive. How to coordinate system resources for
data compression and other edge tasks can be a challenge.
The type of discussion this paper may generate: This pa-
per will likely generate discussion regarding the benefits and
pitfalls of data compression on edge servers. The tens of IoT-
type datasets we screen out of hundreds of public datasets may
attract some attendees. Our adaptive compressor selection in
resource limitation environments can also inspire discussion,
considering the wide use of data compression techniques in a
lot of storage application scenarios. Considering the popular-
ity of general compressors such as gzip and zstd, there must
be some researchers who have conducted similar research, we
expect both challenges and consonance from these peers.
Remaining open issues: We have demonstrated that com-
pressors for a specific data type usually can achieve a much
better compression performance than general compressors.
However, some specific compressors are actually based on
lossy compression. For example, SZ can well compress
floating-point data, but there is accuracy loss of the data. How
to ensure user tolerable accuracy loss is an open issue. An-
other issue is that our current adaptive compression scheme
is a greedy algorithm, instead of a theoretically optimal solu-
tion. Whether there is a theoretically optimal solution for our
problem domain is another open issue.
Under what circumstances the whole idea might fall
apart: If there exists a compressor that can beat all other
peers and perform the best on most datasets in most condi-
tions, then adaptive compression will not bring much benefit.
If in an environment where network bandwidth is higher than
the compression throughput, then adaptive compression will
not bring much benefit.

Acknowledgments
We are grateful to our shepherd Huiping Cao and the anony-
mous reviewers for their insightful feedback. Wen’s work
was partly supported by National Natural Science Foun-

dation of China under Grant No. 61972441; the Shen-
zhen Science and Technology Program under Grant No.
JCYJ20190806143405318.

References
[1] Aviation weather center real-time data. https://

aviationweather.gov/dataserver. Accessed: 2019-12-13.

[2] Awesome public datasets. https://github.com/
awesomedata/awesome-public-datasets. Accessed:
2019-11-15.

[3] data-viz-challenge. https://github.com/localytics/
data-viz-challenge. Accessed: 2020-1-5.

[4] Imos - australian national mooring network (anmn) - ctd
profiles. https://catalogue-imos.aodn.org.au. Accessed:
2019-12-27.

[5] Iot signals report: Iot’s promise will be unlocked by
addressing skills shortage, complexity and security.
https://blogs.microsoft.com/blog/2019/07/30. Accessed:
2020-01-15.

[6] Nssdca photo gallery. https://nssdc.gsfc.nasa.gov/
photo_gallery. Accessed: 2020-1-17.

[7] Tool to convert dicom to dicom. http://gdcm.
sourceforge.net/wiki/index.php/Gdcmconv. Accessed:
2019-12-16.

[8] Webp compression techniques. https://developers.
google.com/speed/webp/docs/compression. Accessed:
2019-11-21.

[9] Ragaad Altarawneh, Christina Strong, Luis Remis,
Pablo Muñoz, Addicam Sanjay, and Srikanth Kamb-
hatla. Navigating the visual fog: Analyzing and manag-
ing visual data from edge to cloud. In 2nd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge
19), 2019.

[10] George Amvrosiadis, Ali R Butt, Vasily Tarasov, Erez
Zadok, Ming Zhao, Irfan Ahmad, Remzi H Arpaci-
Dusseau, Feng Chen, Yiran Chen, Yong Chen, et al. Data
storage research vision 2025: Report on nsf visioning
workshop held may 30–june 1, 2018. 2018.

[11] Joseph Azar, Abdallah Makhoul, Mahmoud Barhamgi,
and Raphaël Couturier. An energy efficient iot data com-
pression approach for edge machine learning. Future
Generation Computer Systems, 96:168–175, 2019.

[12] Madhumita Bharde, Suparna Bhattacharya,
Dileep Deepa Shree, et al. Store-edge ripplestream: Ver-
satile infrastructure for iot data transfer. In {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge
18), 2018.

https://aviationweather.gov/dataserver
https://aviationweather.gov/dataserver
https://github.com/awesomedata/awesome-public-datasets
https://github.com/awesomedata/awesome-public-datasets
https://github.com/localytics/data-viz-challenge
https://github.com/localytics/data-viz-challenge
https://catalogue-imos.aodn.org.au
https://blogs.microsoft.com/blog/2019/07/30
https://nssdc.gsfc.nasa.gov/photo_gallery
https://nssdc.gsfc.nasa.gov/photo_gallery
http://gdcm.sourceforge.net/wiki/index.php/Gdcmconv
http://gdcm.sourceforge.net/wiki/index.php/Gdcmconv
https://developers.google.com/speed/webp/docs/compression
https://developers.google.com/speed/webp/docs/compression

[13] Davis Blalock, Samuel Madden, and John Guttag.
Sprintz: Time series compression for the internet of
things. Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies, 2(3):1–23,
2018.

[14] Youdong Chen, Qiangguo Feng, and Weisong Shi. An
industrial robot system based on edge computing: An
early experience. In {USENIX}Workshop on Hot Topics
in Edge Computing (HotEdge 18), 2018.

[15] Kenneth Clark, Bruce Vendt, Kirk Smith, John Frey-
mann, Justin Kirby, Paul Koppel, Stephen Moore, Stan-
ley Phillips, David Maffitt, Michael Pringle, et al. The
cancer imaging archive (tcia): maintaining and operat-
ing a public information repository. Journal of digital
imaging, 26(6):1045–1057, 2013.

[16] Sheng Di and Franck Cappello. Fast error-bounded lossy
hpc data compression with sz. In 2016 ieee international
parallel and distributed processing symposium (ipdps),
pages 730–739. IEEE, 2016.

[17] Ali E Elgazar, Mohammad Aazam, and Khaled A Harras.
{SMC}: Smart media compression for edge storage
offloading. In 2nd {USENIX} Workshop on Hot Topics
in Edge Computing (HotEdge 19), 2019.

[18] Harshit Gupta, Zhuangdi Xu, and Umakishore Ra-
machandran. Datafog: Towards a holistic data man-
agement platform for the iot age at the network edge. In
USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18), 2018.

[19] Danny Harnik, Ronen Kat, Dmitry Sotnikov, Avishay
Traeger, and Oded Margalit. To zip or not to zip: Ef-
fective resource usage for real-time compression. In
Presented as part of the 11th {USENIX} Conference
on File and Storage Technologies ({FAST} 13), pages
229–241, 2013.

[20] Yingting Jin, Yuzhuo Fu, Ting Liu, and Lan Dong. Adap-
tive compression algorithm selection using lstm net-
work in column-oriented database. In 2019 IEEE 3rd
Information Technology, Networking, Electronic and Au-
tomation Control Conference (ITNEC), pages 652–656.
IEEE, 2019.

[21] Albert Jonathan, Abhishek Chandra, and Jon Weissman.
Rethinking adaptability in wide-area stream processing
systems. In 10th {USENIX}Workshop on Hot Topics in
Cloud Computing (HotCloud 18), 2018.

[22] Antti Lehmussola, Pekka Ruusuvuori, Jyrki Selinummi,
Heikki Huttunen, and Olli Yli-Harja. Computational

framework for simulating fluorescence microscope im-
ages with cell populations. IEEE transactions on medi-
cal imaging, 26(7):1010–1016, 2007.

[23] Tao Lu, Qing Liu, Xubin He, Huizhang Luo, Eric
Suchyta, Jong Choi, Norbert Podhorszki, Scott Klasky,
Mathew Wolf, Tong Liu, et al. Understanding and mod-
eling lossy compression schemes on hpc scientific data.
In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 348–357. IEEE,
2018.

[24] Ioannis Psaras, Onur Ascigil, Sergi Rene, George Pavlou,
Alex Afanasyev, and Lixia Zhang. Mobile data reposito-
ries at the edge. In {USENIX} Workshop on Hot Topics
in Edge Computing (HotEdge 18), 2018.

[25] Andreas Reinhardt, Paul Baumann, Daniel Burgstahler,
Matthias Hollick, Hristo Chonov, Marc Werner, and Ralf
Steinmetz. On the accuracy of appliance identification
based on distributed load metering data. In 2012 Sus-
tainable Internet and ICT for Sustainability (SustainIT),
pages 1–9. IEEE, 2012.

[26] Felix M. Riese and Sina Keller. Introducing a Frame-
work of Self-Organizing Maps for Regression of Soil
Moisture with Hyperspectral Data. In IGARSS 2018 -
2018 IEEE International Geoscience and Remote Sens-
ing Symposium, pages 6151–6154, Valencia, Spain, July
2018.

[27] Biljana Risteska Stojkoska and Zoran Nikolovski. Data
compression for energy efficient iot solutions. In 2017
25th Telecommunication Forum (TELFOR), pages 1–4.
IEEE, 2017.

[28] Ricardo Emanuel Vaz Vargas, Celso José Munaro,
Patrick Marques Ciarelli, André Gonçalves Medeiros,
Bruno Guberfain do Amaral, Daniel Centurion Bar-
rionuevo, Jean Carlos Dias de Araújo, Jorge Lins
Ribeiro, and Lucas Pierezan Magalhães. A realistic
and public dataset with rare undesirable real events in
oil wells. Journal of Petroleum Science and Engineering,
181:106223, 2019.

[29] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog
computing: Platform and applications. In 2015 Third
IEEE Workshop on Hot Topics in Web Systems and Tech-
nologies (HotWeb), pages 73–78. IEEE, 2015.

[30] Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan,
Ken Lutz, Eric Allman, John Wawrzynek, Edward Lee,
and John Kubiatowicz. The cloud is not enough: Saving
iot from the cloud. In 7th {USENIX} Workshop on Hot

Topics in Cloud Computing (HotCloud 15), 2015.

	Introduction
	IoT Datasets Study
	Adaptive Compression Design
	Prototype and Evaluation
	Experimental Setup
	Results

	Conclusion and Future Work
	Discussion

